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Matematicheskĭı Sbornik 193:5 149–160 DOI 10.1070/SM2002v193n05ABEH000656

Total log canonical thresholds

and generalized Eckardt points

I.A. Cheltsov and Jihun Park

Abstract. Let X be a smooth hypersurface of degree n � 3 in Pn. It is proved
that the log canonical threshold of an arbitrary hyperplane section H of it is at least
(n−1)/n. Under the assumption of the log minimal model program it is also proved
that the log canonical threshold of H ⊂ X is (n− 1)/n if and only if H is a cone
in Pn−1 over a smooth hypersurface of degree n in Pn−2.
Bibliography: 16 titles.

§ 1. Introduction
Shokurov introduced log canonical thresholds in [1] to measure how far log pairs

are from log canonicity. It has been subsequently shown that log canonical thresh-
olds have many amazing and useful properties.

Definition 1.1. Let (X,B) be a log canonical pair, and Z a closed subvariety ofX.
Let D be a Q-Cartier divisor on X.1 The log canonical threshold of D along Z with
respect to the log canonical divisor KX +B is the quantity

lctZ(D;X,B) = sup{c : the divisor KX + B + cD is log canonical along Z}.

It is easy to verify using the definition that lctZ(D;X,B) ∈ [0, 1].

Remark 1.2. In the case of a trivial boundary B = 0 we write lctZ(D;X) instead
of lctZ(D;X, 0), and in the case Z = X we use the notation lct(D;X,B) in place of
lctX(D;X,B).
One comes across log canonical thresholds in various disguises in other branches

of mathematics.

Example 1.3. (1) Consider a hypersurface D ⊂ Cn defined as the zero set of a
non-constant holomorphic function f in the neighbourhood of the origin O. Then
we can see ([3]) that the log canonical threshold lctO(D;C

n) is equal to the quantity

sup{c : the function |f |−c belongs to the class L2 in the neighbourhood of O}.

1Unless otherwise stated all varieties are assumed to be projective and defined over C. The

main definitions and notation can be found in [1] and [2].

This research was carried out with the partial support of the NSF (grant no. DMS-0100991).
AMS 2000 Mathematics Subject Classification. Primary 14J17.
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(2) Bernstein–Sato polynomials appearing in the theory of differential operators
and, in particular, inD-module theory (see [4]) provide another example. We briefly
explain what we understand by Bernstein–Sato polynomials. It is well known that
for each convergent power series

f ∈ C{z1, . . . , zn}
there exists a non-trivial polynomial b(s) ∈ C[s] and a linear differential operator

Q =
∑
I,j

fI,js
j ∂
I

∂zI

such that b(s)fs = Qfs+1, where each fI,j is a convergent power series. For a fixed
series the polynomials b(s) form an ideal of C[s]. The monic generator of this ideal
is called the Bernstein–Sato polynomial of f . We can show that lct0(D;C

n) is the
absolute value of the largest zero of the Bernstein–Sato polynomial of f (see [3]).

Mustaţǎ [5] has recently investigated log canonical thresholds via jet schemes.
In particular, he obtained the following result.

Theorem 1.4. Let X be a smooth variety, and D an integral effective divisor
on X. Then

lct(D;X) = dimX − sup
m�0

dimDm
m+ 1

,

where Dm is the mth jet scheme of D.

Recall that the mth jet scheme Xm of a variety X is a scheme with closed points
over x ∈ X that are morphisms

OX,x → k[t]/(tm+1).
If X is smooth, then Xm is an affine bundle over X of dimension (m+ 1) dimX.
To understand the geometry of a fixed variety it is often important to investigate

linear systems related to the canonical divisor. One way of investigating is to find
‘extreme’ elements of such linear systems.
There can be two kinds of extreme elements in a linear system: a ‘good’ element

and a ‘bad’ one. We now explain what we mean by ‘good’ and ‘bad’ elements.
For a ‘good’ element Reid considered a general elephant. Following in his foot-

steps Shokurov introduced a more general concept.

Definition 1.5. Let X be a normal variety, and D = S +B a subboundary on X
such that the divisors S and B have no common components, S is a reduced divisor,
and �B� � 0. Then we say that the divisor KX + D is n-complementary if there
exists a divisor D+ on X satisfying the following conditions:

(1) nD+ is integral and n(KX +D
+) is linearly trivial;

(2) nD+ � nS + �(n + 1)B�;
(3) KX +D

+ is log canonical.

If these conditions hold, then the divisor KX + D
+ is called an n-complement of

KX +D.

We now introduce a property of elements of linear systems that is converse to
being ‘good’. It was originally introduced by Keel and McKernan [6]. Strictly
speaking, it is antithetical to Reid’s ‘general elephant’.
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Definition 1.6. Let X be a normal variety, and B an effective Q-divisor on X. A
special tiger for the log canonical divisor KX +B is an effective Q-divisor D such
that KX +B +D is numerically trivial but not Kawamata log terminal.

Assume that a log pair (X,B) is log canonical. Then using log canonical thresh-
olds we can describe special tigers for the log canonical divisor KX + B.

Definition 1.7. Let (X,B) be a log canonical pair with non-empty |−(KX + B)|.
The total log canonical threshold of (X,B) is the real quantity

glct(X,B) = sup{r : KX +B + rD is log canonical for all D ∈ |−(KX + B)|}.

Remark 1.8. It follows from this definition that glct(X,B) ∈ [0, 1].
If B = 0, then the total log canonical threshold of the log pair (X,B) will be

denoted by glct(X).
The total log canonical threshold of a log pair (X,B) measures how ‘bad’ ele-

ments of the linear system |−(KX +B)| can be. It is worthwhile paying attention
also to the special tigers realizing the total log canonical threshold.

Definition 1.9. Let X be a normal variety and B an effective Q-divisor on X.
An effective Q-divisor D on X is called a wild tiger for the log canonical divisor
KX +B if the following conditions are satisfied: the divisorKX +B+D is linearly
trivial and lct(D;X,B) = glct(X,B). By a wild tiger for X we mean a wild tiger
for the canonical divisor KX .

We note that in the definition of a wild tiger linear triviality replaces numerical
triviality participating in the definition of a special tiger.

Remark 1.10. The concept of wild tiger is a sort of opposite to 1-complement of
the log canonical divisor KX +B. One can find an interesting detailed description
of interactions between 1-complements and wild tigers in [7].
In the present paper we are mainly interested in finding wild tigers for smooth

hypersurfaces of degree n � 3 in Pn.
The authors would like to thank M.M. Grinenko, V.A. Iskovskikh, A.V. Pukh-

likov, and V.V. Shokurov for invaluable fruitful conversations.

§ 2. Eckardt points
An Eckardt point is a point on a smooth cubic surface Σ at which three lines

on Σ intersect each other. In other words a point p on Σ is an Eckardt point if
there exists an element in the linear system |−KΣ| that is a cone with vertex p and
base consisting of three distinct points.
We shall now investigate smooth del Pezzo surfaces and, in particular, smooth

cubic surfaces to find their wild tigers. This will allow us to discover special features
of the Eckardt points.
In hunting for wild tigers on a variety the first step is to calculate the total

log canonical threshold. However, in view of the explicit geometric description of
smooth del Pezzo surfaces we can find wild tigers for them by investigating cubic
curves and points in general position on P2.
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Proposition 2.1. Let S be a smooth del Pezzo surface of degree d. Then one of
the following cases occurs:

(1) d = 9, S ∼= P2, glct(S) = 1
3 , a wild tiger is a triple line;

(2) d = 8, S ∼= P1 × P1, glct(S) = 1
2 , a wild tiger consists of a double fibre

of the projection onto one factor and two, possibly coincident, fibres of the
projection onto the other factor ;

(3) d = 8, S ∼= F1, glct(S) = 1
3 , a wild tiger consists of a triple fibre of the

projection onto P1 and the double exceptional section;
(4) d = 7, glct(S) = 1

3
, a wild tiger consists of a chain of three exceptional

curves considered with multiplicities 2, 3, and 2, respectively ;
(5) d = 6, glct(S) = 1

2 , a wild tiger consists either of a chain of three smooth
rational curves with self-intersections −1, 0, −1 considered with multiplici-
ties 1, 2, and 1, respectively, or of a chain of four exceptional curves taken
with multiplicities 1, 2, 2, and 1, respectively, or of four intersecting smooth
rational curves making up the configuration D4, where the central curve is
exceptional and of multiplicity 2, two curves at the vertices of the graph D4
are also exceptional, of multiplicity one, and the remaining curve has multi-
plicity one and self-intersection index zero;

(6) d = 5, glct(S) = 1
2
, a wild tiger consists of four exceptional curves making

up the configuration D4, where the central curve has multiplicity 2 and all
other curves have multiplicity 1;

(7) d = 4, glct(S) = 2
3 , a wild tiger consists of three smooth rational curves

intersecting transversally at one point, where all the three curves are taken
with multiplicity 1, two of them are exceptional, and one curve has self-
intersection index zero;

(8) d = 3, S is a smooth cubic with Eckardt point glct(S) = 2
3 , a wild tiger

consists of three exceptional points intersecting at one point, of multiplicity
1 each;

(9) d = 3, S is a generic smooth cubic in P3, glct(S) = 3
4
, a wild tiger consists

of a line and a conic, both of multiplicity 1 and intersecting tangentially ;
(10) d = 2, the surface S contains an anticanonical divisor with one tacnode,

glct(S) = 3
4 , a wild tiger consists of two exceptional curves, both of multi-

plicity 1, intersecting tangentially with intersection number 2;
(11) d = 2, the surface S contains no anticanonical divisors with tacnodes,

glct(S) = 5
6
, a wild tiger consists of a cuspidal rational curve of multipli-

city 1;
(12) d = 1, the anticanonical linear system |−KS | contains a cuspidal rational

curve, glct(S) = 5
6 , a wild tiger consists of a cuspidal rational curve of

multiplicity 1;
(13) d = 1, the anticanonical linear system |−KS | contains no cuspidal ratio-

nal curves, glct(S) = 1, a wild tiger consists of an arbitrary curve in the
anticanonical linear system |−KS | considered with multiplicity 1.

We leave Proposition 2.1 without proof (see [7]) and proceed to smooth cubic
surfaces. We have already shown that there exist in this case only two opportunities
for wild tigers. If a cubic surface has an Eckardt point, then a wild tiger consists of
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three lines intersecting at the Eckardt point. Otherwise a wild tiger is a hyperplane
section consisting of a line and a conic intersecting tangentially.

Remark 2.2. The existence of an Eckardt point is a codimension-one condition on
a cubic.
It is expected that Eckardt points are an indication of certain birational prop-

erties of del Pezzo fibrations (see [8] and [7]). Hence an attempt at a reasonable
generalization of the concept of Eckardt point to hypersurfaces of degree n � 4
in Pn seems logical.

Definition 2.3. Let X be a smooth hypersurface of degree n � 3 in Pn. A point p
on X is called a generalized Eckardt point if there exists an element S of |−KX |
that is a cone in Pn−1 over a smooth hypersurface of degree n in Pn−2 with vertex
at p.

It is clear that the concept of a generalized Eckardt point coincides with the
classical concept for n = 3. Hence in what follows we shall call generalized Eckardt
points simply Eckardt points.
As noted before, if a smooth cubic surface has an Eckardt point, then a wild

tiger is a cone over three distinct points. This result can be generalized as follows.

Theorem 2.4. Let X be a smooth hypersurface of degree n � 3 in Pn. If X has
an Eckardt point p, then the cone S in the linear system |−KX | involved in the
definition of a generalized Eckardt point is a wild tiger for X. In particular,

LCS

(
X,
n − 1
n
S

)
= {p} and lct(S;X) = glct(X) =

n − 1
n
.

We shall prove Theorem 2.4 in the next section.
If a smooth cubic surface has total log canonical threshold 2

3 , then it has an
Eckardt point. It is natural to conjecture a similar result also in the multidimen-
sional case.

Conjecture 2.5. Let X be a smooth hypersurface of degree n � 3 in Pn. If the total
log canonical threshold of X is (n−1)/n, then a wild tiger S of the hypersurface X
is a cone in Pn−1 with vertex p over a smooth hypersurface of degree n in Pn−2. In
particular, p is an Eckardt point and

LCS

(
X,
n− 1
n
S

)
= {p}.

Of course, the conjecture holds for n = 3. In § 4 we shall prove Conjecture 2.5
under the additional assumption of the log minimal model program. Since the log
minimal model program holds up to dimension 3, this will prove Conjecture 2.5 for
n = 4.
We mention now another problem related to total log canonical thresholds and

wild tigers for smooth Fano varieties. We have already seen that a generic cubic
surface has total log canonical threshold 3

4 , and its wild tiger consists of a line
and a conic intersecting tangentially with intersection number 2. A generic del
Pezzo surface of degree 2 has total log canonical threshold 5

6
, and its wild tiger is

a cuspidal cubic.

Question 2.6. What is the total log canonical threshold of a generic hypersurface
of degree n in Pn and what is a wild tiger for this surface?
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§3. A lower bound for total log canonical thresholds
Let W be a smooth hypersurface of degree m in Pn, where n � 4, and let H be

a hyperplane section of W . It follows from Lefschetz’s theorem that PicW = ZH.
In particular, a hyperplane section H of W is irreducible and reduced.

Lemma 3.1. For an arbitrary curve C on H, multC H = 1.

Proof. Let p be a sufficiently generic point in Pn. We consider a cone Pp with
base C and vertex p. Then we have Pp ∩W = C ∪Rp, where Rp is a curve on W
of degree (m− 1) degC.
Because p is a generic point, the curves C and Rp intersect transversally at

precisely (m − 1) degC distinct points (see [9]). On the other hand, we have
H ·Rp = degRp = (m− 1) degC. That is, we have the inequality

H ·Rp � degRpmultCH = (m− 1) degCmultC H.

Corollary 3.2. A hyperplane section H has only isolated singularities. In partic-
ular, it is normal.

Theorem 3.3. The log canonical threshold of the divisor H in the hypersurface W
is at least λ = min{(n− 1)/m, 1}.
Proof. Let α ∈ (0, λ). We shall consider the log pair (Pn−1, αH) instead of (W,αH).
We assume that the singularities of (Pn−1, αH) are not Kawamata log terminal.
Then the log canonical singularity subscheme

L = LCS(Pn−1, αH)

is zero-dimensional.
We consider now a Cartier divisor D such that

D ≡ KPn−1 + αH + (λ− α)H ′

for a generic element H ′ in |H|. Then

OPn−1(D) =

{
OPn−1 (−1) if m− n � −1,
OPn−1 (m− n) if m− n < −1.

By Shokurov’s vanishing theorem (see [10]) we obtain an exact sequence

H0(Pn−1,OPn−1(D))→ H0(L,OL(D))→ 0.

On the other hand, H0(Pn−1,OPn−1(D)) = 0 whereas H
0(L,OL(D)) 
= 0.

Corollary 3.4. Suppose that n = m. Then the total log canonical threshold of W
is at least (n− 1)/n.
Theorem 2.4 immediately follows from Corollary 3.4.

Remark 3.5. It follows from the proof of Theorem 3.3 that if the log canonical
threshold α of a hyperplane section H in a hypersurface W is not 1, then the locus
of log canonical singularities LCS(W,αH) consists of a single point.
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Example 3.6. Assume that a hypersurface W in Pn is defined by the equation

xm0 − xm1 +
n∑
i=2

xmi = 0,

and its hyperplane section H is described by the equation x0 − x1 = 0. Then the
log canonical threshold of H is λ. Hence λ is the greatest lower bound for the log
canonical thresholds of hyperplane sections of smooth hypersurfaces of degree m
in Pn.

§ 4. Proof of Conjecture 2.5 in the framework
of the log minimal model program

Let X be a smooth hypersurface of degree n � 4 in Pn. Let S be a hyperplane
section of X.
The aim of this section is to prove Conjecture 2.5 for n = 4. More specifically,

under the assumption of the log minimal model program in dimension n − 1 we
shall show that S is a cone in Pn−1 over a smooth hypersurface of degree n in Pn−2

if and only if the log pair

(
X,
n− 1
n
S

)
is not Kawamata log terminal.

Assume that

(
X,
n − 1
n
S

)
is not Kawamata log terminal. Then the set of

centres of log canonical singularities LCS

(
X,
n− 1
n
S

)
is non-empty and contains

only finitely many points. Moreover, it follows by Remark 3.5 that

LCS

(
X,
n− 1
n
S

)
= {p}

for some point p ∈ X.
In place of

(
X,
n − 1
n
S

)
we can consider the log pair

(
Pn−1,

n− 1
n
S

)
.

Throughout what follows we assume that the log minimal model program holds
for dimension n− 1.
Lemma 4.1. There exists a birational morphism

f : V → Pn−1

with the following properties:

(1) f is an isomorphism outside LCS

(
Pn−1,

n− 1
n
S

)
= {p};

(2) the variety V has Q-factorial terminal singularities;
(3) there exists an effective f-exceptional Q-divisor E on V such that the sup-
port of E is the entire f-exceptional locus on V , �E� 
= 0, and

KV +
n− 1
n
f−1∗ (S) + E = f

∗
(
KPn−1 +

n− 1
n
S

)
.
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Proof. Let
g : V ′ → Pn−1

be a log terminal blow-up of

(
Pn−1,

n− 1
n
S

)
. Since V ′ has Q-factorial Kawamata

log terminal singularities, we can consider a terminal blow-up h : V → V ′ of V ′.
Then the birational morphism

f = g ◦ h : V → Pn−1

has all the required properties.

We fix a birational morphism f : V → Pn−1. Let S̃ = f−1∗ (S).
Since the log pair

(
V,
n − 1
n
S̃+E

)
is log canonical, the log pair

(
Pn−1,

n− 1
n
S

)
is also log canonical. On the other hand, KV +

n− 1
n
S̃+E is not nef. Hence there

exists an extremal contraction
g : V →W

such that −
(
KV +

n− 1
n
S̃ +E

)
is g-ample.

Remark 4.2. Curves contracted by g cannot lie in fibres of the birational mor-

phism f because −
(
KV +

n− 1
n
S̃ + E

)
is g-ample and f-numerically trivial. In

particular, W is not a point.

Lemma 4.3. Suppose that the extremal contraction g contracts a subvariety F
of V to a subvariety Z of W . Then dimF − dimZ = 1.
Proof. Assume that dimF − dimZ > 1. Let G be a fibre of g over a point in Z.
Then G∩E 
= ∅, and since V isQ-factorial, there exists a curve on G∩E contracted
by both f and g.

Corollary 4.4. If g : V →W is a Mori fibre space, then g is a conic bundle.
The following lemma is due to Shokurov (see [11]).

Lemma 4.5. Let Y be a variety with at worst terminal singularities. Let h : Y → Z
be a birational contraction. If a curve C on Y is an irreducible component of the
exceptional locus of h, then KY · C > −1.
Proof. This is a local result as regards the base, and it is sufficient to consider an
analytic neighbourhood of the point h(C) = q on Z. In addition, we can assume
that the exceptional locus of h is the curve C.
Assume that KY · C � −1. We choose a divisor H on Y such that H · C = 1.

Then (KY +H) ·C = 0 (see [11]).
We consider now an KY -flip of h:

Y
ϕ��� Y +

h↘ ↙ h+

Z

.
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Let H+ = ϕ(H). Then the dimension of the exceptional locus Ex(h+) of h+ is
dimY −2 because the sum of the dimensions of the exceptional loci of the birational
morphisms h and h+ cannot be less than dimY − 1 (see [2] and [11]).
Note that the numerical h-triviality of KY +H yields the inequality

H+ · C ′ < 0

for each curve C ′ on the exceptional locus of h+. Therefore, Ex(h+) ⊂ H+.
Let E be the exceptional divisor of the blow up with centre at a component of

Ex(h+). We can assume that the centre of the divisor E on Y does not lie in H.
Then we have the following inequality:

a(E; Y,H) � a(E; Y +, H+) � 0,

where a(E; Y,H) and a(E; Y +, H+) are the discrepancies of E with respect to the
log canonical divisors KY +H and KY + +H

+. This is a contradiction because Y
is terminal.

Lemma 4.6. The morphism g cannot be a small contraction with exceptional locus
containing a curve as an irreducible component.

Proof. Assume that g is a small contraction and a curve C is an irreducible com-
ponent of the exceptional locus of the birational morphism g. By Lemma 4.5 we
obtain KV · C > −1. On the other hand,(
KV +

n− 1
n
S̃

)
· C =

(
f∗(OPn−1(−1)) −E

)
· C = −deg f∗(C)−E · C � −1.

Thus, S̃ · C < 0 and C ⊂ S̃, therefore

(KV + S̃) ·C <
(
KV +

n− 1
n
S̃

)
·C � −1.

Let ν : Ŝ → S̃ be a normalization of S̃. By the adjunction formula we obtain

KŜ +DiffS̃(0) = ν
∗((KV + S̃)|S̃).

The curve ν−1∗ (C) cannot lie in DiffS̃(0) since S̃ is smooth at a generic point on C.
Hence KŜ · ν−1∗ (C) < −1. On the other hand,

KŜ · ν
−1
∗ (C) � −1

since the curve ν−1∗ (C) is contractible.

We have proved that the extremal contraction g is a contraction of a subvariety F
of V to a subvariety Z of W such that dimF − dimZ = 1 and dimZ � 1.
Let C be a generic fibre of g over Z. Then(
KV +

n− 1
n
S̃

)
·C =

(
f∗(OPn−1(−1))−E

)
·C = −deg f∗(C)−E ·C < −deg f∗(C)

because the curve C meets the exceptional locus of the birational morphism f .
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Lemma 4.7. If g is not a conic bundle, then F = S̃.

Proof. Let C be a sufficiently generic fibre of the morphism g. The inequality

−1 � KV · C =
(
KV +

n − 1
n
S̃

)
·C − n− 1

n
S̃ · C < −deg f∗(C)−

n− 1
n
S̃ · C

shows that F ⊂ S̃. If the codimension of F in V is greater than 1, then

−1 � −deg f∗(C) >
(
KV +

n− 1
n
S̃

)
·C = (KV +S̃)·C−

1

n
S̃·C > −1− 1

n
S̃·C > −1,

where the next to last inequality is a consequence of Lemma 4.5. Hence the subva-

riety F ⊂ V has codimension 1 and F = S̃.

We now know that the extremal contraction g is either a conic bundle or a

contraction of the divisor S̃ to a subvariety Z of W of dimension n− 3.

Theorem 4.8. If the log minimal model program holds in dimension n − 1, then
Conjecture 2.5 holds for dimension n.

Proof. Let g be a conic bundle. Then �E� ∩ C 
= ∅ since no components of the
divisor E lie in fibres of g. Hence

deg f∗(C) = −
(
KV +

n− 1
n
S̃ +E

)
· C = 2− n− 1

n
S̃ · C − E · C < 2.

Consequently, f∗(C) is a line on S and S is a cone in P
n−1.

Assume now that g contracts the divisor S̃ to an (n− 3)-dimensional subvariety
of Z. Then

−deg f∗(C) >
(
KV +

n − 1
n
S̃

)
·C = (KV + S̃) ·C −

1

n
S̃ ·C = −2− 1

n
S̃ ·C > −2.

Thus, f∗(C) is a line on S. Consequently, S is a cone in P
n−1.

Corollary 4.9. Conjecture 2.5 holds for n = 4.

Corollary 4.10. The total log canonical threshold of a smooth quartic X in P4 is
equal to 34 if and only if the quartic X has an Eckardt point.

§ 5. An application
Let O be a discrete valuation ring with quotient field K. We assume that the

residue field has characteristic zero.

For a scheme π : X → SpecO we denote its scheme-theoretic fibre π∗(O) by SX ,
where O is the closed point of SpecO.
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Theorem 5.1. Let X and Y be two smooth Fano fibrations over SpecO with
generic fibres isomorphic to a smooth hypersurface of degree n in PnK , where n � 3.
Then each birational map of X into Y over SpecO that is biregular on a generic
fibre is biregular.

Proof. Note that our birational map cannot be an isomorphism in codimension one
(see [12]). The anticanonical divisors of SX and SY are very ample. Moreover,
their total log canonical thresholds are strictly larger than 12 . The required result
can therefore be obtained with the help of the same method as in [7].

We point out that Theorem 5.1 follows from the birational rigidity of smooth
hypersurfaces of degree n in Pn. However, birational rigidity has been established
so far only for generic smooth hypersurfaces of degree n > 3 in Pn and for all
smooth hypersurfaces of degree n ∈ [4, 8] in Pn (see [13]–[16]).
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