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Anticanonical models of three-dimensional

Fano varieties of degree 4

I.A. Cheltsov

Abstract. All birational transformations of three Fano 3-folds of degree 4 into
canonical Fano 3-folds, elliptic fibrations, and fibrations of K3 surfaces are described.
Bibliography: 9 titles.

All varieties under consideration are assumed to be complex projective. The
main definitions, concepts, and notation can be found in [1], [2]. The author wishes
to thank M.M. Grinenko, V.A. Iskovskikh, Yu.G. Prokhorov, A.V. Pukhlikov, and
V.V. Shokurov for useful conversations.

§ 1. Introduction
Let X be one of the following 3-folds: a smooth quartic; a general1 quartic

with simple double point O; a smooth double cover of a quadric Q ramified in an
octic surface S. Then X is a Fano 3-fold with terminal Q-factorial singularities,
PicX = ZKX , −K3X = 4, and ϕ|−KX | is an embedding for a quartic and a double
cover otherwise.

Defnition 1.1. AFano variety V with terminalQ-factorial singularities and Picard
group Z is said to be birationally rigid if V is not birationally equivalent to another
(non-isomorphic to V ) Fano variety with terminal Q-factorial singularities and
Picard group Z, or to a fibration with fibres of Kodaira dimension −∞.

A Fano 3-fold X is birationally rigid (see [3]–[5]), but a priori X can be bi-
rationally transformed into a canonical or even terminal Fano 3-fold distinct fromX.

Example 1.2. Let X be a general quartic 3-fold with simple double point O and
let ρ : V → X be a blow up of O. Then ψO = ϕ|−2KV | ◦ ρ−1 is birational and
XO = ψO(X) is a terminal Fano 3-fold with −K3XO = 2.

Proposition 1.3. Let X be a general quartic 3-fold with simple double point O.
Then for each line C on X passing through O there exists birational transformation
ψC : X ��� XC such that XC is a Fano 3-fold with terminal singularities and
−K3XC =

1
2 .

1We shall assume that X contains precisely 24 lines passing through the singular point.
AMS 2000 Mathematics Subject Classification. Primary 14J30, 14J45, 14E05.
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Proposition 1.4. Let X be a smooth double cover of a quadric Q ramified in
an octic surface S. Then for each curve C on X with −KX · C = 1 there exists
a birational map ψC : X ��� XC such that XC is a canonical Fano 3-fold with
−K3XC =

1
2 and XC has terminal singularities if and only if the image of C on Q

does not lie in S.

We prove Propositions 1.3 and 1.4 in § 2. The main aim of this paper is the proof
of the following result.

Main theorem. Let Y �∼= X be a canonical Fano 3-fold that is birationally equiv-
alent to X. Then X is not a smooth quartic 3-fold ; if X is a general quartic 3-fold
with simple double point O, then Y ∼= XO or Y ∼= XC for a line C on X passing
through O; if X is a double cover of a smooth quadric ramified in an octic, then
Y ∼= XC for an irreducible curve C on X with −KX · C = 1.
The group of birational automorphisms of the 3-fold X was described in [3]–[5];

in particular, there a set SX of birational involutions of X was described such that
the sequence of groups 1 →

∏
τ∈SX τ → BirX → AutX → 1 is exact; SX = ∅

for a smooth quartic 3-fold, SX consists of 25 involutions in the case of a quartic
3-fold with a simple double point – one of them is induced by the double point and
24 involutions are induced by the lines on the quartic passing through the singular
point; in the case of a smooth double cover of a quadric Q ramified in an octic S
all involutions in the set SX are induced by curves C in X with −KX ·C = 1 such
that their images on Q do not lie in S. Thus, SX is in a one-to-one correspondence
with the terminal Fano manifolds birationally equivalent but non-isomorphic to X.

Proposition 1.5. Let V be a birationally rigid Fano 3-fold, and G a finite subgroup
of BirV . Then there exists a birational map γ : V ��� Y such that Y is a Fano
3-fold with terminal singularities and γ ◦G ◦ γ−1 ⊂ AutY .
Proof. Let K(V ) be the field of rational functions on V , W a normal projective
model of the field K(V )G, and Y a normalization of the 3-foldW in K(V ). Then Y
is birationally equivalent to V and the group G acts biregularly on Y . The required
result now follows from the G-equivariant resolution of singularities of Y and the
G-equivariant Minimal Model Program.

Thus, for each τ ∈ SX there exists a birational map γ : X ��� Y onto a ter-
minal Fano 3-fold Y such that γ ◦ τ ◦ γ−1 is biregular on Y . Conversely, on each
terminal Fano variety Y that is birationally isomorphic but non-equivalent to X
there exists a biregular involution τY inducing a birational involution in the set SX .
The variety X is not birationally equivalent to a fibration of varieties of Kodaira

dimension −∞; however, X is always birationally equivalent to a fibration of vari-
eties of Kodaira dimension 0.

Example 1.6. Let H be a pencil in |−KX |, L ⊂ P4 a line in the anticanonical
image of X, and let γ be the composite of ϕ|−KX| and the projection from L. Then
the resolution of indeterminacy of γ transforms X birationally into an elliptic fibra-
tion and the resolution of indeterminacy of ϕH produces a birational transformation
of it into a fibration of K3 surfaces.

The fibrations described in Example 1.6 can be considered from a common point
of view: they are defined by projections from linear subspaces of P4 restricted to
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the anticanonical image of X. For this reason we shall call them simply “fibrations
defined by projections”.
The results of [2] and [6], [7] lead one to the natural suggestion that up to

an action of BirX and birational equivalence of fibrations, fibrations defined by
projections are the only fibrations of varieties of Kodaira dimension 0 that are
birationally equivalent to X. Moreover, this has been proved in [2] for a smooth
quartic 3-fold and a smooth double cover of a quadric 3-fold, but the proof there
contained a gap, and one type of fibration was left out, as pointed out to this author
by Iskovskikh (see [8]).

Definition 1.7. A smooth point P inX is said to be K-special if for some positive
integer m the linear system |−mKV | has no fixed components, where V is a blow
up of P .

Proposition 1.8. Let ρ : V → X be a blow up of a smooth point P in X and let
m ∈ N be an integer such that |−mKV | has no fixed components. Then |−mKV | is
a pencil and its general element is a union of surfaces of Kodaira dimension zero.

Proof. Consider a general element H ∈ |−KX | passing through P and its proper
transform H̃ on V . Then |−nKV − H̃| = ∅ for n ∈ N, because otherwise |−mKV |
has a fixed component. Now, K2V · H̃ = 0 and H0(OV (−nKV )) ⊂ H0(OH̃(−nKV )),
therefore the linear system |−mKV | is a pencil.
Assume now that m is the smallest positive integer such that |−mKV | has no

fixed components. Let S1 and S2 be two sufficiently general surfaces in |−mKV |
and S1, S2 their respective images on X. The surfaces S1 and S2 are irreducible,
reduced and have multiplicity 2m at P . To complete the proof we must show
that S1 and S2 have Kodaira dimension 0.
Let H ⊂ |−KX | be a linear system of surfaces passing through P , and H a

general element of H. Then it follows from the equality multP (S1 ·S2) = 4m2 that
S1 ∩ S2 has no curves from the exceptional divisor of ρ and all curves in S1 ∩ S2
are contracted by ϕH. Hence if X is a quartic, then S1 ∩ S2 is the union of all
lines passing through P . If X is a double cover of a smooth quadric Q ⊂ P4, then
it follows from the equality H · S1 · S2 = multP (S1 · S2) that P is the unique base
point of the linear system H contained in S1 ∩ S2. Thus, the strict transforms
of all curves in S1 ∩ S2 on the surfaces S1 and S2 are simultaneously regularly
contractible. The subadjunction formula shows that the canonical divisors of the
resolutions of singularities of S1 and S2 are regularly contractible, therefore
the Kodaira dimension of S1 and S2 is either 0 or −∞; however, X is birationally
rigid and can contain no pencils of surfaces of Kodaira dimension −∞.
Corollary 1.9. Each K-special point on X defines a birational map of X into a
fibration of surfaces of Kodaira dimension zero.

Example 1.10. Let X ⊂ P4 be a quartic and P a smooth point in X such that
in a neighbourhood of P the local equation of X is q1 + q2 + q1q2 + q4 = 0, where
qi is a homogeneous polynomial of degree i and the system q1 = q2 = q4 = 0
has only finitely many homogeneous solutions. Then P is K-special and defines
a birational transformation of X into a fibration of K3-surfaces with one multiple
fibre of multiplicity 2, the strict transform of the hyperplane section of X tangent
at P .
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In this paper we prove the following result.

Auxiliary theorem. Up to birational equivalence of fibrations and up to an action
of the group Bir(X) fibrations defined by projections and K-special points are the
only fibrations of varieties of Kodaira dimension zero birationally equivalent to X.

To complete the section we shall show that in the case of a double cover of
a quadric 3-fold all fibrations given by K-special points are fibrations given by
projections.

Lemma 1.11. Let X be a smooth double cover of a quadric 3-fold Q ramified in
an octic surface S ⊂ Q. Then a point P in X is K-special if and only if the image
of P on Q lies in the ramification surface S.

Proof. Assume that the image of P on Q lies in S. Let HP ⊂ |−KX | be a linear
system of surfaces whose images on Q are tangent to S at the image of P . By
construction each surface in HP is singular in P and HP has no fixed components,
therefore P is K-special.
Assume that P is K-special, but its image on Q does not belong to S. Let

ρ : V → X be a blow up of P , let S1 and S2 be general elements of |−mKV |,
and S1 and S2 their images on X, respectively, where m is the smallest integer
such that |−mKV | has no fixed components. Then the Si are reduced, irreducible
and have multiplicity 2m at P . Let H ⊂ |−KX | be a linear system of divisors in
|−KX | passing through P , and H a general element of H. Then the base locus
of H contains a point P̂ �= P . Now, the equality multP (S1 · S2) = 4m2 shows
that P̂ /∈ S1 ∩ S2 and all curves in S1 ∩ S2 are contracted by ϕH. Hence the
intersection S1 ∩ S2 consists of finitely many curves Cλ such that P ∈ Cλ and
−KX · Cλ = 1. Let C be an arbitrary curve in S1 ∩ S2, and Ĉ a curve on X
passing through P̂ whose image on Q coincides with the image of C. Consider

the restriction of S1 to a general surface D in |−KX | containing C and Ĉ. By
construction S1

∣∣
D
= multC(S1)C+B and the support of B does not contain C and

Ĉ, since otherwise S1 contains Ĉ and S2 also contains Ĉ in view of the generality
of the Si, whereas P̂ /∈ S1 ∩ S2. On the other hand, C · Ĉ = 4 and C2 = −2 on
D and multP (B) � 2m − multC(S1). Intersecting B with C and Ĉ we obtain a
contradiction: m � 4multC(S1) and 3multC(S1) � m.
Corollary 1.12. Let X be a smooth double cover of a quartic 3-fold Q ⊂ P4 ram-
ified in an octic surface S ⊂ Q, P a K-special point in X, and P̂ ∈ S its image
in Q. Then the fibration defined by P is a fibration of K3 surfaces defined by the
projection from the two-dimensional linear subspace T of P4 tangent to S at

the point P̂ .

§ 2. Construction of two birational maps
Let X be a quartic 3-fold with simple double pointO containing precisely 24 lines

passing through O. Then PicX = ZKX and −KX is a hyperplane section ofX. We
fix a lineC onX through O, consider the blow up f : W → X ofO, set Q = f−1(O),
blow up g : V → W the proper transform of C, and set E = g−1(f−1(C)) and
QV = g

−1(Q). Then |−KV | is free and ψ|−KV | is an elliptic fibration with sec-
tion QV . Its restriction to QV is birational and contracts two smooth rational
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curves C1 and C2. Note that the nef and big divisor (f ◦ g)∗(−KX) − KV has
intersection zero only with C1 and C2 and there exists a flop ρ : V ��� V̂ in C1
and C2. The restriction of ρ to a general element of |−KV | is an isomorphism,
ψ|−K

V̂
| = ψ|−K

V̂
| ◦ ρ, and the linear system |−KV̂ | is free. The surface ρ(QV )

is isomorphic to P2 and its normal bundle in V̂ is OP2(−2). We now contract by
ĝ : V̂ → Ŵ the divisor ρ(QV ) into a point P ∼= 1

2
(1, 1, 1); then −K3

Ŵ
= 1
2
and the

base locus of |−KŴ | consists of P . Hence −KŴ is nef and big and for n 	 0
the linear system |−nKŴ | defines a birational morphism onto a normal variety XC ,
which is terminal Fano with −K3XC =

1
2 . This proves Proposition 1.3.

We now prove Proposition 1.4.
Let θ : X → Q ⊂ P4 be a smooth double cover of a quartic 3-fold Q ramified

in an octic S. Then PicX = ZKX and −KX ∼ θ∗(OP4(1)|Q). We consider a
smooth rational curve C ⊂ X with −KX · C = 1 and its blow up f : W → X, set
E = f−1(C), and denote by C1 the unique base curve of |−KW |. Let g : V → W
be a blow up of C1; we set G = g

−1(C1). Then |−KV | is free and ϕ|−KV | is an
elliptic fibration with section G ∼= F1. Let C2 ⊂ G be an exceptional section.
If NC2/V

∼= OC2(m) ⊕ OC2(n), then m + n = −2 and the embedding of normal
bundles NC2/G ⊂ NC2/V shows that NC2/V ∼= OC2(−1) ⊕OC2(−1). Let r : Y → V
be the blow up of C2 and let R = r

−1(C2) ∼= P1 × P1. We contract by r̂ : Y → V̂
the surface R to a curve Ĉ2 ⊂ V̂ so that r̂ ◦ r−1 is a flop in C2; r̂ contracts an
exceptional section of the surface r−1(G) ∼= F1. We set Ĝ = r̂ ◦ r−1(G) ∼= P2;
then NĜ/V̂

∼= OĜ(−2). There exists a contraction ĝ : V̂ → Ŵ of the surface Ĝ

into a singular point P̂ ∼= 1
2(1, 1, 1), and the map ρ = ĝ ◦ r̂ ◦ r−1 ◦ g−1 is a log

flip for the log pair (W, ε |−KW |) for ε > 1, therefore Ŵ is projective and Q-

factorial, −K3
Ŵ
= 1
2 , the base locus of |−KŴ | consists of the point P̂ , −KŴ is nef

and big, and for n 	 0 the linear system |−nKŴ | defines a birational morphism
onto a canonical Fano 3-fold XC with −K3XC =

1
2 . If θ(C) �⊂ S, then the map

so constructed contracts no divisors on X, therefore the singularities of XC are
terminal. If θ(C) ⊂ S then our map contracts the surface spanned by the inverse
images on X of the lines on Q tangent to S at θ(C), therefore XC has a singularity
of type A1 at the general point of one curve. The proof of Proposition 1.4 is now
complete.

§ 3. Smooth quartic 3-fold
Let X be a smooth quartic 3-fold in P4. Then PicX = −ZKX and −KX is

rationally equivalent to a hyperplane section of X. Consider a movable log pair
(X,MX) such that KX +MX ∼Q 0.
Theorem 3.1. The log pair (X,MX) is canonical and CS(X,MX) is one of the
following sets: ∅; {P} for a K-special point P ; {L} for a line L in X; {X∩H} for
a two-dimensional linear subspace H ⊂ P4. Moreover, if CS(X,MX) = {P}, then
the boundary MX lies in the fibres of the rational map defined by the K-special point
P and if CS(X,MX) contains a curve, then MX lies in the fibres of the projection
from CS(X,MX).

Note that Theorem 3.1 yields the Main Theorem for X (see [7]).



622 I. A. Cheltsov

Proposition 3.2. For a smooth quartic X Theorem 3.1 yields the Auxiliary
Theorem.

Proof. Assume that there exists a birational map θ : X���Y of X into a fibration
τ : Y → Z with an elliptic curve or a surface of Kodaira dimension zero as a general
fibre. Let MX = λθ

−1(|τ∗(D)|) for a sufficiently big divisor D on Z and positive
rational λ such that KX +MX ∼Q 0. Assume that (X,MX) is terminal. Then
(X, γMX ) is a canonical model for some γ > 1, but κ(X, γMX) < 3 by construction.
Hence CS(X,MX) �= ∅ and by Theorem 3.1 either CS(X,MX) = {P} for a K-
special point P in X, or CS(X,MX) = {L} for a line L, or CS(X,MX) = {X ∩H}
for a two-dimensional linear subspace H ⊂ P4.
If CS(X,MX) is not a line or the dimension of Y is 2, then Theorem 3.1 yields

the required result, therefore we shall assume that τ is a fibration of surfaces and
CS(X,MX) = {L}. Let f : V → X be a blow up of the line L; we set E = f−1(L)
and MV = f

−1(MX). By Theorem 3.1 the boundary MV lies in the fibres of the
elliptic fibration ϕ|−KV | and KV + MV ∼Q 0. The singularities of (V,MV ) are
not terminal because otherwise κ(V, δMV ) = 2 for δ > 1, but κ(V, δMV ) � 1
by construction. Hence CS(V,MV ) �= ∅. Assume that CS(V,MV ) contains a
point PV . Then f(PV ) ∈ CS(X,MX), which contradicts our assumption. Hence
the set CS(V,MV ) contains a curve L̂ ⊂ V such that L̂ ⊂ E, but MV lies in the
fibres of ϕ|−KV | and L̂ is contracted by ϕ|−KV |.

Let H be a pencil of surfaces in |−KV | passing through L̂. The rational map
ϕH ◦ f−1 is a projection from some 2-dimensional subspace T of P4 containing L.
Let g : W → V be the resolution of indeterminacy of ϕH, let MW = g−1(MV ) and
h = ϕH ◦ g−1, and consider a general fibre DW of h. Then

MW
∣∣
DW
∼Q
∑
i∈I
ciFi
∣∣
DW

for some rational ci and g-exceptional divisors Fi, where at least one g-exceptional
divisor dominating L̂ does not lie in the support of

∑
i∈I ciFi. By examining all

possible cases one can show that the intersection form of the curves Fi
∣∣
DW
on the

surface DW is negative-definite. In view of the movability of MW
∣∣
DW
, this means

that MW
∣∣
DW
= ∅. Hence MW lies in the fibres of h, which completes the proof

and also shows that L is cut on X by T with multiplicity 4.

In the rest of this section we prove Theorem 3.1. The canonicity of each movable
log pair on X with Q-rationally trivial log canonical divisor is equivalent to the
birational rigidity of X, therefore we shall assume that (X,MX) has canonical
singularities.

Lemma 3.3. Suppose that CS(X,MX) contains a point P . Then P is K-special,
CS(X,MX) = {P}, and the boundary MX lies in the fibres of the map defined by
the K-special point P .

Proof. Let HP be a general hyperplane section of X through P . The inequality
HP ·M2X � multP (M2X) and Pukhlikov’s local inequality in the form of Theorem 4.1
of [2] show that multP (MX) = 2. Let f : W → X be a blow up of the point P , and
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MW = f
−1(MX). Then MW ∼Q −KW and |−nKW | has no fixed components for

some n	 0, the point P is K-special, and |−nKW | is a pencil by Proposition 1.8.
It follows from the equality multP (M

2
X) = 4 that the support ofM

2
X is the union of

all lines passing through P . In particular, there are only finitely many lines on X
passing through P . The base locus of f(|−nKW |) also consists of all lines passing
through P , therefore MX lies in the fibres of ϕf(|−nKW |).
Assume that CS(X,MX) contains elements distinct from P . We have already

proved that the support of the effective cycle M2X is the union of all lines pass-
ing through P . Hence there exists a line C on X passing through P such that
either C ∈ CS(X,MX) or CS(X,MX) contains another K-special point on C.
Consider a general hyperplane section HC of X containing C. The surface HC
is smooth and we have MX

∣∣
HC
= multC(MX)C + BC for some movable bound-

ary BC . The inequality B
2
C � (2 −multC(MX))2 shows that multC(MX) � 2

3 . If
the set CS(X,MX) contains another point in C, then we arrive at a contradiction:
B2C = 4− 2multC(MX)− 2mult

2
C(MX) � 2(2−multC(MX))2.

We shall assume that CS(X,MX) contains no points, but it contains an irre-
ducible reduced curve C. The canonicity of (X,MX) means that multC(MX) = 1.
It follows from the inequality 4 = −KX ·M2X � −KX ·C that the degree of C ⊂ P4
is at most 4.

Lemma 3.4. The curve C lies in a 2-dimensional linear subspace of P4.

Proof. Assume that the assertion does not hold. Then C is either a smooth curve
of degree 3 or 4, or it is a rational curve of degree 4 with one double point.
Let C be a smooth curve, f : W → X a blow up of it, E = f−1(C),

MW = f−1(MX), and d = −KX · C. The base locus of the linear system
|f∗(−dKX) − qE| contains no curves; however, (f∗(−dKX) −E) ·M2W < 0.
Thus, we can assume that C is a rational quartic curve with double point P . Let

f : W → X be the composite of the blow up of P and the strict transform of C and
let G and E be f-exceptional divisors such that f(E) = C and f(G) = P . Then
|f∗(−4KX)−E− 2G| has no base curves, but (f∗(−4KX)−E− 2G) ·M2W < 0 for
MW = f

−1(MX) because 2 > multP (MX) � multC(MX) = 1.
Lemma 3.5. If C is a line, then MX lies in the fibres of the projection from C.

Proof. Let f : W → X be the blow up of C, and MW = f−1(MX). Then the
linear system |−KW | is free, the morphism ϕ|−KW | is an elliptic fibration, and
MW ∼Q −KW .
Lemma 3.6. Let C be a line such that CS(X,MX) �= {C}. Then there exists a
2-dimensional linear subspace T of P4 containing C such that CS(X,MX)= {X∩T}
and the boundary MX lies in the fibres of the projection from T .

Proof. Let f : V → X be a blow up of the line C, let E be the exceptional divisor
of f , andMV = f

−1(MX). By Lemma 3.5,MV lies in the fibres of ϕ|−KV | : V → P2.
By assumption CS(V,MV ) contains a curve L̂ not lying in E. The movability ofMV
means that L̂ is contracted by ϕ|−KV |. Let H be a pencil of surfaces in |−KV |
passing through L̂, and D a general element of H. Then D is a K3 surface with
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at most canonical singularities, the map ϕH ◦ f−1 is a projection from some
2-dimensional linear subspace T of P4 containing both C and L = f(L̂). More-
over, C is cut on X by T with multiplicity at most 3. The required result follows
now by the arguments used at the end of the proof of Proposition 3.2.

Lemma 3.7. If the degree of C is 4, then MX lies in the fibres of the projection
from C.

Proof. By Lemma 3.4 the quartic curve C is cut on X by a 2-dimensional linear
subspace T ⊂ P4. LetHT be a pencil of hyperplane sections ofX passing through T ,
let f : W → X be a resolution of indeterminacy of ϕHT , and g = ϕHT ◦f−1, where f
is biregular outside C and W is smooth and contains one exceptional divisor E
dominating C. Let MW = f

−1(MX) and let D be a general fibre of g. Then
MW
∣∣
D
is equivalent to

∑
i∈I ciFi

∣∣
D
for some ci ∈ Q, where all the f(Fi) are points

in C. The movability of MW
∣∣
D
means that MW

∣∣
D
= ∅. Hence MW lies in the

fibres of g, which yields the required result.

Lemma 3.8. Let C be a conic or a cubic lying on a 2-dimensional linear sub-
space T . Then the set CS(X,MX) consists of all irreducible components of X ∩ T
and MX lies in the fibres of the projection from T .

Proof. Let HT be a pencil of hyperplane sections of the quartic X containing T ,
and D a general surface inHT . Then D is a K3 surface with canonical singularities.
Let C be a plane cubic. Then X ∩T = C∪L andMX

∣∣
D
= C+multL(MX)L+BD

for some movable boundary BD equivalent to (1−multL(MX))L. Since L2 < 0, it
follows that L ∈ CS(X,MX), and the required result follows from Lemma 3.6.
Let C be a conic and let X∩T = C∪L1∪L2 for lines L1 and L2, L1 �= L2. Then

MX
∣∣
D
= C +multL1(MX)L1 +multL2(MX)L2 + BD for a movable boundary BD

equivalent to (1−multL1(MX))L1+(1−multL2(MX))L2, and the intersection form
of the lines L1 and L2 is negative-definite. Thus, Li ∈ CS(X,MX) and the required
result follows from Lemma 3.6.

Let C be a conic and let X ∩ T = C ∪ R for a line R on X. Then we have
the equality MX

∣∣
D
= C + αR + BD for some rational α � multR(MX) and a

movable boundary BD. However, BD is equivalent to (2− α)R and R2 < 0, which
means that the boundary BD is empty. On the other hand, the base locus of the
pencil HT consists of C and R, which shows that MX lies in the fibres of ϕHT and
R ∈ CS(X,MX).
Let C be a conic and X ∩ T = C. Consider a blow up f : V → X of C and let

E = f−1(C) andMV = f
−1(MX). Let S be a general surface in |−KV | = f−1(HT ).

Then for some movable boundary BS on S we have MV
∣∣
S
= multĈ(MV )Ĉ + BS ,

where Ĉ is the unique base curve of |−KV |. On the other hand, the boundary BS
is equivalent to multĈ(MV )Ĉ and Ĉ

2 < 0. Hence BS = ∅ andMV lies in the fibres

of ϕ|−KV | because the base locus of |−KV | is Ĉ.

The proof of Theorem 3.1 is now complete.
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§4. Singular quartic 3-fold
Let X be a quartic 3-fold with one simple double point O such that there exist

precisely 24 lines on X passing through O. In Example 1.2 we constructed a bi-
rational map ψO : X ��� XO onto a terminal Fano 3-fold with−K3XO = 2, and in § 2
for each line C ⊂ X containing O we constructed a birational map ψC : X ��� XC
onto a terminal Fano 3-fold with −K3XC =

1
2 .

Proposition 4.1. Suppose that there exists a birational map σ : X ��� Y onto a
canonical Fano 3-fold Y . Let MY =

1
n |−nKY | for some n 	 0 and assume that

the log pairs (X,MX), (XO ,MXO), and (XC ,MXC ) are birationally equivalent
to the log pair (Y,MY ). Then up to an action of BirX one of the log pairs (X,MX),
(XO ,MXO), or (XC ,MXC ) has semiterminal singularities

2 and a Q-rationally triv-
ial log canonical divisor.

It follows from the uniqueness of the canonical model that Proposition 4.1 yields
the Main Theorem for a quartic X (see [7]). The next result is equivalent to the
birational rigidity of X, which is proved in [5].

Proposition 4.2. For a movable log pair (X,MX) of Kodaira dimension 0 there
exists an automorphism τ ∈ BirX such that the singularities of (X, τ(MX)) are
canonical and KX + τ(MX) ∼Q 0.

For a proof of Proposition 4.1 we require a description of the set of centres of
canonical singularities of log pairs with canonical singularities and Kodaira dimen-
sion 0 on a quartic X and one additional auxiliary result.

Theorem 4.3. Let (X,MX) be a canonical movable log pair with KX +MX ∼Q 0.
Then CS(X,MX) is one of the following sets: ∅; {O}; {P} for a K-special
point P ; {C} for a line C passing through the point O; {O,C} for a line C passing
through O; {C} for a line C not passing through O; {O,X ∩ H} for a two-
dimensional linear subspace H passing through O; {X ∩H} for a two-dimensional
linear subspace H not passing through O. Moreover, assume in addition that
CS(X,MX) is non-empty and does not consist of a point O or a line C on X
passing through O. If CS(X,MX) contains a curve, then MX lies in the fibres of
the projection from CS(X,MX), and if CS(X,MX) = {P} for a K-special point P ,
then the movable boundary MX lies in the fibres of the map defined by the K-special
point P .

Lemma 4.4. Let (V,BV ) be a log pair such that V ∼= P1×P1 and BV is an effective
divisor of type (α, β) in PicV ⊗Q for some α and β in Q∩ [0, 1). Then the log pair
(V,BV ) has at most log terminal singularities.

Proof. Intersecting BV with the rulings on V we conclude that LCS(V,BV ) con-
tains no curves. Assume that LCS(V,BV ) contains a point O ∈ V . Let H be a
divisor on V of type (1 − α, 1− β) in the group PicV ⊗Q. Then H is ample and
H0(OV (D)) = 0 for D = KV +BV +H; however, by Shokurov’s vanishing theorem
(see [2]) the map H0(OV (D))→ H0(OL(V,BV )(D)) is surjective.

2A log pair (X,MX) is semiterminal if there exists λ > 1 such that (X,λMX) is canonical.
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Proposition 4.5. Theorem 4.3 yields the Main Theorem for the quartic X.

Proof. Assume that there exists a non-trivial birational map σ : X ��� Y onto a
canonical Fano 3-fold Y . Let MY =

1
n |−nKY | for a sufficiently large integer n and

let MX = σ
−1(MY ). Then κ(X,MX) = 0 and by Proposition 4.2 we can replace σ

by its composite with a birational automorphism of X so that the singularities of
the movable log pair (X,MX) are canonical and KX +MX ∼Q 0.
Let MXO = ψO(MX) and let MXC = ψC(MX) for an arbitrary line C on X

passing through the point O, where ψO and ψC are the birational maps from Exam-
ple 1.2 and Proposition 1.3, respectively. By Proposition 4.1, for the proof of the
Main Theorem it is sufficient to show that one of the log pairs (X,MX), (XO ,MXO ),
and (XC ,MXC ) has semiterminal singularities and a Q-rationally trivial log canon-
ical divisor.

We may assume that the singularities of the log pair (X,MX) are not terminal.
Then Theorem 4.3 and the construction of the movable boundary MY imply that
either CS(X,MX) = {O} or CS(X,MX) = {C} for some line C on X containing
the singular point O.

Let CS(X,MX) = {C} for some line C on the quartic X passing through O. We
consider the blow ups f : W → X of O and g : V → W of the curve f−1(C). Let E
be the g-exceptional divisor, QV = g

−1(f−1(O)), and MV = (f ◦ g)−1(MX). Then
KV +MV ∼Q a(V,MV , QV )QV and E ∼= P1 × P1.
Assume that (V,MV ) is not terminal. Then the set CS(V,MV ) contains a

curve CV ⊂ E dominating the line C. This, however, contradicts the relation
MV · D = a(V,MV , QV ) ∈ Q ∩ (0, 1), where D is a fibre of the morphism ϕ|−KV |
passing through some point of the curve CV . Hence the singularities of (V,MV )
are terminal and it follows from the construction of ψC that (XC ,MXC ) has semi-
terminal singularities and KXC +MXC ∼Q 0.
To complete the proof we may assume that the singular point O is the unique

centre of canonical singularities of the log pair (X,MX). Let f : W → X be a blow
up of O, let Q = f−1(O), and MW = f

−1(MX). Then Theorem 3.11 of [9] shows
that KW +MW ∼Q f∗(KX +MX). Moreover, the morphism from W into XO
is crepant for (W,MW ). Thus, it remains to show that the log pair (W,MW ) has
terminal singularities. All elements of the set CS(W,MW ) lie in the exceptional
divisor Q.

Assume that CS(W,MW ) contains a point OW ∈ Q that belongs to no strict
transform of a line on X passing through O. Then Pukhlikov’s local inequality in
the form of Theorem 4.1 in [2] shows that multOW (M

2
W ) � 4. Intersecting M2W

with a general surface in |−KW | passing through OW we obtain a contradiction.
Assume that CS(W,MW ) contains a point OW ∈ Q such that OW ∈ f−1(C)

for some line C on X. Let g : V → W be a blow up of f−1(C), let E be the
exceptional divisor, and MV = g

−1(MW ). By Shokurov’s connectedness theorem
LCS(E,MV |E) �= ∅, which contradicts Lemma 4.4. Hence the set CS(W,MW ) does
not contain points.

Assume that CS(W,MW ) contains a curve Z in Q. Intersecting MW with
the rulings on Q ∼= P1 × P1 we conclude that Z is itself one such fibre. Let
g : V → W be a blow up of Z, let H be a general surface in the pencil |−KV |,
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and MV = g
−1(MW ). Then H is a K3 surface with at most canonical singular-

ities and MV
∣∣
H
= multẐ(MV )Ẑ +

∑
i∈I αiCi + BH for some rational numbers

αi � multCi(MV ) and a movable boundary BH , where Ẑ and Ci are base curves
of the pencil |−KV | such that ϕ|−KW |(g(Ẑ)) = ϕ|−KW |(Z), and the curves Ci
are mapped into lines on X passing through O. On the other hand, the intersec-
tion form of the curves Ẑ and Ci on H is negative-definite and MV

∣∣
H
is equiva-

lent to H
∣∣
H
, which is equivalent to Ẑ +

∑
i∈I aiCi for some positive integers ai.

Hence BH = ∅ and MV lies in the fibres of ϕ|−KV |, which in turn means that
f ◦ g(Ci) ∈ CS(X,MX). However, MV cannot lie in the fibres of ϕ|−KV | by con-
struction and by our assumption that CS(X,MX) = {O}.

Proposition 4.6. Theorem 4.3 yields the auxiliary theorem for X.

Proof. Assume that the quartic X can be birationally transformed by a map
θ : X ��� Y into a fibration τ : Y → Z whose general fibre is either an elliptic
curve or a surface of Kodaira dimension zero. Let MX = λθ

−1(|τ∗(DZ)|) for a suf-
ficiently big divisor DZ on Z and λ such that KX +MX ∼Q 0. By Proposition 4.2
we can assume that the movable log pair (X,MX) has canonical singularities.
Assume that the log pair (X,MX) has terminal singularities. Then for some

rational γ the log pair (X, γMX) is a canonical model, whereas κ(X, γMX) < 3
by construction. Hence CS(X,MX) �= ∅. Moreover, the same arguments show
that the singularities of the log pairs (XO ,MXO ) and (XC ,MXC ) are not semi-
terminal, where MXO = ψO(MX) and MXC = ψC(MX) for a line C on X pass-
ing through O and ψO and ψC are the birational maps from Example 1.2 and
Proposition 1.3, respectively. Thus, it follows from the proof of Proposition 4.5
that CS(X,MX) �= {O} and CS(X,MX) �= {C} for all lines C on X contain-
ing O. By Theorem 4.3, CS(X,MX) is one of the following sets: {P} for some
K-special point P ; {O,C} for a line C passing through the point O; {C} for a
line C not passing through O; {O,X ∩H} for a 2-dimensional linear subspace H
passing through O; {X ∩H} for a two-dimensional linear subspace H not passing
through O. If CS(X,MX) contains a curve, thenMX lies in the fibres of the projec-
tion from CS(X,MX), while if CS(X,MX) = {P} for aK-special point P , thenMX
lies in the fibres of the map defined by P . In particular, if τ is an elliptic fibration, or
CS(X,MX) �= {O,C} for any line C on X passing through O or CS(X,MX) �= {C}
for any line C onX not passing through O, then Theorem 4.3 yields all the required
results. Thus, we can assume for the completion of the proof that τ is a fibration of
surfaces of Kodaira dimension zero, and the set CS(X,MX) is either {O,C} for a
line C passing through C or {C} for a line C not passing through C, andMX lies in
the fibres of the projection from C. The case when CS(X,MX) = {C} for some line
C on X not passing through the point O is covered by the proof of Proposition 3.2.
Hence we shall assume that the set CS(X,MX) consists of the point O and a line
C on X passing through O.
Let f : W → X be a blow up of O, Q = f−1(O), and MW = f−1(MX). Then it

follows from Theorem 3.1 in [9] that multO(MX) = 1 and KW +MW ∼Q 0.
Assume that CS(W,MW ) contains a point OW . Then we have OW ∈ Q and

multOW (M
2
W ) � 4 by Pukhlikov’s local inequality in the form of Theorem 4.1 of [2].

If OW does not lie in the strict transform of a line on X, then intersecting M
2
W
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with the general surface in |−KW | passing through OW we obtain a contradiction.
Hence OW ∈ f−1(L) for some line L on X. Let g : V →W be a blow up of f−1(L),
E the exceptional divisor of g, and MV = g

−1(MW ). Then E ∼= P1 × P1 and
by Shokurov’s connectedness theorem LCS(E,MV |E) �= ∅, in contradiction with
Lemma 4.4.

Assume that CS(W,MW ) contains a curve Z ⊂ Q. Then f−1(C) ∩ Z �= ∅
and Z is a ruling on Q ∼= P1 × P1. Let g : V → W be a blow up of the curve Z,
let H be a sufficiently general divisor in |−KV |, and let MV = g−1(MW ). Then
MV
∣∣
H
= multẐ(MV )Ẑ +

∑
i∈I αiCi+BH for some rational αi � multCi(MV ) and

a movable boundary BH , where Ẑ and the Ci are base curves of the pencil |−KV |
such that ϕ|−KW |(g(Ẑ)) = ϕ|−KW |(Z), the images of the curves Ci on X are lines
through the point O, and f ◦ g(Cj) = C for some j ∈ I. On the other hand, the
intersection form of the curves Ẑ and Ci on H is negative-definite and the divisor
MV
∣∣
H
is equivalent to H

∣∣
H
, which in its turn is equivalent to Ẑ +

∑
i∈I aiCi for

some ai ∈ N. Hence BH = ∅ and MV lies in the fibres of the rational map ϕ|−KV |,
which yields the required result.

We can therefore assume that CS(W,MW ) = Ĉ = f
−1(C). Let g : V → W be

a blow up of Ĉ, E the g-exceptional divisor, QV = g
−1(Q), and MV = g

−1(MW ).
Then KV +MV ∼Q 0, |−KV | is free, ϕ|−KV | is an elliptic fibration with section QV ,
MV lies in the fibres of ϕ|−KV |, and E

∼= P1 × P1.
The set CS(V,MV ) is non-empty, but CS(V,MV ) does not contain points or

curves contacted by g, for otherwise their images in W would belong to

CS(W,MW ) = {Ĉ}. Hence CS(V,MV ) contains a curve C̃ ⊂ E dominating Ĉ.
However, MV lies in the fibres of ϕ|−KV |, therefore ϕ|−KV | contracts C̃; on the

other hand ϕ|−KV |
∣∣
E
does not contract curves.

In the rest of this section we prove Theorem 4.3. We fix a movable log pair
(X,MX) such that the singularities of (X,MX) are canonical, KX+MX ∼Q 0, and
CS(X,MX) �= ∅.

Lemma 4.7. Assume that CS(X,MX) contains a smooth point P . Then P is
K-special, CS(X,MX) = {P}, and MX lies in the fibres of a rational map defined
by the K-special point P .

Proof. It follows from the proof of Lemma 3.3 that P isK-special, multP (MX) = 2,
the boundary MX lies in the fibres of the map defined by the point P , and
either CS(X,MX) = {P} or there exists a centre of canonical singularities of
(X,MX) lying on some line C on X passing through P and O. Assume that
CS(X,MX) �= {P} and consider a general hyperplane section HC of X passing
through C. Then MX

∣∣
HC
= multC(MX)C + BC for some movable boundary BC .

Moreover, multP (BC )� 2−multC(MX) andB2C =4−2multC(MX)− 32 mult
2
C(MX),

therefore multC(MX) � 4
5 . In particular, C /∈ CS(X,MX) and either CS(X,MX)

contains another K-special point on C or O ∈ CS(X,MX).
Assume that the line C contains two K-special points in CS(X,MX). Then

B2C = 4−2multC(MX)− 32 mult
2
C(MX) � 2(2−multC(MX))2, which is impossible.

Hence O ∈ CS(X,MX) and multO(MX) = 1 by Theorem 3.11 of [9], which yields
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the inequality B2C � (2−multC(MX))2 + 2(1− 1
2 multC(MX))

2, contradicting the

equality B2C = 4− 2multC(MX)− 3
2
mult2C(MX).

We can assume that CS(X,MX) contains no smooth points, but contains a
curve C such that the degree of C ⊂ P4 is at most 4 and multC(MX) = 1.

Lemma 4.8. The curve C lies in a two-dimensional linear subspace of P4.

Proof. Assume that the assertion is false. Then C is either a smooth curve or a
rational curve of degree 4 with one double point. If O /∈ C, then the proof of
Lemma 3.4 leads to a contradiction, therefore we shall assume that O ∈ C.
Let C be a smooth curve of degree 3 or 4. Let f : W → X be a blow up of O,

g : V →W a blow up of f−1(C), letE be the g-exceptional divisor,QV=(f◦g)−1(O),
MV = (f ◦ g)−1(MX), and d = −KX ·C. Then (f ◦ g)∗(−dKX)−QV −E is a nef
divisor and the boundaryMV is equivalent to (f ◦g)∗(−KX)−multO(MX)QV −E;
however, ((f ◦ g)∗(−dKX) −QV − E) ·M2V < 0.
Let C be a rational curve of degree 4 with double point P �= O. Let h : U → X be

the composite of blow ups of the points P and O with a blow up of the strict trans-
form of C, MU=h

−1(MX), QU=h
−1(O), F=h−1(P ), and G an h-exceptional divi-

sor such that h(G)=C. ThenMU∼Qh∗(−KX )−multO(MX)QU−multP (MX)F−G
and the linear system |h∗(−4KX)−QU−2F−G| is free, whereas direct calculations
show that (h∗(−4KX)−QU − 2F −G) ·M2U < 0.
Now let C be a rational curve of degree 4 with double point O. Let f : W → X

be a blow up of O, and g : V →W a blow up of f−1(C). Let MV = (f ◦ g)−1(MX).
Then MV ∼Q (f ◦ g)∗(−KX)−multO(MX)QV −E, where QV = (f ◦ g)−1(O) and
E= g−1(f−1(C)). Direct calculations show that ((f◦g)∗(−4KX)−QV−E)·M2V < 0,
but it is easy to see that the linear system |(f ◦ g)∗(−4KX)−QV −E| has no base
curves.

Lemma 4.9. Let C be a line and let O ∈ CS(X,MX) if O ∈ C. Then MX lies in
the fibres of the projection from C.

Proof. In the case O /∈ C let f : W → X be a blow up of C, otherwise let f : W → X
be the composite of a blow up of O with a blow up of the strict transform of C.
Then MW ∼Q −KW , MW · K2W = 0, |−KW | is free, and ϕ|−KW | is an elliptic
fibration. Hence MW lies in the fibres of ϕ|−KW |.

Lemma 4.10. Let C be a line, O /∈ C, and assume that CS(X,MX) contains
a curve L �= C. Then there exists a two-dimensional linear subspace T of P4
containing both C and L such that CS(X,MX) = {O, X ∩ T} if O ∈ T and
CS(X,MX) = {X ∩ T} if O /∈ T , and the boundary MX lies in the fibres of the
projection from T .

Proof. Let f : V → X be a blow up of C, let E be the exceptional divisor of f ,
and let MV = f

−1(MX). Then | −KV | is free, the morphism ϕ|−KV | is an elliptic
fibration, and MV lies in the fibres of ϕ|−KV | by Lemma 4.9, while CS(V,MV )

contains L̂ = f−1(L). Hence L̂ is contracted to a point by ϕ|−KV |.

Let H be a pencil of surfaces in |−KV | passing through L̂ and let D be a
general surface in H. Then D is a K3 surface with canonical singularities and the
map ϕH ◦ f−1 is the projection from a two-dimensional linear subspace T ⊂ P4
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containing both C and L. In the case O /∈ T the required result follows from the
proof of Lemma 3.6. We shall therefore assume that O ∈ T .
Assume that MV lies in the fibres of ϕH and CS(X,MX) contains all curves in

X∩T . For a resolution h : U → V of indeterminacy of ϕH we take a general fibre S
of ϕH ◦ h−1 and set MU = h−1(MV ). Then MU

∣∣
S
∼Q (1− multO(MX))QU

∣∣
S
for

a divisor QU whose image on X is the point O. The divisor QU does not lie in the
fibres of ϕH ◦h−1, therefore O ∈ CS(X,MX). To complete the proof we must show
that all curves in X ∩ T belong to CS(X,MX) and MV lies in the fibres of ϕH.
However, this follows from the end of the proof of Proposition 3.2.

Lemma 4.11. Let C be a line passing through O and assume that CS(X,MX)
contains a curve L �= C. Then there exists a two-dimensional linear subspace
T ⊂ P4 such that CS(X,MX) = {O, X ∩ T} and MX lies in the fibres of the
projection from T .

Proof. Let S be a general hyperplane section of X passing through C; S is a K3
surface with one simple double point O. Consider the restriction MX

∣∣
S
, which is

C + BS for a movable boundary BS on S. Assume that C and L do not lie in a
two-dimensional subspace of P4. Then the intersection S ∩ L contains a point P
such that P /∈ C. Hence 1 > B2S � mult2P (MX) = 1. This means that there exists
a two-dimensional linear subspace T ⊂ P4 containing the curves C and L.
Assume that CS(X,MX) contains all curves in X ∩ T and MX lies in the fibres

of the projection ψ from T . Let h : U → V be the resolution of indeterminacy of ψ,
SU a general fibre of ψ ◦ h−1, and MU = h−1(MX). Then we have

MU
∣∣
SU
∼Q (1−multO(MX))QU

∣∣
SU
,

where QU is a divisor such that h(QU ) = O. The surface QU does not lie in the
fibres of ψ ◦ h−1. Hence O ∈ CS(X,MX) and to complete the proof we must show
that CS(X,MX) contains all components of X ∩T and MX lies in the fibres of the
projection from T . But this follows from the end of the proof of Proposition 3.2.

Lemma 4.12. If C is a quartic curve lying in a two-dimensional linear subspace
T ⊂ P4, then MX lies in the fibres of the projection from T and O ∈ CS(X,MX) if
and only if O ∈ T .
Proof. We consider a pencil HT of hyperplane sections of X passing through X∩T
and resolve indeterminacy of ϕHT by means of a birational morphism f : W → X
such that W contains a unique f-exceptional divisor E dominating C and f is an
isomorphism outside C. Let D be a general fibre of the fibration g = ϕHT ◦ f−1 of
K3 surfaces and let MW = f

−1(MX). Then

D ∼ f∗(−KX )−E −
∑
i∈I
aiFi,

where the images of all the Fi on X are points in C and ai ∈ N. On the other hand,

MW
∣∣
D
∼Q
∑
i∈I
ciFi
∣∣
D
for some ci ∈ Q.

Hence the movability ofMW
∣∣
D
means thatMW lies in the fibres of the morphism g.
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Assume now that the curve C contains the point O. In this case we can choose
a birational morphism f such that f = g ◦ h, where g : V → X is a blow up of O
and h is birational. Let Q be an exceptional divisor of g and QW = h

−1(Q). Then
Fj = QW for some j ∈ I and Fj

∣∣
D
is non-trivial. However, cj = 1 −multO(MX),

therefore O ∈ CS(X,MX).

Lemma 4.13. Let C be either a conic or a plane cubic lying in a two-dimensional
linear subspace T ⊂ P4. Then the boundary MX lies in the fibres of the projec-
tion from T and either O ∈ T and CS(X,MX) = {O, X ∩ T}, or O /∈ T and
CS(X,MX) = {X ∩ T}.

Proof. LetHT be a pencil of hyperplane sections of the quarticX passing throughC,
and D a sufficiently general divisor in HT . Then D is a K3 surface with at most
canonical singularities.

Let C be a plane cubic. Then MX
∣∣
D
= C + multL(MX)L + BD for some

line L ⊂ D and a movable boundary BD on D. Moreover, BD is equivalent to
(1 − multL(MX))L and L2 < 0. Hence L ∈ CS(X,MX) and the required result
follows from Lemmas 4.10 and 4.11.

Assume that C is a conic andX∩T = C∪L1∪L2 for lines L1 and L2 on X. From
the numerical properties of MX

∣∣
D
we see that Li ∈ CS(X,MX) and the required

result follows by Lemmas 4.10 and 4.11.

Let C be a conic and let X ∩ T = C. If O /∈ C, then the required result follows
from the proof of Lemma 3.9, therefore we assume that O ∈ C. Let f : V → X
be the composite of a blow up of O and a blow up of the strict transform of C,
let QV = f

−1(O), let E be an exceptional divisor dominating C, MV = f
−1(MX),

and S a general surface in |−KV |. Then MV
∣∣
S
= multĈ(MV )Ĉ +

∑k
i=1 αiZi +BS

on S, where Ĉ ⊂ E, the Zi ⊂ QV are base curves of |−KV |, and BS is a mov-
able boundary. However, on S the boundary BS is Q-rationally equivalent to

multĈ(MV )Ĉ+
∑k
i=1 βiZi for some βi ∈ Q and the intersection form of the curves Ĉ

and Zi is negative-definite. Hence BS = ∅, MV lies in the fibres of ϕ|−KV |, and we
see from the explicit description of MX that O ∈ CS(X,MX).
The proof of Theorem 4.3 is thus complete.

§ 5. Double cover of a quadric
Let θ : X → Q be a smooth double cover of a quadric 3-fold Q ramified in a

smooth octic surface S ⊂ Q. Then PicX = −ZKX and −KX is the pullback of
a hyperplane section of Q. In § 4 for each curve C on X with −KX · C = 1 we
constructed a birational map ψC : X ���XC onto a terminal Fano 3-fold XC with
−K3XC =

1
2 .

Proposition 5.1. Let σ : X ��� Y be a birational map onto a Fano 3-fold Y with
canonical singularities. For n 	 0 let MY =

1
n |−nKY | and let (X,MX) and

(XC ,MXC ) be log pairs birationally equivalent to (Y,MY ). Then up to an action of
the group BirX either (X,MX) or some (XC ,MXC ) has semiterminal singularities
and Q-rationally trivial log canonical divisor.
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Similarly to the quartic case, the main theorem for X follows from Proposi-
tion 5.1, and the following result is equivalent to the birational rigidity of X proved
in [4].

Proposition 5.2. Let (X,MX) be a movable log pair on X with κ(X,MX) = 0.
Then for some automorphism τ ∈ BirX the singularities of (X, τ(MX)) are canon-
ical and KX + τ(MX) ∼Q 0.

Theorem 5.3. Let (X,MX) be a canonical movable log pair withKX+(MX ) ∼Q 0.
Then

CS(X,MX) =




∅,

{C} for a curve C ⊂ X with −KX · C = 1,
{C} for a curve C ⊂ X such that θ(C) is a line

and −KX · C = 2,
{C1 ∪ C2}, where θ(C1)= θ(C2) is a line

and −KX · (C1+C2)= 2,{⋃
i∈I
Ci,
⋃
j∈J
Pj

}
, where the Ci are all base curves of a pencil

H ⊂ |−KX |, and the Pj are singular points
on a general surface in H.

Moreover, one of the following results hold : (X,MX) is terminal ; CS(X,MX) con-
sists of a curve C with −KX · C = 1, the log pair (ψC(X), ψC(MX)) has semi-
terminal singularities and Q-rationally trivial log canonical divisor, where ψC is
the birational map from Proposition 1.4; the set CS(X,MX) contains a point P
such that θ(P ) ∈ S and MX lies in the fibres of the composite of θ with the pro-
jection from the tangent space to S at the point θ(P ); MX lies in the fibres of the
composite of θ with the projection from θ(CS(X,MX)).

Similarly to the proof of Proposition 4.5 one can show that the main theorem
for X follows from Theorem 5.3.

Proposition 5.4. Theorem 5.3 yields the auxiliary theorem for X.

Proof. Assume that X can be birationally transformed by a map σ : X ��� Y into
a fibration τ : Y → Z whose general fibre is an elliptic curve or a surface of Kodaira
dimension zero. Let MX = λσ

−1(|τ∗(DZ)|) for a sufficiently big divisor DZ and
λ ∈ Q>0. Then we can assume by Proposition 5.2 that (X,MX) has canonical
singularities and KX +MX ∼Q 0.
Assume that the singularities of the log pair (X,MX) are terminal. Then for

some γ > 0 the log pair (X, γMX ) is a canonical model. On the other hand it
follows by the construction of MY that κ(Y, γMY ) < 3, therefore CS(X,MX) �= ∅.
Let L be a curve on X with −KX · L = 1 and let (XL,MXL) be a movable log

pair with MXL = ψL(MX) for the birational map ψL : X ��� XL from Proposi-
tion 1.4. Assume that the singularities of the log pair (XL,MXL) are semiterminal
andKXL+MXL ∼Q 0. Then the movable log pair (XL, γMXL) is a canonical model
for some positive rational γ, which contradicts the inequality κ(Y, γMY ) < 3.
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By Theorem 5.3 either CS(X,MX) contains a point P and θ(P ) ∈ S or

CS(X,MX) =




{L} for a curve L ⊂ X with −KX ·L = 1,
{C} for a curve C ⊂X such that θ(C) is a line

and −KX · C=2,
{L1 ∪ L2}, where θ(L1) = θ(L2) is a line

and −KX · (L1 + L2) = 2,{⋃
i∈I
Ci

}
, where the Ci are all base curves

of a pencil H ⊂ |−KX |.

In both cases MX lies in the fibres of ψ, where ψ is either the composite of θ and
the projection from θ(CS(X,MX)) or the composite of θ and the
projection from the tangent space to S at θ(P ) if P ∈ CS(X,MX).
In particular, if CS(X,MX) contains a point P on the 3-fold X, then it follows

from Theorem 5.3 that τ is a fibration of K3 surfaces equivalent to the fibration
defined by the projection from the tangent space to the surface S at θ(P ). In the
case when the set CS(X,MX) consists of the base curves of the pencil H ⊂ |−KX |
and the image of the locus of CS(X,MX) on Q is not a line, Theorem 5.3 shows
that τ is a fibration of K3 surfaces equivalent to the one defined by the rational
map ϕH. In the case when τ is an elliptic fibration Theorem 5.3 shows that τ is
birationally equivalent as a fibration to the fibration defined by the composite of
the double cover θ and a projection from some line on Q.
Thus, we can assume that τ is a fibration of surfaces of Kodaira dimension 0,

CS(X,MX) =




{L} for a curve C ⊂ X with −KX · L = 1,
{C} for a curve C ⊂X such that θ(C) is a line

and −KX · C=2,
{L1 ∪ L2}, where θ(L1) = θ(L2) is a line

and −KX · (L1 + L2) = 2,

and MX lies in the fibres of the composite of θ with the projection from the line
θ(CS(X,MX)). We must show that MX lies in the fibres of ϕH for some pencil
H ⊂ |−KX |.
Assume that the unique centre of canonical singularities of the movable log pair

(X,MX) is a smooth rational curve L such that −KX ·L = 1. Let f : W → X be a
blow up of L, E an exceptional divisor of f , MW = f

−1(MX), and L̂ a base curve

of the linear system |−KW |. Then L̂ is a smooth rational curve and it follows by
the construction of the birational map ψL in Proposition 1.4 that for a sufficiently

large integer n we have ψL = ϕ|−nK
Ŵ
| ◦ ρ, where ρ : W ��� Ŵ is an antiflip in L̂.

Assume that the log pair (W,MW ) has terminal singularities and let ζ > 1 be a
rational number such that the singularities of the log pair (W, ζMW ) are still termi-

nal. Let MŴ = ρ(MW ). Then the singularities of the movable log pair (Ŵ , ζMŴ )
are also terminal because ρ is a log flip for the movable log pair (W, ζMW ). On the
other hand, the log canonical divisor KŴ +MŴ is Q-rationally trivial. In particu-

lar, ϕ|−nK
Ŵ
| is crepant for the terminal log pair (Ŵ , ζMŴ ). Hence (XL, ψL(MX))
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has semiterminal singularities and a Q-rationally trivial canonical divisor; but we
have already proved that this is impossible. Thus, the set CS(W,MW ) contains an
irreducible curve T ⊂ E such that f(T ) = C.
Assume that T �= L̂ and L̂ ⊂ E. Intersecting MW with a sufficiently general

fibre of f
∣∣
E
: E → C we obtain a contradiction.

Assume that T �= L̂ and L̂ �⊂ E, and let DW be a general surface in |−KW |.
Then DW is a smooth K3 surface, T ∩ DW �= ∅, and we have the equivalence
MW
∣∣
DW
= multL̂(MW )L̂ + RDW ∼Q L̂ + F for some movable boundary RDW

and elliptic curve F such that F · L̂ = 1; however, MW · L̂ = −1 and therefore
multL̂(MW ) > 0. Intersecting MW

∣∣
DW
with a curve in the pencil |F | passing

through a point in T ∩DW we obtain a contradiction.
Hence T = L̂, L̂ ⊂ E, the image of L on Q lies in S, and L̂ is an exceptional

section of the ruled surface E. Let g : V → W be a blow up of L̂, GV = f−1(L̂),
and let MV = g

−1(MW ). Then ϕ|−KV | is an elliptic fibration with section

GV ∼=F1 and MV ·K2V =0, therefore MV lies in the fibres of the morphism ϕ|−KV |.
The singularities of (V,MV ) are not terminal and CS(V,MV ) contains a curve

L̃ ⊂ GV . However, we have already proved that MV is contained in the fibres of
ϕ|−KV |. Hence L̃ is contracted to a point by ϕ|−KV | and L̃ is an exceptional section
of the surface GV ∼= F1.
Let h : U → V be a blow up of the curve L̃, R = h−1(L̃), and MU = h−1(MV ).

Let D be a sufficiently general surface in |−KU |. Then D is a K3 surface with at
most canonical singularities and MU

∣∣
D
=
∑k
i=1 αiL̃i + BD, where the L̃i are base

curves of |−KU |, BD is a movable boundary on D, and αi ∈ Q�0. On the other
hand, MU

∣∣
D
is equivalent to D

∣∣
D
, which is in its turn equivalent to

∑k
i=1 βiL̃i for

βi ∈ N. The intersection form of the curves L̃i on D is negative-definite. Hence
BD = ∅, which means that MU lies in the fibres of ϕ|−KU |.

Let (X,MX) = {C}, where −KX · C = 2 and θ(C) is a line. Then C is a
smooth elliptic curve or a rational curve with one double point. Let HC be
a linear subsystem of |−KX | consisting of surfaces passing through the curve C.
The map ϕHC is the composite of the double cover θ and the projection from the
line θ(C). Let r : VC → X be a birational map such that r has a unique exceptional
divisor G, which dominates C, VC has terminal singularities, HVC = r

−1(HC) is
free, and ϕHVC is an elliptic fibration. Let MVC = r

−1(MX). Then the equal-

ity multC(MX) = 1 yields H
2
VC
· MVC = 0, therefore MVC lies in the fibres

of ϕHVC and MVC is Q-rationally equivalent to HVC . Hence the singularities of

(VC ,MVC ) are not terminal because otherwise κ(VC , γMVC ) = 2 for each rational
γ > 1, although it follows from the construction of the movable boundary MX
that κ(X, γMX) � 1. Thus, the set CS(VC ,MVC) contains a curve Ĉ such that
r(Ĉ) = C. However, we have already proved that the boundary MVC lies in the

fibres of ϕ|−KV |. Hence Ĉ is contracted by ϕ|−KV | and is an exceptional section
of the ruled surface G. Let HĈ be a pencil in the linear system HVC containing

surfaces passing through the curve Ĉ, and let DĈ be a general surface in HVC .

Then MVC
∣∣
D
Ĉ

∼Q Ĉ on DĈ , therefore MVC
∣∣
D
Ĉ

= Ĉ. On the other hand, the curve

Ĉ is the base locus of the pencil HĈ . Hence MVC lies in the fibres of ϕH.
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Finally, we can assume that CS(X,MX) consists of two smooth rational curves
L1 and L2, L1 �= L2, mapped by θ into the same line on Q. Let s : X → X be
the composite of a blow up of L1 and a blow up of the strict transform of L2.
Let MX = s

−1(MX) and let E1 and E2 be exceptional divisors of the morphism s
dominating the curves L1 and L2, respectively. Then |−KX | is free, ϕ|−KX | is an
elliptic fibration with two sections E1 and E2, MX lies in the fibres of ϕ|−KX |,

E2 ∼= F1, and the singularities of the log pair (X,MX) are not terminal. Hence the
set CS(VC ,MVC) contains a curve L2 such that the image of L2 on X is either L1
or L2. Moreover, we may assume that the curve L2 dominates L2 because otherwise
we can take s to be the composite of a blow up of L2 with the blow up of the strict
transform of L1. The boundaryMX lies in the fibres of the elliptic fibration ϕ|−KX |.

Hence L2 is an exceptional section of the surface E2. Let HX ⊂ |−KX | be a pencil
of surfaces passing through L2 and let DX be a sufficiently general surface in HX .

Then MX
∣∣
D
X

= L2 +
∑k
i=1 aiZi + BDX , where BDX is a movable boundary,

the Zi are base curves of the pencil HX distinct from L2, and ai ∈ Q�0. On the
surface DX the restriction MX

∣∣
D
X

is equivalent to DX
∣∣
D
X

, which is equivalent to

L2+
∑k
i=1 biZi for some integers bi. However, the intersection form of the curves Z i

on the surface DX is negative-definite. Hence BDX = ∅ and the support ofMX
∣∣
D
X

consists of the base locus of the pencil HX . Thus, MX lies in the fibres of ϕHX .

In the rest of this section we prove Theorem 5.3. Consider a movable log pair
(X,MX) with canonical singularities such that KX+MX ∼Q 0 and CS(X,MX) �=∅.

Lemma 5.5. Suppose that CS(X,MX) contains a point P . Then the image of P
on Q lies in S, CS(X,MX) =

{
P,
⋃
i∈I Ci,

⋃
j∈I Pj}, and MX lies in the fibres

of ϕH, where H is a pencil in |−KX | consisting of surfaces singular at P , the
Ci are all base curves of H, and the Pj are base points of the pencil H such that
θ(Pj) ∈ S and the tangent spaces to S at the points θ(Pj) coincide with the tangent
space to S at θ(P ).

Proof. Let HP be a general surface in |−KX | containing P . It follows from the
relation HP ·M2X � multP (M2X) and Pukhlikov’s local inequality in the form of
Theorem 4.1 of [2] that multP (MX) = 2.
Let f : W → X be a blow up of P , E = f−1(P ), and MW = f−1(MX). Then

MW ∼Q −KW , |−nKW | has no fixed components for n 	 0, P is a K-special
point, and θ(P ) ∈ S by Lemma 1.11. In particular, the pencil |−KW | has no fixed
components.
Let C ⊂ X be a curve such that either −KX ·C = 1 or C has a singularity at P

and −KX · C = 2. Then C lies in the base locus of f(|−KW |) and in the support
of M2X . On the other hand, M

2
W · (f∗(−KX) − E) = 0, the divisor f∗(−KX) − E

is nef and big, and |k(f∗(−KX) − E)| for some k 	 0. Thus, the base locus of
the pencil f(|−KW |) and the support of M2X consist of finitely many curves Cλ
such that each Cλ is either smooth and −KX · Cλ = 1, or Cλ is singular at P and
−KX · Cλ = 2. This yields the required result.

Thus, we shall assume that CS(X,MX) contains no points, but contains a
curve C such that −KX · C � 4.
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Lemma 5.6. Let C be the unique centre in CS(X,MX) and let −KX · C = 1.
Then either MX lies in the fibres of the composite of θ with a projection from θ(C)
or (XC , ψC(MX)) has terminal singularities and a Q-rationally trivial log canonical
divisor, where ψC : X ���XC is the birational map from Proposition 1.4.

Proof. Note that C is a smooth rational curve and its image on Q is a line.
Let f : W → X be a blow up of C. Let E be the exceptional divisor of f ,
MW = f

−1(MX), and C1 the unique base curve of the linear system |−KW |. Then
C1 is a smooth rational curve and it follows from the construction of the birational
map ψC that ψC = ϕ|−nK

Ŵ
| ◦ ρ for n	 0, where the birational map ρ : W ��� Ŵ

is an antiflip in the curve C1.
Assume that the log pair (W,MW ) has terminal singularities. We take ζ ∈ Q>1

such that the singularities of (W, ζMW ) are still terminal. LetMŴ = ρ(MW ). Then

the singularities of (Ŵ , ζMŴ ) are terminal because ρ is a log flip for (W, ζMW ).

The birational morphism ϕ|−nK
Ŵ
| is crepant for (Ŵ , ζMŴ ), therefore (XC ,MXC )

has semiterminal singularities and KXC +MXC ∼Q 0, where MXC = ψC(MX).
Assume that (XC ,MXC ) has semiterminal singularities and KXC +MXC ∼Q 0.

Then the singularities of (W,MW ) are also semiterminal because (Ŵ ,MŴ ) is a

crepant pull back of the log pair (XC ,MXC ) and ρ
−1 is a log flop for (Ŵ ,MŴ ).

To complete the proof we can assume that the singularities of the log pair
(W,MW ) are not terminal. Then the equivalence KW + MW ∼Q 0 shows that
CS(W,MW ) contains a curve T ⊂ E such that f(T ) = C.
Let T = C1 ⊂ E, let g : V → W be a blow up of the curve C1, and let

MV=g
−1(MW ). Then |−KV | is free, ϕ|−KV | is an elliptic fibration, andMV ·K2V=0.

HenceMV lies in the fibres of ϕ|−KV | andMX lies in the fibres of ϕ|−KV |◦g−1◦f−1,
but ϕ|−KV | ◦ g−1 ◦ f−1 is the composite of θ and the projection from θ(C). Thus,
the inequality κ(V, γMV ) < 3 holds for each rational number γ > 1. In particular,
(XC ,MXC ) has no semiterminal singularities and a Q-rationally trivial canonical
divisor.
Assume that T �= C1 and C1 ⊂ E. Then intersecting MW with a sufficiently

general fibre of f
∣∣
E
: E → C we see that E ⊂MW , which contradicts the movability

of the boundary MW .
Assume now that T �= C1 and C1 �⊂ E. Let DW be a general divisor in

|−KW |. Then DW is a smooth K3 surface, T ∩DW �= ∅, and we have the equality
MW
∣∣
DW
= multC1(MW )C1+RDW ∼Q C1+F for some movable boundary RDW and

an elliptic curve F such that F ·C2 = 1. On the other hand MW ·C1 = −1, there-
fore multC1(MW ) > 0. Intersecting MW

∣∣
DW
with a curve in |F | passing through a

point in T ∩DW we obtain a contradiction.

Lemma 5.7. The image of C on the quadric Q is a line or a conic.

Proof. Assume that the degree of θ(C) is greater than 2. The restriction θ
∣∣
C
is an

isomorphism and the image of C on Q is either a singular rational curve of degree 4
with one double point or a smooth curve of degree 3 or 4.
Let C be a smooth curve. Then either C is a rational curve or C is an elliptic

curve and −KX ·C = 4. Let f : W → X be a blow up of the curve C, E an excep-
tional divisor of the birational morphism f , MW = f

−1(MX), and d = −KX · C.
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We shall show that the divisor f∗(−dKX)−E is nef. In the case when the image of
the curve C on the quadric Q does not lie in the ramification surface S let C̃ �= C
be a curve on X whose image on Q coincides with the image of C. Then the base

locus of the linear system |f∗(−dKX)−E| lies in the curve Ĉ = f−1(C̃), therefore
the divisor f∗(−dKX) − E has a non-negative intersection with all curves on the
3-fold W with the possible exception of Ĉ; however, direct calculations show that

(f∗(−dKX)−E) · Ĉ > 0. In the case when the image of C on the quadric Q lies in
the surface S the base locus of the linear system |f∗(−dKX)−E| lies in the excep-
tional divisor E. We can assume that the normal bundle NC/X is decomposable.

Explicit calculations yield (f∗(−dKX) − E)
∣∣
E
· s∞ � 0 for an exceptional section

s∞ of the ruled surface E. We have thus proved that f
∗(−dKX)− E is nef, while

on the other hand (f∗(−dKX) −E) ·M2W < 0.
We can now assume that −KX ·C = 4 and C is a rational curve with one double

point P . Let g : V → X be the composite of a blow up of P and a blow up of the
strict transform of C, letMV = g

−1(MX), and let G and H be exceptional divisors
of the birational morphism g, where H is an exceptional divisor of the blow up of
the strict transform of C. Using the same arguments as in the previous case one
can show that the divisor f∗(−4KX)−H−2G is nef, while direct calculations show
that (f∗(−4KX)−H − 2G) ·M2W < 0.

Lemma 5.8. Let θ(C) be a conic. Then CS(X,MX) consists of all base curves
of the pencil H ⊂ |−KX | of surfaces passing through C and MX lies in the
fibres of ϕH.

Proof. We have either −KX · C = 2 and θ
∣∣
C
is an isomorphism, or −KX · C = 4

and θ
∣∣
C
is a double cover. Let −KX · C = 4 and let f : W → X be a resolution of

indeterminacy of the rational map ϕH such that f is an isomorphism outside the
curve C and W is smooth and contains precisely one f-exceptional divisor E dom-
inating the curve C. Let τ = ϕH ◦ f−1 and MW = f−1(MX). Then a sufficiently
general fibre D of τ is rationally equivalent to a divisor f∗(−KX)−E−

∑
i∈I aiFi,

where all the f(Fi) are points in C and all the ai are integers. On the other hand,
on the surface D the restriction MW

∣∣
D
is Q-rationally equivalent to

∑
i∈I ciFi

∣∣
D

for some rational numbers ci. Hence MW
∣∣
D
= ∅ and MW lies in the fibres of τ ,

which yields the required result.
Now let −KX · C = 2 and assume that the image of C on Q does not lie in the

ramification surface S. Consider a smooth rational curve C̃ on X such that C̃ �= C
and the images of the curves C̃ and C on Q are the same. Let DC be a general

divisor in H. Then C̃ ⊂ DC and MX
∣∣
DC
= C +multC̃(MX)C̃ + RDC ∼Q C + C̃

for some movable boundary RDC . On the other hand, C̃
2 < 0 on D. Hence the

boundary RDC is empty, multC̃(MX) = 1, and CS(X,MX) contains the curve C̃.

However, the base locus of H consists of C and C̃, therefore MX lies in the fibres
of ϕH.

Let −KX · C = 2 and θ(C) ⊂ S. Let g : V → X be a blow up of C, F an
exceptional divisor of g, and let MV = g

−1(MX) and HV = f
−1(H). Let DV be a

general surface inHV . Then the base locus ofHV consists of a section Ĉ of the ruled
surface F and we haveMV

∣∣
DV
= multĈ(MV )Ĉ+RDV for a movable boundaryRDV .
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On the surface DV the restriction MV
∣∣
DV
is equivalent to −KV

∣∣
DV
∼ Ĉ. On the

other hand, Ĉ2 < 0 on DV . Thus, the boundary RDV is empty and the support
of the restriction MV

∣∣
DV
lies in the base locus of the pencil HV . Hence MV lies in

the fibres of ϕHV .

We can assume that the image of the curve C on the quadric Q is a line.

Lemma 5.9. Assume that CS(X,MX) contains a curve L and θ(L) �= θ(C). Then
θ(L) is a line, θ(C) ∩ θ(L) �= ∅, the set CS(X,MX) consists of all base curves of
the pencil H of surfaces in |−KX | passing through both C and L, and MX lies
in the fibres of ϕH.

Proof. It follows from Lemmas 5.7 and 5.8 that θ(L) is a line. Let −KX ·C = 1 and
assume that θ(L) ∩ θ(C) = ∅. Let f : W → X be a blow up of the curve C, let E
be an exceptional divisor of the morphism f , L̂ = f−1(L), MW = f

−1(MX), and
letDW be a general divisor in |−KW |. Then the base locus of |−KW | consists of one
smooth rational curve C1, DW is a smooth K3 surface, L̂∩DW �= ∅, and for some
movable boundary RDW we have MW

∣∣
DW
= multC1(MW )C1 + RDW ∼Q C1 + F

on DW , where the curve F is elliptic and F ·C1 = 1. Moreover, the strict inequality
MW · C1 < 0 yields multC1(MW ) > 0. Intersecting MW

∣∣
DW
with a curve in the

pencil |F | passing through a point in L̂ ∩DW we obtain a contradiction.
Let −KX · C = 2 and assume that θ(L) ∩ θ(C) = ∅. Then C is either a

smooth elliptic curve or a rational curve with one singular double point. Let HC
be a linear system consisting of surfaces in the anticanonical linear system |−KX |
passing through the curve C. Then the map ϕHC : X ��� P2 is the composite of the
double cover θ and the projection from θ(C). Let r : VC → X be a terminal blow
up for the canonical log pair (X,HC) such that the linear system HVC = r

−1(HC)
is free and the morphism ϕHVC is an elliptic fibration. LetMVC = r

−1(MX). Then
MVC ∼Q HVC , therefore MVC lies in the fibres of the elliptic fibration ϕHVC . On
the other hand, the strict transform of L on the 3-fold VC is a centre of canonical
singularities of the log pair (VC ,MVC) and does not lie in the fibres of ϕHVC , which
contradicts the movability of the boundary MVC .

We have thus proved that θ(L) ∩ θ(C) �= ∅. Now let H be a pencil in the linear
system |−KX | consisting of surfaces passing through both C and L. We must prove
that the set CS(X,MX) contains all base curves of the pencil H and MX lies in
the fibres of ϕH.

Let −KX · C = −KX · L = 1. Let g : V → X be the composite of a blow up
of C with a blow up of L, DV a general surface in |−KV |, and MV = g−1(MX).
Then MV

∣∣
DV
=
∑k
i=1 αiZi +RDV for a movable boundary RDV , base curves Zi of

the pencil |−KV |, and non-negative rational αi. On the surface DV the restriction
MV
∣∣
DV
is equivalent to −KV

∣∣
DV
∼
∑k
i=1 βiZi for βi ∈ N. On the other hand,

the intersection form of the curves Zi on the surface DV is negative-definite, there-
fore MV lies in the fibres of ϕ|−KV | and by implication CS(X,MX) contains all
base curves of the pencil H.

Let −KX · C = −KX · L = 2. Let D be a sufficiently general surface in the
pencil H. Then MX

∣∣
D
= C + L + RD ∼Q −KX

∣∣
D
∼ C + L for some movable
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boundary RD. Hence RD = ∅ and MX
∣∣
D
consists of two base curves of the

pencil H, which means that MV lies in the fibres of ϕ|−KV |.
Two cases are now left to consider: either −KX · C = 2 and −KX · L = 1, or

−KX · C = 1 and −KX · L = 2. We may assume without loss of generality that
−KX · C = 2 and −KX · L = 1. Let h : U → X be a blow up of L, L̂ a base curve
of |−KU |, Ĉ = h−1(C), MU = h−1(MX), and HU = h−1(H). Let DU be a general
surface in HU . The curves Ĉ and L̂ are contained in the base locus of HU . If C is
singular and its singular point belongs to L, then the base locus of HU contains a
curve Z that is mapped into the singular point of C. In the case when C is smooth
or the singular point of C does not belong to L the base locus of HU consists of the

curves L̂ and Ĉ and we set Z = ∅. ThenMU
∣∣
DU
= Ĉ+multL̂(MU )L̂+αZ+RDU for

some movable boundary RDV and α = multZ(MU ) if Z �= ∅. On DU the restriction
MU
∣∣
DU
is equivalent to Ĉ + L̂+Z and the intersection form of the curves Z and L̂

is negative-definite. Hence the boundary RDU is empty, multL̂(MU ) = 1, and if
Z �= ∅, then multZ(MU ) = 1. Thus,MU lies in the fibres of ϕHU and all base curves
of the pencil H belong to CS(X,MX). Moreover, in the case when C is singular
and its singular point belongs to L it follows from the equality multZ(MU ) = 1
that CS(X,MX) contains the singular point of C and all surfaces in the pencil H
are singular at this point. However, we have assumed that the set CS(X,MX) does
not contain points in the 3-fold X.

We can assume therefore that CS(X,MX) is taken to a line on the quadric Q.

Lemma 5.10. Let −KX · C = 2. Then CS(X,MX) = {C} and MX lies in the
fibres of the composite of the double cover θ with the projection from θ(C).

Proof. Consider a linear system HC of surfaces in |−KX | containing the curve C.
Let f : W → X be a resolution of indeterminacy of the rational map ϕHC such
that W is a smooth variety containing a unique divisor E ⊂W dominating C. Let
HW = f

−1(HC) and MW = f
−1(MX). Then MW · H2W = 0, which proves the

required result.

We can assume that −KX · C = 1 and CS(X,MX) = {C, L}, where L �= C and
θ(L) = θ(C). Using arguments from the proof of Lemma 5.10 we see that MX lies
in the fibres of the composite of θ with the projection from θ(C). This completes
the proof of Theorem 5.3.
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