
Izvestiya: Mathematics
                   

Rationality of an Enriques-Fano threefold of genus
five
To cite this article: I A Cheltsov 2004 Izv. Math. 68 607

 

View the article online for updates and enhancements.

Related content
Birational rigidity of Fano hypersurfaces in
the framework of Mori theory
V A Iskovskikh

-

Anticanonical models of three-dimensional
Fano varieties of degree 4
I A Cheltsov

-

Birationally rigid varieties with a pencil of
double Fano covers. I
A V Pukhlikov

-

Recent citations
    
Il'ya Vyacheslavovich Karzhemanov et al

-

On Fano threefolds with canonical
Gorenstein singularities
Il'ya V Karzhemanov

-

Nonrational nodal quartic threefolds
Ivan Cheltsov

-

This content was downloaded from IP address 192.41.131.255 on 03/06/2019 at 16:38

https://doi.org/10.1070/IM2004v068n03ABEH000490
http://iopscience.iop.org/article/10.1070/RM2001v056n02ABEH000382
http://iopscience.iop.org/article/10.1070/RM2001v056n02ABEH000382
http://iopscience.iop.org/article/10.1070/SM2003v194n04ABEH000732
http://iopscience.iop.org/article/10.1070/SM2003v194n04ABEH000732
http://iopscience.iop.org/article/10.1070/SM2004v195n07ABEH000837
http://iopscience.iop.org/article/10.1070/SM2004v195n07ABEH000837
http://dx.doi.org/10.4213/sm3946
http://iopscience.iop.org/1064-5616/200/8/A06
http://iopscience.iop.org/1064-5616/200/8/A06
http://dx.doi.org/10.2140/pjm.2006.226.65
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/475044996/Middle/IOPP/IOPs-Mid-IM-pdf/IOPs-Mid-IM-pdf.jpg/1?


Izvestiya: Mathematics 68:3 607–618 c©2004 RAS(DoM) and LMS

Izvestiya RAN : Ser. Mat. 68:3 181–194 DOI 10.1070/IM2004v068n03ABEH000490

Rationality of an Enriques–Fano threefold of genus five

I. A. Cheltsov

Abstract. We prove the rationality of a non-Gorenstein Fano threefold of Fano
index one and degree eight having terminal cyclic quotient singularities and Picard
group Z. This threefold can be described as the quotient of a double covering of P3

ramified in a smooth quartic surface by an involution fixing eight different points.

In this paper we prove the following result.

Theorem 1. Let ψ : V → P3 be a double covering ramified in a smooth quartic
surface, τ ∈ Aut(V ) an involution fixing finitely many points and X = V/τ . Then
X is rational.

All varieties are assumed to be projective, normal and defined over C.

Remark 2. In the notation of Theorem 1, V is a smooth Fano threefold of index 2
and degree 2. We have −KV = ψ∗

(
OP3(2)

)
and −K3V = 16. The involution τ fixes

8 points, and the threefold X has 8 singular points of type 12(1, 1, 1). The divisor
−KX is not a Cartier divisor, but we have −KX ∼Q H, where H is an ample
Cartier divisor on X with H3 = 8, and the general element of |H| is a smooth
Enriques surface.

Example 3. Let V ⊂ P(13, 2) be given by

u2 = x4 + y4 + z4 + t4,

where x, y, z, and t are coordinates of weight 1 and u is a coordinate of weight 2.
We define an involution τ on P(13, 2) by τ(x : y : z : t : u) = (x : y : −z : −t : −u).
Then the natural projection ψ : V → P3 is a double covering ramified in a smooth
quartic surface, the threefold V is τ -invariant and τ |V fixes 8 points of V given
by u = z = t = 0 and u = x = y = 0.

Fano [1]–[4] tried to obtain a biregular classification of threefolds whose curve
sections are canonical curves. In the smooth case, hyperplane sections of such
threefolds are smooth K3 surfaces. Thus there is a natural generalization of
the threefolds studied by Fano [1]–[4] to threefolds containing an ample Cartier
divisor which is a smooth K3 surface. In the smooth case, the anticanonical divi-
sor of such a threefold is necessarily ample, and it was proved in [5] that the general
element of the anticanonical linear system of a smooth threefold with ample
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anticanonical divisor is a smooth K3 surface. In particular, smooth threefolds
containing a smooth K3 surface as an ample Cartier divisor are Fano varieties in
the sense of their modern definition, which was given by Iskovskikh. A complete
biregular classification of smooth Fano threefolds was obtained in [5]–[10], where
105 families of smooth Fano threefolds are listed.
Somewhat later, Fano [11] studied threefolds whose hyperplane sections are

smooth Enriques surfaces.1 He gave a list of six such threefolds, including two
exceptional (ample, but not very ample) cases. Fano claimed in [11] that this list
exhausts all threefolds containing a smooth Enriques surface as a hyperplane sec-
tion. However, the proofs in [11] are incorrect and the classification is not complete,
as was shown in [18], [19]. It was also remarked in [18], [19] that every threefold
whose hyperplane sections are smooth Enriques surfaces must be singular, which
seems to be the main reason why these threefolds fell into oblivion for almost half
of the century. Fano [11] claimed that these threefolds have exactly eight quadruple
singular points, whose tangent cone is a cone over the Veronese surface. In mod-
ern language, such singular points are terminal cyclic quotient singularities of type
1
2 (1, 1, 1) which are locally isomorphic to the quotient of C

3 by an involution that
fixes the origin only.

Definition 4. A threefold X is called an Enriques–Fano threefold of genus g(X) =
−12 K3X +1 and degree −K3X if X has canonical singularities, −KX is not a Cartier
divisor and −KX ∼Q H for some ample Cartier divisor H on X.
The following result was proved in [20].

Theorem 5. Suppose that X is an Enriques–Fano threefold and −KX ∼Q H,
where H is an ample Cartier divisor on X. Then a generic surface in the linear
system |H| is an Enriques surface with canonical singularities. It is smooth if the
singularities of X are isolated and −K3X �= 2.
Corollary 6. The degree and genus of an Enriques–Fano threefold are positive
integers.

The following result was proved in [16], [17].

Theorem 7. Let X be a normal threefold and H ⊂ X an Enriques surface
with canonical singularities such that H is an ample Cartier divisor on X. Then
−2KX ∼ 2H and X is either an Enriques–Fano threefold or a contraction of a
section of Proj

(
OH ⊕OH(H|H)

)
.

Thus, except for generalized cones, the Enriques–Fano threefolds are exactly
those threefolds which contain an Enriques surface with Du Val singularities as an
ample Cartier divisor.

Remark 8. Let X be an Enriques–Fano threefold and let H be an ample Cartier
divisor on X such that −KX ∼Q H. Then 2(H + KX) ∼ 0 and the threefold
V = Spec

(
OX ⊕ OX(H + KX)

)
is called the canonical covering of X. One can

show that V is a Fano threefold with Gorenstein canonical singularities and there

1The analogous problem can be considered for any surface of Kodaira dimension zero. But in

the abelian and bi-elliptic cases, the corresponding problem has only the trivial solution, even
in the ample case (see [12]–[17]).
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is a natural double covering π : V → X ramified at finitely many points, which are
exactly the non-Gorenstein points of X. We have −KV ∼ π∗(H) and the double
covering π induces an etale double covering of every Enriques surface with canonical
singularities in the linear system |H|. This covering coincides with the natural etale
covering of the Enriques surface by a K3 surface.

Enriques–Fano threefolds are singular and non-Gorenstein by definition. There-
fore Enriques–Fano threefolds with terminal cyclic quotient singularities are non-
Gorenstein analogues of smooth Fano threefolds. On the other hand, the canonical
coverings of Enriques–Fano threefolds with terminal cyclic quotient singularities are
smooth. In particular, all the singular points of an Enriques–Fano threefold with
terminal cyclic quotient singularities are of type 1

2
(1, 1, 1). It was observed in [21]

that the Riemann–Roch formula for non-smooth varieties (see [22]) then yields
that the number of such singular points is equal to eight, as claimed by Fano. More-
over, the classification of smooth Fano threefolds was used in [23], [24] to
obtain the following result.

Theorem 9. Let X be an Enriques–Fano threefold with only terminal cyclic quo-
tient singularities and let V be the canonical covering of X. Then V is one of the
following smooth Fano threefolds.
1) The complete intersection of a quadric and quartic in P(15, 2), g(X) = 2.
2) The complete intersection of three quadrics in P6, g(X) = 3.
3) The blow-up of a smooth hypersurface of degree 4 in P(14, 2) along an elliptic

curve cut out by two hypersurfaces of degree one, g(X) = 3.
4) P1 × S2, where S2 is a smooth del Pezzo surface of degree 2, g(X) = 4.
5) The double covering of P1 × P1 × P1 ramified in a divisor of degree (2, 2, 2),

g(X) = 4.
6) The blow-up of a smooth complete intersection of two quadrics in P5 along an

elliptic curve cut out by two hyperplane sections, g(X) = 5.
7) The hypersurface of degree 4 in P(14, 2), g(X) = 5.
8) The complete intersection of three divisors of degree (1, 1) in P3×P3, g(X)=6.
9) P1 × S4, where S4 is a smooth del Pezzo surface of degree 4, g(X) = 7.
10) The divisor of degree (1, 1, 1, 1) in P1 × P1 × P1 × P1, g(X) = 7.
11) The blow-up of the cone over a smooth quartic surface P1 × P1 ⊂ P3 along

the disjoint union of the vertex and a smooth elliptic curve on P1 × P1, g(X) = 8.
12) The compete intersection of two quadrics in P5, g(X) = 9.
13) P1 × S6, where S6 is a smooth del Pezzo surface of degree 6, g(X) = 10.
14) P1 × P1 × P1, g(X) = 13.
The following result was proved in [25].

Theorem 10. Let X be a terminal Enriques–Fano threefold. Then there is a small
deformation g : U → ∆ over the one-dimensional unit disc ∆ with origin O such
that X ∼= g−1(O) and, for each s ∈ ∆\O, the fibre of g over s is an Enriques–Fano
threefold with terminal cyclic quotient singularities.

Thus terminal Enriques–Fano threefolds are deformations of Enriques–Fano
threefolds, as classified in Theorem 9. However the classification of Enriques–
Fano threefolds with arbitrary canonical singularities is far from being complete.
The following result was proved in [26].
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Theorem 11. Let X be an Enriques–Fano threefold. Then −K3X � 92 and
g(X) � 47.
The bounds in Theorem 11 seem far from perfect. The expected bound for

the genus of an arbitrary Enriques–Fano threefold is 13. The following result was
announced by Giraldo, Knutsen, Lopez and Münoz.

Theorem 12. Suppose that X is an Enriques–Fano threefold with isolated singular-
ities and −KX ∼Q H for some very ample Cartier divisor H on X. Then g(X)�26.
By definition, Enriques–Fano threefolds are Fano threefolds with canonical sin-

gularities having integer Fano index. However, the Fano index of an Enriques–Fano
threefold need not apriori be equal to 1. The following result was proved in [27].

Theorem 13. Suppose that X ⊂ Pn is an Enriques–Fano threefold with isolated
singularities and such that −KX ∼Q H for some hyperplane section H of X which is
a smooth Enriques surface. Then H ⊂ Pn−1 cannot be the image of the rth Veronese
embedding of a linearly normal smooth Enriques surface S ⊂ Pk for r � 2.
In fact, the following result holds.

Proposition 14. Suppose that X is an Enriques–Fano threefold and there is a
Cartier divisor H such that −KX ∼Q nH for some n ∈ N. Then n = 1.
Proof. Assume that n �= 1. Let D =KX+nH be a Weil divisor onX and let S be a
general element of the linear system |H|. Then the singularities of S are canonical
by [28] and the singularities of X near S are canonical and Gorenstein by [29].
Moreover, S is a del Pezzo surface by the adjunction formula. In particular, we
have the rational equivalenceD|S ∼ 0 because D|S is a Cartier divisor andD|S ∼Q 0
and the Picard group of S has no torsion.
Consider a general surface Y in the linear system |kH| for k � 0 and put

C = Y ∩ S. Then
D|Y ·H|Y = D|S · kH|S = D · C = 0.

It follows that D|Y ≡ 0 and D|C ∼ 0 by the Hodge index theorem because kH|Y
is an ample Cartier divisor on Y and D|Y ·D|Y �< 0. Consider the exact sequence

0→ H0
(
OY (D|Y )

)
→ H0(OC)→ H1

(
OY
(
(D−H)|Y

))
,

where the Cartier divisor (H −D)|Y is ample on Y . The Kawamata–Vieweg van-
ishing theorem implies that H1

(
OY
(
(D−H)|Y

))
= 0. We also have H0(OC) = C

because C is an ample divisor on Y . Thus, H0
(
OY (D|Y )

)
=C, which implies that

D|Y ∼ 0. The sequence of sheaves

0→ OX(D) ⊗OX(−kH)→ OX(D) → OY → 0

is exact because the sheaf OX(D) is locally trivial in the neighbourhood of Y while
the sequence is trivial outside Y . Hence the sequence of cohomology groups

0 = H0
(
OX(D) ⊗OX(−kH)

)
→ H0

(
OX(D)

)
→ H0(OY )

→ H1
(
OX(D) ⊗OX(−kH)

)
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is exact. On the other hand, the sheaf OX(D) is reflexive by [30]. Hence there is
an exact sequence of sheaves

0→ OX(D) → E → F → 0,

where E is locally free and F is torsionfree. Hence the sequence

H0
(
F ⊗OX(−kH)

)
→ H1

(
OX(D) ⊗OX(−kH)

)
→ H1

(
E ⊗ OX(−kH)

)
is exact. Here the group H0

(
F⊗OX(−kH)

)
vanishes because F is torsionfree, and

the group H1
(
E ⊗OX(−kH)

)
vanishes because X is normal. Therefore the group

H1
(
OX(D) ⊗OX(−kH)

)
also vanishes, whence H0

(
OX(D)

)
= C. In particular,

the canonical divisor KX is a Cartier divisor, contrary to the definition of X.

The interest in Fano threefolds was originally inspired by the Lüroth problem.
Fano asserted the non-rationality of a smooth quartic threefold [31] and a smooth
cubic threefold [32]. On the other hand, the unirationality of a smooth cubic
threefold was well known at this time. The unirationality of some smooth quartic
threefolds was established later in [33] (see [34], [35]), but perhaps Fano knew
some examples of unirational smooth quartic threefolds. Rigorous proofs of these
assertions of Fano were obtained only in [36], [37]. Nevertheless, the question of
the rationality of smooth Fano threefolds is now almost completely settled (see
[35]–[40]). The original interest in Enriques–Fano threefolds was inspired by the
following result, which was conjectured long ago by Enriques and Fano but proved
only in [41] and [42] (independently).

Theorem 15. Let X ⊂ P4 be the so-called Enriques threefold given as the non-
smooth hypersurface

x1x2x3x4

(
x20 + x0

4∑
i=1

aixi +
4∑

i,j=1

bijxixj

)
+ c1x

2
2x
2
3x
2
4

+ c2x
2
1x
2
3x
2
4 + c3x

2
1x
2
2x
2
4 + c4x

2
1x
2
2x
2
3 = 0

of degree six, where the xi are homogeneous coordinates on P
4, and ai, bij, ci are

sufficiently general complex numbers. Then the threefold V is non-rational.

Fano thought that the Enriques threefold is not unirational, but Roth [43] proved
that it is and claimed that it is non-rational because the fundamental group of its
desingularization contains Z2. This argument led to doubts because Serre [44]
proved that smooth unirational varieties are simply connected. The apparent gap
in [43] was explained in [45] by showing that the Enriques threefold always has
non-ordinary singular points. In modern language, these points are the images of
the eight non-Gorenstein singular points of its normalization.

Remark 16. The normalization of the Enriques threefold is an Enriques–Fano three-
fold of degree 6 and genus 4 having eight singular points of type 12 (1, 1, 1). Its
canonical covering is a double covering of P1 × P1 × P1 ramified in a divisor of
degree (2, 2, 2).

Thus some Enriques–Fano threefolds are non-rational. The following result was
proved in [46].
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Theorem 17. Let X be an Enriques–Fano threefold with −K2X � 10. Then X is
rational.

It is well known and intuitively clear that Fano varieties tend to be “more ratio-
nal” as their degrees increase and their singularities become worse. For instance,
the classification of smooth Fano threefolds implies that a smooth Fano threefold is
rational once the degree is greater than 24. Therefore Theorem 17 is very natural,
and Theorem 1 fills the gap between Theorems 15 and 17.

Corollary 18. Let X be a non-rational Enriques–Fano threefold with terminal
cyclic quotient singularities and let V be the canonical covering of X. Then V is
either the complete intersection of three quadrics, the complete intersection of a
quadric and a quartic in P(15, 2) or the double covering of P1 ×P1×P1 ramified in
a divisor of degree (2, 2, 2).

Conjecture 19. Suppose that X is an Enriques–Fano threefold with terminal
cyclic quotient singularities and the canonical covering of X is either the com-
plete intersection of a quadric and a quartic in P(15, 2) or the complete intersection
of three quadrics. Then X is non-rational.

In the rest of the paper we prove Theorem 1. Let ψ : V → P3 be a double
covering ramified in a smooth quartic surface S ⊂ P3, τ an involution of V that
fixes eight points and X = V/τ . Then X is an Enriques–Fano threefold of degree 8
and genus 5.

Lemma 20. There are homogeneous coordinates (x0 : x1 : x2 : x3) on P
3 such that

the induced action of τ on P3 is given by

τ(x0 : x1 : x2 : x3) = (x0 : x1 : −x2 : −x3)

and the surface S ⊂ P3 is given by

q4(x0, x1) + a2(x0, x1)x
2
2 + b2(x0, x1)x2x3 + c2(x0, x1)x

2
3 + p4(x2, x3) = 0,

where q4 and p4 are polynomials of degree 4 and a2, b2, c2 are polynomials of
degree 2.

Proof. This is proved in [23], § 6.1.2.
Thus V may be regarded as a hypersurface of degree 4 in P(14, 2) given by

y2 = q4(x0, x1) + a2(x0, x1)x
2
2 + b2(x0, x1)x2x3 + c2(x0, x1)x

2
3 + p4(x2, x3),

where the xi are homogeneous coordinates of weight 1, y is the homogeneous
coordinate of weight 2 and τ acts on P(14, 2) by τ(x0 : x1 : x2 : x3 : y) = (x0 : x1 :
−x2 : −x3 : −y). The eight fixed points of τ : V → V are given by x0 = x1 = y = 0
and x2 = x3 = y = 0. Furthermore, q4 and p4 are homogeneous polynomials of
degree 4 and a2, b2, c2 are homogeneous polynomials of degree 2.

Remark 21. The linear system | −KV | is generated by

λy +
∑
i,j

aijxixj, λ, aij ∈ C.
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Let Λ ⊂ | −KV | be the linear subsystem given by the forms

b00x
2
0 + b01x0x1 + b11x

2
1 + b22x

2
2 + b23x2x3 + b33x

2
3

and let Σ ⊂ | −KV | be the linear subsystem given by the linear combinations
µy + c02x0x2 + c03x0x3 + c12x1x2 + c13x1x3,

where µ, cij, bij ∈ C. The linear system Λ is free and the base locus of Σ consists
of the eight fixed points of τ . The surfaces in Λ and Σ are τ -invariant. The general
element SΛ of Λ is a smooth K3 surface and τ acts on SΛ without fixed points.
The general element SΣ of Σ is a smooth K3 surface and the restriction of τ to SΣ
fixes precisely the eight fixed points of τ on V . Let HΛ ⊂ X be the quotient of SΛ
by τ and let HΣ ⊂ X be the quotient SΣ/τ . Then HΛ is a non-singular Enriques
surface and HΣ is a K3 surface with eight simple double points. Moreover, HΛ
is an ample Cartier divisor on X, HΣ is a Weil divisor on X, 2HΣ is a Cartier
divisor and 2HΛ ∼ 2HΣ. The surface HΣ is a general element of the anticanonical
linear system of Weil divisors | −KX | and the surface HΛ is a general element of
the linear system |HΛ|.
Remark 22. By construction, the linear system |HΛ| is free and determines a double
covering ϕ|HΛ | : X → P5 whose image ϕ|HΛ|(X) ⊂ P5 is the complete intersection
of two non-smooth quartics B2 = AC and E2 = DF in the corresponding homo-
geneous coordinates (A : B : C : D : E : F ) on P5. The linear system |HΣ|
determines a rational map ϕ|HΣ| : X ��� P4 whose image is a quadric with one
singular point. The degree of the map ϕ|HΣ | at a generic point of X is equal to 2
and the indeterminacy points of ϕ|HΣ| are resolved by blowing up all the singular
points of X.

Let Ξ be a pencil on V given by the linear forms αx0+βx1 and let Ω be a pencil
on V given by the linear forms γx2 + δx3, where α, β, γ, δ ∈ C. The base locus
of Ξ consists of the smooth elliptic curve CΞ ⊂ V given by x0 = x1 = 0. The base
locus of Ω consists of the smooth elliptic curve CΩ ⊂ V given by x2 = x3 = 0.
The surfaces in Ξ and Ω are τ -invariant. The general surface SΞ ∈ Ξ and the
general surface SΩ ∈ Ω are smooth del Pezzo surfaces of degree 2. The involution τ
fixes four points on SΞ (given by y = x0 = x1 = 0) and four points on SΩ (given
by y = x2 = x3 = 0).
Consider the quotient surfaces HΞ = SΞ/τ ⊂ X and HΩ = SΩ/τ ⊂ X. By

construction, HΞ and HΩ are del Pezzo surfaces of degree 1 and each of them has
four simple double points. The surfaces HΞ and HΩ are not Cartier divisors on X,
but 2HΞ and 2HΩ are Cartier divisors, and we have 2HΞ ∼ 2HΩ ∼ HΛ. The
surfaces HΞ and HΩ are general surfaces in the linear systems of Weil divisors |HΞ|
and |HΩ| respectively.
Lemma 23. Let EΞ and EΩ be the images of the smooth elliptic curves CΞ and
CΩ (respectively) on X. Then EΞ and EΩ are smooth rational curves. Moreover,
EΩ intersects HΞ transversally at one smooth point O, and O is the unique base
point of the linear system | − KHΞ | which is cut out on HΞ by the linear system
|HΩ|.
Proof. All these assertions follow from the explicit construction of V and X above.
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Lemma 24. Let Pi ∈ X (i = 1, 2, 3, 4) be the four singular points of X that are
images of the fixed points of τ given by y = x0 = x2. Let H

i
Ω be the unique surface

in |HΩ| that contains Pi. Then HΞ ∩HiΩ ∈ |−KHΞ | is a curve of arithmetic genus
one having one double point Pi.

Proof. This follows from Lemma 23.

Let g : Y → X be the composite of the blow-ups of the points Pi followed by the
blow-up of the proper transform of the smooth rational curve EΞ. We denote the
exceptional divisors of the birational morphism g by Fi and E in such a way that
g(Fi) = Pi and g(E) = EΞ. Let H ⊂ Y be the proper transform of the irreducible
surface HΞ, Θ the proper transform on Y of the pencil |HΞ| and Hi ⊂ Y the
proper transform of the surface HiΩ. Then H is a smooth del Pezzo surface of degree
one. The linear system Θ is a free pencil, and it determines a morphism ϕΘ : Y →P1.
The surface H is a general fibre of ϕΘ. The curves E ∩ H, Fi ∩H, Hi ∩ H are
irreducible, smooth and rational. Moreover, we have

Fi · Fi ·H = −2, E · Fi ·H = 1, E ·E ·H = −1,
Hi ·Hi ·H = −1, E ·Hi ·H = 0, Fi ·Hi ·H = 2

and Fi · Fj ·H = 0 for i �= j. Thus the threefold Y may be regarded as a smooth
del Pezzo surface of degree 1 defined over the field C(x) of rational functions on P1

and the surfaces Hi, Fi, and E may be regarded as curves on Y , also defined over
C(x). Then we have

Fi · Fi = −2, E · Fi = 1, E ·E = −1,
Hi ·Hi = −1, E ·Hi = 0, Fi ·Hi = 2

and Fi · Fj = 0 if i �= j. Moreover, Hi · Hj = 1 for i �= j and all the curves
Hi intersect each other at the base point of the linear system | − KY |. We have
−KY ∼ Hi + Fi and K2Y = 1.

Proposition 25. We have rank
(
Pic(Y )

)
� 5.

Proof. This follows from the equations −KY · Fi = 0, Fi · Fi = −2 and Fi · Fj = 0
for i �= j.

The birational theory of geometrically rational surfaces defined over a field that
is not algebraically closed is studied in [47]–[56], where the following three results
are proved.

Theorem 26. Let W be a smooth, minimal, geometrically irreducible and geomet-
rically rational surface defined over a perfect field F. Then either W is a del Pezzo
surface and Pic(W ) ∼= Z or there is a conic bundle π : W → Z and Pic(W ) ∼= Z⊗Z.

Theorem 27. Let W be a smooth, minimal, geometrically irreducible and geomet-
rically rational surface defined over a perfect field F. The surface W is rational
over F if and only if W has an F-point and K2W � 5.
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Theorem 28. Let W be a smooth, geometrically irreducible and geometrically
rational surface defined over a C1-field F. Then W has an F-point.

Thus the smooth del Pezzo surface Y has a C(x)-point. The set of all C(x)-
points of Y is actually very large (see [57]). Proposition 25 implies that Y is not
minimal and there is a birational morphism f : Y → U (defined over C(x)) such
that the surface U is smooth, minimal, geometrically irreducible and geometrically
rational, and also has a C(x)-point.

Remark 29. We have

K2U � K2Y + rank
(
Pic(Y )

)
− rank

(
Pic(U)

)
� rank

(
Pic(Y )

)
− 1 � 4.

We may assume that Pic(Y ) ∼= Z5 since otherwise the surface U (and hence
the threefold X) is rational by Theorem 27. In particular, the group Pic(Y ) ⊗ Q
is generated by the divisors Fi and −KY . Over the algebraic closure C(x) of the
field C(x), the morphism f is a composite of contractions of smooth rational curves
with self-intersection −1, and this yields the inequality K2U � 5 in the case when
f contracts at least four curves over C(x). On the other hand, f contracts at

least three curves over C(x). Hence we may assume that f contracts exactly three

curves over C(x), K2U = 4 and Pic(U) = Z⊗ Z. It follows that each of the curves
contracted by f over C(x) is Gal

(
C(x)/C(x)

)
-invariant.

Corollary 30. The morphism f is a composite f1 ◦ f2 ◦ f2, where fi is the con-
traction of a geometrically irreducible smooth rational curve defined over C(x) with
self-intersection −1.
Consider a smooth rational curve C ⊂ Y defined over C(x) and such that

C2 = −1. Then

C ∼Q −εKY −
4∑
i=1

kiFi,

where ε and the ki are rational numbers. Moreover, we have

C ·Fi ∈ Z�0⇒ ki ∈
1

2
Z�0, −KY ·C = 1⇒ ε = 1, C2 = −1⇒

4∑
i=1

k2i = 1.

It follows that either C ∼Q −KX − Fi ∼ Hi or

C ∼Q −KX −
4∑
i=1

1

2
Fi ∼Q E.

Thus the irreducible curve C coincides with either Hi or E. Hence all the geo-
metrically irreducible curves with negative self-intersection on Y are Fi, Hi and E.
However, the intersection form for any three of the nine curves Fi, Hi, E is not
negative definite, and this contradicts Corollary 30. This proves Theorem 1.
The author would like to thank V. Alexeev, A. Conte, A. Corti, M. M. Grinenko,
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