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1. INTRODUCTION

In this paper, we suggest an effective method for regularizing finite subgroups of birational
automorphisms of algebraic surfaces and three-dimensional algebraic varieties. The result is applied
to describe the finite subgroups of birational automorphisms of smooth double coverings of a
three-dimensional quadric and a three-dimensional quartic with one ordinary double point and to
del Pezzo surfaces of degrees 2 and 3 over an algebraically nonclosed field (in particular, we give
an answer to Manin’s question from the book [1]).

All objects considered in this paper are assumed to be projective and defined over a field F of
characteristic zero. The following result is well known.

Theorem 1.1. Let X and Y be varieties with canonical singularities and ample canonical divi-
sors. Then any birational mapping between X and Y is biregular.

Theorem 1.1 has the following corollary.

Corollary 1.2. If X is a variety with canonical singularities and ample canonical divisor, then
any birational automorphism of X is biregular.

The minimal model program (see [2]) implies the following assertion.

Theorem 1.3. Let X be a variety of general type of dimension 2 or 3. Then there exists a
birational mapping γ : X ��� V such that

γ ◦ Bir(X) ◦ γ−1 = Aut(V ).

It is easy to see that this assertion does not hold for varieties with nonmaximal Kodaira dimen-
sion.

Definition 1.4. Let X be a variety. We say that a subset S of the group Bir(X) is regularizable
on a variety V by a birational mapping γ : X ��� V if

γ ◦ S ◦ γ−1 ⊂ Aut(V ) ;

the mapping γ is called a regularization of the set S ⊂ Bir(X) .

Each regularizable subset of the group of birational automorphisms generates a regularizable
subgroup; for this reason, we consider only regularizable subgroups in what follows.

Note that a regularization of birational automorphisms may be nonunique, and there exist
birational automorphisms having no regularization. The following result is due to I. Dolgachev.
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REGULARIZATION OF BIRATIONAL AUTOMORPHISMS 265

Proposition 1.5. Any sufficiently general birational quadratic transformation of the projective
plane is nonregularizable.

Proof. Consider a sufficiently general birational quadratic transformation T : P2 ��� P2 . We
can assume that the order of T is infinite and T has three fundamental points. Consider a
regularization f : X ��� P 2 of the automorphism T and the biregular automorphism g = f−1 ◦
T ◦ f .

Suppose that x1 , . . . , xn are fundamental points of f−1 such that they are not fundamental
for T and the points T (x1), . . . , T (xn) are not fundamental for T−1 . Consider the corresponding
exceptional curves Ei .

Each curve g(Ei) is contracted to the point yi = T (xi) by the morphism f and to a point xj by
the morphism f , because, by assumption, yi is not a fundamental point of T−1 . Thus, g permutes
the curves Ei , and some power gN of g acts trivially on the curves Ei . Therefore, the curves Ei

can be contracted, which gives a regularization h : S → P2 of the birational automorphism TN

such that h has at most six fundamental points, the three fundamental points of T and the three
fundamental points of T−1 .

By construction, the biregular automorphism h−1 ◦ TN ◦ h has infinite order. On the other
hand, the automorphism group of any surface obtained by blowing up four to eight points of P2

is finite. Therefore, h is a blow-up of no more than three points, and the fundamental points
of T and T−1 coincide. On the other hand, general quadratic transformations do not have this
property. �

Note that the group Bir(P2) is generated by the projective automorphisms of P2 and Cremona
involutions, all of which are regularizable.

Corollary 1.6. The regularizable elements of the group of birational automorphisms do not nec-
essarily form a subgroup.

Thus, it is natural to try to describe the regularizable subgroups of the group of birational
automorphisms for a given variety. While this problem in the general setting may be very difficult,
the following result is well known.

Theorem 1.7. For an algebraic variety X , any finite subgroup G ⊂ Bir(X) is regularizable.

Proof. Consider the field of rational functions K(X) on X , take a normal projective model Y
of the field of invariant functions K(X)G , and consider the normalization V of the variety Y in
the field K(X) . The variety V is birationally equivalent to X , and the group G acts biregularly
on V . �

It should be mentioned that the proof of Theorem 1.7 is not very effective in the sense that,
given a variety and a finite subgroup of its birational automorphism group, it is fairly difficult to
find a regularization of this group.

Remark 1.8. The main objective of this paper is to describe a new effective method for regular-
izing finite subgroups of birational automorphisms of surfaces and three-dimensional varieties.

In Sec. 6, this method is applied to find a regularization for the birational involutions of a double
covering of a three-dimensional quadric.

The application of an equivariant resolution of singularities and the minimal model program
gives the following generalization of Theorem 1.7.

Theorem 1.9. Let X be a variety of dimension 2 or 3, and let G be a finite subgroup in Bir(X) .
Then there exists a birational mapping γ : X ��� Y to a variety Y with terminal singularities such
that either the canonical divisor KY is nef or Y has the structure of a (γ ◦G ◦ γ−1)-equivariant
bundle whose fibers are Fano varieties.

In what follows, we apply the effective regularization method to the birational automorphisms
of birationally rigid Fano varieties.
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266 I. A. CHEL′TSOV

Definition 1.10. A Fano variety X is said to be birationally rigid if X has Q-factorial terminal
singularities, Pic(X) = Z , and X is not birationally equivalent to any Mori fiber space1 except
itself.

Theorem 1.9 implies the following assertion.

Theorem 1.11. Let X be a birationally rigid Fano variety of dimension at most 3, and let G
be a finite subgroup in Bir(X) . Then there exists a birational mapping γ : X ��� Y to a Fano
variety Y with terminal singularities such that γ ◦G ◦ γ−1 ⊂ Aut(Y ) .

Thus, Theorem 1.11 gives a method for finding all finite subgroups of the group of birational
automorphisms of birationally rigid del Pezzo surfaces and three-dimensional Fano varieties. We
shall apply Theorem 1.11 to a double covering of a three-dimensional quadric in Sec. 6, to a singular
three-dimensional quadric in Sec. 7, and to a cubic surface in P3 and a double covering of P2 in
Sec. 4.

Below we recall some open questions related to regularization of birational automorphisms.

Conjecture 1.12. The group of birational automorphisms is generated by regularizable birational
automorphisms.

Note that the subgroup of the group of birational automorphisms generated by the regularizable
birational automorphisms is normal.

Remark 1.13. Conjecture 1.12 holds for X with simple group Bir(X) .

It is conjectured that the groups Bir(P2) and Bir(P3) are simple.

Conjecture 1.14. For a given variety X , the group Bir(X) has generators which are regularizable
on varieties contained in a finite number of families.

It is well known that Conjectures 1.12 and 1.14 hold for surfaces and for many three-dimensional
birationally rigid Fano varieties (see [3, 4]).

2. MOVABLE LOG PAIRS

In this section, we consider properties of movable log pairs, which were introduced and considered
in their modern form by Alexeev in [5]. The results of this section are used in the next section to
construct a regularization algorithm.

Definition 2.1. A movable log pair

(X, MX) =
(
X,

n∑
i=1

biMi

)

is a variety X together with a formal finite linear combination of linear systems Mi without fixed
components such that all the numbers bi are nonnegative and rational.

Note that each movable log pair can be regarded as an ordinary log pair. In particular, for a
movable log pair (X, MX) , the divisor KX +MX is called the log-canonical divisor of the log pair
(X, MX) , and MX is said to be the boundary of the movable log pair (X, MX) .

Remark 2.2. The direct image of the boundary of a movable log pair is defined in a natural way
for any birational mapping.

If a log-canonical divisor of a movable log pair is a Q-Cartier divisor, then notions such as
discrepancy, the property of being terminal, and canonicity can be defined for movable log pairs
similarly to the corresponding notions for ordinary log pairs.

1A fibration τ : V → Z is called a Mori fiber space if τ∗(OV ) = OZ , the variety V has terminal Q-factorial
singularities, the divisor −KV is τ -ample, and Pic(V/Z) = Z .
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Definition 2.3. We say that movable log pairs (X, MX) and (Y , MY ) are birationally equivalent
if there exists a birational mapping ρ : X ��� Y such that MY = ρ(MX) .

Note that any movable log pair is birationally equivalent to a movable log pair with canonical
and terminal singularities.

Definition 2.4. Let (X, MX) be a movable log pair. Consider a birationally equivalent movable
log pair (W ,MW ) with canonical singularities. Take n� 0 such that the divisor

D = n(KW +MW )

is a Cartier divisor. The Kodaira dimension κ(X, MX) of the movable log pair (X, MX) is defined
to be equal to the Iitaka dimension of the log pair (X, D) .

It can be shown that the Kodaira dimension of a movable log pair is well defined and all
birationally equivalent log pairs have the same Kodaira dimension.

Remark 2.5. The Kodaira dimension of a movable log pair is a nondecreasing function of the
coefficients of its boundary.

The following definition coincides with the classical one in the case of the empty boundary.

Definition 2.6. We say that a movable log pair (V , MV ) is a minimal model of a movable log pair
(X, MX) if these log pairs are birationally equivalent, the divisor KV +MV is nef, and (V , MV )
has terminal Q-factorial singularities.

A minimal model may not exist, and it may be nonunique. However, minimal models are
important because of the following standard conjecture.

Conjecture 2.7. Let (X, MX) be an arbitrary movable log pair. Then either its Kodaira dimen-
sion is nonnegative and (X, MX) is birationally equivalent to a minimal model or κ(X, MX) =
−∞ and the movable log pair (X, MX) is birationally equivalent to a movable log pair (Y , MY )
with Q-factorial terminal singularities such that Y has the structure of a Mori fiber space f : Y →
Z and the divisor −(KY +MY ) is f-ample.

Proposition 2.8. Conjecture 2.7 holds in dimensions 2 and 3.

Consider a morphism related to a minimal model of a movable log pair.

Definition 2.9. Suppose that a movable log pair (X, MX) is a minimal model. We call a mor-
phism I(X, MX) : X → Z an Iitaka morphism of the movable log pair (X, MX) if there exists
an ample Q-Cartier divisor L on the variety Z such that

KX +MX ∼Q I(X, MX)∗(L)

and I(X, MX)∗(OX) = OZ .

What can be said about the existence of Iitaka morphisms?

Conjecture 2.10. An Iitaka morphism exists.

Note that the standard log redundancy conjecture (see [2]) implies Conjecture 2.10. In partic-
ular, Conjecture 2.10 holds for all surfaces and all three-dimensional varieties (see, e.g., [6]).

Proposition 2.11. Let X be an algebraic surface or a three-dimensional variety, and let (X, MX)
be a movable log pair. Then, for any minimal model of the movable log pair (X, MX) , there exists
an Iitaka morphism.

As mentioned, a minimal model of a movable log pair may be nonunique. However, the following
rational mapping is always unique.
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Definition 2.12. Suppose that a movable log pair (X, MX) is birationally equivalent to a minimal
model (V , MV ) , and let ρ : X ��� V be the birational mapping establishing their equivalence.
Suppose that there exists an Iitaka morphism for the movable log pair (V , MV ) . Then the mapping

I(X, MX) = I(V , MV ) ◦ ρ

is called the Iitaka mapping of the movable log pair (X, MX) .

It can be shown that the Iitaka mapping of a movable log pair does not depend on the choice
of the minimal model. The following definition is a direct generalization of the classical canonical
model.

Definition 2.13. We say that a movable log pair (V , MV ) is a canonical model of a movable log
pair (X, MX) if these pairs are birationally equivalent, the divisor KV +MV is ample, and the
singularities of (V , MV ) are canonical.

The proof of the following result is similar to that of the corresponding assertion for ordinary
log pairs (see [6]).

Theorem 2.14. If a canonical model exists, then it is unique.

Theorem 2.14 has the following simple but important corollary.

Corollary 2.15. If (X, MX) is a canonical model, then all birational automorphisms X leaving
the movable log pair (X, MX) fixed are biregular.

Note that if a movable log pair (X, MX) has a canonical model, then κ(X, MX) is equal to
the dimension of the variety X . Moreover, it is easy to see that if Conjecture 2.7 holds, then the
converse is true as well (see [2]).

3. EFFECTIVE REGULARIZATION

In this section, we describe an effective algorithm for finding regularizations of finite subgroups
of birational automorphism groups.

Let X be a surface or a three-dimensional variety, and let G be a finite subgroup in Bir(X) .
Take a very ample divisor H on X and a nonnegative rational number µ . We set

(X, Hµ
X) =

(
X,

∑
g∈G

µg(|H|)
)
.

By construction, the movable log pair (X, Hµ
X) is G-invariant.

Lemma 3.1. For µ� 0 , κ(X, Hµ
X) = dim(X) .

Proof. The Kodaira dimension of a movable log pair is a nondecreasing function of the coefficients
of its boundary. Thus,

κ(X, Hµ
X) ≥ κ(X, µ|H|).

Since H is ample, we have κ(X, µ|H|) = dim(X) for µ� 0 . �
Thus, by Lemma 3.1, κ(X, Hµ

X) = dim(X) for sufficiently large µ . Therefore, Propositions 2.8
and 2.11 give a birational surgery σ : X ��� V such that the movable log pair

(V , Hµ
V ) = (σ(X), σ(Hµ

X))

is the canonical model of the movable log pair (X, Hµ
X) .
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Lemma 3.2. The rational mapping σ is a regularization of the subgroup G .

Proof. The movable log pair (V , Hµ
V ) is a (σ ◦G ◦σ−1)-invariant canonical model. The required

assertion follows from Corollary 2.15. �
Thus, we have effectively constructed a regularization of the group G . In particular, we have

obtained an effective proof of Theorem 1.7 for surfaces and three-dimensional varieties. Moreover,
using a G-invariant resolution of singularities and the log minimal model program, we can obtain
an effective regularization of the subgroup G which satisfies all the requirements of Theorem 1.9
from this proof.

Let us show that the singularities of the variety V itself are canonical also.

Lemma 3.3. The singularities of V are canonical.

Proof. The second main theorem of [6] implies that, for some rational number δ > µ , (V , Hδ
V )

is the canonical model of the movable log pair (X, Hδ
X) . In particular, both log-canonical divisors

KV +Hµ
V and KV +Hδ

V

are Q-Cartier. Therefore, the canonical divisor

KV ∼Q (KV +Hµ
V )− µ

δ − µ [(KV +Hδ
V )− (KV +Hµ

V )]

is Q-Cartier as well.
The movable log pair (V , Hµ

V ) is a canonical model. In particular, its singularities are canonical.
This and the fact that the divisor KV is Q-Cartier imply the canonicity of the singularities
of V . �

4. DEL PEZZO SURFACES

In this section, we consider del Pezzo surfaces over a nonclosed field in the context of regular-
ization of birational automorphisms.

Take a smooth del Pezzo surface X with Pic(X) = Z and K2
X equal to 2 or 3 . Note that,

because of the condition Pic(X) = Z , the field of definition F is not algebraically closed.

Remark 4.1. It is well known that

X ∼=
{

a double covering of P2 branched along a smooth quadric if K2
X = 2,

a cubic in P3 if K2
X = 3.

Let us briefly recall the construction of the Bertini and Geiser involutions of the surface X .
Consider a birational morphism f : W → X such that the surface W is nonsingular and K2

W > 0 .
The condition Pic(X) = Z implies that the anticanonical divisor −KW is nef and big. Therefore,
for n� 0 , the linear system |−nKW | is free and determines a birational morphism to a del Pezzo
surface V with canonical singularities of degree 1 or 2 .

Definition 4.2. We refer to the birational mapping φ|−nKW | ◦ f−1 as a standard mapping of the
del Pezzo surface X to the del Pezzo surface V .

It can be shown that if K2
V = 1, then the surface V is a double covering of a quadratic cone

in P3 branched along a quadric, and if K2
V = 2, then the surface V is a double covering of P2

branched along a quadric. Thus, V has a canonical biregular involution, which induces a birational
involution τ of the del Pezzo surface X . For a smooth surface V , the involution τ is not biregular;
it is called a Bertini involution if K2

V = 1 and a Geiser involution if K2
V = 2. The classical and

more geometric definitions of the Bertini and Geiser involutions are given in [7, 8].
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270 I. A. CHEL′TSOV

Remark 4.3. The surface V is smooth if and only if V ∼=W .

The importance and essence of the Bertini and Geiser involutions are seen from the following
classical result of Manin (see [7, 8]).

Theorem 4.4. The surface X is birationally rigid, and the group Bir(X) is the semidirect product
of the group Aut(X) and the subgroup generated by all the Bertini and Geiser involutions of the
surface X .

In [9], the following theorem was proved.

Theorem 4.5. Let Y be a del Pezzo surface with canonical singularities birationally equivalent
to the surface X . Then Y can be obtained by a standard transformation of X .

Theorems 4.5 and 1.11 imply the following assertion.

Proposition 4.6. Each finite subgroup of the group Bir(X) is either a subgroup of Aut(X) or a
subgroup of Aut(V ) , where V is a smooth del Pezzo surface obtained by a standard transformation
from the surface X .

5. MANIN’S QUESTION

In this section, we answer a question asked by Manin in [1].
Let X be a smooth cubic surface in P3 with Pic(X) = Z over a nonclosed field F , and let G

be the group of birational automorphisms of X generated by all the Bertini and Geiser involutions
of X .

Remark 5.1. It follows from the construction of the Bertini and Geiser involutions that G is a
normal subgroup in Bir(X) .

The following result is a special case of Theorem 4.4.

Theorem 5.2. The cubic X is birationally rigid, and the group Bir(X) is the semidirect product
of the groups G and Aut(X) .

In [1], Manin asked what elements of the groups G and Bir(X) have finite order. Note that all
biregular automorphisms of the cubic X , the Bertini and Geiser involutions, and all elements of
the group Bir(X) conjugate to them are all of finite order.

Remark 5.3. Let θ be a biregular automorphism of the cubic X , and let τ be a birational
Bertini or Geiser involution of X such that θ ◦ τ = τ ◦ θ . Then τ ◦ θ is of finite order.

Somewhat later, Kanevskii described the finite-order elements of the group G [10]. He used a
purely group-theoretic method based on the generating relations in G found in [8].

Theorem 5.4. Each birational automorphism of X of finite order is conjugate in the group
Bir(X) to one of the following birational automorphisms:

(a) a biregular automorphism of the cubic X ;
(b) a Bertini involution;
(c) a Geiser involution;
(d) the composition of a biregular automorphism of X and a Bertini or Geiser involution that

commute with each other.

Theorems 5.2 and 5.4 imply the following assertion.

Corollary 5.5. The elements of finite order in the group G are conjugate to Bertini and Geiser
involutions.

MATHEMATICAL NOTES Vol. 76 No. 2 2004



REGULARIZATION OF BIRATIONAL AUTOMORPHISMS 271

Proof of Theorem 5.4. Let τ be an element of finite order in Bir(X) . We must show that τ
is conjugate to one of the following birational automorphisms: a biregular automorphism of the
cubic X ; a Bertini involution; a Geiser involution; the composition of a biregular automorphism
of X and a Bertini or Geiser involution that commute with each other.

Since the cubic X is birationally rigid, we can apply Theorem 1.11, according to which the
birational automorphism τ can be regularized on some smooth del Pezzo surface Y . Thus, there
exists a birational mapping γ : X ��� Y such that γ ◦ τ ◦ γ−1 ∈ Aut(Y ) . On the other hand,
by Theorem 4.5, the surface Y is biregular to either the cubic X itself or its blow-up. In the
first case, τ is conjugate to a biregular automorphism of X . We can assume that there exists a
blow-up f : Y → X and K2

Y = 1 or K2
Y = 2.

Suppose that K2
Y = 2. Then

Pic(Y ) = ZKY ⊕ ZE,

where E is the exceptional divisor of the blow-up f .
Note that the action of γ ◦ τ ◦ γ−1 on Pic(Y ) must preserve the class KY . If

γ ◦ τ ◦ γ−1(E) ∼ E,

then the mapping f ◦ γ ◦ τ ◦ γ−1 ◦ f−1 is biregular. Thus, we can assume that the curve E is not
(γ ◦ τ ◦ γ−1)-invariant. A direct calculation gives

(γ ◦ τ ◦ γ−1)∗(KX) ∼ 2f∗(KX) + 3E, (γ ◦ τ ◦ γ−1)∗(E) ∼ −f∗(KX)− 2E.

It follows from the construction of the Geiser involutions that, for some Geiser involution σ of
the cubic surface X , the action of

γ ◦ τ ◦ γ−1 ◦ f−1 ◦ σ ◦ f

on the group Pic(Y ) is trivial. Therefore, the mapping f ◦ γ ◦ τ ◦ γ−1 ◦ f−1 ◦ σ is a biregular
automorphism of X which, in addition, leaves the point f(E) fixed; hence f ◦ γ ◦ τ ◦ γ−1 ◦ f−1 ◦σ
commutes with the involution σ .

Now, suppose that K2
Y = 1 and

Pic(Y ) = ZKY ⊕ ZE,

where E is the exceptional divisor of the birational morphism f .
We can assume that the action of γ ◦ τ ◦ γ−1 on Pic(Y ) is nontrivial, because otherwise the

birational automorphism f ◦ γ ◦ τ ◦ γ−1 ◦ f−1 is biregular. A direct calculation shows that

(γ ◦ τ ◦ γ−1)∗(KX) ∼ 5f∗(KX) + 6E, (γ ◦ τ ◦ γ−1)∗(E) ∼ −4f∗(KX)− 5E.

It follows from the construction of Bertini involutions that, for some Bertini involution σ of the
cubic X , the composition f ◦γ ◦ τ ◦γ−1 ◦f−1 ◦σ is biregular and leaves f(E) fixed, which implies
that the automorphism f ◦ γ ◦ τ ◦ γ−1 ◦ f−1 ◦ σ commutes with σ .

Now, consider the remaining case, in which K2
Y = 1 and

Pic(Y ) = ZKY ⊕ ZE1 ⊕ ZE2 ,

where E1 and E2 are two different exceptional curves of the morphism f .
As in the cases considered above, we can assume that the action of γ ◦ τ ◦ γ−1 on the group

Pic(Y ) is nontrivial. For similar reasons, we can assume that

γ ◦ τ ◦ γ−1(E1 ∪ E2) �= E1 ∪ E2.
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Suppose that the curve E1 is (γ ◦ τ ◦ γ−1)-invariant. Let g : Y → V be the blow-down of E1 .
Then g ◦ γ ◦ τ ◦ γ−1 ◦ g−1 is a biregular automorphism of the surface V . On the other hand, V is
a smooth del Pezzo surface with K2

V = 2. As in the case of K2
Y = 2, it is easy to show that the

automorphism f ◦ γ ◦ τ ◦ γ−1 ◦ f−1 is the composition of a Geiser involution of X and a biregular
automorphism of X commuting with it.

Now, suppose that none of the curves Ei is (γ ◦ τ ◦ γ−1)-invariant. Then

(γ ◦ τ ◦ γ−1)∗(KX) ∼ 5f∗(KX) + 6E1 + 6E2 ,

(γ ◦ τ ◦ γ−1)∗(E1) ∼ −2f∗(KX)− 2E1 − 3E2 ,

(γ ◦ τ ◦ γ−1)∗(E2) ∼ −2f∗(KX)− 3E1 − 2E2.

It follows from the construction of the Bertini involutions that f ◦ γ ◦ τ ◦ γ−1 ◦ f−1 is the
composition of a Bertini involution of X and a biregular automorphism of X commuting with
it. �

6. A DOUBLE COVERING OF A QUADRIC

In this section, we effectively apply the regularization algorithm described in Sec. 3.
Consider a double covering

θ : X → Q ⊂ P4

of a smooth three-dimensional quadric Q branched along a smooth octic S ⊂ Q . The variety X
is a Fano variety with Pic(X) ∼= Z and −K3

X = 4. Moreover, X is birationally rigid (see [3]).

Definition 6.1. We say that a curve C ⊂ X is a line if −KX · C = 1.

The variety X contains a one-dimensional family of lines if F = C . Each line C on X induces
a birational involution τC in Bir(X) such that τC is nonbiregular if and only if θ(C) �⊂ S (see [3]).
The essence of the involutions τC is clarified by the following result of Iskovskikh (see [3]).

Theorem 6.2. The group Bir(X) is the semidirect product of the automorphism group of the three-
dimensional variety X and the normal subgroup generated by the nonbiregular involutions τC .

The involutions τC are regularizable by Theorem 1.7. Therefore, according to Theorem 6.2,
Conjectures 1.12 and 1.14 hold for the variety X .

Take a line C on X such that θ(C) is not contained in the surface S . Then the birational
involution τC is not biregular, and Theorem 1.11 implies the existence of a birational mapping
γ : X ��� XC such that XC is a three-dimensional Fano variety with terminal singularities and

γ ◦ τC ◦ γ−1 ∈ Aut(XC).

Now, let us show how to explicitly construct a birational mapping γ by using the regularization
algorithm described above. Take a rational number µ > 0 and consider the movable log pair

(X, Hµ
X) = (X, µ| −KX |+ µτC(| −KX |)).

Lemma 6.3. The singularities of the movable log pair (X, Hµ
X) are terminal if µ < 1/10 , canon-

ical if µ = 1/10 , and noncanonical if µ > 1/10 . Moreover,

κ(X, Hµ
X) =




−∞ for µ < 1
10 ,

0 for µ = 1
10 ,

3 for µ > 1
10 .
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Proof. All these assertions are proved by easy calculations based on the direct construction of the
birational involution τC described in [3]. �

Thus, by Corollary 2.15, the mapping I(X, Hµ
X) is a regularization of the birational involu-

tion τC for µ > 1/10 . Let us explicitly describe the Iitaka mapping I(X, Hµ
X) for µ > 1/10 .

Consider the blow-up f : W → X of the line C . Let Z be the unique basis curve of the linear
system |−KW | . We let g : V →W be the blow-up of the curve Z , set G = g−1(Z) , and consider
the movable log pair

(V , Hµ
V ) = (V , (f ◦ g)−1(Hµ

X)).

Remark 6.4. The movable log pair (V , Hµ
V ) is terminal for all µ > 0 .

Thus, if µ > 1/10 , then we can apply the log minimal model program to (V , Hµ
V ) and obtain

a birational mapping ρ : V ��� Y such that the movable log pair (Y , Hµ
Y ) = (Y , ρ(Hµ

V )) has
terminal Q-factorial singularities and the divisor KY +Hµ

Y is nef and big.

Remark 6.5. An explicit construction of the mapping ρ is described in [9]; it is also shown in [9]
that ρ is the composition of a flop in some curve T contained in the divisor G and a contraction
of the proper image of G to a cyclic quotient singularity of type 1

2 (1, 1, 1) .

For µ = 1/10 , the birational morphism f : W → X is crepant with respect to the movable log
pair (X, Hµ

X) . Therefore, KY +Hµ
Y ∼Q 0 for µ = 1/10 , and hence the anticanonical divisor −KY

is nef and big. Now, we can apply Proposition 2.11 to the movable log pair (Y , Hµ
Y ) with µ > 1/10

and obtain the birational morphism

I(Y , Hµ
Y ) = ψ|−n(KY +Hµ

Y )| for some n� 0.

By construction, XC = I(Y , Hµ
Y )(Y ) is a Fano variety with canonical singularities. Moreover, it

can be shown that the birational morphism I(Y , Hµ
Y ) does not contract divisors on the variety Y .

Thus, the singularities of XC are terminal, but they are not Q-factorial, as is easy to see. Therefore,
for µ > 1/10 , the birational mapping

γ = I(Y , Hµ
Y ) ◦ ρ ◦ (f ◦ g)−1

is the required regularization of the birational involution τC .

Remark 6.6. The construction of the mapping γ implies −K3
XC

= 1/2 .

In [9], the following result was obtained.

Theorem 6.7. Let Y be a Fano variety with canonical singularities which is birationally equivalent
to the variety X . Then

Y ∼=
{
X,

XC for some line C on X.

Thus, Theorem 1.11 implies the following assertion.

Proposition 6.8. All finite subgroups of the group Bir(X) are subgroups of the groups Aut(X)
and Aut(XC) for some line C on X .

For each line C on X , the group Aut(XC) contains Z2 as a canonical subgroup inducing the
birational involution τC on the variety X . Moreover, it can be shown that if X is sufficiently
general, then

Aut(X) ∼= Aut(XC) ∼= Z2.

Corollary 6.9. For a sufficiently general double covering of the quadric X , all finite subgroups
of Bir(X) are isomorphic to Z2 and conjugate to subgroups generated by the involutions τC and
the involution induced by the double covering θ .
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7. A SINGULAR THREE-DIMENSIONAL QUARTIC

In this section, we apply Theorem 1.11 to a singular three-dimensional quadric.
Let X be a sufficiently general quartic in P4 having one singular point O locally isomorphic

to an ordinary double point. Note that X is a Fano variety with Q-factorial singularities and
Pic(X) = Z .

Remark 7.1. The quartic X contains precisely 24 different lines passing through the singular
point O , and the group Aut(X) is trivial.

In [9], the following theorem was proved.

Theorem 7.2. For the singular point O and each line C on X passing through O , there exist
birational surgeries

ψO : X ��� XO and ψC : X ��� XC

such that the varieties XO and XC are three-dimensional Fano varieties with canonical singu-
larities, −K3

XO
= 2 , and −K3

XC
= 1/2 . Any three-dimensional Fano variety Y with canonical

singularities which is birationally isomorphic to the quadric X has the form

Y ∼=



X,

XO ,

XC for some line C on X passing through O.

In [4], the birational rigidity of X was proved and the following result was obtained.

Theorem 7.3. The singular point O and each line C on X passing through O induce birational
involutions τO and τC , respectively, of the quartic X . Moreover, the involutions τO and τC
generate the group Bir(X) .

The involutions τO and τC are regularizable, and Conjectures 1.12 and 1.14 hold for the quar-
tic X . Theorems 1.11 and 7.2 imply that the birational involutions τO and τC can be regularized
on the varieties XO and XC ; moreover, the following assertion is valid [9].

Proposition 7.4. The birational mappings ψO and ψC are regularizations of the birational in-
volutions τO and τC , respectively.

The construction of the birational mappings ψO and ψC is similar to that of the regularization
of the birational involutions of a double covering of a three-dimensional quadric in the preceding
section.

The generality of the variety X implies

Aut(XC) ∼= Aut(X0) ∼= Z2.

Corollary 7.5. All finite subgroups of the group Bir(X) are isomorphic to Z2 and conjugate to
subgroups generated by the involutions τC and τO .
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