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Birationally superrigid cyclic triple spaces

I. A. Cheltsov

Abstract. We prove the birational superrigidity and non-rationality of a cyclic
triple covering of P2n branched over a nodal hypersurface of degree 3n for n � 2.
The result obtained solves the problem of birational superrigidity for smooth cyclic
triple spaces. We also consider certain relevant problems.

§ 1. Introduction
The problem of rationality for algebraic varieties 1 is one of the most interesting

problems in algebraic geometry. Global holomorphic differential forms are natu-
ral birational invariants of a smooth algebraic variety that solve the problem of
rationality for algebraic curves and surfaces (see [205] and [14]). However, even in
the 3-dimensional case there are non-rational varieties that are very close to being
rational. In particular, the available discrete invariants do not solve the ratio-
nality problem for higher-dimensional algebraic varieties. For example, there are
non-rational unirational 3-folds (see [17] and [93]), giving a negative answer to the
Lüroth problem in dimension 3. Unfortunately, we do not know simple any way of
proving non-rationality in non-trivial situations (see [15] and [146]), for example,
in the class of higher-dimensional rationally connected varieties (see [144]).
There are only four known methods of proving non-rationality for rationally

connected varieties. The finiteness of the group of birational automorphisms of
a smooth quartic 3-fold is proved in [17], which implies its non-rationality. The
non-rationality of a smooth cubic 3-fold is proved in [93] through the study of its
intermediate Jacobian. The birational invariance of the torsion subgroup of the
group H3(Z) is used in [68] to prove the non-rationality of certain unirational conic
bundles. The non-rationality of a wide class of rationally connected varieties is
proved in [143] by reduction to positive characteristic (see [61], [144], [147]).
Every method of proving the non-rationality of an algebraic variety has advan-

tages and disadvantages. For example, the route via intermediate Jacobians can
be applied only to 3-folds and, except in a single case (see [36], [37], [199], [38],
[39], [92]), only to 3-folds fibred over conics (see [42], [43], [72], [44]). On the
other hand, the method of the intermediate Jacobian is often applicable to 3-
dimensional varieties when no other method can be used. The degeneration method
(see [72], [44], [90], [69], [59], [87]) shows that the Griffiths component of the inter-
mediate Jacobian is sometimes the most subtle 3-dimensional birational invariant.

1All varieties are assumed to be projective, normal and defined over C.
AMS 2000 Mathematics Subject Classification. 14E05, 14E08, 14E20, 14G05, 14J45.
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For example, important particular cases of the rationality criterion for3-dimensional
conic bundles (see [132], [133], [12], [13]) were proved in [62] using the intermediate
Jacobian method. However, there are non-rational 3-folds whose group H3(Z) is
trivial (see [34]). The group H3(Z) is torsion-free in many interesting cases (for
example, for smooth complete intersections) and, therefore, the method of [68] is
not applicable to these cases (see [94], [169]). The method of [143] works in any
dimension, but proves non-rationality only for very general numbers of appropriate
families. The technique of [17] also works in any dimension (see [174]), but is gener-
ally applicable only to varieties that are very far from being rational. For example,
it is hard to believe that the technique of [17] could produce an example of a smooth
deformation of a non-rational variety into a rational one (see [44]). Such examples
are expected to exist in dimensions greater than 3 (see [40], [41], [125], [126]).
Let us consider the following notion, which was introduced implicitly in [17].

Although historically it goes back to the classical papers [163], [113], [114], its
modern form appeared relatively recently (see [99], [178]). We recall that the class
of terminal singularities is a higher-dimensional generalization of smooth points of
algebraic surfaces, and this class is closed under good birational maps (see [142]).
Q-factoriality simply means that a multiple of every Weil divisor on a variety is
a Cartier divisor. In particular, every smooth variety has terminal Q-factorial
singularities.

Definition 1. A terminal Q-factorial Fano variety V with Picard group Z is said
to be birationally superrigid if the following three conditions hold.
1) V is not birationally equivalent to a fibration 2 whose generic fibre is a smooth

variety of Kodaira dimension −∞.
2) V is not birationally equivalent to a terminal Q-factorial Fano variety with

Picard group Z that is not biregularly equivalent to V .
3) Bir(V ) = Aut(V ).

The paper [17] contains an implicit proof that every smooth quartic 3-fold in P4

is birationally superrigid (see [98]). The technique of [17] can also be applied to
certain Fano 3-folds with non-trivial group of birational automorphisms (see [11]).
Therefore one can consider the following weakened version of birational superrigid-
ity.

Definition 2. A terminal Q-factorial Fano variety V with Picard group Z is said
to be birationally rigid if V satisfies the first two conditions of Definition 1.

Birationally rigid varieties are non-rational. In particular, there are no bira-
tionally rigid del Pezzo surfaces defined over an algebraically closed field. However,
there are birationally rigid del Pezzo surfaces over algebraically non-closed fields
(see [14]). Namely, the results of [20] and [21] yield the birational superrigidity
of smooth del Pezzo surfaces of degree 1 and the birational rigidity of smooth del
Pezzo surfaces of degree 2 and 3 that are defined over a perfect algebraically non-
closed field and have Picard group Z. In particular, two minimal smooth cubic
surfaces in P3 are birationally equivalent if and only if they are projectively equiv-
alent (see [22]).

2We assume that all fibrations τ : Y → Z satisfy dim(Y ) > dim(Z) �= 0 and τ∗(OY ) = OZ .
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One can similarly define birational rigidity and superrigidity for fibrations into
Fano varieties (see [99] and [178]) or, to be precise, for Mori fibrations (see [98]).
Birational rigidity is now known for many smooth 3-folds (see [11], [33], [26], [99]),
many smooth varieties of dimension greater than 3 (see [34], [170], [23], [172], [49],
[27]–[29], [175], [35], [30]–[32], [116], [54], [177]), and many singular varieties (see
[24], [171], [101], [99], [158], [176], [89], [88]). For some birationally non-rigid alge-
braic varieties it is possible to find all Mori fibrations birationally equivalent to them
(see [5], [100], [7], [8]). Despite obvious successes in this area of algebraic geome-
try, many relevant classical problems are still unsolved, such as finding generators
for the group Bir(P3) or the group of birational automorphisms of a smooth cubic
3-fold. A solution of the latter problem was announced in the classical paper [114],
but the proof contains many gaps.
In this paper we prove the following result.

Theorem 3. Let π : X → P2n be a cyclic triple covering 3 such that π is branched
over a hypersurface S ⊂ P2n of degree 3n, n � 2, and the hypersurface S has at
most ordinary double points. Then X is a terminal Q-factorial Fano variety with
Pic(X) ∼= Z, X is birationally superrigid, and the group Bir(X) is finite. (If the
hypersurface S ⊂ P2n is sufficiently general, then this group is isomorphic to Z3.)
In particular, the variety X is non-rational.

Remark 4. Under the hypotheses of Theorem 3, the variety X may be realized as
a hypersurface in the weighted projective space P(12n+1, n) of degree 3n given by
the equation

y3 = f3n(x0, . . . , x2n) ⊂ P(12n+1, n) ∼= Proj(C[x0, . . . , x2n, y]),

where f3n is a homogeneous polynomial of degree 3n (see [160], [118], [188], [189],
[191]), and the cyclic triple covering π : X → P2n is the restriction of the nat-
ural projection P(12n+1, n) ��� P2n induced by the embedding C[x0, . . . , x2n] ⊂
C[x0, . . . , x2n, y] of graded algebras. Moreover, the hypersurface S ⊂ P2n is given
by f3n(x0, . . . , x2n) = 0.

Remark 5. Consider a cyclic triple covering π : X → Pk such that π is branched
over a nodal hypersurface S ⊂ Pk of degree 3n and k � 3. If k < 2n, then X is not
birationally superrigid because it has pencils of varieties of Kodaira dimension−∞.
On the other hand, if k > 2n, then the Kodaira dimension of X is non-negative and
X is not even uniruled. Therefore Theorem 3 describes all birationally superrigid
smooth cyclic triple coverings of projective spaces.

Corollary 6. Let f(x0, . . . , x2n) be a homogeneous polynomial of degree 3n that
determines a nodal hypersurface S ⊂ P2n. Then the field

C(ν1, . . . , ν2n)
3
√
f(1, ν1, . . . , ν2n)

is a purely transcendental extension of C if and only if n = 1.

3A finite morphism of degree 3 that induces a cyclic extension of the fields of rational functions.
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Example 7. Let X be a hypersurface in P(12n+1, n) of degree 3n whose equation
is

y3 =
2n∑
i=0

x3ni ⊂ P(12n+1, n) ∼= Proj(C[x0, . . . , x2n, y]),

and n � 2. Then the projection π : X → P2n ∼= Proj(C[x0, . . . , x2n]) is a cyclic
triple covering branched over a smooth hypersurface

∑2n
i=0 x

3n
i = 0. The variety X

is birationally superrigid by Theorem 3 and

Bir(X) = Aut(X) ∼= Z3 ⊕ Aut
( 2n∑
i=0

x3ni = 0

)
∼= Z3 ⊕ (Z2n3n � S2n+1),

where S2n+1 is the symmetric group (see [198], [183], [184], [152]). In particular,

the variety X is non-rational and the field C(ν1, . . . , ν2n)
3

√
1 +
∑2n
i=1 ν

3n
i is not a

purely transcendental extension of C.

Example 8. Let X be a hypersurface in P(12n+1, n) of degree 3n whose equation
is

y3 =
n∑
i=1

ai(x0, . . . , x2n)xi ⊂ P(12n+1, n) ∼= Proj(C[x0, . . . , x2n, y]),

where ai is a sufficiently general homogeneous polynomial of degree 3n− 1. Then
the natural projection π : X → P2n is a cyclic triple covering. It is branched over a
nodal hypersurface S ⊂ P2n of degree 3n which is given by

n∑
i=1

aixi = 0 ⊂ P2n ∼= Proj(C[x0, . . . , x2n])

and has (3n − 1)n ordinary double points. The variety X is birationally super-
rigid and non-rational for n � 2 by Theorem 3, and the group Bir(X) is finite.
Example 9. Let X be a hypersurface in P(12n+1, n) of degree 3n whose equation
is

y3 =
n∑
i=1

ai(x0, . . . , x2n)bi(x0, . . . , x2n) ⊂ P(12n+1, n) ∼= Proj(C[x0, . . . , x2n, y]),

where ai, bi are sufficiently general homogeneous polynomials of degrees 2n, n
respectively. Then the natural projection π : X → P2n is a cyclic triple covering.
It is branched over a nodal hypersurface S ⊂ P2n of degree 3n which has 2nn2n
ordinary double points. The variety X is birationally superrigid and non-rational
for n � 2 by Theorem 3, and the group Bir(X) is finite.
The main reason why the variety X in Theorem 3 is birationally superrigid

is as follows. The anticanonical degree (−KX)dim(X) = 3 of X is very small
and the singularities of X are relatively mild. Roughly speaking, a Fano vari-
ety must become more rational as the anticanonical degree increases and the
singularities become worse. This general principle may not necessarily be true
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in some extremely singular cases (see [47]). However, the classification of smooth
Fano 3-folds yields that a smooth Fano 3-fold is rational if its degree is bigger
than 24 (see [134]). Singular Fano 3-folds are not classified even in the case when
their anticanonical divisors are Cartier divisors (see [48], [167], [137]), but many
examples confirm this intuition in the singular case as well (see [101], [100], [84],
[56], [87], [89]). Therefore the non-rationality of X in Theorem 3 is very natural.
The notions of birational superrigidity and rigidity make sense only for Mori

fibrations (see [98]). In particular, in the case of Fano varieties we must assume
that the singularities of the variety are Q-factorial and the rank of its Picard group
is equal to 1. Many examples suggest that a Fano variety cannot be birationally
rigid unless its degree is sufficiently small. Moreover, it is intuitively clear (see
[100], [158]) that quantitative characteristics of singularities (the number of iso-
lated singular points or the anticanonical degree of the corresponding subvarieties
of singular points) are important only to guarantee the Q-factoriality condition
(see [89], [87], [88]). On the other hand, qualitative characteristics of singulari-
ties (the multiplicity and analytical local type) can have a crucial influence the
birational geometry of a Fano variety (see [99], [100]).
All existing proofs of the birational rigidity or superrigidity of a Fano variety

depend crucially on the projective geometry of the variety related to the anticanon-
ical map. It is natural to expect that some claims on birational rigidity can be
proved without implicit use of the properties of the anticanonical ring. For exam-
ple, we expect that the following is true (see [30], [116]).

Conjecture 10. Let X be a non-singular Fano variety of dimension k such that
Pic(X) ∼= Z and (−KX)k � 2(k − 1). Then X is birationally rigid.
Conjecture 10 is now known to be true only in dimension 3 through the explicit

classification of smooth Fano 3-folds (see [134]). It may be extremely hard to prove
in general. On the other hand, it is natural to expect that the following weakened
version could be proved by combining the methods of [99] with the technical tools
of [106] and [141].

Conjecture 11. Let X be a smooth Fano variety of dimension k such that
Pic(X) ∼= Z and (−KX)k = 1. Then X is birationally superrigid.
Remark 12. It is well known that all statements on birational rigidity remain valid
for varieties defined over any field, with a single exception. Namely, the field must
have characteristic zero to guarantee that the Kawamata–Viehweg vanishing theo-
rem holds (see [140], [195]). In the case of algebraic surfaces, it is enough to assume
that the field of definition is perfect (see [20], [21]). Moreover, all assertions on bira-
tional rigidity remain valid in the equivariant set-up for actions of finite groups (see
[9], [4], [14]). This fact can be used to classify all non-conjugate finite subgroups in
the corresponding groups of birational automorphisms (see [16]).

It should be pointed out that a cyclic triple covering of P2n is non-rational and
non-ruled provided that it is branched over a very general 4 smooth hypersurface
of degree 3n with n � 2. This is a corollary of [144], Theorem 5.13, where the
following theorem is proved.

4The complement of a countable union of Zariski closed subsets in moduli.
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Theorem 13. Let ξ : V → Pk be a cyclic covering of prime degree p � 2 branched
over a very general hypersurface F ⊂ Pk of degree pd, where k � 3 and d > k+1

p
.

Then V is non-ruled and hence non-rational.

Under the hypotheses and notation of Theorem 3, we may naturally ask how
many singular points X can have. The singular points of X are in one-to-one
correspondence with the ordinary double points of the hypersurface S ⊂ P2n of
degree 3n. Therefore the best estimate follows from [2] and says that the number
of singular points of X does not exceed the Arnold number A2n(3n), which is the
number of points (a1, . . . , a2n) ⊂ Z2n such that

3n2 − 3n+ 2 �
2n∑
i=1

ai � 3n2

and ai ∈ (0, 3n). In particular, the number of singular points of X does not exceed
320, 115788, and 85578174 for n = 2, 3, and 4 respectively. However, this estimate
seems to be non-sharp for n� 0 (see [74], [185], [81], [187], [70], [136], [196]).
Remark 14. It is well known that the varietyX in Theorem 3 is rationally connected
(see [149]–[151], [144]): X contains an irreducible rational curve passing through
any two sufficiently general points of X.

Theorem 3 has the same geometrical meaning as Noether’s theorem that the
group of birational automorphisms of the plane is generated by the Cremona invo-
lution and projective automorphisms (see [163], [11], [98]). This theorem is related
to many interesting problems. One of these asks for a birational classification of
elliptic pencils on the plane. It was originally considered in [73]. The ideas of [73]
were put into a proper and correct form in the paper [3] along with a proof that any
plane elliptic pencil can be birationally transformed into a special plane elliptic pen-
cil, the so-called Halphen pencil (see [102], § 5.6), which was studied in [122]. One
can consider the corresponding problem for the variety X of Theorem 3. Namely,
we prove the following result.

Theorem 15. Under the hypotheses and notation of Theorem 3, the variety X is
not birationally equivalent to any elliptic fibration.

Birational transformations into elliptic fibrations were used in [76], [77], and
[123] to prove the potential density 5 of rational points on smooth Fano 3-folds.
The following result was proved in those papers.

Theorem 16. Rational points are potentially dense on all smooth Fano 3-folds
with the possible exception of the double covering of P3 ramified in a smooth sextic
surface.

The possible exception arises because the double covering of P3 ramified in a
smooth sextic is the only smooth Fano 3-folds that is not birationally isomorphic
to an elliptic fibration. Indeed, it was also shown [85] that the smooth double

5Let V be a variety defined over a number field F. We say that the set of rational points of V

is potentially dense if there is a finite extensionK of F such that the set of K-points of V is Zariski
dense.
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covering of P3 ramified in a sextic and strongly degenerate conic fibrations are not
birationally isomorphic to any elliptic fibration. Using the classification of smooth
Fano 3-folds (see [134]), we easily see that the smooth double covering of P3 ramified
in a sextic is the only smooth Fano 3-fold that is not birationally isomorphic to an
elliptic fibration. We note that the double covering of P3 branched over a sextic
with one ordinary double point can be birationally transformed into an elliptic
fibration in a unique way (see [51]), and rational points on this singular Fano 3-fold
are potentially dense (see [89]).

Remark 17. Let π : X → P4 be a cyclic triple covering such that π is branched
over a hypersurface S ⊂ P4 of degree 6, n � 2, and S has one ordinary singular
point O ∈ S of multiplicity 3. Then the projection γ : P4 ��� P3 from O induces
a rational map γ ◦ π such that the normalization of the generic fibre of γ ◦ π is an
elliptic curve. In particular, X does not satisfy the hypotheses of Theorem 3 since
S is not nodal.

The nodality hypothesis is rather natural in Theorems 3 and 15 because ordi-
nary double points are the simplest singularities of algebraic varieties, and the
geometry of nodal varieties is related to many interesting problems (see [192], [91],
[117], [200], [138], [78], [166], [103], [108], [104]). On the other hand, we can con-
sider a wider class of singularities. The proofs of Theorems 3 and 15 together with
the inequality for global log canonical thresholds (see [52], [60], [107]) enable us to
prove the following simple generalization of Theorems 3 and 15.

Theorem 18. Let π : X → P2n be a cyclic triple covering such that π is branched
over a hypersurface S ⊂ P2n of degree 3n, n � 2, and the only singularities of S
are ordinary double and triple points, that is, the multiplicity of any singular point
of S does not exceed 3 and the projectivization of the tangent cone to S at such a
point is smooth. Then X is a Fano variety with Q-factorial terminal singularities,
Pic(X) ∼= Z, the variety X is birationally superrigid, and the group Bir(X) is finite.
Moreover, if X is birationally isomorphic to an elliptic fibration, then n = 2, S
has a triple point, and the birational isomorphism is given by the construction in
Remark 17.

Hence Theorem 18 implies that the methods of [76], [77], and [123] cannot be used
to prove the potential density of rational points on the variety X of Theorem 18 in
the case when X is defined over a number field, with the single exception of a cyclic
triple covering of P4 branched over a hypersurface of degree 6 with at least one triple
point. It should be pointed out that rational points are potentially dense on any
geometrically unirational variety defined over a number field. Therefore, if rational
points are not potentially dense on some of the cyclic triple coverings considered
above, then we get a variety which is rationally connected but not unirational!
This would give a positive answer to the important Conjecture 4.1.6 of [146]. It
is natural to expect that the methods of [76], [77], and [123] can be applied to
prove the potential density of rational points of a cyclic triple covering of P4 which
is defined over a number field and branched over a hypersurface of degree 6 with
at least one singular point of multiplicity 3. We shall prove this statement in the
general case. Namely, we shall prove the following result using the method of [76],
[77], and [123].
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Theorem 19. Let π : X → P4 be a cyclic triple covering branched over a suf-
ficiently general 6 hypersurface S ⊂ P4 of degree 6 such that S is defined over a
number field and has an ordinary triple point. Then rational points are potentially
dense on X.

Our methods can also be used to prove the following result. We recall that canon-
ical singularities form a higher-dimensional generalization of Du Val singularities
of algebraic surfaces (see [142]).

Theorem 20. Under the hypotheses and notation of Theorem 3 or Theorem 18,
let ρ : X ��� V be a birational map such that V is a Fano variety with canonical
singularities. Then ρ is an isomorphism.

Theorem 20 generalizes one of the three assertions of Theorem 3. However, we
think that Theorem 20 has a certain importance. For example, the corresponding
assertion for smooth minimal cubic surfaces defined over an algebraically non-closed
field (see [85]) generalizes the classical birational classification of [22] in the following
way: a smooth minimal cubic surface in P3 is birationally equivalent to a cubic
surface in P3 with Du Val singularities if and only if they are projectively equivalent.
Moreover, a strengthened version of this assertion (see [85]) describes all the finite
subgroups of the group of birational automorphisms of a smooth minimal cubic
surface (see [57]), thus answering Question 1.10 of [22]. This problem was originally
solved in [18] by group-theoretic methods using the explicit description of the group
of birational automorphisms of a smooth minimal cubic surface obtained in [21]
and [22].

Remark 21. Analogues of Theorems 15 and 20 have been proved for many algebraic
varieties (see [85], [49]–[51], [180], [53]–[55], [58], [86], [89]).

Double coverings of projective spaces are generalizations of hyperelliptic curves,
and triple coverings of projective spaces are generalizations of trigonal curves. How-
ever, triple coverings are not necessarily Galois coverings. The study of discrete
invariants of cyclic coverings of P2 goes back to [97], [202], [203]. It was continued
in [135], [156], [182], [194], [82], and [19]. Certain questions related to triple cover-
ings of algebraic surfaces were considered in [193], [188], [189]. Topological questions
related to coverings of projective spaces were considered in [155] and [119]. Results
on the structure of triple coverings were obtained in [160], [118], [164], [83], [190],
[191], and [109]. Some sporadic results on triple coverings were obtained in [197],
[165], [157]. Triple covers of projective spaces were considered within the framework
of birational geometry in [153] and [154]. The non-rationality of general cyclic cov-
erings of projective spaces was considered in [144] (see Theorem 13 of the present
paper).

§ 2. Movable log pairs
In this section we consider properties of the so-called movable log pairs, which

were introduced in [64]. Movable log pairs were used implicitly in [163], [113], [114],
and [17].

6Here we mean general in the sense of the Zariski topology.
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Definition 22. A movable log pair (X,MX) is a pair consisting of a variety X
and a movable boundary MX , where MX =

∑n
i=1 aiMi is a formal finite linear

combination of linear systemsMi on X such that the base locus of everyMi has
codimension at least 2 in X and ai ∈ Q�0.
Replacing the linear system by an appropriate weighted sum of its general ele-

ments, we may regard any movable log pair as an ordinary log pair with effective
boundary whose components have multiplicity at most 1. In particular, given a
movable log pair (X,MX), we may regard the movable boundary MX as an effec-
tive divisor. Thus the numerical intersection ofMX with curves on X is well defined
provided that X is Q-factorial. Hence we may regard the formal sum KX +MX as
a log canonical divisor of the movable log pair (X,MX). In the rest of this section
we assume that all log canonical divisors are Q-Cartier divisors.

Remark 23. For a movable log pair (X,MX) we can regard the self-intersection
M2X as a well defined effective cycle of codimension two on X in the case when X
has Q-factorial singularities.

In contrast to ordinary log pairs, the direct image of a movable boundary under
a birational map is naturally well defined because the base loci of the components
of the movable boundary do not contain divisors.

Definition 24. Two movable log pairs (X,MX) and (Y,MY ) are said to be bira-
tionally equivalent if there is a birational map ρ : X ��� Y such thatMY = ρ(MX).
The standard notions (discrepancies, terminality, canonicity, log terminality, and

log canonicity) can be defined for movable log pairs in analogy with their definitions
for ordinary log pairs (see [142]).

Definition 25. A movable log pair (X,MX) has canonical (resp. terminal) singu-
larities if for every birational morphism f : W → X there is an equivalence

KW + f
−1(MX) ∼Q f∗(KX +MX) +

k∑
i=1

a(X,MX , Ei)Ei

such that all rational numbers a(X,MX , Ei) ∈ Q are non-negative (resp. positive),
where Ei are f-exceptional divisors. The rational number a(X,MX , Ei) ∈ Q is
called the discrepancy of the movable log pair (X,MX) in the f-exceptional divi-
sor Ei.

Example 26. Let M be a linear system on a 3-fold X such that the base locus
of M has codimension at least 2 and the singularities of X are terminal and Q-
factorial. The log pair (X,M) has terminal singularities if and only if the linear
system M has only isolated simple base points which are smooth points of X.

Remark 27. The application of the log minimal model programme (see [142]) to a
movable log pair with canonical (resp. terminal) singularities preserves their canon-
icity (resp. terminality).

The singularities of a movable log pair coincide with those of the variety outside
the base loci of the components of the movable boundary. Hence the existence
of a resolution of singularities (see [129]) implies that every movable log pair is
birationally equivalent to a movable log pair with canonical or terminal singularities.
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Definition 28. A proper irreducible subvariety Y ⊂X is called a centre of canonical
singularities of a movable log pair (X,MX) if one can find a birational morphism
f : W → X and an f-exceptional divisor E1 ⊂W such that

KW + f
−1(MX) ∼Q f∗(KX +MX) +

k∑
i=1

a(X,MX , Ei)Ei,

where a(X,MX , Ei) ∈ Q, Ei are f-exceptional divisors, a(X,MX , E1) � 0, and
f(E1) = Y .

Definition 29. Let CS(X,MX) be the set of all centres of canonical singularities
of the movable log pair (X,MX). Let CS(X,MX )⊂X be the set-theoretic union of
all centres of canonical singularities of (X,MX).

In particular, a movable logpair (X,MX) is terminal if and only if CS(X,MX)=∅.

Remark 30. Let (X,MX) be a movable log pair with terminal singularities. Then
the singularities of the log pair (X, εMX) are also terminal for all sufficiently
small ε ∈ Q>1.
Remark 31. Let (X,MX) be a movable log pair, and let Z ⊂ X be a proper
irreducible subvariety such that X is smooth at a generic point of Z. By elementary
properties of blow-ups, the assumptionZ∈CS(X,MX) implies that multZ(MX)�1.
If codim(Z ⊂ X) = 2, then the inverse implication holds as well.
Remark 32. Let (X,MX) be a movable log pair, H a sufficiently general hyperplane
section of X, and Z ⊂ X a proper irreducible subvariety such that dim(Z) � 1
and Z ∈ CS(X,MX). Then

Z ∩H ∈ CS(H,MX |H).

Definition 33. Given a movable log pair (X,MX), consider any birationally
equivalent movable log pair (W,MW ) whose singularities are canonical. Let m
be a positive integer such that m(KW +MW ) is a Cartier divisor. The Kodaira
dimension κ(X,MX) of (X,MX) is the maximal dimension of the image
dim(ϕ|nm(KW+MW )|(W )) for n � 0 in the case when the complete linear system
|nm(KW + MW )| is non-empty for some n. Otherwise we simply put
κ(X,MX) = −∞.
Lemma 34. The Kodaira dimension of a movable log pair is well defined, that is,
it is independent of the choice of the birationally equivalent log pair with canonical
singularities in Definition 33.

Proof. Let (X,MX) and (Y,MY ) be movable log pairs with canonical singularities
such that MX = ρ(MY ) for some birational map ρ : Y ��� X. We take a positive
integer m such that m(KX + MX) and m(KY + MY ) are Cartier divisors. To
complete the proof, it suffices to show that either the linear systems |nm(KX+MX)|
and |nm(KY +MY )| are empty for all positive integers n, or

ϕ|nm(KX+MX)|(X) = ϕ|nm(KY +MY )|(Y )



Birationally superrigid triple spaces 1239

for all sufficiently large n. Let us consider birational morphisms g : W → X
and f : W → Y such that W is smooth and ρ = g ◦ f−1. Then

KW +MW ∼Q g∗(KX +MX) + ΣX ∼Q f∗(KY +MY ) + ΣY ,

whereMW = g
−1(MX) and ΣX , ΣY are exceptional divisors of g and f respectively.

Since the log pairs (X,MX) and (Y,MY ) are canonical, the divisors ΣX and ΣY
are effective. Given any sufficiently big and sufficienty divisible positive integer k,
we see from the effectiveness of ΣX and ΣY that the linear systems |k(KW +MW )|,
|g∗(k(KX +MX))|, and |f∗(k(KY +MY ))| have equal dimension and

ϕ|k(KW+MW )| = ϕ|g∗(k(KX+MX))| = ϕ|f∗(k(KY+MY ))|

provided that they are non-empty. This proves the desired assertion.

The definition implies that the Kodaira dimension of a movable log pair is bira-
tionally invariant and is a non-decreasing function of the coefficients of the movable
boundary.

Definition 35. Amovable log pair (V,MV ) is called a canonical model of a movable
log pair (X,MX) if there is a birational map ψ : X ��� V such that MV = ψ(MX ),
the log canonical divisor KV +MV is ample and the singularities of (V,MV ) are
log canonical.

This definition of a canonical model of a movable log pair coincides with the
classical definition of a canonical model in the case of empty boundary (see [142]).
We note that if a canonical model of a movable log pair exists, then its Kodaira
dimension equals the dimension of the variety.

Lemma 36. If a canonical model exists, then it is unique.

Proof. Suppose that (X,MX) and (V,MV ) are canonical models andMX = ρ(MV )
for some birational map ρ : V ��� X. Let g : W → X and f : W → V be birational
maps such that ρ = g ◦ f−1. Then we have

KW +MW ∼Q g∗(KX +MX) + ΣX ∼Q f∗(KV +MV ) + ΣV ,

where MW = g
−1(MX) = f

−1(MV ) and ΣX , ΣV are exceptional divisors of g and
f respectively. Since the singularities of (X,MX) and (V,MV ) are canonical, the
divisors ΣX and ΣV are effective. Let n be sufficiently big and sufficiently divisible
for n(KW +MW ), n(KX +MX), and n(KV +MV ) to be Cartier divisors. Since
ΣX and ΣV are effective, it follows that

ϕ|n(KW+MW )| = ϕ|g∗(n(KX+MX))| = ϕ|f∗(n(KV+MV ))|

and ρ is an isomorphism because KX +MX and KV +MV are ample.

In the case of empty movable boundary, Lemma 36 is the well-known assertion
about the uniqueness of the canonical model of an algebraic variety. This assertion
immediately yields that all birational automorphisms of a canonical model are bireg-
ular. This property is the classical attribute of birationally superrigid varieties (see
Definition 1). Later we shall show that Lemma 36 explains the geometric nature of
this phenomenon in both cases. For birationally superrigid varieties, Lemma 36 is
nothing but a veiled Noether–Fano–Iskovskikh inequality (see [174]).
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§ 3. Preliminary results
Properties of movable log pairs (Definition 22) reflect the birational geometry

of a given variety (see Lemma 36). It is also clear that canonical and terminal
singularities are the most appropriate classes of singularities for movable log pairs
(see Remark 27). Many geometrical problems can be translated into the language
of movable log pairs. Movable log pairs can always be regarded as ordinary log
pairs, and movable boundaries can be regarded as effective divisors. On the other
hand, we can consider log pairs with both movable and fixed components similarly
to the existence of linear systems with movable and fixed parts. Moreover, we can
consider log pairs with negative coefficients. There are two reasons for considering
such generalizations.
First, even for elementary blow-ups f : V → X, the properties of a movable

log pair (X,MX) are not adequately reflected by the birationally equivalent log
pair (V,MV ). They are adequately reflected by the log-pullback of (X,MX) (see
Definition 37), which may have fixed components as well as negative coefficients.
Second, canonical singularities and centres of canonical singularities (see Defini-

tion 28) do not have good functorial properties outside the birational context. Such
properties are possessed by log canonical singularities and centres of log canonical
singularities (see Definition 38), which play a very important role in modern alge-
braic geometry (see [142], [148], [145], [63], [161], [162], [30], [116]). Log canonical
singularities and canonical singularities are related mostly through the log adjunc-
tion (see [99] and Theorem 49) but also in other ways (see [30]).
Therefore we do not impose any restrictions on the boundaries in this section,

although this sometimes leads to inconvenience. In particular, the boundaries need
not be effective unless otherwise stated. We assume for simplicity that the log
canonical divisors of all log pairs are Q-Cartier divisors.

Definition 37. A log pair (V,BV ) is called a log-pullback of a log pair (X,BX)
with respect to a birational morphism f : V → X if we have

BV = f−1(BX)−
n∑
i=1

a(X,BX , Ei)Ei, KV +B
V ∼Q f∗(KX +BX),

where a(X,BX , Ei) ∈ Q and Ei are f-exceptional divisors.

Definition 38. A proper irreducible subvariety Y ⊂ X is called a centre of log
canonical singularities of the log pair (X,BX) if one can find a birational morphism
f : W → X and a divisor E ⊂ W such that E is contained in the support of the
effective part of the divisor 
BW �.

Definition 39. Let LCS(X,BX) be the set of all centres of log canonical singular-
ities of the log pair (X,BX). Let LCS(X,BX ) ⊂ X be the set-theoretic union of
all elements of LCS(X,BX). We regard LCS(X,BX) ⊂ X as a proper subset
of X and call it the locus of log canonical singularities.

Remark 40. Let (X,BX) be a log pair, H a general hyperplane section of X, and
Z ⊂ X a proper irreducible subvariety such that dim(Z) � 1 and Z ∈ LCS(X,BX).
Then Z ∩H ∈ LCS(H,BX |H).
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Consider a log pair (X,BX), where BX =
∑k
i=1 aiBi, the divisor Bi is effective

and irreducible and ai ∈ Q. Let f : Y → X be a birational morphism such that Y
is smooth and the union of all divisors f−1(Bi) and all f-exceptional divisors forms
a divisor with simple normal crossings. The morphism f is called a log resolution
of the log pair (X,BX). We have

KY +B
Y ∼Q f∗(KX +BX),

where (Y,BY ) is a log-pullback of the log pair (X,BX).

Definition 41. The log canonical singularity subscheme of a log pair (X,BX) is the
subscheme associated with the ideal sheaf I(X,BX) = f∗(�−BY 
). It is denoted
by L(X,BX).

We note that Supp(L(X,BX)) = LCS(X,BX ) ⊂ X. The following result is the
Shokurov vanishing theorem (see [63] and [65]).

Theorem 42. Suppose that (X,BX) is a log pair, the boundary BX is effective,
and H is a nef and big divisor on X such that D = KX + BX + H is a Cartier
divisor. Then Hi(X, I(X,BX)⊗D) = 0 for all i > 0.

Proof. By the relative Kawamata–Viehweg vanishing theorem we have

Rif∗(f
∗(KX +BX +H) + �−BW 
) = 0

for all i > 0 (see [140], [195], [142]). Since the corresponding spectral sequence
degenerates and we have the equation

R0f∗(f
∗(KX +BX +H) + �−BW 
) = I(X,BX)⊗D

of sheaves, it follows that

Hi(X, I(X,BX)⊗D) = Hi(W, f∗(KX + BX +H) + �−BW 
)

for all i � 0. But the cohomology groups

Hi(W, f∗(KX + BX +H) + �−BW 
)

vanish for i > 0 by the Kawamata–Viehweg theorem.

We consider two applications of Theorem 42, which are special cases of a more
general result of [52] (see also [60] and [107]).

Lemma 43. Let V be the smooth 2-dimensional quadric P1 × P1, and let BV
be an effective boundary on V of bidegree (a, b), where a, b ∈ Q ∩ [0, 1). Then
LCS(V,BV ) = ∅.

Proof. Write BV =
∑k
i=1 aiBi for some positive rational ai and irreducible reduced

curves Bi ⊂ V . Intersecting the boundary BV with the rulings of V into P1, we see
that ai < 1. In particular, the set LCS(V,BV ) contains no curves.
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Suppose that the set LCS(V,BV ) contains a point O ∈ V . Take any divisor
H ∈ Pic(V )⊗Q of bidegree (1− a, 1− b). Then H is ample and there is a Cartier
divisor D on V such that

D ∼Q KV +BV +H

and H0(OV (D)) = 0. On the other hand, the map

H0(OV (D))→ H0(OL(V,BV )(D)) → 0

is surjective by Theorem 42. This is a contradiction since H0(OL(V,BV )(D)) =
H0(OL(V,BV )).

Lemma 44. Let V ⊂ Pn be a smooth hypersurface of degree k < n, and let BV be
an effective boundary on V such that BV ≡ rH, where r ∈ Q ∩ [0, 1) and H is a
hyperplane section of V . Then LCS(V,BV ) = ∅.

Proof. Suppose that the set LCS(V,BV ) contains a subvariety Z ⊂ V . Then
dim(Z) = 0 by Theorem 2 of [25] (see also [54], Lemma 3.18). Therefore the
set LCS(V,BV ) contains only closed points of V . In particular, the support of the
scheme L(V,BV ) is zero-dimensional and H0(OL(V,BV )) �= 0.
We note that KV + BV + (1 − r)H ≡ (k − n)H and H0(OV ((k − n)H)) = 0

because k < n. However, Theorem 42 yields the surjectivity of

H0(OV ((k − n)H))→ H0(OL(V,BV )((k − n)H))→ 0,

which is a contradiction because H0(OL(V,BV )((k − n)H)) = H0(OL(V,BV )).

Example 45. Let V ⊂ Pn be the hypersurface

xk0 =
n∑
i=1

xki ⊂ Pn ∼= Proj(C[x0, . . . , xn]),

and let BV =
n−1
k
H, where H is the hyperplane section of V cut out by x0 = x1.

Then the hypersurface V is smooth and the set LCS(V,BV ) consists of a single
point (1 : 1 : 0 : . . . : 0) ∈ V ⊂ Pn.

One can employ the arguments in the proofs of Lemmas 43 and 44 to obtain
a more general result. Namely, given any Cartier divisor D on a variety X, we
consider the exact sequence of sheaves

0→ I(X,BX)⊗D→ OX(D)→ OL(X,BX )(D)→ 0

and the corresponding exact sequence of cohomology groups. Using Theorem 42,
we get the following connectedness results (see [63]).

Theorem 46. Let (X,BX) be a log pair such that the boundary BX is effective and
the divisor −(KX +BX) is nef and big. Then the locus LCS(X,BX ) is connected.
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Theorem 47. Let (X,BX) be a log pair such that the boundary BX is effective
and the divisor −(KX +BX) is g-nef and g-big for some morphism g : X → Z with
connected fibres. Then LCS(X,BX ) is connected in a neighbourhood of every fibre
of g.

Using the argument that proves Theorem 42, one can similarly obtain the
following important result, which is Theorem 17.4 of [148].

Theorem 48. Suppose that g : X → Z is a morphism with connected fibres, DX =∑
i∈I diDi is a divisor on X, and h : V → X is a resolution of singularities of X

such that the union of all divisors h−1(Di) and all h-exceptional divisors is a simple
normal crossing divisor. Suppose that g∗(OX) = OZ , the divisor −(KX +DX) is
g-nef and g-big, and the subvariety g(Di) ⊂ Z has codimension at least two when-
ever di < 0. For any divisor E (not necessarily h-exceptional) on V we define a
number aE ∈ Q such that the equivalence

KV ∼Q f∗(KX +DX) +
∑
E⊂V

aEE

holds. Then
⋃
aE�−1E is connected in a neighbourhood of every fibre of g ◦ h.

Proof. We put f = g ◦ h, A =
∑
aE>−1 E, and B =

∑
aE�−1E. Then

�A
 − 
B� ∼Q KV − h∗(KX +DX) + {−A}+ {B}

and R1f∗OV (�A
 − 
B�) = 0 by the relative Kawamata–Viehweg vanishing the-
orem (see [142]). Hence the map f∗OV (�A
) → f∗O�B�(�A
) is surjective. But
every irreducible component of �A
 is either h-exceptional or the proper transform
of some divisor Dj with dj < 0. Thus the divisor h∗(�A
) is g-exceptional and
f∗OV (�A
)=OZ . Hence the map

OZ → f∗O�B�(�A
)

is surjective. It follows that 
B� is connected in a neighbourhood of every fibre of f
because �A
 is effective and has no components in common with 
B�.
We have defined centres of canonical singularities and the locus of centres of

canonical singularities for movable log pairs (see Definitions 28 and 29). Although
these notions are mainly used for movable log pairs and appear naturally in con-
structions related to movable log pairs, their definitions do not actually require the
boundary to be movable. Hence we can consider both notions for any log pair. This
is used to establish inductive relations of centres of canonical singularities with their
log analogues, as in the following result (see [99]).

Theorem 49. Let (X,BX) be a log pair, BX an effective boundary, Z∈CS(X,BX),
and H an effective irreducible Cartier divisor on X. Suppose that Z ⊂ H, and the
divisor H is not a component of BX and is smooth at a generic point of Z ⊂ X.
Then LCS(H,BX |H) �= ∅.

Proof. Let f : W → X be a log resolution of (X,BX + H). We put Ĥ = f−1(H).
Then

KW + Ĥ ∼Q f∗(KX + BX +H) +
∑
E �=Ĥ

a(X,BX +H,E)E
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and we have {Z,H} ⊂ LCS(X,BX + H) by hypothesis. Applying Theorem 48
to the log-pullback of (X,BX + H) on W , we see that Ĥ ∩ E �= ∅ for some f-
exceptional divisor E on W such that f(E) = Z and a(X,BX , E) � −1. Then the
equivalences

KĤ ∼ (KW + Ĥ)|Ĥ ∼Q f |
∗
Ĥ
(KH + BX |H) +

∑
E �=Ĥ

a(X,BX +H,E)E|Ĥ

yield the desired assertion.

Corollary 50. Let (X,MX) be a movable log pair with dim(X) � 3, MX an
effective boundary, O ∈ CS(X,MX) a smooth point on X, and H1, . . . , Hk general
hyperplane sections of X through O (k � dim(X) − 2). Consider the surface S =⋂k
i=1Hi and the movable boundary MS =MX |S. Then O ∈ LCS(S,MS).
We note that Theorem 49 is a particular case of the general phenomenon known

as log adjunction (see [148]). In particular, a slight modification of the proof of
Theorem 49 yields the following result.

Corollary 51. Let (X,MX) be a movable log pair with dim(X) � 3, MX an
effective boundary, O ∈ X an isolated hypersurface singular point of X
with O ∈ CS(X,MX), and H1, . . . , Hk general hyperplane sections of X through O
(k � dim(X) − 2). Consider the surface S =

⋂k
i=1Hi and the movable boundary

MS =MX |S. Then O ∈ LCS(S,MS).
The following result is Theorem 3.1 of [99]. It enables one to give the shortest

proof of the main result of [17] (see [99]) modulo Theorem 49.

Theorem 52. Suppose that H is a surface, O is a smooth point of H, MH is an
effective movable boundary on H, a1 and a2 are non-negative rational numbers,
∆1 and ∆2 are reduced irreducible curves on H intersecting normally at O, and
O ∈ LCS(H, (1− a1)∆1 + (1− a2)∆2 +MH). Then

multO(M
2
H) �

{
4a1a2 if a1 � 1 or a2 � 1,
4(a1 + a2 − 1) if a1 > 1 and a2 > 1.

Most applications of Theorem 52 use the case when the boundary is movable.
Moreover, it was designed for applications to movable log pairs with the help of
Theorem 49. However, the proof of Theorem 3.1 in [99] uses induction on the
number of blow-ups required to obtain the appropriate negative discrepancy, and
this argument is much easier to apply if we admit non-movable components of
the boundary. In certain sense, the main difficulty in the proof of Theorem 52
lies in finding the correct statement. On the other hand, the general form has
nice higher-dimensional applications (see [49] and [54]). A more general approach
to the proof of Theorem 52 was found in [116], where an analogue was used to
prove a generalization of the main inequality of [30]. We note that Theorem 2.1
of [116] generalizes Theorem 52 in the case when the non-movable part of the
boundary consists of a single component. However, such a weakened version may
be unsuitable for some applications (see [49]). The main applications of Theorem 52
actually use the following particular case, which is also contained in Theorem 0.1
of [115].
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Corollary 53. Let H be a surface, O a smooth point of H, and MH an effective
movable boundary on H such that O∈LCS(H,MH). Then we have multO(M2H)�4,
and the equation multO

(
M2H
)
= 4 implies that mult(MH) = 2.

The following result was obtained in [174].

Theorem 54. Suppose that (X,MX) is a movable log pair, the boundary MX is
effective, O is a smooth point on X, dim(X) � 3, and O ∈ CS(X,MX). Then
multO(M

2
X) � 4, and the equation multO

(
M2X
)
= 4 implies that multO(MX) = 2

and dim(X) = 3.

Proof. This follows from Corollaries 50 and 53.

We note that the paper [174] contains an elementary but very technical proof
of Theorem 54, which is also valid over fields of positive characteristic. However,
that proof and the one in [99] (used above) do not explain the geometric nature of
Theorem 54, but this was explained in [98] on the basis of the following well-known
result (see [148]).

Lemma 55. Let O be a smooth point on a smooth 3-fold X with O ∈ CS(X,MX)
for some log pair (X,MX), where MX is an effective movable boundary on X and
the singularities of (X,MX) are canonical. Then there is a birational morphism
f : V → X such that V has only terminal Q-factorial singularities, f contracts
exactly one divisor E, we have f(E) = O, and KV +MV ∼Q f∗(KX +MX), where
MV = f

−1(MX).

Proof. Since (X,MX) has canonical singularities, there are only finitely many divi-
sorial discrete valuations ν of the field of rational functions on X such that the
centre of ν on X is the point O and the discrepancy a(X,MX , ν) is non-positive.
Therefore we may consider a birationalmorphism g : W → X such that the 3-foldW
is smooth, g contracts k divisors and

KW +MW ∼Q g∗(KX +MX) +
k∑
i=1

aiEi,

the log pair (W,MW ) has canonical singularities and the set CS(W,MW ) does not

contain subvarieties of
⋃k
i=1 Ei, where MW = g

−1(MX), g(Ei) = O, and ai are
rational. Applying the log minimal model programme (see [142]) to the movable
log pair (W,MW ) over X, we may assume that the 3-fold W has only terminal
Q-factorial singularities and KW +MW ∼Q g∗(KX +MX) because the log pair
(X,MX) is canonical. Applying the log minimal model programme to the variety
W over X, we get the necessary 3-fold and the required birational morphism.

Remark 56. It is easy to obtain the following assertion, which is in a sense converse
to Lemma 55. Let O be a smooth point of a variety X, and let f : V → X be a
birational morphism such that V has terminal Q-factorial singularities, f contracts
exactly one exceptional divisorE, and f(E) = O. Then there is a movable canonical
log pair (X,MX) with effective boundaryMX such thatKV +MV ∼Q f∗(KX+MX)
and O ∈ CS(X,MX), where MV = f−1(MX).
The following result was conjectured in [98] and proved in [139].
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Theorem 57. Let f : V → X be a birational morphism such that X is a smooth
3-fold, V has terminal Q-factorial singularities, f contracts a single divisor E, and
f(E) = O. Then f is a weighted blow-up of O with weights (1, K,N) in suitable
local coordinates on X, where K, N are coprime positive integers.

We note that Theorem 54 was proved in [98] modulo Theorem 57 in the following
way, which explains the geometric nature of Theorem 54.

Proposition 58. Let X be a smooth 3-fold, MX an effective movable boundary
on X, and O a point of X belonging to the locus of centres of canonical singularities
of (X,MX). Suppose that KV +MV ∼Q f∗(KX +MX), where f : V → X is the
weighted blow-up of O with weights (1, K,N) in the corresponding local coordinates
on X, MV = f

−1(MX), and K, N are coprime positive integers. Then

multO(M
2
X) �

(K +N)2

KN
= 4 +

(K −N)2
KN

� 4,

and the equation K = N implies that f is the standard blow-up of O and
multO(MX) = 2.

Proof. Let E be an f-exceptional divisor. Then

KV ∼Q f∗(KX) + (N +K)E,

MV ∼Q f∗(MX) +mE, m ∈ Q>0.

Thus m = K + N . Intersecting the effective cycle M2X with a general hyperplane
section of X passing through O, we get the inequality

multO(M
2
X) � m2E3 =

(K +N)2

KN
.

The following application of Theorem 49 is Theorem 3.10 of [99].

Theorem 59. Let X be a variety, O an ordinary double point of X, and BX an
effective boundary on X such that BX is a Q-Cartier divisor and O ∈ CS(X,BX).
Suppose that dim(X) � 3. Then we have multO(BX) � 1, and the equation
multO(BX) = 1 implies that dim(X) = 3, where multO(BX ) is defined through
the standard blow-up of O.

Proof. By Corollary 51 we may assume that X is a 3-fold. Let f : W → X be the
blow-up of O. Then

KW + BW ∼Q f∗(KX + BX) + (1−multO(BX))E,

where BW = f
−1(BX) and E is an f-exceptional divisor. Suppose that the strict

inequality multO(BX) < 1 holds. Then we have Z ⊂ E for some Z ∈ CS(W,BW )
and

LCS(E,BW |E) �= ∅

by Theorem 49. This contradicts Lemma 43 since E ∼= P1 × P1.
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Proposition 60. Let X be a variety, BX an effective boundary on X such that BX
is a Q-Cartier divisor, dim(X) � 4, and O an isolated double singular point of X
such that X may be given locally by y3 =

∑dim(X)
i=1 x2i in a neighbourhood of O and

O ∈ CS(X,BX). Then we have multO(BX ) > 1, where the multiplicity multO(BX)
is naturally defined by means of the standard blow-up of the point O.

Proof. This follows from Corollary 51 and Theorem 59.

Theorem 61. Let X be a variety of dimension n � 4, BX an effective boundary
on X such that BX is a Q-Cartier divisor, and O ∈ X an ordinary triple point, that
is, O is an isolated hypersurface singularity on X such that the projectivization of
the tangent cone to X at O is a smooth hypersurface of degree 3 in Pn−1. Suppose
that O ∈ CS(X,BX). Then multO(BX) � 1, and the equation multO(BX) = 1
implies that n = 4, where the multiplicity multO(BX) is naturally defined through
the standard blow-up of O.

Proof. Let f : W → X be the blow-up of O. Then

KW +BW ∼Q f∗(KX + BX) + (n− 3−multO(BX ))E,

where BW = f
−1(BX) and E is an exceptional divisor of f . Suppose that the strict

inequality multO(BX) < n− 3 holds. Then there is a subvariety Z ⊂ E such that

Z ∈ CS(W,BW − (n− 3−multO(BX))E) ⊂ CS(W,BW ),

and the inequalities n > 4 and multO(BX) � 1 imply that

CS(W,BW − (n− 3−multO(BX ))E) ⊂ CS(W,λBW )

for some positive rational λ < 1. In particular, Theorem 49 yields that
LCS(E,BW |E) �= ∅ when multO(BX ) < 1. Moreover, LCS(E, λBW |E) �= ∅ in
the case when multO(BX) � 1 and n > 4. In both cases, the result contradicts
Lemma 44.

It is easy to see that Theorems 59 and 61 are special cases of the following general
result, whose proof is omitted since it is very similar to that of Theorem 61.

Theorem 62. Let X be a variety of dimension n, BX an effective boundary on X
such that BX is a Q-Cartier divisor, and O ∈ X an ordinary singular point of
multiplicity multO(X) = k, that is, an isolated hypersurface singularity on X such
that the projectivization of the tangent cone to X at O is a smooth hypersurface of
degree k in Pn−1. Suppose that O ∈ CS(X,BX) and n > k. Then multO(BX) � 1,
and the equation multO(BX ) = 1 implies that n = k + 1, where multO(BX) is
naturally defined through the standard blow-up of the point O ∈ X.
Corollary 63. Let f : V → X be a birational morphism such that X and V have
terminal Q-factorial singuarities and f contracts exactly one divisor E to a point
O ∈ X. Suppose that O ∈ X is an ordinary singular point, that is, an isolated
hypersurface singularity such that the projectivization of the tangent cone to X
at O is a smooth hypersurface of degree multO(X) in P

dim(X)−1. Suppose that
multO(X) = dim(X) − 1. Then f is the standard blow-up of the point O ∈ X.
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§ 4. The Noether–Fano–Iskovskikh inequalities
In this section we consider the Noether–Fano–Iskovskikh inequality and give two

generalizations of it. Let X be a Fano variety with terminal Q-factorial singularities
such that Pic(X) ∼= Z. For example, we can always replace X by a variety satisfying
the hypotheses of Theorem 3 or 18 (see Lemma 68 and Remark 87). All movable
boundaries are assumed to be effective. The following theorem was proved in [98],
although particular cases can be found in the classical papers [163], [113], [114], [20],
[21], [17]. We reproduce the proof in [98] to preserve the complete geometric picture.

Theorem 64. Suppose that every movable log pair (X,MX) with KX +MX ∼Q 0
has canonical singularities. Then the Fano variety X is birationally superrigid.

Proof. Let ρ be a birational map of X to a variety Y such that either there is a
fibration τ : Y → Z into varieties of Kodaira dimension −∞, or Y is a Q-factorial
terminal Fano variety whose Picard group is equal to Z. We claim that the first
case is impossible, and in the second case we have Y ∼= X and ρ is biregular.
Suppose that there is a fibration τ : Y → Z whose generic fibre has Kodaira

dimension −∞. We take a very ample divisor H on Z and consider the mov-
able boundary MY = µ|τ∗(H)| for an arbitrary positive rational µ. The Kodaira
dimension κ(Y,MY ) of the log pair (Y,MY ) equals −∞ by construction. Consider
a movable log pair (X,MX) that is birationally equivalent to (Y,MY ). Then

κ(X,MX) = κ(Y,MY ) = −∞

by the definition of Kodaira dimension (see Lemma 34). Choose the rational num-
ber µ such that KX + MX ∼Q 0. This is always possible because Pic(X) ∼= Z
and the singularities of X are Q-factorial. The singularities of (X,MX) are canon-
ical by hypothesis. In particular, the definition of Kodaira dimension yields that
κ(X,MX) = 0, a contradiction. Hence this case is impossible.
Suppose that Y is a terminal Q-factorial Fano variety with Picard group Z.

Consider a positive integer n� 0, a positive rational number µ and two birationally
equivalent movable boundaries: MY =

µ
n | − nKY | and MX = ρ−1(MY ). Choose µ

in such a way that KX+MX ∼Q 0. Then the singularities of (X,MX) are canonical
by hypothesis. In particular, κ(X,MX) = κ(Y,MY ) = 0, whence µ = 1.
We consider a birational morphism f : W → X such that g = ρ ◦ f is regular

and W is smooth (see [129]). Then

k∑
j=1

a(X,MX , Fj)Fj ∼Q
l∑
i=1

a(Y,MY , Gi)Gi,

where Gi are g-exceptional divisors and Fj are f-exceptional divisors. The singular-
ities of (X,MX) and (Y,MY ) are canonical. Moreover, the singularities of (Y,MY )
are terminal by construction. In particular, all the a(X,MX , Fj) are non-negative
and all the a(Y,MY , Gi) are positive. Since the exceptional set is negative (see
[67] and [148], Lemma 2.19), it follows that a(X,MX , E) = a(Y,MY , E) for every
divisor E on W . In particular, we have

k∑
j=1

a(X,MX , Fj)Fj =
l∑
i=1

a(Y,MY , Gi)Gi,



Birationally superrigid triple spaces 1249

where the support of the divisor on the right-hand side contains all g-exceptional
divisors. On the other hand, the equation Pic(X) = Z implies that Pic(W ) =
Z1+k, and the Q-factoriality of Y along with the equation Pic(Y ) = Z implies that
Pic(W ) = Z1+l. Hence k = l, and all the a(X,MX , Fj) are strictly positive. In
particular, the singularities of the log pair (X,MX) are terminal.

Take a rational number ζ > 1 such that the singularities of (X, ζMX) and
(Y, ζMY ) are terminal (see Remark 30). The divisors KX + ζMX and KY + ζMY
are ample, and the log pairs (X, ζMX) and (Y, ζMY ) are canonical models. Hence
the rational map ρ is biregular by Lemma 36.

The roots of Theorem 64 can be found in [163], [113], and [114]. An analogue
of Theorem 64 for algebraic surfaces over algebraically non-closed fields was proved
in [20]–[22]. A 3-dimensional analogue of Theorem 64 that satisfies modern stan-
dards of rigour was first obtained in [17] and then developed in [11]. The present
version of Theorem 64 appears in [98], although its inception is due mainly to
[17], [11], [33], and [34].

Corollary 65. Suppose that X is not birationally superrigid. Then there is a
movable log pair (X,MX) such that the divisor −(KX + MX) is ample and
CS(X,MX) �= ∅.

The following two generalizations of Theorem 64 were obtained in [85].

Theorem 66. Let ρ : V ��� X be a birational map such that there is a morphism
τ : V → Z whose generic fibre is a smooth elliptic curve. We consider a very ample
divisor D on Z and the linear system D = |τ∗(D)|. PutM = ρ(D) and MX = γM,
where γ ∈ Q>0 is such that KX + γMX ∼Q 0. Then CS(X,MX) �= ∅.

Proof. Suppose that CS(X,MX) = ∅. Then the log pair (X,MX) is terminal.
Hence the movable log pair (X, εM) is a canonical model for some ε > γ (see
Remark 30). In particular, κ(X, εM) = dim(X). On the other hand, the log pairs
(X, εM) and (V, εD) are birationally equivalent and have equal Kodaira dimension.
However, by construction,

κ(V, εD) � dim(Z) = dim(X) − 1.

This is a contradiction.

Theorem 67. Let ρ : V ��� X be a birational non-biregular map such that V is
a Fano variety with canonical singularities. We put D = | − nKV | for n � 0,
M = ρ(D), and MX = γM, where γ is a positive rational number such that
KX + γMX ∼Q 0. Then CS(X,MX) �= ∅.

Proof. Suppose that CS(X,MX) = ∅. Then the log pair (X,MX) is terminal. In
particular, we have κ(X,MX) = 0, whence γ =

1
n . Thus the log pair (X, εM)

is a canonical model for some rational ε > γ. On the other hand, κ(X, εM) is
birationally equivalent to the log pair (V, εD), which is a canonical model as well.
Hence ρ is biregular by Lemma 36.
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§ 5. Birational superrigidity
In this section we prove Theorem 3. Let π : X → P2n be a cyclic triple covering

branched over a hypersurface S ⊂ P2n of degree 3n such that the only singularities
of S are ordinary double points and n � 2. Then X is a Fano variety with terminal
Gorenstein singularities and KX ∼ π∗(OP2n(−1)).
The variety X may be presented as a hypersurface

y3 = f3n(x0, . . . , x2n) ⊂ P(12n+1, n) ∼= Proj(C[x0, . . . , x2n, y]),

where f3n is a homogeneous polynomial of degree 3n. The covering π : X → P2n
is the restriction of the natural projection P(12n+1, n) ��� P2n induced by the
embedding C[x0, . . . , x2n] ⊂ C[x0, . . . , x2n, y] of graded algebras. The hypersurface
S ⊂ P2n is given by f3n(x0, . . . , x2n) = 0.
The Q-factoriality of X follows from a stronger result, which will now be proved

with the help of a technical tool from [45] and [46]. In fact, the Q-factoriality
of X must also follow from the Lefschetz theorem (see [79], [66], [121]) since the
singularities of X are isolated.

Lemma 68. The groups Cl(X) and Pic(X) are generated by the divisor KX .

Proof. Let D be a Weil divisor on X. We must show that D ∼ rKX for some
r ∈ Z.
Let H be a general divisor in | − kKX | for k � 0. Then H is a smooth weighted

complete intersection (see [130]) in P(12n+1, n) and dim(X) � 3. The group Pic(H)
is generated by the divisor KX |H by Theorem 3.13 of Ch. XI in [121] (see [105],
Lemma 3.2.2, [101], Lemma 3.5, or [80]). Hence there is r ∈ Z with D|H ∼ rKX |H .
Let ∆ = D − rKX . The sequence of sheaves

0→ OX(∆)⊗OX(−H)→ OX(∆)→ OH → 0

is exact because the sheaf OX(∆) is locally free in a neighbourhood of H. Thus
the sequence

0→ H0(OX(∆))→ H0(OH)→ H1(OX(∆)⊗OX(−H))

is exact. On the other hand, the sheaf OX(∆) is reflexive (see [124]). Hence there is
an exact sequence of sheaves

0→ OX(∆)→ E → F → 0,

where E is locally free and F has no torsion. Therefore the sequence

H0(F ⊗OX(−H))→ H1(OX(∆−H))→ H1(E ⊗ OX(−H))

is exact. However, the group H0(F ⊗OX(−H)) is trivial since F has no torsion,
and the group H1(E ⊗ OX(−H)) is trivial by the Enriques–Severi–Zariski lemma
(see [204]) since the variety X is normal. Therefore

H1(OX(∆)⊗OX(−H)) = 0
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and H0(OX(∆)) = C. We similarly have H0(OX(−∆)) = C. Thus the divisor ∆
is rationally equivalent to zero, that is, D ∼ rKX .

Suppose that the Fano variety X is not birationally superrigid. Let us show that
this assumption leads to a contradiction. By Corollary 65, there is a movable log
pair (X,MX) such that CS(X,MX) �=∅, the divisor −(KX +MX) is ample and
the boundaryMX is effective. The last property simply means thatMX ∼Q −rKX
for some positive rational r < 1, that is, the boundary MX is not numerically very
big in certain sense. Let Z ⊂ X be an element of the set CS(X,MX).

Lemma 69. The subvariety Z ⊂ X is not a smooth point of X.

Proof. Suppose that Z is a smooth point of X. Then multZ(M
2
X) > 4 by Theo-

rem 54. Let H1, . . . , H2n−2 be 2n − 2 sufficiently general divisors in |π∗(OP2n(1))|
that pass through Z. Then we have

3 >M2X ·H1 · . . . ·H2n−2 � multZ(M2X)multZ(H1) . . .multZ(H2n−2) > 4,

which is impossible.

Lemma 70. The subvariety Z ⊂ X is not a singular point of X.

Proof. Suppose that Z ⊂ X is a singular point of X. Then π(Z) is an ordinary
singular point on the hypersurface S ⊂ P2n. Let α : V → X be the usual blow-up
of Z, and let G ⊂ V be the α-exceptional divisor. Then V is smooth and G is a
quadric of dimension 2n− 1 with just one singular point O ∈ G. More precisely, G
is a quadric cone with vertex O.

Put MV = α
−1(MX), and let multZ(MX) be a positive rational number such

that MV ∼Q α∗(MX) −multZ(MX)G. Then multZ(MX) > 1 by Proposition 60.
However, this does not yet give a contradiction.

Put H = α∗(−KX) and consider the linear system |H−G|. By construction, the
rational map ϕ|H−G|, which is determined by the linear system |H −G|, coincides
with the map γ◦π◦α, where γ : P2n ��� P2n−1 is the projection from the point π(Z).
The base locus of the linear system |H−G| is non-empty: it consists of the vertex O
of the quadric cone G. Moreover, a blow-up of O resolves the indeterminacy of the
rational map ϕ|H−G|, and the proper transform of the quadric cone G is contracted
onto a smooth quadric of dimension 2n− 2.
Instead of blowing up the points Z and O, we can resolve the indeterminacy of

the rational map γ ◦ π : X ��� P2n−1 by a single weighted blow-up β : U → X
of the point Z ∈ X ⊂ P(12n+1, n) with weights (2, 32n) in the corresponding local
coordinates. The map β can be described as the composite of three rational maps:
the blow-up α, the blow-up of the point O, and the subsequent contraction of the
proper transform of the quadric cone G. The exceptional divisor of β is isomorphic
to P2n−1 and is a section of the fibration γ◦π◦β : U → P2n−1. However, the variety
U is singular. It has log terminal quotient singularities of type 13(1, 1) (see [179])
along the image of the quadric cone G on U .

Let C be a general curve contained in the fibres of ϕ|H−G|. Then C is irreducible
and reduced, and the curve π ◦ α(C) is a line through the point π(Z). Moreover,
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we have C ·G = 2, C · (H −G) = 1, and O ∈ C. Intersecting the boundary MV
with the curve C, we get

1 > 3− 2multZ(MX) > MV · C � multO(MV ),

whence multZ(MX) � 3
2 and multO(MV ) < 1. The equivalence

KV +MV ∼Q α∗(KX +MX) + (2n− 2−multZ(MX))G

and the inequality multZ(MX) � 3
2
imply that there is a proper subvariety Y ⊂ G

such that Y ∈ CS(V,MV − (2n− 2−multZ(MX))G). In particular, the dimension
of Y does not exceed 2n− 2, we have multY (MV ) > 1 and Y ∈ CS(V,MV ).
Suppose that dim(Y ) = 2n− 2. If O ∈ Y , then

1 > multO(MV ) � multY (MV ) > 1,

which is impossible. Thus O �∈ Y . Let L be a general ruling of the cone G. Then

3

2
� multZ(MX) =MV · L � multY (MV )L · Y,

where L · Y means the intersection on G. Hence L · Y = 1 and Y is a hyperplane
section of the quadric cone G under the natural embedding G ⊂ P2n. We note that

Y ∈ LCS(V,MV − (2n− 3−multZ(MX))G),

and Theorem 52 may be applied to the log pair (V,MV − (2n− 3−multZ(MX))G)
and the subvariety Y ⊂ V of codimension 2. This yields the inequality

multY (M
2
V ) � 4(2n− 2−multZ(MX)) � 2

because multZ(MX) � 3
2 and n � 2. Let H1, . . . , H2n−2 be sufficiently general

divisors in the linear system |H −G|. Then we have

1 > 3− 2mult2Z(MX) > H1 ·H2 · . . . ·H2n−2 ·M2V
� multY (M2V )(H −G)2n−2 · Y � 2,

which is a contradiction.
Therefore dim(Y ) < 2n − 2. The inequality multO(MV ) < 1 implies that O

is not contained in Y . Let P ∈ Y be a general point. Then multP (M2V ) > 4
by Theorem 54.
Let D ⊂ |H − G| be the linear subsystem consisting of the divisors that pass

through the point P . The base locus of D consists of two curves. The first is the
ruling LP of the quadric cone G passing through P . The second is the (possibly
reducible) curve CP such that π ◦ α(CP ) ⊂ P2n is a line through the point π(Z).
The line π ◦ α(CP ) determines a point in the projectivization of the tangent cone
to S at π(Z). This point corresponds to the image of P under the projection of
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the cone G to its base. We note that the base of G is canonically isomorphic to the
projectivization of the tangent cone to S at π(Z).
Let D1, . . . , D2n−2 be general divisors in D. We consider the one-dimensional

cycle T = H1·. . .·H2n−3·M2V . Then T is effective and multP (T ) > 4. Unfortunately,
we cannot simply take the intersection of T with the remaining divisor H2n−2 (and
thus get a contradiction to numerical properties of T ) because H2n−2 may contain
components of the effective one-dimensional cycle T . This may happen if the curve
LP or one of the components of CP is contained in Supp(T ).
Suppose that the curve CP is irreducible. We write

T = µLP + λCP +Γ,

where µ and λ are non-negative rational numbers and Γ is an effective one-
dimensional cycle whose support does not contain the curves LP and CP . Then

multP (Γ) > 4−multP (LP )µ −multP (CP )λ = 4− µ−multP (CP )λ � 4− µ− 3λ

because multP (CP ) � 3. The last inequality follows from the fact that CP is
obtained from a triple covering of the line by blowing up the possible singular
point. Now we can take the intersection of Γ with H2n−2. It follows that

3− 2mult2Z(MX) − µ > Γ ·H2n−2 � multP (Γ) > 4− µ− 3λ

since CP · H2n−2 = 0. Therefore λ > 1. Intersecting the cycle T with a suffi-
ciently general divisor H of the free linear system |α∗(−KX )|, we immediately get
a contradiction since H · CP = 3 and H · T < 3.
Suppose that the curve CP is reducible. Since the triple covering π is cyclic,

we have CP = C1 + C2 + C3, where Ci are non-singular rational curves such that
π ◦ α(CP ) is a line, the restriction morphism π ◦ α|Ci is an isomorphism, −KX ·
α(Ci) = 1, and Ci �= Cj for i �= j. We put

T = µLP +
3∑
i=1

λiCi + Γ,

where µ and λi are non-negative rational numbers and Γ is an effective one-
dimensional cycle whose support does not contain the curves LP or Ci. As in
the case when CP is irreducible, we can intersect the cycle Γ with the divisor
H2n−2 and this immediately yields the inequality

∑3
i=1 λi > 1. Intersecting the

cycle T with a general divisor H in the free linear system |α∗(−KX)|, we get a
contradiction because H ·Ci = 1 and H · T < 3.
Lemma 71. The inequality codim(Z ⊂ X) > 2 is impossible.
Proof. Suppose that codim(Z ⊂ X) > 2. Then dim(Z) �= 0 by Lemmas 69 and 70.
Hence multZ(M

2
X) � 4 by Theorem 54. Let O be a general point of Z and let

H1, . . . , Hn−2 be sufficiently general divisors in | −KX | passing through O. Then

3 > M2X ·H1 · . . . ·H2n−2 � multZ(M2X) � 4,

which is impossible.

Thus we have proved that codim(Z ⊂ X) = 2.
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Lemma 72. The inequality K2n−2X · Z � 2 holds.
Proof. This follows from the equation K2nX =3 since the divisor −(KX +MX) is
ample and multZ(MX) � 1.
Lemma 73. We have n = 2, that is, dim(X) = 4.

Proof. This lemma is similar to Lefschetz’ theorem. Suppose that n > 2. Let V be
a general divisor in | −KX |. Then V is a smooth hypersurface of degree 3n in the
weighted projective space P(12n, n) of dimension 2n− 1 � 5. Hence the homology
group H4n−6(V,C) is one-dimensional (see [186], [130], Theorem 7.2, and [105], § 4).
Let us show that the subvariety Y = Z ∩ V ⊂ V of dimension 2n − 3 cannot

generate the homology group H4n−6(V,C). Let Y ≡ λD2 in H4n−6(V,C) for some
λ ∈ C, where D = −KX |V . Applying Lefschetz’ theorem to a smooth hyperplane
section of S, we see that π(Z) �⊂ S. Hence the variety π(Z) ⊂ P2n is either a linear
subspace of dimension 2n− 2 or a quadric of dimension 2n− 2 by Lemma 72. The
subvariety π−1(π(Z)) splits into three irreducible subvarieties which are conjugate
under the action of Z3 on X that interchanges the fibres of π. Therefore λ =

α
3 ,

where α = K2n−2X · Z = 1, 2 by Lemma 72. The equation

α = Y ·D2n−3 = λ2−nD · Y n−2

implies that the intersection D ·Y n−2 on V is equal to αn−13 �∈ Z. This is impossible
because V is smooth. The desired contradiction may also be obtained by applying
Proposition 5 of [30] or Proposition 4.4 of [116] to the hypersurface S ⊂ P2n and
the cycle S ∩ π(Z).
In what follows we may always assume that n = 2.

Lemma 74. The surface π(Z) is not contained in the hypersurface S ⊂ P4.
Proof. We note that the smooth case follows easily by Lefschetz’ theorem. (This
remark is not used in what follows.) Let V ⊂ X be a general divisor in the linear
system | −KX |. Then the induced morphism τ = π|V : V → P3 is a cyclic covering
branched over a smooth hypersurface F = S ∩ π(V ) ⊂ P3 of degree 6. We put
MV = MX |V and C = Z ∩ V . Then the boundary MV is movable and effective,
the curve C is smooth and rational, τ(C) is a line or a conic, and the restriction
morphism τ |C is an isomorphism. We also have the inequality multC(MV ) � 1 and
the equivalence MV ∼Q rH, where H ∼ τ∗(OP3(1)) and r ∈ Q ∩ (0, 1).
Suppose that τ(C) ⊂ F . Let us show that this assumption leads to a contra-

diction. Let O be a point on C. We put P = τ(O) ∈ τ(C). Let T ⊂ P3 be a
hyperplane tangent to the hypersurface F at P . Then the curve Y = T ∩ F is
singular at P . If the multiplicity of Y at P is equal to 2, we take L to be a line
in T that passes through P and whose direction corresponds to any point in the
projectivization of the tangent cone to the curve T at P . If the multiplicity of Y
at P exceeds 2, then we take L to be any line through P in T . By construction, L
is tangent to F and the multiplicity of tangency is at least 3.
Let L̃ = τ−1(L). Then multO(L̃) = 3. Intersecting the curve L̃ with the movable

boundary MV , we see that at least one irreducible component of L̃ is contained in
the base locus of one of the components of MV . However, this is impossible if the
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lines L span at least a divisor in P3 when we vary the point O on C. To complete
the proof, we shall show that the lines L always span at least a divisor in P3 when
O is varied on C.
We note that the hyperplane T is tangent to F at finitely many points. This

follows from Zak’s theorem on the finiteness of the Gauss map (see [119], [131], [201])
or from [25], Theorem 2 (see [54], Lemma 3.18).
Suppose that τ(C) is a line. Then τ(C) ⊂ Y ⊂ T and T spans a pencil of

hyperplanes in P3 passing through the line τ(C) when we vary O on C. We put
Y = τ(C)∪R. If the point O on C is sufficiently general, then the curve R is smooth
and intersects τ(C) transversally by Bertini’s theorem. In particular, we can always
choose L to be different from the line τ(C). Therefore different sufficiently general
choices of O give different lines L. It follows that these lines span a divisor in P3.
Suppose that τ(C) is a conic. Then τ(C) �⊂ Y for general choices of O. On the

other hand, the hyperplane T is tangent to the conic τ(C) at P . Hence P is
the only common point of T and τ(C) if O is general in C. However, the line L
passes through P and is contained in T . Thus different sufficiently general choices
of O give different lines L. Hence these lines span a divisor in P3.

Lemma 75. The surface π(Z) is not a plane in P4.

Proof. Suppose that π(Z) is a two-dimensional linear subspace of P4. As in the
proof of Lemma 74, we shall obtain a contradiction by using reduction to a smooth
3-fold. Let V ⊂ X be a general divisor in | −KX |, and let τ = π|V : V → P3 be the
induced cyclic covering branched over a smooth hypersurface F = S∩π(V ) ⊂ P3 of
degree 6. We put MV =MX |V and C = Z ∩ V . Then MV is a movable boundary,
the curve τ(C) is a line, the morphism τ |C is biregular, τ(C) is not contained
in F , multC(MV ) � 1, and MV ∼Q rH, where H ∼ τ∗(OP3(1)) and r is a positive
rational number, r < 1. We note that V is a Calabi–Yau variety, that is, we have
the rational equivalence KV ∼ 0.
Let D ⊂ |τ∗(OP3(1))| be a pencil consisting of surfaces passing through C. The

base locus of D consists of C and another two curves C̃, Ĉ such that τ(C) = τ(C̃) =
τ(Ĉ). The curves C, C̃, Ĉ are conjugate under the action of Z3 on V that permutes
the fibres of τ .
Let f : U → V be the blow-up of C, and let E be the f-exceptional divisor. We

put P = f−1(D). Then P ∼ D − E, where D = (τ ◦ f)∗(OP3(1)). On the other
hand, the base locus of the pencil P consists of proper transforms of the curves C̃
and Ĉ on U . In particular, the proper transforms of C̃ and Ĉ on U are the only
curves on U whose intersection with the divisor D − E is negative. It follows that
the divisor 2D−E is numerically effective on U . In particular, (2D−E) ·M2U � 0,
where MU is the proper transform of the movable boundary MV on U .
Now we calculate the intersection (2D − E) ·M2U � 0. First, we have D3 = 3,

D2 ·E = 0, D ·E2 = −1. Second, we have

E3 = −deg(NC/V ) =KV ·C + 2− 2g(C) = 2.

(see [10]). Third, MU ∼Q rD−multC(MV )E. Thus,

(2D − E) ·M2U = 6r2 − 2mult2C(MV )− 2rmultC(MV )− 2mult2C(MV ).
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It follows that (2D − E) · M2U is negative since r < 1 and multC(MV ) � 1, a
contradiction.

Lemma 76. The surface π(Z) is not a quadric in P4.

Proof. Suppose that π(Z) is an irreducible two-dimensional quadric in P4. Then
we get a contradiction in the same way as in the proof of Lemma 75 with small
modifications that will be described now (in the notation of that proof). First, τ(C)

is a conic. Second, the base locus of the linear system |2D−E| is contained in C̃∪Ĉ
because |2D − E| contains the proper transforms of quadric cones in P3 over the
conic τ(C). However, the intersections of the proper transforms of C̃ and Ĉ on U
with 2D − E are non-negative. In particular, the divisor 2D − E is numerically
effective and (2D − E) · M2U � 0 as in the proof of Lemma 75. Third, we have
D · E2 = −2 but E3 = 2. Fourth, we have

(2D− E) ·M2U = 6r − 4mult2C(MV )− 4rmultC(MV )− 2mult2C(MV ).

It follows that (2D − E) ·M2U < 0 since r < 1 and multC(MV ) � 1.
Therefore Theorem 3 is proved.

§ 6. The absence of elliptic structures
In this section we prove Theorem 15. Let π : X → P2n be a cyclic triple covering

branched over a hypersurface S ⊂ P2n of degree 3n such that the only singularities
of S are ordinary double points and n � 2. Then X is a Fano variety with terminal
Q-factorial singularities (see Lemma 68) and KX ∼ π∗(OP2n(−1)). Suppose that
there is a birational map ρ : X̂ ��� X such that X̂ has the structure of an elliptic
fibration ν : X̂ →W . Let us show that this assumption leads to a contradiction.
Let D be a very ample divisor on W . We consider the full linear system D =

|ν∗(D)|. We putM = ρ(D) and MX = γM, where γ is a positive rational number
such that KX + γMX ∼Q 0. Then CS(X,MX) �= ∅ by Theorem 66.
Remark 77. It follows from the proof of Theorem 3 that the singularities of the log
pair (X,MX) are canonical (see Theorem 64).

In a sense, Theorem 15 is a limiting case of Theorem 3. Therefore we can repeat
almost all steps in the proof of Theorem 3 under slightly weaker assumptions.
However, to get a contradiction, we must modify the proof of Theorem 3 using the
following property of (X,MX).

Remark 78. The linear system M is not composed of a pencil. More precisely,
dim(ψM(X)) > 1.

Let Z ⊂ X be an element of the set CS(X,MX).
Proposition 79. The equation codim(Z ⊂ X) = 2 holds.
Proof. This follows from the proofs of Lemmas 69–71.

Proposition 80. The equation multZ(MX) = 1 holds.

Proof. This follows from Proposition 79 and Remarks 77, 31.
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Lemma 81. The inequality K2n−2X · Z � 2 holds.
Proof. We have K2nX = 3, MX ∼Q −KX , and multZ(MX) = 1. Therefore K2n−2X ·
Z � 3. We claim that the case K2n−2X · Z = 3 is impossible.
Suppose that K2n−2X · Z = 3. Intersecting the cycle M2X with 2n − 2 general

divisors in the linear system | − KX |, we see that Supp(M2X) = Z. Moreover,
this equation does not depend on the choice of two different divisors in the linear
systemM when we define M2X . Let P ∈ X \Z be a sufficiently general point, and
let D ⊂ M be the linear system consisting of divisors that pass through P . Then
the base locus of D has codimension at least 2 in X since M is not composed of
a pencil. Thus D1 ∩D2 = Z (in the set-theoretic sense) for all sufficiently general
divisors D1, D2 in D. Indeed, the divisors D1, D2 are contained in M and we
have Supp(M2X) = Z. On the other hand, we have P ∈ D1 ∩ D2 and P �∈ Z by
construction.

We note that the proof of Lemma 73 uses only two properties of the subvariety Z:
codim(Z ⊂ X) = 2 and K2n−2X · Z � 2.
Corollary 82. We have n = 2, that is, dim(X) = 4.

Lemmas 74 and 75 must be reproved under the new assumptions. We prove
them using the canonicity of (X,MX) and the fact that M is not composed of a
pencil. However, the proof of Lemma 76 is valid in the new situation once we have
Lemmas 74 and 75.

Corollary 83. The case π(Z) �⊂ S and K2X · Z = 2 is impossible.
Hence we must get rid of the following three cases:
1) π(Z) �⊂ S and K2X · Z = 1,
2) π(Z) ⊂ S and K2X · Z = 1,
3) π(Z) ⊂ S and K2X · Z = 2.

Lemma 84. The case π(Z) �⊂ S and K2X · Z = 1 is impossible.
Proof. Suppose that π(Z) �⊂ S and K2X · Z = 1. The surface π(Z) is a two-
dimensional linear subspace in P4 which is not contained in the hypersurface S.

Since the triple covering π is cyclic, there are another two surfaces Z̃, Ẑ such that
π(Z) = π(Z̃) = π(Ẑ), and all three surfaces Z, Z̃ , Ẑ are conjugate under the action
of Z3 on X that permutes the fibres of π.
Let V ⊂ X be a general divisor in | −KX |, and let τ = π|V : V → P3 be the

induced cyclic triple covering. Then τ is branched over a smooth hypersurface
F = S ∩ π(V ) ⊂ P3 of degree 6. We consider the linear system H =M|V and the
movable boundary MV =MX |V = γH. Then the base locus of H has codimension
at least 2 in V , we have

MV ∼Q τ∗(OP3(1)),
and H is not composed of a pencil since V is chosen to be generic. Let C = Z ∩V ,
C̃ = Z̃ ∩ V , and Ĉ = Ẑ ∩ V . Then multC(MV ) = 1.
Let f : U → V be the blow-up of the smooth curve C, and let E be the excep-

tional divisor of f . We put D = f−1(H) and MU = f−1(MV ) = γD. Then

MU ∼Q D −E,
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where D = (τ ◦f)∗(OP3(1)). On the other hand, the base locus of the pencil |D−E|
consists of the proper transforms of C̃ and Ĉ on U . Moreover, we have

(D− E) · C̃ = (D − E) · Ĉ = −1.

It follows that the proper transforms of C̃ and Ĉ on U are the only curves on U
whose intersection with the divisor 2D−E is non-positive. In particular, the divisor
2D −E is numerically effective and (2D− E) ·M2U � 0.
The intersection (2D −E) ·M2U is easily calculated (see Lemma 75):

(2D− E) ·M2U = 6− 2mult2C(MV )− 2multC(MV )− 2mult2C(MV ) = 0,

whence Supp(M2U ) is contained in the curves C̃ and Ĉ. This means that the inter-
section H1 ∩ H2 of any different divisors H1, H2 of D is contained in the union
C̃ ∪ Ĉ in the set-theoretic sense.
Let P ∈ U \ (C̃ ∪ Ĉ) be a sufficiently general point, and let P ⊂ D be the linear

subsystem consisting of the divisors that pass through P . Then P has no base
components since D is not composed of a pencil. Let D1, D2 be general divisors
in P. Then we have

P ∈ D1 ∩D2 ⊂ C̃ ∪ Ĉ

in the set-theoretic sense since Di ∈ D. This contradiction proves the lemma.

Lemma 85. The case π(Z) ⊂ S and K2X · Z = 1 is impossible.
Proof. Suppose that π(Z) ⊂ S and K2X · Z = 1. Then π(Z) is a two-dimensional
linear subspace of P4 contained in the hypersurface S. Lefschetz’ theorem implies
that S is singular. We use reduction to a smooth 3-fold as in the proof of Lemma 84.
We also use the notation and constructions of Lemma 84. The only difference is

that the surfaces Z, Z̃, Ẑ now coincide because Z is invariant under the action
of Z3 on X that permutes the fibres of π. It is easy to see that all the steps in the
proof of Lemma 84 remain valid except for the last: it is not obvious that 2D− E
is numerically effective. This remaining assertion may be proved by analyzing the
f-exceptional surface E ∼= Fk and the class of the divisor E|E in the Picard group
of E. However, we shall prove it using a simpler geometric argument.
We consider the pencil |D − E| on U . Its base locus consists of a single curve

C ⊂ E, which is a section of the projection f |E : E → C. In some sense, C is an
infinitesimal analogue of the curve C̃ in the proof of Lemma 84. The blow-up of C

would yield an infinitesimal analogue of the third curve Ĉ in the proof of Lemma 84,
but this is not necessary in our situation.
Let Y be a general surface in the pencil |D − E|. Then Y is singular. Let

us describe the singularities of Y . The surface τ ◦ f(Y ) is a plane in P3 passing
through the line τ(C) ⊂ F , where F is the ramification surface of the cyclic triple
covering τ : V → P3. In particular, the curve τ ◦ f(Y )∩ F is reducible and consists
of two irreducible components: the line τ(C) and a plane quintic curve R. This R
is smooth by Bertini’ theorem and intersects τ(C) transversally at 5 points. On the
other hand, the morphism τ |f(Y ) is a cyclic triple covering of the plane τ ◦f(Y ) and
is branched over the curve τ(C)∪R. Hence the singularities of the surface f(Y ) are
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5 singular points of type A2 lying on the curve C. The induced birational morphism
f |Y : Y → f(Y ) partially resolves the singularities of f(Y ): local calculations show
that the surface Y has 5 singular points of type A1 (that is, ordinary double points),
and each of them dominates the corresponding singular point of type A2 on f(Y ).
Consider the restriction MY =MU |Y . The boundary MY may be non-movable:

it may contain a multiple of the curve C as a fixed component. Hence we can put
MY = αC + Γ, where α ∈ Q>0 and Γ is a movable boundary on Y . On the other
hand, we have MY ∼Q 2C. Moreover, it follows from the subadjunction formula
(see [148]) that

C
2
= −3 + deg(DiffC(0)) = −3 + 5 ·

1

2
< 0

on Y , whence α = 2 and Γ = ∅. Hence the intersection D∩H of sufficiently general
divisors D ∈ D and H ∈ |D − E| coincides with the curve C in the set-theoretic
sense.
The arguments above used the following properties of MX : the linear systemM

has no fixed components,MX ∼Q −KX , and multZ(MX) = 1. In particular, we did
not use the fact thatM is not composed of a pencil. Hence all the above arguments
may be repeated for any linear subsystem B ⊂ M without fixed components.
Indeed, the equivalence γB ∼Q −KX and the inequality multZ(γB) � 1 are obvious,
and the proof of Theorem 3 shows that the log pair (X, γB) is canonical, which yields
the equation multZ(γB) = 1. This proves that the intersection B ∩ f(H) coincides
with the curve C in the set-theoretic sense whenever B is a sufficiently general
divisor in any linear subsystem B ⊂M without fixed components and H ∈ |D−E|
is a sufficeintly general divisor.
Consider a sufficiently general point P ∈ X \ C. Let B ⊂ D be the linear

subsystem of divisors passing through P . Then B has no fixed components since
M is not composed of a pencil. Let B ∈ B and H ∈ |D−E| be general divisors. By
construction, the intersection B ∩ f(H) contains the point P �∈ C and thus cannot
coincide with C in the set-theoretic sense, contrary to earlier results.

Lemma 86. The case π(Z) ⊂ S and K2X · Z = 2 is impossible.
Proof. Suppose that π(Z) ⊂ S and K2X · Z = 2. The surface π(Z) is a two-
dimensional quadric in P4 and is contained in the sextic S. Lefschetz’ theorem
yields that the hypersurface S is singular. The inclusion π(Z) ⊂ S means that the
surface Z is invariant under the action of Z3 on X that permutes the fibres of π.
We reduce the problem to a smooth 3-fold. Let V ⊂ X be a sufficiently general

divisor in the linear system |−KX |, and let τ = π|V : V → P3 be the induced cyclic
covering branched over the smooth hypersurface F = S ∩ π(V ) ⊂ P3 of degree 6.
We put MV =MX |V . Then

MV ∼Q τ∗(OP3(1))

and multC(MV ) = 1, where C = Z ∩ V . The curve τ(C) ⊂ F is a smooth conic.
Let f : U → V be the blow-up of C, and let E be the exceptional divisor of f .

We put MU = f
−1(MV ). Then

MU ∼Q D −E,
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where D = (τ ◦f)∗(OP3(1)). If the divisor 2D−E is numerically effective, we arrive
at a contradiction by proving the inequality (2D−E) ·M2U � 0 (see the end of the
proof of Lemma 76). On the other hand, the base locus of |2D − E| is contained
in E because |2D − E| contains the proper transforms of the quadric cones in P3
over the conic C. Hence the divisor 2D − E is numerically effective if and only if
its intersection with the exceptional section of the ruled surface E is non-negative.
Let us show that (2D −E) · s∞ � 0, where s∞ is the exceptional section of the

ruled surface E ∼= Fk. The curve C is non-singular and C ∼= P1. Hence,

NC/V ∼= OP1(a)⊕OP1(b)

for some integers a, b with b � a. We note that k = b− a. On the other hand, we
have

a+ b = deg(NC/V ) = 2g(C)− 2−KV · C = −2

and E3 = −deg(NC/V ) = 2. The smooth curve C is contained in the smooth
surface F = τ−1(F ). Thus we have an exact sequence of sheaves

0→NC/F →NC/V →NF/V → 0,

where NC/F ∼= OP1(−6) because C2 = −6 on the surface F ∼= F by the adjunction
formula. Hence a � −6. Let l ⊂ E be a fibre of the projection f |E . Then
−E|E ∼ s∞ + rl for r = 2+k

2 because

2 = E3 = (s∞ + rl)
2 = −k + 2r.

So we have

(2D− E) · s∞ = 4−E · s∞ = 4 +
(
s∞ +

2 + k

2
l

)
· s∞

= 4− k + 2 + k
2
=
10− k
2

= 6 + a � 0,

as required.

Therefore Theorem 15 is proved.

§ 7. Proofs of Theorems 18 and 20
Let π : X → P2n be a cyclic triple covering branched over a hypersurface S ⊂

P2n of degree 3n such that n � 2 and the only singularities of S are isolated
double and triple points, that is, multP (S) � 3 for any singular point P ∈ S,
and the projectivization of the tangent cone to S at P is a smooth hypersurface
of degree multP (S) in P

2n−1. Then X is a Fano variety with terminal Gorenstein
singularities.

Remark 87. The proof of Lemma 68 uses only the fact that the singularities of S
are isolated. Therefore the groups Pic(X) and Cl(X) are generated by the divisor
−KX . In particular, the singularities of X are Q-factorial.
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We must prove the following three results.
1) X is birationally superrigid.
2) X is not birationally equivalent to any Fano variety with canonical singulari-

ties except for varieties isomorphic to X.
3) If X is birationally equivalent to a fibration into elliptic curves, then n = 2,

S has a triple point O, and the elliptic fibration is induced by the projection
γ : P4 ��� P3 from O.
Suppose that at least one of these assertions does not hold. Then Theorems 66, 67

and the proof of Theorem 64 yield that there is a linear systemM on X with the
following properties.
a)M has no fixed components.
b) The set CS(X, 1

d
M) is non-empty, where d ∈ N satisfiesM∼ −dKX .

c)M is not composed of a pencil.
d) If n = 2 and multO(S) = 3 for some point O ∈ S, then M is not contained

in fibres of the rational map γ ◦ π, where γ : P4 ��� P3 is the projection from O.
Let us show that such anM cannot exist. Let Z ⊂ X be a subvariety such that

Z ∈ CS(X, 1dM). Then the proofs of Theorems 3 and 15 imply that Z is a singular
point on X such that O = π(Z) is a triple point of the hypersurface S ⊂ P2n.

Remark 88. The point Z is an ordinary triple point of X.

Let α : V → X be the blow-up of the point O, and let E be the exceptional
divisor of α. Then E is a smooth hypersurface of degree 3 in P2n and E|E ∼ H,
where H is a hyperplane section of the hypersurface E ⊂ P2n. Moreover, the linear
system

|α∗(−KX)− E|

is free and determines a regular morphism ψ : V → P2n−1 such that ψ = γ ◦ π ◦ α,
where γ : P2n ��� P2n−1 is the projection from the point O. Let multZ(M) be an
integer such that

D ∼ α∗(−dKX)−multZ(M)E,

where D is the proper transform ofM on V . Let C ⊂ V be a sufficiently general
curve in a fibre of ψ. Then

D · C = 3(d−multZ(M)) � 0,

and the equation D·C = 0 holds only when D is contained in the fibres of ψ. On the
other hand, Theorem 61 yields the strict inequality multZ(M) > d for n > 2 and
the non-strict inequality multZ(M) � d for n = 2. It follows that the case n > 2 is
impossible, and if n = 2, thenM lies in the fibres of the rational map γ ◦ π, which
contradicts one of the properties ofM. Thus Theorems 18 and 20 are proved.

§ 8. Potential density
In this section we prove Theorem 19. Let π : X → P4 be a cyclic triple covering

branched over a hypersurface S ⊂ P4 of degree 6 such that S is defined over a
number field F. Suppose that the hypersurface S has an ordinary triple point O
and is smooth outside O. Thus we have multO(S) = 3 and the projectivization of
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the tangent cone to S at O is a smooth cubic surface in P3. The point O is defined
over F since S is smooth outside O.
The variety X may be realized as a hypersurface

y3 = x30f3(x1, . . . , x4) + x
2
0f4(x1, . . . , x4) + x0f5(x1, . . . , x4) + f6(x1, . . . , x4)

inP(15, 2)∼=Proj(F[x0, . . . , x4, y]), where fi are homogeneous polynomialsof degree i.
The triple covering π : X → P4 is the restriction to X of the natural projection
P(15, 2) ��� P4 induced by the natural embedding F[x0, . . . , x4] ⊂ F[x0, . . . , x4, y]
of graded algebras. Moreover, the hypersurface S ⊂ P4 is given by

x30f3(x1, . . . , x4) + x
2
0f4(x1, . . . , x4) + x0f5(x1, . . . , x4) + f6(x1, . . . , x4) = 0,

and the homogeneous coordinates of the singular point O are (1 : 0 : . . . : 0).

Remark 89. The equation f3(x1, . . . , x4) = 0 determines a smooth cubic surface
in P3 ∼= Proj(F[x1, . . . , x4]). This surface is the projectivization of the tangent cone
to S at O. In particular, the polynomial f3 is irreducible.

Suppose that X satisfies the following generality conditions:
1) f4 is not divisible by f3,
2) f25 − 3f4f6 and f24 f25 − 4f34 f6 − 4f3f35 + 18f3f4f5f6 − 27f23 f26 are coprime.

Remark 90. These conditions are satisfied for any sufficiently general choice of the
polynomials fi. Their geometrical meaning is as follows.
1) Any sufficiently general line L in P4 that passes through O and lies in the

tangent cone to S at O intersects S at two points (possibly coinciding) that are
different from O.
2) There is at most a one-dimensional family of curves C ⊂ X that contain the

singular point P = π−1(O) of X and satisfy −KX ·C = 1.
We shall use the methods of [76], [123], and [77] to prove the following result

which obviously yields Theorem 19.

Proposition 91. The rational points on X are potentially dense 7 under these
generality conditions. Namely, there is a finite extension K of F such that the set
of all K-points of X is Zariski dense in X.

There are two ways to look at potential density. The optimistic viewpoint is that
the potential density of the rational points measures the deviation of a given variety
from being rational. For example, the rational points are certainly dense on any
geometrically unirational variety. Theorem 19 is very natural from this viewpoint.
Another natural-looking fact is that the potential density of the rational points is
as yet unproved for many rationally connected non-rational varieties. For example,
it is unknown whether the rational points are potentially dense on a generic smooth
quintic hypersurface in P5 (see [170], [49], [116]). The pessimistic viewpoint regards
the potential density of rational points as a much weaker birational invariant. In
particular, we have the following conjecture (see [123]).

7More precisely, the F-points are potentially dense on X. However, we use the commonly
accepted terminology.
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Conjecture 92. Let V be a smooth variety such that V is defined over a number
field and −KV is numerically effective. Then the rational points on V are poten-
tially dense.

From the viewpoint of this conjecture, Proposition 91 is just an illustration of a
general principle. Conjecture 92 has been confirmed for many algebraic varieties:
abelian varieties (see [127]), smooth Fano 3-folds except for the double covering
of P3 ramified in a smooth sextic (see [76] and [123]), K3-surfaces with an elliptic
pencil or an infinite automorphism group (see [77]), Enriques surfaces (see [75]),
and some symmetric products (see [128]). Thus the rational points are potentially
dense on many varieties that are not rationally connected. However, it is unknown
whether the rational points are potentially dense on a generic double covering of
P2 branched over a smooth sextic (see [76]).

Example 93. Let C be a smooth connected curve such that C is defined over a
number field and g(C) � 2. Then Faltings’ theorem (see [110] and [111]) implies
that the rational points are not potentially dense on C × Pk.

It is natural to expect that the potential density of the rational points reflects
deep birational properties of an algebraic variety such as rational connectedness.
However, it is unknown whether the rational points are potentially dense on V for a
generic smooth conic bundle ζ : V → Pn (n � 2) with sufficiently big discriminant,
although the potential density of the rational points on V is known to follow if the
Schinzel conjecture holds for ζ : V → Pn (see [95]). The variety V is non-rational
(see [33], [34]) and is expected to be non-unirational. The potential density of
the rational points may perhaps be used to obtain an example of a variety that is
rationally connected but not unirational.
An example in [96] yields the following generalization of Conjecture 92.

Conjecture 94. Let V be a smooth variety such that V is defined over a number
field and the divisor −KV is numerically effective. The rational points on V are
potentially dense if there is no unramified finite morphism f : U → V such that
there is a dominant rational map g : U ��� Z, where Z is a variety of general type
and dim(Z) > 0.

We note that Conjectures 92 and 94 give a natural logical negative answer the
the following weak Lang conjecture, which is known to be true only for curves and
subvarieties of abelian varieties (see [110]–[112]).

Conjecture 95. Let V be a smooth variety of general type such that V is defined
over a number field. Then the rational points on V are not potentially dense.

We note that Theorem 19 must remain valid without any generality conditions.
Moreover, the proof of the potential density of the rational points in the non-general
case is usually easier than in the general case. The same holds for singularities ofX:
the proof of the potential density of the rational points must become easier as the
singularities worsen. However, there are exceptional extreme cases.

Example 96. Let χ : Y → P4 be a cyclic triple covering branched over a hyper-
surface G ⊂ P4 of degree 6 such that G is a union of 6 different hyperplanes defined
over a number field F and passing through some two-dimensional linear subspace
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Π ⊂ P4. Then Y is birationally equivalent to the product C × P3, where C is a
cyclic triple covering of P1 branched over 6 points that are defined over F. The
rational points on Y are not potentially dense because g(C) = 4 (see Example 93).

Let us prove Proposition 91. We use the following result of [159].

Theorem 97. Let F be a number field. Then there is a number n(F) ∈ N (depend-
ing only on F) such that the order of any torsion F-point on any elliptic curve C
(defined over F) does not exceed n(F).

Let P = π−1(O). Then P is an ordinary triple point on X. Let α : U → V be the
blow-up of P , and letE be the exceptional divisor of α. Then −KU ∼ α∗(−KX)−E,
and the linear system |−KU | is free and determines an elliptic fibration ψ : U → P3
such that E is a three-section of ψ. We also have ψ = γ ◦ π, where γ : P4 ��� P3 is
the projection from O.

Remark 98. The variety E is a smooth cubic hypersurface in P4. The cubic E is
not rational over C (see [93]) but is well known to be unirational over C (see [22]).
In particular, the rational points on E are potentially dense.

Let D be the intersection of two general divisors in |−KU |. Then D is a smooth
elliptic surface. The restriction τ = ψ|D : D→ P1 is the canonical morphism of D,
that is, KU ∼ τ∗(OP1(1)). The curve Z = E ∩D is a smooth elliptic curve. The
restriction τ |Z : Z → P1 is a cyclic triple covering branched over 3 points.
Remark 99. The proper transform on the variety V of every irreducible component
of any reducible fibre of τ is a smooth rational curve whose intersection with −KX
is equal to 1. The assumptions on the generality of X yield that there is at most
a one-dimensional family of such curves on V . On the other hand, since D was
chosen to be a general surface in the fibres of ψ and codim(D ⊂ U) = 2, we see
that all the fibres of τ are irreducible.

Let F1, F2, F3 be fibres of τ passing through the ramification points of the triple
covering τ |Z. All Fi are different (that is, Fi �= Fj for i �= j) because D is a general
surface and the cubic 3-fold E is smooth.

Remark 100. The surface π◦α(D)=Π ⊂ P4 is a sufficiently general two-dimensional
linear subspace passing through O. The curve π ◦ α(Fi) ⊂ Π is one of the 3 lines
cut out on Π by the equation f3 = 0. We note that the line π ◦ α(Fi) is different
from the lines that are cut out on Π by the equation f4 = 0. Indeed, the plane Π
is sufficiently general and the polynomial f4 is not divisible by f3 by hypothesis.
Therefore the fibres Fi are smooth at the points of intersection with the curve Z.

The restriction morphism α|D contracts the elliptic curve Z to the point P . The
self-intersection of Z on D is equal to −3. The restriction π|α(D) is a cyclic triple
covering of Π branched over the singular curve Π∩S of degree 6. The singularities
of this curve consist of the point O, which is an ordinary triple point.
Let H ⊂ D be the curve cut out on D by a sufficiently general divisor in the

linear system |α∗(−KX)|. The curve H is smooth and is a three-section of
the elliptic fibration τ . We have g(H) = 4, and π ◦ α(H) ⊂ Π is a line. Let Cb
be the fibre of the elliptic fibration τ : D → P1 over a point b ∈ P1. Then we have
H2 = 3, H · Z = 0, C2b = 0, Z2 = −3, and Z · Cb = H · Cb = 0 on the surface D.
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Lemma 101. If b ∈ P1 is a very general C-point, then

3np− nH|Cb �∼ 0

in Pic(Cb) for all n ∈ N, where p is one of the points in Z ∩ Cb.

Proof. Consider the fibred product T =Z×P1D and the induced morphism χ : T→D.
Then χ is a cyclic triple covering branched over the curves Fi. In particular, the
surface T is singular if and only if some fibre Fi is singular. The possible singularities
of T are easily calculated if we know the type of the singular fibre Fi of the elliptic
fibration τ (see [71]). In particular, the surface T is normal and there is a well-
defined intersection form of Weil divisors on T (see [181]).
The fibration τ induces an elliptic fibration η : T → Z, which is the Jacobian

fibration of the fibration τ . Indeed, the curve χ−1(Z) splits into 3 irreducible
components, which are permuted by the action of Z3 on T that permutes the fibres

of χ. Let Z̃ be a component of the reducible curve χ−1(Z). Then Z̃ is a section of
the fibration η, and χ|Z̃ is an isomorphism.
Put H̃ = χ−1(H), and let L be a fibre of η. Then we have H̃2 = 9, H̃·Z̃ = L2 = 0,

Z̃ · L = 1, and H̃ ·L = 3 on the surface T . The curve Z̃ is smooth by construction
and is contained in the non-singular part of T because the intersection point Fi∩Z
is smooth on Fi (see Remark 100).

The self-intersection Z̃2 on T can be calculated via the adjunction formula.

Namely, we have Z̃2 = −9 because KT ≡ 9L. We also note that even if the curve Z
passes through singular points of T , the self-intersection Z̃2 can still be calculated
using the subadjunction formula with an appropriate different (see [148]), which
can be explicitly calculated for each type of singular point.
For every n ∈ N we have

3np− nH|Cb ∼ 0 ⇐⇒ (3nZ̃ − nH̃)|La ∼ 0⇒ 3nZ̃ − nH̃ ≡ Σ,

where Cb is the fibre of τ over a very general C-point b ∈ P1, p is one of the points
in the intersection Z∩Cb, La is the fibre of η over a very general C-point a ∈ Z, and
Σ is a divisor on T such that Supp(Σ) is a union of fibres of the elliptic fibration η.
On the other hand, all the fibres of η are irreducible because all the fibres of τ are
irreducible. In particular, if the claim of the lemma were not true, then the curves

Z̃ , H̃, and L would be linearly dependent in the group Div(T )⊗Q/ ≡ . However,
the determinant of the intersection matrix

 Z̃2 H̃ · Z̃ L · Z̃
Z̃ · H̃ H̃2 L · H̃
Z̃ · L H̃ · L L2


 =


−9 0 1
0 9 3
1 3 0




is equal to 72 �= 0, which gives a contradiction.

We return from the surface D to the variety U . Since D was chosen to be general,
Lemma 101 yields that

3np+ α∗(nKX)|Lp �∼ 0
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in Pic(Lp) for a very general C-point p ∈ E and for all n ∈ N, where Lp is the fibre
of the fibration ψ : U → P3 over the point ψ(p).
For every n ∈ N we define a subset Φn ⊆ E by the condition

p ∈ Φn ⇐⇒ 3np ∼ α∗(−nKX )|Lp

in Pic(Lp), where Lp is the fibre of the elliptic fibration ψ over the point ψ(p) such
that the fibre Lp is smooth in the scheme-theoretic sense. Let Φ̄n ⊆ E be the
closure of Φn in the Zariski topology. Then Φ̄n �= E for every n ∈ N.

Remark 102. By Theorem 97, the set Φn ⊂ E contains no F-points of the divisor E
for any positive integer n > n(F).

The rational points are potentially dense on the divisor E (see Remark 98).
Therefore we can replace the field F by a finite extension and assume that the
F-points of E are Zariski dense. Take an F-point

q ∈ E \
(
∆ ∪

n(F)⋃
i=1

Φ̄i

)
,

where ∆ is a Zariski-closed subset of E consisting of points that are contained in
the singular fibres of the elliptic fibration ψ. As before, let Lq be the fibre of ψ
over the point ψ(q). Then the curve Lq and the point ψ(q) are defined over F.
Moreover, the curve Lq is smooth.
By construction, the divisor 3q+α∗(KX)|Lq is defined over F and is not a torsion

element in Pic(Lq). Using the Riemann–Roch theorem for the elliptic curve Lq , we
see that for every n ∈ N there is a unique F-point qn ∈ Lb such that

qn + (3n− 1)q + α∗(nKX)|Lq ∼ 0

in the group Pic(Lq). It is easy to see that qi �= qj for i �= j. Hence the curve
Lq is contained in the closure of all F-points of U in the Zariski topology for every
F-point q in a Zariski dense subset of E. Thus the rational points are Zariski dense
on the varieties U and X. At some stage in the argument, the field F could be
replaced by a finite extension in order to get the density of the F-points on the
divisor E. Hence Proposition 91 is proved.

As mentioned in the proof of Proposition 91, the surface T is smooth if and only
if every fibre Fi of the elliptic fibration τ is smooth. It is natural to expect that
this always holds for a sufficiently general X. Indeed, the smoothness of Fi follows
from the fact that the line π ◦α(Fi) intersects the ramification hypersurface S at 3
different points, one of which is O. This condition is easily expressed in terms of the
discriminant of the corresponding equation. Namely, it suffices to require that the
polynomials f4 and f

2
5 −4f4f6 are not divisible by the irreducible polynomial f3. If

these conditions hold, then the divisor E is a three-section of the elliptic fibration
ψ such that there is a smooth fibre C of ψ passing through one of the ramification
points of the triple covering ψ|E . Such sections are said to be saliently ramified
in the terminology of [75] and [76]. Let Cb be the fibre of ψ over a very general
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point b ∈ P3, and let p1, p2 be different points of Cb ∩ E. Then p1 − p2 is not a
torsion divisor on the elliptic curve Cb. For otherwise the limit of the torsion divisor
p1−p2 as Cb→ C would be a trivial divisor on C because the points p1 and p2 tend
to the same ramification point of the triple covering ψ|E over the smooth elliptic
curve. This argument can easily be restated in algebraic form (see [75]). We can
now prove the potential density of the rational points on X in the same way as in
the proof of Proposition 91. The only difference is that we must generate F-points
in the fibres of ψ by the action of the Jacobian fibration of ψ instead of using the
Riemann–Roch theorem (see [75]).

The author is grateful to M. M. Grinenko, V. A. Iskovskikh, S. A. Kudryavt-
sev, J. Park, Yu. G. Prokhorov, A. V. Pukhlikov, and V. V. Shokurov for useful
discussions.
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[103] S. Cynk, “Hodge numbers of nodal double octic”, Comm. Algebra 27 (1999), 4097–4102.

[104] S. Cynk, “Defect of a nodal hypersurface”,Manuscripta Math. 104 (2001), 325–331.

[105] I. Dolgachev, “Weighted projective varieties”, Group actions and vector fields, Proc.

Pol.–North Am. sem. Vancouver 1981; Lecture Notes in Math., no. 956, 1982, pp. 34–71.

[106] L. Ein and R. Lazarsfeld, “Global generation of pluricanonical and adjoint linear series on
smooth projective threefolds”, J. Amer. Math. Soc. 6 (1993), 875–903.

[107] L. Ein and M. Mustata, The log canonical thresholds of homogeneous affine hypersurface,
e-print: http://xxx.lanl.gov/abs/math.AG/0105113.

[108] S. Endraß, “On the divisor class group of double solids”, Manuscripta Math. 99 (1999),
341–358.

[109] D. Faenzi and J. Stipins, “A small resolution for triple covers in algebraic geometry”,

Mathematiche (Catania) 56:2 (2003), 257–267.

[110] G. Faltings, “Endlichkeitssätze fur abelsche Varietäten über Zahlkörpern”, Invent. Math.

73 (1983), 349–366.

[111] G. Faltings and G. Wustholz, Rational points. Seminar Bonn/Wuppertal 1983–1984, Max-

Planck-Institut für Mathematik, Bonn; Aspects of Math. vol. E6, Vieweg, Braunschweig

1984.

[112] G. Faltings, “Diophantine approximation on abelian varieties”, Ann. of Math. 133:2

(1991), 549–576.

[113] G. Fano, “Osservazioni sopra alcune varietá non razionali aventi tutti i generi nulli”, Atti
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