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Singularities of  3-Dimensional  Varieties Admitt ing 
an Ample  Effective Divisor of Kodaira Dimension Zero 

I. A. Cheltsov UDC 512.774.42 

ABSTRACT. For a normal threefold X with an effective Cartier divisor H ,  which is a minimal  model of Kodaira 
dimension zero, we prove that  either X is a generalized cone over H ,  or X has quadruple  singularities and H 
is either a K3 surface, or an Enriques surface. 

Introduction 

In [1--4] Fano investigated threefolds in projective spaces with hyperplane sections that are K3 minimal 
surfaces and Em'iques surfaces. His study was continued in [5-11]. 

Note that if Y is a smooth minimal algebraic surface, then the following conditions are equivalent: 

(1) , , ( r )  = 0; 
(2) Ky -o ;  
(3) 1 2 K r  ~ 0; 
(4) Y is one of the following types: 

a) an Abelian variety, h l ( O y )  = 2, h2(Oy)  = 1, K y  ,.~ 0; 
b) a K3 surface, h l (Oy)  -- 0, h2(Oy)  = 1, g y  ~ 0; 
c) an Enriques surface, h l ( O y )  = O, h2(Oy)  = O, 2 K y  ~ 0; 
d) a bieUiptic surface, h l ( O y )  = 1, h2(Oy)  = O, 12Ky ,'.. O. 

See, e.g., [12]. 
Therefore, it is natural to study the more general problem of investigating properties of threefolds 

aHmltting an ample divisor, which is a minimal smooth surface of Kodalra dimension zero. It happens 
that with the exception of the case when the ample divisor is a K3 surface, such a variety always has 
singularities. 

If singularities are allowed, then a cone over the corresponding surface is the simplest example of a 
variety in question. Moreover, we call a variety X containing an ample effective irreducible reduced 
Cartier divisor H a 9elzeralized colze over H if X is the result of contraction of the exceptional section in 
P(OH ~ (gH(HIH)) .  By definition, a generalized cone over any variety contains this variety as an ample 
effective irreducible reduced Cartier divisor. 

Our main result is Theorem 5.1 (see w 
Taking into account the results of [13] and [14], the classification of varieties with an ample effec- 

tive Cartier divisor that  is either a K3 surface or an Enriques surface, is equivalent, in practice, to the 
classification of Fano varieties with canonical isolated singularities of integer Fano index. 

All the varieties are over C. The basic definitions, notation, and notions are described in [15]. 

w I so la ted  s ingular i t ies  

1.1. L e m m a .  Let H be an ample effective Cartier divisor on a normal variety X .  I f  H is smooth, 
then Sing(X) N H = ~ and the singularities of  X are isolated. 

Proof .  Suppose there is a curve in Sing(X). Since H is ample, we have Sing(X) N H ~ e .  But H 
is a Cartier divisor. Hence, Sing(H) ~ ~ .  
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1.2. C o r o l l a r y .  Suppose H is an ample effective Cartier divisor on a normal threefold X ,  and H is 
a smooth min ima / su r f ace  with x(11) = 0. f f  Sing(X) = ~ ,  then X is a Fano threefold and I t  is a K3 
surface. 

P r o o s  If Sing(X) = ~ ,  then,  by the accessory formula, we have 12(Kx + 11)1n "~ O, and, by the 
Lefschetz theorem on hyperplane sections, we obtain ( K x  + H) = O. The Kleiman test implies that  - K x  
is ample, i.e., X is a Fano variety, therefore Pie~ = 0 and Pie(X) has no torsion (see, e.g., [7]). Hence, 
K x  + 11 ,~ 0 and H is a K3 surface (see, e.g., [7]). 

w Q - G o r e n s t e i n  p r o p e r t y  

2.1. D e f i n i t i o n .  Let D -- ~ n f E  be the Well divisor on a normal  variety X .  The  sheaf O x ( D )  is 
defined as follows: 

r ( V ,  Ox(D))  = {f  ~ Rat(X); v~(Y)+hE _> 0 VE 6 V, codimE = 1}. 

Here r E ( f )  denotes the order of F in E .  

2.2. L e m m a .  Let D be the Well divisor on a normal variety X .  Then O x ( D )  is a reflexive sheaf of  
Tank 012@. 

P r o o f .  See [16, Proposi t ion 1.O]. 

2.3. L e m m a .  Let Q be a rettexive sheaf on the variety X Then there exists an exact sequence 

where s is locally free, and .T is a subsheafof  a locally free sheaf.. 

P r o o L  Consider an arbi t rary locally free resolvent for g*: 3" --' 2" --, ~* - ,  0 .  The  dual  resolvent 
will be 0 --, Q ~ 2"* ---, .~'*. This sequence is exact in the first two terms. The  quot ient  of 2"* over G is 
embedded in ~'*. 

2.4. L e m m a .  Suppose X is a normal variety, H is an ample &'visor on X ,  Q is a reflexive sheaf on 
x .  Then H 1 (~ | O x ( - . ~ ) )  = 0 for ,', > O. 

Proof. Consider the part of the cohomology exact sequence associated with the exact sequence from 
Lemma 2.3: 

H ~ (~ | OxC-n11)) -" 11' (Q | Ox(-n11)) -' 11' (s | OxC-nH)). 

The required equali ty follows from 110(~-| O x ( - n H ) )  = 0 for n >> O, since ~" is a subsheaf  of a locally 

free sheaf, and Zr 1 (e  | O x ( - . n ) )  = 0 f o r .  >> O, since X is normal. 

2.5. L e m m a .  Suppose X is a normal variety with isolated singularities, D is a Weil divisor on X ,  
H is an ample Cartier divisor on X .  I f  DIY ~ 0/'or Y q Inttl smooth and n >> O, then D ~ O. 

P r o o f .  Consider the  sequence: 

0 --.+ O x ( D )  | O x ( - n H )  -+ O x ( D )  -.+ O r  --+ O. 

This sequence is exact, since all these sheaves are free in a neighborhood of Y,  and the  sequence is trivial 
outside Y.  

We have H ~  | O x ( - n H ) )  = 0 for n ~, 0, since O x ( D )  is a subsheaf o f  a locally free sheaf. 
By Lemma 2.4, H I ( O x ( D )  | O x ( - n H ) )  = 0. Further,  H~ = C,  since Y is connected.  Therefore 
H ~  = C,  i.e., the linear system of Weil divisors [DI contains an effective divisor, hence D .-. 0. 

2.6. L e m m a .  Suppose D is a Weil divisor, and H is an ample smooth Cartier divisor on a normal 
variety X .  I f  DIn ~ 0, then DIY ~ 0 forgeneric Y 6 [nHI and n ~ 0. 
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Proof .  Introduce the following notation: C = Y N H = nH[H = H[v is an irreducible smooth curve; 
f :  Xm,an -* X is a resolution of singularities of X such that f is an isomorphism outside Sing(X); 
[-t = f - ' ( U )  = f ' ( H ) ;  l;" = f - l ( y )  = . f . ( y ) .  Then D l v U l v  = DIHnHIH = D C  = 0, and since the 
divisor H is ample on Y, by the Hodge index theorem, either D[yD[y < 0, or D[y - O. Note that, 
generally speaking, Sing(X) N Y = ~ and therefore, 

DlvDlv = f-*(D)lr162 = nf-X(D)Iz~f-*(D)lrr = .DIHDIH = O. 

Summing, we obtain D[v - 0, DIe  "~ 0. 
Consider the exact sequence of sheaves and the first terms of the associated cohomology sequence: 

0 ~ O v ( D l v  - Hlv)  ~ O v ( D l v )  --'* O c  ~ O, 

o--. H~ --. H* (Ov(DIv-  Z-Zlv)). 

By the Kleiman test, the divisor (H - D)[y is ample on Y and therefore h l ( O y ( ( D  - H)[ r ) )  = 0 by 
the cohomology vanishing theorem (see, e.g., [15, Theorem 1-2-5]). The curve C is connected, and the 
equality h~ = 1 implies h~ = 1, whence D[y "~ O. 

2.7. T h e o r e m .  Suppose H is an ample effective Cartier divisor on a normal threefold X ,  and H is 
a smooth minimal surface with ~t(H) = O. Then X is Q-Gorenstein and - K x  "..Q H.  

Proof .  Since X is normal, K x  is well defined as a Well divisor. Since S ing(X)AH = ~ ,  the following 
accessory formula for the divisor H is valid: 

12(Kx + H)I. ~ O. 

Lemmas 2.8 and 2.5 yield 12(Kx + H) -,, 0. 

2.8. R e m a r k .  Under the assumptions of Theorem 2.7, we have the following possibilities: 

(1) H is an Abelian variety, X is Gorenstein; 
(2) H is a K3 surface, X is Gorenstein; 
(3) H is an Em'iques surface, X is 2-Gorenstein; 
(4) H is a bielliptic surface, X is 12-Gorenstein. 

w Terminal modification 

3.1. L e m m a .  Let X be a normal threefold. There exists a birational morphism f :  Xterm --~ X such 
that Xterm has terminal Q-factorial singularities and Kx,. .~ is f-numerically effective. 

Proof .  See, for example, [17]. 

3.2. L e m m a .  Under the assumptions of Lernma 3.1, i f  X is Q-Gorenstein, then we always have 
K x , . , .  "Q f* ( K x ) - B ,  where B is an effective Q-divisor. 

Proof .  See, for example, [18, Proposition 2.18]. 

3.3. R e m a r k .  Under the assumptions of Lemma 3.2, the following possibilities can arise: 

(1) f is an isomorphism, X has terminal Q-factorial singularities; 
(2) f is an isomorphism in codimension one, and K x , . ~  "~O f * ( K x ) ,  X has terminal singularitiew 
(3) Kx,,,m "~Q f * ( K x ) ,  X has canonical singularities; 
(4) B is an effective nonzero Q-divisor. 

3.4. Coro l l a ry .  If  the singularities of X are isolated, then the morphism f contracts any of its 
exceptional divisors to a point. 
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w Extremal  rays o n  Xterm 

Let H be an ample Cartier divisor on a normal threefold X ,  which is a smooth minimal surface with 
x (H)  = 0. Consider the terminal modification f :  )/'term " '  X .  By Lemma 1.1, Sing(X) N H = ~ and 
we can denote /~ = f - l ( H )  = f* (H) .  By Theorem 2.7, X is Q-Gorenstein and - K x  "~Q H.  Then 
[,emma 3.2 implies 

K x , , =  " o  -[-1 - B .  

Suppose the singularities of X are not canonical. Then, by Remark 3.3, B is an effective nonzero 
Q-divisor, and the Q-divisor Kx , , , ,  + ~I ,.~Q - B  is not numerically effective. Therefore there exists a 
1-face R E N E ( X )  such that - B R  < 0. But - B R  = K x , . = R  + HR,  and the divisor H is numerically 
effective. Hence, Kx,~ R = f i r  - B R  < O, i.e., R is an extremal ray in the sense of Mori. 

By [15, Theorem 3-2-1], there exists a morphism g: Xterm -" Y onto a normal variety Y such that 
- K x , . =  is g-ample and for any curve C E Xte,m g(C) is a point iff C E R. 

4.1. Lemma. For any curve C E R, we have Kx,,,mC < -I. 

Proof .  /~rC > 0 for any curve C 6 R, since otherwise the equality ~rC - 0 would imply that f (C)  
is a point and Kx,,,m R > O, because Kxt ,=  is f-numerically effective, but KX,~ R < O. Taking into 
account the fact that H is a Cartier divisor, we obtain H C  > 1 and Kx,~ C -- - H C  - B C  < - 1 .  

4.2. R e m a r k .  The following possibilities can arise: 

(1) the morpb_isrn g contracts the curve to a point; 
(2) the morphism g contracts the divisor to a curve; 
(3) the morphism 9 contracts the divisor to a point; 
(4) the dimension of Y equals two; 
(5) Y is 1-dimensionai. 

4.3. L e m m a .  Let g: X ~ Y be a birational contraction os the extremal ray on a threefold with Q- 
factorial terminal singularities. I f  for some point z E Y the set g - l ( z )  is a curve, then K x g - ~ ( z )  > - 1 .  

Proof. See, for example, [17, (2.3.2)1. 
4.4. L e m m a .  Cases 4.2 (1) and 4.2 (2) are impossible. 

Proof .  Let z E Y be such that dim(g-~(z))  > 0. By Lemma 4.3, K X t , , m g - ' ( z )  > - 1 ,  and, by 
Lemma 4.1, Kx,.,.g-1(z) < -I. 

4.5. L e m m a .  Case 4.2 (3) is impossible. 

Proof .  Suppose g contracts the divisor D to a point. Obviously, D does not belong to a fiber of the 
morphism f ,  and C = nHID for n large enough is an effective I-cycle on Xterm, which is contained in 
R, but B C = O .  

4.6. L e m m a .  Case 4.2 (5) is impossible. 

Proof .  Consider any effective irreducible divisor E contracted to a point by the morphism f .  Let 
l be any curve in a fiber of the morphism glE. We have Kx,.~..l >_ O, since Kx ,~  is f-numerically 
effective, but l q R and Kx,~ < O. 

4.7. L e m m a .  In case 4.2 (4), the morphism g is a pl_bundle over H .  

Proof .  Let C be a generic fiber of the morphism g. Then 

2 =  -Kx , . r . ,C  = [-IC + BC,  [-IC >. I, B C  > O. 

Hence, H C  = 1, B C  = 1 and, therefore, the morphism g has no multiple or reducible fibers, and the 
morphism g i l l : / ~  ~ Y is birational. / t  contains no fibers, since B C  = 1 and /~ does not intersect B.  
Taking into account the fact that Y is a normal variety, we see that g[/~ is an isomorphism. 

The singularities of Xte~m are rational (see, e.g., [15, Theorem 1-3-6]). Therefore (see, e.g., [19, (3.19)]) 
Xterm is a Cohen-Mackauley variety. Since all the fibers of g are of the same dimension and Y is smooth, 
the morphism g is flat. The generic fiber of g is p1, whence each fiber is p1 and )(term is a Pl-bundle 
over Y. 
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w Main theorem 

5.1. T h e o r e m .  Suppose that  X is a normal threefold, H is an ample  e~ective Cartier divisor on X ,  
and H is a smoo th  m i n i m M  surface of Koda/ra dimension zero. Then either X is a generalized cone over 
H ,  or H is ei ther a K3 surface, or an Enriques surface. 

Proof .  Suppose the singularities of X axe not canonical. Lemmas 4.4-4.7 imply that Xte,m is a 
F*-bundle over H with the section ,9. 

Applying the morphism g. to the exact sequence of sheaves 

0 --* Ox , . . .  - '  Ox,. . . ( ,9)  ~ OH(,91H) -~ 0 

and taking into account the fact that R~ = Oy, since g is the contraction of the extremal ray 
and Rlg.(Ox,...) = 0 by the vanishing theorem, we obtain the exact sequence 

0 ---, O y  .-, R ~  ---, R~ (o/zc,plfz)) - ,  O. ( , )  

The mapping gl~: ,9 --, Y is an isomorphism. Therefore R ~  is a locally free sheaf of 
rank 2. 

The commutative diagram 

0 

0 0 
T T 

Ox,..., ---, Ox,...(,9) - -  o . ( , 91 . )  - . 0  
T T~ T 

g*g .Ox, . . .  --* g g . O x , . . . ( H )  ---* g*g.O~(,91S) '-" 0 
.f 

0 

implies that the mapping a :  g * g . O x , , , . ( , 9 )  ~ Ox,.,=(,9) is surjective, and it determines the morphism 
A: X t , m  ~ P(g.Ox, . .=( ,9))  over Y. Since ,9 is g-ample and is a section of the morphism g, the 

morphism A is finite birational, and so is an isomorphism because of the normality of P(g .Ox , . .m( ,9 ) ) .  
The sequence (* )  splits, since 

z ~  ~ (R~ (o/~(,91H)), o r )  = Ext' (o~(,91~)),  oa )  = H x (o/~(-,91/~)), 

but HI (O~( - ,9 I . ) )  = 0, by the vanishing theorem. Hence, 

mg.Ox,.,.(,9) ~- o r  ~ mg.(o~c,9)), 

and since Y ~ ,9 ~ H ,  we obtain 

X,.rm = e(O. e O. (H I . ) ) ,  

so that X is the contraction of the exceptional section of [ ' (OH ~ OH(HIH)), i.e., a generalized cone. 
Suppose the singularities of X axe canonical. Consider the exact sequence of sheaves and the associated 

cohomology sequence: 

0 -~ Ox(-H) -~ Ox -~ OH -~ 0, 

~X(Ox) -~  H~(OH)-~ ~ ( O x ( - ~ ) ) .  
As a consequence of the vanishing theorem, using the rationality of the singularities of X and Serre duality, 
we obtain: 

H'COx) = H~(Ox(-H)) =0. 
Hence, H i ( O H )  = 0 and H is either an Enriques surface or a K3 sequence (c.f. [13, Proposition 2.2 
and 3.3]). 
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5.2. Corol lary .  Suppose X is a normal threefold, and H is an ample smooth  effective Cartier divisor, 
which is either an Abelian variety or a bielliptic surface. Then X is a generalized cone over t t .  

The author is extremely grateful to V. A. Iskovskikh and Yu. G. Prokhorov for valuable advice and 
fruitful discussions. 
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