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Hyperelliptic and trigonal Fano threefolds

V. V. Przyjalkowski, I. A. Cheltsov, and K. A. Shramov

Abstract. We classify Fano 3-folds with canonical Gorenstein singularities whose
anticanonical linear system has no base points but does not give an embedding, and
we classify anticanonically embedded Fano 3-folds with canonical Gorenstein singu-
larities which are not intersections of quadrics. We also study rationality questions
for most of these varieties.

§ 1. Introduction
Consider a Fano threefold X with canonical Gorenstein singularities 1 (see [45],

[112], [85], [39], [40]). Suppose that the anticanonical linear system | −KX | is base
point free. It is well known that such varieties are divided into three classes.
1) Hyperelliptic varieties (that is, the morphism ϕ|−KX | is not an embedding).

Then the intersection of two general divisors in | −KX | is a hyperelliptic curve.
2) Trigonal varieties (that is, the morphism ϕ|−KX | is an embedding but its image

is not an intersection of quadrics). Then the intersection of two general divisors
in | −KX | is a trigonal curve or the canonical image of a smooth plane quintic.
3) Varieties whose image under the embedding ϕ|−KX| is an intersection of

quadrics.
We study varieties of the first two types. Theorems 1.5 and 1.6 give complete

classifications of hyperelliptic and trigonal varieties respectively. Proposition 1.10
establishes rationality or non-rationality for most of these varieties.
In the introduction we survey the modern state of the classification problem for

Fano threefolds with canonical Gorenstein singularities, including the main results
of this paper (Theorems 1.5 and 1.6 and Proposition 1.10). The second section
contains various known results that are used in the proofs. In §§ 3 and 4 we prove
Theorems 1.5 and 1.6 respectively. In § 5 we study rationality questions for elliptic
and trigonal Fano threefolds.
The biregular classification of 3-folds whose curve sections are canonical curves

was considered by Fano [72]–[75]. In the smooth case, hyperplane sections of such
3-folds must be K3 surfaces by the adjunction formula. Hence a natural gener-
alization of the problem studied by Fano is the biregular classification of 3-folds
containing an ample effective Cartier divisor which is a K3 surface with at most

1The canonical Gorenstein singularities are exactly the rational Gorenstein singularities

(see [70]).
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Du Val singularities. It turns out that, except for generalized cones (ordinary cones
in the very ample case) over K3 surfaces, all 3-folds of this class are Fano 3-folds
with canonical Gorenstein singularities (see [45], [112], [85], [39], [40]).
A complete classification of smooth Fano 3-folds was obtained in [46], [12], [13],

[104], [108], [107], [105], where 105 families were found (see [88]). Moreover, every
Fano 3-fold with terminal Gorenstein singularities is a deformation of a smooth one
(see [109]). However, there are Fano 3-folds with canonical Gorenstein singularities
that cannot be deformed into smooth Fano 3-folds. For example, the weighted
projective spaces P(13, 3) and P(12, 4, 6) are Fano 3-folds with canonical Gorenstein
singularities (see [68], [76]) but cannot be globally deformed into smooth varieties.
The classification of Fano 3-folds with canonical Gorenstein singularities is as

yet far from complete (see [107]). However, four important steps have already
been taken. The first is the following result, proved in [45] and [112] (see also [48]
and [49]).

Theorem 1.1. Let X be a Fano 3-fold with canonical Gorenstein singularities. In
particular, the anticanonical divisor −KX is an ample Cartier divisor. Let S be a
sufficiently general surface in the complete linear system | −KX |. Then S has at
most Du Val singularities.

The second step is the following result of [107]. It is a natural generalization of
the classification of smooth Fano 3-folds with Picard group Z, which was obtained
in [12] and [13].

Theorem 1.2. Let X be a Fano 3-fold with canonical Gorenstein singularities.
Suppose that the linear system | −KX | has no movable decomposition, that is, the
anticanonical divisor −KX is not rationally equivalent to A + B where A, B are
Weil divisors whose complete linear systems |A|, |B| have positive dimension. Then
X is one of the following 3-folds.
1) A hypersurface of degree 6 in P(14, 3), −K3X = 2.
2) A complete intersection of a quadric cone and a quartic hypersurface

in P(15, 2), −K3X = 4.
3) A quartic hypersurface in P4, −K3X = 4.
4) A complete intersection of a quadric and a cubic in P5, −K3X = 6.
5) A complete intersection of three quadrics in P6, −K3X = 8.
6) An intersection of the Grassmannian G(1, 4) ⊂ P9 with a linear subspace of

codimension 2 and a quadric, −K3X = 10.
7) An intersection of the orthogonal Grassmannian OG(5, 10) ⊂ P15 with a linear

subspace of codimension 7, −K3X = 12.
8) An intersection of the Grassmannian G(2, 6) ⊂ P14 with a linear subspace of

codimension 5, −K3X = 14.
9) An intersection of the symplectic Grassmannian LG(3, 6) ⊂ P13 with a linear

subspace of codimension 3, −K3X = 16.
10) An intersection of the G2-homogeneous space Σ ⊂ P13 with a linear subspace

of codimension 2 (see [88], Example 5.2.2), −K3X = 18.
11) A Mukai–Umemura 3-fold V22 ⊂ P13 (see, for example, [108], [80], [88]),

−K3X = 22.

The third step is the following boundedness result of [110].
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Theorem 1.3. Let X be a Fano 3-fold with canonical Gorenstein singularities.
In particular, the anticanonical divisor −KX is an ample Cartier divisor. Then
−K3X � 72, and equality implies that either X ∼= P(13, 3) or X ∼= P(12, 4, 6).

The fourth step is the following result proved in [84].

Theorem 1.4. Let X be a Fano 3-fold with canonical Gorenstein singularities.
Suppose that the base locus of |−KX | is non-empty. Then X is one of the following
3-folds.
(B1) A complete intersection of a quadric cone and a sextic in P(1

4, 2, 3),
−K3X = 2.
(B2) The blow-up of a sextic in P(1

3, 2, 3) along a curve of arithmetic genus 1,
−K3X = 4.
(B3) S1×P1, where S1 is a del Pezzo surface of degree 1 with Du Val singularities,

−K3X = 6.
(Bm4 ) The anticanonical model of the blow-up of Um along a curve Γ0, where Um

is a double covering π : Um→ Proj
(
OP1(m) ⊕OP1(m − 4)⊕OP1

)
= F(m,m − 4, 0)

such that −KUm = π∗M and Um has at worst canonical singularities, and Γ0 is
a smooth rational complete intersection contained in the smooth part of Um such
that π(Γ0) is a complete intersection of a general divisor in |M | and the (unique)
divisor in the linear system |M−mF |. HereM is the class of the tautological sheaf
on F(m,m− 4, 0), and F is the class of a fibre of the natural projection to P1. We
also have 3 � m � 12 and −K3X = 2m− 2.

The purpose of this paper is to prove the following two results.

Theorem 1.5. Let X be a Fano 3-fold with canonical Gorenstein singularities.
Suppose that the linear system |−KX | has no base points but the induced morphism
ϕ|−KX | is not an embedding. Then X is one of the following 47 Fano 3-folds.

1) (H1) A hypersurface of degree 6 in P(1
3, 2, 3), −K3X = 8.

2) (H2) A hypersurface of degree 6 in P(1
4, 3), −K3X = 2.

3) (H3) A complete intersection of a quadric cone and a quartic in P(1
5, 2),

−K3X = 4.
4) An anticanonical model of a “weak Fano 3-fold” V with canonical Gorenstein

singularities (that is, −KV is a numerically effective and big Cartier divisor and
ϕ|−rKV |(V ) = X for r � 0) such that V is a double covering of the rational scroll
F(d1, d2, d3) = Proj

(⊕3
i=1OP1(di)

)
branched over a divisor rationally equivalent to

4M+2
(
2−
∑3
i=1 di

)
L, whereM is the class of the tautological sheaf on F(d1, d2, d3)

and L is the class of a fibre of the natural projection of F(d1, d2, d3) to P
1. Here

the following cases are possible:
(H4) d1 = 1, d2 = 1, d3 = 1, −K3X = 6;
(H5) d1 = 2, d2 = 1, d3 = 0, −K3X = 6;
(H6) d1 = 2, d2 = 1, d3 = 1, −K3X = 8;
(H7) d1 = 2, d2 = 2, d3 = 0, −K3X = 8;
(H8) d1 = 2, d2 = 2, d3 = 1, −K3X = 10;
(H9) d1 = 2, d2 = 2, d3 = 2, −K3X = 12;
(H10) d1 = 3, d2 = 0, d3 = 0, −K3X = 6;
(H11) d1 = 3, d2 = 1, d3 = 0, −K3X = 8;
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(H12) d1 = 3, d2 = 1, d3 = 1, −K3X = 10;
(H13) d1 = 3, d2 = 2, d3 = 0, −K3X = 10;
(H14) d1 = 3, d2 = 2, d3 = 1, −K3X = 12;
(H15) d1 = 3, d2 = 3, d3 = 0, −K3X = 12;
(H16) d1 = 3, d2 = 3, d3 = 1, −K3X = 14;
(H17) d1 = 4, d2 = 0, d3 = 0, −K3X = 8;
(H18) d1 = 4, d2 = 1, d3 = 0, −K3X = 10;
(H19) d1 = 4, d2 = 2, d3 = 0, −K3X = 12;
(H20) d1 = 4, d2 = 2, d3 = 1, −K3X = 14;
(H21) d1 = 4, d2 = 3, d3 = 0, −K3X = 14;
(H22) d1 = 4, d2 = 3, d3 = 1, −K3X = 16;
(H23) d1 = 4, d2 = 4, d3 = 0, −K3X = 16;
(H24) d1 = 5, d2 = 1, d3 = 0, −K3X = 12;
(H25) d1 = 5, d2 = 2, d3 = 0, −K3X = 14;
(H26) d1 = 5, d2 = 3, d3 = 0, −K3X = 16;
(H27) d1 = 5, d2 = 3, d3 = 1, −K3X = 18;
(H28) d1 = 5, d2 = 4, d3 = 0, −K3X = 18;
(H29) d1 = 5, d2 = 4, d3 = 1, −K3X = 20;
(H30) d1 = 6, d2 = 2, d3 = 0, −K3X = 16;
(H31) d1 = 6, d2 = 3, d3 = 0, −K3X = 18;
(H32) d1 = 6, d2 = 4, d3 = 0, −K3X = 20;
(H33) d1 = 6, d2 = 4, d3 = 1, −K3X = 22;
(H34) d1 = 6, d2 = 5, d3 = 0, −K3X = 22;
(H35) d1 = 7, d2 = 3, d3 = 0, −K3X = 20;
(H36) d1 = 7, d2 = 4, d3 = 0, −K3X = 22;
(H37) d1 = 7, d2 = 5, d3 = 0, −K3X = 24;
(H38) d1 = 7, d2 = 5, d3 = 1, −K3X = 26;
(H39) d1 = 8, d2 = 4, d3 = 0, −K3X = 24;
(H40) d1 = 8, d2 = 5, d3 = 0, −K3X = 26;
(H41) d1 = 8, d2 = 6, d3 = 0, −K3X = 28;
(H42) d1 = 9, d2 = 5, d3 = 0, −K3X = 28;
(H43) d1 = 9, d2 = 6, d3 = 0, −K3X = 30;
(H44) d1 = 10, d2 = 6, d3 = 0, −K3X = 32;
(H45) d1 = 10, d2 = 7, d3 = 0, −K3X = 34;
(H46) d1 = 11, d2 = 7, d3 = 0, −K3X = 36;
(H47) d1 = 12, d2 = 8, d3 = 0, −K3X = 40.

Theorem 1.6. Let X be a Fano 3-fold with canonical Gorenstein singularities
such that the linear system | −KX | has no base points and the induced morphism
ϕ|−KX | : X → Pn is an embedding, where n = −

K3X
2
+ 2. Suppose that the anti-

canonical image ϕ|−KX|(X) ⊂ Pn is not an intersection of quadrics. Then X is
one of the following 69 Fano 3-folds.
1) (T1) A hypersurface of degree 4 in P

4, −K3X = 4.
2) (T2) A complete intersection of a quadric and a cubic in P

5, −K3X = 6.
3) (T3) An anticanonical image of a “weak Fano 3-fold” Y with canonical Goren-

stein singularities (that is, −KY is a numerically effective and big Cartier divisor
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and ϕ|−KY |(Y ) = X), where Y is a divisor in the rational scroll Proj(OP2(2) ⊕
OP2 ⊕ OP2) and Y is rationally equivalent to the divisor 2T + F . Here T is the
class of the tautological sheaf on Proj(OP2(2) ⊕ OP2 ⊕ OP2) and F is the pullback
of OP2(1) under the natural projection to P2, −K3X = 10.
4) An anticanonical image of a “weak Fano 3-fold” V with canonical Gorenstein

singularities (that is, −KV is a numerically effective and big Cartier divisor and
ϕ|−KV |(V ) = X) such that V is a divisor in F(d1, d2, d3, d4) = Proj

(⊕4
i=1OP1(di)

)
rationally equivalent to the divisor 3M+(2−

∑4
i=1 di)L, whereM is the class of the

tautological sheaf on F(d1, d2, d3, d4) and L is the class of a fibre of the projection
of F(d1, d2, d3, d4) to P

1. Here the following cases are possible:
(T4) d1 = 1, d2 = 1, d3 = 1, d4 = 0, −K3X = 8;
(T5) d1 = 1, d2 = 1, d3 = 1, d4 = 1, −K3X = 10;
(T6) d1 = 2, d2 = 1, d3 = 0, d4 = 0, −K3X = 8;
(T7) d1 = 2, d2 = 1, d3 = 1, d4 = 0, −K3X = 10;
(T8) d1 = 2, d2 = 1, d3 = 1, d4 = 1, −K3X = 12;
(T9) d1 = 2, d2 = 2, d3 = 0, d4 = 0, −K3X = 10;
(T10) d1 = 2, d2 = 2, d3 = 1, d4 = 0, −K3X = 12;
(T11) d1 = 2, d2 = 2, d3 = 1, d4 = 1, −K3X = 14;
(T12) d1 = 2, d2 = 2, d3 = 2, d4 = 0, −K3X = 14;
(T13) d1 = 2, d2 = 2, d3 = 2, d4 = 1, −K3X = 16;
(T14) d1 = 2, d2 = 2, d3 = 2, d4 = 2, −K3X = 18;
(T15) d1 = 3, d2 = 1, d3 = 0, d4 = 0, −K3X = 10;
(T16) d1 = 3, d2 = 1, d3 = 1, d4 = 0, −K3X = 12;
(T17) d1 = 3, d2 = 2, d3 = 0, d4 = 0, −K3X = 12;
(T18) d1 = 3, d2 = 2, d3 = 1, d4 = 0, −K3X = 14;
(T19) d1 = 3, d2 = 2, d3 = 1, d4 = 1, −K3X = 16;
(T20) d1 = 3, d2 = 2, d3 = 2, d4 = 0, −K3X = 16;
(T21) d1 = 3, d2 = 2, d3 = 2, d4 = 1, −K3X = 18;
(T22) d1 = 3, d2 = 3, d3 = 1, d4 = 0, −K3X = 16;
(T23) d1 = 3, d2 = 3, d3 = 2, d4 = 0, −K3X = 18;
(T24) d1 = 3, d2 = 3, d3 = 2, d4 = 1, −K3X = 20;
(T25) d1 = 4, d2 = 1, d3 = 0, d4 = 0, −K3X = 12;
(T26) d1 = 4, d2 = 2, d3 = 0, d4 = 0, −K3X = 14;
(T27) d1 = 4, d2 = 2, d3 = 1, d4 = 0, −K3X = 16;
(T28) d1 = 4, d2 = 2, d3 = 1, d4 = 1, −K3X = 18;
(T29) d1 = 4, d2 = 2, d3 = 2, d4 = 0, −K3X = 18;
(T30) d1 = 4, d2 = 3, d3 = 1, d4 = 0, −K3X = 18;
(T31) d1 = 4, d2 = 3, d3 = 2, d4 = 0, −K3X = 20;
(T32) d1 = 4, d2 = 3, d3 = 2, d4 = 1, −K3X = 22;
(T33) d1 = 4, d2 = 3, d3 = 3, d4 = 0, −K3X = 22;
(T34) d1 = 4, d2 = 3, d3 = 3, d4 = 1, −K3X = 24;
(T35) d1 = 4, d2 = 4, d3 = 2, d4 = 0, −K3X = 22;
(T36) d1 = 5, d2 = 2, d3 = 0, d4 = 0, −K3X = 16;
(T37) d1 = 5, d2 = 2, d3 = 1, d4 = 0, −K3X = 18;
(T38) d1 = 5, d2 = 3, d3 = 1, d4 = 0, −K3X = 20;
(T39) d1 = 5, d2 = 3, d3 = 2, d4 = 0, −K3X = 22;
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(T40) d1 = 5, d2 = 3, d3 = 2, d4 = 1, −K3X = 24;
(T41) d1 = 5, d2 = 3, d3 = 3, d4 = 0, −K3X = 24;
(T42) d1 = 5, d2 = 4, d3 = 2, d4 = 0, −K3X = 24;
(T43) d1 = 5, d2 = 4, d3 = 3, d4 = 0, −K3X = 26;
(T44) d1 = 5, d2 = 4, d3 = 3, d4 = 1, −K3X = 28;
(T45) d1 = 6, d2 = 2, d3 = 0, d4 = 0, −K3X = 18;
(T46) d1 = 6, d2 = 3, d3 = 1, d4 = 0, −K3X = 22;
(T47) d1 = 6, d2 = 3, d3 = 2, d4 = 0, −K3X = 24;
(T48) d1 = 6, d2 = 4, d3 = 2, d4 = 0, −K3X = 26;
(T49) d1 = 6, d2 = 4, d3 = 3, d4 = 0, −K3X = 28;
(T50) d1 = 6, d2 = 4, d3 = 3, d4 = 1, −K3X = 30;
(T51) d1 = 6, d2 = 4, d3 = 4, d4 = 0, −K3X = 30;
(T52) d1 = 6, d2 = 5, d3 = 3, d4 = 0, −K3X = 30;
(T53) d1 = 7, d2 = 3, d3 = 1, d4 = 0, −K3X = 24;
(T54) d1 = 7, d2 = 4, d3 = 2, d4 = 0, −K3X = 28;
(T55) d1 = 7, d2 = 4, d3 = 3, d4 = 0, −K3X = 30;
(T56) d1 = 7, d2 = 5, d3 = 3, d4 = 0, −K3X = 32;
(T57) d1 = 7, d2 = 5, d3 = 4, d4 = 0, −K3X = 34;
(T58) d1 = 7, d2 = 5, d3 = 4, d4 = 1, −K3X = 36;
(T59) d1 = 8, d2 = 4, d3 = 2, d4 = 0, −K3X = 30;
(T60) d1 = 8, d2 = 5, d3 = 3, d4 = 0, −K3X = 34;
(T61) d1 = 8, d2 = 5, d3 = 4, d4 = 0, −K3X = 36;
(T62) d1 = 8, d2 = 6, d3 = 4, d4 = 0, −K3X = 38;
(T63) d1 = 9, d2 = 5, d3 = 3, d4 = 0, −K3X = 36;
(T64) d1 = 9, d2 = 6, d3 = 4, d4 = 0, −K3X = 40;
(T65) d1 = 9, d2 = 6, d3 = 5, d4 = 0, −K3X = 42;
(T66) d1 = 10, d2 = 6, d3 = 4, d4 = 0, −K3X = 42;
(T67) d1 = 10, d2 = 7, d3 = 5, d4 = 0, −K3X = 46;
(T68) d1 = 11, d2 = 7, d3 = 5, d4 = 0, −K3X = 48;
(T69) d1 = 12, d2 = 8, d3 = 6, d4 = 0, −K3X = 54.

In the smooth case Theorems 1.4–1.6 were proved by Iskovskikh (see [15], [17]).

Remark 1.7. For any Fano 3-fold X with canonical Gorenstein singularities, there
is a birational morphism f : V → X (called the terminal modification of X) such
that KV ∼ f∗(KV ) and V has terminal Gorenstein singularities. The existence
of f follows from the Minimal Model Programme and the contraction theorem
(see [93]). On the other hand, if V is any “weak Fano 3-fold” (that is, a variety
whose anticanonical class −KV is numerically effective and big) with canonical
Gorenstein singularities, then the contraction theorem implies that there is a bira-
tional morphism f : V → X such that X is a Fano 3-fold with canonical Gorenstein
singularities.

In what follows we use the symbols Bk and B
m
4 , Hi, and Tj to denote the Fano

3-folds described in Theorems 1.4, 1.5, and 1.6 respectively.

Remark 1.8. The 3-fold H1 is a double covering of a cone over the Veronese sur-
face, and H2 is a double covering of P

3 ramified in a sextic surface (which may be
singular). The 3-foldH3 is a double covering of a quadric 3-fold (possibly singular),
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andH4 is a double covering of P
1×P2 branched over a divisor of bidegree (2, 4). The

3-fold H6 is the blow-up of a hypersurface of degree 4 in P(1
4, 2) (or, equivalently,

the blow-up of a double covering of P3 branched over a quartic surface) along the
intersection of two different divisors in the half-anticanonical linear system. The
3-fold H9 is isomorphic to the product P

1× S2, where S2 is a del Pezzo surface of
degree 2 with at worst Du Val singularities. The 3-fold H10 is a hypersurface
of degree 10 in P(12, 32, 5), H17 is a hypersurface of degree 12 in P(1

2, 42, 6), and
T3 is a hypersurface of degree 5 in P(1

3, 22). The 3-fold T5 is a divisor of bidegree
(1, 3) in P1 × P3. The 3-fold T8 is obtained by blowing up a plane cubic curve on
a cubic 3-fold in P4. The 3-fold T14 is the product P

1 × S3, where S3 is a cubic
surface in P3 with at worst Du Val singularities.

Remark 1.9. The 3-folds H1, H2, H3, H4, H6, H9, T1, T2, T5, T8 and T14 are the
only 3-folds among the Hi and Tj that can be chosen to be smooth (see [15], [88]).

The 3-folds Hi and Tj are rationally connected (see [95]). Moreover, most of
the Hi and Tj must be rational, although some of them are definitely not. For exam-
ple, it is well known that sufficiently general 3-folds H1, H2, H3, H4, H6, T1, T2,
T8 are non-rational (see [22], [62], [54], [37], [16], [52], [98]). Their non-rationality
can also be proved in the smooth case and some singular cases (see [31]–[34], [28],
[29], [111], [5], [82], [63], [64], [6], [102], [7], [59]). However, all of these cases include
examples of rational singular 3-folds Hi and Tj , even when the singularities are
isolated ordinary double points (see [90]). The 3-folds H9, T5 and T14 are always
rational by Remark 1.8. In this paper we prove the following result.

Proposition 1.10. The 3-folds Hi and Tj are rational for i ∈ {8, 9, 22, 26,
27, 28, 29, 31, . . ., 47} and j ∈ {5, 10, 11, 12, 13, 14, 17, . . ., 69}. On the other hand,
sufficiently general 3-folds Hi and Tj are non-rational for i � 7 and j ∈
{1, 2, 3, 4, 6, 7, 8, 9}.

There are birational relations between some of the 3-folds Hi, Tj , Bk and B
m
4 .

The simplest example is a projection from a cDV-point: the anticanonical model of
the blow-up of a cDV-point on any of the 3-folds Hi or Tj of anticanonical degree
d � 4 must be one of the 3-foldsHi, Tj, Bk or Bm4 of anticanonical degree d−2. For
example, B44 is birationally isomorphic to H17, H5 is birationally isomorphic to H1
with a cDV-point (see [5], Lemma 3.4), and the 3-folds T1 and T2 having a cDV-
point are birationally isomorphic to the singular 3-folds H2 and T1 respectively.
Moreover, there are many non-obvious birational transformations of the 3-folds Hi
and Tj .

Example 1.11. In the notation of Theorem 1.6, let X be a sufficiently general
3-fold T7, and let V be the corresponding weak Fano 3-fold V ⊂ F(2, 1, 1, 0). Then
V is smooth (see the proof of Theorem 1.6) and −KV has trivial intersection with
only one rational curve Y4 ⊂ F(2, 1, 1, 0) (see Corollary 2.20). It follows that the
birational morphism ϕ|−KV | : V → X contracts the curve Y4 to an ordinary double
point ofX. Let f : V ��� Ṽ be a flop in the curve Y4. Then one can find a birational
morphism g : Ṽ → Y such that there is a double covering π : Y → P3 branched over
a smooth hypersurface of degree 4, that is, Y is a double space of index 2 (see [60],
[61]). Moreover, the birational morphism g is a blow-up of a smooth rational curve
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C ⊂ Y with −KY ·C = 2. All these constructions of birational maps are easily seen
to be reversible. More precisely, let π : Y → P3 be any double covering branched
over a smooth quartic surface, and let C ⊂ Y be any non-singular rational curve
with −KY · C = 2. Then one can always construct the corresponding Fano 3-fold
T7 (see [56], § 4.4.1).

There are only two Fano 3-folds with canonical Gorenstein singularities whose
anticanonical divisor is divisible (in the Picard group) by an integer greater than 2.
These are P3 and a quartic 3-fold Q ⊂ P4. Fano 3-folds with canonical Gorenstein
singularities whose anticanonical divisor is divisible by 2 are called del Pezzo 3-folds
(see [88], Theorem 3.3.1). It is easy to prove explicitly that H1 is the only del Pezzo
3-fold among the 3-folds Hi and Tj . This is also confirmed by the classification of
del Pezzo 3-folds (see [78], [79], [57], [117]).

Remark 1.12. The 3-folds Hi and Tj are naturally birationally isomorphic to
del Pezzo fibrations of degrees 2 and 3 respectively, except for the following cases:
H1, H2, H3, T1, T2 and T3. On the other hand, sufficiently general 3-folds H1, H2,
H3, T1 and T2 are not birationally isomorphic to any del Pezzo fibration of degree
2 or 3 (see [22], [16], [29], [63], [6], [7]).

Remark 1.13. It is well known that 3-folds with a pencil of del Pezzo surfaces of
degree 2 or 3 are unirational (see [23]–[25]). Therefore the 3-folds Hi and Tj are
unirational for i � 4 and j � 4. The 3-fold H3 is also known to be unirational
(see [115], [16]). The proof of Proposition 5.5 below implies that the 3-fold T3
is unirational since it is birationally equivalent to a conic bundle with a rational
multisection. The 3-fold T2 is also unirational (see [71], [115], [36], [16]). How-
ever, it is still unknown whether a general quartic 3-fold T1 is unirational or not,
despite several examples of smooth unirational quartic 3-folds (see [118], [22], [16],
[100]). Unfortunately, nothing is known about the unirationality of general 3-folds
H1 and H2. It is expected that general 3-folds H2 are not unirational (see [97],
Conjecture 4.1.6).

The authors are very grateful to M. M. Grinenko, V. A. Iskovskikh, N. F. Zak,
A. Corti, S. A. Kudryavtsev, V. S. Kulikov, J. Park, Yu. G. Prokhorov, A. V. Pukh-
likov, D. A. Stepanov and V. V. Shokurov for fruitful conversations.

§ 2. Preliminaries
In what follows all varieties are assumed to be projective, normal, and defined

over C.

Proposition 2.1 ([96], Proposition 3.1.6). Suppose that ρ : V → X is a finite
morphism, DX is an effective Q-divisor on X, and DV = ρ

∗(DX)−KV/X , that is,
KV +DV = ρ

∗(KX +DX). The singularities of the log pair (V,DV ) are Kawamata
log terminal (see [93], [96]) if and only if the singularities of the log pair (X,DX)
are Kawamata log terminal.

We note that Kawamata log terminal singularities are canonical if the canonical
divisor is a Cartier divisor. Hence Proposition 2.1 yields the following result.
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Corollary 2.2. Let X be a smooth variety, and ρ : V → X a double covering
branched over a reduced effective divisor D ⊂ X. The singularities of V are canon-
ical if and only if the singularities of the log pair

(
X, 1
2
D
)
are Kawamata log ter-

minal.

Theorem 2.3 ([96], Theorem 4.5.1). Let X be a smooth variety, H a linear system
on X whose base locus has codimension at least 2, and D a sufficiently general
divisor in H. Suppose that for every point x ∈ X there is a divisor H ∈ H such
that the singularities of (X,H) are canonical in the neighbourhood of x. Then the
singularities of the log pair (X,D) are canonical.

The next result is Theorem 7.9 of [96], which was proved in [119].

Theorem 2.4. Let X be a normal variety such that ωX is locally free, and let
S ⊂ X be an effective Cartier divisor on X. Then S has canonical singularities if
and only if the singularities of the log pair (X, S) are canonical.

Theorems 2.3 and 2.4 yield the following result.

Corollary 2.5. Let X be a smooth variety, H a linear system on X whose base
locus has codimension at least 2, and D a sufficiently general divisor in H. Suppose
that for every point x ∈ X there is a divisor H ∈ H whose singularities are canonical
in a neighbourhood of x. Then D has canonical singularities.

The following result is implied by Theorem 4.8 of [96].

Theorem 2.6. Let X be a smooth variety, H a linear system on X, D a suffi-
ciently general divisor in H, and λ ∈ Q∩ [0, 1). Suppose that for every point x ∈ X
there is H ∈ H such that the log pair (X, λH) has Kawamata log terminal singular-
ities in the neighbourhood of x. Then the singularities of (X, λD) are Kawamata
log terminal.

Corollary 2.2 and Theorem 2.6 imply the following result.

Corollary 2.7. Let X be a smooth variety, H a linear system on X, and D a
sufficiently general divisor in H. Suppose that for every point O ∈ X there is an
effective reduced divisor H ∈ H such that there is a double covering β : Y → X
branched over H ⊂ X with Y having canonical singularities in the neighbourhood
of β−1(O). Let ρ : V → X be the double covering branched over D ⊂ X. Then V
has canonical singularities.

Remark 2.8. It is also easy to deduce Corollary 2.7 from Corollary 2.5. Indeed,
in the notation of Corollary 2.7, let B ⊂ X be a divisor with D ∼ 2B. We put
U = Proj(OX ⊕ OX(B)). Let M be the tautological line bundle on U , and let
f : U → X be the natural projection. Then Y may be regarded as a divisor on U in
the linear system |2M | such that β = f |Y . We may assume that H = |H| without
loss of generality. Hence we can identify V with a sufficiently general divisor in the
linear system |2M |. The base locus of |2M | is contained in Y ∩ f−1(H) because
2S + f−1(H) ∼ 2M and S ∩ Y = ∅, where S ∼ M − f∗(B) is a negative section
of f : U → X. Therefore the base locus of |2M | has codimension at least 2, and the
singularities of V ∈ |2M | are canonical by Corollary 2.5.
We recall the following classical result (see [53], [1], [114]).
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Theorem 2.9. Suppose that X is a normal algebraic surface and O ∈ X is an
isolated singular point such that the singularities of X are canonical in the neigh-
bourhood of O, that is, O is a Du Val singular point on X. Then O ∈ X is a
hypersurface quasi-homogeneous singularity and is locally isomorphic to the singu-
larity (0, 0, 0) ∈ C3 ∼= Spec(C[x, y, z]) of one of the following types:
(An) x

2 + y2 + zn+1 = 0, wt(x) = n + 1, wt(y) = n+ 1, wt(z) = 2, n � 1;
(Dn) x

2 + y2z + zn−1 = 0, wt(x) = n− 1, wt(y) = n− 2, wt(z) = 2, n � 4;
(E6) x

2 + y3 + z4 = 0, wt(x) = 6, wt(y) = 4, wt(z) = 3;
(E7) x

2 + y3 + yz3 = 0, wt(x) = 9, wt(y) = 6, wt(z) = 4;
(E8) x

2 + y3 + z5 = 0, wt(x) = 15, wt(y) = 10, wt(z) = 6.

The following result is proved in § 12.3, § 12.6 and § 13.1 of [1].
Theorem 2.10. Let X ⊂ C3 ∼= Spec(C[x, y, z]) be a hypersurface f(x, y, z) = 0
such that the origin O ∈ C3 is an isolated singular point of X. Write

f(x, y, z) = fd(x, y, z) + fd+1(x, y, z) + . . . ,

where fi(x, y, z) is a quasi-homogeneous polynomial of quasi-homogeneous degree
i � 2 with respect to positive integer weights wt(x) = a, wt(y) = b, wt(z) = c.
Suppose that the origin O ∈ C3 is an isolated singular point of the hypersurface
fd(x, y, z) = 0, where 2a � d, 2b � d, 2c � d and a+ b+ c > d.
1) If (a, b, c) = (n+ 1, n+ 1, 2), then O ∈ X is a singularity of type An.
2) If (a, b, c) = (n− 1, n− 2, 2), then O ∈ X is a singularity of type Dn.
3) If (a, b, c) = (6, 4, 3), then O ∈ X is a singularity of type E6.
4) If (a, b, c) = (9, 6, 4), then O ∈ X is a singularity of type E7.
5) If (a, b, c) = (15, 10, 6), then O ∈ X is a singularity of type E8.
The following result is due to Enriques (see [77], [15], [69], [17]).

Theorem 2.11. Let X ⊂ Pn be a variety of degree n− dim(X) + 1 such that X is
not contained in any hyperplane. Then X is one of the following varieties:
1) a projective space Pn;
2) a quadric hypersurface in Pn;

3) the image of a rational scroll F(d1, . . . , dk) = Proj
(⊕k

i=1OP1(di)
)
under the

map given by the tautological line bundle, where 0 �= d1 � · · · � dk � 0 and n+1 =∑k
i=1(di + 1);
4) a Veronese surface in P5 when n = 5;
5) a cone in Pn over a Veronese surface in P5.

It is easy to see that the varieties in Theorem 2.11 have the smallest possible
degree among all varieties of the same dimension in Pn.
Using the Kawamata–Viehweg vanishing theorem (see [91], [120]) and elementary

properties of linear systems on K3 surfaces (see [116]), we get the following well-
known result (see [15], [17], [88]).

Theorem 2.12. Let X be a Fano 3-fold with canonical Gorenstein singularities
such that the linear system | −KX | has no base points but the anticanonical divisor
−KX is not very ample. Then ϕ|−KX| : X → V ⊂ Pn is a double covering and V ⊂
Pn is a subvariety of minimal degree, that is, deg(V ) = n−2, where n = −12K3X+2.
The following result is a theorem of Noether–Enriques–Petri (see [44], [81]).
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Theorem 2.13. Let C ⊂ Pg−1 be a canonically embedded smooth irreducible curve
whose genus g(C) is at least 3. Then the following assertions hold.

1) The curve C ⊂ Pg−1 is projectively normal.
2) If g(C) = 3, then C is a plane quartic curve.
3) If g(C) � 4, then the graded ideal IC of the curve C ⊂ Pg−1 is generated by

the components of degree 2 and 3, that is, the curve C ⊂ Pg−1 is cut out by quadrics
and cubics in Pg−1 in the scheme-theoretic sense.
4) If g(C) � 4, then the graded ideal IC of the curve C ⊂ Pg−1 is generated by

the component of degree 2 except in the following two cases:
the curve C is trigonal, that is, there is a map ψ : C → P1 of degree 3;
the curve C is isomorphic to a smooth plane quintic (in particular, g(C) = 6).
5) In the trigonal case, quadrics through C in Pg−1 cut out either an irreducible

(possibly singular) quadric surface when g(C) = 4, or a smooth irreducible surface
of degree g− 2 which is the image of Proj(OP1(d1)⊕OP1(d2)) under the map given
by the tautological line bundle, where d1 � d2 > 0 and g = d1 + d2 + 2.
6) If C is isomorphic to a smooth plane quintic, then quadrics through C in P5

cut out a Veronese surface.

The following result is a corollary of Theorem 2.13 (see [15], [17], [88]).

Theorem 2.14. Let X ⊂ Pn be an anticanonically embedded Fano 3-fold with
canonical singularities, that is, −KX ∼ OPn(1)|X and n = −12K

3
X + 2. Then the

following assertions hold.
1) The 3-fold X is projectively normal in Pn.

2) If −K3X = 4, then X is a quartic 3-fold in P4.
3) If −K3X � 6, then the graded ideal IX of the 3-fold X ⊂ Pn is generated by

the components of degree 2 and 3.
4) If −K3X � 6, then the graded ideal IX of the 3-fold X ⊂ Pn is generated by the

component of degree 2 except in the case when, for a general linear subspace Π ⊂ Pn
of codimension 2, the curve X ∩Π is either a canonically embedded smooth trigonal
curve or a canonically embedded smooth plane quintic curve and deg(X ⊂ Pn) = 10.
5) In the trigonal case, quadrics through X in Pn cut out either an irreducible

(possibly singular) quadric 4-fold when −K3X = 6, or a 4-fold of degree n− 3 which
is the image of a rational scroll Proj

(⊕4
i=1OP1(di)

)
under the map given by the

tautological line bundle, where 0 �= d1 � · · · � d4 � 0 and n+ 1 =
∑4
i=1(di + 1).

6) If X ∩ Π is a canonically embedded plane quintic, then quadrics through X
in P7 cut out a 4-dimensional cone over a Veronese surface.

Proposition 2.15 ([110], Claim 6.9). Let X be a 3-fold with composite Du Val
(cDV) singularities, Γ ⊂ Sing(X) a smooth curve regarded as a reduced subscheme
of X, and f : V → X the blow-up of Γ. Then V has at most cDV-singularities and
KV ∼ f∗(KX), that is, the map f is crepant.

The following result is proved in [47] and is a special case of a conjectured ratio-
nality criterion for standard 3-dimensional conic bundles (see [86], [87], [18], [19]).

Theorem 2.16. Suppose that Y is a smooth 3-fold, Z is either P2 or a minimal
rational ruled surface Fr , and ξ : Y → Z is a conic bundle with Pic(Y/Z) = Z and
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|2KZ +∆| �= ∅, where ∆ ⊂ Z is the degeneration divisor of ξ : Y → Z. Then Y is
non-rational.

Remark 2.17. In the notation of Theorem 2.16, the hypothesis |2KZ + ∆| = ∅
implies that the 3-fold Y is rational except in the case when there is a commutative
diagram

X

χ

��

α �������� Y

ξ

��
P2

β �������� Z

where α and β are birational maps, X is a smooth 3-fold, and χ : X → P2 is a
conic bundle with Pic(X/P2) = Z whose degeneration divisor D ⊂ P2 is a quintic
curve and the double covering ψ : D̃ → D induced by χ corresponds to even
θ-characteristic (see [18]).
The following result was proved in [101]. It is a particular case of a more gen-

eral result in [95] (see also [94], [98]), which generalizes the standard degeneration
technique (see [21]).

Theorem 2.18. Let ξ : Y → Z be a flat proper morphism with irreducible and
reduced geometric fibres. Then there are countably many closed subsets Zi ⊂ Z
such that the fibre ξ−1(s) over a closed point s ∈ Z is ruled if and only if s ∈

⋃
Zi.

Proposition 2.19 [114]. Let V be a rational scroll Proj
(∑k

i=1OP1(di)
)
and let

f : V → P1 be the natural projection. Then Pic(V ) ∼= ZM ⊕ ZL, where M is the
tautological line bundle on V and L is the class of a fibre of f . Let (t1 : t2) be
homogeneous coordinates on the base P1, and let (x1 : · · · : xk) be homogeneous
coordinates (corresponding to the coordinates on

∑k
i=1OP1(di)) on the fibre of f

which is isomorphic to Pk−1. Then |aM + bL| is generated by bihomogeneous coor-
dinates

ci1,...,ikx
i1
1 x
i2
2 . . . x

ik
k ,

where
∑k
j=1 ij = a, ij � 0, and ci1,...,ik = ci1,...,ik(t0 : t2) is a homogeneous

polynomial of degree b+
∑k
j=1 ijdj.

Proposition 2.19 implies the following result, which is known as a lemma of Reid.

Corollary 2.20. Let V be a k-dimensional rational scroll Proj
(∑k

i=1OP1(di)
)

with d1 � · · · � dk � 0, and let Yj ⊂ V be the “negative rational subscroll”
Proj
(⊕k

i=j OP1(di)
)
, which corresponds to the natural projection

k⊕
i=1

OP1(di)→
k⊕
i=j

OP1(di).

Take an effective divisor D ⊂ V that is rationally equivalent to aM + bL, where M
is the tautological line bundle on V , L is a fibre of the natural projection to P1, and
a, b ∈ Z. We have multYj(D) � q for q ∈ N if and only if adj+b+(d1−dj)(q−1) < 0.
The following result is implied by the Riemann–Roch theorem (see [15], [17],

[88]), the Kawamata–Viehweg vanishing theorem (see [91], [120]), the rationality of
canonical singularities (see [93], [96]), and the global-to-local spectral sequence.
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Proposition 2.21. Let X be a Fano 3-fold with canonical Gorenstein singularities.
Then

h0
(
OX(−mKX)

)
=
m(m+ 1)(2m+ 1)

12
(−KX )3 + 2m+ 1.

The following two results are well known. Their proof can be found in [8], [23],
[24], [9], [10], [11], [14]. For a modern proof see [103] and [20].

Theorem 2.22. Let W be a smooth minimal geometrically irreducible and geo-
metrically rational surface defined over a perfect field F. This means that no curve
on W can be contracted to a smooth point over F and W is irreducible and ratio-
nal over F. Then either Pic(W ) ∼= Z and W is a smooth del Pezzo surface or
Pic(W ) ∼= Z⊕ Z and W is a conic bundle π : W → Z.

Theorem 2.23. Let W be a smooth minimal geometrically irreducible and geo-
metrically rational surface defined over a perfect field F. The surface W is rational
over F if and only if W has an F-point and K2W � 5.

Theorem 2.24 [23]. Let W be a smooth geometrically irreducible and geometrically
rational surface defined over a C1-field F, say, over F = C(x). Then W has an
F-point.

Theorem 2.25 [95]. Let Y be a projective variety, and let g : Y → R be a morphism
with a section onto a smooth curve R. Suppose that there is a set {r1, . . . , rk} ⊂ R
of closed points such that each fibre Yi = g

−1(ri) is smooth and separably rationally
connected. Then for every set of closed points yi ∈ Yi there is a section C ⊂ Y of
the morphism g passing through each point yi.

§ 3. Proof of Theorem 1.5
Let X be a Fano 3-fold with canonical Gorenstein singularities such that the

linear system | − KX | has no base points but the induced morphism ϕ|−KX | is
not an embedding. Then ϕ|−KX | : X → Y ⊂ Pn is a double covering and
deg(Y ⊂ Pn) = n− 2, where n = −12K3X + 2.

Remark 3.1. If −K3X = 2, then the 3-fold Y is nothing but P3 and ϕ|−KX | is a
double covering ramified in a sextic surface (possibly singular). In this case, X
may be regarded as a hypersurface of degree 6 in P(14, 3). The birational geometry
of such varieties X was studied in [54], [37], [16], [27], [111], [82], [42], [59].

Remark 3.2. If −K3X = 4, then Y is a quadric (possibly singular) in P4 and ϕ|−KX|
is a double covering branched over a surface cut out on Y by a quartic hypersurface
in P4. In this case, X may be regarded as a complete intersection of a quadric cone
and a quartic in P(15, 2). The birational geometry of such varieties X was studied
in [54], [37], [16], [27], [3], [4].

Thus we may assume that −K3X � 6. Hence Theorem 2.11 implies that either
−K3X = 8 and Y ⊂ P6 is a cone over a Veronese surface F4 ⊂ P5 or Y is the image
of a rational scroll F(d1, d2, d3) = Proj

(⊕3
i=1OP1(di)

)
under the map given by the

tautological line bundle, where 0 �= d1 � · · ·� d3 � 0 and −K3X = 2(d1+ d2 + d3).
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Lemma 3.3. Suppose that Y is a cone over a Veronese surface F4 with vertex O.
Then X is a hypersurface of degree 6 in P(13, 2, 3).

Proof. We have Y ∼= P(13, 2). The double covering ϕ|−KX | is branched over the
vertex O because O is not a Gorenstein point of Y . On the other hand, the equation
−K3X = 8 implies that the double covering ϕ|−KX| is branched over a divisorD ⊂ Y
such that D ∼ OY (6). As in the smooth case (see [15]), it follows (see [117]) that
X is a hypersurface of degree 6 in P(13, 2, 3).

Hence we may assume that there is a birational morphism f : U → Y for some
U = Proj

(⊕3
i=1OP1(di)

)
, and we have f = ϕ|M |, where M is the tautological line

bundle on U , 0 �= d1 � · · · � d3 � 0 and −K3X = 2(d1 + d2 + d3) � 6.
Lemma 3.4. Suppose that d2 = d3 = 0. Then X is either a hypersurface of degree
10 in P(12, 32, 5) or a hypersurface of degree 12 in P(12, 42, 6).

Proof. Take a sufficiently general divisor H ∈ | −KX |. Then H is a K3 surface
with Du Val singularities and f(H) is a cone in Pn−1 over a rational normal curve.
Moreover, the restriction map

H0
(
OX(−KX)

)
→ H0

(
OH(−KX |H)

)
is surjective since H1(OX) = 0. Hence the equations d1 = d2 = 0 imply that
−K3X � 8 by [116].
Thus there are two possible cases: d1 = 3 and d1 = 4. We have Y ∼= P(12, 32)

in the first case and Y ∼= P(12, 42) in the second. To get the desired result, we now
proceed as in the proof of Lemma 3.3.

Remark 3.5. One can use basic properties of hypersurfaces in weighted projective
spaces (see [76]) to prove the existence of a hypersurface of degree 10 in P(12, 32, 5)
and a hypersurface of degree 12 in P(12, 42, 6) having only canonical Gorenstein
singularities. However, we shall prove this in a different and more geometric way
together with the proof for other possible cases.

Let V be the normalization of the fibred product X×Y U , π : V → U the double
covering induced by ϕ|−KX | : X → Y , and h : V → X the birational morphism
induced by f : U → Y .
Lemma 3.6. The 3-fold V has canonical Gorenstein singularities, the anticanon-
ical divisor −KV is numerically effective and big, and KV ∼ h∗(KX), that is, the
map h is crepant.

Proof. If d2 �= 0, then the 3-folds X and V are isomorphic in codimension 2, which
easily yields the lemma (compare [92]).
Thus we may assume that d2 = 0. Then f : U → Y contracts a divisor D ⊂ U to

a curve C ∼= P1, and Lemma 3.4 implies that either d1 = 3 or d1 = 4. In both cases
ϕ|−KX | must be ramified in the curve C since Y is non-Gorenstein at a general
point of C.
Let R ⊂ U be the ramification divisor of π : V → U , M the tautological line

bundle on U , and L a fibre of the natural projection of U to P1. Then the equiva-
lences

−KX ∼ ϕ∗|−KX|
(
OPn(1)|Y

)
, M ∼ f∗

(
OPn(1)|Y

)
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imply that R ∼ 4M − 2(d1 − 2)L+ aD for some a ∈ Z. Moreover, we have a � 0
since the singularities of X are canonical. Suppose that a > 0. Then Corollary 2.20
shows that R = 2D ∪ S, where S is an effective divisor on U , since D ∼M − d1L.
This contradicts the normality of V . Thus a = 0, R ∼ 4M − 2(d1 − 2)L, and
−KV ∼ f∗(M) ∼ h∗(KX), which easily yields the desired assertion.
Let D ⊂ U be the ramification divisor of π : V → U , M the tautological line

bundle on U , and L a fibre of the natural projection of U to P1. Then −KV ∼
π∗(M) by construction. Hence,

D ∼ 4M − 2(d1 + d2 + d3 − 2)L.

Let Y2 ⊂ V and Y3 ⊂ V be the subscrolls corresponding to the natural projec-
tions

3⊕
i=1

OP1(di)→ OP1(d2)⊕OP1(d3),
3⊕
i=1

OP1(di)→ OP1(d3).

Then Y2 ∼= Proj(OP1(d2)⊕OP1(d3)) and Y3 ∼= P1.
Lemma 3.7. We have multY2(D) � 1 and multY3(D) � 3.
Proof. The first inequality follows from the normality of V . Suppose that d =
multY3(D) � 2. Then the local equation of V in the neighbourhood of a generic
point of the curve C = π−1(Y3) is

ω2 = fd(x, y) + fd+1(x, y) + · · · ⊂ Spec(C[x, y, z, ω]),

where x = y = 0 are the local equations of the curve C, and fi(x, y) is a homo-
geneous polynomial of degree i. On the other hand, the singularities of V at the
general point of C must be locally isomorphic to one of the following types of sin-
gularities: C × An, C × Dn, C × E6, C × E7, C × E8. Then Theorem 2.9 implies
that d � 3.
Therefore Corollary 2.20 implies that

d1 − d3 − 2d2 + 4 � 0, d2 − d1 − 2d3 + 4 � 0.

We also have 0 �= d1 � · · · � d3 � 0 and d1 + d2 + d3 � 3 by assumption. The
resulting inequalities determine 44 different rational scrolls

F(d1, d2, d3) = Proj

( 3⊕
i=1

OP1(di)
)

with the ramification divisor

D ∼ 4M − 2(d1 + d2 + d3 − 2)L,

where M is the tautological line bundle on F(d1, d2, d3) and L is a fibre of the
natural projection to P1.
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Remark 3.8. The 3-fold X is an anticanonical model of the 3-fold V , that is,
X ∼= ϕ|−rKV |(V ) for r � 0. Thus the contraction theorem (see [93]) implies
that X is a Fano 3-fold with canonical Gorenstein singularities if and only if V
has canonical Gorenstein singularities and −KV is numerically effective and big.
On the other hand, V is uniquely determined by the rational scroll F(d1, d2, d3)
and the ramification divisor D ∈ |4M − 2(d1 + d2 + d3 − 2)L|. The only trouble
is that the linear system |4M−2(d1+d2+d3−2)L| may contain no divisor D such
that the corresponding double covering V has canonical singularities.

In the rest of this section we show explicitly that, in each of the cases obtained,
the linear system |4M − 2(d1+ d2+ d3− 2)L| contains a divisor D such that V has
canonical singularities. We shall use Corollary 2.7 together with Proposition 2.19.
This verification will complete the proof of Theorem 1.5.

Remark 3.9. The same ideas were actually used in the classification of smooth
hyperelliptic Fano 3-folds (see [15], [17]). In the smooth case, the corresponding
inequalities are much stronger and the calculations much shorter. This method
was also used in [41] to find an effective bound on the degree of hyperelliptic Fano
3-folds with canonical Gorenstein singularities, but there is a gap in the proof of
Lemma 3.2. Namely, the stronger inequality multY3(D) � 2 was used there instead
of the inequality multY3(D) � 3. This gave a wrong bound −K3X � 16 instead of
the right one −K3X � 40, which is a posteriori seen to be sharp. Nevertheless, one
can use the estimate −K3X � 40 to prove the main result of [41], which is now
obsolete because of [110].

Let us consider one of the possible cases in full detail.

Example 3.10. Let π : V → F(6, 2, 0) be a double covering branched over a suf-
ficiently general divisor D ⊂ F(6, 2, 0) such that D ∼ 4M − 12L, where M is the
class of the tautological line bundle on F(6, 2, 0) and L is the class of a fibre of
the projection of F(6, 2, 0) to P1. We must show that the 3-fold V has canonical
singularities.
By Proposition 2.19, the divisor D is given by the zeros of the bihomogeneous

polynomial

α12(t1, t2)x
4
1 + α8(t1, t2)x

3
1x2 + α6(t1, t2)x

3
1x3 + α4(t1, t2)x

2
1x
2
2

+ α2(t1, t2)x
2
1x2x3 + α

1
0(t1, t2)x

2
1x
2
3 + α

2
0(t1, t2)x1x

3
2,

where αd(t1, t2) (or α
i
d(t1, t2)) is an arbitrary form of degree d. We define a surface

E ⊂ F(6, 2, 0) and a curve C ⊂ F(6, 2, 0) by the equations x1 = 0 and x1 =
x2 = 0 respectively. The base locus of the linear system |4M − 12L| equals E.
(In particular, D \ E and V \ π−1(E) are smooth by Bertini’s theorem.) The
automorphism group of E ∼= F(4, 0) acts transitively on E \ C, that is, all points
of E \ C are mapped to each other by changes of the coordinates t1, t2, x4, x5.
By Lemma 3.7, the divisor D has multiplicity 1 at a general point of E. Hence for
every point of E \ C there is a divisor D′ whose multiplicity at this point is equal
to 1: it suffices to make an appropriate change of coordinates in the equation of D.
The singularities of a general divisor D on E \ C are canonical by Corollary 2.7,
and it suffices to prove that for every point p of C there is a divisor D such that



Hyperelliptic and trigonal Fano threefolds 381

the corresponding variety V has a canonical singularity in the neighbourhood of the
point π−1(p) ∈ π−1(C).
Let Y be a fibre of the projection of F(6, 2, 0) to P1 over a sufficiently general

point P ∈ P1. We put Z = π−1(Y ). Then Z is a del Pezzo surface of degree 2.
Moreover, the only possible singular point of Z is O = π−1(C ∩ Y ). Let us prove
that O is a Du Val point on Z. This already implies that the singularities of Y are
canonical.
Suppose that the point P ∈ P1 has homogeneous coordinates (γ : δ). Then Z

may be given as a hypersurface

ω2 = α12x
4
1 + α8x

3
1x2 + α6x

3
1x3 + α4x

2
1x
2
2 + α2x

2
1x2x3 + α

1
0x
2
1x
2
3 + α

2
0x1x

3
2

in P(1, 1, 1, 2) ∼= Proj(C[x1, x2, x3, ω]), where αid = αid(γ, δ) (respectively, αd =
αd(γ, δ)). Since Y is general, we have α

i
d �= 0 (resp. αd �= 0) for all d and i.

Therefore we may assume for convenience that αid = 1 (resp. αd = 1) for all d
and i.
Let ω = x, x1 = y, x2 = z and x3 = 1. Then the local equation of Z in a

neighbourhood of O is given by

x2 + y4 + y3z + y3 + y2z2 + y2z + y2 + yz3 = 0.

Let wt(x) = 3, wt(y) = 3 and wt(z) = 1. Then wt(x2+y2+yz3) = 6, wt(y4) = 12,
wt(y3z) = 10, wt(y3) = 9, wt(y2z2) = 8 and wt(y2z) = 7. Moreover, the equation
x2 + y2 + yz3 = 0 determines an isolated point. Hence Theorem 2.10 implies that
the singularity of Z at O is locally isomorphic to a Du Val singularity of type A5.
Hence the 3-fold V has a singularity of type A5×C at a general point of the curve
π−1(C).
Thanks to the generality in the choice of D, we may actually assume that the

point P ∈ P1 is not just a general point but an arbitrary point of P1. In other
words, given any point P ∈ P1, one can find homogeneous polynomials αd such
that αd(P ) �= 0 and repeat all the above arguments in the neighbourhood of the
corresponding point O = π−1(C ∩ Y ). Hence the singularities of V are canonical
by Corollary 2.7.

In the rest of the section we consider the other possible cases following the pattern
of Example 3.10. Differences appear only in the numerical characteristics of the
varieties, their equations, types of singularities and so on. They are collected in
Table 1.
Table 1 is organized as follows. The first column contains the labels of the vari-

eties V in the notation of Theorem 1.5. The second column gives a triple (d1, d2, d3)
such that there is a double covering π : V → F(d1, d2, d3) which is branched over
a divisor D. The third column displays the number b such that |D| = |4M + bL|.
The corresponding linear system appears to be base point free in the cases H4,
H6 and H9. Then the divisor D is non-singular by Bertini’s theorem and, there-
fore, V is non-singular (and we do not need the information in the other columns).
In all other cases, the set Bs |D| of base points is either the curve C = Y3 given
by x1 = x2 = 0 (and then Bertini’s theorem shows that D and V are smooth
outside C and π−1(C) respectively, so it suffices to study the singularities of V
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over C only) or the surface E = Y2 given by x1 = 0 (and then the divisor D
has multiplicity 1 at a general point of E and, since the automorphism group
of E ∼= F(d2, d3) is transitive on E \ C (compare Example 3.10), Corollary 2.7
shows that it again suffices to study the singularities of V over C only).
The fourth column contains the equations of general divisors D in the linear

system |4M + bL|, and the fifth column yields an equation of the fibre Z of the
projection V → P1 over a general point of P1 in the neighbourhood of a general
point of π−1(C) after a change of coordinates ω = x, x1 = y, x2 = z, x3 = 1
(see Example 3.10). The same equation determines V locally if we regard it as an
equation in t, x, y, z. The corresponding point appears to be non-singular in the
cases H5, H12 and H17. In the other cases we attribute new weights wt(x) = wx,
wt(y) = wy, wt(z) = wz (listed in the sixth column) to the variables x, y, z and
see that the terms of lowest weight determine an isolated Du Val singularity. We
notice that the weights wt(x), wt(y), wt(z) coincide with the weights of the Du Val
singularity indicated in the seventh column. Hence the singularity ofZ in the chosen
neighbourhood is Du Val of this type (by Theorem 2.10), and the singularity of V is
locally isomorphic to the product of C and the corresponding Du Val singularity. In
any case, V has canonical singularities in this neighbourhood and, by Corollary 2.7,
all singularities of V are canonical.

Table 1

Hi (d1,d2,d3) b Equation of D
Local equa-

tion of V
Weights

Singu-

larity

H4 (1, 1, 1) −2 – – – –

H5 (2, 1, 0) −2 α6x
4
1 + α5x

3
1x2

+ α14x
3
1x3 + α

2
4x
2
1x
2
2

+α13x
2
1x2x3+α

1
2x
2
1x
2
3

+α23x1x
3
2+α

2
2x1x

2
2x3

+α11x1x2x
2
3+α

1
0x1x

3
3

+ α32x
4
2 + α

2
1x
3
2x3

+ α20x
2
2x
2
3 = 0

x2 + y3z + y3

+ y2z2 + y2z

+ y2 + yz3

+ yz2 + yz

+ y + z4 + z3

+ z2 = 0

– Non-
sin-
gular

point

H6 (2, 1, 1) −4 – – – –

H7 (2, 2, 0) −4 α14x
4
1 + α

2
4x
3
1x2

+ α34x
2
1x
2
2 + α

4
4x1x

3
2

+ α54x
4
2 + α

1
2x
3
1x3

+α22x
2
1x2x3

+α32x1x
2
2x3+α

4
2x
3
2x3

+α10x
2
1x
2
3+α

2
0x1x2x

2
3

+ α30x
2
2x
2
3 = 0

x2 + P2(y, z)

+ P3(y, z)

+ P4(y, z) = 0

(Pi is a homo-
geneous poly-

nomial of
degree i)

wx = 1

wy = 1

wz = 1

A1



Hyperelliptic and trigonal Fano threefolds 383

Table 1 continued

H8 (2, 2, 1) −6 α12x
4
1 + α

2
2x
3
1x2

+ α32x
2
1x
2
2 + α

2
4x1x

3
2

+ α52x
4
2 + α

1
1x
3
1x3

+α21x
2
1x2x3

+α31x1x
2
2x3+α

4
1x
3
2x3

+α10x
2
1x
2
3+α

2
0x1x2x

2
3

+ α30x
2
2x
2
3 = 0

x2 + P2(y, z)

+ P3(y, z)

+ P4(y, z) = 0

(Pi is a homo-
geneous poly-

nomial of
degree i)

wx = 1

wy = 1

wz = 1

A1

H9 (2, 2, 2) −8 – – – –

H10 (3, 0, 0) −2 α10x
4
1 + α

1
7x
3
1x2

+ α27x
3
1x3 + α

1
4x
2
1x
2
2

+α24x
2
1x2x3+α

3
4x
2
1x
2
3

+α11x1x
3
2+α

2
1x1x

2
2x3

+α31x1x2x
2
3

+ α41x1x
3
3 = 0

x2 + y3z + y3

+ y2z2 + y2z

+ y2 + yz3

+ yz2 + yz

+ y = 0

– Non-
sin-
gular

point

H11 (3, 1, 0) −4 α8x
4
1 + α6x

3
1x2

+ α5x
3
1x3 + α4x

2
1x
2
2

+α3x
2
1x2x3+α

1
2x
2
1x
2
3

+α10x1x2x
2
3

+α22x1x
3
2+α1x1x

2
2x3

+ α20x
4
2 = 0

x2 + y4 + y3z

+ y3 + y2z2

+ y2z + y2

+ yz3 + yz2

+ yz + z4 = 0

wx = 1

wy = 1

wz = 1

A1

H12 (3, 1, 1) −6 α6x
4
1 + α

1
4x
3
1x2

+ α24x
3
1x3 + α

1
2x
2
1x
2
2

+α22x
2
1x2x3+α

3
2x
2
1x
2
3

+α10x1x
3
2+α

2
0x1x

2
2x3

+α30x1x2x
2
3

+ α40x1x
3
3 = 0

x2 + y3z + y3

+ y2z2 + y2z

+ y2 + yz3

+ yz2 + yz

+ y = 0

– Non-
sin-
gular

point

H13 (3, 2, 0) −6 α6x
4
1 + α5x

3
1x2

+ α13x
3
1x3 + α4x

2
1x
2
2

+α12x
2
1x2x3+α

1
0x
2
1x
2
3

+α23x1x
3
2+α1x1x

2
2x3

+α22x
4
2+α

2
0x
3
2x3 = 0

x2 + y4 + y3z

+ y3 + y2z2

+ y2z + y2

+ yz3 + yz2

+ z4 + z3 = 0

wx = 3

wy = 3

wz = 2

A2
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Table 1 continued

H14 (3, 2, 1) −8 α4x
4
1 + α3x

3
1x2

+ α12x
3
1x3 + α

2
2x
2
1x
2
2

+α11x
2
1x2x3+α

1
0x
2
1x
2
3

+α21x1x
3
2+α

2
0x1x

2
2x3

+ α30x
4
2 = 0

x2 + y4 + y3z

+ y3 + y2z2

+ y2z + y2

+ yz3 + yz2

+ z4 = 0

wx = 2

wy = 2

wz = 1

A3

H15 (3, 3, 0) −8 α14x
4
1 + α

2
4x
3
1x2

+ α34x
2
1x
2
2 + α

4
4x1x

3
2

+ α54x
4
2 + α

1
1x
3
1x3

+α21x
2
1x2x3

+α31x1x
2
2x3

+ α41x
3
2x3 = 0

x2 + P3(y, z)

+ P4(y, z) = 0

(Pi is a homo-
geneous poly-

nomial of
degree i)

wx = 3

wy = 2

wz = 2

D4

H16 (3, 3, 1) −10 α12x
4
1 + α

2
2x
3
1x2

+ α32x
2
1x
2
2 + α

4
2x1x

3
2

+ α52x
4
2 + α

1
0x
3
1x3

+α20x
2
1x2x3

+α30x1x
2
2x3

+ α40x
3
2x3 = 0

x2 + P3(y, z)

+ P4(y, z) = 0

(Pi is a homo-
geneous poly-

nomial of
degree i)

wx = 3

wy = 2

wz = 2

D4

H17 (4, 0, 0) −4 α12x
4
1 + α

1
8x
3
1x2

+ α28x
3
1x3 + α

1
4x
2
1x
2
2

+α24x
2
1x2x3+α

3
4x
2
1x
2
3

+α10x1x
3
2+α

2
0x1x

2
2x3

+α30x1x2x
2
3

+ α40x1x
3
3 = 0

x2 + y3z + y3

+ y2z2 + y2z

+ y2 + yz3

+ yz2 + yz

+ y = 0

– Non-
sin-
gular

point

H18 (4, 1, 0) −6 α10x
4
1 + α8x

3
1x2

+ α6x
3
1x3 + α4x

2
1x
2
2

+α3x
2
1x2x3

+ α2x
2
1x
2
3 + α1x1x

3
2

+ α0x1x
2
2x3 = 0

x2 + y4

+ y3z + y3

+ y2z2 + y2z

+ y2 + yz3

+ yz2 = 0

wx = 2

wy = 2

wz = 1

A3

H19 (4, 2, 0) −8 α8x
4
1 + α6x

3
1x2

+ α4x
3
1x3 + α4x

2
1x
2
2

+α2x
2
1x2x3+α0x

2
1x
2
3

+α2x1x
3
2+α0x1x

2
2x3

+ α0x
4
2 = 0

x2 + y4 + y3z

+ y3 + y2z2

+ y2z + y2

+ yz3 + yz2

+ z4 = 0

wx = 2

wy = 2

wz = 1

A3
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Table 1 continued

H20 (4, 2, 1) −10 α6x
4
1 + α4x

3
1x2

+ α3x
3
1x3 + α2x

2
1x
2
2

+α1x
2
1x2x3+α

1
0x1x

3
2

+ α20x
2
1x
2
3 = 0

x2 + y4 + y3z

+ y3 + y2z2

+ y2z + yz3

+ y2 = 0

wx = 3

wy = 3

wz = 1

A5

H21 (4, 3, 0) −10 α6x
4
1 + α5x

3
1x2

+ α4x
2
1x
2
2 + α3x1x

3
2

+ α12x
4
2 + α

2
2x
3
1x3

+α1x
2
1x2x3

+ α0x1x
2
2x3 = 0

x2 + y4 + y3z

+ y2z2 + yz3

+z4+y3+y2z

+ yz2 = 0

wx = 3

wy = 2

wz = 2

D4

H22 (4, 3, 1) −12 α4x
4
1 + α

1
3x
3
1x2

+ α11x
3
1x3 + α2x

2
1x
2
2

+α10x
2
1x2x3+α

2
1x1x

3
2

+ α20x
4
2 = 0

x2 + y4 + y3z

+ y3 + y2z2

+ y2z + yz3

+ z4 = 0

wx = 4

wy = 3

wz = 2

D5

H23 (4, 4, 0) −12 α14x
4
1 + α

2
4x
3
1x2

+ α34x
2
1x
2
2 + α

4
4x1x

3
2

+ α54x
4
2 + α

1
0x
3
1x3

+α20x
2
1x2x3

+α30x1x
2
2x3

+ α40x
3
2x3 = 0

x2 + P3(y, z)

+ P4(y, z) = 0

(Pi is a homo-
geneous poly-

nomial of
degree i)

wx = 3

wy = 2

wz = 2

D4

H24 (5, 1, 0) −8 α12x
4
1 + α8x

3
1x2

+ α7x
3
1x3 + α4x

2
1x
2
2

+α3x
2
1x2x3+α0x1x

3
2

+ α2x
2
1x
2
3 = 0

x2 + y4 + y3z

+ y3 + y2z2

+ y2z + yz3

+ y2 = 0

wx = 3

wy = 3

wz = 1

A5

H25 (5, 2, 0) −10 α10x
4
1 + α7x

3
1x2

+ α5x
3
1x3 + α4x

2
1x
2
2

+α10x
2
1x2x3+α1x1x

3
2

+ α20x
2
1x
2
3 = 0

x2 + y4 + y3z

+ y3 + y2z2

+ y2z + yz3

+ y2 = 0

wx = 3

wy = 3

wz = 1

A5

H26 (5, 3, 0) −12 α8x
4
1 + α6x

3
1x2

+ α3x
3
1x3 + α4x

2
1x
2
2

+α11x
2
1x2x3+α

2
1x1x

3
2

+ α0x
4
2 = 0

x2 + y4 + y3z

+ y3 + y2z2

+ y2z + yz3

+ z4 = 0

wx = 4

wy = 3

wz = 2

D5
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Table 1 continued

H27 (5, 3, 1) −14 α6x
4
1 + α4x

3
1x2

+ α12x
3
1x3 + α

2
2x
2
1x
2
2

+α10x
2
1x2x3

+ α20x1x
3
2 = 0

x2 + y4

+ y3z + y3

+ y2z2 + y2z

+ yz3 = 0

wx = 5

wy = 4

wz = 2

D6

H28 (5, 4, 0) −14 α6x
4
1 + α5x

3
1x2

+ α1x
3
1x3 + α4x

2
1x
2
2

+α0x
2
1x2x3+α3x1x

3
2

+ α2x
4
2 = 0

x2 + y4 + y3z

+ y3 + y2z2

+ y2z + yz3

+ z4 = 0

wx = 4

wy = 3

wz = 2

D5

H29 (5, 4, 1) −16 α4x
4
1 + α3x

3
1x2

+ α10x
3
1x3 + α2x

2
1x
2
2

+α1x1x
3
2+α

2
0x
4
2 = 0

x2 + y4 + y3z

+ y3 + y2z2

+yz3+z4 = 0

wx = 6

wy = 4

wz = 3

E6

H30 (6, 2, 0) −12 α12x
4
1 + α8x

3
1x2

+ α6x
3
1x3 + α4x

2
1x
2
2

+α2x
2
1x2x3+α

1
0x
2
1x
2
3

+ α20x1x
3
2 = 0

x2 + y4 + y3z

+ y3 + y2z2

+ y2z + y2

+ yz3 = 0

wx = 3

wy = 3

wz = 1

A5

H31 (6, 3, 0) −14 α10x
4
1 + α7x

3
1x2

+ α4x
3
1x3 + α2x

2
1x
2
2

+α0x
2
1x2x3

+ α1x1x
3
2 = 0

x2 + y4

+ y3z + y3

+ y2z2 + y2z

+ yz3 = 0

wx = 5

wy = 4

wz = 2

D6

H32 (6, 4, 0) −16 α8x
4
1 + α6x

3
1x2

+ α2x
3
1x3 + α4x

2
1x
2
2

+α10x
2
1x2x3

+ α20x
4
2 = 0

x2 + y4 + y3z

+ y3 + y2z2

+y2z+z4 = 0

wx = 4

wy = 3

wz = 2

D5

H33 (6, 4, 1) −18 α6x
4
1 + α4x

3
1x2

+ α10x
3
1x3 + α2x

2
1x
2
2

+ α20x1x
3
2 = 0

x2 + y4 + y3z

+ y3 + y2z2

+ yz3 = 0

wx = 9

wy = 6

wz = 4

E7

H34 (6, 5, 0) −18 α6x
4
1 + α5x

3
1x2

+ α0x
3
1x3 + α4x

2
1x
2
2

+α3x1x
3
2+α2x

4
2 = 0

x2 + y4 + y3z

+ y3 + y2z2

+yz3+z4 = 0

wx = 6

wy = 4

wz = 3

E6

H35 (7, 3, 0) −16 α12x
4
1 + α8x

3
1x2

+ α5x
3
1x3 + α4x

2
1x
2
2

+α1x
2
1x2x3

+ α0x1x
3
2 = 0

x2 + y4

+ y3z + y3

+ y2z2 + y2z

+ yz3 = 0

wx = 5

wy = 4

wz = 2

D6
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Table 1 continued

H36 (7, 4, 0) −18 α10x
4
1 + α7x

3
1x2

+ α3x
3
1x3 + α4x

2
1x
2
2

+α0x
2
1x2x3

+ α1x1x
3
2 = 0

x2 + y4

+ y3z + y3

+ y2z2 + y2z

+ yz3 = 0

wx = 5

wy = 4

wz = 2

D6

H37 (7, 5, 0) −20 α8x
4
1 + α6x

3
1x2

+ α1x
3
1x3 + α4x

2
1x
2
2

+α2x1x
3
2+α0x

4
2 = 0

x2 + y4 + y3z

+ y3 + y2z2

+yz3+z4 = 0

wx = 6

wy = 4

wz = 3

E6

H38 (7, 5, 1) −22 α6x
4
1 + α4x

3
1x2

+ α10x
3
1x3 + α2x

2
1x
2
2

+ α20x1x
3
2 = 0

x2 + y4 + y3z

+ y3 + y2z2

+ yz3 = 0

wx = 9

wy = 6

wz = 4

E7

H39 (8, 4, 0) −20 α12x
4
1 + α8x

3
1x2

+ α14x
3
1x3 + α

2
4x
2
1x
2
2

+α10x
2
1x2x3

+ α20x1x
3
2 = 0

x2 + y4

+ y3z + y3

+ y2z2 + y2z

+ yz3 = 0

wx = 5

wy = 4

wz = 2

D6

H40 (8, 5, 0) −22 α10x
4
1 + α7x

3
1x2

+ α2x
3
1x3 + α4x

2
1x
2
2

+ α1x1x
3
2 = 0

x2 + y4 + y3z

+ y3 + y2z2

+ yz3 = 0

wx = 9

wy = 6

wz = 4

E7

H41 (8, 6, 0) −24 α8x
4
1 + α6x

3
1x2

+ α10x
3
1x3 + α4x

2
1x
2
2

+α2x1x
3
2+α

2
0x
4
2 = 0

x2 + y4 + y3z

+ y3 + y2z2

+yz3+z4 = 0

wx = 6

wy = 4

wz = 3

E6

H42 (9, 5, 0) −24 α12x
4
1 + α8x

3
1x2

+ α3x
3
1x3 + α4x

2
1x
2
2

+ α0x1x
3
2 = 0

x2 + y4 + y3z

+ y3 + y2z2

+ yz3 = 0

wx = 9

wy = 6

wz = 4

E7

H43 (9, 6, 0) −26 α10x
4
1 + α7x

3
1x2

+ α11x
3
1x3 + α4x

2
1x
2
2

+ α21x1x
3
2 = 0

x2 + y4 + y3z

+ y3 + y2z2

+ yz3 = 0

wx = 9

wy = 6

wz = 4

E7

H44 (10, 6, 0) −28 α12x
4
1 + α8x

3
1x2

+ α2x
3
1x3 + α4x

2
1x
2
2

+ α0x1x
3
2 = 0

x2 + y4 + y3z

+ y3 + y2z2

+ yz3 = 0

wx = 9

wy = 6

wz = 4

E7

H45 (10, 7, 0) −30 α10x
4
1 + α7x

3
1x2

+ α0x
3
1x3 + α4x

2
1x
2
2

+ α1x1x
3
2 = 0

x2 + y4 + y3z

+ y3 + y2z2

+ yz3 = 0

wx = 9

wy = 6

wz = 4

E7
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Table 1 continued

H46 (11, 7, 0) −32 α12x
4
1 + α8x

3
1x2

+ α1x
3
1x3 + α4x

2
1x
2
2

+ α0x1x
3
2 = 0

x2 + y4 + y3z

+ y3 + y2z2

+ yz3 = 0

wx = 9

wy = 6

wz = 4

E7

H47 (12, 8, 0) −36 α12x
4
1 + α8x

3
1x2

+ α0x
3
1x3 + α4x

2
1x
2
2

+ α0x1x
3
2 = 0

x2 + y4 + y3z

+ y3 + y2z2

+ yz3 = 0

wx = 9

wy = 6

wz = 4

E7

Thus Theorem 1.5 is proved.

Remark 3.11. The proof of Theorem 1.5 can also be used to describe the singular-
ities of all 3-folds Hi. For example, sufficiently general 3-folds Hi are smooth for
i ∈ {1, 2, 3, 4, 6, 9}. A sufficiently general 3-fold H5 has a single isolated ordinary
double point and is not Q-factorial. The singularities of Hi are non-isolated for
i ∈ {8, 10, 12, 14, 16, 17, 18, 20, 22, 27, 29, 33, 38}. In all other cases, a sufficiently
general 3-fold Hi has a single isolated non-cDV singular point.

Remark 3.12. One can simplify the proof of Theorem 1.5 by arguing as follows. If
X is a del Pezzo surface of degree 2 over some field with a non-Du Val singular
point defined over this field, then the ramification divisor of the double covering
X → P2 is a union of four lines. This condition can easily be checked in terms of
the numbers di. However, the authors did not use this approach, having in mind
future applications to rationality questions for the Hi: it is sometimes useful to
know the type of singularity or even the explicit local equations of X (see § 5).

§ 4. Proof of Theorem 1.6
Let X be a Fano 3-fold with canonical Gorenstein singularities such that the

linear system | −KX | has no base points and the induced morphism ϕ|−KX| is an
embedding, but the anticanonical image ϕ|−KX |(X) ⊂ Pn is not an intersection of
quadrics.

(
Here n = −K

3
X

2 + 2.
)

Remark 4.1. If −K3X = 4, then X is a quartic (possibly singular) in P4. The
birational geometry of such 3-folds was studied in [22], [54], [37], [16], [28], [63],
[64], [102], [58].

Remark 4.2. If −K3X = 6, then X is a complete intersection (possibly singular)
of a quadric and a cubic in P5. This follows easily from either Theorem 2.14 or
Proposition 2.21. The birational geometry of such 3-folds was studied in [54], [37],
[16], [29], [89], [63].

Thus we may assume that −K3X � 8. Hence Theorem 2.14 implies that X is
projectively normal in Pn and the quadrics throughX in Pn cut out a 4-fold Y ⊂ Pn
of degree n− 3. Moreover, if Π ⊂ Pn is a general linear subspace of codimension 2,
then the curve X ∩Π is either a canonically embedded smooth trigonal curve or a
canonically embedded smooth plane quintic curve, and deg(X ⊂ Pn) = 10. In the
former case, the 4-fold Y is the image of a rational scroll Proj

(⊕4
i=1OP1(di)

)
under



Hyperelliptic and trigonal Fano threefolds 389

the map given by the tautological line bundle over P1, where 0 �= d1 � · · ·� d4 � 0
and −K3X = 2(d1 + d2 + d3 + d4) + 2. In the latter case we have n = 7 and Y is a
cone over the Veronese surface v2(P

2).

Remark 4.3. The cone over a Veronese surface in P7 is isomorphic to P(13, 2, 2).
Therefore, if Y is a cone over a Veronese surface, then the 3-foldX is a hypersurface
in P(13, 22) of degree 5 because −K3X = 10.

Lemma 4.4. Let Y be a cone over a Veronese surface in P7 whose vertex is a line
L ⊂ P7. Take a resolution of singularities f : U → Y , where U = Proj(OP2(2) ⊕
OP2 ⊕OP2). Put T = f∗(OP7(1)|Y ) and let F be the pullback of OP2(1) under the
natural projection of U to P2. Put V = f−1(X) ⊂ U . Then V has canonical
Gorenstein singularities, −KV is big and numerically effective, and we have
V ∼ 2T + F on U and X = ϕ|−rKV |(V ) for r � 0. In particular, the birational
morphism f |V : V → X is crepant.

Proof. The lineL is contained inX by Remark 4.3. On the other hand,X is singular
along L ⊂ X. Indeed, let O ∈ L be a point, Π ⊂ P7 a sufficiently general linear
subspace of codimension 2 through O, and C = Π ∩X. Suppose that O is smooth
on X. Then C is a smooth anticanonically embedded plane quintic curve. Hence
quadrics through C in Π ∼= P5 cut out a smooth Veronese surface by Theorem 2.13.
On the other hand, quadrics through C in Π ∼= P5 cut out Y ∩ Π. However, the
surface Y ∩Π must be singular because Y is singular at O by hypothesis.
Therefore the morphism f |V : V → X is crepant at the general point of the line

L ⊂ X by Proposition 2.15. It follows that V contains no fibres of f and V ∼ 2T+F
on U . Hence the 3-fold V is normal (see [83], Proposition 8.23). Therefore V has
canonical Gorenstein singularities and −KV is a crepant pullback of −KX .

Remark 4.5. Lemma 4.4 does not a priori imply the existence of a corresponding
Fano 3-fold X ⊂ Y . However, this existence is easily seen. In the notation of
Lemma 4.4, the linear system |2T +L| on the 4-fold U = Proj(OP2(2)⊕OP2 ⊕OP2)
is free. In particular, sufficiently general divisors in this system are smooth. Let D
be a divisor in |2T + L| with canonical singularities. Then the adjunction formula
implies that −KD ∼ T . Therefore D is a weak Fano 3-fold, that is, the divisor
−KD is numerically effective and big. The vanishing theorem (see [91], [120])
implies that ϕ|−KD| = ϕ|T ||D. In particular, the 3-fold ϕ|−KD|(D) is a Fano 3-fold
with canonical Gorenstein singularities.

We may thus assume in what follows that X ∩ Π is a canonically embedded
smooth trigonal curve for any general linear subspace Π ⊂ Pn of codimension 2.
Therefore quadrics through X in Pn cut out a 4-fold Y which is the image of a
rational scroll Proj

(⊕4
i=1OP1(di)

)
under the map given by the tautological line

bundle, where 0 �= d1 � · · ·� d4 � 0 and −K3X = 2(d1 + d2 + d3 + d4) + 2.

Lemma 4.6. We have an inclusion Sing(Y ) ∩X ⊂ Sing(X).

Proof. Let O be a singular point on Y such that O ∈ X and the 3-fold X is non-
singular at O. Take a sufficiently general linear subspace Π ⊂ Pn of codimension 2
passing through O. Put C = Π ∩X. Then the curve C ⊂ Π ∼= Pn−2 is a smooth
anticanonically embedded trigonal curve. Therefore quadrics through C in Π ∼= P5
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cut out a smooth surface by Theorem 2.13. On the other hand, quadrics through
C in Π ∼= Pn−2 cut out the surface Y ∩Π, which must be singular at O because the
4-fold Y is singular at O by assumption.

Let f : U→Y be the birationalmorphism f=ϕ|M|, where U=Proj
(⊕4

i=1OP1(di)
)
,

0 �= d1 � · · · � d4 � 0, −K3X = 2(d1+d2+d3+d4)+2 � 8 andM is the tautological
line bundle on U . We put V = f−1(X) ⊂ U and h = f |V : V → X.

Lemma 4.7. The 3-fold V has canonical Gorenstein singularities, the anticanon-
ical divisor −KV is numerically effective and big, and KV ∼ h∗(KX), that is, the
morphism h is crepant.

Proof. The 3-fold V is normal if and only if it is smooth in codimension 1 (see [83],
Proposition 8.23). On the other hand, if d3 �= 0, then X and V are isomorphic in
codimension 2. This immediately yields the claim (compare [92]).
Wemay thus assume that d3 = d4 = 0. Put Z = Sing(Y ). Then dim(Z) � 2, and

the equation dim(Z) = 2 holds if and only if d2 = 0. Moreover, if dim(Z ∩X) = 0,
then the 3-folds X and V are isomorphic in codimension 2, which implies the claim.
On the other hand, we have Z ∩X ⊂ Sing(X) by Lemma 4.6. Since X is normal,
it follows that dim(Z ∩ X) � dim(Sing(X)) � 1. We may thus assume that the
intersection Z ∩X consists of finitely many curves and X is singular along each of
them.
The canonicity of singularities of X and Proposition 2.15 imply that g is crepant

at the general point of every curve in Z ∩X and the singularities of V are canonical
Gorenstein over the general point of every curve in Z∩X. This proves the assertion
of the lemma for the complement of a subset of codimension 2 in V . It follows that V
is normal (see [83], Proposition 8.23). Hence V ⊂ U is a divisor on a smooth 4-fold,
and V is a normal 3-fold with canonical Gorenstein singularities in codimension 2.
It follows that singularities of V are canonical Gorenstein and KV ∼ h∗(KX).

Let M be the tautological line bundle on U , and let L be a fibre of the natural
projection of U to P1. Then −KV ∼M |V by construction.

Remark 4.8. The contraction theorem (see [93]) does not a priori imply thatX is an
anticanonical model of V . However, the vanishing theorem (see [91], [120]) implies
that | −KV | = |M |V |. Therefore we see a posteriori that X is an anticanonical
image of V , that is, X = ϕ|−KV |(V ).

The adjunction formula implies that V ∼ 3M − (d1 + d2 + d3 + d4 − 2)L on U .
Let Yj ⊂ V be the subscroll induced by the natural projection

4⊕
i=1

OP1(di)→
4⊕
i=j

OP1(di).

In particular, Y4 is a curve, Y3 is a surface, and Y2 is a 3-fold.

Lemma 4.9. The following inequalities hold:

multY2(V ) = 0, multY3(V ) � 1, multY4(V ) � 2.
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Proof. The first is obvious, the second follows since V is normal, and the third
follows from the canonicity of V at a general point of Y4 by Theorem 2.9.

Therefore Corollary 2.20 yield the inequalities

2d2 − d1 − d3 − d4 + 2 � 0, d3 − d2 − d4 + 2 � 0, 2− d2 − d3 + d1 � 0.

We also have 0 �= d1 � · · · � d4 � 0 and d1 + d2 + d3 + d4 � 3 by assumption.
These inequalities determine exactly 66 different rational scrolls

F(d1, d2, d3, d4) = Proj

( 4⊕
i=1

OP1(di)
)
.

Remark 4.10. X is an anticanonical model of V , that is, X = ϕ|−rKV |(V ) for
r � 0. Thus the contraction theorem (see [93]) implies that X is a Fano 3-fold
with canonical Gorenstein singularities if and only if V has canonical Gorenstein
singularities and −KV is numerically effective and big. On the other hand,
V is uniquely determined by the rational scroll F(d1, d2, d3, d4) and the class
3M − (d1 + d2 + d3 + d4 − 2)L in the Picard group of F(d1, d2, d3, d4). However,
the linear system |3M − (d1 + d2 + d3 + d4 − 2)L| may a priori contain no
divisor with canonical singularities.

In the rest of the section we show explicitly that, in each of the 66 possible
cases, the linear system |3M − (d1 + d2 + d3 + d4 − 2)L| contains a divisor with
canonical singularities. To do this, we use Corollary 2.5 and Proposition 2.19. This
will complete the proof of Theorem 1.6.

Remark 4.11. The same idea was used in the classification of smooth trigonal Fano
3-folds (see [15], [17]) and in [41] to prove the effective boundedness of degree for
trigonal Fano 3-folds with canonical singularities. The maximal value of the degree
is attained by Theorem 1.6.

We start by considering two different possibilities in full detail.

Example 4.12. Let V ⊂ F = F(6, 5, 3, 0) be a sufficiently general divisor in the
linear system |3M − 12L|. Let us show that V has canonical singularities.
By Proposition 2.19, V is given by the zeros of a bihomogeneous polynomial

α6(t1, t2)x
3
1 + α5(t1, t2)x

2
1x2 + α

1
3(t1, t2)x

2
1x3 + α

1
0(t1, t2)x

2
1x4 + α4(t1, t2)x1x

2
2

+ α2(t1, t2)x1x2x3 + α
2
0(t1, t2)x1x

2
3 + α

2
3(t1, t2)x

3
2 + α1(t1, t2)x

2
2x3,

where αd(t1, t2) (or α
i
d(t1, t2)) is a form of degree d. Let E be the surface x1 =

x2 = 0, and let C be the curve x1 = x2 = x3 = 0. We note that the base locus
of |3M − 12L| is equal to E. Since the automorphism group of E ∼= F(3, 0) acts
transitively on E \C and V has multiplicity 1 at a general point of E, we see from
Corollary 2.5 that it suffices to prove that for any point P on C there is a divisor
V with canonical singularities in a neighbourhood of P (compare Example 3.10).
Let Y be the fibre of V ⊂ F over a sufficiently general point P ∈ P1. We put

O = C∩Y . As above, it suffices to prove that V has at most canonical singularities
in a neighbourhood of O. Hence it suffices to prove that O is a Du Val point on Y .
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Let (γ : δ) be the homogeneous coordinates of the point P ∈ P1. Then Y may
be presented as the hypersurface

α6x
3
1 + α5x

2
1x2 + α

1
3x
2
1x3 + α

1
0x
2
1x4 + α4x1x

2
2

+ α2x1x2x3 + α
2
0x1x

2
3 + α

2
3x
3
2 + α1x

2
2x3 = 0

in P4, where αi = αi(γ, δ) (resp. α
j
i = α

j
i (γ, δ)) and O = (0 : 0 : 0 : 1). Since

P is general, we have αi �= 0 (resp. αji �= 0) for all i. Hence we may assume for
convenience that αi = 1 (resp. α

j
i = 1) for all i and j.

Let x1 = x, x2 = y, x3 = z and x4 = 1. Then the local equation of Y in a
neighbourhood of O is

x3 + x2y + x2z + x2 + xy2 + xyz + xz2 + y3 + y2z = 0.

We put wt(x) = 4, wt(y) = 3 and wt(z) = 2. Then wt(x2 + xz2 + y2z) = 8,
wt(x3) = 12, wt(x2y) = 11, wt(xy2) = 10, wt(y3) = 9, wt(x2z) = 10 and
wt(xyz) = 9. Moreover, the singularity given by the equation x2 + xz2 + y2z = 0
is isolated. Therefore the singularity of Y at O is locally isomorphic to a Du Val
singularity of type D5. In particular, V has a singularity of type D5×C at a general
point of C. Using the generality in the choice of V , we may actually assume that
P is an arbitrary point of the curve C (compare Example 3.10). Thus, for any
given point P of C, the linear system |3M − 12L| contains a divisor with at most
canonical singularities in the neighbourhood of P . Hence the singularities of V are
canonical by Corollary 2.5.

Example 4.13. Let V ⊂ F = F(7, 3, 1, 0) be a general divisor in the linear system
|3M − 9L|. Let us show that V has canonical singularities.
By Proposition 2.19, V is given by the zeros of a bihomogeneous polynomial

α12(t1, t2)x
3
1 + α8(t1, t2)x

2
1x2 + α6(t1, t2)x

2
1x3 + α5(t1, t2)x

2
1x4

+ α4(t1, t2)x1x
2
2 + α2(t1, t2)x1x2x3 + α1(t1, t2)x1x2x4

+ α10(t1, t2)x1x
2
3 + α

2
0(t1, t2)x

3
2,

where αd(t1, t2) (or α
i
d(t1, t2)) is a form of degree d. Let E be the surface x1 =

x2 = 0, and let C be the curve x1 = x2 = x3 = 0. We note that the base locus
of |3M − 9L| is equal to E. Since the automorphism group of E ∼= F(1, 0) acts
transitively on E \C and V has multiplicity 1 at a general point of E, Corollary 2.5
implies that V has canonical singularities on E \ C, and it remains to verify that
V has canonical singularities at points of C (compare Example 3.10).

Let Y be the fibre of V ⊂ F over a general point P ∈ P1. We put O = C∩Y . As
above, it suffices to prove that V has canonical singularities at O. Hence it suffices
to prove that O is a Du Val point on Y .
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Let (γ : δ) be the homogeneous coordinates of P ∈ P1. Then Y may be presented
as a hypersurface corresponding to the polynomial

α12x
3
1 + α8x

2
1x2 + α6x

2
1x3 + α5x

2
1x4 + α4x1x

2
2

+ α2x1x2x3 + α1x1x2x4 + α
1
0x1x

2
3 + α

2
0x
3
2

on P4, where αi = αi(γ, δ) (resp. α
j
i = α

j
i (γ, δ)) and O = (0 : 0 : 0 : 1). Since P

is general, we have αi �= 0 (resp. αji �= 0) for all i. Therefore we may assume for
convenience that αi = 1 (resp. α

j
i = 1) for all i and j.

We put x1 = x, x2 = y, x3 = z and x4 = 1. Then the local equation of Y in a
neighbourhood of O is

x3 + x2y + x2z + x2 + xy2 + xyz + xy + xz2 + y3 = 0.

It is easy to prove that one cannot choose “good” weights for this polynomial. Hence
we cannot use Theorem 2.10 as before and we must explicitly resolve singularities in
a neighbourhood of O. It is easy to see that, resolving the singularity at O, we can
skip monomials whose weight is larger than at least one of the others. (This will be
clear from the forthcoming blow-ups.) Hence it suffices to consider the polynomial

x2 + xy+ xz2 + y3.

This polynomial determines an isolated singular point at O. We blow up this
point. The formulae in the local charts are as follows.
1) x �= 0: the change of coordinates x = x, y = xy, z = xz brings the local

equation (after dividing by x2) to the form

1 + y + xz2 + xy3 = 0,

so our surface is smooth in this chart.
2) y �= 0: the change of coordinates x = xy, y = y, z = yz yields (after dividing

by y2)

x2 + x+ xyz2 + y = 0,

and our surface is smooth in this chart.
3) z �= 0: the change of coordinates x = xz, y = yz, z = z yields (after dividing

by z2)

x2 + xy + xz + y3z = 0,

and we have two extremal (−2)-curves with the only singular point (0, 0, 0) near
z = 0.
Therefore more blow-ups are necessary. We must study the singularities given

by the local equation

x2 + xy + xz + y3z = 0.

We blow-up the point (0, 0, 0). Here are the formulae in the local charts.
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1) x �= 0: the change of coordinates x = x, y = xy, z = xz yields (after dividing
by x2)

1 + y + z + x2y3z = 0,

and the surface is smooth in this chart.
2) y �= 0: the change of coordinates x = xy, y = y, z = yz yields (after dividing

by y2)

x2 + x+ xz + y2z = x2 + x(z + 1) + y2(z + 1)− y2 = x2 + y′ 2 + z′ 2 − y′ 2z′,

where y′ = iy and z′ = z + 1. Thus the point (0, 0,−1) is Du Val of type A1.
3) z �= 0: the change of coordinates x = xz, y = yz, z = z yields (after dividing

by z2)

x2 + xy+ x+ y3z2 = 0.

We can see that the point (0,−1, 0) is singular. It coincides with the singular point
in the chart y �= 0.
Summarizing, we have two (−2)-curves after the first blow-up, two (−2)-curves

after the second blow-up and one point of type A1 on one of these curves. Hence the
graph of resolution of the original singularity corresponds to a Du Val singularity of
type A5. In particular, the 3-fold V has a singularity of type A5×C at the general
point of C. As in Example 4.12, it follows that the singularities of V are canonical
by Corollary 2.5.

We state the results of some easy calculations, which will be used in the remaining
part of the proof of Theorem 1.6.

Lemma 4.14. 1. A surface singularity given by

x3 + x2y + x2z + x2 + xy2 + xyz + xy + xz2 + xz + y3 = 0

is Du Val of type A2.
2. A surface singularity given by

x3 + x2y + x2z + x2 + xy2 + xyz + xy + xz2 + xz + y3 + y2z,

is Du Val of type A3.
3. A surface singularity given by

x3 + x2y + x2z + x2 + xy2 + xyz + xy+ xz2 + xz + y3 + y2z + yz2 + z3,

is Du Val of type A3.
4. A surface singularity given by

x3 + x2y + x2z + x2 + xy2 + xyz + xy + xz2 + y3 + y2z,

is Du Val of type A4.
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5. A surface singularity given by

x3 + x2y + x2z + x2 + xy2 + xyz + xy + xz2 + y3,

is Du Val of type A5.

Proof. In case 1, changing coordinates to x′ = x, y′ = y, z′ = x+ y + z, we get
the equation

x′z′ + y′ 3 +Q(x′, y′, z′) = 0,

where Q consists of the terms whose weight (with respect to any choice of weights)
is larger than that of either x′z′ or y′ 3. Hence this singularity is Du Val of
type A2.

In the remaining cases, it is easy to see that the corresponding equation describes
an isolated singularity. Since it is impossible to use Theorem 2.5, we shall explic-
itly resolve these singularities. Case 5 has already been discussed in Example 4.13,
along with details of the calculations. In cases 2 and 3, a single blow-up yields
two exceptional (−2)-curves and one point of type A1 on one of them. This means
that the original singularities are Du Val of type A3. In case 4, two blow-ups
yield a smooth surface, and the exceptional curves form a Dynkin diagram of
type A4.

In the rest of this section we consider all possible cases, following the pattern of
Examples 4.12 and 4.13 and using Lemma 4.14 when necessary. Differences appear
only in the numerical characteristics, equations, types of singularities and so on.
They are collected in Table 2.

Table 2 is organized as follows. The first column contains the labels of the
varieties V in the notation of Theorem 1.6. The second column gives a quadruple
(d1, d2, d3, d4) such that V is a divisor on F(d1, d2, d3, d4). The third column gives
the number b such that |V | = |3M + bL|. In cases T5, T8 and T14, this linear
system appears to be base point free, whence V is smooth by Bertini’s theorem.
Then we do not need the information contained in the other columns. In the
other cases, Bs |V | is either the curve C = Y4 given by x1 = x2 = x3 = 0 (and
then V is non-singular outside C, so it suffices to verify that V has only canonical
singularities at points of C) or the surface E = Y3 given by x1 = x2 = 0 (and
then V has multiplicity 1 at a general point of E and, since the automorphism
group of E ∼= F(d3, d4) acts transitively on E \ C (compare Example 3.10), we see
from Corollary 2.5 that it suffices to study the singularities of V at points of C
only).

The fourth column contains an equation of a general divisor V in the linear
system |3M + bL|. The fifth column contains the equation of the fibre Y of the
projection V → P1 over a general point of P1 in the neighbourhood of a general
point of C after the change of coordinates x1 = x, x2 = y, x3 = z, x4 = 1 (see
Example 4.12). The same equation describes V locally as an equation in t, x, y, z.
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For the 3-folds Tj with j ∈ {4, 6, 7, 9, 11, 15, 16, 17, 19, 25, 26, 28, 36, 45}, the
corresponding point appears to be non-singular. For Tj with j ∈ {10, 12, 13, 18,
22, 23, 24, 30, 31, 33, 34, 35, 41, 43, 44, 49, 50, 51, 52, 55, 56, 57, 58, 60, . . . , 69},
we attribute new weights wt(x) = wx, wt(y) = wy, wt(z) = wz (listed in
the sixth column) to the variables x, y, z and see that the terms of the low-
est weight describe an isolated Du Val singularity. We note that the weights
wt(x), wt(y), wt(z) coincide with those of a Du Val singularity of the type
given in the seventh column. Hence the singularity of Y in the chosen neigh-
bourhood is Du Val of this type by Theorem 2.10. Unfortunately, it is impos-
sible to find such weights in the remaining cases. But the corresponding
equations have already been considered in Lemma 4.14: the case of T37 is
exactly case 1, the case of T27 is case 2, the cases of T20, T21, T29 fall into
case 3, the cases of T32, T38, T39, T42 and T48 correspond to case 4, and
the cases of T40, T46, T47, T53, T54, T59 correspond to case 5 of Lemma 4.14.
In every case, the singularity of V is Du Val of the type given in the seventh
column.
The singularity of V is locally isomorphic to the product of C and the corre-

sponding Du Val singularity. Hence V has canonical singularities in the chosen
neighbourhood and, by Corollary 2.5, V has canonical singularities.

Table 2

Ti (d1,d2,d3,d4) b Equation of V
Local equa-

tion of V
Weights

Singu-

larity

T4 (1, 1, 1, 0) −1 α12x
3
1 + α

2
2x
2
1x2

+ α32x
2
1x3 + α

4
2x
2
1x2

+α52x1x2x3+α
6
2x1x

2
3

+ α72x
3
2 + α

8
2x
2
2x3

+ α92x2x
2
3 + α

10
2 x

3
3

+α11x
2
1x4+α

2
1x1x2x4

+α31x1x3x4+α
4
1x
2
2x4

+α51x2x3x4+α
5
1x
2
3x4

+ α10x1x
2
4 + α

2
0x2x

2
4

+ α30x3x
2
4 = 0

P1(x, y, z)

+ P2(x, y, z)

+P3(x,y,z)=0

(Pi is a (gen-

eral) homoge-

neous poly-

nomial of
degree i)

– Non-
sin-
gular

point

T5 (1, 1, 1, 1) −2 – – – –
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Table 2 continued

T6 (2, 1, 0, 0) −1 α5x
3
1 + α4x

2
1x2

+ α13x
2
1x3 + α

2
3x
2
1x4

+α33x1x
2
2+α

1
2x1x2x3

+α22x1x2x4+α
1
1x1x

2
3

+α21x1x3x4

+ α31x1x
2
4 + α

3
2x
3
2

+ α41x
2
2x3 + α

5
1x
2
2x4

+α10x2x
2
3+α

2
0x2x3x4

+ α30x2x
2
4 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + xz

+ x+ y3 + y2z

+y2+yz2+yz

+ y = 0

– Non-
sin-
gular

point

T7 (2, 1, 1, 0) −2 α4x
3
1 + α

1
3x
2
1x2

+ α23x
2
1x3 + α

1
2x
2
1x4

+α22x1x
2
2+α

3
2x1x2x3

+α11x1x2x4+α
4
2x1x

2
3

+α21x1x3x4+α
1
0x1x

2
4

+ α31x
3
2 + α

4
1x
2
2x3

+ α20x
2
2x4 + α

5
1x2x

2
3

+ α30x2x3x4 + α
6
1x
3
3

+ α40x
2
3x4 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+xz2+xz+x

+y3+y2z+y2

+yz2+yz+z3

+ z2 = 0

– Non-
sin-
gular

point

T8 (2, 1, 1, 1) −3 – – – –

T9 (2, 2, 0, 0) −2 α14x
3
1 + α

2
4x
2
1x2

+ α12x
2
1x3 + α

2
2x
2
1x4

+α34x1x
2
2+α

3
2x1x2x3

+α42x1x2x4+α
1
0x1x

2
3

+α20x1x3x4

+ α30x1x
2
4 + α

4
4x
3
2

+ α52x
2
2x3 + α

6
2x
2
2x4

+α40x2x
2
3+α

5
0x2x3x4

+ α60x2x
2
4 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + xz

+ x+ y3 + y2z

+y2+yz2+yz

+ y = 0

– Non-
sin-
gular

point
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Table 2 continued

T10 (2, 2, 1, 0) −3 α13x
3
1 + α

2
3x
2
1x2

+ α12x
2
1x3 + α

1
1x
2
1x4

+α33x1x
2
2+α

2
2x1x2x3

+α21x1x2x4+α
3
1x1x

2
3

+ α10x1x3x4 + α
4
3x
3
2

+ α32x
2
2x3 + α

4
1x
2
2x4

+α51x2x
2
3+α

2
0x2x3x4

+ α30x
3
3 = 0

P3(x, y)

+ P 12 (x, y)z

+ P 22 (x, y)

+ P1(x,y)z= 0

(Pi, P
j
i are

homogeneous

polynomials

of degree i)

wx = 1

wy = 1

wz = 1

A1

T11 (2, 2, 1, 1) −4 α12x
3
1 + α

2
2x
2
1x2

+ α11x
2
1x3 + α

2
1x
2
1x4

+α32x1x
2
2+α

3
1x1x2x3

+α41x1x2x4+α
1
0x1x

2
3

+α20x1x3x4

+ α30x1x
2
4 + α

4
2x
3
2

+ α51x
2
2x3 + α

6
1x
2
2x4

+α40x2x
2
3+α

5
0x2x3x4

+ α60x2x
2
4 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + xz

+x+ y3 + y2z

+y2+yz2+yz

+ y = 0

– Non-
sin-
gular

point

T12 (2, 2, 2, 0) −4 α12x
3
1 + α

2
2x
2
1x2

+ α32x
2
1x3 + α

1
0x
2
1x4

+α42x1x
2
2+α

5
2x1x2x3

+α20x1x2x4+α
6
2x1x

2
3

+ α30x1x3x4 + α
7
2x
3
2

+ α82x
2
2x3 + α

4
0x
2
2x4

+α92x2x
2
3+α

5
0x2x3x4

+α102 x
3
3+α

6
0x
2
3x4=0

P3(x, y, z)

+P2(x,y,z)=0

(Pi is a homo-
geneous poly-

nomial of
degree i)

wx = 1

wy = 1

wz = 1

A1

T13 (2, 2, 2, 1) −5 α11x
3
1 + α

2
1x
2
1x2

+ α31x
2
1x3 + α

1
0x
2
1x4

+α41x1x
2
2+α

5
1x1x2x3

+α20x1x2x4+α
6
1x1x

2
3

+ α30x1x3x4 + α
7
1x
3
2

+ α81x
2
2x3 + α

4
0x
2
2x4

+α91x2x
2
3+α

5
0x2x3x4

+α101 x
3
3+α

6
0x
2
3x4=0

P3(x, y, z)

+P2(x,y,z)=0

(Pi is a homo-
geneous poly-

nomial of
degree i)

wx = 1

wy = 1

wz = 1

A1
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Table 2 continued

T14 (2, 2, 2, 2) −6 – – – –

T15 (3, 1, 0, 0) −2 α7x
3
1 + α5x

2
1x2

+ α14x
2
1x3 + α

2
4x
2
1x4

+α3x1x
2
2+α

1
2x1x2x3

+α22x1x2x4+α
1
1x1x

2
3

+α21x1x3x4+α
3
1x1x

2
4

+ α41x
3
2 + α

1
0x
2
2x3

+ α20x
2
2x4 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + xz

+x+ y3 + y2z

+ y2 = 0

– Non-
sin-
gular

point

T16 (3, 1, 1, 0) −3 α6x
3
1 + α

1
4x
2
1x2

+ α24x
2
1x3 + α3x

2
1x4

+α12x1x
2
2+α

2
2x1x2x3

+α11x1x2x4+α
3
2x1x

2
3

+α21x1x3x4+α
1
0x1x

2
4

+ α20x
3
2 + α

3
0x
2
2x3

+α40x2x
2
3+α

5
0x
3
3 = 0

xQ(x, y, z)

+ P3(y, z) = 0

(Q(0) �= 0, P3
is a homoge-

neous poly-

nomial of
degree 3)

– Non-
sin-
gular

point

T17 (3, 2, 0, 0) −3 α6x
3
1 + α5x

2
1x2

+ α13x
2
1x3 + α

2
3x
2
1x4

+α4x1x
2
2+α

1
2x1x2x3

+α22x1x2x4+α
1
0x1x

2
3

+α20x1x3x4+α
3
0x1x

2
4

+ α33x
3
2 + α

1
1x
2
2x3

+ α21x
2
2x4 = 0

xQ1(x, y, z)

+y2Q2(y,z)=0

(Q1(0) �= 0)

– Non-
sin-
gular

point

T18 (3, 2, 1, 0) −4 α5x
3
1 + α4x

2
1x2

+ α13x
2
1x3 + α

1
2x
2
1x4

+α23x1x
2
2+α

2
2x1x2x3

+α11x1x2x4+α
2
1x1x

2
3

+ α10x1x3x4 + α
3
2x
3
2

+ α31x
2
2x3 + α

2
0x
2
2x4

+ α30x2x
2
3 = 0

x2Q1(x, y, z)

+xyQ2(x, y, z)

+xzQ3(x, y, z)

+y2Q4(x, y, z)

+ yz2 = 0

(Qi(0) �= 0)

wx = 1

wy = 1

wz = 1

A1
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Table 2 continued

T19 (3, 2, 1, 1) −5 α4x
3
1 + α3x

2
1x2

+ α12x
2
1x3 + α

2
2x
2
1x4

+α32x1x
2
2+α

1
1x1x2x3

+α21x1x2x4+α
1
0x1x

2
3

+α20x1x3x4+α
3
0x1x

2
4

+ α31x
3
2 + α

4
0x
2
2x3

+ α50x
2
2x4 = 0

xQ1(x, y, z)

+Q2(y, z) = 0

(Q1(0) �= 0)

– Non-
sin-
gular

point

T20 (3, 2, 2, 0) −5 α4x
3
1 + α

1
3x
2
1x2

+ α23x
2
1x3 + α

1
1x
2
1x4

+α12x1x
2
2+α

2
2x1x2x3

+α10x1x2x4+α
3
2x1x

2
3

+ α20x1x3x4 + α
2
1x
3
2

+ α31x
2
2x3 + α

4
1x2x

2
3

+ α51x
3
3 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + xz

+ y3 + y2z

+yz2+z3 = 0

– A3

T21 (3, 2, 2, 1) −6 α3x
3
1 + α

1
2x
2
1x2

+ α22x
2
1x3 + α

1
1x
2
1x4

+α21x1x
2
2+α

3
1x1x2x3

+α10x1x2x4+α
4
1x1x

2
3

+ α20x1x3x4 + α
3
0x
3
2

+ α40x
2
2x3 + α

5
0x2x

2
3

+ α60x
3
3 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + xz

+ y3 + y2z

+yz2+z3 = 0

– A3

T22 (3, 3, 1, 0) −5 α14x
3
1 + α

2
4x
2
1x2

+ α12x
2
1x3 + α

1
1x
2
1x4

+α34x1x
2
2+α

2
2x1x2x3

+α21x1x2x4

+ α10x1x
2
3 + α

4
4x
3
2

+ α32x
2
2x3 + α

3
1x
2
2x4

+ α20x2x
2
3=0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + y3

+ y2z + y2

+ yz2 = 0

wx = 2

wy = 2

wz = 1

A3
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Table 2 continued

T23 (3, 3, 2, 0) −6 α13x
3
1 + α

2
3x
2
1x2

+ α12x
2
1x3 + α

1
0x
2
1x4

+α33x1x
2
2+α

2
2x1x2x3

+α20x1x2x4+α
1
1x1x

2
3

+ α43x
3
2 + α

3
2x
2
2x3

+ α30x
2
2x4 + α

2
1x2x

2
3

+ α40x
3
3 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + y3

+ y2z + y2

+yz2+z3 = 0

wx = 3

wy = 3

wz = 2

A2

T24 (3, 3, 2, 1) −7 α12x
3
1 + α

2
2x
2
1x2

+ α11x
2
1x3 + α

1
0x
2
1x4

+α32x1x
2
2+α

2
1x1x2x3

+ α20x1x2x4

+ α30x1x
2
3 + α

4
2x
3
2

+ α31x
2
2x3 + α

4
0x
2
2x4

+ α50x2x
2
3=0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + y3

+ y2z + y2

+ yz2 = 0

wx = 2

wy = 2

wz = 1

A3

T25 (4, 1, 0, 0) −3 α9x
3
1 + α6x

2
1x2

+ α15x
2
1x3 + α

2
5x
2
1x4

+α3x1x
2
2+α

1
2x1x2x3

+α22x1x2x4+α
1
1x1x

2
3

+α21x1x3x4+α
3
1x1x

2
4

+ α0x
3
2 = 0

xQ(x, y, z)

+ y3 = 0

(Q(0) �= 0)

– Non-
sin-
gular

point

T26 (4, 2, 0, 0) −4 α8x
3
1 + α6x

2
1x2

+ α14x
2
1x3 + α

2
4x
2
1x4

+α34x1x
2
2+α

1
2x1x2x3

+α22x1x2x4+α
1
0x1x

2
3

+α20x1x3x4+α
3
0x1x

2
4

+ α32x
3
2 + α

4
0x
2
2x3

+ α50x
2
2x4 = 0

xQ(x, y, z)

+ y2 + y3 = 0

(Q(0) �= 0)

– Non-
sin-
gular

point

T27 (4, 2, 1, 0) −5 α7x
3
1 + α5x

2
1x2

+ α4x
2
1x3 + α

1
3x
2
1x4

+α23x1x
2
2+α2x1x2x3

+α11x1x2x4+α
2
1x1x

2
3

+ α10x1x3x4 + α
3
1x
3
2

+ α20x
2
2x3 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + xz

+y3+y2z = 0

– A3



402 V. V. Przyjalkowski, I. A. Cheltsov, and K. A. Shramov

Table 2 continued

T28 (4, 2, 1, 1) −6 α6x
3
1 + α4x

2
1x2

+ α13x
2
1x3 + α

2
3x
2
1x4

+α2x1x
2
2+α

1
1x1x2x3

+α21x1x2x4+α
1
0x1x

2
3

+α20x1x3x4+α
3
0x1x

2
4

+ α40x
3
2 = 0

xQ(x, y, z)

+ y3 = 0

(Q(0) �= 0)

– Non-
sin-
gular

point

T29 (4, 2, 2, 0) −6 α6x
3
1 + α

1
4x
2
1x2

+ α24x
2
1x3 + α

1
2x
2
1x4

+α22x1x
2
2+α

3
2x1x2x3

+α10x1x2x4+α
4
2x1x

2
3

+ α20x1x3x4 + α
3
0x
3
2

+ α40x
2
2x3 + α

5
0x2x

2
3

+ α60x
3
3 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + xz

+ y3 + y2z

+yz2+z3 = 0

– A3

T30 (4, 3, 1, 0) −6 α6x
3
1 + α5x

2
1x2

+ α13x
2
1x3 + α

1
2x
2
1x4

+α4x1x
2
2+α

2
2x1x2x3

+α11x1x2x4+α
1
0x1x

2
3

+ α23x
3
2 + α

2
1x
2
2x3

+ α20x
2
2x4 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + y3

+y2z+y2 = 0

wx = 2

wy = 2

wz = 1

A3

T31 (4, 3, 2, 0) −7 α5x
3
1 + α4x

2
1x2

+ α13x
2
1x3 + α

1
1x
2
1x4

+α23x1x
2
2+α

1
2x1x2x3

+α10x1x2x4+α
2
1x1x

2
3

+ α22x
3
2 + α

3
1x
2
2x3

+ α20x2x
2
3 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + y3

+ y2z + yz2

= 0

wx = 2

wy = 2

wz = 1

A3

T32 (4, 3, 2, 1) −8 α4x
3
1 + α3x

2
1x2

+ α12x
2
1x3 + α

1
1x
2
1x4

+α22x1x
2
2+α

2
1x1x2x3

+α10x1x2x4+α
2
0x1x

2
3

+α31x
3
2+α

3
0x
2
2x3 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + y3

+ y2z = 0

– A4
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Table 2 continued

T33 (4, 3, 3, 0) −8 α4x
3
1 + α

1
3x
2
1x2

+ α23x
2
1x3 + α0x

2
1x4

+α12x1x
2
2+α

2
2x1x2x3

+ α32x1x
2
3 + α

1
1x
3
2

+ α21x
2
2x3 + α

3
1x2x

2
3

+ α41x
3
3 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xz2

+ y3 + y2z

+yz2+z3 = 0

wx = 3

wy = 2

wz = 2

D4

T34 (4, 3, 3, 1) −9 α3x
3
1 + α

1
2x
2
1x2

+ α22x
2
1x3 + α

1
0x
2
1x4

+α11x1x
2
2+α

2
1x1x2x3

+α31x1x
2
3 + α

2
0x
3
2

+ α30x
2
2x3 + α

4
0x2x

2
3

+ α50x
3
3 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xz2

+ y3 + y2z

+yz2+z3 = 0

wx = 3

wy = 2

wz = 2

D4

T35 (4, 4, 2, 0) −8 α14x
3
1 + α

2
4x
2
1x2

+ α12x
2
1x3 + α

1
0x
2
1x4

+α34x1x
2
2+α

2
2x1x2x3

+ α20x1x2x4

+ α30x1x
2
3 + α

4
4x
3
2

+ α32x
2
2x3 + α

4
0x
2
2x4

+ α50x2x
2
3 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + y3

+ y2z + y2

+ yz2 = 0

wx = 2

wy = 2

wz = 1

A3

T36 (5, 2, 0, 0) −5 α10x
3
1 + α7x

2
1x2

+ α15x
2
1x3 + α

2
5x
2
1x4

+α4x1x
2
2+α

1
2x1x2x3

+α22x1x2x4+α
1
0x1x

2
3

+α20x1x3x4+α
3
0x1x

2
4

+ α1x
3
2 = 0

xQ(x, y, z)

+ y3 = 0

(Q(0) �= 0)

– Non-
sin-
gular

point

T37 (5, 2, 1, 0) −6 α9x
3
1 + α6x

2
1x2

+ α5x
2
1x3 + α4x

2
1x4

+α3x1x
2
2+α2x1x2x3

+α11x1x2x4

+α21x1x
2
3+α

1
0x1x3x4

+ α20x
3
2 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + xz

+ y3 = 0

– A2



404 V. V. Przyjalkowski, I. A. Cheltsov, and K. A. Shramov

Table 2 continued

T38 (5, 3, 1, 0) −7 α8x
3
1 + α6x

2
1x2

+ α14x
2
1x3 + α3x

2
1x4

+α24x1x
2
2+α

1
2x1x2x3

+α1x1x2x4+α
1
0x1x

2
3

+α22x
3
2+α

2
0x
2
2x3 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + y3

+ y2z = 0

– A4

T39 (5, 3, 2, 0) −8 α7x
3
1 + α5x

2
1x2

+ α4x
2
1x3 + α

1
2x
2
1x4

+α3x1x
2
2+α

2
2x1x2x3

+α10x1x2x4+α
1
1x1x

2
3

+α21x
3
2+α

2
0x
2
2x3 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + y3

+ y2z = 0

– A4

T40 (5, 3, 2, 1) −9 α6x
3
1 + α4x

2
1x2

+ α3x
2
1x3 + α

1
2x
2
1x4

+α22x1x
2
2+α1x1x2x3

+α10x1x2x4+α
2
0x1x

2
3

+ α30x
3
2 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + y3=0

– A5

T41 (5, 3, 3, 0) −9 α6x
3
1 + α

1
4x
2
1x2

+ α24x
2
1x3 + α1x

2
1x4

+α12x1x
2
2+α

2
2x1x2x3

+ α32x1x
2
3 + α

1
0x
3
2

+ α20x
2
2x3 + α

3
0x2x

2
3

+ α40x
3
3 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xz2

+ y3 + y2z

+yz2+z3 = 0

wx = 3

wy = 2

wz = 2

D4

T42 (5, 4, 2, 0) −9 α6x
3
1 + α5x

2
1x2

+ α13x
2
1x3 + α

1
1x
2
1x4

+α4x1x
2
2+α2x1x2x3

+α10x1x2x4+α
2
0x1x

2
3

+α23x
3
2+α

2
1x
2
2x3 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + y3

+ y2z = 0

– A4

T43 (5, 4, 3, 0) −10 α5x
3
1 + α4x

2
1x2

+ α13x
2
1x3

+ α10x
2
1x4 + α

2
3x1x

2
2

+α12x1x2x3+α
1
1x1x

2
3

+ α22x
3
2 + α

2
1x
2
2x3

+ α20x2x
2
3 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xz2

+ y3 + y2z

+ yz2 = 0

wx = 3

wy = 2

wz = 2

D4
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Table 2 continued

T44 (5, 4, 3, 1) −11 α4x
3
1 + α3x

2
1x2

+ α12x
2
1x3 + α

1
0x
2
1x4

+α22x1x
2
2+α

1
1x1x2x3

+ α20x1x
2
3 + α

2
1x
3
2

+ α30x
2
2x3 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xz2

+y3+y2z = 0

wx = 4

wy = 3

wz = 2

D5

T45 (6, 2, 0, 0) −6 α12x
3
1 + α8x

2
1x2

+ α16x
2
1x3 + α

2
6x
2
1x4

+α4x1x
2
2+α

1
2x1x2x3

+α22x1x2x4+α
1
0x1x

2
3

+α20x1x3x4+α
3
0x1x

2
4

+ α40x
3
2 = 0

xQ(x, y, z)

+ y3 = 0

(Q(0) �= 0)

– Non-
sin-
gular

point

T46 (6, 3, 1, 0) −8 α10x
3
1 + α7x

2
1x2

+ α5x
2
1x3 + α

1
4x
2
1x4

+α24x1x
2
2+α2x1x2x3

+α11x1x2x4+α0x1x
2
3

+ α21x
3
2 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + y3=0

– A5

T47 (6, 3, 2, 0) −9 α9x
3
1 + α6x

2
1x2

+ α5x
2
1x3 + α

1
3x
2
1x4

+α23x1x
2
2+α2x1x2x3

+α10x1x2x4+α1x1x
2
3

+ α20x
3
2 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + y3=0

– A5

T48 (6, 4, 2, 0) −10 α8x
3
1 + α6x

2
1x2

+ α14x
2
1x3 + α

1
2x
2
1x4

+α24x1x
2
2+α

2
2x1x2x3

+α10x1x2x4+α
2
0x1x

2
3

+α32x
3
2+α

3
0x
2
2x3 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + y3

+ y2z = 0

– A4

T49 (6, 4, 3, 0) −11 α7x
3
1 + α5x

2
1x2

+ α4x
2
1x3 + α

1
1x
2
1x4

+α3x1x
2
2+α2x1x2x3

+ α21x1x
2
3 + α

3
1x
3
2

+ α0x
2
2x3 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xz2

+y3+y2z = 0

wx = 4

wy = 3

wz = 2

D5
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Table 2 continued

T50 (6, 4, 3, 1) −12 α6x
3
1 + α4x

2
1x2

+ α3x
2
1x3 + α

1
1x
2
1x4

+α2x1x
2
2+α

2
1x1x2x3

+α10x1x
2
3+α

2
0x
3
2 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xz2

+ y3 = 0

wx = 6

wy = 4

wz = 3

E6

T51 (6, 4, 4, 0) −12 α6x
3
1 + α

1
4x
2
1x2

+ α24x
2
1x3 + α

1
0x
2
1x4

+α12x1x
2
2+α

2
2x1x2x3

+ α32x1x
2
3 + α

1
0x
3
2

+ α20x
2
2x3 + α

3
0x2x

2
3

+ α40x
3
3 = 0

x2 + P3(y, z)

+xP2(y, z)= 0

(Pi is a homo-
geneous poly-

nomial of
degree i)

wx = 3

wy = 2

wz = 2

D4

T52 (6, 5, 3, 0) −12 α6x
3
1 + α5x

2
1x2

+ α13x
2
1x3 + α

1
0x
2
1x4

+α4x1x
2
2+α2x1x2x3

+ α20x1x
2
3 + α

2
3x
3
2

+ α1x
2
2x3 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xz2

+y3+y2z = 0

wx = 4

wy = 3

wz = 2

D5

T53 (7, 3, 1, 0) −9 α12x
3
1 + α8x

2
1x2

+ α6x
2
1x3 + α5x

2
1x4

+α4x1x
2
2+α2x1x2x3

+α1x1x2x4+α
1
0x1x

2
3

+ α20x
3
2 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + y3=0

– A5

T54 (7, 4, 2, 0) −11 α10x
3
1 + α7x

2
1x2

+ α5x
2
1x3 + α3x

2
1x4

+α4x1x
2
2+α2x1x2x3

+α10x1x2x4+α
2
0x1x

2
3

+ α1x
3
2 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + y3=0

– A5

T55 (7, 4, 3, 0) −12 α9x
3
1 + α6x

2
1x2

+ α5x
2
1x3 + α

1
2x
2
1x4

+α3x1x
2
2+α

2
2x1x2x3

+α1x1x
2
3+α0x

3
2 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xz2

+ y3 = 0

wx = 6

wy = 4

wz = 3

E6

T56 (7, 5, 3, 0) −13 α8x
3
1 + α6x

2
1x2

+ α14x
2
1x3 + α

1
1x
2
1x4

+α24x1x
2
2+α

1
2x1x2x3

+ α0x1x
2
3 + α

2
2x
3
2

+ α21x
2
2x3 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xz2

+y3+y2z = 0

wx = 4

wy = 3

wz = 2

D5
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Table 2 continued

T57 (7, 5, 4, 0) −14 α7x
3
1 + α5x

2
1x2

+ α4x
2
1x3 + α

1
0x
2
1x4

+α3x1x
2
2+α2x1x2x3

+ α11x1x
2
3 + α

2
1x
3
2

+ α20x
2
2x3 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xz2

+y3+y2z = 0

wx = 4

wy = 3

wz = 2

D5

T58 (7, 5, 4, 1) −15 α6x
3
1 + α4x

2
1x2

+ α3x
2
1x3 + α

1
0x
2
1x4

+α2x1x
2
2+α1x1x2x3

+α20x1x
2
3+α

3
0x
3
2 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xz2

+ y3 = 0

wx = 6

wy = 4

wz = 3

E6

T59 (8, 4, 2, 0) −12 α12x
3
1 + α8x

2
1x2

+ α6x
2
1x3 + α

1
4x
2
1x4

+α24x1x
2
2+α

1
2x1x2x3

+α22x1x2x4+α
1
0x1x

2
3

+ α20x
3
2 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xy

+ xz2 + y3=0

– A5

T60 (8, 5, 3, 0) −14 α10x
3
1 + α7x

2
1x2

+ α5x
2
1x3 + α

1
2x
2
1x4

+α4x1x
2
2+α

2
2x1x2x3

+α0x1x
2
3+α1x

3
2 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xz2

+ y3 = 0

wx = 6

wy = 4

wz = 3

E6

T61 (8, 5, 4, 0) −15 α9x
3
1 + α6x

2
1x2

+ α5x
2
1x3 + α

1
1x
2
1x4

+α3x1x
2
2+α2x1x2x3

+α21x1x
2
3+α0x

3
2 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xz2

+ y3 = 0

wx = 6

wy = 4

wz = 3

E6

T62 (8, 6, 4, 0) −16 α8x
3
1 + α6x

2
1x2

+ α14x
2
1x3 + α

1
0x
2
1x4

+α24x1x
2
2+α

1
2x1x2x3

+ α20x1x
2
3 + α

2
2x
3
2

+ α30x
2
2x3 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xz2

+y3+y2z = 0

wx = 4

wy = 3

wz = 2

D5

T63 (9, 5, 3, 0) −15 α12x
3
1 + α8x

2
1x2

+ α6x
2
1x3 + α3x

2
1x4

+α4x1x
2
2+α2x1x2x3

+α10x1x
2
3+α

2
0x
3
2 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xz2

+ y3 = 0

wx = 6

wy = 4

wz = 3

E6
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Table 2 continued

T64 (9, 6, 4, 0) −17 α10x
3
1 + α7x

2
1x2

+ α5x
2
1x3 + α

1
1x
2
1x4

+α4x1x
2
2+α2x1x2x3

+α0x1x
2
3+α

2
1x
3
2 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xz2

+ y3 = 0

wx = 6

wy = 4

wz = 3

E6

T65 (9, 6, 5, 0) −18 α9x
3
1 + α6x

2
1x2

+ α5x
2
1x3 + α

1
0x
2
1x4

+α3x1x
2
2+α2x1x2x3

+α1x1x
2
3+α

2
0x
3
2 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xz2

+ y3 = 0

wx = 6

wy = 4

wz = 3

E6

T66 (10, 6, 4, 0) −18 α12x
3
1 + α8x

2
1x2

+ α6x
2
1x3 + α

1
2x
2
1x4

+α4x1x
2
2+α

2
2x1x2x3

+α10x1x
2
3+α

2
0x
3
2 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xz2

+ y3 = 0

wx = 6

wy = 4

wz = 3

E6

T67 (10, 7, 5, 0) −20 α10x
3
1 + α7x

2
1x2

+ α5x
2
1x3 + α

1
0x
2
1x4

+α4x1x
2
2+α2x1x2x3

+α20x1x
2
3+α1x

3
2 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xz2

+ y3 = 0

wx = 6

wy = 4

wz = 3

E6

T68 (11, 7, 5, 0) −21 α12x
3
1 + α8x

2
1x2

+ α6x
2
1x3 + α

1
1x
2
1x4

+α4x1x
2
2+α2x1x2x3

+α0x1x
2
3+α

2
1x
3
2 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xz2

+ y3 = 0

wx = 6

wy = 4

wz = 3

E6

T69 (12, 8, 6, 0) −24 α12x
3
1 + α8x

2
1x2

+ α6x
2
1x3 + α

1
0x
2
1x4

+α4x1x
2
2+α2x1x2x3

+α20x1x
2
3+α

3
0x
3
2 = 0

x3+x2y+x2z

+ x2 + xy2

+ xyz + xz2

+ y3 = 0

wx = 6

wy = 4

wz = 3

E6

Thus Theorem 1.6 is proved.

Remark 4.15. The proof of Theorem 1.6 gives a description of the possible sin-
gularities of the 3-folds Tj. For example, sufficiently general 3-folds Tj are
smooth for j ∈ {1, 2, 5, 8, 14} and have only isolated ordinary double points for
j ∈ {4, 7, 11, 16, 19}. The smooth trigonal 3-folds Tj are well known (see [15],
[88]). On the other hand, the 3-fold Tj always has non-isolated singularities for
j ∈ {6, 9, 13, 15, 17, 21, 24, 25, 26, 28, 32, 34, 36, 40, 41, 44, 45, 50, 58}. In all other
cases, the 3-fold Tj has at least one non-cDV-point.

Remark 4.16. In the case of T15 the variety V is always singular along the curve
x1 = x2 = α

1
1x
2
3 + α

2
1x3x4 + α

3
1x
2
4 = 0. In the case of T17 it is singular along the

curve x1 = x2 = α
1
0x
2
3 + α

2
0x3x4 + α

3
0x
2
4 = 0. In the case of T19 it is singular along
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the curve x1 = x2 = α
1
0x
2
3 + α

2
0x3x4 + α

3
0x
2
4 = 0. In the case of T25 it is singular

along the curve x1 = x2 = α
1
1x
2
3 + α

2
1x3x4 + α

3
1x
2
4 = 0. In the case of T26 it is

singular along the curve x1 = x2 = α
1
0x
2
3+α

2
0x3x4+α

3
0x
2
4 = 0. In the case of T28 it

is singular along the curve x1 = x2 = α
1
0x
2
3+α

2
0x3x4+α

3
0x
2
4 = 0. In the case of T36

it is singular along the curve x1=x2=α
1
0x
2
3+α

2
0x3x4+α

3
0x
2
4 = 0. In the case of T45 it

is singular along the curve x1 = x2 = α
1
0x
2
3+α

2
0x3x4+α

3
0x
2
4 = 0. All of these curves

are bisections of the corresponding projections ϕ : F(d1, d2, d3, d4)→ P1. They are
reducible in the cases of T17, T19, T26, T28, T36 and T45. This simple observation
will enable us to apply Lemma 5.2 to these varieties and prove their rationality.

Remark 4.17. In the case of T7, the linear system |M − L| determines a birational
map ψ : V ��� P3, which may be factorized as ψ = ω ◦ γ ◦ β. Here β flops the
curve C, γ contracts the strict transform of the surface with equation x1 = 0
(on V ) onto a smooth rational curve whose image on P3 is a line, and ω is a double
covering of P3 branched over a non-singular quartic surface. In particular, V is
birationally isomorphic to a hypersurface of degree 4 in P(14, 2). The latter variety
is also known as a double space of index two. It was studied in [54], [31], [32], [37],
[33], [60] and [34].

Remark 4.18. In the cases of T4 and T6, the variety X ⊂ P6 is an anticanon-
ically embedded Fano variety with canonical Gorenstein singularities and with
(−KX)3 = 8 (compare [88], Statement 4.1.12).

Remark 4.19. One can simplify the proof of Theorem 1.6 by arguing as follows. If
X is a del Pezzo surface of degree 3 over some field with a non-Du Val singular point
defined over this field, then X is a cone. The authors did not use this approach for
the reasons pointed out in Remark 3.12.

§ 5. Rationality and non-rationality
In this section we prove Proposition 1.10. Let Hi and Tj be the Fano 3-folds

in Theorems 1.5 and 1.6 respectively. The non-rationality of sufficiently general
3-folds H1, H2, H3, H4, H6, T1, T2, T7, T8 certainly follows (see Remark 1.8 and
Example 1.11) from the results of [22], [62], [54], [37], [16], [31]–[33], [60], [38],
[52], [34], [28], [29], [61], [111], [5], [82], [63], [98], [64], [6], [102], [7], [59]. On the
other hand, it is clear that the 3-folds H9, T5 and T14 are always rational (see
Remark 1.8).
We may thus assume that i �∈ {1, 2, 3, 4, 6, 9} and j �∈ {1, 2, 5, 7, 8, 14}. Then the

3-fold Hi is naturally birationally equivalent to a del Pezzo fibration τ : Yi → P1
of degree 2 (see Theorem 1.5) with canonical Gorenstein singularities, and the
3-fold Tj is naturally birationally equivalent to a del Pezzo fibration ψ : Vj → P1 of
degree 3 (see Theorem 1.6) with canonical Gorenstein singularities. Let Y i and V j
be generic fibres of τ and ψ respectively. Then Y i and V j are del Pezzo surfaces
with Du Val singularities defined over the field C(x).

Remark 5.1. The rationality of the surfaces Y i and V j over C(x) implies that of
the 3-folds Yi and Vj respectively.

The del Pezzo surfaces Y i and V j always have a C(x)-point by Theorem 2.24.
Moreover, the sets of their C(x)-points are huge by Theorem 2.25.
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Lemma 5.2. Let S be a del Pezzo surface of degree 3 with canonical singularities
defined over an arbitrary perfect field F. Suppose that the set Sing(S) contains an
F-point O ∈ S. Then S is rational over F.

Proof. The surface S is a cubic hypersurface in P3 (see [23], [25], [20], [95]). Thus
the projection from O gives a birational map to P2.

Therefore the proof of Theorem 1.6 along with Lemma 5.2 immediately yields
the rationality of the 3-fold Tj for j ∈ {10, 12, 13, 17, . . ., 24, 26, . . ., 69}.

Lemma 5.3. Let S be a del Pezzo surface of degree 2 with at most Du Val singu-
larities and defined over an arbitrary perfect field F. Suppose that the singularity
set Sing(S) contains an F-point O ∈ S which is locally isomorphic to one of the
following Du Val points: E6, E7, Dn or Ak for n � 5 and k � 7. Then S is rational
over F.

Proof. Let f : W → S be a minimal resolution of singularities of S, and let E =
f−1(O) ⊂ W be a connected curve defined over F. Then KW ∼ f∗(KS). In
particular, W is a weak del Pezzo surface (see [67]) of degree 2, the curve E is
Gal(F/F)-invariant, and all the irreducible components of E that are defined over
F must split into disjoint Gal(F/F)-orbits. However, the irreducible components
of E form a graph of type E6, E7, Dn or Ak for n � 5 and k � 7. Therefore the
curve E splits into at least 4 (possibly reducible) curves defined over F. Since
the intersection form of irreducible components of E is negative (see [51]), it follows
that the rank of Pic(W ) is at least 5.
There is a birational morphism g : W → U defined over F such that the surface U

is minimal (see [14], [103], [20]), that is, no curve on U can be contracted to a smooth
point. Moreover, the rank of Pic(U) does not exceed 2 by Theorem 2.22. Therefore
K2U � K2W + 3 = 5. Thus the surface U is rational over F by Theorem 2.23.

Lemma 5.3 and the proof of Theorem 1.5 imply that the hyperelliptic 3-foldsHi
are rational for i ∈ {22, 26, 27, 28, 29, 31, . . . , 47}.

Remark 5.4. The non-rationality of the surfaces Y i and V j over C(x) does not
imply the non-rationality of the 3-folds Hi and Tj respectively. However we believe
that the rough method used above can be also applied to prove the non-rationality
of Hi in many of the remaining cases. For example, one can try to use the proofs of
Theorems 1.5 and 1.6 to describe the geometry of the surfaces Y i and V j in more
detail and then use the results of [26], [35] and [20].

Proposition 5.5. Let X be a sufficiently general 2 Fano 3-fold T3 in Theorem 1.6.
Then X is non-rational.

Proof. Suppose that U = Proj(OP2(2) ⊕ OP2 ⊕ OP2), f : U → P2 is the natural
projection, T is the tautological line bundle on U , and F = f∗(OP2(1)). Then X
is an anticanonical image of a sufficiently general divisor V ∈ |2T + F |. The 3-fold
V is smooth by Bertini’s theorem. Moreover, Lefschetz’ theorem (see [55], [50])
implies that Pic(V ) ∼= Z⊕ Z.

2Here and in what follows we always understand “general” as “belonging to a Zariski open
subset of the moduli space” unless otherwise specified.
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Let g : V → P2 be the restriction of the projection f : U → P2. Then g is a conic
bundle. Let ∆ be the degeneration divisor of g, and let Y be a sufficiently general
surface in the linear system |g∗(OP2(1))|. Then Y is smooth and K2Y = 1 by the
adjunction formula. Therefore the conic bundle g|Y has 7 reducible fibres. Thus
the degree of the divisor ∆ ⊂ P2 is equal to 7 (see [56], § 3.5), and V is non-rational
by Theorem 2.16.

Proposition 5.6. Let X be a sufficiently general 3 3-fold H5 in Theorem 1.5. Then
X is non-rational.

Proof. The 3-fold X is an anticanonical model of a smooth weak Fano 3-fold V ,
which may be described as a double covering π : V → U = Proj(OP1(2)⊕OP1(1)⊕
OP1) branched over a divisor D ∈ |4M − 2L|, where M is the tautological line
bundle on U and L is a fibre of the natural projection of U to P1. The divisor D
may be given in the bihomogeneous coordinates (see Proposition 2.19) by the zeros
of the bihomogeneous polynomial

α6x
4
1 + α5x

3
1x2 + α

1
4x
3
1x3 + α

2
4x
2
1x
2
2 + α

1
3x
2
1x2x3 + α

1
2x
2
1x
2
3 + α

2
3x1x

3
2

+ α22x1x
2
2x3 + α

1
1x1x2x

2
3 + α

1
0x1x

3
3 + α

3
2x
4
2 + α

2
1x
3
2x3 + α

2
0x
2
2x
2
3,

where αid = α
i
d(t1, t2) is a homogeneous polynomial of degree d.

Consider a double covering χ : Y → U branched over a sufficiently general divisor
∆ ⊂ U which is given by the zeros of the same bihomogeneous polynomial as D
with the only difference being that α10 = 0. Then Y is not smooth because ∆
has singularities along the curve Y3 ⊂ U given by x1 = x2 = 0. The curve Y3
is the smallest negative subscroll of U (see Proposition 2.19). We may assume
that ∆ ⊂ U is a sufficiently general element of the linear subsystem of the system
|4M − 2L| consisting of all divisors with singularities along Y3. The divisor ∆ is
smooth outside Y3 by Bertini’s theorem.
Put C = χ−1(Y3). Then the 3-fold Y has singularities of type A1 × C at the

general point of the curve C. Moreover, the singularities of Y at other points of C
are locally isomorphic to the singularity

x2 + y2 + z2t = 0 ⊂ C4 ∼= Spec(C[x, y, z, t]),

where the curve C is given locally by x = y = z = 0. It follows that one can resolve

the singularities of Y by one blow-up f : Ỹ → Y of the curve C.
Let g : Ũ → U be the blow-up of the curve Y3 ⊂ U . Then the diagram

Ỹ

f

��

χ̃ �� Ũ

g

��
Y

χ �� U

is commutative, where χ̃ : Ỹ → Ũ is a double covering. Let E be the exceptional
divisor of g. Then χ̃ is branched over the divisor g−1(∆) ∼ g∗(4M − 2L) − 2E.

3The complement of a countable union of Zariski-closed subsets in the moduli space.
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In the case when the divisor g−1(∆) is ample on Ũ , Lefschetz’ theorem (see [55],

[50], [121]) implies that Pic( Ỹ ) ∼= Pic( Ũ) ∼= Z3 (see [60], [65], [66]). However, the
divisor g−1(∆) is not ample, although it is numerically effective and big. Indeed,
the linear system |g∗(M − L) − E| is free and the linear system |g∗(M)−E| gives
a P1-bundle

τ : Ũ → Proj(OP1(2)⊕OP1(1)) ∼= F1.

Therefore the divisor g−1(∆) ∼ g∗(4M − 2L) − 2E is numerically effective and
big. Hence we can replace Lefschetz’ theorem by the first part of the proof of

Proposition 32 in [56] to get Pic( Ỹ ) ∼= Pic( Ũ) ∼= Z3.
Let Y2 ⊂ U be the largest negative subscroll (see Proposition 2.19). The surface

Y2 is given by the equation x1 = 0 in the bihomogeneous coordinates on U . More-
over, Y2 ∼= Proj

(
OP1(1)⊕OP1

)
. Put S = g−1(Y2). Then S ∼= Y2 and the morphism

τ contracts the surface S to the exceptional section of F1.

By construction, the P1-bundle τ induces a conic bundle τ̃ = τ ◦ χ̃: Ỹ → F1. Put
S̃ = χ̃−1(S), and let Z ⊂ Ỹ be a general fibre of the natural projection of Ỹ to P1.
Then Z is a smooth weak del Pezzo surface of degree 2, that is, −KZ is numerically
effective and big and K2Z = 2. Moreover, the morphism g ◦ χ̃|S̃ : S̃ → Y2 is a double
covering branched over a divisor with the following equation in bihomogeneous
coordinates:

α32(t0, t1)x
2
2 + α

2
1(t0, t1)x2x3 + α

2
0(t0, t1)x

2
3 = 0,

where αid(t1, t2) is the homogeneous polynomial of degree d in the bihomogeneous
equation of ∆.
Let Ξ ⊂ F1 be the degeneration divisor of the conic bundle τ̃ . Then Ξ ∼ 6s∞+al,

where s∞ is the exceptional section of F1, l is a fibre of the projection of F1 to P
1,

and a ∈ Z. The structure of the morphism g ◦ χ̃|S̃ implies that s∞ �⊂ Ξ. Moreover,
the intersection s∞ · Ξ is equal to the number of reducible fibres of the induced
conic bundle τ̃ |S̃. This number can easily be calculated from the bihomogeneous
equation of the ramification divisor of g ◦ χ̃|S̃. More precisely, the reducible fibres
of τ̃ |S̃ correspond to zeros of the discriminant (α21)2 − 4α20α32, whence s∞ · Ξ = 2.
Therefore a = 8. Thus Y is non-rational by Theorem 2.16.
The 3-fold Y is rationally connected (see [95]). Thus the non-rationality of Y

implies that Y is non-ruled as well. Therefore the 3-fold V is non-ruled by Theo-
rem 2.18 because we assumed V to be sufficiently general. Hence X is non-rational.

Proposition 5.7. Let X be a sufficiently general 3-fold H7 from Theorem 1.5.
Then X is non-rational.

Proof. The 3-fold X is an anticanonical model of a weak Fano 3-fold V such that
there is a double covering

π : V → U = Proj
(
OP1(2)⊕OP1(2)⊕OP1

)
,

branched over a divisor D ∈ |4M − 4L|, where M is the tautological line bundle
on U and L is a fibre of the natural projection of U to P1. The divisor D may
be given in bihomogeneous coordinates (see Proposition 2.19) by the zeros of a
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bihomogeneous polynomial

α14x
4
1 + α

2
4x
3
1x2 + α

3
4x
2
1x
2
2 + α

4
4x1x

3
2 + α

5
4x
4
2 + α

1
2x
3
1x3 + α

2
2x
2
1x2x3

+ α32x1x
2
2x3 + α

4
2x
3
2x3 + α

1
0x
2
1x
2
3 + α

2
0x1x2x

2
3 + α

3
0x
2
2x
2
3,

where αid = α
i
d(t1, t2) is a homogeneous polynomial of degree d.

The divisor D has singularities along the curve Y3 ⊂ U given by x1 = x2 = 0.
Since X is general, the divisor D ⊂ U is a sufficiently general element of the linear
system |4M − 4L|. In particular, D is smooth outside Y3 by Bertini’s theorem.
The 3-fold V has singularities of the type A1 × C at a general point of the curve
C = χ−1(Y3). Moreover, one can resolve the singularities of V by one blow-up

f : Ṽ → V of the curve C.
Let g : Ũ → U be the blow-up of the curve Y3 ⊂ U . Then the diagram

Ṽ

f

��

π̃ �� Ũ

g

��
V

π �� U

is commutative, where the morphism π̃ : Ṽ → Ũ is a double covering. Let E
be the exceptional divisor of g. Then π̃ is branched over the divisor g−1(D) ∼
g∗(4M − 4L) − 2E. On the other hand, the linear system |g∗(M − 2L) − E| is a
free pencil whose image on U is generated by the divisors x1 = 0 and x2 = 0. In
particular, the divisor g−1(D) ∼ g∗(4M −4L)−2E is numerically effective and big
on Ũ . Then the first part of the proof of Proposition 32 in [56] (a stronger version
of Lefschetz’ theorem) implies that

Pic( Ṽ ) ∼= Pic( Ũ) ∼= Z3.
The linear system |g∗(M − L) −E| is also free and gives a P1-bundle

τ : Ũ → Proj
(
OP1(2)⊕OP1(2)

) ∼= F0.
The rational map τ ◦g−1 is given in bihomogeneous coordinates by the linear system
on U spanned by β1(t0, t2)x1 + β2(t0, t2)x2, where βi(t0, t2) is a homogeneous
polynomial of degree 1.
The P1-bundle τ induces a conic bundle τ̃ = τ ◦ π̃ : Ṽ → F0. Let ∆ ⊂ F0 be the

degeneration divisor of τ̃ , and let L1, L2 be fibres of the two projections of F0 to P
1

such that τ∗(L1) ∼ g∗(L) and τ∗(L2) ∼ g∗(M − 2L)−E. Then ∆ ∼ nL1+6L2 for
some n ∈ Z. Moreover, we have n = 4 by elementary calculations (see the proof of
Proposition 5.6). Hence V is non-rational by Theorem 2.16.

Proposition 5.8. Let X be a 3-fold H8 in Theorem 1.5. Then X is rational.

Proof. Arguing as in the proof of Proposition 5.7, we get a conic bundle τ̃ =

τ ◦ π̃ : Ṽ → P1 × P1, where Ṽ is birationally isomorphic to X. Moreover, this case
is simpler since the proof of rationality of Ṽ does not require a proof that the conic

bundle τ̃ is standard, that is, that Pic( Ṽ ) ∼= Z3. Simple calculations show that the
degeneration divisor ∆ ⊂ P1×P1 of τ̃ has bidegree (6, 2). Now the rationality of X
follows immediately from Theorems 2.24, 2.22 and 2.23.
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Proposition 5.9. Let X be a sufficiently general 3-fold T4 in Theorem 1.6. Then
X is non-rational.

Proof. The 3-fold X is an anticanonical image of a sufficiently general divisor

V ⊂ U = Proj
(
OP1(1) ⊕OP1(1)⊕OP1(1)⊕OP1

)
belonging to the linear system |3M − L|, where M is the tautological line bundle
on U , and L is a fibre of the natural projection of U to P1. The divisor D is given
in bihomogeneous coordinates on U by

α12x
3
1 + α

2
2x
2
1x2 + α

3
2x
2
1x3 + α

4
2x
2
1x2 + α

5
2x1x2x3 + α

6
2x1x

2
3 + α

7
2x
3
2

+ α82x
2
2x3 + α

9
2x2x

2
3 + α

10
2 x

3
3 + α

1
1x
2
1x4 + α

2
1x1x2x4 + α

3
1x1x3x4

+ α41x
2
2x4 + α

5
1x2x3x4 + α

5
1x
2
3x4 + α

1
0x1x

2
4 + α

2
0x2x

2
4 + α

3
0x3x

2
4 = 0,

where αid = α
i
d(t0, t1) is a homogeneous polynomial of degree d. Since X is general,

V is smooth. Moreover, the anticanonical morphism ϕ|−KV | contracts a single curve
C ⊂ V (given by x1 = x2 = x3 = 0) to an ordinary double point O on X. The
corresponding birational morphism ϕ|M | maps the rational scroll U to the cone U

over P1 × P2 with vertex O.
The 3-foldX and the 4-fold U are not Q-factorial. Moreover, the birational mor-

phisms ϕ|−KV | and ϕ|M | may be regarded as Q-factorializations of X and U respec-

tively (see [92]). There are also other ways to Q-factorialize X and U . Namely,

one can find a scroll Ũ = Proj
(
OP2(1)⊕OP2(1)⊕OP2

)
and a birational morphism

ϕ|T | : Ũ → U , where T is the tautological line bundle on Ũ . Moreover, the birational
map ϕ−1|T | ◦ ϕ|M | is an antiflip (see [93], [99]) in the curve C ⊂ U .
Let Y ⊂ Ũ be the proper transform of X on the 4-fold Ũ . Then Y is a smooth

weak Fano 3-fold and Y ∼ 2T + F for F = f∗(OP2(1)), where f is the natural
projection of Ũ to P2. The original 3-fold X is an anticanonical image of the
3-fold Y , and the birational map ϕ−1|−KY |◦ϕ|−KV | is a simple flop in the curve C ⊂ V
induced by the antiflip ϕ−1|T | ◦ϕ|M |. Lefschetz’ theorem implies that Pic(Y ) ∼= Z⊕Z.
The restriction g : Y → P2 of the projection f : Ũ → P2 is a conic bundle. Let

∆ be the degeneration divisor of g. Simple calculations (see the proof of Propo-
sition 5.5) imply that ∆ ∼ OP2(7) (see [56], § 4.4.1). Therefore the 3-fold Y is
non-rational by Theorem 2.16 (see [54], [37]).

Proposition 5.10. Let X be a sufficiently general 3-fold T6 in Theorem 1.6. Then
X is non-rational.

Proof. The 3-fold X is an anticanonical image of a weak Fano 3-fold V , which may
be regarded as a sufficiently general divisor on the rational scroll U = Proj(OP1(2)⊕
OP1(1)⊕OP1⊕OP1) lying in the linear system |3M−L|, whereM is the tautological
line bundle on U and L is a fibre of the natural projection of U to P1. Thus the
3-fold V is given in bihomogeneous coordinates on U by

α5x
3
1 + α4x

2
1x2 + α

1
3x
2
1x3 + α

2
3x
2
1x4 + α

3
3x1x

2
2 + α

1
2x1x2x3

+ α22x1x2x4 + α
1
1x1x

2
3 + α

2
1x1x3x4 + α

3
1x1x

2
4 + α

3
2x
3
2

+ α41x
2
2x3 + α

5
1x
2
2x4 + α

1
0x2x

2
3 + α

2
0x2x3x4 + α

3
0x2x

2
4 = 0,
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where αid = α
i
d(t0, t1) is a homogeneous polynomial of degree d. The 3-fold V

contains a surface Y3 ∼= P1 × P1 given by x1 = x2 = 0. This surface is the base
locus of the linear system |3M − L|. However, V is smooth at the general point
of Y3. On the other hand, V is always singular at the points where

x1 = x2 = α
1
1x
2
3 + α

2
1x3x4 + α

3
1x
2
4 = α

1
0x
2
3 + α

2
0x3x4 + α

3
0x
2
4 = 0.

Since V is general, it follows that these points are ordinary double points on V and
V is smooth outside them.
Let g : Ũ → U be the blow-up of Y3 ⊂ U , E the exceptional divisor of g, and

Ṽ = g−1(V ) ⊂ Ũ . Then Ṽ ∼ g∗(3M − L) − E, Ṽ is smooth, and g|Ṽ is a small
resolution of the 3-fold V . On the other hand, the linear system |g∗(M −L)−E| is
free. Therefore the divisor Ṽ is numerically effective and big on Ũ . In the case when

Ṽ is ample, Lefschetz’ theorem implies that Pic( Ṽ ) ∼= Pic( Ũ) ∼= Z3. However, the
divisor Ṽ is not ample. Nevertheless, we can replace Lefschetz’ theorem by
the arguments in the first part of the proof of Proposition 32 in [56] to get

Pic( Ṽ ) ∼= Pic( Ũ) ∼= Z3.
The linear system |g∗(M) −E| is free and determines a P2-bundle

τ : Ũ → Proj
(
OP1(2)⊕OP1(1)

) ∼= F1.
The rational map τ ◦ g−1 is given in bihomogeneous coordinates by a linear system
on U spanned by β1(t0, t2)x1 + β2(t0, t2)x2, where βi(t0, t2) is a homogeneous
polynomial of degree 1.

The P2-bundle τ induces a conic bundle τ̃ = τ |Ṽ : Ṽ → F1. Let ∆ ⊂ F1 be
the degeneration divisor of τ̃ . It follows from the construction that ∆ ∼ 5s∞ + al,
where s∞ is the exceptional section of F1 and l is a fibre of the natural projection
of F1 to P

1.
Let s0 be a sufficiently general section of F1 such that s0 ∩ s∞ = ∅. We put

S = τ̃−1(s0) and B = τ
−1(s0). Then S = B∩Ṽ ⊂ B, and the divisor B is naturally

isomorphic to the scroll

Proj
(
OP1(2)⊕OP1 ⊕OP1

)
.

Moreover, g(B) ∼= B and g(B) ∩ V = g(S) ∪ Y3. However, the surface Y3 is
determined by the equation x1 = 0 on the scroll g(B), while g(B) is a general
divisor in the linear system |M − L|. Therefore we have S ∼ 2T + F on the
scroll B, where T is the tautological line bundle on B and F is a fibre of
the natural projection of B to P1. It follows that K2S = 1, s0 · ∆ = 7 and a = 7.
Hence Ṽ is non-rational by Theorem 2.16.

Proposition 5.11. Let X be a 3-fold T25 in Theorem 1.6. Then X is rational.

Proof. We can repeat the construction of the conic bundle in Proposition 5.10 to

get a conic bundle τ̃ = Ṽ → F3, where Ṽ is birationally equivalent to X. However,
we do not need the condition Pic( Ṽ ) ∼= Z3 or the smoothness of Ṽ . Let ∆ ⊂ F3 be
the degeneration divisor of τ̃ . Then elementary calculations imply that ∆ · s0 = 1,
where s0 is a sufficiently general section on F3 which is disjoint from the exceptional

section of F3. Therefore the 3-fold Ṽ is rational by Theorems 2.24, 2.22 and 2.23.
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Proposition 5.12. Let X be a sufficiently general 3-fold T9 in Theorem 1.6. Then
X is non-rational.

Proof. We can repeat the construction of the conic bundle in the proof of Proposi-

tion 5.10 to get a conic bundle τ̃ = Ṽ → F0 ∼= P1 × P1 such that Ṽ is birationally
equivalent to X, Ṽ is smooth, and Pic( Ṽ ) ∼= Z3. Let ∆ ⊂ F0 be the degeneration
divisor of τ̃ . Then elementary calculations (see the proof of Proposition 5.10) imply

that the divisor ∆ ⊂ P1 × P1 has bidegree (5, 4). Therefore Ṽ is non-rational by
Theorem 2.16.

Proposition 5.13. Let X be a 3-fold T11 in Theorem 1.6. Then X is rational.

Proof. We can repeat the construction of the conic bundle in the proof of Proposi-

tion 5.10 to get a conic bundle τ̃ = Ṽ → F0 ∼= P1 × P1 such that Ṽ is birationally
isomorphic to X. However we do not need to prove that Ṽ is smooth or that

Pic( Ṽ ) ∼= Z3. Let ∆ ⊂ F0 be the degeneration divisor of τ̃ . Then elementary
calculations imply that the divisor ∆ ⊂ P1 × P1 has bidegree (5, 2). Hence we can
consider the composite θ : Ṽ → P1 of the conic bundle τ̃ and one of the projections
of P1 × P1 onto P1 such that a sufficiently general fibre of θ is a surface S with
K2S = 6. Then the rationality of Ṽ follows from Theorems 2.24, 2.22 and 2.23.

Thus Proposition 1.10 is proved. The approach to proving the non-rationality
of Hi and Tj together with the standard degeneration technique (see [54], [37],
[94]) can be used as a pattern to prove non-rationality of many 3-folds fibred into
del Pezzo surfaces of degree 2 and 3 (see [52], [30], [56], [43]).
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to the Lüroth problem”, Mat. Sb. 86:1 (1971), 140–166; English transl., Math. USSR-Sb.

15:1 (1971), 141–166.

[23] Yu. I. Manin, “Rational surfaces over perfect fields”, Publ. Math. IHES 30 (1966), 55–114.

[24] Yu. I. Manin, “Rational surfaces over perfect fields. II”, Mat. Sb. 72 (1967), 161–192;

English transl.,Math. USSR-Sb. (1968), 141–168.

[25] Yu. I. Manin, Cubic forms, Nauka, Moscow 1972; English transl., North-Holland,

Amsterdam 1986.

[26] Yu. I. Manin and M. A. Tsfasman, “Rational varieties: algebra, geometry, arithmetic”,

Uspekhi Mat. Nauk 41:2 (1986), 43–94; English transl., Russian Math. Surveys 41:2
(1986), 51–116.

[27] A. V. Pukhlikov, “Birational automorphisms of a double space and a double quadric”, Izv.

Akad. Nauk SSSR Ser. Mat. 52:1 (1988), 229–239; English transl., Math. USSR-Izv. 32
(1989), 233–243.

[28] A. V. Pukhlikov, “Birational automorphisms of a three-dimensional quartic with an
elementary singularity”,Mat. Sb. 135:4 (1988), 472–496; English transl., Math. USSR-Sb.

63 (1989), 457–482.

[29] A. V. Pukhlikov, “Maximal singularities on the Fano variety V 36 ”, Vestnik Mosk. Gos.

Univ. Ser. 1. Mat. Mekh. 1989, no. 2, 47–50; English transl., Moscow Univ. Math. Bull.
44 (1989), 70–75.

[30] A. V. Pukhlikov, “Birational automorphisms of three-dimensional algebraic varieties with

a pencil of del Pezzo surfaces”, Izv. Ross. Akad. Nauk Ser. Mat. 62:1 (1998), 123–164;
English transl., Izv. Math. 62 (1998), 115–165.

[31] A. S. Tikhomirov, “The geometry of the Fano surface of the double cover of P3 branched
in a quartic”, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 415–442; English transl., Math.

USSR-Izv. 16 (1981), 373–397.

[32] A. S. Tikhomirov, “The intermediate Jacobian of the double cover of P3 branched at a

quartic”, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 1329–1377; English transl., Math.
USSR-Izv. 17 (1981), 523–566.

[33] A. S. Tikhomirov, “Singularities of the theta divisor of the intermediate Jacobian of the

double cover of P3 of index two”, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 1062–1081;
English transl.,Math. USSR-Izv. 21 (1983), 355–373.

http://dx.doi.org/10.1070/SM1996v187n07ABEH000145
omis
V. A. Iskovskikh, “A rationality criterion for conic bundles”, Mat. Sb. 187:7 (1996), 75–92;
English transl., Sb. Math. 187 (1996), 1021–1038.

http://dx.doi.org/10.1070/im1998v062n01ABEH000188
omis
A. V. Pukhlikov, “Birational automorphisms of three-dimensional algebraic varieties with
a pencil of del Pezzo surfaces”, Izv. Ross. Akad. Nauk Ser. Mat. 62:1 (1998), 123–164;
English transl., Izv. Math. 62 (1998), 115–165.



418 V. V. Przyjalkowski, I. A. Cheltsov, and K. A. Shramov

[34] A. S. Tikhomirov, “The Abel–Jacobi map for sextics of genus 3 on double covers of P3

of index two”, Dokl. Akad. Nauk SSSR 286 (1986), 821–824; English transl., Soviet Math.

Dokl. 33 (1986), 204–206.

[35] M. A. Tsfasman, “Arithmetic of singular del Pezzo surfaces”, Uspekhi Mat. Nauk 38:6
(1983), 131–132; English transl. in Russian Math. Surveys 38:6 (1983).

[36] A. N. Tyurin, “On intersections of quadrics”, Uspekhi Mat. Nauk 30:6 (1975), 51–99;

English transl., Russian Math. Surveys 30:6 (1975), 51–105.

[37] A. N. Tyurin, “Intermediate Jacobian of three-dimensional varieties”, Itogi Nauki Tekh.
Sovrem. Probl. Mat., vol. 12, VINITI, Moscow 1979, p. 5–57; English transl., J. Soviet

Math. 13 (1980), 707–745.

[38] S. Khashin, “Birational automorphisms of a double Veronese cone of dimension three”,
Vestnik Mosk. Gos. Univ. Ser. 1 Mat. Mekh. 1984, no. 1, 13–16; English transl., Moscow

Univ. Math. Bull. 39 (1984), 15–20.

[39] I. A. Cheltsov, “Singularities of 3-dimensional varieties admitting an ample effective divisor
of Kodaira dimension zero”, Mat. Zametki 59 (1996), 618–626; English transl., Math.

Notes 59 (1996), 445–450.

[40] I. A. Cheltsov, “Three-dimensional algebraic manifolds having a divisor with numerically
trivial canonical class”, Uspekhi Mat. Nauk 51:1 (1996), 177–178; English transl., Russian

Math. Surveys 51 (1996), 140–141.

[41] I. A. Cheltsov, “Bounded three-dimensional Fano varieties of integer index”, Mat. Zametki
66 (1999), 445–451; English transl.,Math. Notes 66 (1999), 360–365.

[42] I. A. Cheltsov, “A double space with a double line”, Mat. Sb. 195:10 (2004), 109–156;

English transl., Sb. Math. 195 (2004), 1503–1544.

[43] I. A. Cheltsov, “The degeneration method and the non-rationality of 3-folds with a pencil
of Del Pezzo surfaces”, Uspekhi Mat. Nauk 59:4 (2004), 203–204; English transl., Russian

Math. Surveys 59 (2004), 792–793.

[44] V. V. Shokurov, “The Noether–Enriques theorem on canonical curves”,Mat. Sb. 86:3

(1971), 367–408; English transl., Math. USSR-Sb. 15 (1971), 361–403.

[45] V. V. Shokurov, “Smoothness of the general anticanonical divisor on a Fano 3-fold”,
Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 430–441; English transl., Math. USSR-Izv. 14

(1980), 395–405.

[46] V. V. Shokurov, “Existence of a straight line on a Fano 3-fold”, Izv. Akad. Nauk SSSR Ser.
Mat. 43 (1979), 922–964; English transl., Math. USSR-Izv. 15 (1980), 173–209.

[47] V. V. Shokurov, “Prym varieties: theory and applications”, Izv. Akad. Nauk SSSR Ser.

Mat. 47 (1983), 785–855; English transl., Math. USSR-Izv. 23 (1984), 93–147.

[48] V. Alexeev, “Theorems about good divisors on log Fano varieties (case of index r > n−2)”,
Lecture Notes in Math. 1479 (1991), 1–9.

[49] F. Ambro, “Ladders on Fano varieties”, J. Math. Sci. (New York) 94 (1999), 1126–1135.

[50] A. Andreotti and T. Frankel, “The Lefschetz theorem on hyperplane sections”, Ann. of

Math. 69 (1959), 713–717.

[51] M. Artin, “Some numerical criteria of contractability of curves on algebraic surfaces”,
Amer. J. Math. 84 (1962), 485–496.

[52] F. Bardelli, “Polarized mixed Hodge structures: on irrationality of threefolds via

degeneration”, Ann. Mat. Pura Appl. 137 (1984), 287–369.

[53] W. Barth, C. Peters, and A. van de Ven, Compact complex surfaces, Ergebnisse der
Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin–New York 1984.

[54] A. Beauville, “Varietes de Prym et jacobiennes intermédiaires”, Ann. Sci. École Norm.
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