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Local inequalities and birational
superrigidity of Fano varieties

I. A. Cheltsov

Abstract. We obtain local inequalities for log canonical thresholds and
multiplicities of movable log pairs. We prove the non-rationality and bira-
tional superrigidity of the following Fano varieties: a double covering of a
smooth cubic hypersurface in Pn branched over a nodal divisor that is cut
out by a hypersurface of degree 2(n − 3) > 10; a cyclic triple covering of a
smooth quadric hypersurface in P2r+2 branched over a nodal divisor that is
cut out by a hypersurface of degree r > 3; a double covering of a smooth com-
plete intersection of two quadric hypersurfaces in Pn branched over a smooth
divisor that is cut out by a hypersurface of degree n− 4 > 6.

§ 1. Introduction

Let X be a variety,1 O a smooth point of X and M a linear system on X that
has no fixed components. Suppose that dim(X) > 3 and O is a centre of canonical
singularities of the log pair

(
X, 1

nM
)
. Namely, there is a birational morphism

f : X → X such that we have an equivalence

KX +
1
n
M∼Q f∗

(
KX +

1
n
M

)
+

k∑
i=1

a(X,MX , Ei)Ei

in a neighbourhood of O and the inequality a(X,MX , Ej) 6 0 for some j, where M
is the proper transform of M onX, the Ei are exceptional divisors of the birational
morphism f and the a(X,MX , Ei) are rational numbers.

The following result is proved in [59]. It is known as the 4n2-inequality .

Theorem 1. We have multO(S1 · S2) > 4n2 for general divisors S1, S2 of the
linear system M.

The Noether–Fano–Iskovskikh inequality (see [16], Theorem 64) and Theorem 1
imply the birational superrigidity 2 and, in particular, the non-rationality of smooth
quartic threefolds (see [5], [4], [59], [32]). The local inequality in Theorem 1 cannot

1All varieties are assumed to be projective, normal and defined over C.
2Let V be a Fano variety having terminal and Q-factorial singularities such that rkPic(V ) = 1.

We say that V is birationally superrigid if the following conditions hold: V can not be birationally
transformed into a fibration τ : Y → Z such that dim(Y ) > dim(Z) 6= 0 and the Kodaira dimension
of a general fibre of τ is −∞; V is not birational to a Fano variety of Picard rank 1 having terminal
and Q-factorial singularities that is not biregular to V ; the groups Bir(V ) and Aut(V ) coincide.
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be improved if dim(X) = 3 (see [31], [46]). One might expect this inequality to
admit considerable improvement for higher-dimensional X, but this does not seem
to be the case.

There are also local inequalities for singular points. They are similar to the
inequality in Theorem 1, and one can use them to prove the non-rationality of many
higher-dimensional mildly singular Fano varieties. For example, the following result
of [32] yields the non-rationality of any factorial quartic threefold having at most
isolated ordinary double points (see [6], [32], [57]).

Theorem 2. Let P be an isolated ordinary double point on X such that the lin-
ear system M consists of Q-Cartier divisors 3 and P is a centre of canonical
singularities of the log pair

(
X, 1

nM
)
. Then we have multP (S) > n, where S

is a general divisor of M and multP (S) is the positive integer such that S̃ ∼Q
g∗(S) − multP (S)E. Here g : X̃ → X is the blow-up of P , E is the exceptional
divisor of the birational morphism g and S̃ is the proper transform of S on X̃ . We
also have the strict inequality multP (S) > n if dim(X) > 3.

As in the case of Theorem 1, the inequality in Theorem 2 cannot be improved
in the case when dim(X) = 3 nor, perhaps, in the case when dim(X) > 4.

The purpose of this paper is to obtain the following local inequalities, which
imply the birational superrigidity and, in particular, the non-rationality of many
higher-dimensional Fano varieties of degree 4 6 or 8.

Theorem 3. Let Y be a variety of dimension r > 4, H a linear system on Y
without fixed components, S1 and S2 general divisors of H and P a smooth point
of Y such that P is a centre of canonical singularities of the log pair

(
Y, 1

n H
)

for
some n ∈ N. Suppose that the singularities of the log pair

(
Y, 1

n H
)

are canonical
outside P . Let π : Ŷ → Y be the blow-up of P , and let Π be the exceptional divisor
of the morphism π. Then there is a linear subspace Λ ⊂ Π ∼= Pr−1 of codimension 2
such that

multP (S1 · S2 ·∆) > 8n2

for every effective divisor ∆ on Y that satisfies the following hypotheses :
1) ∆ contains P and is smooth at P ;
2) the divisor π−1(∆) contains Λ;
3) ∆ contains no subvarieties of Y of codimension 2 that are contained in the

base locus of H.

Theorem 4. Let V be a variety of dimension r > 4, H a linear system on V with-
out fixed components, S1 and S2 general divisors of H and P an isolated ordinary
double point of V such that P is a centre of canonical singularities of the log pair(
V, 1

n H
)

for some n ∈ N. Suppose that the singularities of the log pair
(
V, 1

n H
)

are
canonical outside P . Let π : V̂ → V be the blow-up of P and let E be the exceptional
divisor of the birational morphism π. (One can identify E with a smooth quadric
hypersurface in Pr .) Then there is a linear subspace Λ ⊂ Pr of codimension 3 such

3A Weil divisor is called a Q-Cartier divisor if some non-zero multiple of it is a Cartier divisor.
4The degree of a Fano variety V is the number (−KV )n, where n = dim(V ).
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that Λ is contained in the quadric E and

multP (S1 · S2 ·∆) = multP (S1|∆ · S2|∆) > 6n2

for every effective divisor ∆ on V that satisfies the following hypotheses :
1) ∆ contains the point P ;
2) P is an ordinary double point of ∆;
3) the divisor π−1(∆) contains Λ;
4) ∆ contains no subvarieties of V of codimension 2 that are contained in the

base locus of H.

One can show that the inequalities in Theorems 3 and 4 are strict for varieties of
dimension 5 or more. Thus we may regard Theorem 3 (resp. Theorem 4) as a natural
higher-dimensional generalization of Theorem 1 (resp. Theorem 2). Theorems 3 and
4 may be called the 8n2-inequality and 6n2-inequality respectively. We mention
that all local intersections in Theorem 4 are well defined via the intersections of
the corresponding cycles on the blow-up of the variety at the ordinary double point
(see Definition 7).

We note that the condition on the linear subspace in Theorem 4 becomes vacuous
for varieties of dimension 6 or more by Lefschetz’ theorem (see [27], [21]). This yields
the following corollary.

Corollary 1. Let V be a variety of dimension r > 6, H a linear system on V
without fixed components, S1 and S2 general divisors of H and P an isolated ordi-
nary double point of V such that P is a centre of canonical singularities of the log
pair

(
V, 1

n H
)

for some n ∈ N. Suppose that the log pair
(
V, 1

n H
)

has canonical
singularities outside P . Then multO(S1 · S2) > 6n2.

We use Theorems 3 and 4 to prove the following result.

Theorem 5. The following Fano varieties are birationally superrigid :
1) a double covering of a smooth hypersurface V ⊂ Pn of degree 3 branched over

an effective divisor R ⊂ V such that R has at most isolated ordinary double points,
R is cut out on V by a hypersurface in Pn of degree 2(n− 3) and n > 9;

2) a cyclic triple covering of a smooth quadric hypersurface Q ⊂ P2r+2 branched
over an effective divisor S ⊂ Q such that S has at most isolated ordinary double
points and S is cut out on Q by a hypersurface in P2r+2 of degree 3r > 12;

3) a double covering of a smooth complete intersection Y ⊂ Pn of two quadric
hypersurfaces branched over a smooth effective divisor D ⊂ Y that is cut out on Y
by a hypersurface in Pn of degree 2(n− 4) > 12.

All varieties in Theorem 5 are complete intersections in weighted projective
spaces. In particular, we can effectively apply Theorem 5 to construct examples of
rationally connected 5 non-rational higher-dimensional varieties.

Example 1. Let Q be the quadric hypersurface in P10 given by the equation

10∑
i=0

x2
i = 0 ⊂ P10 ∼= Proj(C[x0, . . . , x10])

5A variety is said to be rationally connected if any pair of general points of it can be joined by a
rational curve (see [54]–[56], [50]). For example, every unirational variety is rationally connected.
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and let ψ : X → Q be a cyclic triple covering branched over a divisor that is cut
out on the quadric Q ⊂ P10 by the hypersurface

x6
0x

6
1 + x6

2x
6
3 + x6

4x
6
5 + x6

6x
6
7 + x6

8x
6
9 = 0 ⊂ P10 ∼= Proj(C[x0, . . . , x10]).

Then X is a Fano variety, dim(X) = 9, (−KX)9 = 6 and simple calculations
show that X is smooth. The variety X is birationally superrigid and non-rational
by Theorem 5. We may regard X as the weighted complete intersection in P(111, 4)
given by the equations

10∑
i=0

x2
i = z3 − x6

0x
6
1 + x6

2x
6
3 + x6

4x
6
5 + x6

6x
6
7 + x6

8x
6
9 = 0 ⊂ P(111, 4)

∼= Proj(C[x0, . . . , x10, z]).

We note that Fano varieties satisfying the hypotheses of Theorem 5 are expected
to be birationally superrigid because their degree and singularities are sufficiently
small. Informally speaking, we expect Fano varieties to become more rational when
their anticanonical degree gets bigger and their singularities get worse. For exam-
ple, it follows from the classification of smooth Fano threefolds that a smooth Fano
threefold is rational if its degree is bigger than 24 (see [44]). Thus the claim of
Theorem 5 looks rather natural. Unfortunately, all existing proofs of the birational
superrigidity of higher-dimensional Fano varieties use the projective geometry of
their anticanonical map. It is natural to expect that some results on the birational
superrigidity of Fano varieties can be proved without using properties of their anti-
canonical rings. For example, we expect the following to be true.

Conjecture 1. Let X be a smooth Fano variety of dimension n such that
rkPic(X) = 1 and (−KX)n 6 n. Then X is birationally superrigid.

Conjecture 1 has been proved only in dimension 3 (via the classification of smooth
Fano threefolds; see [44]). On the other hand, is is supported by the many new
examples of birationally superrigid higher-dimensional Fano varieties given in
Theorem 5. The proof of Theorem 5 shows that the main difficulty in proving
Conjecture 1 is to find an appropriate way to apply existing local inequalities to
Fano varieties without using their projective geometry. It is most likely that the
proof of Conjecture 1 will be very hard, but we have every hope that the following
conjecture will be proved in the near future by existing methods.

Conjecture 2. Let X be a smooth Fano variety of dimension n such that
rkPic(X) = 1 and (−KX)n = 1. Then X is birationally superrigid.

The geometrical meaning of Theorem 5 is akin to that of the theorem of Noether
which asserts that the group of birational automorphisms of P2 is generated by
projective automorphisms and the Cremona involution (see [31]). There are many
interesting problems related to the latter theorem, and one of them is that of the
birational classification of plane elliptic pencils considered in [24]. The ideas in [24]
are rigorously justified in [3], where it is proved that every elliptic pencil on the
projective plane can be birationally transformed into a so-called Halphen pencil.
One can consider a similar problem for Fano varieties that satisfy the hypotheses
of Theorem 5. Our methods enable us to prove the following result.
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Theorem 6. Birationally superrigid Fano varieties that satisfy the hypotheses
of Theorem 5 cannot be birationally transformed into elliptic fibrations.

Birational transformations into elliptic fibrations are used in [25], [26], [40] to
study the potential density 6 of rational points on Fano threefolds. The following
result is obtained there.

Theorem 7. The rational points are potentially dense on all smooth Fano three-
folds except possibly for the double covering of P3 branched over a smooth sextic
surface.

The possible exception appears in Theorem 7 because no birational transforma-
tions into elliptic fibrations are known for the double covering of P3 branched over
a smooth sextic surface. On the other hand, it follows from [29] that the double
covering of P3 branched over a smooth sextic surface is not birational to an elliptic
fibration, and it follows from the classification of smooth Fano threefolds (see [44])
that it is the only smooth Fano threefold with this property.

The well-known weak Lang conjecture asserts that the rational points are not
potentially dense on varieties of general type. It is known only for curves and
subvarieties of abelian varieties (see [35], [36]). On the other hand, the geometry of
birationally superrigid varieties is reminiscent of the geometry of varieties of general
type. Hence we can expect that the rational points are not potentially dense on
some birationally superrigid varieties. This may be regarded as a possible way of
constructing an example of a rationally connected non-unirational variety (see [52],
Conjecture 4.1.6).

§ 2. Preliminaries

In this section we consider properties of movable log pairs (see [19], [16]) and
some results related to the Shokurov connectedness principle (see [18]).

Definition 1. A movable log pair (X,MX) is a pair consisting of a variety X and
a finite formal linear combination MX =

∑n
i=1 aiMi (referred to as a movable

boundary), where the Mi are linear systems on X without fixed components and
the ai are non-negative rational numbers.

One can naturally define the image of a movable boundary under a birational
map because the base loci of the components of a movable boundary contain no
divisors.

Remark 1. Let (X,MX) be a movable log pair. We can naturally regard the
self-intersection M2

X as an effective cycle of codimension 2 on X provided that X
has Q-factorial singularities. Namely, write MX =

∑n
i=1 aiMi, where the Mi are

linear systems without fixed components. For every index i, choose two sufficiently
general divisors Si and Ŝi of Mi, then put M2

X =
∑n
i,j=1 aiaj Si · Ŝj .

One can define the discrepancies, terminality, canonicity, log terminality and
log canonicity for movable log pairs in the same way as for ordinary log pairs
(see [48]). Moreover, the singularities of a movable log pair coincide with those of

6Rational points of a variety V defined over a number field F are potentially dense if there is
a finite extension F ⊂ K of fields such that the set of all K-points of V is Zariski dense in V .
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the underlying variety outside the union of the base loci of the components of the
movable boundary. It follows that every movable log pair is birational to a movable
log pair having terminal singularities (see [42]).

Definition 2. A proper irreducible subvariety Y ⊂ X is called a centre of canonical
singularities of a movable log pair (X,MX) if one can find a smooth variety W , a
birational morphism f : W → X and an exceptional divisor E1 ⊂W of f such that

KW + f−1(MX) ∼Q f∗(KX +MX) +
k∑
i=1

a(X,MX , Ei)Ei,

where the a(X,MX , Ei) are rational numbers, the Ei are exceptional divisors of the
birational morphism f , f(E1) = Y and a(X,MX , E1) 6 0. The set of all centres
of canonical singularities of the log pair (X,MX) is denoted by CS(X,MX).

Definition 2 implies that a movable log pair (X,MX) has terminal singularities
if and only if CS(X,MX) = ∅.

Remark 2. Let (X,MX) be a movable log pair with terminal singularities. Then the
singularities of the movable log pair (X, εMX) are also terminal for every sufficiently
small rational number ε > 1.

Remark 3. Let (X,MX) be a movable log pair and let Z be a proper irreducible
subvariety of X such that X is smooth at a general point of Z. Then elementary
properties of blow-ups of smooth varieties at smooth subvarieties ensure that

Z ∈ CS(X,MX) ⇒ multZ(MX) > 1,

and multZ(MX) > 1 ⇒ Z ∈ CS(X,MX) in the case when codim(Z ⊂ X) = 2.

Remark 4. Let (X,MX) be a movable log pair, H a general hyperplane section
of X and Z a proper irreducible subvariety of X such that dim(Z) > 1 and Z ∈
CS(X,MX). Then every component of Z∩H is contained in the set CS(H,MX |H).

We mainly use movable log pairs whose boundaries consist of a single linear sys-
tem without fixed components (see [32]). However, we sometimes need to consider
more complicated movable log pairs. Let us illustrate this by proving the following
result 7 obtained in [58].

Theorem 8. Let ψ : X → Spec(O) and ϕ : V → Spec(O) be fibrations into
del Pezzo surfaces of degree d, where O is a discrete valuation ring. Let ρ : X 99K V
be a birational map inducing an isomorphism of general fibres of ψ and ϕ such that
the diagram

X

ψ

��

ρ //_________ V

ϕ

��
Spec(O) id // Spec(O)

7Theorem 8 also holds for fibrations into del Pezzo surfaces of degree 1, but the proof must be
slightly modified (see [58]). The arguments in the proof of Theorem 8 can be applied in much more
general situations (see [17]). For example, it is easy to prove a result similar to Theorem 8 for
fibrations into smooth hypersurfaces in Pn of degree n > 4 using the results of [14], [17]. However,
the claim of Theorem 8 holds under much weaker and more natural assumptions (see [1], [2]). It
seems that our proof does not reflect the geometrical meaning of Theorem 8 (see [8]).
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commutes. If 1 6= d 6 4 and the scheme-theoretic fibres of ψ and ϕ over the closed
point of Spec(O) are smooth, then ρ is an isomorphism.

Proof. Put Λ = |−KX |, Γ = |−KV |, Λ̄ = ρ(Λ), Γ = ρ−1(Γ) and

MX =
1 + ε

2
Λ +

1 + ε

2
Γ, MV =

1 + ε

2
Λ̄ +

1 + ε

2
Γ,

where ε is a sufficiently small positive rational number. Then the movable log pairs
(X,MX) and (V,MV ) are birationally equivalent while the divisors KX +MX and
KV +MV are ample. Therefore Lemma 36 of [16] shows that ρ is an isomorphism
provided that the singularities of the log pairs (X,MX) and (V,MV ) are canonical.

To complete the proof, it suffices to assume that the singularities of (X,MX) are
not canonical and show that this leads to a contradiction.

The singularities of the log pair
(
X, 1+ε

2 Γ
)

are not canonical because we can
disregard the linear system Λ. Indeed, Λ has no base points because ψ is a fibration
into del Pezzo surfaces of degree d > 1.

LetX be the scheme-theoretic fibre of ψ over the closed point of Spec(O). Then
the singularities of the log pair

(
X, 1+ε

2 Γ |X
)

are not log canonical by Theorem 17.6
in [53] or by Theorem 13 below. In particular, the singularities of the log pair(
X, 1

2 Γ |X
)

are not log terminal because we can choose ε > 0 to be as small as
we wish. On the other hand, elementary properties of del Pezzo surfaces of degree
d 6 4 imply that the singularities of the log pair

(
X, 1

2 S
)

are always log terminal
for every curve S of the linear system |−KX | (see [58]).

For the rest of the section we do not impose any restrictions on the coefficients or
components of the boundary. In particular, the boundaries need not be effective
ormovable. However, we assume that all log canonical divisors are Q-Cartier divisors.

Definition 3. Consider an arbitrary log pair (X,BX) and a birational morphism
f : V → X. A log pair (V,BV ) is called the log pullback of the log pair (X,BX) if

BV = f−1(BX)−
n∑
i=1

a(X,BX , Ei)Ei, KV +BV ∼Q f∗(KX +BX),

where a(X,BX , Ei) ∈ Q and the Ei are exceptional divisors of f .

Definition 4. Let (X,BX) be an arbitrary log pair. A proper irreducible sub-
variety Y ⊂ X is called a centre of log canonical singularities of (X,BX) if one
can find a birational morphism f : W → X and a divisor E ⊂ W (not necessar-
ily f -exceptional) such that E is contained in the support of the effective part of
the divisor bBY c.

Definition 5. We denote by LCS(X,BX) the set of all centres of log canonical
singularities of the log pair (X,BX) and by LCS(X,BX) the union of all centres of
its log canonical singularities. The set LCS(X,BX) is regarded as a proper subset
of X and is usually called the locus of log canonical singularities.

Remark 5. Let (X,BX) be a log pair, H a sufficiently general hyperplane section
of X and Z ⊂ X a proper irreducible subvariety such that dim(Z) > 1 and Z ∈
LCS(X,BX). Then every irreducible component of Z ∩ H is contained in the
set LCS(H,BX |H).
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We consider a log pair (X,BX), where BX =
∑k
i=1 aiBi, ai ∈ Q, and the Bi

are either effective, irreducible and reduced divisors on X, or linear systems on X
without fixed components. We say that the boundary BX is effective if each of the
ai is non-negative, and we say that the boundary BX is movable if every Bi is a
linear system without fixed components.

Example 2. Let O be a smooth point on X belonging to the set LCS(X,BX),
f : V → X the blow-up of O and E the exceptional divisor of f . Then either E ∈
LCS(V,BV ) or there is a proper subvariety Z ⊂ E belonging to the set LCS(V,BV ).
The exceptional divisor E belongs to LCS(V,BV ) if and only if the inequality
multO(BX) > dim(X) holds.

Suppose that f : Y → X is a birational morphism, Y is smooth and the union of
the proper transforms of all the components of BX and all f -exceptional divisors
forms a divisor with simple normal crossings. Then the birational morphism f is
called a log resolution of the log pair (X,BX).

Definition 6. The subscheme associated with the ideal sheaf

I(X,BX) = f∗(d−BY e)

is called the subscheme of log canonical singularities of the log pair (X,BX) and is
denoted by L(X,BX).

We have Supp(L(X,BX)) = LCS(X,BX) ⊂ X.
The following result is the Shokurov vanishing theorem (see [18], [20] and [16],

Theorem 42).

Theorem 9. Suppose that BX is effective. Let H be any numerically effective big
divisor on X such that the divisor KX + BX + H is numerically equivalent to a
Cartier divisor D. Then Hi(X, I(X,BX)⊗D) = 0 for every i > 0.

We now consider two simple applications of Theorem 9, which are special cases
of a much more general result (see [14], [17], [38]).

Lemma 1. Suppose that V = P1 × P1 and BV is an effective boundary on V of
bidegree (a, b), where a, b ∈ Q ∩ [0, 1). Then LCS(V,BV ) = ∅.

Proof. Write BV =
∑k
i=1 aiBi, where the ai are positive rational numbers and the

Bi are irreducible reduced curves. Then ai 6 max(a, b) < 1 for every i because
the intersections of BV with the fibres of the two projections to P1 are equal to a
and b respectively. In particular, the set LCS(V,BV ) does not contain curves.

Suppose that the set LCS(V,BV ) contains a point O ∈ V . Let H be an arbitrary
ample Q-divisor on V of bidegree (1− a, 1− b). Then there is a Cartier divisor D
on V such that D ∼Q KV + BV + H and H0(OV (D)) = 0. However, it follows
from Theorem 9 that the natural map

H0(OV (D)) → H0(OL(V,BV )(D)) → 0

is surjective, but H0(OL(V,BV )(D)) = H0(OL(V,BV )) 6= 0. This is a contradiction.
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Lemma 2. Suppose that V ⊂ Pn is a smooth hypersurface, BV is an effective
boundary on V and BV ≡rH for r ∈ Q∩[0, 1), where H∈|OPn(1)|V |. If deg(V )<n,
then the singularities of the log pair (V,BV ) are log terminal.

Proof. Put k = deg(V ). Suppose that the set LCS(V,BV ) contains some sub-
variety Z ⊂ V , but k < n. Then Theorem 2 of [7] yields that dim(Z) = 0. Hence
the set LCS(V,BV ) contains at most closed points of V . It follows that the sup-
port of the scheme of log canonical singularities L(V,BV ) is zero-dimensional and
H0(OL(V,BV )) 6= 0.

We have
KV +BV + (1− r)H ≡ (k − n)H

and H0(OV ((k − n)H)) = 0 because k < n. However the sequence

H0(OV ((k − n)H)) → H0(OL(V,BV )((k − n)H)) → 0

is exact by Theorem 9, but H0(OL(V,BV )((k − n)H))=H0(OL(V,BV )) 6=0. This is
a contradiction.

We can apply the idea behind the proofs of Lemmas 1 and 2 to obtain much more
general results. Namely, given an arbitrary Cartier divisor D on X, we consider
the exact sequence of sheaves

0 → I(X,BX)⊗D → OX(D) → OL(X,BX)(D) → 0

and the corresponding exact sequence of cohomology groups

H0(OX(D)) → H0(OL(X,BX)(D)) → H1(I(X,BX)⊗D).

Applying Theorem 9, we get the following connectedness theorems (see [18]).

Theorem 10. Suppose that BX is effective and the divisor −(KX+BX) is numer-
ically effective and big. Then the set LCS(X,BX) is connected.

Theorem 11. Suppose that BX is effective and the divisor −(KX+BX) is numer-
ically effective and big with respect to some morphism g : X → Z with connected
fibres. Then the set LCS(X,BX) is connected in the neighbourhood of every fibre
of g.

The proof of Theorem 9 can also be used to obtain the following result, which
is Theorem 17.4 in [53].

Theorem 12. Suppose that the divisor −(KX + BX) is numerically effective and
big with respect to some morphism g : X → Z with connected fibres, and the inequal-
ity codim(g(Bi) ⊂ Z) > 2 holds whenever bi < 0. Then LCS(Y,BY ) is connected
in the neighbourhood of every fibre of the morphism g ◦ f : Y → Z .

We have defined a centre of canonical singularities and the set of all centres of
canonical singularities for movable log pairs (see Definition 2). Similar definitions
also work for ordinary log pairs.

Theorem 13. Suppose that the boundary BX is effective and Z is an element
of CS(X,BX) contained in the support of an effective irreducible Cartier divisor H
on X such that H is not a component of BX and H is smooth at a general point
of the subvariety Z . Then LCS(H,BX |H) 6= ∅.
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Proof. Consider the log pair (X,BX +H). Then

{Z,H} ⊂ LCS(X,BX +H).

Let f : W → X be a log resolution of the log pair (X,BX +H). Then

KW + Ĥ ∼Q f∗(KX +BX +H) +
∑
E 6=Ĥ

a(X,BX +H,E)E,

where Ĥ = f−1(H). Applying Theorem 12 to the log pullback of the log pair
(X,BX +H) on the variety W , we see that there is an exceptional divisor E of the
morphism f such that f(E) = Z, a(X,BX , E) 6 −1 and Ĥ ∩ E 6= ∅. Hence
the equivalence

KĤ ∼ (KW + Ĥ)|Ĥ ∼Q f |∗
Ĥ

(KH +BX |H) +
∑
E 6=Ĥ

a(X,BX +H,E)E|Ĥ

completes the proof.

The following result can be proved in the same way as Theorem 13.

Corollary 2. Suppose that the boundary BX is movable and effective and the sin-
gularities of the log pair (X,BX) are log terminal in a punctured neighbourhood
of a point O of X such that X has an isolated hypersurface singularity at O and
O ∈ CS(X,MX). Then O is contained in the set LCS(S,BS), where S =

⋂k
i=1Hi,

BS = BX |S and Hi is a general hyperplane section of X through O.

The following result is Theorem 3.1 in [32], which gives the simplest known proof
of the 4n2-inequality (see [59]). This proof uses Theorem 13.

Theorem 14. Let H be a surface, O a smooth point of H , MH an effective mov-
able boundary on H and ∆1, ∆2 irreducible reduced curves on H that intersect each
other normally at O. Suppose that

O ∈ LCS(H, (1− a1)∆1 + (1− a2)∆2 +MH)

for some non-negative rational numbers a1 and a2. Then

multO(M2
H) >

{
4a1a2 if a1 6 1 or a2 6 1,
4(a1 + a2 − 1) if a1 > 1 and a2 > 1.

Theorem 14 can easily be proved by induction on the number of blow-ups that
must be done in order to obtain the corresponding negative discrepancy.

Proof of Theorem 2. Let O be an isolated ordinary double point of the variety X
and BX an effective boundary on X such that BX is a Q-Cartier divisor and
O ∈ CS(X,BX). We must show that multO(BX) > 1 if dim(X) > 3, where
multO(BX) is a rational number such that

BW ∼Q f∗(BX)−multO(BX)E.
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Here f : W → X is the blow-up of O, BW = f−1(BX) and E is the exceptional
divisor of the birational morphism f . By Corollary 2, we may assume that X is a
threefold.

Suppose that multO(BX) < 1. Then the equivalence

KW +BW ∼Q f∗(KX +BX) + (1−multO(BX))E

yields the existence of a subvariety Z ⊂ E that is a centre of canonical singular-
ities of the log pair (W,BW ). Therefore the set LCS(E,BW |E) is non-empty by
Theorem 13. This contradicts Lemma 1 because E ∼= P1 × P1.

Theorem 2 can be generalized in two ways.

Proposition 1. Suppose that dim(X) = 3, BX is an effective boundary, the set
CS(X,BX) contains an isolated double point O of X and X is locally isomorphic
to the hypersurface

y3 =
3∑
i=1

x2
i ⊂ C4 ∼= Spec(C[x1, x2, x3, y])

in a neighbourhood of O. Then multO(BX) > 1
2 , where multO(BX) is a rational

number defined by the equivalence BW ∼Q f∗(BX)−multO(BX)E. Here f : W → X
is the blow-up of O, BW = f−1(BX) and E is the exceptional divisor of f .

Proof. The variety W is smooth and the exceptional divisor E is a cone in P3

over a smooth conic. Moreover, the restriction −E|E is rationally equivalent to a
hyperplane section of the cone E ⊂ P3. Hence we have the equivalence

KW +BW ∼Q f∗(KX +BX) + (1−multO(BX))E.

Suppose that multO(BX) < 1
2 . Then

CS(W,BW ) ⊂ CS(W,BW + (multO(BX)− 1)E)

because multO(BX)− 1 < 0. On the other hand, the log pair

(W,BW + (multO(BX)− 1)E)

is a log pullback of the log pair (X,BX), but O ∈ CS(X,BX). Hence there is an
irreducible proper subvariety Z ⊂ E such that Z ∈ CS(W,BW ). It follows from
Theorem 13 that the set LCS(E,BW |E) is non-empty.

Let BE = BW |E . Then the set LCS(E,BE) contains no curves on E since
otherwise the intersection of BE with a ruling of the cone E would be strictly
bigger than 1

2 , which is impossible because multO(BX) < 1
2 . Hence we see that

dim(Supp(L(E,BE))) = 0.
Let H be a hyperplane section of the cone E ⊂ P3. Then

KE +BE + (1−multO(BX))H ∼Q −H

and H0(OE(−H)) = 0. The sequence of cohomology groups

H0(OE(−H)) → H0(OL(E,BE)) → H1(E, I(E,BE)⊗OE(−H))

is exact and H1(E, I(E,BE) ⊗ OE(−H)) = 0 by Theorem 9. Hence we have
H0(OL(E,BE)) = 0, which is impossible because LCS(E,BE) 6= ∅.
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Using Corollary 2 and Theorem 2, we get the following result.

Proposition 2. Suppose that BX is an effective boundary consisting of a Q-Cartier
divisor and dim(X) > 4. Let O be an isolated double point on X such that X is
locally isomorphic in a neighbourhood of O to the hypersurface

y3 =
dim(X)∑
i=1

x2
i ⊂ Cdim(X)+1 ∼= Spec(C[x1, . . . , xdim(X), y])

and O ∈ CS(X,BX). Then multO(BX) > 1, where multO(BX) is a rational number
given by the equivalence BW ∼Q f∗(BX) −multO(BX)E. Here f : W → X is the
blow-up of O, BW = f−1(BX) and E is the exceptional divisor of f .

The following generalization of Theorem 2 of [7] is Lemma 3.18 in [15].

Proposition 3. Let V be a smooth complete intersection
⋂k
i=1Gi ⊂ Pm of hyper-

surfaces Gi with m − k > 2, D an effective divisor on V and S an irreducible
subvariety of V such that dim(S) > k and codim(S ⊂ V ) > 2. Then we have
multS(D) 6 n, where n ∈ N is such that D ∼ OPm(n)|V .

Corollary 3. Suppose that (V,BV ) is a log pair, BV is effective, V is a smooth
complete intersection

⋂k
i=1Gi ⊂ Pm of hypersurfaces Gi with m−k > 2 and BV ∼Q

OPm(1)|V . Then the set CS(V,BV ) contains no subvarieties of V of dimension
greater than or equal to k.

§ 3. The 8n2-inequality

In this section we prove Theorem 3. Let X be a variety with dim(X) > 3 and
BX =

∑n
i=1 aiBi a movable boundary on X, where the Bi are linear systems on X

without fixed components and the ai are non-negative rational numbers. Then we
have the following result, which is Corollary 3.5 in [32].

Proposition 4. Let O be a smooth point of X , f : V → X the blow-up of O, E
the exceptional divisor of f and BV = f−1(BX). Suppose that dim(X) = 3 and
O ∈ CS(X,BX), but multO(BX) < 2. Then there is a line L ⊂ E ∼= P2 such that
L ∈ LCS(V,BV + (multO(BX)− 1)E).

Proof. Since the assertion is local with respect to X, we may assume that X ∼= C3

and O is the origin in C3.
Let H be a sufficiently general hyperplane section of X through the point O.

Put T = f−1(H). Then

KV +BV + (multO(BX)− 1)E + T ∼Q f∗(KX +BX +H)

and multO(BX) > 1 (see Remark 3).
Since the hyperplane section H is general, it follows from Theorem 13 that

O ∈ LCS(H,BX |H). Moreover, we have

LCS(T,BV |T + (multO(BX)− 1)E|T ) 6= ∅
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because multO(BX) < 2 by hypothesis (see Example 2). Applying Theorem 11 to
the morphism f , we see that the set

LCS(T,BV |T + (multO(BX)− 1)E|T )

consists of a single point P ∈ E ∩ T . On the other hand, since H is general, P
is the intersection of T and some element of LCS(V,BV + (multO(BX) − 1)E).
Hence the set

LCS(T,BV + (multO(BX)− 1)E)

contains a curve L ⊂ E such that L ∩ T consists of the point P . Therefore the
curve L is a line in E ∼= P2. This completes the proof.

Suppose that dim(X) = 4 and there is a smooth point O of X such that O ∈
CS(X,BX), but multO(BX) < 3. Suppose that the log pair (X,BX) has canonical
singularities outside O. Let f : V → X be the blow-up of O, E the exceptional
divisor of f and BV = f−1(BX). Then we have the following result, which may be
regarded as a generalization of Proposition 4.

Proposition 5. One of the following claims holds :
1) there is a surface S ⊂ E such that

S ∈ LCS(V,BV + (multO(BX)− 2)E);

2) there is line L ⊂ E ∼= P3 such that

L ∈ LCS(V,BV + (multO(BX)− 2)E).

Proof. This follows from Theorem 11 and the proof of Proposition 4.

Suppose that the set LCS(V,BV +(multO(BX)−2)E) does not contain surfaces
that are contained in the divisor E, but does contain a line L ⊂ E ∼= P3. Let
g : W → V be the blow-up of L. Put

F = g−1(L), E = g−1(E), BW = g−1(BV ).

Then it follows from Definition 3 that

BW = BW + (multO(BX)− 3)E + (multO(BX) + multL(BV )− 5)F.

Proposition 6. One of the following claims holds :
1) the divisor F belongs to the set LCS(W,BW + E + 2F );
2) there is a surface Z ⊂ F such that g(Z) = L and

F ∈ LCS(W,BW + E + 2F ).

We now show that Theorem 3 in dimension 4 follows from Proposition 6.

Theorem 15. Let Y be a fourfold, M a linear system on Y without fixed compo-
nents, S1 and S2 general divisors of M and P a smooth point of Y . Suppose that
P ∈ CS(Y, 1

nM) for some n ∈ N, but the singularities of the log pair (Y, 1
nM)
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are canonical outside P . Let π : Ŷ → Y be the blow-up of P and Π the exceptional
divisor of π. Then there is a line C ⊂ Π ∼= P3 such that

multP (S1 · S2 ·∆) > 8n2

for every effective divisor ∆ on the variety Y such that
1) ∆ contains the point P and is smooth at P ;
2) the line C ⊂ Π ∼= P3 is contained in the divisor π−1(∆);
3) ∆ contains no subvarieties of Y of dimension 2 that are contained in the base

locus of M.

Proof. Let ∆ be an effective divisor on Y such that P ∈ ∆, ∆ is smooth at P and
∆ contains no surfaces that are contained in the base locus of M. Then the linear
system M|∆ has no fixed components and S1 · S2 ·∆ is an effective 1-cycle.

Put S1 = S1|∆ and S2 = S2|∆. We must show that the inequality

multP (S1 · S2) > 8n2 (1)

holds, possibly under some additional hypotheses on ∆.
Put M = M|∆. Then P ∈ LCS

(
∆, 1

nM
)

by Theorem 13.
Let π̄ : ∆̂ → ∆ be a blow-up of the point P and Π = π̄−1(P ). Then the diagram

∆̂

π̄

����
��

��
��

� � // Ŷ

π

''PPPPPPPPPPPPPPPPPPP

∆ � � // Y

(2)

commutes, and we can identify ∆̂ with π−1(∆), which implies that Π = Π ∩ ∆̂.
The inequality (1) is trivial in the case when multP (M) > 3n. Hence we assume

that multP (M) < 3n.
Put M̂ = π̄−1(M). Then

Π /∈ LCS
(

∆̂,
1
n
M̂+

(
1
n

multP (M)− 2
)

Π
)
.

Hence there is a proper subvariety Ξ ⊂ Π ∼= P2 such that

Ξ ∈ LCS
(

∆̂,
1
n
M̂+

(
1
n

multP (M)− 2
)

Π
)

(see Example 2).
Suppose that Ξ is curve. Put Ŝi = π̄−1(Si). Then it follows from simple proper-

ties of multiplicities (see [59], Lemma 6.5) that

multP (S1 · S2) > multP (M)2 + multΞ(Ŝ1 · Ŝ2).

Applying Theorem 14 to the log pair
(
∆̂, 1

n M̂+
(

1
n multP (M)−2

)
Π

)
at a general

point of Ξ, we get

multΞ(Ŝ1 · Ŝ2) > 4
(
3n2 − nmultP (M)

)
.
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It follows that

multP (S1 · S2) > multP (M)2 + 4
(
3n2 − nmultP (M)

)
> 8n2,

which completes the proof in this case.
Now suppose that Ξ is a point. Then Proposition 5 yields a line C ⊂ Π ∼= P3

such that Ξ = C ∩ ∆̂ and

C ∈ LCS
(
Ŷ ,

1
n
π−1(M) +

(
1
n

multP (M)− 2
)

Π
)
.

The line C does not depend on the choice of ∆. Proposition 5 implies that the
line C ⊂ Π depends only on properties of the log pair

(
Y, 1

nM
)
.

Suppose that the divisor ∆ satisfies the additional assumption C ⊂ π−1(∆).
Then we can repeat all previous steps of the proof under the new hypotheses. This
also enables us to clarify the geometrical meaning of Proposition 6. Namely, by
Proposition 6, the condition C ⊂ ∆̂ = π−1(∆) implies that

C ∈ LCS
(

∆̂,
1
n
M̂+

(
1
n

multP (M)− 2
)

Π
)

provided that the set LCS
(
∆̂, 1

n M̂+
(

1
n multP (M)−2

)
Π

)
contains no other curves

that are contained in the divisor Π. To see this, it suffices to blow-up the divisor
∆̂ at the curve C in the commutative diagram (2) and use Remark 5. Now we can
repeat the previous arguments for a divisor ∆ with C ⊂ ∆̂ and obtain (1).

We now prove Proposition 6. Since the assertion is local with respect to X, we
may assume that X ∼= C4. Let H be a general hyperplane section of X such that
H contains the point O and L ⊂ f−1(H). Put T = f−1(H), S = g−1(T ). Then

KW +BW + E + 2F + S ∼Q (f ◦ g)∗(KX +BX +H),

BW + E + 2F = BW + (multO(BX)− 2)E + (multO(BX) + multL(BV )− 3)F,

which implies that

F ∈ LCS(W,BW + E + 2F ) ⇐⇒ multO(BX) + multL(BV ) > 4

by Definition 4. In particular, we may assume that multO(BX) + multL(BV ) < 4.
Hence we must prove the existence of a surface Z ⊂ F such that g(Z) = L and

F ∈ LCS(W,BW + E + 2F ).

Let H be a general hyperplane section of X such that H contains O and L 6⊂
f−1(H ). Put T = f−1(H ), S = g−1(T ). Then

O ∈ LCS
(
H,BX |H

)
by Theorem 13. We have

KW +BW + E + F + S ∼Q (f ◦ g)∗(KX +BX +H),

which implies that LCS(S, (BW + E + F )|S) 6= ∅.
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Applying Theorem 12 to the morphism f ◦ g : S → H, we see that one of the
following claims holds:

1) the set LCS(S, (BW +E+F )|S) consists of a single point, which is contained
in the fibre of the morphism g : F → L over the point T ∩ L;

2) the set LCS(S, (BW + E + F )|S) contains a curve that is contained in the
fibre of the morphism g : F → L over the point T ∩ L.

Remark 6. Since the divisor H is general, it follows that every element of the set
LCS(S, (BW +E+F )|S) contained in the fibre of the P2-fibration g over the point
T ∩ L is the intersection of S and an element of the set LCS(W,BW + E + F ).

The generality of the choice of H thus shows that either LCS(W,BW +E+F )
contains a surface that is contained in F and dominates the curve L, or the only
centre of log canonical singularities of the log pair (W,BW + E + F ) that is con-
tained in the exceptional divisor F and dominates the curve L is a section of the
P2-fibration g : F → L. On the other hand, it is clear that

LCS(W,BW + E + F ) ⊆ LCS(W,BW + E + 2F ).

Hence, to complete the proof of Proposition 6, we may assume that the divisor F
contains a curve C such that the following conditions hold:

1) C is a section of the P2-fibration g : F → L;
2) C is the unique element of the set LCS(W,BW + E + 2F ) that is contained

in F and dominates the curve L;
3) C is the unique element of the set LCS(W,BW + E + F ) that is contained

in F and dominates the curve L.
We now return to the sufficiently general hyperplane section H of X such that

H passes through O and L ⊂ T , where T = f−1(H).
The point O is a centre of log canonical singularities of the log pair (H,MX |H)

by Theorem 13, and our assumptions imply that

LCS
(
S, (BW + E + 2F )|S

)
6= ∅,

where S = g−1(T ). Applying Theorem 12 to the log pair(
S, (BW + E + 2F )|S

)
and the morphism f ◦ g : S → H, we see that one of the following claims holds:

1) the set LCS(S, (BW + E + 2F )|S) consists of a single point;
2) the set LCS(S, (BW + E + 2F )|S) contains the curve C.

Corollary 4. Either C ⊂ S or the intersection S ∩ C consists of a single point.

We have L ∼= C ∼= P1 and

F ∼= Proj(OL(−1)⊕OL(1)⊕OL(1)).

It follows that S|F ∼ B +D, where B is the tautological line bundle on F and D
is a fibre of the natural projection g|F : F → L ∼= P1.

Lemma 3. The group H1(OW (S − F )) vanishes.
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Proof. The divisor −g∗(E) − F intersects non-negatively every curve that is
contained in the divisor E. On the other hand, we have

(−g∗(E)− F )|F ∼ B +D,

which implies that the divisor −4g∗(E)− 4F is numerically effective and big with
respect to the morphism h = f ◦ g. However, we know that X ∼= C4 and

KW − 4g∗(E)− 4F = S − F,

which gives H1(OW (S − F )) = 0 by the Kawamata–Viehweg vanishing theorem
(see [48]).

Therefore, the natural restriction map

H0(OW (S)) → H0(OF (S|F ))

is surjective, but the linear system |S|F | has no base points (see [61], § 2.8).

Corollary 5. The curve C is not contained in the divisor S.

Put τ = g|F . Let IC be the ideal sheaf of the curve C on the scroll F . Then
R1 τ∗(B ⊗ IC) = 0 and the map

π : OL(−1)⊕OL(1)⊕OL(1) → OL(k)

is surjective, where k = B ·C. On the other hand, the map π is given by an element
of the group

H0(OL(k + 1))⊕H0(OL(k − 1))⊕H0(OL(k − 1)),

which implies that k > −1.

Lemma 4. The equality k = 0 is impossible.

Proof. Suppose that k = 0. Then π is given by a matrix

(ax+ by, 0, 0),

where a and b are complex numbers and (x : y) are the homogeneous coordinates
on L ∼= P1. Hence the map π is not surjective over the point of L at which the
linear form ax+ by vanishes.

Therefore, the divisor B has non-trivial intersection with the curve C. Hence the
intersection of S and C either is trivial, or consists of more than one point. But
we have already proved that S ∩ C consists of a single point. This contradiction
proves Proposition 6.

Proof of Theorem 3. We consider only the case dim(Y ) = 5 because the proof for
dim(Y ) > 5 is similar.

Let H1, H2, H3 be sufficiently general hyperplane sections of Y through the
point P . Put Y =

⋂3
i=1Hi and M = M|Y . Then Y is a surface, Y is smooth at P

and P ∈ LCS
(
Y , 1

nM
)

by Theorem 13.
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Let π : Ŷ → Y be the blow-up of P , Π the exceptional divisor of π and
M̂ = π−1(M). Since P ∈ LCS

(
Y , 1

nM
)
, it follows that the set

LCS
(
Ŷ ,

1
n
M̂+

(
1
n

multP (M)− 2
)

Π
)

contains a subvariety Z ⊂ Π with dim(Z) > 2.
The inequality dim(Y ) > 5 implies that

Z ∈ LCS
(
Ŷ ,

ε

n
M̂+

(
ε

n
multP (M)− 2

)
Π

)
for some positive rational number ε < 1, a standard observation in such problems.
Indeed, we have use Theorem 13 twice during the proof of Theorem 15, but now we
use Theorem 13 three times. Hence the first iterative usage of Theorem 13 shows
that P is a centre of log canonical singularities of the log pair

(
H1,

1
nM|H1

)
, and

it follows that P is a centre of canonical singularities of the log pair
(
H1,

ε
nM|H1

)
for some positive rational number ε < 1. The second iterative usage of Theorem 13
yields that

P ∈ LCS
(
H1 ∩H2,

ε

n
M

∣∣∣∣
H1∩H2

)
,

whence Z ∈ LCS
(
Ŷ , εn M̂+

(
ε
n multP (M)− 2

)
Π

)
.

If dim(Z) = 4, then the theorem becomes trivial because dim(Z) = 4 means
that Z = Π and multP (M) > 3n.

If dim(Z) = 3, then we can repeat all the arguments at the beginning of the proof
of Theorem 15. This yields the inequality multP (S1 ·S2 ·∆) > 8n2 for every effective
Cartier divisor ∆ on Y such that ∆ contains P , is smooth at P and contains no
three-dimensional subvarieties of Y that are contained in the base locus of M.

We note that if dim(Z) > 3, then there is no need to find linear subspaces Λ ⊂ Π
of codimension 2 with Λ ⊂ π−1(∆) since this condition is vacuous for dim(Z) > 3.

Now suppose that dim(Z) = 2. Then Theorem 12 yields that Z is a linear
subspace in Π ∼= P4 of codimension 2. Moreover, Z depends only on properties of
the movable log pair

(
Y, 1

nM
)

and does not depend on choice of the divisors H1,
H2, H3.

Put Λ = Z. Let H be a general hyperplane section of Y through the point P
and ∆ an effective divisor on Y such that P ∈ ∆, the divisor ∆ is smooth at P , the
divisor π−1(∆) contains Λ and ∆ contains no three-dimensional subvarieties of Y
that are contained in the base locus of M. Then

multP (S1 · S2 ·∆) > 8n2 ⇐⇒ multP (S1|H · S2|H ·∆|H) > 8n2

by the generality in the choice of H. On the other hand, it follows from Theorem 15
and the inequality ε < 1 that multP (S1|H · S2|H ·∆|H) > 8n2.

§ 4. The 6n2-inequality

In this section we prove Theorem 4. Let X be a variety, O an isolated ordinary
double point of X and BX an effective movable boundary on X. For simplicity
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we assume that BX = 1
nM, where M is a linear system on X without fixed

components and n ∈ N. Suppose that all divisors of M are Q-Cartier divisors.
Let π : V → X be the blow-up of O, E the exceptional divisor of the birational

morphism π and BV = f−1(BX). Then

BV ∼Q π∗(BX)−multO(BX)

for some positive rational number multO(BX), which can naturally be regarded as
a multiplicity of the movable boundary BX at the ordinary double point O. We
identify E with a smooth quadric in Pdim(X).

Let Hi (i = 1, . . . ,dim(X) − 2) be general hyperplane sections of X through O
and let S1, S2 be sufficiently general divisors of the linear system M. Then we can
define the numbers multO(Hi) and multO(Si) similarly to multO(BX). We have

multO(Hi) = 1, multO(S1) = multO(S2) = nmultO(BX).

Put Ĥi = π−1(Hi) and Ŝi = π−1(Si).

Definition 7. The multiplicity of the cycle S1 · S2 at the point O is the rational
number

multO(S1 · S2) = 2 mult2O(S1) +
∑
P∈E

multP (Ŝ1 · Ŝ2)
dim(X)−2∏

i=1

multP (Ĥi),

where the sum is taken over the finitely many points of the intersection

E ∩ Ŝ1 ∩ Ŝ2

dim(X)−2⋂
i=1

Ĥi,

and Ŝ1·Ŝ2 is the scheme-theoretic intersection. Put multO(B2
X) = 1

n2 multO(S1·S2).

We have multO(B2
X) > 2 mult2O(BX).

Remark 7. The following inequality holds for every subvariety Z ⊂ E that has
codimension 2 in V :

multO(B2
X) > 2 mult2O(BX) + multZ(B2

V ).

This may be regarded as the inequality

multO(S1 · S2) > 2 mult2O(S1) + multZ(Ŝ1 · Ŝ2)

divided by n2, where the intersection Ŝ1 · Ŝ2 is scheme-theoretic.

The multiplicity multO(B2
X) has nice geometric properties.

Example 3. Let X be a hypersurface in P6 of degree 6 such that the singularities
of X are isolated ordinary double points and O is one of these points. Then the
group Cl(X) is generated by the class of a hyperplane sectionH ofX (see Lemma 5).
Hence we have Si ∼ kH, where k ∈ N. Suppose that n = k. Then

n2 multO(B2
X) = multO(S1 · S2) 6 6n2.
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Suppose that dim(X) > 4 and O ∈ CS(X,BX), but the singularities of the
movable log pair (X,BX) are canonical outside O. To prove Theorem 4, we must
find a linear subspace Λ ⊂ E of codimension 3 in Pr (where r = dim(X) and the
divisor E is identified with a smooth quadric in Pr) such that

multO(S1 · S2 ·∆) = multO(S1|∆ · S2|∆) > 6n2 (3)

for every effective divisor ∆ on X that satisfies the following conditions:
1) ∆ contains the point O;
2) O is an isolated ordinary double point of ∆;
3) the divisor π−1(∆) contains Λ;
4) ∆ contains no subvarieties of X of codimension 2 that are contained in the

base locus of M.
We must also prove that the inequality (3) is strict if dim(X) > 5 and, in

particular, that
multO(S1 · S2) > 6n2

for dim(X) > 6 because in this case the quadric E cannot contain the linear sub-
space Λ by Lefschetz’ theorem (see [27], [21]).

Proof of Corollary 1. We prove the inequality multO(S1 · S2) > 6n2 only for
dim(X) = 6 because the general proof is similar.

Suppose that dim(X) = 6. Then

KV +BV ∼Q π∗(KX +BX) + (4−multO(BX))E.

Let H1, H2, H3 be general hyperplane sections of X through O. Put X̌ =⋂3
i=1Hi. Then X̌ is a three-dimensional variety and O is an isolated ordinary

double point of X̌.
Put M̌ = M|X̌ . Then O is a centre of log canonical singularities of the log pair(

X̌, 1
n M̌

)
by Corollary 2. Moreover, O is a centre of log canonical singularities of

the log pair
(
X̌, εn M̌

)
for some rational number ε < 1. Indeed, we have applied

Corollary 2 three times during the reduction of X to X̌, and canonical singularities
become log canonical during the first application (see the proof of Theorem 3).

Let π̌ : V̌ → X̌ be the blow-up of O and let Ě = π̌−1(O). Then the diagram

V̌

π̌

����
��

��
��

� � // V

π

��:
::

::
::

::

X̌ � � // X

commutes and the threefold V̌ can be identified with the subvariety π−1(X̌) ⊂ V .
In particular, we have Ě = E ∩ V̌ .

Since the divisors H1, H2, H3 are general, we have

multO(M̌) = multO(M).

We can assume that multO(M) < 2n since otherwise the inequality multO(S1·S2) >
6n2 is obvious (see Remark 7).
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Let B = π−1(M) and B̌ = π̌−1(M̌). Then B̌ = B|V̌ .
We have the equivalence

KV +
1
n
B+

(
1
n

multO(M)−1
)
E+H̃1+H̃2+H̃3 ∼Q π∗

(
KX+

1
n
M+H1+H2+H3

)
,

where H̃i = π−1(Hi). Hence,

KV̌ +
1
n
B̌ +

(
1
n

multO(M)− 1
)
Ě ∼Q π̌∗

(
KX̌ +

1
n
M̌

)
,

but the inequality multO(M) < 2n implies that

E /∈ LCS
(
V,

1
n
B +

(
1
n

multO(M)− 1
)
E

)
,

Ě /∈ LCS
(
V̌ ,

1
n
B̌ +

(
1
n

multO(M)− 1
)
Ě

)
.

SinceH1, H2, H3 are general, it follows that there are proper irreducible subvarieties
Ω ( E and Ω̌ ( Ě such that

Ω ∈ LCS
(
V,

1
n
B +

(
1
n

multO(M)− 1
)
E

)
,

Ω̌ ∈ LCS
(
V̌ ,

1
n
B̌ +

(
1
n

multO(M)− 1
)
Ě

)
and Ω̌ ⊆ Ω ∩ V̌ .

We have Ω̌ = Ω ∩ V̌ for dim(Ω̌) > 0.
We may assume that Ω and Ω̌ have the biggest dimension among all subvari-

eties with similar properties. We apply the general connectedness principle (see
Theorem 12) to the log pair

(
V̌ , 1

n B̌ +
(

1
n multO(M)− 1

)
Ě

)
and the morphism π̌.

If dim(Ω̌) = 0, then it follows immediately that the point Ω̌ is the unique subvariety
of Ě which is a centre of log canonical singularities of the log pair(

V̌ ,
1
n
B̌ +

(
1
n

multO(M)− 1
)
Ě

)
.

In particular, we always have the set-theoretic equation

Ω̌ = Ω ∩ V̌ .

Suppose that dim(Ω̌) = 0. Since Ω̌ = Ω∩ V̌ , we see that Ω is a three-dimensional
linear subspace of P6 and is contained in the smooth five-dimensional quadric E ⊂
P6, which is impossible by Lefschetz’ theorem. Hence we have dim(Ω̌) > 1 and,
therefore, dim(Ω) = 4.

We have the log pair
(
V, 1

n B+
(

1
n multO(M)−1

)
E

)
and its centre of log canonical

singularities Ω ⊂ E of dimension 4. In particular, we can apply Theorem 14 to the
log pair

(
V, 1

n B +
(

1
n multO(M) − 1

)
E

)
at a general point of Ω. This yields

the inequality
multΩ

(
S̃1 · S̃2

)
> 4

(
2n2 − nmultO(M)

)
,
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where S̃i = π1(Si). Hence we see that

multO(S1 · S2) > 2 multO(M)2 + multΩ
(
S̃1 · S̃2

)
> 4

(
2n2 − nmultO(M)

)
> 6n2.

As already mentioned, the point O is a centre of log canonical singularities
of the movable log pair (X̌, εn M̌) for some positive rational number ε < 1. There-
fore the subvariety Ω ⊂ E is a centre of log canonical singularities of the log pair(

V,
ε

n
B +

(
ε

n
multO(M)− 1

)
E

)
.

It follows that

multO(S1 · S2) > 2 multO(M)2 + multΩ
(
S̃1 · S̃2

)
> 4

(
2n2 − nmultO(M)

)
> 6n2.

This completes the proof.

Proof of Theorem 4. We may assume that dim(X) 6 5 because Corollary 1 has
already been proved. We may also assume that dim(X) = 4 because the proof for
dim(X) = 5 is similar. Then we have

KV +BV ∼Q π∗(KX +BX) + (2−multO(BX))E,

where multO(BX) > 1 by Theorem 2.
Let ∆ be an effective divisor on X such that O ∈ ∆, the point O is an ordinary

double point of the threefold ∆ and ∆ contains no surfaces that are contained in
the base locus of M. Then M|∆ has no fixed components and S1 · S2 · ∆ is an
effective 1-cycle.

Put S1 = S1|∆, S2 = S2|∆ and M = M|∆. Then the point O is a centre of log
canonical singularities of the log pair

(
∆, 1

nM
)

by Corollary 2.
We must show that the inequality

multO(S1 · S2) > 6n2

holds, possibly under some additional hypotheses on ∆.
Let π̄ : ∆̂ → ∆ be the blow-up of O and let E = π̄−1(O). Then the diagram

∆̂

π̄

����
��

��
��

� � // V

π

$$IIIIIIIIIIIIII

∆ � � // X

commutes and ∆̂ can be identified with the divisor π−1(∆) ⊂ V . Hence we have
E = E ∩ ∆̂.

If multO(M) > 2n, then Remark 7 shows that

multO(S1 · S2) > 8n2

and the theorem follows. Hence we may assume that multO(M) < 2n.
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Put M̂ = π̄−1(M). Since multO(M) < 2n, it follows that

E /∈ LCS
(

∆̂,
1
n
M̂+

(
1
n

multO(M)− 1
)
E

)
.

Hence there is a subvariety Ξ ( E such that

Ξ ∈ LCS
(

∆̂,
1
n
M̂+

(
1
n

multO(M)− 1
)
E

)
.

The divisor E can be identified with a smooth quadric in P3.
Suppose that Ξ is a curve. Put Ŝi = π̄−1(Si). Then we have

multO(S1 · S2) > 2 multO(M)2 + multΞ(Ŝ1 · Ŝ2)

(see Remark 7), and an application of Theorem 14 to the log pair
(
∆̂, 1

n M̂ +(
1
n multP (M)− 1

)
E

)
at a general point of Ξ yields that

multΞ(Ŝ1 · Ŝ2) > 4
(
2n2 − nmultO(M)

)
.

It follows that

multO(S1 · S2) > 2 multO(M)2 + 4
(
2n2 − nmultO(M)

)
> 6n2,

which completes the proof.
Hence we may assume that Ξ is a point. Then there is a line Λ ⊂ E ⊂ P4 such

that

Λ ∈ LCS
(
V,

1
n
B +

(
1
n

multO(M)− 1
)
E

)
,

and Ξ = Λ ∩ ∆̂. Indeed, assuming that ∆ is sufficiently general and applying
Theorem 12 to the log pair

(
∆̂, 1

n M̂ +
(

1
n multO(M) − 1

)
E

)
and the birational

morphism π̂, we see (as in the proof of Proposition 4) that the set

LCS
(
V,

1
n
B +

(
1
n

multO(M)− 1
)
E

)
contains either a surface that is contained in the divisor E or a line Λ ⊂ E ⊂ P4

such that Ξ = Λ ∩ ∆̂. In the former case, the required inequality follows because
the set

LCS
(

∆̂,
1
n
M̂+

(
1
n

multO(M)− 1
)
E

)
must contain a curve contained in E (for the original choice of ∆). Hence, to
complete the proof of Theorem 4, we can assume that Ξ is a point and there is a
line Λ ⊂ E ⊂ P4 such that Ξ = Λ∩ ∆̂ and Λ ∈ LCS

(
V, 1

n B+
(

1
n multO(M)−1

)
E

)
.

Previous arguments imply that Λ does not depend on the choice of ∆ but only
on properties of the log pair (X,BX). Hence we may assume that ∆ is chosen in
such a way that Λ ⊂ π−1(∆).



628 I. A. Cheltsov

We can now repeat all the previous arguments under the new hypotheses. More-
over, the condition Λ ⊂ ∆̂ = π−1(∆) implies that

Λ ∈ LCS
(

∆̂,
1
n
M̂+

(
1
n

multO(M)− 1
)
E

)
because the boundary 1

n B +
(

1
n multO(M) − 1

)
E is effective by the inequality

multO(M) > n (see Theorem 2). Hence we can apply Theorem 13 or Theorem 12
to a general point of the line Λ on the variety V .

Thus the set

LCS
(

∆̂,
1
n
M̂+

(
1
n

multO(M)− 1
)
E

)
contains a curve that is contained in E. It follows from Theorem 14 that

multO(S1 · S2) > 2 multO(M)2 + 4
(
2n2 − nmultO(M)

)
> 6n2.

This completes the proof of Theorem 4.

We note that the proof of Theorem 4 is similar to that of Theorem 15. However,
since the boundary

1
n
B +

(
1
n

multO(M)− 1
)
E

is effective, the last step in the proof of Theorem 4 is much simpler than the
corresponding step of the proof of Theorem 15, where the boundary need not be
effective and we are unable to use the connectedness principle. This explains why
the proof of Theorem 15 uses Theorem 12 together with simple but important local
calculations (see Lemmas 3 and 4).

The arguments used in the proof of Theorem 4 and Proposition 2 yield the
following result.

Theorem 16. Let Y be a variety of dimension r > 4, P an isolated double point
on Y such that Y is locally isomorphic to the hypersurface

y3 =
r∑
i=1

x2
i ⊂ Cr+1 ∼= Spec(C[x1, . . . , xr, y])

in a neighbourhood of P , R a linear system on Y without fixed components and
n ∈ N. Suppose that P ∈ CS

(
Y, 1

n R
)

and the singularities of the log pair
(
X, 1

n R
)

are canonical outside P . Take two general divisors M1 and M2 of the linear system
R and define the number multP (M1 ·M2) as in Definition 7. Let ζ : U → Y be the
blow-up of P and G the exceptional divisor of ζ . We identify G with a quadric cone
in Pr . Then there is a linear subspace Υ ⊂ G of codimension 3 in Pr such that

multP (M1 ·M2 ·Θ) = multP (M1|Θ ·M2|Θ) > 6n2 (4)

for every effective divisor Θ on Y satisfying the following conditions :
1) Θ contains the point P ;
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2) either P is an ordinary double point of Θ or Θ is locally isomorphic to the
hypersurface

y3 =
r−1∑
i=1

x2
i ⊂ Cr ∼= Spec(C[x1, . . . , xr−1, y])

in a neighbourhood of P ;
3) the divisor ζ−1(Θ) contains Υ;
4) Θ contains no subvarieties of Y of codimension 2 that are contained in the

base locus of R.
The inequality (4) is strict for r > 5.

Corollary 6. In the notation and under the hypotheses of Theorem 16, suppose
that r > 7. Then

multP (M1 ·M2) > 6n2.

§ 5. Double cubics

Let ψ : X → V ⊂ Pn be a double covering branched over an irreducible reduced
divisor R ⊂ V , where V is a smooth cubic hypersurface and n > 4. Then
rkPic(V ) = 1 by Lefschetz’ theorem, and

−KX ∼ ψ∗(OPn(r − 2− n)|V ),

where r ∈ N is such that R ∼ OPn(2r)|V .
Suppose that the singularities of R are isolated ordinary double points. If r >

n − 2, then the variety X is not uniruled. On the other hand, if r 6 n − 3, then
X is rationally connected because X is a Fano variety with terminal singularities
(see [50], [64]). Moreover, we always have

rkPic(X) = rkCl(X) = 1

(see [34] and Lemma 5).
In this section we prove the following result.

Theorem 17. Suppose that n = r + 3 > 9. Then X is birationally superrigid.

In particular, X is non-rational if n = r + 3 > 9.
The birational superrigidity of X is proved in [9] provided that X is sufficiently

general and n = r + 3 > 5. If n = r + 3 = 4, then X is a complete intersection
of a quadric and a cubic in P5. This variety is not birationally superrigid, but is
birationally rigid 8 if it is sufficiently general (see [45]).

In the case when n > r + 3, the only known way of proving the non-rationality
of X is the method in [49]. This method easily yields the following result (we omit
the proof).

8Let X be a Fano variety with terminal and Q-factorial singularities and such that rkPic(X)=1.
We say that X is birationally rigid if the following conditions hold: X cannot be birationally
transformed into a fibration τ : Y → Z such that dim(Y ) > dim(Z) 6= 0 but the Kodaira dimension
of a general fibre of τ is −∞ and X is not birational to a Fano variety of Picard rank 1 having
terminal and Q-factorial singularities that is not biregular to X.
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Proposition 7. Suppose that r > n+5
2 > 4 and X is very general. Then X is

non-ruled and, in particular, non-rational.

First we must show that X is Q-factorial. We deduce this from the follow-
ing result, although it is also expected to be a corollary of Lefschetz’ theorem
(see [27], [21], [39]).

Lemma 5. The groups Cl(X) and Pic(X) are generated by the divisor ψ∗(OPn(1)).

Proof. Let D be a Weil divisor on X. We must show that D ∼ ψ∗(OPn(r)) for
some r ∈ Z.

Let H be a general divisor of the linear system |ψ∗(OPn(k))| for k � 0. Then H
is a smooth weighted complete intersection (see [43]) and dim(X) > 3.

The group Pic(H) is generated by the divisor ψ∗(OPn(1))|H by [39], Chapter XI,
Theorem 3.13 (see also [34], Lemma 3.2.2, [33], Lemma 3.5 or [28]). Hence there is
r ∈ Z such that D|H ∼ ψ∗(OPn(r))|H .

Put ∆ = D − ψ∗(OPn(r)). The sequence of sheaves

0 → OX(∆)⊗OX(−H) → OX(∆) → OH → 0

is exact because the sheaf OX(∆) is locally free in a neighbourhood of H. Therefore
the sequence

0 → H0(OX(∆)) → H0(OH) → H1(OX(∆)⊗OX(−H))

is exact. On the other hand, the sheaf OX(∆) is reflexive (see [41]). Hence there is
an exact sequence of sheaves

0 → OX(∆) → E → F → 0,

where E is locally free and F has no torsion. Hence the sequence

H0(F ⊗OX(−H)) → H1(OX(∆−H)) → H1(E ⊗ OX(−H))

is exact. However, the group H0(F ⊗ OX(−H)) is trivial because F has no tor-
sion. The group H1(E ⊗OX(−H)) is trivial by the Enriques–Severi–Zariski lemma
(see [63]) since X is normal. Hence we have

H1(OX(∆)⊗OX(−H)) = 0, H0(OX(∆)) = C.

We similarly see that H0(OX(−∆)) = C. Therefore the divisor ∆ is rationally
equivalent to zero. It follows that D ∼ ψ∗(OPn(r)).

Proof of Theorem 17. Suppose thatX is not birationally superrigid but n=r+3>9.
Let us show that these assumptions lead to a contradiction.

It is well known (see Theorem 64 in [16]) that there is a linear system M on X
such thatM has no fixed components but the singularities of the log pair

(
X, 1

mM
)

are not canonical, where m is a positive integer such that M∼ −mKX .
In particular, the set CS

(
X, 1

mM
)

contains an irreducible reduced subvariety
Z ⊂ X such that Z ∈ CS

(
X, µmM

)
for some positive rational number µ < 1. We

may assume without loss of generality that Z is a subvariety of maximal dimension
with these properties.
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Corollary 7. Let S be a divisor in M. Then multZ(S) > m.

We have dim(Z) 6 dim(X)− 2 = n− 3.

Lemma 6. We have dim(Z) 6= 0.

Proof. Suppose that Z is a point. Let us show that this assumption leads to a
contradiction.

Suppose that Z is a smooth point of X. Let S1 and S2 be general divisors of the
linear system M, f : U → X the blow-up of the point Z and E the exceptional
divisor of f . Then Theorem 3 yields a linear subspace Π ⊂ E ∼= Pn−2 of dimension
n− 4 such that

multZ(S1 · S2 ·D) > 8m2

for every divisor D ∈ |−KX | satisfying the following conditions:
1) D contains the point Z and is smooth at Z;
2) the divisor f−1(D) contains the subvariety Π ⊂ U ;
3) D contains no subvarieties of X of codimension 2 that are contained in the

base locus of M.
We consider a linear subsystem H ⊂ |OPn(1)|V | such that

H ∈ H ⇐⇒ Π ⊂ (ψ ◦ f)−1(H).

Then there is a linear subspace Σ ⊂ Pn of dimension at most n − 3 such that
all divisors of the linear system H are cut out on the hypersurface V by hyper-
planes in Pn containing Σ. In particular, the base locus of H consists of the inter-
section Σ ∩ V . On the other hand, we have Σ 6⊂ V by Lefschetz’ theorem, whence
dim(Σ ∩ V ) = n− 4.

Let H be a general divisor in H and D = ψ−1(H) ∈ |−KX |. Then D satisfies
the following conditions:

1) D contains the point Z and is smooth at Z;
2) the divisor f−1(D) contains the subvariety Π ⊂ U .
Suppose that D contains a subvariety Γ ⊂ X of codimension 2 that is contained

in the base locus of M. Then

dim(ψ(Γ)) = n− 3,

but ψ(Γ) ⊂ Σ ∩ V and dim(Σ ∩ V ) = n− 4, which is a contradiction.
Hence we see that D contains no subvarieties of X of codimension 2 that are

contained in the base locus of M.
Let H1,H2, . . . ,Hk be general divisors of the linear system |−KX | that pass

through the point Z, where k = dim(X)− 3. Then

6m2 = H1 · . . . ·Hk · S1 · S2 ·D > multZ(S1 · S2 ·D) > 8m2,

which is a contradiction.
Therefore Z is an isolated ordinary double point on X. We can now use the

previous arguments together with Corollary 1 to obtain a contradiction.

Lemma 7. We have dim(Z) > dim(X)− 4.
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Proof. Suppose that dim(Z) 6 dim(X)− 5. Let H1,H2, . . . ,Hk be general hyper-
plane sections of the hypersurface V , where k = dim(Z) > 0. Put

V =
k⋂
i=1

Hi, X = ψ−1(V ), ψ̄ = ψ|X : X → V

and M = M|X . Then V ⊂ Pn−k is a smooth cubic hypersurface, the induced
morphism ψ̄ is a double covering branched over a smooth divisor R ∩ V , and the
linear system M has no fixed components.

By Lefschetz’ theorem, the hypersurface V contains no linear subspaces of Pn−k
of dimension n− k − 3 (because n− k > 6).

Let P be an arbitrary point of the intersection Z ∩X. Then P ∈ CS
(
X, 1

mM
)

and the proof of Lemma 6 immediately leads to a contradiction.

Lemma 8. We have dim(Z) 6= dim(X)− 2.

Proof. Suppose that dim(Z) = dim(X)−2. Let S1 and S2 be general divisors of the
linear system M and let H1,H2, . . . ,Hn−3 be general divisors of the linear system
|−KX |. Then

6m2 = H1 · . . . ·Hn−3 · S1 · S2 > m2(−KX)n−3 · Z

because multZ(M) > m. Therefore we have (−KX)n−3 · Z < 6.
We note that

(−KX)n−3 · Z =

{
deg(ψ(Z) ⊂ Pn) if ψ|Z is birational,
2 deg(ψ(Z) ⊂ Pn) if ψ|Z is not birational.

By Lefschetz’ theorem, deg(ψ(Z)) must be divisible by 3. It follows that the mor-
phism ψ|Z is birational and deg(ψ(Z)) = 3. Therefore, either the scheme-theoretic
intersection ψ(Z) ∩R is singular at every point or ψ(Z) ⊂ R. Applying Lefschetz’
theorem to a hyperplane section of the complete intersection R ⊂ Pn, we immedi-
ately obtain a contradiction.

Lemma 9. We have dim(Z) 6 dim(X)− 5.

Proof. Suppose that dim(Z) > dim(X) − 4 > 4. Let S be a sufficiently general
divisor of the linear system M. Put Ŝ = ψ(S ∩ R) and Ẑ = ψ(Z ∩ R). Then Ŝ is
a divisor on a smooth complete intersection R ⊂ Pn such that

multẐ(Ŝ ) > m, Ŝ ∼ OPn(m)|R.

This is impossible by Proposition 3 because dim(Ẑ ) > 3.

This proves Theorem 17. We now prove the following result.

Theorem 18. Suppose that n = r + 3 > 9. Then the variety X cannot be bira-
tionally transformed into an elliptic fibration.
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Proof. Suppose that X is birational to an elliptic fibration. Then Theorem 66 of
[16] yields a linear system M on X such that M has no fixed components, M is
not composed of a pencil, and the set CS

(
X, 1

mM
)

is non-empty, where m is a
positive integer such that M∼ −mKX .

Let Z be an irreducible reduced subvariety of maximal dimension in X such that
Z ∈ CS

(
X, 1

mM
)
. The proof of Theorem 17 shows that dim(Z) = dim(X)−2 and

(−KX)n−3 · Z = 6. Hence we have

S1 ∩ S2 = Z

in the set-theoretic sense, where S1 and S2 are general divisors of M.
Let P be a general point in X \ Z and D a linear subsystem of M that con-

sists of divisors passing through P . Since M is not composed of a pencil, we see
that D has no fixed components. Applying the previous arguments to the linear
system D instead of M, we see that D1 ∩D2 = Z in the set-theoretic sense, where
D1 and D2 are general divisors of D. On the other hand, we have P ∈ D1 ∩ D2

and P /∈ Z, which is a contradiction.

We note that the proofs of Theorems 17 and 18 remain valid for n = r + 3 > 8
if the variety X is smooth.

§ 6. Triple quadrics

Let ψ : X → Q ⊂ P2r+2 be a cyclic triple covering branched over an irreducible
reduced divisor R ⊂ Q, where Q is smooth hypersurface of degree 2 and r is a
positive integer. Then rkPic(Q) = 1 by Lefschetz’ theorem and

−KX ∼ ψ∗(OP2r+2(2k − 2r − 1)|Q),

where k ∈ N is such that R ∼ OP2r+2(3k)|Q.
Suppose that the singularities of R consist of at most isolated ordinary double

points. Then rkPic(X) = rkCl(X) = 1 (see Lemma 5).
Moreover, X is a Fano variety with terminal singularities if k 6 r, but X is not

birationally rigid if k < r.
In this section we prove the following result.

Theorem 19. Suppose that k = r > 4. Then X is birationally superrigid.

In particular, X is non-rational for k = r > 4.
The birational superrigidity ofX is proved in [60] provided that R is a sufficiently

general divisor on the quadric Q and k = r > 2.

Proof of Theorem 19. Suppose that X is not birationally superrigid, but k = r > 4.
Let us show that this assumption leads to a contradiction. By Theorem 64 of [16],
there is a linear system M on X such that M has no fixed components, but the
singularities of the log pair (X, 1

mM) are not canonical, where m is a positive
integer such that M ∼ −mKX . In particular, the set CS

(
X, µmM

)
contains a

subvariety Z ⊂ X for some rational number µ < 1. We may assume that Z
has maximal dimension among all subvarieties of X with this property. Then
dim(Z) 6 dim(X)− 2 = 2r − 1.
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Lemma 10. We have dim(Z) 6= 0.

Proof. This inequality follows from the arguments in the proof of Lemma 6 if we
use Corollary 6 instead of Corollary 1.

Lemma 11. We have dim(Z) > dim(X)− 4.

Proof. Suppose that dim(Z) 6 dim(X)−5 and letH1,H2, . . . ,Hk be general hyper-
plane sections of the hypersurface Q, where k = dim(Z) > 0. Put

Q =
k⋂
i=1

Hi, X = ψ−1(Q), ψ̄ = ψ|X : X → Q, M = M|X .

Then Q ⊂ P2r+2−k is a smooth quadric hypersurface, the morphism ψ̄ is a cyclic
triple covering branched over a smooth divisor R ∩ Q, the linear system M has
no fixed components and the quadric Q contains no linear subspaces of P2r+2−k of
dimension 2r− k− 1 by Lefschetz’ theorem. Let P be any point of the intersection
Z ∩X. Then P ∈ CS

(
X, 1

mM
)
, and the proof of Lemma 10 yields a contradiction.

Therefore we see that dim(Z) > 4.
Let S be a general divisor of the linear system M. Put Ŝ = ψ(S ∩ R), Ẑ =

ψ(Z ∩R). Then
multẐ(Ŝ ) > m, Ŝ ∼ OP2r+2(m)|R.

This is impossible by Proposition 3 because dim(Ẑ ) > 3.
This proves Theorem 19. Now the proof of Theorem 18 yields the following

result.

Theorem 20. Suppose that k = r > 4. Then X cannot be birationally transformed
into an elliptic fibration.

The proofs of Theorems 19 and 20 remain valid for k = r > 3 if X is smooth.

§ 7. Double intersections of quadrics

Let ψ : X → V ⊂ Pn be a double covering branched over a smooth divisor
R ⊂ V , where V is a smooth complete intersection of two hypersurfaces of degree 2
and n > 5. Then rkPic(V ) = 1 by Lefschetz’ theorem, and

−KX ∼ ψ∗(OPn(k − n+ 3)|V ),

where k ∈ N is such that R ∼ OPn(2k)|V .
Suppose that k 6 n− 4. Then X is a smooth Fano variety with rk Pic(X) = 1,

but X is not birationally rigid for k 6 n− 5.
In this section we prove the following result.

Theorem 21. Suppose that k = n− 4 > 6. Then X is birationally superrigid.

In particular, the variety X is non-rational if k = n− 4 > 6.
If k = n−4 and n = 5, then X is a complete intersection of three quadrics in P6,

which is not birationally rigid but is still non-rational (see [11], [23], [12]).
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Proof of Theorem 21. Suppose that X is not birationally superrigid, but k =
n− 4 > 6. Let us show that these assumptions lead to a contradiction.

By Theorem 64 in [16], there is a linear system M on X such that M has no
fixed components and the singularities of the log pair

(
X, 1

mM
)

are not canonical,
where m is a positive integer such that M∼ −mKX .

In particular, the set CS
(
X, 1

mM
)

contains an irreducible subvariety Z ⊂ X

such that Z ∈ CS
(
X, µmM

)
for some positive rational number µ < 1. We may

assume without loss of generality that Z is a subvariety of maximal dimension with
this property. Then dim(Z) 6 dim(X)− 2 = n− 4.

Lemma 12. We have dim(Z) 6= 0.

Proof. Suppose that Z is a point. Let S1 and S2 be general divisors of the linear
system M, f : U → X the blow-up of the point Z and E the exceptional divisor of
the birational morphism f . Then Theorem 3 yields a linear subspace Π ⊂ E ∼= Pn−3

of dimension n− 5 such that

multZ(S1 · S2 ·D) > 8m2

for every divisor D ∈ |−KX | that satisfies the following conditions:
1) D contains the point Z and is smooth at Z;
2) the divisor f−1(D) contains the subvariety Π ⊂ U ;
3) D contains no subvarieties of X of codimension 2 that are contained in the

base locus of M.
Consider a linear subsystem H ⊂ |OPn(1)|V | such that

H ∈ H ⇐⇒ Π ⊂ (ψ ◦ f)−1(H).

Then there is a linear subspace Σ ⊂ Pn of dimension at most n − 4 such that
the divisors of H are cut out on V by hyperplanes in Pn passing through Σ. In
particular, we see that

Bs(H) = Σ ∩ V,

which implies that dim(Σ ∩ V ) = n− 5 by Lefschetz’ theorem.
Let H be a general divisor in H. Put D = ψ−1(H) ∈ |−KX |. Then
1) D contains the point Z and is smooth at Z;
2) f−1(D) contains the subvariety Π ⊂ U .
Suppose that the divisor D contains a subvariety Γ ⊂ X of codimension 2 such

that Γ is contained in the base locus of M. Then

dim(ψ(Γ)) = n− 4,

but ψ(Γ) ⊂ Σ ∩ V and dim(Σ ∩ V ) = n− 5. This is a contradiction.
Therefore D contains no subvarieties of X of codimension 2 that are contained

in the base locus of M. Let H1,H2, . . . ,Hk be sufficiently general divisors of the
linear system |−KX | that pass through the point Z, where k = dim(Z)− 3. Then

8m2 = H1 · . . . ·Hk · S1 · S2 ·D > multZ(S1 · S2 ·D) > 8m2,

which is a contradiction.
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Lemma 13. We have dim(Z) > dim(X)− 4.

Proof. Suppose that dim(Z) 6 dim(X)− 5. Let H1,H2, . . . ,Hk be general hyper-
plane sections of the variety V , where k = dim(Z) > 0. Put

V =
k⋂
i=1

Hi, X = ψ−1(V ), ψ̄ = ψ|X : X → V , M = M|X .

Then V ⊂ Pn−k is a smooth complete intersection of two quadrics, the morphism ψ̄
is a double covering branched over a smooth divisor R∩V and the linear system M
has no fixed components. By Lefschetz’ theorem, the variety V contains no linear
subspaces of Pn−k of dimension n − k − 4 (because n − k > 7). Let P be a point
of the intersection Z ∩X. Then P ∈ CS

(
X, 1

mM
)
. Hence the proof of Lemma 12

gives a contradiction.

This proves the inequality dim(Z) > 4.
Let S be a general divisor of M. We put Ŝ = ψ(S ∩R), Ẑ = ψ(Z ∩R). Then

multẐ(Ŝ ) > m, Ŝ ∼ OPn(m)|R.

This is impossible by Proposition 3 because dim(Ẑ ) > 3.

This proves Theorem 21 and thus completes the proof of Theorem 5. The proof
of Theorem 18 yields the following result, which completes the proof of Theorem 6.

Theorem 22. Suppose that k = n− 4 > 6. Then X is not birational to an elliptic
fibration.

The author would like to thank M. Grinenko, V. Iskovskikh, S. Kudryavtsev,
J. Park, Yu. Prokhorov, A. Pukhlikov and V. Shokurov for useful discussions.
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