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Abstract We prove that for n = 5, 6, 7 a nodal hypersurface of degree n in P4 is
factorial if it has at most (n − 1)2 − 1 nodes.
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1 Introduction

Unless otherwise mentioned, every variety is always assumed to be projective, normal
and defined over C. We also consider every divisor in the linear system |OPn(k)| as a
hypersurface in Pn for simplicity.

A variety X is called factorial (Q-factorial, resp.) if each Weil divisor of X (a
multiple of each Weil divisor of X, resp.) is Cartier. The factoriality and the Q-facto-
riality are very subtle properties. They depend on both the local types of singularities
and their global position. Also, they depend on the field of definition of the variety.
In the present paper, we study the factoriality of hypersurfaces in P4. However, we
confine our consideration to the case when they have only simple double points, i.e.,
nodes. Then the local class group at a node in a three fold has no torsion ([12]), and
hence each Weil divisor that is Q-Cartier must be a Cartier divisor on a nodal hyper-
surface in P4. Therefore, the Q-factoriality is equivalent to the factoriality on a nodal
hypersurface in P4.
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Let Vn be a nodal hypersurface of degree n in P4. We then have a small resolution
W of singularities of the hypersurface Vn. The Hodge number h1(W, �1

W) of W is
the same as the rank of the Picard group Pic(W) of W and the Picard group Pic(W)

is isomorphic to H2(W, Z) because H1(W, OW) = H2(W, OW) = 0. It follows from
Poincaré duality that rank(H2(W, Z)) = h1(W, �1

W) = dim(H4(W, Q)). However, we
also have H4(W, Z) ∼= H4(Vn, Z) because the smooth three fold W is a small resolution
of Vn. It gives us a rough explanation for the fact that the variety Vn is Q-factorial and
hence factorial if and only if the global topological property

rank(H2(Vn, Z)) = rank(H4(Vn Z)),

holds. Note that the duality mentioned above fails on singular varieties in general.
The nodes on Vn may have an effect on the integral (co)homology groups of Vn.

However, the rank of the second integral cohomology group of Vn is 1 by Lefschetz
theorem ([1]). Therefore, to determine whether the three fold hypersurface Vn is
factorial or not, we have to see whether the rank of the fourth integral homology
group of Vn is 1 or not. But it is not simple to compute the rank of the fourth integral
homology group of Vn. Fortunately, the paper [6] gives us a great method to compute
the rank of the fourth integral homology group of Vn, which reduces the topological
problem to a rather simple combinatorial problem. To be precise, the rank of the
fourth integral homology group of Vn can be obtained by the following way:

Theorem 1.1 Let Vn be a nodal hypersurface of degree n in P4. The rank of the fourth
integral homology group H4(Vn, Z) is equal to

#| Sing(Vn)| − I + 1,

where I is the number of independent conditions which vanishing on Sing(Vn) imposes
on homogeneous forms of degree 2n − 5 on P4.

Proof See [6]. ��
Therefore, the hypersurface Vn is factorial if and only if the set of nodes of the
hypersurface Vn is (2n − 5)-normal� in P4, in other words, the singular points of the
hypersurface Vn impose linearly independent conditions on hypersurfaces of degree
2n − 5 in P4.

The geometry of the hypersurface Vn crucially depends on its factoriality. For
example, in the case n = 4 the hypersurface Vn is non-rational whenever it is factorial
([11]), which is not true without the factoriality condition.

Let us show an easy way to get a non-factorial hypersurface.

Example 1.2 Suppose that Vn is given by the equation

x0g(x0, x1, x2, x3, x4) + x1f (x0, x1, x2, x3, x4) = 0 ⊂ P4 ∼= Proj(C[x0, x1, x2, x3, x4]),
where g and f are general homogeneous polynomials of degree n−1. Then the hyper-
surface Vn has exactly (n − 1)2 nodes. They are located on the 2-plane defined by
x0 = x1 = 0. The hypersurface Vn is not factorial because the hyperplane section
x0 = 0 splits into two non-Cartier divisors while the Picard group is generated by a
hyperplane section ([1]).

� In general, a subscheme X of PN is called d-normal in PN if the first cohomology of the ideal sheaf
of X twisted by O

PN (d) is zero. Throughout this paper, we consider a finite set of points in PN as a
zero-dimensional reduced subscheme of PN .
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On the other hand, if |Sing(Vn)| < (n − 1)2, every smooth surface in Vn is cut
by a hypersurface in P4 due to [5]. Therefore, it is natural that we should expect the
following to be true.

Conjecture 1.3 Every nodal hypersurface of degree n in P4 with at most (n − 1)2 − 1
nodes is factorial.

Conjecture 1.3 for n = 2 is trivial. To show Conjecture 1.3 for n = 3, let V3 be a nodal
cubic hypersurface in P4 with at most three nodes. Then no three nodes of V3 lie on
a single line. Therefore, for each node p of V3, we can always find a hyperplane that
contains the other nodes but not the node p, which shows that V3 is factorial. For
the case n = 4, Conjecture 1.3 is proved in [4]. In this paper, we prove the following
result.

Theorem 1.4 Conjecture 1.3 holds for n = 5–7.

Note that the following result is proved in [3].

Theorem 1.5 A nodal hypersurface of degree n in P4 with at most (n−1)2

4 nodes is
factorial.

Therefore, at least asymptotically Conjecture 1.3 is not far from being true. To our
surprise, the conjecture below implies Conjecture 1.3.

Conjecture 1.6 Let � be a set of at most (n − 1)2 − 1 points in P4 such that at most
k(n − 1) points in � can be contained in a curve of degree k. Then, for a general
projection φ4: P4 ��� P2, at most k(n − 1) points in φ4(�) can be contained in a curve
of degree k in P2.

Unfortunately, we are unable to prove Conjecture 1.3 now, but we believe that the
proof of Theorem 1.4 can help us to find new approaches to a proof of Conjecture 1.3.

2 Preliminaries

2.1 Projections and linear systems with zero-dimensional base loci

Let X be a normal variety with a Q-divisor BX = ∑k
i=1 aiBi, where Bi is a prime

divisor on X and ai is a positive rational number, such that KX + BX is Q-Cartier.
Let π : Y → X be a proper birational morphism of a smooth variety Y such that the
union of all the proper transforms of the divisors Bi and all the π-exceptional divisors
forms a divisor with simple normal crossing on Y.

Let BY be the proper transform of BX on Y. Put BY = BY −∑n
i=1 diEi, where each

Ei is a π-exceptional divisor and di is the rational number such that the equivalence

KY + BY ∼Q π∗(KX + BX
)

holds. Then the log pair (Y, BY) is called the log pull back of the log pair (X, BX)

with respect to the proper birational morphism π , while the number di is called the
discrepancy of the log pair (X, BX) with respect to the π-exceptional divisor Ei.
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By L(X, BX) we denote the subscheme of the variety X associated to the ideal
sheaf

I(
X, BX

) = π∗
(
OY

(�−BY�)
)

,

which is called the multiplier ideal sheaf of the log pair (X, BX).
We then obtain the following result due to [10] and [13].

Theorem 2.1 Suppose that the divisor KX + BX + H is numerically equivalent to a
Cartier divisor for some nef and big Q-divisor H on the variety X. Then for every i > 0
we have

Hi
(

X, I(X, BX) ⊗ OX(KX + BX + H)
)

= 0.

Theorem 2.1 gives us a useful tool to study the normality of a finite set in PN .

Lemma 2.2 Let M be a linear system consisting of hypersurfaces of degree k on PN.
If the base locus � of the linear system M is zero-dimensional, then the finite set � is
N(k − 1)-normal in PN.

Proof Let H1, . . . , Hr be general divisors in the linear system M, where r is suffi-
ciently big. We put

B = N
r

r∑

i=1

Hi.

Then the log pair (PN , B) is Kawamata log terminal in the outside of the base locus
�. For each point p ∈ �, we have multp B ≥ N. Therefore, Supp(L(PN , B)) = �.

Since the divisor KPN + B + H is Q-linearly equivalent to N(k − 1)H, where H is
a hyperplane, we obtain H1(PN , I(PN , B) ⊗ OPN (N(k − 1))) = 0 from Theorem 2.1.
Because Supp(L(PN , B)) = � and the scheme L(PN , B) is zero-dimensional, the set �

that is the reduced scheme of L(PN , B) must be N(k − 1)-normal in PN . ��
Let � be a finite set of points in PN , N ≥ 3, such that no k(d − 1)+ 1 points of � lie on
a curve of degree k in PN for each k ≥ 1, where d ≥ 3 is a fixed integer. Fix a 2-plane
� in PN . We consider the projection

φN : PN ��� � ∼= P2

from a general (N − 3)-dimensional linear space L onto the 2-plane �.

Lemma 2.3 Let � be a subset of � with |�| > k(d − 1) and let M be the linear system
of hypersurfaces of degree k in PN that contain �. If the set φN(�) is contained in
an irreducible curve of degree k on �, then the base locus of the linear system M is
zero-dimensional.

Proof Suppose that the base locus of M contains an irreducible curve Z. Let C
be an irreducible curve of degree k on � that contains φN(�) and let W be the cone
in PN over the curve C with vertex L. Since W is a hypersurface of degree k in PN

containing the set �, it belongs to the linear system M. In particular, the curve Z is
contained in the hypersurface W. Therefore, the curve Z is mapped onto the curve C
because the linear space L is general and the curve C is irreducible. The curve Z has
degree k because the restriction φN |Z is a birational morphism to C.
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If there is a point p in �\Z, then the projection φN maps the point p to the outside
of C because of the generality of the projection φN . Therefore, the set � must be con-
tained in Z because φN(�) is contained in C. However, the curve Z cannot contain
more than k(d − 1) points of �. ��
Corollary 2.4 A line on � contains at most d − 1 points of φN(�).

Proof It immediately follows from Lemma 2.3. ��
Corollary 2.5 For N = 3, a curve of degree k on � contains at most k(d − 1) points of
φ3(�) if d ≥ k2 + 1.

Proof For k = 1, it is true because of Corollary 2.4. Assume that the claim is true
for k < �. We then suppose that there is a subset � of � such that |�| > �(d − 1) and
the image φ3(�) lie on a curve C of degree � on �. The curve C must be irreducible
because of our assumption. Therefore, it follows from Lemma 2.3 that the base locus
of the linear system M of hypersurfaces of degree � in P3 containing the set � is
zero-dimensional. Let Q1, Q2 and Q3 be general members in M. Then we obtain a
contradictory inequality

�3 = Q1 · Q2 · Q3 > �(d − 1) ≥ �3.

Therefore, for d ≥ k2 + 1, a curve of degree k on � contains at most k(d − 1) points
of φ3(�). ��
Corollary 2.6 For N = 4, a curve of degree k on � contains at most k(d − 1) points of
φ4(�) if d ≥ k2 + 1.

Proof Let α: P4 ��� H be the projection from a general point o1 ∈ P4 \ H, where H
is a general hyperplane containing � in P4. And let β: H ��� � be the projection from
a general point o2 ∈ H \�. Then the projection φ4 is obtained by the composite of the
projections α and β. We first claim that for d ≥ k2 + 1 no k(d − 1) + 1 points of α(�)

lie on a curve of degree k in P3. It is obviously true for k = 1. Assume that the claim is
true for k < �. And then we suppose that there is a subset � of �(d − 1) + 1 points in
� such that α(�) lie on a curve C of degree � in H. The curve C must be irreducible.
Let M be the linear system of hypersurfaces of degree � in P4 passing through all the
points of �. Because β(α(�)) is contained in the irreducible curve β(C) of degree �

on �, it follows from Lemma 2.3 that the base locus of M is zero-dimensional. Let W
be the cone in P4 over the curve C with vertex o1. Then we get an absurd inequality

�3 = Q1 · Q2 · W ≥ |�| > �3,

where each Qi is a general member of M. Therefore, at most k(d − 1) points of α(�)

can lie on a curve of degree k in H if d ≥ k2 + 1.
For the projection β : H ��� �, we apply the proof of Corollary 2.5 to α(�). This

completes our proof. ��
2.2 Base-point-freeness

It is a classical result that if 6 points p1, . . . , p6 ∈ P2 in general position are blown up,
then the complete linear system on the blow-up corresponding to |OP2(3)−p1−· · ·−p6|
is very ample as well as base-point-free. This is a key observation to classify del Pezzo
surfaces.
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Bese’s paper [2] developed this observation to points on P2 in less general position
and various divisors. The result however turned out to have a considerable general-
ization. Davis and Geramita [7] obtained a very ampleness and a base-point-freeness
theorems on blow-ups of P2 via the ideal-theoretic route that are more powerful than
Bese’s.

Considering reduced zero dimensional subschemes of P2 in Corollary 4.3 of [7],
we can immediately obtain the following theorem that provides a strong enough tool
for us to study the base-point-freeness of linear systems of certain types on blow-ups
of P2.

Theorem 2.7 Let π : Y → P2 be the blow up at points p1, . . . , ps on P2. Then the linear
system |π∗(OP2(d))−∑s

i=1 Ei| is base-point-free for all s ≤ max{m(d+3−m)−1, m2},
where Ei = π−1(pi), d ≥ 3, and m = 
d+3

2 �, if the set � = {p1, . . . , ps} satisfies the
following:

no k(d + 3 − k) − 1 points of � lie on a single curve of degree k, 1 ≤ k ≤ m.

In the case d = 3 Theorem 2.7 is the well-known result on the base-point-freeness of
the anticanonical linear system of a weak del Pezzo surface of degree 9 − s � 2. The
theorem above immediately implies the following:

Corollary 2.8 Let � = {p1, . . . , ps} be a finite set of points in P2. For a given positive
integer d ≥ 3, if s ≤ max{m(d + 3 − m) − 1, m2} and no k(d + 3 − k) − 1 points of
the set � lie on a curve of degree k � m in P2, where m = 
d+3

2 �, then for each point
pi ∈ � there is a curve of degree d in P2 that contains all the points of the set � except
the point pi.

The corollary above is the most important tool for this paper. Also, it makes us propose
Conjecture 1.6.

2.3 Basic properties of nodes

As explained at the beginning, the ranks of the fourth integral homology groups
of nodal hypersurfaces in P4 are strongly related to the number of nodes and their
position. Even though the number of nodes are given in our problem, it is necessary
that we should study their position.

Lemma 2.9 Let Vn be a nodal hypersurface of degree n in P4.

(1) A curve of degree k in P4 contains at most k(n − 1) nodes of Vn.
(2) If a 2-plane contains n(n−1)

2 + 1 nodes of Vn, then the 2-plane is contained in Vn.

Proof Suppose that the hypersurface Vn is defined by an equation F(x0, x1, x2, x3,
x4) = 0. Then the singular locus of Vn is contained in a general hypersurface V′ =
(�λi

∂F
∂xi

= 0) of degree n−1. Let C be a curve of degree k in P4. Since the hypersurface
Vn has only isolated singularities, the curve C cannot be contained in V′. Because the
intersection number of the hypersurface V′ and the curve C is k(n − 1), the curve C
contains at most k(n − 1) singular points of Vn.

Let � be a 2-plane not contained in Vn. Then V′ ∩ � is a curve of degree (n − 1)

not contained in Vn. Therefore, the curve V′ ∩ � cannot meet Vn at more than n(n−1)
2

nodes of Vn. ��
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Lemma 2.10 If a nodal hypersurface Vn of degree n in P4 contains a 2-plane, then it
has at least (n − 1)2 singular points.

Proof Suppose that Vn ⊂ Proj(C[x0, x1, x2, x3, x4]) contains a 2-plane �. We may
assume that the 2-plane is defined by the equations x0 = x1 = 0. Then the nodal
hypersurface Vn is defined by an equation of the form

x0q0(x0, x1, x2, x3, x4) + x1q1(x0, x1, x2, x3, x4) = 0,

where q0 and q1 are homogeneous polynomials of degree n − 1. For each i, let Qi
be the hypersurface in P4 defined by qi = 0. The intersection points of �, Q0, and
Q1 are singular points of Vn. Because Vn has only isolated singularities, the set S of
the intersection points of �, Q0, and Q1 is finite. For each point p ∈ S, �, Q0, and Q1
meet transversally at p; otherwise the hypersurface Vn would have a singularity worse
than a node at p. Therefore, |S| = (n − 1)2, which implies that Vn has at least (n − 1)2

nodes. ��
2.4 Simple tools

To prove Theorem 1.4, we need various tools to handle hypersurfaces of certain
degrees and a finite number of points in P4.

Lemma 2.11 Let � = {p1, . . . , pr} be a set of r points in PN, N ≥ 2. Let p be a point in
PN \ �. Suppose that no m + 1 points of � lie on a single line with the point p. Then
there are at least min{r − m, 
 r

2�} mutually disjoint pairs of points in � such that each
pair determines a line not containing the point p.

Proof We may assume that the points p1, . . . , pm, and p are on a single line L.
First, we suppose m ≥ r − m. We then obtain r − m such pairs by choosing one

point from � ∩ L and the other from � \ L. Obviously, these pairs determine lines
not passing through the point p.

Next, we suppose m < r − m. We can then find 
 r−2m
2 � such pairs by choosing two

points of � \ L; otherwise m + 1 points of � would lie on a single line. By choosing
one point from the remaining points in � \ L and the other from L we also obtain m
such pairs. The number of the pairs that we obtain is m + 
 r−2m

2 � = 
 r
2�. ��

Lemma 2.12 Let H be a hyperplane in PN , N ≥ 3, and X be a hypersurface of degree
d ≥ 2 in H. Suppose that the hypersurface X does not contain a point o ∈ H. For given
two points p, q in PN \ H, there is a hypersurface of degree d in PN such that contains
X and two points p and q but not the point o.

Proof Take a general 2-plane � passing through the points p and q in PN . Then �

meets X at at least two points, say p′ and q′. Then the line determined by p and p′ and
the line determined by q and q′ meet at a point v. Then the cone over X with vertex v
is a hypersurface of degree d in PN containing X and two points p and q but does not
contain the point o. ��
Lemma 2.13 Let � and � be disjoint finite sets of points in PN, N ≥ 3, and let p be a
point in PN \ (� ∪ �). Suppose that D0 be a hypersurface of degree k in PN containing
the set � but not the point p. If for each point q ∈ � there is a hypersurface Dq of
degree k in PN containing the set (� ∪ � ∪ {p}) \ {q} but not the point q, then there is a
hypersurface of degree k such that passes through � ∪ � but not the point p in PN.
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Proof Suppose that the hypersurface D0 is defined by a homogeneous polynomial
g(x0, . . . , xN). Also, we suppose that each hypersurface Dq is defined by a homo-
geneous polynomial fq(x0, . . . , xN). Then g(p) �= 0 and fq(p) = 0 for each q ∈ �.
Furthermore, fq(q′) �= 0 for some q′ ∈ � if and only if q = q′. There is a complex
number cq for each q ∈ � such that g(q) + cqfq(q) = 0 because fq(q) �= 0. Then the
hypersurface defined by

g(x0, . . . , xN) +
∑

q∈�

cqfq(x0, . . . , xN) = 0

contains the set � ∪ � but not the point p. ��
Corollary 2.14 Let M be a linear system consisting of hypersurfaces of degree k ≥ 2
on PN , N ≥ 3. If the base locus � of the linear system M is zero-dimensional, then for
two distinct points p, q in PN \ � and a point o in �, there is a hypersurface of degree
N(k − 1) such that passes through � ∪ {p, q} \ {o} but not the point o in PN.

Proof By Lemma 2.2, there is a hypersurface D0 of degree N(k − 1) in PN that
passes through all the points of � except the point o. Let D be a general member in
M. We choose a hyperplane Hp in PN that passes through the point p but not the
point q. We also choose a hyperplane Hq that passes through the point q but not the
point p. We then apply Lemma 2.13 to the hypersurfaces D0, D + (N(k − 1) − k)Hp,
and D + (N(k − 1) − k)Hq. ��

The result below is originally due to Edmonds [8]. It can help us to make our proofs
simpler.

Theorem 2.15 Let � be a set of points in PN and let d ≥ 2 be an integer. If no dk + 2
points of � lie in a k-plane for all k ≥ 1, then the set � is d-normal in PN.

Proof See [9]. ��

3 Conjectural proof

In this section, we prove Conjecture 1.3 under the assumption that Conjecture 1.6 is
true.

Let Vn be a nodal hypersurface of degree n in P4. Suppose that | Sing(Vn)| < (n−1)2

and n � 4. Fix a point p ∈ Sing(Vn). And then put � = Sing(Vn)\{p}. To prove the
factoriality of Vn it is enough to construct a hypersurface of degree 2n−5 that contains
all the points of the set � and does not contain the point p.

We suppose that Conjecture 1.6 holds. Let φ4: P4 ��� � be the projection from a
general line L in P4, where � is a 2-plane in P4. It then follows from Conjecture 1.6
and Lemma 2.9 that the set φ4(�) satisfies the condition

no k(n − 1) + 1 points of φ4(�) lie on a curve of degree k on � for each k ≥ 1. (1)

Remark 3.1 It follows from Corollaries 2.4 and 2.6 that the condition (1) holds for
k ≤ √

n − 1 without Conjecture 1.6.

Lemma 3.2 For each 1 ≤ k ≤ n − 1, any curve of degree k on � cannot contain
k(2n − 2 − k) − 1 points of φ4(�).
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Proof Note that |φ4(�)| ≤ (n − 1)2 − 2 and n ≥ 4 by our assumption. Because
k(n − 1) ≤ k(2n − 2 − k) − 2 if k < n − 1, the statement immediately follows. ��
Lemma 3.3 There is a curve of degree 2n − 5 on � which passes through all the points
of φ4(�) but not the point φ4(p).

Proof It immediately follows from Corollary 2.8 and Lemma 3.2. ��
Proposition 3.4 Conjecture 1.6 implies Conjecture 1.3.

Proof Lemma 3.3 implies that there is a curve C of degree 2n − 5 on � which
passes through all the points of φ4(�) but not the point φ4(p). We take the cone over
C with vertex L. The cone then contains all the points of � but not the point p. It
implies that if the hypersurface Vn has s < (n − 1)2 singular points, then these s points
impose s linearly independent conditions on homogeneous forms of degree 2n − 5
on P4. Consequently, the rank of the fourth integral homology group of Vn is 1 by
Theorem 1.1, which completes the proof. ��

4 Proof of Theorem 1.4

In this section, we prove Theorem 1.4. Let Vn be a nodal hypersurface of degree
n in P4 with at most (n − 1)2 − 1 nodes. However, as we will see in the proofs, we
may assume that the hypersurface Vn has exactly (n − 1)2 − 1 nodes. To prove the
factoriality of the hypersurface Vn, for an arbitrary point p ∈ Sing(Vn), we have to
construct a hypersurface of degree 2n − 5 in P4 that contains the set Sing(Vn) except
the point p.

4.1 Quintic hypersurfaces

Let V5 be a nodal quintic hypersurface in P4 with 15 nodes. A line can contain at most
four nodes by Lemma 2.9. If a 2-plane � contains 12 nodes of V5, then � is contained
in V5 by Lemma 2.9. It then follows from Lemma 2.10 that V5 must have at least 16
nodes, which contradicts our assumption. Therefore, a 2-plane can contain at most
11 nodes of V5. Therefore, the set of nodes of V5 satisfies the condition for d = 5 in
Theorem 2.15 and hence the nodal quintic hypersurface V5 is factorial.

4.2 Sextic hypersurfaces

Let V6 be a nodal sextic hypersurface in P4 with 24 nodes. We denote the set of
nodes of V6 by �. If a 2-plane � contains 16 nodes of V6, then � is contained in V6 by
Lemma 2.9. It then follows from Lemma 2.10 that V6 must have at least 25 nodes, which
contradicts our assumption. Therefore, a 2-plane contains at most 15 nodes of V6.

Proposition 4.1 If no 23 points of � lie on a single 3-plane, then the hypersurface V6
is factorial.

Proof Since no 6 points of � lie on a single line and no 16 points of � lie on a single
2-plane, the set � satisfies the condition for d = 7 of Theorem 2.15. Therefore, the set
� is 7-normal in P4 and hence the hypersurface V6 is factorial. ��
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Pick an arbitrary point p in � and then we denote the set � \ {p} by �. To prove the
factoriality of V6, we must find a hypersurface of degree 7 in P4 that contains the set
� but not the point p. Due to Proposition 4.1, we may assume that at least 23 points
of � lie in a single 3-plane H. Furthermore, we may assume that all the 24 points
of � lie in the 3-plane H because in what follows we will show that there is a septic
hypersurface in H, not in P4, that contains � ∩ H but not the point p.

We consider the projection φ3 : H ��� � from a general point o in H, where � is a
general hyperplane of H. At most five points of � can lie on a single line in H and at
most ten points of � can lie on a conic on H.

Lemma 4.2 If there is a set � of at least 20 points of � such that φ3(�) is contained in a
cubic curve C on �, then there is a septic hypersurface in H that contains the set � but
not the point p.

Proof We may assume that the cubic curve C contains the point φ3(p). If not, then
we can easily construct a septic surface in H that contains � but not the point p. The
curve C must be irreducible because a line (a conic, resp.) contains at most 5 (10,
resp.) points of φ3(�) by Corollaries 2.4 and 2.5. It then follows from Lemma 2.3 that
the linear system of cubic surfaces in H passing through �∪ {p} has zero-dimensional
base locus. Therefore, applying Corollary 2.14, we obtain a sextic surface F that passes
through 22 points of � but not the point p. Note that |� \ F| ≤ 1. By taking a general
hyperplane passing through the point in � \ F, we can construct a septic surface in H
that contains the set � but not the point p. ��
From now, we suppose that no 20 points of φ3(�) is contained in a cubic curve on �.
And then let us apply the similar technique as Lemma 2.2, which has evolved from
the papers [4,14], to the following case.

Lemma 4.3 If the set φ3(�) is contained in a quartic curve C on �, then there is a septic
hypersurface in H that contains the set � but not the point p.

Proof The curve C must be irreducible because of our assumption. Also, we may
assume that it contains the point φ3(p) as well. Then the linear system M of quartic hy-
persurfaces in H passing through � has zero-dimensional base locus. Meanwhile, we
have the sextic surface Y = H ∩ V6 contains all the nodes of V6. It may have non-iso-
lated singularities. However, it is irreducible and reduced; otherwise the hypersurface
V6 would have more than 24 nodes. Choose a general enough surface S′ in M. Then it
is smooth in the outside of the base locus of M and hence it is normal. Also, the surface
Y gives us a reduced divisor D6 ∈ |OS′(6)| on S′. Let D4 be a divisor in |OS′(4)| given
by a general member of M. We then consider the Q-divisor D = (1 − ε)D6 + 2εD4,
where ε is sufficiently small enough rational number. Then it is easy to check that the
support of L(S′, D) is zero-dimensional and contains �. Use Theorem 2.1 to obtain
H1(S′, I(S′, D) ⊗ OS′(7)) = 0. Therefore, there is a divisor in |OS′(7)| that contains �

but not the point p. The exact sequence

0 → H0(P3, OP3(3)) → H0(P3, OP3(7)) → H0(S′, OS′(7)) → 0

completes the proof. ��
Lemma 4.4 If the set φ3(�) is not contained in any quartic curve C on �, then there is
a septic hypersurface in H that contains the set � but not the point p.
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Proof In this case, the set φ3(�) satisfies the condition for d = 7 in Theorem 2.8.
Therefore, there is a septic curve on � that contains the set φ3(�) but not the point
φ3(p). Then the cone over the septic curve with vertex o is a septic hypersurface in H
that contains � but not the point p. �

Consequently, for an arbitrary point p ∈ �, we can find a septic hypersurface in P4 that
contains � but not the point p. Therefore, the rank of the fourth integral homology
group of V6 is 1 and hence V6 is factorial.

4.3 Septic hypersurfaces

Let V7 be a nodal septic hypersurface in P4 with 35 nodes. We again denote the set of
nodes of V7 by �. Fix a point p in �. We denote the set � \ {p} by �. To prove the
factoriality of V7, we have to construct a hypersurface of degree 9 in P4 that contains
the set � but not the point p.

First of all, it follows from Lemma 2.10 that a 2-plane contains at most 21 points of
�. Suppose that there is a 2-plane � containing at least 20 points of �. The 2-plane
� is not contained in V7; otherwise the hypersurface V7 would have at least 36 nodes.
We then consider the projection φ4: P4 ��� � from a general line L. By Corollaries 2.4
and 2.6 a line on � contains at most six points of φ4(�) and a conic on � contains at
most 12 points of φ4(�).

Proposition 4.5 If there is a 2-plane � containing at least 20 points of �, then for the
projection φ4: P4 ��� � from a general line L the set φ4(�) satisfies the following:

(1) A line on � contains at most 6 points of φ4(�).
(2) A conic on � contains at most 12 points of φ4(�).
(3) A cubic on � contains at most 25 points of φ4(�).
(4) A quartic on � contains at most 30 points of φ4(�).
(5) A quintic on � contains at most 33 points of φ4(�).
(6) A sextic on � contains at most 34 points of φ4(�).

Proof The first and the second statements follow from Corollaries 2.4 and 2.6. And
the last statement is obvious because |φ4(�)| = 34.

For a cubic, we suppose that there is a cubic C on � that contains 26 points
φ4(p1), . . . , φ4(p26) of φ4(�). The cubic C must be irreducible because of the first and
the second statements. It then follows from Lemma 2.3 that the base locus of the
linear system M of cubic hypersurfaces in P4 containing the points p1, . . . , p26 is zero-
dimensional and hence the restricted linear system M|� of the linear system M to
the 2-plane � also has zero-dimensional base locus. Since we have at most 15 points
of � in the outside of �, at least 11 points of p1, . . . , p26 belong to �. Therefore, there
is an irreducible cubic curve D in M|� that is not contained in V7 but passing through
11 nodes of V7. However, this is impossible because 21 = D · V7 ≥ 11 · 2 = 22.

If we have a quartic in � containing 31 points of φ4(�), then in the same way, we
can find an irreducible quartic curve not contained in V7 but passing through 16 nodes
of V7, which is absurd.

Finally, if there is a quintic in � containing 34 points of φ4(�), then in the same
way we can find an irreducible quintic curve not contained in V7 but passing through
19 nodes of V7, which is also impossible. ��
Corollary 4.6 If there is a 2-plane containing at least 20 points of �, the hypersurface
V7 is factorial.
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Proof The proposition above shows the set φ4(�) satisfies the condition for d = 9
in Corollary 2.8 and hence there is a curve C of degree 9 on � passing through all the
point of φ4(�) but not the point φ4(p). The cone over the curve C with vertex L shows
that the set � is 9-normal in P4. Therefore, the hypersurface V7 is factorial. ��

From now on, we suppose that a 2-plane contains at most 19 points of �. If a hyper-
plane in P4 contains at most 28 points of �, then the set � satisfies the condition for
d = 9 in Theorem 2.15 and hence it is 9-normal and V7 is factorial. Therefore, we
suppose that a hyperplane H in P4 contains at least 29 points of �. And let �′ = �∩H
and �′′ = � \ H. We always assume that the point p is contained in �′ because, if not,
then we can easily construct a hypersurface of degree 9 in P4 containing � but not the
point p.

We consider the projection α : H ��� � from a general point o1 ∈ H, where � is a
general 2-plane in H.

Lemma 4.7 If there is a set � of at least 26 points of �′\{p} such that α(�) is contained
in a cubic curve C on �, then there is a hypersurface of degree 9 that contains the set �

but not the point p.

Proof Note that the curve C is irreducible and r = |� \ �| ≤ 8.
Suppose that the curve C does not contain the point α(p). Because a line has at

most six points of �, there is a hypersurface of degree min{r − 5, 
 r
2�} ≤ 4 in P4 that

passes through � \ � but not the point p by Lemma 2.11. Therefore, we can easily
construct a hypersurface of degree 9 that passes through � but not the point p.

Suppose that the curve C contains also the point α(p). Pick two points p1 and p2
from � \� in such a way that � \ (�∪{p1, p2}) is contained in a cubic hypersurface F1
in P4 not containing the point p, which is possible because of Lemma 2.11. The linear
system of cubic hypersurfaces in H containing � ∪ {p} has zero dimensional base
locus. Therefore, there is a sextic hypersurface F2 in P4 that passes through � and the
points p1 and p2 but not the point p by Corollary 2.14. Then the nonic hypersurface
F = F1 + F2 contains all the point of � except the point p. ��

We may assume that no 26 points of α(�′ \ {p}) lie on a cubic curve on �. If a cubic
curve on � contains more than 18 points of α(�′ \ {p}) then it must be irreducible.

Lemma 4.8 If a cubic curve C on � contains 22 points of α(�′ \ {p}), it is unique.

Proof Suppose that a cubic curve C′ on � contains at least 22 points of α(�′ \ {p}),
then it meets C at 22 − (34 − 22) = 10 points and hence C = C′. ��

To prove the factoriality of V7, we will consider the following five cases.

Case 1 |�′| = 29.

Because no 22 points of � are contained in a 2-plane, Lemma 4.8 enables us to choose
six points p1, p2, . . . , p6 from the set �′ \ {p} in such a way that

• no 20 points of α(�′ \ {p, p1, . . . , p6}) lie on a single cubic on �;
• p1, p2, and p3 lie on a 2-plane �1 not containing the point p;
• p4, p5, and p6 lie on a 2-plane �2 not containing the point p.
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Then the set α(�′ \ {p, p1, . . . , p6}) satisfies the condition of Corollary 2.8 for d = 7.
Therefore, there is a septic curve D on � containing α(�′ \ {p, p1, . . . , p6}) but not the
point p. Then the cone over D with vertex o1 is the septic surface D̄ in H containing
�′ \ {p, p1, . . . , p6} but not the point p. Choose two points q1 and q2 from �′′. By
Lemma 2.12, we can construct a hypersurface D̃ in P4 containing �′ \ {p, p1, . . . , p6}
and q1 and q2 but not the point p. Now we choose another two points q3 and q4
from �′′. Let H3 be a hyperplane passing through the point q3 but not q4 and H4 a
hyperplane passing through the point q4 but not q3. Apply Lemma 2.13 to the hyper-
surfaces D̃, H + H′ + 5H4, and H + H′ + 5H3, where H′ is a general hyperplane in
P4 passing through q1 and q2, to obtain a septic hypersurface in P4 passing through
�′ \ {p, p1, . . . , p6} and {q1, q2, q3, q4} but not the point p. By our construction, two
2-planes �1 and �2 and the remaining two points of �′′ are contained in a quadratic
hypersurface in P4 not passing through the point p.

Case 2 |�′| = 30.

For the same reason as in Case 1, we can choose three points p1, p2 and p3 from the
set �′ \ {p} in such a way that

• no 23 points of α(�′ \ {p, p1, p2, p3}) lie on a single cubic on �;
• p1, p2, and p3 lie on a 2-plane �1 not containing the point p.

Then the set α(�′ \ {p, p1, p2, p3}) satisfies the condition of Corollary 2.8 for d = 8.
Therefore, there is an octic curve D on � containing α(�′ \ {p, p1, p2, p3}) but not the
point p. Then the cone over D with vertex o1 is an octic surface D̄ in H containing
�′ \ {p, p1, p2, p3} but not the point p. Choose two points q1 and q2 from �′′. By
Lemma 2.12, we can construct a hypersurface D̃ in P4 containing �′ \ {p, p1, p2, p3}
and q1 and q2. Now we choose another two points q3 and q4 from �′′. As in Case 1, we
use Lemma 2.13 to get an octic hypersurface in P4 passing through �′ \ {p, p1, p2, p3}
and {q1, q2, q3, q4} but not the point p. Also, the 2-plane �1 and the remaining one
point in �′′ are contained in a hyperplane in P4 not passing through the point p.

Case 3 |�′| = 31.

Then the set α(�′ \ {p}) satisfies the condition of Corollary 2.8 for d = 9. Therefore,
there is a nonic curve D on � containing α(�′ \ {p}) but not the point p. Then the cone
over D with vertex o1 is a nonic surface D̄ in H containing �′ \ {p} but not the point p.
Choose two points q1 and q2 from �′′. By Lemma 2.12, we can construct hypersurface
D̃ in P4 containing �′ \ {p, p1, p2, p3} and q1 and q2. Note that |�′′ \ {q1, q2}| = 2. As
in the previous, we use Lemma 2.13 to construct a nonic hypersurface in P4 passing
through � but not the point p.

Case 4 32 ≤ |�′| ≤ 34.

Suppose that no 31 points of α(�′ \ {p}) lie on a single quartic curve on �. The set
α(�′ \ {p}) then satisfies the condition of Corollary 2.8 for d = 9. Therefore, as in Case
3, we can find a nonic hypersurface that we need.

Suppose that there is a set � of at least 31 points of �′ \ {p} such that a quartic
curve C on � contains α(�). If the curve C does not contain the point α(p), then we
can easily construct a nonic hypersurface in P4 that we are looking for. Therefore, we
may assume that the point α(p) also belongs to C. Then it follows from Lemmas 2.2
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and 2.3 that there is a nonic hypersurface in H passing through � but not the point p.
Then, using Lemmas 2.12 and 2.13, we can construct a nonic hypersurface in P4 that
passes through all the point of � but not the point p.

Case 5 |�′| = 35.

Suppose that there is a set � of at least 31 points of � = �′\{p} such that α(�) is
contained in a quartic curve C on �. The curve C must be irreducible. We also assume
that the curve C contains the point α(p). Then the base locus of the linear system M
of quartic surfaces on H containing � ∪ {p} is zero-dimensional by Lemma 2.3. Let
B be the support of the base locus of the linear system M and �̄ = � \ B. Note that
� ∪ {p} ⊂ B. It follows from Lemma 2.2 that the set B is 9-normal in H. There is a
nonic hypersurface F in H that contains B\{p} but not the point p. Because |�̄| ≤ 3,
for each q ∈ �̄ there is a quintic hypersurface Qq in H such that contains the set
�̄ \{q} but not the point q. Choose a general element Q from the linear system M. We
then apply Lemma 2.13 to the nonic hypersurfaces F and Q + Qq to obtain a nonic
hypersurface passing through � except the point p. Therefore, we may assume that
no 31 points of α(�) lie on a quartic on �.

Unless the set α(�) lie on a quintic curve on �, we can use Corollary 2.8 to get
a nonic curve on � containing the set α(�) but not the point α(p), which gives us a
nonic hypersurface in P4 that we need.

Finally, we suppose that there is a quintic curve C5 on � that contains α(�).
The curve C5 is irreducible. Also, we may assume that it contains the point α(p)

as well. Then the linear system D of quintic hypersurfaces in H passing through �

has zero-dimensional base locus. Meanwhile, we have the septic surface Y = H ∩ V7
contains all the nodes of V7, which may have non-isolated singularities. However, it is
irreducible and reduced; otherwise the hypersurface would have more than 35 nodes.
Choose a general enough surface S′ in D. Then it is smooth in the outside of the
base locus of D and hence it is normal. Also, the surface Y gives us a reduced divisor
D7 ∈ |OS′(7)| on S′. Let D5 be a divisor in |OS′(5)| given by a general member of D. We
then consider the Q-divisor D = (1−ε)D7 +2εD5, where ε is sufficiently small enough
rational number. Then it is easy to check that the support of L(S′, D) is zero-dimen-
sional and contains �. Using Theorem 2.1, we obtain H1(S′, I(S′, D) ⊗ OS′(9)) = 0.
Therefore, there is a divisor in |OS′(9)| that contains � but not the point p. Because
the sequence

0 → H0(P3, OP3(4)) → H0(P3, OP3(9)) → H0(S′, OS′(9)) → 0

exact, we are done.
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