On nodal sextic fivefold

Ivan Cheltsov*1

¹ School of Mathematics, The University of Edinburgh, Edinburgh, EH9 3JZ, UK

Received 15 June 2005, revised 24 November 2005, accepted 13 June 2007 Published online 7 August 2007

Key words Nonrational, hypersurface, Fano variety, birationally rigid, birational automorphisms **MSC (2000)** 14E05, 14E07, 14E08, 14J40, 14J45, 14J70

We prove birational superrigidity and nonrationality of every sextic fivefold with ordinary double points.

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

All varieties are assumed to be projective, normal and defined over C.

In many cases the only known way to prove the nonrationality of a given Fano variety is to prove its birational rigidity (cf. [16], [7] and [4]). Many counterexamples to the Lüroth problem are obtained in this way (see [13]). Birational rigidity is proved in the following cases:

- for some smooth Fano threefolds (see [13], [12] and [14]);
- for many singular Fano threefolds (see [20], [22], [11], [9], [8] and [17]);
- for many smooth Fano n-folds (see [18], [23], [25], [2], [26], [27], [30], [10], [3] and [4]), where n > 3;
- ullet for some singular Fano n-folds (see [20], [22], [28], [29] and [4]), where n > 3.

Let X be a hypersurface in \mathbf{P}^6 of degree 6 that has at most isolated ordinary double points. Then

$$-K_X \sim \mathcal{O}_{\mathbf{P}^6}(1)|_{X}$$

the variety X has Q-factorial terminal singularities and $\operatorname{rk}\operatorname{Pic}(X)=1$ (see [1]). We prove the following result.

Theorem 1.1 The hypersurface X is birationally superrigid.

In the smooth case the assertion of Theorem 1.1 is proved in [2].

Example 1.2 The singularities of the hypersurface

$$x_0^4\big(x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2\big)=x_1^6+x_2^6+x_3^6+x_4^6+x_5^6+x_6^6\subset\mathbf{P}^6\cong\mathrm{Proj}\big(\mathbf{C}[x_0,\ldots,x_6]\big)$$

consist of a single ordinary double point, which implies that it is nonrational by Theorem 1.1.

Example 1.3 Let X be a hypersurface with 729 isolated ordinary double points

$$\sum_{i=0}^{2} a_i(x_0,\ldots,x_6)b_i(x_0,\ldots,x_6) = 0 \subset \mathbf{P}^6 \cong \operatorname{Proj}(\mathbf{C}[x_0,\ldots,x_6]),$$

where a_i and b_i are general homogeneous polynomials of degree 3. Then X is nonrational by Theorem 1.1.

The assertion of Theorem 1.1 is a fivefold generalization of the birational rigidity of a nodal \mathbf{Q} -factorial quartic threefold (see [13], [20] and [17]). The assertion of Theorem 1.1 is relevant to the results obtained in [28] and [29], which cannot be used to produce explicit examples of nonrational Fano hypersurfaces.

^{*} e-mail: I.Cheltsov@ed.ac.uk, Phone: +44 131 650 4881, Fax: +44 131 650 6553

2 The Noether-Fano inequality

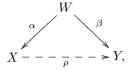
Let X be an arbitrary Fano variety having at most terminal and \mathbf{Q} -factorial singularities such that $\operatorname{rk}\operatorname{Pic}(X)=1$, and the variety X is not birationally superrigid. Then the following result holds (see [5]).

Theorem 2.1 There is a linear system \mathcal{M} on the variety X such that \mathcal{M} does not have fixed components, and the singularities of the log pair $(X, \gamma \mathcal{M})$ are not canonical, where $\gamma \in \mathbf{Q}$ is such that $K_X + \gamma \mathcal{M} \equiv 0$.

In the rest of the section we prove Theorem 2.1. Let $\rho: X \dashrightarrow Y$ be a birational map such that the rational map ρ is not biregular and one of the following holds:

- the variety Y has terminal Q-factorial singularities and rk Pic(Y) = 1 (the Fano case);
- the variety Y is smooth, and there is a surjective morphism $\tau:Y\to Z$ such that sufficiently general fiber of the morphism τ has negative Kodaira dimension, and $\dim(Y)\neq\dim(Z)\neq0$ (the fibration case).

Let us consider a commutative diagram



such that the variety W is smooth, α and β are birational morphisms. In the Fano case let \mathcal{D} be the complete linear system $|-rK_Y|$ for $r\gg 0$, in the fibration case let \mathcal{D} be the linear system $|\tau^*(H)|$, where H is a very ample divisor on the variety Z. Let \mathcal{M} be a proper transform of \mathcal{D} on the variety X. Take a $\gamma\in \mathbf{Q}$ such that

$$K_X + \gamma \mathcal{M} \equiv 0.$$

Suppose that the singularities of the log pair $(X, \gamma \mathcal{M})$ are canonical. Let us show that this assumption leads to a contradiction. Let \mathcal{B} be a proper transform on W of the linear system \mathcal{M} . Then

$$\sum_{i=1}^{k} a_i F_i \equiv \alpha^* (K_X + \gamma \mathcal{M}) + \sum_{i=1}^{k} a_i F_i \equiv K_W + \gamma \mathcal{B} \equiv \beta^* (K_Y + \gamma \mathcal{D}) + \sum_{i=1}^{l} b_i G_i,$$

where F_j is a β -exceptional divisor, G_i is an α -exceptional divisor, a_i is a nonnegative rational number, and b_i is a positive rational number. Let n be a sufficiently big and sufficiently divisible natural number. Then

$$1 = h^0 \left(\mathcal{O}_W \left(\sum_{j=1}^k n a_j F_j \right) \right) = h^0 \left(\mathcal{O}_W \left(\beta^* \left(n K_Y + n \gamma \mathcal{D} \right) + \sum_{i=1}^l n b_i G_i \right) \right),$$

but $h^0(\mathcal{O}_W(\beta^*(nK_Y+\gamma\mathcal{D})+\sum_{i=1}^l nb_iG_i))=0$ in the fibration case. Hence, the fibration case is impossible. In the Fano case the equality $h^0(\mathcal{O}_W(\beta^*(nK_Y+\gamma\mathcal{D})+\sum_{i=1}^l nb_iG_i))=1$ implies that $\gamma=1/r$. Then

$$\sum_{i=1}^{k} a_i F_i \equiv \sum_{i=1}^{l} b_i G_i,$$

and $\sum_{i=1}^k a_i F_i = \sum_{i=1}^l b_i G_i$ by [15, Lemma 2.19]. Thus, the log pair $(X, \gamma \mathcal{M})$ has terminal singularities. There is a rational number $\mu > \gamma$ such that $(X, \mu \mathcal{M})$ and $(X, \mu \mathcal{B})$ have terminal singularities. Then

$$\alpha^* (K_X + \mu \mathcal{M}) + \sum_{i=1}^k a_i' F_i \equiv K_W + \mu \mathcal{B} \equiv \beta^* (K_Y + \mu \mathcal{D}) + \sum_{i=1}^l b_i' G_i,$$

where a'_i and b'_i are positive rational numbers.

Let n be a sufficiently big and divisible natural number, and let $\psi \colon W \dashrightarrow U$ be a rational map that is given by the linear system $|nK_W + n\mu\mathcal{B}|$. Then the map $\psi \circ \beta^{-1}$ is biregular, because the divisor $n(K_Y + \mu\mathcal{D})$ is very ample. But the divisor $\sum_{i=1}^l nb_i'G_i$ is effective and β -exceptional. Similarly, we see that $\psi \circ \alpha^{-1}$ is biregular, which implies that ρ is biregular. The latter is a contradiction. Thus, we proved Theorem 2.1.

3 The lemma of Corti

Let X be a variety with an ordinary double point $O \in X$, and let B_X be an effective **Q**-Cartier divisor on X. Let

$$\pi \colon W \longrightarrow X$$

be a blow up of the point O, E be a π -exceptional divisor, and B_W be a proper transform of B_X on W. Then

$$\pi^*(B_X) \equiv B_W + \text{mult}_O(B_X)E$$
,

where $\operatorname{mult}_O(B_X)$ is a nonnegative rational number.

Suppose that $\dim(X) \ge 3$ and the log pair (X, B_X) is not canonical at the point O. Then $\operatorname{mult}_O(B_X) > 1/2$. In the rest of the section we prove the following result, which is implied by [6, Theorem 3.10].

Lemma 3.1 The inequality $\operatorname{mult}_O(B_X) > 1$ holds.

Suppose that $\operatorname{mult}_O(B_X) \leq 1$. Let us show that this assumption leads to a contradiction.

Replacing the divisor B_X by $(1-\epsilon)B_X$ for some positive sufficiently small rational number ϵ , we may assume that $\operatorname{mult}_O(B_X) < 1$. Taking hyperplane sections, we may assume that $\dim(X) = 3$ by [15, Theorem 17.6].

Lemma 3.2 Let S be a surface $\mathbf{P}^1 \times \mathbf{P}^1$, and B_S be an effective divisor on the surface S of bi-degree (a,b), where a and b are rational numbers in [0,1). Then the log pair (S,B_S) has log-terminal singularities.

Proof. Suppose that the singularities of (S, B_S) are not log-terminal. Then the locus of log canonical singularities $LCS(S, B_S)$ is not empty and consists of points of the surface S. Then $LCS(S, F + B_S)$ is not connected, where F is a general fiber of any projection of the surface S to \mathbf{P}^1 . The later contradicts [15, Theorem 17.4]. \square

The inequality $\operatorname{mult}_O(B_X) < 1$ and the equivalence

$$K_W + B_W \equiv \pi^* (K_X + B_X) + (1 - \text{mult}_O(B_X)) E,$$

imply that there is a proper subvariety $Z \subset E$ such that the log pair (W, B_W) is not canonical at general point of the variety Z. Then $(E, B_W|_E)$ is not log terminal by [15, Theorem 17.6], which is impossible by Lemma 3.2.

4 Main inequalities

Let X be a variety with an ordinary double point $O \in X$, and let \mathcal{M} be a liner system on the variety X such that the linear system \mathcal{M} does not have fixed components. Put $r = \dim(X)$. Suppose that $r \ge 4$. Let

$$\pi\colon V\longrightarrow X$$

be a blow up of the variety X at the point O, and let E be a π -exceptional divisor. Let \mathcal{B} be a proper transform of the linear system \mathcal{M} on the variety V. The variety E can be identified with a smooth quadric in \mathbf{P}^r . Then

$$\mathcal{B} \sim \pi^*(\mathcal{M}) - \text{mult}_O(\mathcal{M})E$$
,

where $\operatorname{mult}_{O}(\mathcal{M})$ is a natural number, which is different from the multiplicity of \mathcal{M} at the point O.

Let S_1 and S_2 be sufficiently general divisors in the linear system \mathcal{M} , and H_i be a sufficiently general hyperplane section of the variety X that passes through the point O, where $i = 1, \ldots, r-2$. Put

$$\operatorname{mult}_{O}\left(S_{1}\cdot S_{2}\right) = 2\operatorname{mult}_{O}^{2}\left(S_{i}\right) + \sum_{P\in E}\operatorname{mult}_{P}\left(\widehat{S}_{1}\cdot\widehat{S}_{2}\right)\operatorname{mult}_{P}\left(\widehat{H}_{1}\right)\ldots\operatorname{mult}_{P}\left(\widehat{H}_{r-2}\right),$$

where $\operatorname{mult}_O(S_i)$ and $\operatorname{mult}_O(H_i)$ are natural numbers that are defined in the same way as the number $\operatorname{mult}_O(\mathcal{M})$, and \widehat{S}_i and \widehat{H}_i are the proper transforms on the variety V of the divisors S_i and H_i , respectively.

Remark 4.1 It follows from elementary properties of blow ups that the inequality

$$\operatorname{mult}_{Q}(S_{1} \cdot S_{2}) \geqslant 2 \operatorname{mult}_{Q}(S_{i}) + \operatorname{mult}_{Z}(\widehat{S}_{1} \cdot \widehat{S}_{2})$$

holds for any irreducible subvariety $Z \subset E$ of codimension one.

Example 4.2 Let X be a singular hypersurface in \mathbf{P}^6 of degree 6 that has at most isolated ordinary double points, and let O be a singular point of the variety X. It follows from [1] that

$$S_i \sim nH$$

where H is a hyperplane section of the variety X, and $n \in \mathbb{N}$. Then $\operatorname{mult}_O(S_1 \cdot S_2) \leq 6n^2$.

Suppose that $(X, \frac{1}{n}\mathcal{M})$ is canonical in a punctured neighborhood of O, and $(X, \frac{1}{n}\mathcal{M})$ is not canonical at O.

Lemma 4.3 Suppose that r > 5. Then $\operatorname{mult}_O(S_1 \cdot S_2) > 6n^2$.

Proof. We may assume that r = 6, because the proof in the case r > 6 is similar. Then

$$K_V + \frac{1}{n}\mathcal{B} \equiv \pi^* \left(K_X + \frac{1}{n}\mathcal{M} \right) + \left(4 - \frac{\text{mult}_O(\mathcal{M})}{n} \right) E.$$

Put $\check{X} = \bigcap_{i=1}^3 H_i$ and $\check{\mathcal{M}} = \mathcal{M}|_{\check{X}}$. The point O is an ordinary double point of the variety \check{X} , and the singularities of the log pair $(\check{X}, \frac{1}{n} \check{\mathcal{M}})$ are not log canonical in the point O by [15, Theorem 17.6].

Let $\check{\pi}: \check{V} \to \check{X}$ be a blow up of the point O, and \check{E} be an exceptional divisor of $\check{\pi}$. Then the diagram

$$\begin{array}{ccc}
\check{V}^{c} & & V \\
\downarrow^{\check{\pi}} & & \downarrow^{\pi} \\
\check{X}^{c} & & X
\end{array}$$

is commutative, where \check{V} is identified with a proper transform of \check{X} on the variety V. We have $\check{E} = E \cap \check{V}$. Then

$$\operatorname{mult}_O(\check{\mathcal{M}}) = \operatorname{mult}_O(\mathcal{M}),$$

and we may assume that $\operatorname{mult}_{O}(\mathcal{M}) < 2n$, because otherwise $\operatorname{mult}_{O}(S_1 \cdot S_2) > 6n^2$.

Let \mathcal{B} be a proper transform of the linear system \mathcal{M} on the variety V, and $\dot{\mathcal{B}}$ be a proper transform of the linear system $\dot{\mathcal{M}}$ on the threefold \check{V} . Then $\check{\mathcal{B}} = \mathcal{B}|_{\check{V}}$ and we have

$$K_V + \frac{1}{n}\mathcal{B} + \left(\frac{\text{mult}_O(\mathcal{M})}{n} - 1\right)E + \widehat{H}_1 + \widehat{H}_2 + \widehat{H}_3 \equiv \pi^* \left(K_X + \frac{1}{n}\mathcal{M} + H_1 + H_2 + H_3\right)$$

and

$$K_{\check{V}} + \frac{1}{n} \check{\mathcal{B}} + \left(\frac{\operatorname{mult}_{O}(\mathcal{M})}{n} - 1 \right) \check{E} \equiv \check{\pi}^* \left(K_{\check{X}} + \frac{1}{n} \check{\mathcal{M}} \right),$$

but $\operatorname{mult}_O(\mathcal{M}) < 2n$. Thus, there are irreducible subvarieties $\Omega \subsetneq E$ and $\check{\Omega} \subsetneq \check{E}$ such that

- the log pair $\left(V, \frac{1}{n}\mathcal{B} + (\text{mult}_O(\mathcal{M})/n 1)E\right)$ is not log canonical at general point of Ω ,
- the log pair $(\check{V}, \frac{1}{n}\check{\mathcal{B}} + (\operatorname{mult}_{O}(\mathcal{M})/n 1)\check{E})$ is not log canonical at general point of $\check{\Omega}$, and $\check{\Omega} \subseteq \Omega \cap \check{V}$.

We may assume that Ω and $\check{\Omega}$ have the biggest dimensions among all subvarieties having such properties.

We have $\check{\Omega} = \Omega \cap \check{V}$ when $\dim(\check{\Omega}) > 0$. Let us show that $\check{\Omega} = \Omega \cap \check{V}$ when $\dim(\check{\Omega}) = 0$.

Applying [15, Theorem 17.4] to the log pair $(\check{V}, \frac{1}{n}\check{\mathcal{B}} + (\operatorname{mult}_O(\mathcal{M})/n - 1)\check{E})$ and the morphism $\check{\pi}$, we see that in the case $\dim(\check{\Omega}) = 0$ the locus of log canonical singularities

$$LCS\left(\check{V}, \frac{1}{n}\check{\mathcal{B}} + \left(\text{mult}_O(\mathcal{M})/n - 1\right)\check{E}\right)$$

consists of a single point $\check{\Omega}$ in the neighborhood of the divisor \check{E} . In particular, we have $\check{\Omega} = \Omega \cap \check{V}$.

Suppose that $\dim(\check{\Omega}) = 0$. Then $\check{\Omega} = \Omega \cap \check{V}$ implies that Ω is a linear subspace in \mathbf{P}^6 of codimension 3 that is contained in the smooth quadric hypersurface $E \subset \mathbf{P}^6$. The latter is impossible by the Lefschetz theorem.

Hence, the inequality $\dim(\check{\Omega}) \geqslant 1$ holds, which implies $\dim(\Omega) = 4$.

We see that the singularities of the log pair $(V, \frac{1}{n}\mathcal{B} + (\operatorname{mult}_O(\mathcal{M})/n - 1)E)$ are not log canonical at general point of the irreducible subvariety $\Omega \subset E$ that has dimension 4. Therefore, we can apply [6, Theorem 3.1] to the log pair $(V, \frac{1}{n}\mathcal{B} + (\operatorname{mult}_O(\mathcal{M})/n - 1)E)$ in the general point of the subvariety Ω . The latter gives

$$\operatorname{mult}_{\Omega}(\widehat{S}_1 \cdot \widehat{S}_2) > 4(2n^2 - n \operatorname{mult}_{O}(\mathcal{M})),$$

where \widehat{S}_i is a proper transform of S_i on the variety V. Hence, the inequalities

$$\operatorname{mult}_{O}(S_{1} \cdot S_{2}) \geqslant 2 \operatorname{mult}_{O}(\mathcal{M})^{2} + \operatorname{mult}_{\Omega}(\widehat{S}_{1} \cdot \widehat{S}_{2}) > 6n^{2} + 2(n - \operatorname{mult}_{O}(\mathcal{M}))^{2} \geqslant 6n^{2}$$

hold, which is exactly what we need to proof.

Let Δ be an effective divisor on the variety X passing through the point O and $\hat{\Delta}$ be its proper transform on the variety V. Suppose that Δ does not contain irreducible components of the cycle $S_1 \cdot S_2$, and $\hat{\Delta}$ does not contain irreducible components of the cycle $\hat{S}_1 \cdot \hat{S}_2$. Then we can put

$$\operatorname{mult}_{O}(S_{1} \cdot S_{2} \cdot \Delta) = 2\operatorname{mult}_{O}^{2}(S_{i})\operatorname{mult}_{O}(\Delta) + \sum_{P \in E} \operatorname{mult}_{P}(\widehat{S}_{1} \cdot \widehat{S}_{2} \cdot \widehat{\Delta})\operatorname{mult}_{P}(\widehat{H}_{1}) \dots \operatorname{mult}_{P}(\widehat{H}_{r-3}),$$

which implies $\operatorname{mult}_O(S_1 \cdot S_2 \cdot \Delta) = \operatorname{mult}_O(S_1|_\Delta \cdot S_2|_\Delta)$ if O is an isolated ordinary double point of Δ .

Lemma 4.4 Suppose that r=4. Then there is a line $\Lambda \subset E \subset \mathbf{P}^4$ such that

$$\operatorname{mult}_O(S_1 \cdot S_2 \cdot \Delta) > 6n^2$$

in the case when O is an ordinary double point of the divisor Δ , and $\Lambda \subset \hat{\Delta}$.

Proof. We have $\operatorname{mult}_O(\mathcal{M}) > n$ by Lemma 3.1, but

$$K_V + \frac{1}{n}\mathcal{B} \equiv \pi^* \left(K_X + \frac{1}{n}\mathcal{M} \right) + \left(2 - \frac{\text{mult}_O(\mathcal{M})}{n} \right) E.$$

Suppose that O is an ordinary double point on Δ . Put $\bar{S}_i = S_i|_{\Delta}$ and $\overline{\mathcal{M}} = \mathcal{M}|_{\Delta}$. Then the log pair $\left(\Delta, \frac{1}{n}\overline{\mathcal{M}}\right)$ is not log canonical in the point O by [15, Theorem 17.6].

Let $\tilde{\pi}: \tilde{\Delta} \to \Delta$ be a blow up of O, and \widetilde{E} is a $\bar{\pi}$ -exceptional divisor. Then the diagram

$$\begin{array}{ccc}
\tilde{\Delta}^{C} & & V \\
\bar{\pi} & & \downarrow \pi \\
\Lambda^{C} & & X
\end{array}$$

is commutative, where we can identify $\tilde{\Delta}$ with $\hat{\Delta}$, and $\tilde{E} = E \cap \tilde{\Delta}$ can be considered as a nonsingular quadric hypersurface in \mathbf{P}^3 . The inequality $\operatorname{mult}_O(\overline{\mathcal{M}}) \geqslant 2n$ gives

$$\operatorname{mult}_O(S_1 \cdot S_2 \cdot \Delta) = \operatorname{mult}_O(\bar{S}_1 \cdot \bar{S}_2) \geqslant 8n^2,$$

hence, we may assume that $\operatorname{mult}_O(\overline{\mathcal{M}}) < 2n$.

Let $\widetilde{\mathcal{M}}$ be a proper transform of the linear system $\overline{\mathcal{M}}$ on the variety $\widetilde{\Delta}$. Then $\operatorname{mult}_O(\overline{\mathcal{M}}) < 2n$ implies that there is an irreducible subvariety $\Xi \subseteq \widetilde{E}$ such that the singularities of the log pair

$$\left(\widetilde{\Delta}, \frac{1}{n}\widetilde{\mathcal{M}} + \left(\operatorname{mult}_O\left(\overline{\mathcal{M}}\right)/n - 1\right)\widetilde{E}\right).$$

are not log canonical in the general point of Ξ .

Suppose that Ξ is a curve. Let \widetilde{S}_i be a proper transform of \overline{S}_i on the variety $\widetilde{\Delta}$. Then the inequality

$$\operatorname{mult}_{O}(\bar{S}_{1} \cdot \bar{S}_{2}) \geqslant 2 \operatorname{mult}_{O}(\mathcal{M})^{2} + \operatorname{mult}_{\Xi}(\tilde{S}_{1} \cdot \tilde{S}_{2})$$

holds. Applying [6, Theorem 3.1] to $(\tilde{\Delta}, \frac{1}{n}\widetilde{\mathcal{M}} + (\operatorname{mult}_O(\overline{\mathcal{M}})/n - 1)\widetilde{E})$ at the general point of Ξ , we see that

$$\operatorname{mult}_{\Xi}(\widetilde{S}_1 \cdot \widetilde{S}_2) > 4(2n^2 - n \operatorname{mult}_O(\overline{\mathcal{M}})),$$

which immediately implies that

$$\operatorname{mult}_{O}(\bar{S}_{1} \cdot \bar{S}_{2}) > 2 \operatorname{mult}_{O}^{2}(\overline{\mathcal{M}}) + 4(2n^{2} - n \operatorname{mult}_{O}(\overline{\mathcal{M}})) \geqslant 6n^{2}.$$

To conclude the proof we may assume that Ξ is a point.

Suppose that Δ is a general hyperplane section of X such that $O \in \Delta$. We can apply [15, Theorem 17.4] to the morphism $\tilde{\pi}$ and the log pair $(\tilde{\Delta}, \frac{1}{n}\widetilde{\mathcal{M}} + (\operatorname{mult}_O(\overline{\mathcal{M}})/n - 1)\widetilde{E})$. We see that

- either $(V, \frac{1}{n}\mathcal{B} + (\text{mult}_O(\mathcal{M})/n 1)E)$ is not log canonical at general point of a surface contained in E,
- or $(V, \frac{1}{n}\mathcal{B} + (\text{mult}_O(\mathcal{M})/n 1)E)$ is not log canonical at general point of a line $\Lambda \subset E$ and $\Xi = \Lambda \cap \hat{\Delta}$.

In the case when the log pair $(V, \frac{1}{n}\mathcal{B} + (\operatorname{mult}_O(\mathcal{M})/n - 1)E)$ is not log canonical at general point of a surface contained in E, the previous arguments implies the inequality $\operatorname{mult}_O(\bar{S}_1 \cdot \bar{S}_2) > 6n^2$.

We may assume that there is a line $\Lambda \subset E$ such that $\Xi = \Lambda \cap \tilde{\Delta}$ and the singularities of the log pair

$$\left(V, \frac{1}{n}\mathcal{B} + \left(\text{mult}_O(\mathcal{M})/n - 1\right)E\right)$$

are not log canonical at general point of the curve Λ .

The line Λ does not depend on the choice of Δ . So, we may assume that $\Lambda \subset \hat{\Delta}$, where $\hat{\Delta} = \tilde{\Delta}$. Then

$$\left(\widetilde{\Delta}, \frac{1}{n}\widetilde{\mathcal{M}} + \left(\operatorname{mult}_O(\overline{\mathcal{M}})/n - 1\right)\widetilde{E}\right)$$

is not log canonical at the general point of Λ by [15, Theorem 17.6], because $\operatorname{mult}_O(\mathcal{M}) > n$.

Now we can apply [6, Theorem 3.1] to the log pair $(\tilde{\Delta}, \frac{1}{n}\widetilde{\mathcal{M}} + (\operatorname{mult}_O(\overline{\mathcal{M}})/n - 1)\widetilde{E})$ at general point of the curve Λ to obtain the inequalities

$$\operatorname{mult}_{O}(\bar{S}_{1} \cdot \bar{S}_{2}) > 2 \operatorname{mult}_{O}^{2}(\overline{\mathcal{M}}) + 4(2n^{2} - n \operatorname{mult}_{O}(\overline{\mathcal{M}})) \ge 6n^{2},$$

which conclude the proof.

Finally, let us prove the following result.

Lemma 4.5 Suppose that r = 5. Then $\operatorname{mult}_O(S_1 \cdot S_2) > 6n^2$.

Proof. Put $\check{X} = H_1 \cap H_2$ and $\check{\mathcal{M}} = \mathcal{M}|_{\check{X}}$. Then $(\check{X}, \frac{1}{n}\check{\mathcal{M}})$ is not log canonical at O by [15, Theorem 17.6], and O is an ordinary double point of the threefold \check{X} . Let $\check{\pi} : \check{V} \to \check{X}$ be a blow up of O, and \check{E} be an exceptional divisor of the morphism $\check{\pi}$. Then we can identify \check{V} with a proper transform of \check{X} on the variety V. Because

$$\operatorname{mult}_{\mathcal{O}}(S_1 \cdot S_2) \geqslant 2 \operatorname{mult}_{\mathcal{O}}^2(\mathcal{M}) > 6n^2$$

in the case when $\operatorname{mult}_O(\mathcal{M}) \geqslant 2n$, we may assume that the inequality $\operatorname{mult}_O(\mathcal{M}) < 2n$ holds. Let $\check{\mathcal{B}}$ be a proper transform of the linear system $\check{\mathcal{M}}$ on the variety \check{V} . Then $\check{\mathcal{B}} = \mathcal{B}|_{\check{V}}$. We have

$$K_V + \frac{1}{n}\mathcal{B} + \left(\frac{\text{mult}_O(\mathcal{M})}{n} - 1\right)E + \widehat{H}_1 + \widehat{H}_2 \equiv \pi^* \left(K_X + \frac{1}{n}\mathcal{M} + H_1 + H_2\right)$$

and $K_{\check{V}} + \frac{1}{n}\check{\mathcal{B}} + (\operatorname{mult}_O(\mathcal{M})/n - 1)\check{E} \equiv \check{\pi}^* \left(K_{\check{X}} + \frac{1}{n}\check{\mathcal{M}} \right)$. So, there are subvarieties $\Omega \subsetneq E$ and $\check{\Omega} \subsetneq \check{E}$ such that

- both subvarieties Ω and $\check{\Omega}$ are irreducible and $\check{\Omega} \subseteq \Omega \cap \check{V}$,
- the log pair $(V, \frac{1}{n}\mathcal{B} + (\text{mult}_O(\mathcal{M})/n 1)E)$ is not log canonical at general point of Ω ;
- the log pair $(\check{V}, \frac{1}{n}\check{\mathcal{B}} + (\operatorname{mult}_O(\mathcal{M})/n 1)\check{E})$ is not log canonical at general point of $\check{\Omega}$.

We may assume that the subvarieties Ω and $\check{\Omega}$ have the biggest dimensions among all subvarieties with such properties. Then $\check{\Omega} = \Omega \cap \check{V}$ in the case when $\dim(\check{\Omega}) \geqslant 1$.

Suppose that $\dim(\check{\Omega}) \ge 1$ holds. Then $\dim(\Omega) = 3$. Therefore, the inequality

$$\operatorname{mult}_{\Omega}(\hat{S}_1 \cdot \hat{S}_2) > 4(2n^2 - n \operatorname{mult}_{O}(\mathcal{M}))$$

holds by [6, Theorem 3.1]. Therefore, the inequalities

$$\operatorname{mult}_{O}(S_{1} \cdot S_{2}) \geqslant 2 \operatorname{mult}_{O}^{2}(\mathcal{M}) + \operatorname{mult}_{\Omega}(\hat{S}_{1} \cdot \hat{S}_{2}) > 6n^{2}$$

hold. Thus, we may assume that $\dim(\check{\Omega}) = 0$.

Applying [15, Theorem 17.4] to the log pair $(\check{V}, \frac{1}{n}\check{\mathcal{B}} + (\text{mult}_O(\mathcal{M})/n - 1)\check{\mathcal{E}})$ and $\check{\pi}$, we see that the locus

$$LCS\left(\check{V}, \frac{1}{n}\check{\mathcal{B}} + \left(\operatorname{mult}_O(\mathcal{M})/n - 1\right)\check{E}\right)$$

consists of a single point $\check{\Omega}$ in the neighborhood of the divisor \check{E} . Hence, the subvariety Ω is a plane in \mathbf{P}^5 .

The referee pointed out to the author that Ω cannot be a plane. We follow the arguments of the referee to complete the proof. Let us use the arguments of the original proof of Lemma 3.1 (see [6, Theorem 3.10]).

Let \check{X} be a general hyperplane section of X passing through the point O that is locally given as

$$xy + zt = 0 \subset \mathbf{C}^5 \cong \operatorname{Spec}(\mathbf{C}[x, y, z, t, u])$$

in the neighborhood of the point O, which is given by x=y=z=t=u=0. Then \check{X} has non-isolated singularities. But we can apply the previous arguments to the variety \check{X} .

Let \check{V} be the proper transform of \check{X} on the variety V, and let $\check{\pi}: \check{V} \to \check{X}$ be the induced morphism. Then

$$K_{\breve{V}} + \frac{1}{n} \breve{\mathcal{B}} + \left(\text{mult}_O(\mathcal{M})/n - 2 \right) \breve{E} \equiv \breve{\pi}^* \left(K_{\breve{X}} + \frac{1}{n} \mathcal{M} \Big|_{\breve{X}} \right),$$

where $\breve{\mathcal{B}} = \mathcal{B}|_{\breve{V}}$, and \breve{E} is the exceptional divisor of the morphism $\breve{\pi}$, which is a cone over $\mathbf{P}^1 \times \mathbf{P}^1$.

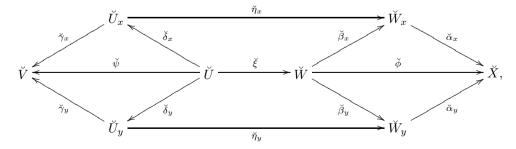
Let \check{S}_x and \check{S}_y be Weil divisors on \check{X} that are given by the equations x=t=0 and y=t=0, respectively. Then \check{S}_x and \check{S}_y are not Q-Cartier divisors, but the divisor $\check{S}_x+\check{S}_y$ is Cartier. We have

$$K_{\breve{V}} + \frac{1}{n} \breve{\mathcal{B}} + \left(\text{mult}_{O}(\mathcal{M})/n - 1 \right) \breve{E} + \breve{H}_{x} + \breve{H}_{y} \equiv \breve{\pi}^{*} \left(K_{\breve{X}} + \frac{1}{n} \mathcal{M} \Big|_{\breve{X}} + \breve{S}_{x} + \breve{S}_{y} \right),$$

where \check{H}_x and \check{H}_y are proper transforms of the subvarieties \check{S}_x and \check{S}_y on the variety \check{V} , respectively. Then

$$LCS\left(\breve{V}, \frac{1}{n}\breve{\mathcal{B}} + \left(\text{mult}_O(\mathcal{M})/n - 1\right)\breve{E}\right) = \breve{\Omega},$$

where $\check{\Omega} = \Omega|_{\check{V}}$ is a line on $\check{E} \subset \mathbf{P}^4$. Indeed, we can apply the previous arguments to $(\check{X}, \frac{1}{n}\mathcal{M}|_{\check{X}} + \check{S}_x + \check{S}_y)$. There are natural ways to desingularize the varieties \check{X} and \check{V} . There is a commutative diagram



where we use the following notation:

- $\check{\phi}$ is a blow up of the ideal sheaf of the curve x=y=z=t=0;
- $\check{\alpha}_x$ and $\check{\alpha}_y$ are blow ups of the ideal sheaves of \check{S}_x and \check{S}_y , respectively;
- $\breve{\beta}_x$ and $\breve{\beta}_y$ are blow ups of the exceptional surfaces of $\breve{\alpha}_x$ and $\breve{\alpha}_y$, respectively;
- $\check{\xi}$, $\check{\beta}_x$, $\check{\beta}_y$ are blow ups of the fibers of ϕ , $\check{\alpha}_x$, $\check{\alpha}_y$ over the point O, respectively;
- $\check{\psi}$ is a blow up of the ideal sheaf of the proper transform of x=y=z=t=0;
- $\check{\gamma}_x$ and $\check{\gamma}_y$ are blow ups of the ideal sheaves of \check{H}_x and \check{H}_y , respectively;
- $\check{\delta}_x$ and $\check{\delta}_y$ are blow ups of the exceptional surfaces of $\check{\gamma}_x$ and $\check{\gamma}_y$, respectively.

The varieties \check{W} , \check{W}_x , \check{W}_y , \check{U} , \check{U}_x , \check{U}_y are smooth, the morphisms $\check{\alpha}_x$, $\check{\alpha}_y$, $\check{\gamma}_x$, $\check{\gamma}_y$ are small, and $\check{\pi} \circ \check{\psi} = \check{\phi} \circ \check{\xi}$. Let \check{F} be the exceptional divisor of the birational morphism $\check{\xi}$. Then

$$\breve{F} \cong \mathbf{P}(\mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^1} \oplus \mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^1}(1)),$$

where $\mathcal{O}_{\mathbf{P}^1 \times \mathbf{P}^1}(1)$ is a hyperplane section of $\mathbf{P}^1 \times \mathbf{P}^1$ with respect to the natural embedding into \mathbf{P}^3 .

The morphism $\check{\delta}_x|_{\check{F}}$ is a projection to $\mathbf{P}^1 \times \mathbf{P}^1$, the morphisms $\check{\eta}_x \circ \check{\delta}_x|_{\check{F}}$ and $\check{\eta}_y \circ \check{\delta}_y|_{\check{F}}$ are projections to \mathbf{P}^1 , the morphisms $\check{\delta}_x|_{\check{F}}$ and $\check{\delta}_y|_{\check{F}}$ are contractions of the exceptional section of \check{F} to curves, and $\check{\psi}|_{\check{F}}$ is the contraction of the exceptional section of the surface \check{F} to the vertex of the cone \check{E} , where $\check{E} = \check{\psi}(\check{F})$.

The subvariety $\check{\Omega}$ is a line on the cone $\check{E} \subset \mathbf{P}^4$ that does not pass through its vertex. But $(\check{H}_x + \check{H}_y) \cdot \check{\Omega} = 1$, which implies that we may assume that $\check{H}_x \cdot \check{\Omega} = 0$ and $\check{H}_y \cdot \check{\Omega} = 1$.

Let \check{D}_x and \check{D}_y be the proper transforms of \check{H}_x and \check{H}_y on the variety \check{U}_y , respectively, and $\check{\Gamma}$ be the proper transform of $\check{\Omega}$ on the variety \check{U}_y . Then $\check{D}_x \cdot \check{\Gamma} = 0$ and $\check{D}_y \cdot \check{\Gamma} = 1$. Moreover, we have

$$K_{\breve{U}_y} + \frac{1}{n}\breve{\mathcal{D}} + \left(\text{mult}_O(\mathcal{M})/n - 1 \right) \breve{G} + \breve{D}_x + \breve{D}_y \equiv \left(\breve{\pi} \circ \breve{\gamma}_y \right)^* \left(K_{\breve{X}} + \frac{1}{n} \mathcal{M} \Big|_{\breve{X}} + \breve{S}_x + \breve{S}_y \right),$$

where $\check{\mathcal{D}}$ and \check{G} are proper transforms of $\check{\mathcal{B}}$ and \check{E} on the variety \check{U}_y , respectively.

The morphism $\check{\eta}_y$ contracts the divisor \check{G} . But the morphism $\check{\eta}_y|_{\check{G}}$ is a \mathbf{P}^2 -bundle.

Let \check{Y} be a general fiber of $\check{\eta}_y|_{\check{G}}$. Then $\check{Y}\cap \check{D}_x$ is a line in $\check{Y}\cong \mathbf{P}^2$, the intersection $\check{\Gamma}\cap \check{Y}$ is a point that is not contained in $\check{Y}\cap \check{D}_x$, and $\check{Y}\cap \check{D}_y=\varnothing$. So, in the neighborhood of the fiber Y of the morphism $\check{\eta}_y$ the locus

$$LCS\left(\breve{U}_y, \frac{1}{n}\breve{D} + \left(\text{mult}_O(\mathcal{M})/n - 1\right)\breve{G} + \breve{D}_x + \breve{D}_y\right)$$

consists of $\check{\Gamma}$ and \check{D}_x , which is impossible by [15, Theorem 17.4], because $\check{\Gamma} \cap \check{D}_x = \emptyset$.

5 Main result

Let X be a hypersurface in \mathbf{P}^6 of degree 6 with isolated ordinary double points. Suppose that X is not birationally superrigid. Let us show that this assumption leads to a contradiction.

It follows from Theorem 2.1 that there is a linear system \mathcal{M} on the hypersurface X that does not have fixed components such that the log pair $\left(X, \frac{1}{m}\mathcal{M}\right)$ is not canonical, where $m \in \mathbb{N}$ such that $\mathcal{M} \sim -mK_X$.

Let Z be a proper irreducible subvariety of X such that $(X, \frac{1}{m}\mathcal{M})$ is not canonical at general point of Z, and the subvariety Z has the biggest dimension among such subvarieties. Then $\dim(Z) \leq 1$ by [21, Theorem 2].

Suppose that either $\dim(Z) \neq 0$ or Z is a smooth point of X. Let P be a general point of Z, and V be a general hyperplane section of X that contains P. Put $\mathcal{B} = \mathcal{M}|_V$. Then V is a smooth hypersurface in \mathbf{P}^5 of degree 6, and the singularities of $(V, \frac{1}{m}\mathcal{B})$ are not canonical at the point P by [15, Theorem 17.6].

Let S_1 and S_2 be sufficiently general divisors in \mathcal{B} , and $F = S_1 \cdot S_2$. Then

$$\dim\{O \in F \mid \operatorname{mult}_O(F) > m\} \leq 1$$

by [27, Proposition 5]. Let Y be a general hyperplane section of V that contains P. Put $\mathcal{P} = \mathcal{B}|_Y$. Then

$$\dim\{O \in F \cap Y \mid \operatorname{mult}_O(F|_Y) > m\} \leqslant 0 \tag{5.1}$$

by [10, Proposition 4.5], because Y is a smooth hypersurface in \mathbf{P}^4 of degree 6.

The log pair $(Y, \frac{1}{m}\mathcal{P})$ is not log canonical at P by [15, Theorem 17.6]. Let $\eta: \mathbf{P}^4 \dashrightarrow \mathbf{P}^2$ be a general projection, and L be a general line in \mathbb{P}^2 . Then it follows from [10, Theorem 1.1] that

$$\eta(P) \in LCS\left(\mathbf{P}^2, L + \frac{1}{4m^2}\eta_*\left[F\Big|_Y\right]\right) \ni L,$$

but it follows from [10, Proposition 4.7] and the inequality 5.1 that the log pair $(\mathbf{P}^2, \frac{1}{4m^2}\eta_*[F|_Y])$ is log terminal in a punctured neighborhood of the point $\eta(P)$. The latter is impossible by [15, Theorem 17.4], because

$$K_{\mathbf{P}^2} + L + \frac{1}{4m^2} \eta_* \Big[F \Big|_Y \Big] \equiv -\frac{1}{2} L.$$

We see that Z is a singular point of the variety X. Let $\pi:U\to X$ be a blow up of Z, and E be a π -exceptional divisor. Then $\operatorname{mult}_Z(\mathcal{M})>m$ by Lemma 3.1. But

$$K_U + \frac{1}{m}\mathcal{H} \equiv \pi^* \left(K_X + \frac{1}{m}\mathcal{M} \right) + \left(3 - \frac{1}{m} \text{mult}_Z(\mathcal{M}) \right) E,$$

where \mathcal{H} is a proper transform of \mathcal{M} on the variety U. Let M_1 and M_2 be general divisors in \mathcal{M} . Then

$$\operatorname{mult}_{Z}(M_{1}\cdot M_{2}) > 6m^{2}$$

by Lemma 4.5. Let H_1 , H_2 , H_3 be general hyperplane sections of X that pass through the point Z. Then

$$6m^2 = M_1 \cdot M_2 \cdot H_1 \cdot H_2 \cdot H_3 \geqslant \text{mult}_Z(M_1 \cdot M_2) > 6m^2$$

which is a contradiction. The obtained contradiction completes the proof of Theorem 1.1.

Acknowledgements The author would like to thank the referee who helped to improve the original assertion of Lemma 4.5.

References

- [1] F. Call and G. Lyubeznik, A simple proof of Grothendieck's theorem on the parafactoriality of local rings, Contemp. Math. **159**, 15–18 (1994).
- [2] I. Cheltsov, On smooth quintic 4-fold, Mat. Sb. 191, 139-162 (2000).
- [3] I. Cheltsov, Nonrationality of a four-dimensional smooth complete intersection of a quadric and a quartic not containing a plane, Mat. Sb. **194**, 95–116 (2003).
- [4] I. Cheltsov, Birationally superrigid cyclic triple spaces, Izv. Math. 68, 157–208 (2004).
- [5] A. Corti, Factorizing birational maps of threefolds after Sarkisov, J. Algebraic Geom. 4, 223-254 (1995).
- [6] A. Corti, Singularities of linear systems and threefold birational geometry, London Math. Soc. Lecture Note Ser. **281**, 259–312 (2000).
- [7] A. Corti, J. Kollár, and K. Smith, Rational and Nearly Rational Varieties (Cambridge University Press, Cambridge, 2003)
- [8] A. Corti and M. Mella, Birational geometry of terminal quartic threefolds I, Am. J. Math. 126, 739-761 (2004).
- [9] A. Corti, A. Pukhlikov, and M. Reid, Fano threefold hypersurfaces, London Math. Soc. Lecture Note Ser. 281, 175–258 (2000).
- [10] T. de Fernex, L. Ein, and M. Mustata, Bounds for log canonical thresholds with applications to birational rigidity, Math. Res. Lett. **10**, 219–236 (2003).

- [11] M. Grinenko, Birational automorphisms of a three-dimensional dual quadric with the simplest singularity, Mat. Sb. **189**, 101–118 (1998).
- [12] V. Iskovskikh, Birational automorphisms of three-dimensional algebraic varieties, Soviet Math. 13, 815–868 (1980).
- [13] V. Iskovskikh and Yu. Manin, Three-dimensional quartics and counterexamples to the Lüroth problem, Mat. Sb. 86, 140–166 (1971).
- [14] V. Iskovskikh and A. Pukhlikov, Birational automorphisms of multidimensional algebraic manifolds, J. Math. Sci. (New York) 82, 3528–3613 (1996).
- [15] J. Kollár et al., Flips and Abundance for Algebraic Threefolds, Astérisque 211 (1992).
- [16] J. Kollár, Rational Curves on Algebraic Varieties (Springer-Verlag, Berlin, 1996).
- [17] M. Mella, Birational geometry of quartic threefolds II: the importance of being Q-factorial, Math. Ann. **330**, 107–126 (2004).
- [18] A. Pukhlikov, Birational isomorphisms of four-dimensional quintics, Invent. Math. 87, 303–329 (1987).
- [19] A. Pukhlikov, Birational automorphisms of a double space and a double quartic, Izv. Akad. Nauk SSSR Ser. Mat. **52**, 229–239 (1988).
- [20] A. Pukhlikov, Birational automorphisms of a three-dimensional quartic with a simple singularity, Mat. Sb. 177, 472–496 (1988).
- [21] A. Pukhlikov, Notes on theorem of V. A. Iskovskikh and Yu. I. Manin about threefold quartic, Proceedings of Steklov Inst. Math. 208, 278–289 (1995).
- [22] A. Pukhlikov, Birational automorphisms of double spaces with sigularities, J. Math. Sci. (New York) **85**, 2128–2141 (1997)
- [23] A. Pukhlikov, Birational automorphisms of Fano hypersurfaces, Invent. Math. 134, 401–426 (1998).
- [24] A. Pukhlikov, Essentials of the method of maximal singularities, London Math. Soc. Lecture Note Ser. 281, 73–100 (2000).
- [25] A. Pukhlikov, Birationally rigid Fano double hypersurfaces, Sb. Math. 191, No. 6, 883–908 (2000).
- [26] A. Pukhlikov, Birationally rigid Fano complete intersections, J. Reine Angew. Math. 541, 55–79 (2001).
- [27] A. Pukhlikov, Birationally rigid Fano hypersurfaces, Izv. Math. 66, No. 6, 1243-1269 (2002).
- [28] A. Pukhlikov, Birationally rigid Fano hypersurfaces with isolated singularities, Sb. Math. 193, 445–471 (2002).
- [29] A. Pukhlikov, Birationally rigid singular Fano hypersurfaces, J. Math. Sci., New York 115, 2428–2436 (2003).
- [30] A. Pukhlikov, Birationally rigid iterated Fano double covers, Izv. Math. 67, No. 3, 555–596 (2003).