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Abstract

We study the potential density of rational points on double solids ramified along singular reduced sextic
surfaces. Also, we investigate elliptic fibration structures on nonsingular sextic double solids defined over
a perfect field of characteristic 5.
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1. Introduction

In arithmetic geometry, it is an important problem to measure the size of the set of rational
points of a variety defined over a number field. The most profound work in this area is Faltings’
theorem that a nonsingular curve of genus at least two defined over a number field F has only
finitely many F-rational points (see [8]). One higher-dimensional analogue of the theorem is the
conjecture that the set of rational points of a nonsingular variety of general type defined over a
number field is contained in a proper Zariski closed subset of the variety. It is natural that we
should expect the set of rational points of a Fano variety defined over a number field to have the
opposite property as follows:
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Definition 1.1. The set of rational points of a variety V defined over a number field F is said to be
potentially dense if there is a finite field extension K of the field F such that the set of K-rational
points of the variety V is Zariski dense in V .

One of the goals in this paper is to prove the potential density of singular sextic double solids,
i.e., double covers of P3 ramified along singular sextic surfaces defined over number fields.

We have another reason why we expect the potential density of double solids ramified along
singular sextic surfaces. Let τ :Y → P2 be a double cover branched over a reduced sextic curve
R ⊂ P2 defined over a number field F. The following result is proved in [3].3

Theorem 1.2. Suppose that the curve R is singular. Then the set of rational points of the surface
Y is potentially dense unless the curve R consists of six lines intersecting at a single point.

Proof. Replacing F by its finite extension, we may always assume that a finite number of points
and a finite number of maps we need are defined over the field F. Let ψ : P2 ��� P1 be the
projection from a singular point p of the curve R. We then consider a birational morphism
φ :U → Y of a nonsingular surface U to Y such that the map ψ ◦ τ ◦ φ is a morphism. Then the
Kodaira dimension of U is at most zero because KY is linearly trivial.

Let L be a general fiber of ψ ◦ τ ◦ φ. Then L is connected if and only if the curve R does not
consist of six lines passing through the point p. By our assumption, the fiber L is connected and
hence it is either elliptic or rational. Moreover, in the latter case the set of rational points of the
surface Y is potentially dense because Y is rational.

Suppose that the fiber L is elliptic. Then U is birational either to an elliptic K3 surface or
to E × P1, where E is a nonsingular elliptic curve. In the former case the set of rational points
of Y is potentially dense due to [4], but in the latter case the set of rational points of E × P1 is
potentially dense by [9, Theorem 10.1]. �

In the case when R is a general sextic curve, it is unknown whether the set of rational points
of the surface Y is potentially dense or not. If the curve R ⊂ P2 consists of six lines intersecting
at a single point, the set of rational points on Y is not potentially dense due to [8] because Y is
birational to C × P1, where C is a hyperelliptic curve of genus 2.

Remark 1.3. In fact, Theorem 1.2 is valid in the case when F is a finitely generated extension
of Q. Indeed, the only fact we need for the proof of Theorem 1.2 is that for an elliptic curve E

defined over F there is a finite extension K of the field F such that the rank of the Mordell–Weil
group of E(K) is not zero (see [9, Theorem 10.1]).

Now, we let π :X → P3 be a double cover branched over a reduced sextic surface S ⊂ P3

and defined over a number field F. When the surface S is a cone over a nonsingular plane sextic
curve E ⊂ P2, the 3-fold X is birational to D × P1, where D is a double cover of P2 branched
over E, and hence the set of rational points of the 3-fold X is potentially dense if and only if the
set of rational points of the surface D is potentially dense. However, the following will be proved
in this paper.

3 Paper [3] has a gap that it misses the fact that if the reduced sextic curve R has a point of multiplicity six, then the
blow up of Y at the singular point is not rational. It is a P1-bundle over a nonsingular curve of genus two via Stein
factorization.
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Theorem 1.4. Suppose that the surface S is singular. Then the set of rational points of the 3-fold
X is potentially dense if the surface S is neither six planes intersecting at a single line nor a cone
over a nonsingular plane sextic curve.

If the surface S consists of six planes intersecting along a single line, the set of rational
points of X is not potentially dense due to [8] because X is birational to C × P2, where C is
a hyperelliptic curve of genus 2.

In fact, it follows from the proof of Theorem 1.4 that Theorem 1.4 is valid over a finitely
generated extension of the field Q as well (see Remark 1.3).

Let us move to the other goal of this paper that we investigate elliptic fibration structures on
nonsingular sextic double solids defined over a perfect field of characteristic 5.

In papers [5,6], nonsingular sextic double solids defined over a perfect field of characteristic 0
or p > 5 are proved not to be birationally transformed into elliptic fibrations. In addition, paper
[6] has an interesting example of a nonsingular sextic double solid defined over a perfect field of
characteristic 5 that can be birationally transformed into an elliptic fibration.

Example 1.5. Suppose that the base field is F5 = Z/5Z. Let π :X → P3 = Proj(F5[x, y, z,w])
be the double cover ramified along the sextic surface S given by the equation

x5y + x4y2 + x2y3z − y5z − 2x4z2 + xz5 + yz5 + x3y2w + 2x2y3w

− xyz3w − xyz2w2 − x2yw3 + xy2w3 + x2zw3 + xyw4 + xw5 + 2yw5 = 0.

We can check that X is nonsingular. Also we see that Pic(X) ∼= Z (see [10]). Moreover, X con-
tains the curve C given by the equations x = y = 0 whose image in P3 is a line L contained in
the sextic S ⊂ P3. For a general enough point p ∈ X, there is a unique hyperplane Hp ⊂ P3 con-
taining π(p) and L. The residual quintic curve Qp ⊂ Hp given by S ∩ Hp = L ∪ Qp intersects
L at a single point qp with multqp (Qp|L) = 5. The two points π(p) and qp determine a line
Lp in P3. We define a rational map ΞL :X ��� Gr(2,4) by ΞL(p) = Lp . The image of the map
ΞL is isomorphic to P2, hence we may assume that the map ΞL is a rational map of X onto P2.
Obviously, the map ΞL is not defined over L. However, the resolution of indeterminacy of the
map ΞL by blowing up X along the line L birationally transforms the 3-fold X into an elliptic
fibration.

This example results from the fact that the characteristic of the base field is 5. Indeed, the
nonsingular sextic surface S in the example has a line L that a generic hyperplane section passing
through the line L consists of a line and a plane quintic curve intersecting at a single point with
multiplicity 5, which is impossible in other characteristics. In the present paper, we will show
that the birational transform into an elliptic fibration constructed above is a unique type that a
nonsingular sextic double solid defined over a perfect field of characteristic 5 may have.

Theorem 1.6. A double cover X of P3 defined over a perfect field of characteristic 5 and ramified
along a nonsingular sextic surface S can be birationally transformed into an elliptic fibration if
and only if the surface S has a line L such that for a generic hyperplane H passing through
the line L, the residual quintic curve Q given by S ∩ H = Q ∪ L intersects L at a point with
multiplicity 5. Furthermore, the elliptic fibration is defined in the way of Example 1.5.
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2. Potential density

Let π :X → P3 be a double cover ramified along a singular reduced sextic surface S ⊂ P3

and defined over a number field F. Suppose that the surface S is neither the union of six planes
intersecting along a single line nor a cone over a nonsingular plane sextic curve.

Proposition 2.1. If the surface S is a cone over a plane sextic curve, then the set of rational
points of X is potentially dense.

Proof. Suppose that the surface S is a cone over a plane sextic curve R ⊂ P2. Then the 3-fold
X is birational to D × P1, where D is a double cover of P2 branched over R ⊂ P2. Moreover,
by our assumption, the reduced curve R is neither a nonsingular curve nor the union of six lines
intersecting at a single point. Therefore, the set of rational points of the 3-fold X is potentially
dense by Theorem 1.2. �

Therefore, we may assume that the surface S is not a cone over a plane sextic curve in order
to prove Theorem 1.4.

Let p be a singular point of the sextic surface S ⊂ P3. Replacing F by a finite extension of F,
we may assume that the point p is defined over F. We then let 
L be a general line in P3 that
passes through the point p. We also put 
C := π−1(
L). The curve 
C is irreducible; otherwise the
surface S would be a cone with vertex p because 
L is a general line passing through the point p.

We consider the rational map ρ :X ��� P2 defined by the composition of the morphism π and
the projection of P3 to a hyperplane Π ∼= P2 centered at the point p. We resolve the indetermi-
nacy of the rational map ρ to obtain the following commutative diagram:

W

g f

X
ρ

P2,

where the 3-fold W is nonsingular.

Proposition 2.2. If the normalization of the curve 
C is a rational curve, then the set of rational
points of X is potentially dense.

Proof. The hypothesis implies that f :W → P2 is a conic bundle. Let G ⊂ P3 be a sufficiently
general hyperplane defined over F such that p �∈ G and G is tangent to the surface S somewhere.
Put Ĝ = (π ◦ g)−1(G). Then Ĝ does not lie in fibers of the conic bundle f .

Suppose Ĝ is reducible. Then each component of Ĝ is rational, which implies the rational-
ity of the 3-fold X. Indeed, each component of the surface Ĝ is a section of the conic bundle
f :W → P2. The set of rational points of a rational variety is potentially dense.

Suppose Ĝ is irreducible. The surface Ĝ is a two-section of the conic bundle f . The set
of rational points of the surface Ĝ is potentially dense by Theorem 1.2. Thus we have a conic
bundle f :W → P2 with a two-section Ĝ such that the set of rational points of the surface Ĝ is
potentially dense. In this case the set of rational points of W is potentially dense. �
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The genus of the normalization of the curve 
C cannot exceed 1. Therefore, we may assume
that f :W → P2 is an elliptic fibration.

Lemma 2.3. Suppose that there is a family M of divisors in |(π ◦ g)∗(OP3(1))| such that for a
sufficiently general point w ∈ W there is an irreducible divisor M ∈ M that contains the point
w and has potentially dense set of rational points. Then the set of rational points of the 3-fold X

is potentially dense.

Proof. Let E be a sufficiently general fiber of f and w be a sufficiently general point of E.
Then there is an irreducible divisor M ∈ M passing through the point w such that the set of
rational points of M is potentially dense. Moreover, by [9, Theorem 10.1], we may assume that
the divisor 2w −M|E is not a torsion divisor. On the other hand, the intersection M ∩E consists
of the point w and another point v ∈ W . Hence, the divisor w − v is not a torsion divisor on E.
Therefore, the set of rational points of X is potentially dense by [11, Proposition 3.4]. �
Proposition 2.4. If the singularities of the surface S is not isolated, the set of rational points of
X is potentially dense.

Proof. Let H be a sufficiently general hyperplane in P3. We consider F = (π ◦ g)−1(H). We
easily see that F ∈ |(π ◦ g)∗(OP3(1))| and

π ◦ g|F :F → H ∼= P2

is a double cover branched over a singular sextic curve H ∩ S. Replacing the field F by its finite
extension, we may assume that H and F are defined over the field F. Hence the set of rational
points of F is potentially dense by Theorem 1.2. Therefore, the statement immediately follows
from Lemma 2.3. �

From now on, we suppose that the surface S has only isolated singularities.
Let T be the set of points q ∈ S \ Sing(S) such that the hyperplane D ⊂ P3 tangent to the

surface S at the point q satisfies the following:

(1) the intersection S ∩ D is reduced;
(2) the intersection S ∩ D does not contain the point p;
(3) the intersection S ∩ D does not consist of six lines passing through the point q .

Lemma 2.5. The set T contains a nonempty Zariski open subset of the sextic S ⊂ P3.

Proof. Let q be a general point on the sextic S ⊂ P3 and D be the hyperplane tangent to the
surface S at the point q in P3.

Suppose that there is a line L on the surface S passing through the point q . Then the line
L does not pass through any singular point of S because the point q is sufficiently general and
the singularities of the surface S are isolated, but we are assuming that the surface S is not a
cone. Hence, the self-intersection L2 of the line L is negative by the adjunction formula, which
contradicts the fact that L moves at least in a one-dimensional family on S. Hence, there is no
line on S passing through q . In particular, the intersection D ∩ S does not consist of six lines
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passing through the point q . Moreover, the Gauss map of the surface S is finite at the point q ∈ S

by [15, Theorem 2.3], which implies that D ∩ S is reduced and does not contain the point p. �
Let w be a sufficiently general point on W . Then it follows from Lemma 2.5 that there is a

hyperplane D ⊂ P3 such that π ◦ g(w) ∈ D, p �∈ D, the intersection D ∩ S is reduced, and the
hyperplane D is tangent to the surface S at some point of the surface S.

Let F = (π ◦ g)−1(D). Then the morphism

f |F :F → D ∼= P2

is the double cover branched over the reduced sextic curve D ∩ S which is singular. Moreover,
the set of rational points of F is potentially dense by Theorem 1.2. Hence, the set of rational
points of X is potentially dense by Lemma 2.3. We have completed our proof of Theorem 1.4.

Let us conclude this section with the following result.

Theorem 2.6. Let τ :V → Pr be a double cover ramified along a singular reduced sextic hy-
persurface S ⊂ Pr defined over a number field. Suppose that S is not a cone over a nonsingular
sextic hypersurface in Pk , where k < r . Then the set of rational points of the variety V is poten-
tially dense for every r � 2.

Proof. The claim follows from Theorem 1.2 and the proof of Theorem 1.4. Indeed, we can prove
the claim by induction on r . Every step of the proof of Theorem 1.4 is valid in the case r > 3.
Moreover, in the case r > 3 the claim of Lemma 2.5 is implied by the finiteness of the Gauss
map of a nonsingular hypersurface in Pr−1 (see [15]). �

Because of the following result proved in [7], it should be pointed out that the unirationality of
a variety V defined over a number field implies that the set of rational points of V are potentially
dense.

Theorem 2.7. Let τ :V → Pr be a double cover ramified along a sufficiently general hypersur-
face of degree d . Then there is a natural number r(d) such that V is unirational if r � r(d).

However, when the number r is relatively small, it is unknown whether the variety V of
Theorem 2.7 is unirational or not.

3. Elliptic fibrations

Throughout this section, all varieties are always assumed to be defined over a perfect field k

of characteristic 5. Because the field k is perfect, we may assume that it is algebraically closed.
For the problem of elliptic fibration structures on nonsingular sextic double solids over a

perfect field of characteristic 5, we use mobile log pairs introduced in [2]. Before we proceed,
we briefly overview their properties.

Definition 3.1. On a variety X a mobile boundary MX = ∑n
i=1 aiMi is a formal finite Q-linear

combination of linear systems Mi on X such that each Mi has no fixed component and each
coefficient ai is nonnegative. A mobile log pair (X,MX) is a variety X with a mobile bound-
ary MX .
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Remark 3.2. Throughout this section, we always assume that every 3-fold is nonsingular. To
implement theory of mobile log pairs to the fullest, we need the resolutions of indeterminacy
of rational maps. However, what we need for this paper is the resolutions of indeterminacy of
birational maps of nonsingular 3-folds defined over a perfect field of characteristic 5, which is
proved by Abhyankar (see [1]). Because the sextic double solid in Theorem 1.6 is nonsingular,
we are free to use the tools described in what follows.

To understand a mobile log pair, it is convenient that we consider a mobile log pair as a usual
log pair by replacing each linear system by its general element. To be precise, for a mobile bound-
ary MX = ∑n

i=1 aiMi on a variety X, we take a general member Mi from each linear system
Mi and then we can handle the mobile boundary MX with the effective Q-divisor

∑n
i=1 aiMi .

By taking the scheme-theoretic intersection of two general elements of MX , we can also
consider the self-intersection M2

X of MX as a well-defined effective codimension-two cycle
when X is Q-factorial.

The notions such as discrepancies, (log) terminality, and (log) canonicity can be defined for
mobile log pairs as for usual log pairs (see [13]).

Let MX = ∑n
i=1 aiMi be a mobile boundary on a variety X. For a birational morphism

f :W → X, the pullback f ∗(Mi ) of Mi may obtain fixed components from the exceptional di-
visors of f . However, the proper transform f −1(Mi ) of Mi has no fixed component. Therefore,
we may write

f ∗(Mi ) = f −1(Mi ) +
∑

E: f -exceptional divisor

mi,EE,

for each i, and hence

f ∗(MX) =
n∑

i=1

aif
∗(Mi ) = f −1(MX) +

∑
E: f -exceptional divisor

(
n∑

i=1

aimi,E

)
E,

where f −1(MX) = ∑n
i=1 aif

−1(Mi ). On the other hand, we have

KW = f ∗(KX) +
∑

E: f -exceptional divisor

dEE.

For an exceptional divisor E of f , we define the discrepancy of E with respect to the mobile log
pair (X,MX) by the rational number

a(X,MX,E) = dE −
n∑

i=1

aimi,E.

Definition 3.3. A mobile log pair (X,MX) has canonical (terminal, respectively) singularities
if for every birational morphism f :W → X each exceptional divisor has nonnegative (positive,
respectively) discrepancy. A proper irreducible subvariety Y ⊂ X is called a center of the canoni-
cal singularities of a mobile log pair (X,MX) if there are a birational morphism f :W → X and
an f -exceptional divisor E ⊂ W such that the discrepancy a(X,MX,E) � 0 and f (E) = Y .
The set of all the centers of the canonical singularities of the mobile log pair (X,MX) will be
denoted by CS(X,MX).
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Note that a log pair (X,MX) is terminal if and only if CS(X,MX) = ∅.
Let (X,MX) be a mobile log pair and Z ⊂ X be a proper irreducible subvariety such that X

is nonsingular along the subvariety Z. Then elementary properties of blow ups along nonsingular
subvarieties of nonsingular varieties imply that

Z ∈ CS(X,MX) 
⇒ multZ(MX) � 1

and in the case when codim(Z ⊂ X) = 2 we have

Z ∈ CS(X,MX) ⇐⇒ multZ(MX) � 1.

The following result is a key to our proof of Theorem 1.6.

Theorem 3.4. Let X be a terminal Q-factorial Fano variety with Pic(X) ∼= Z, ρ :X ��� Y a
birational map, and π :Y → Z a fibration. Suppose that a general fiber of π is a nonsingular
variety of Kodaira dimension zero. Then the singularities of the mobile log pair (X,MX) is not
terminal, where MX = rρ−1(|π∗(H)|) for a very ample divisor H on Z and r ∈ Q>0 such that
KX +MX ∼Q 0.

Proof. Because of Remark 3.2, the proof follows the same way as in [6]. For the detail, see
[6]. �

We will investigate the singularities of certain mobile log pairs on Fano varieties. It requires
us to study the multiplicities of certain mobile boundaries or their self-intersections. The follow-
ing result is Corollary 7.8 of [14], which holds even over fields of positive characteristic and
implicitly goes back to the classical paper [12].

Theorem 3.5. Let X be a 3-fold and MX a mobile boundary on X. Suppose that a nonsingu-
lar point p on X belongs to CS(X,MX). Then the inequality multp(M2

X) � 4 holds and the
equality holds only when multp(MX) = 2.

Proof. See [14]. �
From now on, let π :X → P3 be a double solid ramified along a nonsingular sextic hypersur-

face S ⊂ P3.
Suppose that the surface S contains a line L such that for a general hyperplane H passing

through the line L the residual quintic curve Q given by S ∩ H = Q ∪ L intersects L at a
single point with multiplicity 5. For a general enough point p ∈ X there is a unique hyperplane
Hp ⊂ P3 containing π(p) and L. The residual quintic curve Qp ⊂ Hp given by S∩Hp = L∪Qp

intersects L at a single point qp with multqp (Qp|L) = 5. The two points π(p) and qp determine a
line Lp in P3. We then define a rational map ΞL :X ��� P2 in the way described in Example 1.5.
Therefore, the 3-fold X can be birationally transformed into an elliptic fibration.

For Theorem 1.6 we have to prove that the elliptic fibration described above is the only type
that a nonsingular sextic double solid may have. We consider a fibration τ :Y → Z whose general
fiber is a nonsingular elliptic curve. Suppose that we have a birational map ρ of X onto Y . We
then put MX = 1

n
M with M = ρ−1(|τ ∗(HZ)|), where HZ is a very ample divisor on Z and n

is the natural number such that M ⊂ |−nKX|.
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By Theorem 3.4 the set CS(X,MX) must be nonempty. However, it does not contain a point
of X. Indeed, if it contains a point p on X, from Theorem 3.5 we would obtain a contradictory
inequality

2 = H · K2
X = H ·M2

X � multp
(
M2

X

)
� 4,

where H is a general enough effective anticanonical divisor passing through the point p. There-
fore, the set CS(X,MX) must contain a curve C ⊂ X.

Lemma 3.6. The intersection number −KX · C is 1. In particular, the curve π(C) ⊂ P3 is a line
and C ∼= P1.

Proof. Let H be a general enough divisor in the linear system |−KX|. Then we have

2 = H · K2
X = H ·M2

X � multC
(
M2

X

)
H · C � −KX · C,

which implies −KX · C � 2.
Suppose −KX · C = 2. Then Supp(M2

X) = C and multC(M2
X) = mult2C(MX) = 1, which

means that for two different divisors M1 and M2 in the linear system M we have

multC(M1 · M2) = n2, multC(M1) = multC(M2) = n,

and set-theoretically M1 ∩ M2 = C. For a general enough point p �∈ C the linear subsystem D of
M that consists of members of M passing through the point p has no base components because
the linear system M is not composed from a pencil. Let D1 and D2 be general enough divisors
in D. Then we obtain set-theoretically

p ∈ D1 ∩ D1 = M1 ∩ M2 = C,

which is a contradiction. Consequently, the intersection number −KX · C must be 1 and hence
the curve π(C) ⊂ P3 is a line and C ∼= P1. �

Because the proof above have not used the irreducibility of the curve C, it is clear that the set
CS(X,MX) consists of a single curve C.

Lemma 3.7. The line π(C) is contained in the sextic surface S.

Proof. Suppose π(C) �⊂ S. Let H ⊂ |−KX| be the linear system of surfaces containing the
curve C. The base locus of H consists of the curve C and the curve C̃ such that π(C) = π(C̃).
Choose a general enough surface D in the pencil H. The restriction MX|D is not mobile, but

MX|D = multC(MX)C + multC̃ (MX)C̃ +RD,

where RD is a mobile boundary. The surface D is nonsingular along C ∪ C̃. Thus, on the sur-
face D, we have

C2 = C̃ 2 = −2.
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Immediately, the inequality(
1 − multC̃ (MX)

)
C̃ 2 �

(
multC(MX) − 1

)
C · C̃ +RD · C̃ � 0

implies C̃ ∈ CS(X,MX). It contradicts CS(X,MX) = {C}. �
A hyperplane section of the nonsingular sextic surface S passing though the line π(C) consists

of the line π(C) and a quintic plane curve. For a general hyperplane section containing the
line π(C), the residual quintic curve and the line π(C) intersect at five distinct points if the
characteristic of the base field is bigger than 5. However, over a field of characteristic 5, it may
happen that they intersect only at a single point.

Lemma 3.8. For a general enough hyperplane H passing through the line L := π(C), the resid-
ual quintic curve Q given by S ∩ H = L ∪ Q intersects the line L at a single point q with
multq(Q|L) = 5.

Proof. Let H be a general enough hyperplane in P3 passing through the line L. We then consider
the curve

D = H ∩ S = L ∪ Q,

where Q is the residual quintic curve. The curve L cannot be contained in the curve Q; otherwise
the hyperplane H would be tangent to S along the line L. The curve D is singular at which the
line L intersects the quintic curve Q. Note that the intersection number L · Q on H is 5.

Suppose that the curve Q intersects the line L at two distinct points p1 and p2. Then the
hyperplane H is tangent to the sextic S at the points p1 and p2. Let L1 and L2 be general enough
lines in H passing through the points p1 and p2, respectively. Then each line Lj is tangent to S

at the point pj . Therefore, the proper transform L̃j ⊂ X of the curve Lj is an irreducible curve
with −KX · L̃j = 2. It is singular at the point p̃j = π−1(pj ). Consider the proper transform H̃

of the surface H on X and a general surface M in the linear system M. Then

M|H̃ = multC(M)C + R,

where R is an effective divisor on H̃ such that C �⊂ Supp(R). Moreover,

2n = M · L̃j � multp̃j
(L̃j )multC(M) +

∑
p∈(M\C)∩L̃j

multp(M) · multp(L̃j ) � 2n,

which implies M ∩ L̃j ⊂ C set-theoretically. However, the proper transforms of lines passing
through the point pj form a pencil on H̃ whose base locus consists of the point p̃j . Therefore,
the divisor R must be zero due to the generality in the choice of two curves L1 and L2.

Hence, set-theoretically M ∩ H̃ = C for a general divisor H̃ ∈ |−KX| passing through the
curve C and a divisor M ∈ M with H̃ �⊂ Supp(M). Let p̃ be a general point on the surface H̃

and Mp̃ be the linear system of surfaces in M containing the point p̃. Then Mp̃ has no base
components because the linear system is not composed from a pencil. Therefore, for a general
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divisor M̃ in Mp̃

p̃ ∈ M̃ ∩ H̃ = C

because H̃ �⊂ Supp(M̃), which contradicts the generality of the point p̃ ∈ H̃ . �
Lemma 3.9. There is a birational map α : P2 → Z such that the diagram

X

ΞL

ρ

Y

τ

P2
α

Z

is commutative, where ΞL is the rational map defined in Example 1.5.

Proof. Let g :W → X be the blow up along the curve C. We then get

−KW = g∗(−KX) − E,

where E is the g-exceptional divisor. Let L′ be a curve on W such that π ◦g(L′) is a line tangent
to S at some general point of π(C). Then

MW · L′ � 2 − 2 multC(MX) � 0,

where MW = g−1(MX). Because such curves as L′ sweep out a Zariski dense subset in W , we
obtain multC(MX) = 1. Each elliptic curve L′ is a fiber of the elliptic fibration ΞL ◦g :W → P2.
Thus MW lies in fibers of ΞL ◦ g, which implies the claim. �
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