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Extremal metrics on two Fano varieties

I. A. Cheltsov

Abstract. We prove the existence of an orbifold Kéhler-Einstein metric on

a general hypersurface in P(13,2,2) of degree 6 and a general hypersurface
in P(1%,2,3) of degree 7.
Bibliography: 50 titles.

Keywords: Fano varieties, Kéhler-Einstein metric, log-canonical thresh-
old, Tian alpha-invariant.

§1. Introduction

The multiplicity of a non-zero polynomial ¢ € Clz1, ..., z,] at the origin O € C™ is

omi 21 ome Zg - OMn Zn

om cy2p
m:min{mGNU{O} Pla1, s 2n) (0)750},
which implies that m # 0 <= ¢(O) = 0. There is a similar invariant

1
co(p) = sup{e eQ ‘ the function W is locally integrable near O € (C"} € Q,

which is called the complex singularity ezponent of the polynomial ¢ at O.

Ezample 1.1. Let myq, ..., m, be positive integers. Let ¢ = >_"" | 2/"". Then

co(ip) = min(l, zn: ! )

ms
i=1

Ezample 1.2. Let my,...,m, be positive integers. Let ¢ = [[\_, 2. Then

co(gp):min< S )

my me T my,

Let X be a variety! with at most log terminal singularities, let Z C X be a closed

subvariety, and let D be an effective Q-Cartier Q-divisor on the variety X. Then
the number

letz (X, D) = sup{)\ € Q| the log pair (X, \D) is log canonical along Z} 0)
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is called a log canonical threshold of the divisor D along Z. It follows from [1] that

leto (C", (v = 0)) = co(p),
so that letz (X, D) is an algebraic counterpart of the number ¢(¢). One has

letx (X, D) = inf{lctp(X,D) | P € X}
= sup{)\ € Q| the log pair (X, D) is log canonical},

and we put let(X, D) = lctx (X, D) for simplicity.?
Ezample 1.3. Let X =P? and D € |p2(3)|. Then

1 if D is a curve with at most ordinary
double points,

5/6 if D is a curve with one cuspidal point,

3/4 if D consists of an irredicible conic
let(X, D) = and a line that are tangent,

2/3 if D consists of three lines intersecting
at one point,

1/2 if Supp(D) consists of two lines,

1/3 if Supp(D) consists of one line.

Now suppose additionally that X is a Fano variety.

Definition 1.4. The global log canonical threshold of the Fano variety X is the
quantity

let(X) = inf{lct(X, D) | D is an effective Q-divisor on X
such that D = —KX} > 0.

The number lct(X) is an algebraic counterpart of the a-invariant of a variety X
introduced in [3]. One easily sees that

let(X) =sup {\ € Q | the log pair (X, AD) is log canonical
for every effective Q-divisor D = —K X}.
Example 1.5. Let X be a smooth hypersurface in P of degree m < n. Then

1
let(X) = ————
ct(X) n+1l—m
as shown in [4]. In particular, the equality lct(P") = 1/(n + 1) holds.

Ezample 1.6. Let X be a smooth hypersurface in P(1"+1, d) of degree 2d > 2. Then

1

let(X) = =

in the case when 2 < d < n —1 (see [5]).

2Log canonical thresholds were introduced by Shokurov in [2].
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Ezxample 1.7. Let X be a rational homogeneous space such that
Pic(X) = Z[D],
where D is an ample divisor. We have
—Kx ~rD
for some integer r > 1. Then lct(X) = 1/r (see [6]).

In general the number lct(X) depends on small deformations of the variety X.
Ezample 1.8. Let X be a smooth hypersurface in P(1,1,1,1,3) of degree 6. Then
e (28 8B T80 118171 0w )

650 15°38°8°9°10°12°14 16 18 20 22 30
by [7] and [8] and all these values of lct(X) are attained.

Ezample 1.9. Let X be a smooth hypersurface in P(1"*1 n) of degree 2n. Then

the inequalities
2n —1

2n
hold (see [8]). Moreover, the equality lct(X) = 1 holds if X is general and n > 3.

12 let(X) >

Example 1.10. Let X be a smooth hypersurface in P of degree n > 2. Then the
inequalities
n—1

1>1et(X) >
n

hold (see [4]). Moreover, it follows from [7] and [8] that

1 if n > 6,
22/25 ifn =
let(x) > { 22/%5 ifn=5,
16/21 if n =4,
3/4  ifn=3,

whenever X is general, but lct(X) = 1 — 1/n if X contains a cone of dimension
n— 2.
It is unknown in the general case whether lct(X) € Q or not, but many examples

confirm that it is a rational number.

Ezample 1.11. Let X be a smooth del Pezzo surface. It follows from [9] that

1 if K% =1 and |- K x| contains no cuspidal curves,
5/6 if K% =1 and |—Kx/| contains a cuspidal curve,
5/6 if K% =2 and |—Kx| contains no tacnodal curves,
3/4 if K% =2 and |—Kx/| contains a tacnodal curve,
3/4 if Xis a cubic in P with no Eckardt point,

2/3 if X is a cubic in P3 with Eckardt point, or K% = 4,
1/2 if X 2P x P! or K2 € {5,6},

1/3 in the remaining cases.

let(X) =
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Ezample 1.12. Let X be a singular cubic surface in P3. It follows from [10] that

2/3 if Sing(X
1/3 if Sing(X

1/3 if Sing(X) = {Dy},
ICt(X) _ 2{ 27A2}7
1/4 if Sing(X) 2 {As},

(X) =
(X) 2
(X) =
1/3 if Sing(X)
(X)
1/4 if Sing(X) =

1/6if Sing(X) = {Eq},
1/2  in the remaining cases.

We expect that the following holds® (cf. [11], Question 1).
Conjecture 1.13. There is an effective Q-divisor D = —Kx on X such that

let(X) = let(X, D) € Q.
The following deep result holds (see [3], [12], [13]).
Theorem 1.14. Suppose that X has at most quotient singularities. If

dim(X)

let(X) > —omd)
0> Fnx) 1

then X admits an orbifold Kdhler-Einstein metric.

If a variety with quotient singularities admits an orbifold Kéhler-Einstein metric,
then
e cither its canonical divisor is numerically trivial;
e or its canonical divisor is ample (a variety of general type);
e or its canonical divisor is antiample (a Fano variety).

Remark 1.15. Every variety with at most quotient singularities that has numer-
ically trivial or ample canonical divisor always admits an orbifold Kéhler-Einstein
metric (see [14]-[16]).

If Sing(X) = @, then X does not admit a Kiahler-Einstein metric if
e cither the group Aut(X) is not reductive (see [17]);
e or the tangent bundle of X is not polystable with respect to —Kx (see [18]);
e or the Futaki character of holomorphic vector fields on X does not vanish
(see [19]).

Corollary 1.16. The following varieties admit no Kdhler-Einstein metric:
o a blow up of P? at one or two distinct points (see [17]);
e a smooth Fano threefold P(Op: & Op2(1)) (see [20]);
e a smooth Fano fourfold

P(a* (Opi (1)) ® B*(Op2(1))),

where a: P*xP? — P! and 3: P! xP? — P? are natural projections (see [19]).

3The assertion of Conjecture 1.13 is unknown even for del Pezzo surfaces.



Extremal metrics on two Fano varieties 99

There are also more subtle obstructions to the existence of a Kéahler-Einstein
metric.

Example 1.17. Let X be a smooth Fano threefold such that
Pic(X) = Z[-Kx]

and —K3% = 22. Then
o the tangent bundle of the threefold X is stable (see [20]);
e the group Aut(X) is trivial if the threefold X is general;
e there exists X such that Aut(X) is a trivial group, but X admits no Kéhler-
Einstein metric (see [21]);
e if Aut(X) = PSL(2,C), then X has a Kéhler-Einstein metric (see [22]).

The problem of the existence of Kéhler-Einstein metrics on smooth toric Fano
varieties is completely solved. Namely, the following result holds (see [23]-[26]).

Theorem 1.18. If X is smooth and toric, then the following conditions are equiv-
alent:

e the Fano variety X admits a Kdahler-Finstein metric;

e the Futaki character of holomorphic vector fields of X wvanishes;

e the barycentre of the reflexive polytope of X is zero.

However, we do not know many smooth Fano varieties that admit a Kéahler-
Einstein metric.

Ezample 1.19. By [3], [12], [27] and [28] the following varieties admit Kéhler-
Einstein metrics:
e every smooth del Pezzo surface whose automorphism group is reductive;
e every Fermat hypersurface in P" of degree d < n for d > n/2;
e cvery double cover X of P™ branched in a hypersurface of degree 2d for
n=d>n+1)/2;
e every smooth complete intersection in P™ of two quadric hypersurfaces.

The problem of the existence of orbifold Kéhler-Einstein metrics on singular Fano
varieties that have quotient singularities is not well studied even in dimension 2.

Example 1.20. Let X be a cubic surface in P3. Then
e the surface X admits a Kéhler-Einstein metric if Sing(X) = @ (see [27]);
e the surface X does not admit an orbifold Kéhler-Einstein metric if X has
a singular point that is not of type A; or Ay (see [29]);
e the cubic surface given by the equation

ryz 4+ ayt + w2t + yzt = 0 C PP = Proj(Clz, y, 2, t])
admits a Kahler-Einstein metric and has four singular points of type A;
(see [10]);
e the cubic surface given by the equation

zyz = t* C P* = Proj(Clz, y, 2, 1]),

admits a Kéahler-Einstein metric and has three singular points of type A,
(see [10]);
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e it is unknown whether X admits a Kahler-Einstein metric in the remaining
cases.

One can use Theorem 1.14 to construct many examples of Fano varieties with
quotient singularities that admit an orbifold Kéahler-Einstein metric.

Ezample 1.21. Let X be a quasismooth hypersurface in P(ag, a1, az, a3) of degree
?:0 a; — 1, where agp < a1 < as < as. Then let(X) > 2/3 if X is general and
singular (see [13], [30]-[32]).
Ezample 1.22. Let X be a quasismooth hypersurface in P(ag,...,as) of degree
Z?:O a; — 1, where ag < a1 < az < az < aq. Then it follows from [33] that
e lct(X) > 3/4 for at least 1936 values of the quintuple (ag, a1, as, as, aq);
e lct(X) > 1 for at least 1605 values of the quintuple (ag, a1, as,as, aq).

It is clear from Examples 1.9-1.11, 1.21 and 1.22 that the number lct(X) is
important in Kéhler geometry. It also plays an important role in birational geom-
etry.

Example 1.23. Let V and V be varieties with at most terminal and Q-factorial
singularities and let Z be a smooth curve. Suppose that there is a commutative
diagram

v---"-->7
Z Z

such that m and 7 are flat morphisms and p is a birational map inducing an iso-
morphism

VAX2V\X,

where X and X are scheme fibres of 7 and 7 over a point O € Z, respectively.
Suppose that

e the fibres X and X are irreducible and reduced;

e the divisors —Ky and — Ky are m-ample and 7-ample, respectively;

o the varieties X and X have at most log terminal singularities;
and p is not an isomorphism. Then it follows from [34] and [10] that

let(X) +1et(X) < 1, (%)

where X and X are Fano varieties by the adjunction formula.
In general inequality (x) is easily seen to be sharp.

Ezxample 1.24. Let m: V — Z be a surjective flat morphism such that

e the variety V is smooth and dim (V) = 3;

e the variety Z is a smooth curve;

e the divisor Ky is m-ample;
let X be a scheme fibre of the morphism 7 over a point O € Z such that X is
a smooth cubic surface in P3, and let L, Ly, Lz be lines in X passing through
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a point P € V. Then it follows from [35] that there is a commutative diagram

such that « is a blow up of the point P, the map 1 is an antiflip in the proper
transforms of the lines Ly, Lo, L3 and (8 is a contraction of the proper transform
of the fibre X. Then

the birational map p is not an isomorphism;

the threefold V has terminal and Q-factorial singularities;

the divisor —K5 is a Cartier 7-ample divisor;

the map p induces an isomorphism V \ X = V \ X, where X is a scheme
fibre of T over the point O.

Then X is a cubic surface with a singular point of type D4, which implies that
let(X) = 2/3 and let(X) = 1/3 (see Examples 1.11 and 1.12).

We now describe another application of lct(X). Suppose additionally that X
has at most Q-factorial terminal singularities and rk Pic(X) = 1.

Definition 1.25. The Fano variety X is said to be birationally superrigid* if for
every linear system .# on the variety X that has no fixed components the log
pair (X,.#) has canonical singularities, where X is a rational number such that
Kx + 4 =0.

If the variety X is birationally superrigid, then
e there is no rational dominant map p: X --» Y such that the general fibre of
the map p is rationally connected and dim(Y") > 1;
e there is no non-biregular map p: X --» Y such that Y has terminal Q-
factorial singularities and rk Pic(Y') = 1;
e the variety X is non-rational.

Example 1.26. The following smooth Fano varieties are birationally superrigid:
e a general hypersurface in P™ of degree n > 4 (see [38], [39]);
e a smooth hypersurface in P(1""1, n) of degree 2n > 6 (see [40], [41]).

Let X1,...,X, be Fano varieties with at most Q-factorial terminal singularities
such that rk Pic(X;) = 1 for every ¢ = 1,...,r. The following result was proved
in [7].

Theorem 1.27. If X, is birationally superrigid and1ct(X;) > 1 foralli =1,...,r,
then
Bir(X; x -+- x X;.) = Aut(X;y x -+ x X,.),

4There are several definitions of birational superrigidity (see [36], [37]).
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the variety X1 X --- X X, is non-rational and for every rational dominant map
p: X1 X - x X, --» Y whose general fibre is rationally connected there is a com-
mutative diagram

Xy x---x X,
l \\\\\p
7r \\
Xilx'”XXik____E____::;Y
for some {i1,...,ix} C{1,...,r}, where £ is a birational map and 7 is the projec-

tion.

Fano varieties satisfying the hypotheses of Theorem 1.27 do exist (see Examples
1.9, 1.10 and 1.26).

Definition 1.28. The variety X is said to be birationally rigid® if for every non-
empty linear system .# on X that has no fixed components there exists £ € Bir(X)
such that the log pair

(X, X(A))
has canonical singularities, where A is a rational number such that Kx+A(.#) = 0.

If X is birationally rigid, then
e there is no rational dominant map p: X --» Y such that a general fibre of
the map p is rationally connected and dim(Y") > 1;
e there is no birational map p: X --» Y such that Y 22 X, the variety Y has
terminal Q-factorial singularities and rk Pic(Y) = 1;
e the variety X is non-rational.

Ezxample 1.29. The following Fano threefolds are birationally rigid, but not biration-
ally superrigid:
e a general complete intersection of a quadric and a cubic in P5 (see [42]);
e a smooth threefold that is a double cover of a smooth three-dimensional
quadric in P4 branched over a surface of degree 8 (see [40]).

One usually seeks the birational automorphism from Definition 1.28 among
a given set of birational automorphisms. This leads to the following definition.

Definition 1.30. A subset I' of Bir(X) untwists all mazimal singularities on the
variety X if for each linear system .# on X that has no fixed components there
exists & € I such that the log pair

(X, A8(A4))

has canonical singularities, where A is a rational number such that Kx+A(.#) = 0.

If there is a subset I' C Bir(X) that untwists all maximal singularities, then the
group Bir(X) is generated by I' and the biregular automorphisms.

5There are several definitions of birational rigidity (see [36], [37]).
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Example 1.31. Let X be a general hypersurface in P” of degree n > 5 that has one
singular point O, which is an ordinary singular point of multiplicity n — 2. Then
the projection

P X ——» Pt

from the point O induces an involution that untwists all maximal singularities
(see [43)).

We now show how Theorem 1.27 can be generalized for birationally rigid Fano
varieties.

Definition 1.32. The variety X is universally birationally rigid if for any variety U
the variety
X ® Spec(C(V))

is birationally rigid over a field of rational functions C(U) of the variety U.

It should be pointed out that Definition 1.28 makes sense also for Fano varieties
defined over an arbitrary perfect field.

Definition 1.33. A subset I' of Bir(X) universally untwists all maximal singular-
ities if for every variety U the induced subgroup

I' C Bir(X) C Bir(X ® Spec(C(U)))

untwists all maximal singularities on the variety X ® Spec(C(U)) defined over the
field of rational functions C(U) of U.

One can easily verify that any subset of Aut(X) universally untwists all maximal
singularities if the Fano variety X is birationally superrigid.

Remark 1.34. As Kolldr pointed out [44], if dim(X) > 2, then a subset I" of Bir(X)
universally untwists all maximal singularities if and only if I" untwists all maximal
singularities and Bir(X) is countable.

Let Xi,...,X, be Fano varieties with terminal Q-factorial singularities and
assume that rkPic(X;) = 1 for every ¢ = 1,...,r. Consider the natural projec-
tion

TG0 X1><~-~><Xi,1><XZ-><XZ-+1><-~-><XT —>X1><-~><Xi,1><XZ-><Xi+1><~-><XT

and let J; be a general fibre of 7; in the scheme sense.

Remark 1.35. J; is a Fano variety defined over the field of rational functions of the
variety

X1X"'XXi,1XXZ‘XXZ‘+1X---XXT.

There are natural embeddings of groups
-
[IBir(x:) € (Bir(3y),...,Bir(3,)) € Bir(Xy x -+ x X,),
i=1

and the following result was proved in [45].
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Theorem 1.36. If X1,..., X, are universally birationally rigid and let(X;) > 1
foralli=1,...,r, then

Bir(X; x -+ x X,) = (Bir(3y),...,Bir(3,), Aut(X; x -+ x X)),

the variety X1 X -+ - x X, is non-rational and for every map p: X1 X -+ x X, --» Y
whose general fibre is rationally connected there are a subset {iy,...,ix} C{1,...,r}
and a commutative diagram

where 7 is the natural projection and & and o are birational maps.

Corollary 1.37. Suppose that there exist subgroups T'; C Bir(X;) universally
untwisting all mazimal singularities and that let(X;) > 1 for every i = 1,...,r.
Then

Bir(X; x --- x X,) = <HFi,Aut(X1 X oo X X,,)>.
i=1

Let X be a general well-formed quasismooth hypersurface in P(1, a1, as, as, as) of

degree Z?:l a;, that has at most terminal singularities, where a; < as < a3 < aq.
Then

_KX = ﬁP(l,al,aQ,ag,a4) (1)7

and the group Cl(X) is generated by the divisor —Kx. We see that X is a Fano
variety.

Remark 1.38. There are precisely 95 values of the quadruple (a1, as,as,as) (see
[33], [46]).

It follows from [47] that there are finitely many birational involutions 71, ..., 7, €
Bir(X) and that the following result holds.

Theorem 1.39. The group (t1,...,Ts) untwists universally mazimal singularities.
Corollary 1.40. The variety X is universally birationally rigid.

The relations between 7,...,7; were found in [48]. By [14] there is an exact
sequence of groups

1— <T1, . 7Tk> — Blr(X) —_— Aut(X) — ]_7
and by [45] and [49] we have the following result.

Theorem 1.41. Suppose that —K% < 1. Then lct(X) = 1.

In particular, there do exist varieties satisfying the hypotheses of Theorem 1.36
and Corollary 1.37 that are not birationally superrigid.
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Ezample 1.42. Let X be a general hypersurface of degree 20 in P(1,1,4,5,10).
Then there is an exact sequence of groups

m

1— [[(Z2 % Zs) — Bir(X x -+ x X) — S, — 1,

i=1 m factors

where Zs % Zs is the infinite dihedral group.

The aim of this paper is to prove the following two results.
Theorem 1.43. Let (a1, a9,as3,a4) = (1,1,2,2). Then lct(X) > 4/5
Theorem 1.44. Let (ay,a2,as3,a4) = (1,1,2,3). Then lct(X) > 6/7

>
) >
It follows from [49] that lct(X) > 7/9 for (a1, a2, a3,a4) = (1,1,1,2), but

_Kg( >1 — (a13a25a37a4) € {(15 1717 )’ (15 1717 )’ (1717173)7
(1,1,2,2),(1,1,2,3)},

which, in particular, implies the following result (see Examples 1.10 and 1.9).

Corollary 1.45. General well-formed quasismooth hypersurfaces inP(1,a1,...,a4)
of degree 2?21 a; that have terminal singularities admit Kdhler-Einstein metrics.

We prove Theorem 1.43 in §3 and Theorem 1.44 in §4.

8§ 2. Preliminaries

Let V' be a variety with at most quotient singularities.

Remark 2.1. Let H be a nef divisor on V and let B and T, B # T, be effective and
irreducible divisors on V. Let dim(V) = 3 and let

I
B-T=>) &Li+A,
i=1
where L; is an irreducible curve, ¢; is a non-negative integer and A is an effective
cycle whose support does not contain the curves Lq,..., L,. Then

i=1

Let D be an effective Q-divisor on V such that the log pair (V, D) is not log
canonical.

Remark 2.2. Let B be an effective Q-divisor on the variety V such that the singu-
larities of the log pair (V, B) are log canonical. Then the singularities of the log

pair
1
—— (D —aB
(v,l_a( a))

are not log canonical for all @ € @ such that 0 < o < 1.
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Let P be a point in V' such that the log pair (V, D) is not log canonical at P.

Remark 2.3. Suppose that P is a singular point of V' of type %(1, a,r —a), where a
and r are positive integers such that (a,r) = 1 and r > 2a. Let a: U — V be
a weighted blow up of the point P with weights (1, a,r —a). There exists a rational
number g such that

D =a*(D) — ukE,

where D is the proper transform of the divisor D on the variety U and E is the
a-exceptional divisor. Then p > 1/r by [1], Lemma 8.12.

It is clear that multp(D) > 1 in the case when P ¢ Sing(V).
Remark 2.4. Suppose that P ¢ Sing(V') and dim(V') = 2. Let

D=mC+Q

for an irreducible curve C', a non-negative rational number m and an effective
Q-divisor €2 on the surface V whose support does not contain the curve C. Then

cC-Q> multp(Q|C) > 1

by [1], Theorem 7.5 in the case when P € C'\ Sing(C) and m < 1.

Suppose additionally that dim(V) = 3 and that P is a smooth point of the
variety V. Let m: U — V be a blow up of the point P. Then

D =o"(D) —multp(D)E,
where E is the a-exceptional divisor and D is the proper transform of D on U.
Lemma 2.5. Either multp(D) > 2, or there is a line L C E = P? such that
multy, (D) + multp(D) > 2.

Proof. Let H be a sufficiently general hyperplane section of the variety V passing
through the point P and let H be the proper transform of the divisor H on the
variety U. Then

H=o"(D)—-FE,

and we can assume that H is very ample. From
Ky + D + (multp(D) — 2)E = o*(Ky + D)

it follows that (U, D + (multp(D) — 2)E) is not log canonical in a neighbourhood
of E. The log pair B
(U, D + (multp(D) — 1)E)

is not log canonical in a neighbourhood of divisor E either. Finally, the log pair
(U, D+ (multp(D) —1)E + H)

is not log canonical in a neighbourhood of E as well. We point out that multp(D) > 1.
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Let 8 = a|ﬁz H — H and E = E|ﬁ. Then
K+ D)y + (multp(D) — 1)E = 8*(Ky + D| ),

and the support of the divisor ﬁ{ 5 does not contain the curve E because of the
generality in the choice of H. Then

mult p (D’H) = multp(D),

and the proper transform of the divisor D| 5 on the surface H is the divisor D o
The log pair (H, D‘H) is not log canonical at the point P by [1], Theorem 7.5.
Then
(H, D|,, + (multp(D) — 1)E)

is not log canonical in a neighbourhood of the curve E.
Suppose that multp(D) < 2. Then it follows from the connectedness principle
([1], Theorem 7.5) that there is a unique point Qz € E such that the log pair

(H, D|,, + (multp(D) — 1)E)

is not log terminal at ()77, but is log terminal outside ()77 in a neighbourhood of E.
By the generality of the surface H we may assume that E is a general hyperplane
section of U. Hence there is a curve L C E such that LNH = @4, and the log pair

(U, D + (multp(D) — 1)E)

is not log terminal at a general point of the curve L, but is log terminal outside L
in a neighbourhood of Q-
The curve L is a line in P? because the intersection L N H consists of a single
point. Then
multy, (D) + (multp(D) — 1) multy, (E) > 1,

which implies that multz (D) + multp(D) > 2.
Hence we see that either multp(D) > 2 or there is a line L C E such that

multz, (D) + multp(D) > 2,

but (V,AD) is not log canonical at P for some positive rational number A < 1.
Applying the last assertion to the log pair (V;AD) we obtain the required strict
inequality and complete the proof.

The assertion of Lemma 2.5 is an easy generalization of Corollary 3.5 in [36].

§ 3. Fano threefold of degree 3/2
Let X be a general hypersurface in P(1,1, 1,2, 2) of degree 6. Then X has three
singular points O, Oy, O3, which are singular points of type %(1, 1,1). Let D be
an arbitrary divisor in the linear system |—nK x|, where n is a positive integer. We
set A =4/(5n).

Remark 3.1. To prove Theorem 1.43 it is sufficient to show that the log pair (X, AD)
is log canonical because D is an arbitrary divisor in |-nKx]|.
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Suppose that the log pair (X, AD) is not log canonical. We shall show that this
leads to a contradiction. We can assume that D is irreducible (see Remark 2.2).
Lemma 3.2. The inequality n # 1 holds.

Proof. Let n = 1. Then the log pair (X, D) is log canonical at every singular point

of the hypersurface X by [1], Lemma 8.12 and Proposition 8.14. We have a; = 1.
Suppose that the log pair (X, D) is not log canonical at some smooth point P of

the hypersurface X. We shall show that this assumption leads to a contradiction.
Consider the set of pairs

& ={(0,F)|0€P(1,1,1,2,2), F € H*(P(1,1,1,2,2), Op(1,1,1,22)(6))}
with projections

T — HY(P(1,1,1,2,2), Op11,1,2,2)(6)) and (:.7 —P(1,1,1,2,2).
Let

4 ={(0,F) €. | F(O) =0, the hypersurface F = 0 is quasismooth
and is smooth at O}.

Suppose that the point O is given by the equations x =y =w =1t =0 in
P(1,1,1,2,2) 2 Proj(Clx, y, 2, t, w]),
where wt(z) = wt(y) = wt(z) = 1 and wt(t) = wt(w) = 2. Then
F = 21 (0,) + 2 aa(, 1, w0) + 2,9, 8, w) + 224 (w, .t w)
+ zq5(x, y, t,w) + g (z, y, t,w),

where ¢;(z,y,t,w) is a quasihomogeneous polynomial of degree i.
We say that O is a bad point of F' = 0 if ¢2(0,0,¢,w) = 0 and the surface cut
out on F' = 0 by the equation ¢;(z,y) = 0 has non-canonical singularities at O.
Let @ be a point in P(1,1,1,2,2) and let Q be the fibre of 7 over the point Q.
Then
dim(Q) = dim(H°(P(1,1,1,2,2), Op(1,1,1,2,2)(6))),

and we can put
W = {(O,F) € # | O is a bad point of the hypersurface F' = O}.

The restriction ﬂ‘@Z % — P(1,1,1,2,2) is surjective. Easy computations show
that
dim(QN#) < dim(Q2) — 5,

which implies that the restriction
C’g/: Y — H° (P(L 1,1,2, 2)7 ﬁ]P’(l,l,l,Q,Q) (6))

is not surjective. Thus, a general hypersurface in P(1,1,1,2,2) of degree 6 has no
bad points.
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By assumption, the log pair (X, D) is not log canonical at the point P, which is
a smooth point of the hypersurface X. In particular, the surface D is singular at
the point P. However, we may assume that the surface D has canonical singularities
at the point P.

Singularities of the surface D are not log canonical at P by [1], Theorem 7.5,
which is a contradiction because D has canonical singularities at the point P. The
proof is complete.

It follows form [50] that there is a commutative diagram

U, B1 Y,
g1 lal Y
Vi X Wy
S LT T
w1 P ~ -
g T~ s
P(1,1,1,2)— — — — — — o —— - S p2

where &1, 1 and x; are projections, «; is a blow up of O; with weights (1,1,1),
(1 is a blow up with weights (1,1,1) of the point dominating Os, 71 is a blow up
with weights (1,1,1) of the point dominating Oz, 1 is an elliptic fibration, w; is
a double cover and oy is a birational morphism contracting 24 curves Oy, ..., Cyy.

Remark 3.3. The curves 61, . ,654 are smooth, irreducible and rational.

We set C} = al(éz) for every ¢ = 1,...,24. The rational map &; is undefined
only at the point O; and contracts the curves Cf,...,C3,. Note that v is a natural
projection.

Remark 3.4. The fibre of the projection 1 over the point ¥ (C}) consists of the
smooth rational curve C} and another irreducible smooth rational curve Z} such
that

C11901¢le7 Z}EOQ%C}, 211903¢Cll,

the curves C} and Z} intersect transversally at two points and
~Kx-Z! = 2Kx -C! =1.

In a similar way we can construct maps &»: X --» P(1,1,1,2) and &3: X --»
P(1,1,1,2), which are undefined only at the points Oy and Os, respectively. These
rational maps & and &3 contract precisely 48 curves C%,...,C%, and C5,...,C3,,
respectively.

Remark 3.5. Let Z be a curve on the variety X such that —Kx - Z = 1/2. Then
ze{C},...,Cqy, CF,...,C3y, CF, ..., C5, ).

In a similar way we see that there are smooth irreducible rational curves
Z%,..., 73, and Z3,. .., Z3, that are components of the fibres of the rational map 1
over the points ¥(C?),...,9%(C3,) and ¥(C3), ..., (C3,), respectively.
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Remark 3.6. Let F' be a reducible fibre of the map ¢). Then
Fe{ciuZzi,. .. ,Cy Uz, CIUZ,...,C50UZs,, CYUZ}, ... ,CaUZ3, Y.

Let P be a point in the variety V' such that the log pair (X, AD) is not log
canonical at P, and let F' be a scheme fibre of the projection 1) that passes through
the point P.

Remark 3.7. If P ¢ Sing(X), then F' is uniquely defined.
Note that F' is reduced. Let S be a general surface in |-K x| such that P € S.
Lemma 3.8. Suppose that Sing(X) # P ¢ Sing(F). Then F is reducible.

Proof. Suppose that F is irreducible. Let 7: X — X be a blow up of the point P.
Then o
D =7"(D) —multp(D)E,
where E is the m-exceptional divisor and D is the proper transform of the divisor D
on X.
We point out that multp(D) > n. Suppose that multp(D) > 3n/2 and let

D|g=mF +Q,

where m is a non-negative rational number and  is an effective Q-divisor on S
whose support does not contain the curve F. Then

3n 3m 3m 3m  3n 3n m
N mF+) =" F.0> 2 multp@) > 22 22 T
2 (mF+Q) ===+ g Tmultp(Q) > Sr 4 rmm= ot g
which is a contradiction. We see that multp(D) < 3n/2.
It follows from Lemma 2.5 that there is a line L C E =2 P? such that
_ 2 5n

multy, (D) + multp(D) > N

It follows from the smoothness of the curve F at P that |—K x| does not contain
surfaces singular at the point P. Hence we see that

H°(Ox(n*(—2Kx) — 2E)) = C*,
and it follows from the standard exact sequence
H°(Ox(m*(—2Kx) — 3E)) — H°(Ox(r*(—2Kx) — 2E))
— H(0p(-2B],)) = C°

that either there is a surface T' € |-2K x| such that multp(7) > 3 or there is
a surface R € |-2Kx| such that multp(R) =2 and L C R, where R is the proper
transform of the surface R on the variety X. The parameter count (see the proof
of Lemma 3.2) shows that the former case is impossible.

We see that there exists a (possibly reducible) surface R € |-2Kx| such that
multp(R) = 2 and L C R, where R is the proper transform of this surface R on

the variety X. Then D Z Supp(R) because multp(D) > n. We have
multp(R - D) > multy, (D) multy, (R) + multp(D) mult p(R)
> multz, (D) + 2multp(D) > 3n.
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Let R-D =¢eF + A, where ¢ € Q and A is an effective 1-cycle whose support
does not contain the curve F'. Then A ¢ Supp(S) and multp(A) > 3n —e. We

have 5 3
i’)?le-R-D:;+S~A>;—371—5:371-1-%7

which is a contradiction completing the proof.
Lemma 3.9. Suppose that P ¢ Sing(X). Then F is reducible.

Proof. Suppose that F' is irreducible. Then F is singular at the point P by
Lemma 3.8, which implies that there is T € |-Kx| such that multp(T) > 2.
Then T # D by Lemma 3.2. Now the generality of the hypersurface X implies that
multp(F) =2.

Now let T-D = eF+ A, where ¢ € Q and A is an effective 1-cycle whose support
does not contain the curve F. Then A ¢ Supp(S) and multp(A) > 2n — 2e. We

have
3n 3e €

3e
—=5-T-D=— CA> —42n—2=2n— -
5 S > + 5 > > +2n — 2¢ n-g
which implies that € > n, and this is impossible by Remark 2.1.
Lemma 3.10. P is a singular point of the hypersurface X.

Proof. Suppose that P is a smooth point of X. Then F is reducible by Lemma 3.9,
and it follows from Remark 3.6 that

Fe{CciuZz{,...,C3UZ, CTUZE,...,C5,UZs,, CYUZ},...,CoUZ3, Y.
Without loss of generality we may assume that F' = O} U Z;. Let

D‘S:mlc’ll—i—ngll—i—QE—nKX

S7

where m; and mo are non-negative rational numbers and 2 is an effective Q-divisor
on the surface S whose support does not contain the curves C} and Z{. Then the
log pair

(S, Am1Ct + dmaZt + \Q)

is not log canonical at the point P by [1], Theorem 7.5. We shall show that this
contradicts the numerical equivalence m;C{ +msZi +Q = —nKx 5

The singularities of the log pair (S, C} + Z{) are log canonical at the point P by
the generality of the hypersurface X. Hence it follows from the numerical equiv-
alence

and Remark 2.2 that we may assume that either m; = 0 or mo = 0.
Let my = 0. Then it follows from

g:011-(m2211+9)=2m2+c§-9>2m2

that mg < n/4. We have P ¢ C{ because otherwise

1._5
:C%-(m2Z11+Q):2m2+011-Q>2m2+X>—n

n
2 4
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by Remark 2.4. We see that P € Z}. Then

[y

5
n:le-(ngll+Q):—m2+Zl Q>-—-mo+— > ’ITLQ‘FZH
by Remark 2.4, so that mo > n/4, although we have my < n/4, which is a contra-
diction.

Hence we see that ms = 0. Arguing as above we obtain

n=2¢ (mOC} +Q)=2my + Z{ - Q> 2my,

>/

which implies that m; < n/2. Then P ¢ Z] because otherwise

1
n:le-(mlCll—i—Q):2m1—|—le-Q>2m1+X}%
by Remark 2.4. We see that P € C{. Then
n 3my 3m1 1 3m1 5n
—=Cj- Cir+Q)=-"=+C} —
g G mG Q)= =57+ 0 Q> —mm h 2 m Ty

by Remark 2.4. We see that m; > n/2, but m; < n/2, which is a contradiction
completing the proof.

Without loss of generality we may assume that P = O;. Then — K, (3}1 =1 and
D = af(D) — uky,

where E; is the a-exceptional divisor, D is the proper transform of the divisor D
on the variety Uy, and p € Q. Then > n/(2X) by Remark 2.3. We have

— 1
Ky, + \D + (AM - 2>E1 = af(Kx + AD).

Lemma 3.11. u < 3n/4.
Proof. The point O; can be given by x =y =z =t =0 and X can be given by

where wt(z) = wt(y) = wt(z) = 1, wt(t) = wt(w) = 2 and f4, fs are quasihomo-
geneous polynomials of degrees 4 and 6, respectively. In these coordinates the
curves Ct, ..., C3, are cut out on the hypersurface X by the equations

t= f4($7y,27t) = fg(ac,y,z,t) =0.

Let R be a surface on X that is cut out by the equation ¢t = 0 and let R be the
proper transform of the surface R on the variety U;. The surface R is irreducible

and -
R =aj(—2Kx) — 2E;

but (X, %R) is log canonical at the point O; by [1], Lemma 8.12 and Proposi-
tion 8.14 because we may assume that the hypersurface X is sufficiently general.
The log pair (X, \D), where A = 4/5, is not log canonical at the point P. Hence
R # D and
0< —Ky, -R-D=3n—4p

because — Ky, is nef. Thus, u < 3n/4 and the proof is complete.
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In particular, there is a point @) € E such that the log pair

(Ul, /\ﬁ—F (/\[L - ;>E1>

is not log canonical at ). Let S be a general surface in |~ Ky, | such that Q € S.

Remark 3.12. The proper transform of the surface £y on the variety W1 is a section
of the elliptic fibration 7. In particular, the surface S is smooth at Q.

Let 7? be the proper transform of ZF on the threefold Uy, where k = 1,2,3 and
i=1,...,24.

Lemma 3.13. The point Q) is not contained in U?il 6:.

Proof. Suppose that Q € U?il 63 . We can assume that Q € 61. Let

E|§+ (H — Z)E‘S = mléi + mzfi + Q= —-nKy, |§’

where my and mo are non-negative rational numbers and 2 is an effective Q-divisor

= . —1 —1
on the surface S whose support does not contain the curves C; and Z;. The log
pair

— — — 1
(3. 20+ 2271+ o)
n n n

is not log canonical at the point @ by [1], Theorem 7.5. We claim that this is
impossible.

The log pair (S, 61 +71) is log canonical at the point Q. Thus, it follows from
the equivalence

—1 =1
Cl +Zl = _KUl g

and Remark 2.2 that we may assume that either m; = 0 or mo = 0.
It follows from Remark 2.4 that

0:61 . (mléi—i—mgfi +Q) =2my +61 QA >2me+n>=n
in the case m; = 0. Hence we may assume that mo = 0. Then
nz?i . (mléi + Q) =2my —|—71 - = 2my,
which implies that m; < n/2. We see that
0:61 '(mléiJrQ) = —2my +€1 Q> -2my+n>=-2m +n

by Remark 2.4, so that m; > n/2, although we have m; < n/2. This is a contra-
diction completing the proof.

Let éf be the proper transform of C¥ on the threefold Uy, where k = 2,3 and
i=1,...,24.

Lemma 3.14. The point Q is not contained in Ufilff or Uf;??.
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Proof. Suppose that Q € UZ 1 7 or Q € UZ 1 7 We shall show that thlb leads
to a contradiction. We may assume without loss of generality that @ € Z 1- Then
Q ¢ 6?. Let

— n —2 —2
Dlg+ (u a 2>E‘s: miC +maZy +Q = —nKy, |3,
where mq and mo are non-negative rational numbers and 2 is an effective Q-divisor

on the surface S whose support does not contain the curves 6? and 7?.
It follows from [1], Theorem 7.5 that the log pair

— — — 1
(s,mlofmzz+9)
n n n

is not log canonical at the point Q). We claim that this is impossible.
The log pair (S, 63 + 7?) is log canonical at ), but

—=2 -2
C\+ 7, =—-Ky, =2

which implies that we can assume that either my = 0 or my = 0 (see Remark 2.2).
Let mqg = 0. Then it follows from Remark 2.4 that

_ _ _ 5
g:Z?(mleJrQ)=2m1+Z?'Q>2m1+">Zn’

which is a contradiction. Hence we may assume that m; = 0. Then

which implies that ms < n/4. We see that

2, = 3 3
5=Zr (mZi+Q) = -2 470> -2 4n

by Remark 2.4, so that my > n/3, although we have ms < n/4. This is a contra-
diction completlng the proof.

Let F be a scheme fibre of 1 o a; passing through the point Q. Then Fis
irreducible and the fibre F' is smooth at the point Q). Let

Dl|s+ <u— Z>E|S:mF+Q,

where m is a non-negative rational number and €2 is an effective Q-divisor on S
whose support does not contain the curve F. Then

n=F-(mF+Q)=m+F -Q>m+multqg() >m+n—m=n,

which is a contradiction. The proof of Theorem 1.43 is complete.
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§ 4. Fano threefold of degree 7/6
Let X be a general hypersurface in P(1,1,1,2,3) of degree 7. Then X has two
singular points O; and Os, which are singular points of type %(1, 1,1) and %(17 1,2),
respectively. There is a commutative diagram

B1

Uj<——Y;

Vi X W
\\ C// \\\ ¥ l
~ _ n
w1 -
£ ~ _
]P(L]-v]-a'?)) ************* ;Pz

where 7, 1) and ( are projections, «; is a blow up of O; with weights (1,1,1),
(1 is a blow up with weights (1,1,2) of the singular point dominating O, 71 is
a blow up with weights (1,1, 1) of the singular point dominating Os, 7 is an elliptic
fibration, wy is a double cover and o is a birational morphism contracting 35 curves

—1 —1
C,...,Cs5.

—1 —1 . . .
Remark 4.1. The curves C', ..., Css are smooth, irreducible and rational.

It follows from [50] that there is a commutative diagram

B2

Uy<———Y,

V2 /X\\ W
\ £, 7 el l
~ n
w2 e -
k \\
P(1,1,1,2)— — — — — — e S p2

where £, 1) and y are projections, as is a blow up of Oy with weights (1,1,2), (s is
a blow up with weights (1,1, 1) of the singular point of Us dominating the point Oo,
o is the blow up with weights (1,1, 1) of the point dominating Oy, 7 is an elliptic
fibration, ws is a double cover and oy is a birational morphism contracting 14 curves

=2 2

ci,....Cu.

Remark 4.2. The curves 6?, . ,éil are smooth, irreducible and rational.
Let C! = oy (T, ) for all i = 1,..., 35.

Remark 4.3. The fibre of the projection 1 over the point ¥ (C}) consists of the
smooth rational curve C} and a smooth irreducible rational curve Z} such that

Cl>0,¢27z} and Z!>30,¢C},

where C} and Z} intersect transversally at two points, but —Kx - Z} = 2/3 and
~-Kx-C}=1/2.
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We set C? = (12(6?) foralli=1,...,14.

Remark 4.4. The fibre of the projection 1) over the point ¢(C?) consists of the
smooth rational curve C? and a smooth irreducible rational curve Z? such that

C?30,€2Z and Z?30,¢C%

where C} and Z} intersect at Os, the curves C} and Z} intersect transversally at
a smooth point of X, and we have —Kx - Z} =5/6 and —Kx - C} = 1/3.

Let D be a divisor in |-nK x|, where n € N. We set = 6/(7n) and A = 1/n.

Remark 4.5. To prove Theorem 1.44 it is sufficient to show that the log pair (X, uD)
has at most log canonical singularities because D is an arbitrary divisor in |[-nKx]|.

To prove Theorem 1.44 we describe reducible fibres of ¢ first.
Lemma 4.6. Let I be a reducible fibre of the rational map . Then

Fe{ciuZz,...,.C33UZy;, CTUZE,...,C3,UZ}, ).
Proof. Let C be an irreducible curve on the hypersurface X. Then
Cceclc,...,C3}

if —Kx - C = 1/2 because the proper transform of the curve C' on the variety U
has trivial intersection with —Kp, in the case when —Kx - C' = 1/2.

Note that the equality —Kx -C' = 1/6 is impossible because otherwise the proper
transform of the curve C on the variety U; has negative intersection with — Ky,
which is nef.

Suppose that —K x - C' = 1/3. Let C be the proper transform of the curve C' on
the variety Us. Then

1 — 1 1 —

where E» is the exceptional divisor of as. On the other hand, 2E, - C' is a positive

integer, so that Fy - C' =1/2 or Ey - C' = 1. The equality Es - C' = 1/2 implies that

_ 1 — 1 1 — 1

which is a contradiction because —2Ky;, is Cartier. Hence 5 -C' = 1, and therefore

—Ky, - C'=0. Thus, we see that
Ce{C,....Cl}

because the irreducible rational curves 63, o ,634 are the only curves on U; that
have trivial intersection with —Ky,.

Note that —Kx - F' = 7/6. Let C be an irreducible component of F' such that
—Kx - C is minimal. Then either —Kx - C = 1/2 or —Kx - C = 1/3 because
—6Kx - C € N. Then we must have

Cel{ct,...,Ci5, Ct,....CL Y,

which immediately yields the required result.
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Suppose that the log pair (X, uD) is not log canonical. We shall show that this
leads to a contradiction. We may assume that D is irreducible (see Remark 2.2).
Lemma 4.7. n # 1.
Proof. Arguing as in the proof of Lemma 3.2 we obtain the required result.

Let P be a point of the variety V such that the log pair (X, uD) is not log
canonical at P, and let F' be a scheme fibre of the projection 1 that passes through
the point P.

Remark 4.8. If P ¢ Sing(X), then the fibre F' is uniquely defined.
The fibre F is reduced. Let S be a general surface in |—K x| such that P € S.
Lemma 4.9. Suppose that Sing(X) Z P ¢ Sing(F'). Then F is reducible.

Proof. Suppose that F is irreducible. Let 7: X — X be a blow up of the point P.
Then
D =7*(D)—multp(D)E,

where E is the m-exceptional divisor and D is the proper transform of D on the
threefold X.
Note that multp(D) > 1/u = 7n/6. Let

D|S:mF+Q,

where m is a non-negative rational number and €2 is an effective Q-divisor on
the surface S whose support does not contain the curve F'. Then

™™m ™m ™ Tn ™m m
=F - mF+Q)=—+F - Q> — ltp(Q2 —_—t——-m=—4 —
(mF+ Q) 5 + 5 + multp(Q) > g —|—6 m 6+6’

n
6

which is a contradiction completing the proof.

The log pair (X, AD) is also not log canonical at the point P. In the remaining
part of this section we show that the last assumption also leads to a contradiction.

Lemma 4.10. Suppose that P ¢ Sing(X). Then F is reducible.

Proof. Suppose that the fibre F is reducible. Then multp(F) # 1 by Lemma 4.9
and it follows from the generality of the hypersurface X that multp(F) = 2.
One can easily see that there exists a surface T' € |— K x| such that mult p(7") > 2.
Let
T-D=cF+A,

where ¢ is a non-negative rational number and A is an effective 1-cycle whose
support does not contain the curve F. Then A Z Supp(S) and multp(A) > 2n—2e.

We have . . .
n € €
—=85T-D=—+S5S-A>—+2n-2
6 6 + > 6 +2n g,
which implies that € > n. However, this is impossible by Remark 2.1 and the proof

is complete.

Lemma 4.11. P is a singular point of the hypersurface X.
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Proof. Let P be a smooth point of X. Then F is reducible by Lemma 4.10, and it
follows from Lemma 4.6 that

Fe{CiuZzi,. .. ,CiUZs, CTUZE,...,C34UZT, ).
Without loss of generality we may assume that either F' = C{UZ] or F = C}UZ3.
Let F =C{ UZ}. Then
3 4
Ci-Cl=-=, Cl-Z}=2  Z1-Z{ =—
2 3
on the surface S. Let
D‘S =mCl +moZl +Q = —nKX|S,

where my and mo are non-negative rational numbers and 2 is an effective Q-divisor
on the surface S whose support does not contain the curves C} and Z{. Then the
log pair

(S, M CF 4+ AmaZi + Q)
is not log canonical at the point P by [1], Theorem 7.5. We claim that this contra-
dicts the numerical effectiveness of

mlCl1 —l—ngll + Q= —nKX|S

bearing in mind that C} + 7} = —Kx |S on the surface S. The log pair (S, C1+Z1)
is log canonical at the point P in view of the generality of the choice of X. Thus,
we may assume that m; = 0 or my = 0 by Remark 2.2.

Suppose that m; = 0. Then

g=C’11~(m2Z11+Q):2m2+C’11-Q>2m2,

which implies that mo < n/4. We have P ¢ C} because otherwise

1
g:C’11~(m2Z11+Q):2m2+011-Q>2m2+XZn
by Remark 2.4. Hence we see that P € Z{. Then

2n
3

4m2 4m2 ]. 4m2
=71 (maZi + Q) =——=+ 71 Q> ——Z 4> -—=
1 (m2Zy + Q) 3 + 24 3 + 3 3
by Remark 2.4, so that mo > n/4. However, we have my < n/4, which is a contra-
diction.
Suppose that ms = 0. Arguing as in the previous case we see that it follows
from Remark 2.4 and the equality

2n
3

that m; < n/3 and P ¢ Z}. Then P € C} and

=71 (mCf +Q)=2m; + 7] - Q

n 1 1 3my 1 3mp 1 3my
— = . = - = . e D>
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by Remark 2.4. We see that m; > n/3, although we have m; < n/3, which is
a contradiction.

Thus, F = C? U Z%. Then
4

5 5
ctzp-2  zez--l
on the surface S. As in the previous case, let

D’S = 7’?,1012 ‘|‘TL2Z]? +A = _/n'KX’SH

where n; and no are non-negative rational numbers and A is an effective Q-divisor
on S whose support does not contain the curves C? and Z2. Then the singularities
of the log pair

(S, A\n1C? + Ao Z7 4+ A\A)

are not log canonical at the point P by [1], Theorem 7.5. We claim that this
contradicts the numerical effectiveness of

mC? +nyZi + A=n(CE + 7}) = —nKx 5

on S. We may assume that nyns = 0 by Remark 2.2 because the log pair (S, C7+2%)
is log canonical at the point P.

Suppose that n; = 0. Then
5ng dng

n
3 3

which implies that ny < n/5. We have P ¢ C? because otherwise
n

5712 577/2 1

3=Cl mZi+A)==2+CF A> =S+ >n
by Remark 2.4. Hence we see that P € Z7. Then
on 5”2 5”2 1 5TL2
F:le'(n2212+A):_T+Z%'A>—?+X2—?%-71

by Remark 2.4. Thus, ny > n/5. However, we have ny < n/5, which is a contra-
diction.

Let no = 0. Arguing as in the previous case, we see that it follows from
Remark 2.4 and the equality

) S
§:ﬂ4m@+m:%MJ%A
that ny <n/2 and P ¢ Z7. Then P € C? and
n 4nq dn; 1 4ny
—=C - mCi+A)=——+C? A> —— - >
5 = Ci-(mCT+4) g TOLA>——= 45 5 tn

by Remark 2.4. We see that n; > n/2. However, we have ny < n/2, which is
a contradiction completing the proof.
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Hence we see that either P = O1 or P = Os. Suppose that P = O;. Then
Dy =i (D) — B,

where F is the aq-exceptional divisor, Dy is the proper transform of the divisor D
on the variety Uy, and p; is a rational number. Then py > n/2 by Remark 2.3,
and we have

1
KU1 + )\Dl + <)\,U,1 — 2>E1 = OAT(KX + )\D)

Lemma 4.12. 1, < 7n/10.

Proof. The point O; can be given by © =y = z = w = 0, and X can be given by
the equation

2w + tfs(x,y, 2, w) + fr(2,y, z,w) = 0 C P(1,1,1,2,3) = Proj(Clz, y, 2, t, w]),

where wt(z) = wt(y) = wt(z) = 1, wt(t) = 2, wt(w) = 2, and f5, f7 are
quasihomogeneous polynomials of degrees 5 and 7, respectively. In these coor-
dinates the curves C7, ..., Cls are cut out on the hypersurface X by the equations
w = f;,(x,y,z,w) = f7(x,y,z7w) =0.

Let R be a surface on X cut out by the equation w = 0, and let R be the proper
transform of R on the variety U;. Then R is irreducible and

— 5
R =) (-3Kx) — §E1,

but (X, %R) is log canonical at Oy by [1], Lemma 8.12 and Proposition 8.14 because
we may assume that X is sufficiently general.

The log pair (X, AD), where A\ = 1/n, is not log canonical at the point P. Then
R # D and

_ 7
Og—KUl-R-Dlzg—wl

because — Ky, is nef. Hence puy < 7n/10.

In particular, there is a point @)1 € E; such that the log pair

1
(Uh AD:1 + (Aﬂl - 2>E1>

is not log canonical at ;. Let S; be a general surface in |~ Ky, | such that Q; € S.

Remark 4.13. The proper transform of the surface £ on the variety W is a section
of the elliptic fibration 7. In particular, the surface S; is smooth at the point Q.

Let 73 be the proper transform of the curve Z}! on the variety U;, where
i=1,...,35.

Lemma 4.14. The point Q1 is not contained in Uf’il 6;.
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Proof. Suppose that Q1 € U?il 6;. We may assume that Q; € 6}. Let

n —1 —1
Dl‘sl + (,ul — 2)E1|51 =miCi +meZ + Q= —nKU1|Sl,

where m; and mo are non-negative rational numbers and 2 is an effective Q-divisor
on the surface S whose support does not contain the curves 61 and 71. Then the
log pair

(S1, AmiCy + AmaZ, + AQ)
is not log canonical at @ by [1], Theorem 7.5. We claim that this is impossible.

The log pair (S, 61 + 71) is log canonical at the point @Q;. It follows from
Remark 2.2 that we may assume that either m; = 0 or my = 0 because

—1 =1
Ci+7,=—-Ku g,
It follows from Remark 2.4 that
0:61 . (mléi—l—mg?i—i—ﬂ) :2m2+51 “Q>2ma+n
if my = 0. Hence we may assume that mo = 0. Then

m _ _
3”:Z}.(mlc}+9):2m1+Z}-Q>2m1,

which implies that m; < n/3. We see that
0:61 : (mléi +Q)=-2my +61~§2 > —2my +n

by Remark 2.4. Hence my > n/2. However, we have my < n/3, which is a contra-
diction completing the proof.

Let Cf and Zf be the proper transforms of C? and Z?2 on Uy, respectively, where
i=1,...,14.

Lemma 4.15. The point Q)1 is not contained in U;il Z2.

Proof. Suppose that )1 is contained in Uilil Zf . We shall show that this leads to
a contradiction. We may assume that Q1 € Z% Then

o s o » 4 o a 5
eroci=z =t om=?

on the surface S;. Note that Q; ¢ C?. Let
D1| + /11—2 E1| :m102+m222+Q=—nK |
S1 2 Sy 1 1 - Uy S17

where m; and my are non-negative rational numbers and €2 is an effective Q-divisor
on the surface S; whose support does not contain the curves C7 and Z%.
It follows from [1], Theorem 7.5 that the log pair

(S1, Am C? 4+ AmaZ2 + AQ)

is not log canonical at the point Q1. We claim that this is impossible.
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The log pair (57, 012 + Z12) is log canonical at the point Q1. By Remark 2.2 we

may assume that either m; = 0 or my = 0 because C? + 22 = — Ky, |S1'
Suppose that mo = 0. Then it follows from Remark 2.4 that
n . N 5mq . 5mq 1
g:Zf.(mlcf+Q):T+Zf-Q>T+X>n,
which is a contradiction. Hence we may assume that m; = 0. Then
. . 5 N 5
D2 me2 )= 202 L2 g 22
3 3 3
which implies that ms < n/5. We see that
n N N 4me N 4me 1 4meo
— =22 (P )=+ Q> > =
3 1 (meZi + Q) 3 + 41 3 + \ 3

by Remark 2.4. We obtain my > n/2. However, we have ms < n/5, which is
a contradiction completing the proof.

Let F} be the scheme fibre of the rational map v o a1 that passes through the
point Q1. Then Fy is irreducible by Lemmas 4.6, 4.14 and 4.15 (see Remark 4.13).
The curve F} is smooth at the point ;1 by Remark 4.13. Let

n
Dl‘sl + <M1_2>E1|Sl :mF1+Q7

where m is a non-negative rational number and 2 is an effective Q-divisor on Sy
whose support does not contain the curve F;. Then

2n
3

which implies that m > n. This is impossible by Remark 2.1. We see that the
assumption P = O leads to a contradiction.

Remark 4.16. The equality P = O holds.

2 2 2

Let D2 be the proper transform of the divisor D on the variety Us. Then
Dy = a5(D) — poEs,

where Fs is the as-exceptional divisor and s is a rational number. We have

1
I(VU2 + ADy + ()\/,L — 3>E2 = aS(KX + )\D),

where Ay —1/3 > 0 by Remark 2.3.
The hypersurface X can be given by the equation

w?r +wfy(x,y, 2,t) + fr(x,y, 2,t) =0 C P(1,1,1,2,3) = Proj(Clz, y, z, t, w]),

where wt(z) = wt(y) = wt(z) = 1, wt(t) = 2, wt(w) = 3 and fy, fr are quasi-
homogeneous polynomials of degrees 4 and 7, respectively. Then O is given by
r=y=z=1t=0.
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Remark 4.17. The curves C%,...,C?, are cut out on X by x = f; = f; = 0.

Let R be a surface on X cut out by the equation z = 0, and let R be the
proper transform of the surface R on the variety U;. Then R is irreducible and

the equivalence

— 4
R = Ot;(—KX) — §E2

holds. The surface R is smooth in a neighbourhood of Ey because X is general.
Lemma 4.18. ps < 7n/12.
Proof. By Lemma 4.7 we obtain R # D. Then

_ 7
og—KUZ-R-D2=§—2u2,

because the divisor — Ky, is nef. Hence ps < 7n/12.

In particular, there is a point QY2 € Es such that the log pair

1
(Uz» ADo + ()\M2 - 3>E2>

is not log canonical at Q3. Let Sy be a general surface in |— Ky, | such that Q2 € Ss.

Remark 4.19. The map v is induced by the embedding of graded algebras
C[‘r’ y? Z} C C[‘r’ y? Z? t? w])

where wt(z) = wt(y) = wt(z) = 1, wt(t) = 2 and wt(w) = 3. Both E; and R are
contracted by
oag: Uy --» P?

to the line in P? = Proj(Clx,y, 2]) given by the equation x = 0.

=2
Let Z; be the proper transform of the curve Z? on the variety Uz, where
i=1,...,14.

. . . . -2 -2
Lemma 4.20. The point Q2 is not contained in Uﬁl C; or U§i1 Z;.

Proof. Let Q4 € U;iléf or Qy € Ugil 7?. Without loss of generality we may

=2 =2 = . —2 2
assume that Q2 € C7 U Z7. The surface R contains the curves C| and Z;. Let

n —2 -2
Dy |5+ (ug - >E2|R =miC| +maZ, + Q= —nKy,

3 |§’

where m; and mo are non-negative rational numbers and 2 is an effective Q-divisor
on the surface R whose support does not contain the curves 6? and 7?. The log
pair

— —2 =2

(R, )\mlC’l + )\m2Z1 + /\Q)

is not log canonical at Q2 by [1], Theorem 7.5. We claim that this is impossible.
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The log pair (R, 6? —&—7?) is log canonical at the point Q2 and 6?—1—7? = —Ku, |5,
so we may assume that either m; = 0 or mg = 0 (see Remark 2.2).
On the surface R we have
—2 — =2 — =2 = 1
Ci-Ci=-1  Z;-Ci=1  Z\-Z,=-3.
Let mq = 0. Then mo = 0 because
Ozéf(mgff—k{)) :mg—i—éf-Q)m%

and it follows from Remark 2.4 that 0 = 6? - >nif Qy € 6?. We see that
=2

Q2 € Z,. Then

n =2 1

by Remark 2.4. The contradiction obtained implies that m # 0.
Hence we may assume that mo = 0. Then

n — — —

which implies that m; < n/2. By Remark 2.4 we obtain
_ _ _ 1
g:Z?-(mle—l-Q):m1+Z1~Q>m1+X >n

in the case when Qs € 7?, which shows that Q)2 € 5?. Then
Ozéi(ml@i—&—ﬁ) = —m1—|—61~Q> —my +n
by Remark 2.4. We see that m; > n. However, my < n/2. which is a contradiction
completing the proof.
Note that the surface R does not contain the singular point of the surface Es.
Lemma 4.21. The surface R does not contain Q5.

Proof. Suppose that Q2 € R. Then it follows from Lemma 4.20 that
SQ|E =7 = 7KU2|E’

where Z is a smooth curve such that Qs € Z. Then Z - Z = 1/2 on the surface R.
Let

Dl’ﬁ—i_ (,ug — g)EQ‘R: mZ+Q = —’I?,KU2’§,

where m is a non-negative rational number and  is an effective Q-divisor on R
whose support does not contain the curve Z. Then the log pair

(R, \mZ + \Q)

is not log canonical at Q2 by [1], Theorem 7.5. We claim that this is impossible.
The log pair (R, Z) is log canonical at Q3. By Remark 2.2 we may assume that
m = 0. Then n/2 = Z - Q > n, which is a contradiction completing the proof.
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Let O3 be the singular point of the surface By = P(1,1,2), let C}! and Z} be the
proper transforms of the curves C? and Z? on the variety Us, respectively, where
i=1,...,14. Then

ZPNEy=-=Z24NE,=0s5, CiNEy=---=C3NEy=02.
Lemma 4.22. Q5 = O3.
Proof. Suppose that Qo # Os. Let Fy be the scheme fibre of the rational map
1) o g that passes through the point Q5. Then either
R=L+C +7

for some i =1,...,14 or Fy = L + Z, where L is an irreducible curve contained in
the divisor Fy and Z is an irreducible curve not contained in the divisor Es.
Suppose that F; = L + Z. Then on the surface Sy we have

L-L:Z-Z:—g, L-Z=2,

and it follows from Lemma 4.21 that Q2 € L and Q2 ¢ Z because Z = RN Sy. Let
n
D2|S2 + </L2 — 3>E2|S2 =miL+meZ +Q = *HKU2|S27

where my and mo are non-negative rational numbers and 2 is an effective Q-divisor
on the surface S5 whose support does not contain the curves L and Z.
By [1], Theorem 7.5 the log pair

(52, )\mlL + )\mQZ + )\Q)

is not log canonical at the point Q2. We claim that this is impossible.
The log pair (S2, L + Z) is log canonical at the point Q2. On the surface Sy we
have
L+7=-Kuy,|g,,

which implies that we may assume that either m; = 0 or mas = 0 (see Remark 2.2).
Suppose that mq = 0. Then it follows from Remark 2.4 that

1
g:L~(m2Z+Q):2m2+L-Q>2m2+XEn,

which is a contradiction. Hence we may assume that mo = 0. Then
g:Z~(m1L+Q):2m1+Z-Q>2m1,

which implies that m; < n/4. We see that

n 3my 3m; 1 3my
L T AN o) L S o S ALL0 IS L0
5 (miL + Q) 5+ >-—+3 5 tn

by Remark 2.4. Thus, m; > n/3. However, m; < n/4, which is a contradiction.
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We see that Fp, = L + 6? + 7? for some ¢ = 1,...,14, where L is an irreducible
curve contained in the exceptional divisor Fo such that
— —2 =2
R]32 =L+Ci+7Z; = —Ku,g,

We may assume that Fy = L + 6? + 7?. Then

_ 2 2 = PR P 3
L Ci=L-7:=0C-Z7=1, ©;-Ci=-2 and Zf-zsz-Lz—5

on the surface Sy. From Lemma 4.21 we see that Q> € L and 6? ZQq ¢ 7?. Let

n —=2 2
DQ‘S2 + (,LLQ — 3)E2|52 = m1L+m201 —|—ng1 +Q = —TLKU2’S2,

where my, ms and mg are non-negative rational numbers and (2 is an effective

Q-divisor on Sy whose support does not contain the curves L, 6? and 7?.
By [1], Theorem 7.5 the log pair

(Sa, Xy L+ AmaCr + \Z- + Q)

is not log canonical at the point Q3. We shall show that this leads to a contradiction.
The log pair (s, L—|—6f +7f) is log canonical at Q2. In view of the equivalence
—2 =2
L+Ci+Z) = —Ku,lg,
and Remark 2.2, we may assume that mimomg = 0.
Suppose that m; = 0. Then it follows from Remark 2.4 that

n —2 =2 1
5:L-(m201+ngl+Q):m2+m3+L-Q>m2+m3+X>n,

which is a contradiction. Hence we may assume that m, # 0.
Suppose that mo = 0. Then

—=2 —=2 —=2
OzCl-(m1L+m3Z1+Q):m1+m3+Cl-Q>m1+m3,

which implies that m; = mg = 0. However, we know that m; # 0, which is
a contradiction.
Hence we see that my # 0 and ms # 0, which implies that m3 = 0. Then
n

5:ZT-(mlL—i—mg@f—l—Q):ml—i—mg—i—?f-(l)ml—l—mg

because 7? - > 0. On the other hand, it follows from Remark 2.4 that

_ 3 3
g:L-(mlL—l—mng—i—Q):—%+m2+L-Q>—%+m2+n

because m; < n/2. These relations are not yet contradictory, but
0262 (m1L+m26?+Q) = m —2m2—|—€fQ >m1 —2m2,

which implies that ms > m/2. The inequalities obtained are inconsistent, which
completes the proof.



Extremal metrics on two Fano varieties 127

We see that Q2 = Os. Let D be the proper transform of D on the variety Y5.
Then 5
D = (a0 82)"(D) — poay(Es) — eG,

where G is the (a-exceptional divisor and ¢ is a rational number. Now,

. . iz 2
Ky, + AD + (Am - Z)EQ + ()\e—i— % - 3)05 (a2 0 Bo)" (K x + AD) = 0,

where E is the proper transform of the surface E5 on the variety Y. Then

by Remark 2.3. We now find an upper bound for € + pa/2.
Lemma 4.23. ¢+ uy/2 < Tn/6.
Proof. Let F be a sufficiently general fibre of the map 1 o ay 0o B3. Then

0<D.-F= ((agoﬁQ)*(D)—MQE‘Q— (g+";>a> -F:%—a—%,

which yields the required inequality and completes the proof.
Thus, there is a point Q € G such that the log pair

9 o A 2

is not log canonical at Q. Let S be a general surface in |—Ky, | such that Q € S.
Remark 4.24. The surface S is smooth at the point Q.

Let F be the fibre of the map 1 o ap o 2 passing through the point Q. Then
Q ¢ Sing(F).

Lemma 4.25. The fibre F s reducible.
Proof. Suppose that F is irreducible. Let

_ n\ v
Dy + <M2 - 3>E2

where m is a non-negative rational number and (2 is an effective Q-divisor on S
whose support does not contain the curve F.
By [1], Theorem 7.5 the log pair

p2 o 2n n _
§+ <E+_>G‘§:mF+Q:—nKy2 &

2 3

(S, AmF + \Q)

is not log canonical at the point Q2. We claim that this is impossible.
Note that m < n because

mF 4+ Q =nkF = —nKy, &
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on the surface S. By Remark 2.2 we may assume that m = 0. Then

n o 1
- = F . Q - =
5 > \ n

by Remark 2.4, which is a contradiction. The proof is complete.

Let CU'Z1 and Zzl be the proper transforms of C} and Z} on Ya, respectively, where
i=1,...,35.

Lemma 4.26. The fibre F does not contain any curve among

Gl CL A AL
Proof. Suppose that the support of the curve F contains one of the curves listed
above. We shall show that this assumption leads to a contradiction.

Without loss of generality we may assume that the support of the curve F
contains either the curve C} or the curve Z{. Then F' = C} + Z{. On the surface S,

of-zi=2  lCl=-3. A zl=-2
We have C} # Q € Z). As usual, let

v

D

LRy p2  2n _ 21 21 _ Al 51
§+ </.L2 — 3)E2‘§'+ (€+2 — 3>G|§ —m1C’1 —|—’/TL2Z1 +Q:TLCI —|—TLZ1,

where m; and mo are non-negative rational numbers and 2 is an effective Q-divisor
on S whose support does not contain the curves C} and Z7.
By [1], Theorem 7.5 the log pair

(S, AmiCY + AmaZL + Q)

is not log canonical at the point Q. We shall show that this leads to a contradiction.
The log pair (S,Cu’ll + le) is log canonical at Q. Hence we may assume by
Remark 2.2 that m; = 0 or my = 0.
Suppose that m; = 0. Then

which implies that ms < n/2. By Remark 2.4 we obtain
0=2} - (maZl +Q) = —2mg + Z} - Q> —2my + n,

which implies that ms > n/2. This inequality contradicts the relation ms < n/2.
Thus, to complete the proof we may assume that m; # 0 and mo = 0. Then

0=2 (miCl +Q) =2my + Z} - Q > 2my,

which is impossible because my # 0. The proof is complete.

Let Cu'f and Zf be the proper transforms of C? and Z? on Ys, respectively, where
i=1,...,14.
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Lemma 4.27. The fibre F does not contain any curve among
Proof. Suppose that the support of the curve F contains one of the curves listed
above. We shall show that this leads to a contradiction.

We may assume that F' contains C? or Z7. Then

F=L+C?+ 72,

where L is an irreducible curve such that L C E‘g. Then

L2202 22 =1, (22— [—-2 212.212:_2
on the surface . We know that Q € L and C? % Q ¢ Z2. Let

§+<u2g>EV2|§+(e+'u;>G|s

=miL+moC? + msZ? + Q=nl 4+ nC? +nZ?,

v

D

where mq, mgy and mg3 are non-negative rational numbers and €2 is an effective
Q-divisor on S whose support does not contain the curves L 02 or Z2
By [1], Theorem 7.5 the log pair

(5'7 )\mli + )\mgéf + )\m3212 + )\Q)

is not log canonical at ). We shall show that this leads to a contradiction.

The log pair (5’, L+ Cu’% + Z?) is log canonical at ), so we may assume that
either my; = 0, or my = 0, or m3 = 0 (see Remark 2.2).

Suppose that mq = 0. Then it follows from Remark 2.4 that

0="L-(myC? +msZ? + Q) =my +ms+ L-Q>my+ms+n,

which is a contradiction. Thus, we may assume that m; # 0.
Suppose that mo = 0. Then

O:éf(m1i+mng+ﬂ) mq +m3+01 > mi + ms,

which implies that m; = mg3 = 0. However, m; # 0, which is a contradiction.
Hence we see that m; # 0 and mg # 0. We may assume that ms = 0. Then

n o v v
§:Zf(m1L+mgC'12+Q) m1+m2+Z1'Q m1+m2,

which implies, in particular, that m; < n/2. By Remark 2.4 we obtain
0=1"1- (mli—kmgéf—kQ) = —2my+me+L-Q>—2m + ms + n,

which means that m; > n/2. This contradicts the inequality m; < n/2 and
completes the proof.
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By Lemmas 4.25-4.27 we have F=1L+ ? , where ui and Z are irreducible curves
such that L C Fy and Z ¢ F5. Note that Z # Q € L because Z NG = &. Then

Lz=2  2-7=-3 and L-L=-2
on the surface S. As usual, let

n\ v
§+ </L2 - 3>E2

where m; and mo are non-negative rational numbers and 2 is an effective Q-divisor
on the surface S whose support does not contain the curves L and Z.
By [1], Theorem 7.5 the log pair

9%

D Lo 2n

(S, AmyL + AmyZ + AQ)

is not log canonical at the point (). We shall show that this leads to a contradiction.
By Remark 2.2 we may assume that m; = 0 or my = 0 because the singularities
of the log pair (S, L + Z) are log canonical at the point Q.
Suppose that my = 0. Then it follows from Remark 2.4 that

0=1L (meZ+9Q) =2ma+L-Q>2my+n,
which is a contradiction. Hence we may assume that mo = 0. Then

which implies that m; < n/2. By Remark 2.4 we obtain
O:E~(m1f+§2) =—2mi+L-Q> —2mq + n,

which implies that m; > n/2—a contradiction. The proof of Theorem 1.44 is
complete.
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