

Extremal metrics on two Fano varieties

To cite this article: Ivan A Cheltsov 2009 Sb. Math. 200 95

View the article online for updates and enhancements.

Related content

- On a Friedrichs-type inequality in a threedimensional domain aperiodically perforated along a part of the boundary Yulia O Koroleva
- More about a construction for modules over a polynomial ring
 O A Matevosyan
- Semirings which are the unions of a ring and a semifield Evgenii M Vechtomov and Mikhail A Lukin

Recent citations

- Alpha-invariants and purely log terminal blow-ups
- Ivan Cheltsov et al
- Canonical and log canonical thresholds of Fano complete intersections Aleksandr V. Pukhlikov
- On a new compactification of moduli of vector bundles on a surface. III: Functorial approach Nadezhda V Timofeeva

Matematicheskiĭ Sbornik 200:1 97–136

Extremal metrics on two Fano varieties

I. A. Cheltsov

Abstract. We prove the existence of an orbifold Kähler-Einstein metric on a general hypersurface in $\mathbb{P}(1^3, 2, 2)$ of degree 6 and a general hypersurface in $\mathbb{P}(1^3, 2, 3)$ of degree 7.

Bibliography: 50 titles.

Keywords: Fano varieties, Kähler-Einstein metric, log-canonical threshold, Tian alpha-invariant.

§ 1. Introduction

The multiplicity of a non-zero polynomial $\varphi \in \mathbb{C}[z_1, \ldots, z_n]$ at the origin $O \in \mathbb{C}^n$ is

$$m = \min \left\{ m \in \mathbb{N} \cup \{0\} \mid \frac{\partial^m \varphi(z_1, \dots, z_n)}{\partial^{m_1} z_1 \partial^{m_2} z_2 \cdots \partial^{m_n} z_n} (O) \neq 0 \right\},\,$$

which implies that $m \neq 0 \iff \varphi(O) = 0$. There is a similar invariant

$$c_0(\varphi) = \sup \left\{ \varepsilon \in \mathbb{Q} \mid \text{the function } \frac{1}{|\varphi|^{2\varepsilon}} \text{ is locally integrable near } O \in \mathbb{C}^n \right\} \in \mathbb{Q},$$

which is called the complex singularity exponent of the polynomial φ at O.

Example 1.1. Let m_1, \ldots, m_n be positive integers. Let $\varphi = \sum_{i=1}^n z_i^{m_i}$. Then

$$c_0(\varphi) = \min\left(1, \sum_{i=1}^n \frac{1}{m_i}\right).$$

Example 1.2. Let m_1, \ldots, m_n be positive integers. Let $\varphi = \prod_{i=1}^n z_i^{m_i}$. Then

$$c_0(\varphi) = \min\left(\frac{1}{m_1}, \frac{1}{m_2}, \dots, \frac{1}{m_n}\right).$$

Let X be a variety¹ with at most log terminal singularities, let $Z \subseteq X$ be a closed subvariety, and let D be an effective \mathbb{Q} -Cartier \mathbb{Q} -divisor on the variety X. Then the number

$$\operatorname{lct}_Z(X,D)=\sup\bigl\{\lambda\in\mathbb{Q}\mid \text{the log pair } (X,\lambda D) \text{ is log canonical along } Z\bigr\}\in\mathbb{Q}$$

This work was partially supported by the grant NSF DMS-0701465.

¹All varieties are assumed to be complex, algebraic, projective and normal.

AMS 2000 Mathematics Subject Classification. Primary 14J45, 32Q20; Secondary 14J17.

is called a log canonical threshold of the divisor D along Z. It follows from [1] that

$$lct_O(\mathbb{C}^n, (\varphi = 0)) = c_0(\varphi),$$

so that $lct_Z(X, D)$ is an algebraic counterpart of the number $c_0(\phi)$. One has

$$\begin{split} \operatorname{lct}_X(X,D) &= \inf \big\{ \operatorname{lct}_P(X,D) \mid P \in X \big\} \\ &= \sup \big\{ \lambda \in \mathbb{Q} \mid \text{the log pair } (X,\lambda D) \text{ is log canonical} \big\}, \end{split}$$

and we put $lct(X, D) = lct_X(X, D)$ for simplicity.²

Example 1.3. Let $X = \mathbb{P}^2$ and $D \in |\mathscr{O}_{\mathbb{P}^2}(3)|$. Then

$$\operatorname{lct}(X,D) = \begin{cases} 1 & \text{if } D \text{ is a curve with at most ordinary} \\ 5/6 & \text{if } D \text{ is a curve with one cuspidal point,} \\ 3/4 & \text{if } D \text{ consists of an irredicible conic} \\ & \text{and a line that are tangent,} \\ 2/3 & \text{if } D \text{ consists of three lines intersecting} \\ & \text{at one point,} \\ 1/2 & \text{if } \operatorname{Supp}(D) \text{ consists of two lines,} \\ 1/3 & \text{if } \operatorname{Supp}(D) \text{ consists of one line.} \end{cases}$$

Now suppose additionally that X is a Fano variety.

Definition 1.4. The global log canonical threshold of the Fano variety X is the quantity

$$\operatorname{lct}(X) = \inf \{ \operatorname{lct}(X, D) \mid D \text{ is an effective } \mathbb{Q}\text{-divisor on } X \text{ such that } D \equiv -K_X \} \geqslant 0.$$

The number lct(X) is an algebraic counterpart of the α -invariant of a variety X introduced in [3]. One easily sees that

$$\begin{split} \operatorname{lct}(X) = \sup \big\{ \lambda \in \mathbb{Q} \mid \text{the log pair } (X, \lambda D) \text{ is log canonical} \\ \text{for every effective } \mathbb{Q}\text{-divisor } D \equiv -K_X \big\}. \end{split}$$

Example 1.5. Let X be a smooth hypersurface in \mathbb{P}^n of degree m < n. Then

$$lct(X) = \frac{1}{n+1-m}$$

as shown in [4]. In particular, the equality $\operatorname{lct}(\mathbb{P}^n)=1/(n+1)$ holds.

Example 1.6. Let X be a smooth hypersurface in $\mathbb{P}(1^{n+1},d)$ of degree $2d \ge 2$. Then

$$lct(X) = \frac{1}{n+1-d}$$

in the case when $2 \leqslant d \leqslant n-1$ (see [5]).

²Log canonical thresholds were introduced by Shokurov in [2].

Example 1.7. Let X be a rational homogeneous space such that

$$\operatorname{Pic}(X) = \mathbb{Z}[D],$$

where D is an ample divisor. We have

$$-K_X \sim rD$$

for some integer $r \ge 1$. Then lct(X) = 1/r (see [6]).

In general the number lct(X) depends on small deformations of the variety X.

Example 1.8. Let X be a smooth hypersurface in $\mathbb{P}(1,1,1,1,3)$ of degree 6. Then

$$lct(X) \in \left\{ \frac{5}{6}, \frac{43}{50}, \frac{13}{15}, \frac{33}{38}, \frac{7}{8}, \frac{8}{9}, \frac{9}{10}, \frac{11}{12}, \frac{13}{14}, \frac{15}{16}, \frac{17}{18}, \frac{19}{20}, \frac{21}{22}, \frac{29}{30}, 1 \right\}$$

by [7] and [8] and all these values of lct(X) are attained.

Example 1.9. Let X be a smooth hypersurface in $\mathbb{P}(1^{n+1}, n)$ of degree 2n. Then the inequalities

$$1 \geqslant \operatorname{lct}(X) \geqslant \frac{2n-1}{2n}$$

hold (see [8]). Moreover, the equality lct(X) = 1 holds if X is general and $n \ge 3$.

Example 1.10. Let X be a smooth hypersurface in \mathbb{P}^n of degree $n \geq 2$. Then the inequalities

$$1 \geqslant \operatorname{lct}(X) \geqslant \frac{n-1}{n}$$

hold (see [4]). Moreover, it follows from [7] and [8] that

$$\operatorname{lct}(X) \geqslant \begin{cases} 1 & \text{if } n \geqslant 6, \\ 22/25 & \text{if } n = 5, \\ 16/21 & \text{if } n = 4, \\ 3/4 & \text{if } n = 3, \end{cases}$$

whenever X is general, but lct(X) = 1 - 1/n if X contains a cone of dimension n-2.

It is unknown in the general case whether $lct(X) \in \mathbb{Q}$ or not, but many examples confirm that it is a rational number.

Example 1.11. Let X be a smooth del Pezzo surface. It follows from [9] that

$$\operatorname{lct}(X) = \begin{cases} 1 & \text{if } K_X^2 = 1 \text{ and } |-K_X| \text{ contains no cuspidal curves,} \\ 5/6 & \text{if } K_X^2 = 1 \text{ and } |-K_X| \text{ contains a cuspidal curve,} \\ 5/6 & \text{if } K_X^2 = 2 \text{ and } |-K_X| \text{ contains no tacnodal curves,} \\ 3/4 & \text{if } K_X^2 = 2 \text{ and } |-K_X| \text{ contains a tacnodal curve,} \\ 3/4 & \text{if } X \text{ is a cubic in } \mathbb{P}^3 \text{ with no Eckardt point,} \\ 2/3 & \text{if } X \text{ is a cubic in } \mathbb{P}^3 \text{ with Eckardt point, or } K_X^2 = 4, \\ 1/2 & \text{if } X \cong \mathbb{P}^1 \times \mathbb{P}^1 \text{ or } K_X^2 \in \{5,6\}, \\ 1/3 & \text{in the remaining cases.} \end{cases}$$

Example 1.12. Let X be a singular cubic surface in \mathbb{P}^3 . It follows from [10] that

$$\operatorname{lct}(X) = \begin{cases} 2/3 & \text{if } \operatorname{Sing}(X) = \{\mathbb{A}_1\}, \\ 1/3 & \text{if } \operatorname{Sing}(X) \supseteq \{\mathbb{A}_4\}, \\ 1/3 & \text{if } \operatorname{Sing}(X) = \{\mathbb{D}_4\}, \\ 1/4 & \text{if } \operatorname{Sing}(X) \supseteq \{\mathbb{A}_2, \mathbb{A}_2\}, \\ 1/4 & \text{if } \operatorname{Sing}(X) \supseteq \{\mathbb{A}_5\}, \\ 1/4 & \text{if } \operatorname{Sing}(X) = \{\mathbb{D}_5\}, \\ 1/6 & \text{if } \operatorname{Sing}(X) = \{\mathbb{E}_6\}, \\ 1/2 & \text{in the remaining cases.} \end{cases}$$

We expect that the following holds 3 (cf. [11], Question 1).

Conjecture 1.13. There is an effective \mathbb{Q} -divisor $D \equiv -K_X$ on X such that

$$lct(X) = lct(X, D) \in \mathbb{Q}.$$

The following deep result holds (see [3], [12], [13]).

Theorem 1.14. Suppose that X has at most quotient singularities. If

$$lct(X) > \frac{\dim(X)}{\dim(X) + 1},$$

then X admits an orbifold Kähler-Einstein metric.

If a variety with quotient singularities admits an orbifold Kähler-Einstein metric, then

- either its canonical divisor is numerically trivial;
- or its canonical divisor is ample (a variety of general type);
- or its canonical divisor is antiample (a Fano variety).

Remark 1.15. Every variety with at most quotient singularities that has numerically trivial or ample canonical divisor always admits an orbifold Kähler-Einstein metric (see [14]-[16]).

If $Sing(X) = \emptyset$, then X does not admit a Kähler-Einstein metric if

- either the group Aut(X) is not reductive (see [17]);
- or the tangent bundle of X is not polystable with respect to $-K_X$ (see [18]);
- or the Futaki character of holomorphic vector fields on X does not vanish (see [19]).

Corollary 1.16. The following varieties admit no Kähler-Einstein metric:

- a blow up of \mathbb{P}^2 at one or two distinct points (see [17]);
- a smooth Fano threefold $\mathbb{P}(\mathscr{O}_{\mathbb{P}^2} \oplus \mathscr{O}_{\mathbb{P}^2}(1))$ (see [20]);
- a smooth Fano fourfold

$$\mathbb{P}\big(\alpha^*(\mathscr{O}_{\mathbb{P}^1}(1)) \oplus \beta^*(\mathscr{O}_{\mathbb{P}^2}(1))\big),$$

where $\alpha \colon \mathbb{P}^1 \times \mathbb{P}^2 \to \mathbb{P}^1$ and $\beta \colon \mathbb{P}^1 \times \mathbb{P}^2 \to \mathbb{P}^2$ are natural projections (see [19]).

³The assertion of Conjecture 1.13 is unknown even for del Pezzo surfaces.

There are also more subtle obstructions to the existence of a Kähler-Einstein metric.

Example 1.17. Let X be a smooth Fano threefold such that

$$\operatorname{Pic}(X) = \mathbb{Z}[-K_X]$$

and $-K_X^3 = 22$. Then

- the tangent bundle of the threefold X is stable (see [20]);
- the group Aut(X) is trivial if the threefold X is general;
- there exists X such that Aut(X) is a trivial group, but X admits no Kähler-Einstein metric (see [21]);
- if $\operatorname{Aut}(X) \cong \operatorname{PSL}(2,\mathbb{C})$, then X has a Kähler-Einstein metric (see [22]).

The problem of the existence of Kähler-Einstein metrics on smooth toric Fano varieties is completely solved. Namely, the following result holds (see [23]–[26]).

Theorem 1.18. If X is smooth and toric, then the following conditions are equivalent:

- the Fano variety X admits a Kähler-Einstein metric;
- the Futaki character of holomorphic vector fields of X vanishes;
- the barycentre of the reflexive polytope of X is zero.

However, we do not know many smooth Fano varieties that admit a Kähler-Einstein metric.

Example 1.19. By [3], [12], [27] and [28] the following varieties admit Kähler-Einstein metrics:

- every smooth del Pezzo surface whose automorphism group is reductive;
- every Fermat hypersurface in \mathbb{P}^n of degree $d \leq n$ for $d \geq n/2$;
- every double cover X of \mathbb{P}^n branched in a hypersurface of degree 2d for $n \ge d > (n+1)/2$;
- every smooth complete intersection in \mathbb{P}^n of two quadric hypersurfaces.

The problem of the existence of orbifold Kähler-Einstein metrics on singular Fano varieties that have quotient singularities is not well studied even in dimension 2.

Example 1.20. Let X be a cubic surface in \mathbb{P}^3 . Then

- the surface X admits a Kähler-Einstein metric if $Sing(X) = \emptyset$ (see [27]);
- the surface X does not admit an orbifold Kähler-Einstein metric if X has a singular point that is not of type \mathbb{A}_1 or \mathbb{A}_2 (see [29]);
- the cubic surface given by the equation

$$xyz + xyt + xzt + yzt = 0 \subseteq \mathbb{P}^3 \cong \text{Proj}(\mathbb{C}[x, y, z, t])$$

admits a Kähler-Einstein metric and has four singular points of type \mathbb{A}_1 (see [10]);

• the cubic surface given by the equation

$$xyz = t^3 \subseteq \mathbb{P}^3 \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t]),$$

admits a Kähler-Einstein metric and has three singular points of type \mathbb{A}_2 (see [10]);

 it is unknown whether X admits a Kähler-Einstein metric in the remaining cases.

One can use Theorem 1.14 to construct many examples of Fano varieties with quotient singularities that admit an orbifold Kähler-Einstein metric.

Example 1.21. Let X be a quasismooth hypersurface in $\mathbb{P}(a_0, a_1, a_2, a_3)$ of degree $\sum_{i=0}^{3} a_i - 1$, where $a_0 \leq a_1 \leq a_2 \leq a_3$. Then lct(X) > 2/3 if X is general and singular (see [13], [30]–[32]).

Example 1.22. Let X be a quasismooth hypersurface in $\mathbb{P}(a_0,\ldots,a_4)$ of degree $\sum_{i=0}^4 a_i - 1$, where $a_0 \leqslant a_1 \leqslant a_2 \leqslant a_3 \leqslant a_4$. Then it follows from [33] that

- lct(X) > 3/4 for at least 1936 values of the quintuple $(a_0, a_1, a_2, a_3, a_4)$;
- $lct(X) \ge 1$ for at least 1605 values of the quintuple $(a_0, a_1, a_2, a_3, a_4)$.

It is clear from Examples 1.9–1.11, 1.21 and 1.22 that the number lct(X) is important in Kähler geometry. It also plays an important role in birational geometry.

Example 1.23. Let V and \overline{V} be varieties with at most terminal and \mathbb{Q} -factorial singularities and let Z be a smooth curve. Suppose that there is a commutative diagram

$$V - - - \stackrel{\rho}{-} - \Rightarrow \overline{V}$$

$$\pi \downarrow \qquad \qquad \downarrow \bar{\pi}$$

$$Z = - - Z$$

such that π and $\bar{\pi}$ are flat morphisms and ρ is a birational map inducing an isomorphism

$$V\setminus X\cong \overline{V}\setminus \overline{X},$$

where X and \overline{X} are scheme fibres of π and $\overline{\pi}$ over a point $O \in Z$, respectively. Suppose that

- the fibres X and \overline{X} are irreducible and reduced;
- the divisors $-K_V$ and $-K_{\overline{V}}$ are π -ample and $\bar{\pi}$ -ample, respectively;
- the varieties X and \overline{X} have at most log terminal singularities; and ρ is not an isomorphism. Then it follows from [34] and [10] that

$$lct(X) + lct(\overline{X}) \leqslant 1, \tag{*}$$

where X and \overline{X} are Fano varieties by the adjunction formula.

In general inequality (*) is easily seen to be sharp.

Example 1.24. Let $\pi: V \to Z$ be a surjective flat morphism such that

- the variety V is smooth and $\dim(V) = 3$;
- \bullet the variety Z is a smooth curve;
- the divisor K_V is π -ample;

let X be a scheme fibre of the morphism π over a point $O \in Z$ such that X is a smooth cubic surface in \mathbb{P}^3 , and let L_1 , L_2 , L_3 be lines in X passing through

a point $P \in V$. Then it follows from [35] that there is a commutative diagram

such that α is a blow up of the point P, the map ψ is an antiflip in the proper transforms of the lines L_1 , L_2 , L_3 and β is a contraction of the proper transform of the fibre X. Then

- the birational map ρ is not an isomorphism;
- the threefold \overline{V} has terminal and \mathbb{Q} -factorial singularities;
- the divisor $-K_{\overline{V}}$ is a Cartier $\bar{\pi}$ -ample divisor;
- the map ρ induces an isomorphism $V \setminus X \cong \overline{V} \setminus \overline{X}$, where \overline{X} is a scheme fibre of $\overline{\pi}$ over the point O.

Then \overline{X} is a cubic surface with a singular point of type \mathbb{D}_4 , which implies that lct(X) = 2/3 and $lct(\overline{X}) = 1/3$ (see Examples 1.11 and 1.12).

We now describe another application of lct(X). Suppose additionally that X has at most \mathbb{Q} -factorial terminal singularities and $\operatorname{rk}\operatorname{Pic}(X)=1$.

Definition 1.25. The Fano variety X is said to be birationally superrigid⁴ if for every linear system \mathcal{M} on the variety X that has no fixed components the log pair (X,\mathcal{M}) has canonical singularities, where λ is a rational number such that $K_X + \lambda \mathcal{M} \equiv 0$.

If the variety X is birationally superrigid, then

- there is no rational dominant map $\rho: X \dashrightarrow Y$ such that the general fibre of the map ρ is rationally connected and $\dim(Y) \geqslant 1$;
- there is no non-biregular map $\rho: X \dashrightarrow Y$ such that Y has terminal \mathbb{Q} -factorial singularities and $\operatorname{rk}\operatorname{Pic}(Y) = 1$;
- the variety X is non-rational.

Example 1.26. The following smooth Fano varieties are birationally superrigid:

- a general hypersurface in \mathbb{P}^n of degree $n \ge 4$ (see [38], [39]);
- a smooth hypersurface in $\mathbb{P}(1^{n+1}, n)$ of degree $2n \ge 6$ (see [40], [41]).

Let X_1, \ldots, X_r be Fano varieties with at most \mathbb{Q} -factorial terminal singularities such that $\operatorname{rk}\operatorname{Pic}(X_i)=1$ for every $i=1,\ldots,r$. The following result was proved in [7].

Theorem 1.27. If X_i is birationally superrigid and $lct(X_i) \ge 1$ for all i = 1, ..., r, then

$$Bir(X_1 \times \cdots \times X_r) = Aut(X_1 \times \cdots \times X_r),$$

⁴There are several definitions of birational superrigidity (see [36], [37]).

the variety $X_1 \times \cdots \times X_r$ is non-rational and for every rational dominant map $\rho \colon X_1 \times \cdots \times X_r \dashrightarrow Y$ whose general fibre is rationally connected there is a commutative diagram

for some $\{i_1,\ldots,i_k\}\subseteq\{1,\ldots,r\}$, where ξ is a birational map and π is the projection.

Fano varieties satisfying the hypotheses of Theorem 1.27 do exist (see Examples 1.9, 1.10 and 1.26).

Definition 1.28. The variety X is said to be *birationally rigid*⁵ if for every nonempty linear system \mathcal{M} on X that has no fixed components there exists $\xi \in \text{Bir}(X)$ such that the log pair

$$(X, \lambda \xi(\mathcal{M}))$$

has canonical singularities, where λ is a rational number such that $K_X + \lambda \xi(\mathcal{M}) \equiv 0$.

If X is birationally rigid, then

- there is no rational dominant map $\rho: X \dashrightarrow Y$ such that a general fibre of the map ρ is rationally connected and $\dim(Y) \geqslant 1$;
- there is no birational map $\rho: X \dashrightarrow Y$ such that $Y \ncong X$, the variety Y has terminal \mathbb{Q} -factorial singularities and $\operatorname{rk}\operatorname{Pic}(Y) = 1$;
- \bullet the variety X is non-rational.

Example 1.29. The following Fano threefolds are birationally rigid, but not birationally superrigid:

- a general complete intersection of a quadric and a cubic in \mathbb{P}^5 (see [42]);
- a smooth threefold that is a double cover of a smooth three-dimensional quadric in \mathbb{P}^4 branched over a surface of degree 8 (see [40]).

One usually seeks the birational automorphism from Definition 1.28 among a given set of birational automorphisms. This leads to the following definition.

Definition 1.30. A subset Γ of Bir(X) untwists all maximal singularities on the variety X if for each linear system \mathscr{M} on X that has no fixed components there exists $\xi \in \Gamma$ such that the log pair

$$(X,\lambda\xi(\mathscr{M}))$$

has canonical singularities, where λ is a rational number such that $K_X + \lambda \xi(\mathscr{M}) \equiv 0$.

If there is a subset $\Gamma \subset Bir(X)$ that untwists all maximal singularities, then the group Bir(X) is generated by Γ and the biregular automorphisms.

⁵There are several definitions of birational rigidity (see [36], [37]).

Example 1.31. Let X be a general hypersurface in \mathbb{P}^n of degree $n \ge 5$ that has one singular point O, which is an ordinary singular point of multiplicity n-2. Then the projection

$$\psi \colon X \dashrightarrow \mathbb{P}^{n-1}$$

from the point O induces an involution that untwists all maximal singularities (see [43]).

We now show how Theorem 1.27 can be generalized for birationally rigid Fano varieties.

Definition 1.32. The variety X is universally birationally rigid if for any variety U the variety

$$X \otimes \operatorname{Spec}(\mathbb{C}(U))$$

is birationally rigid over a field of rational functions $\mathbb{C}(U)$ of the variety U.

It should be pointed out that Definition 1.28 makes sense also for Fano varieties defined over an arbitrary perfect field.

Definition 1.33. A subset Γ of Bir(X) universally untwists all maximal singularities if for every variety U the induced subgroup

$$\Gamma \subset \operatorname{Bir}(X) \subseteq \operatorname{Bir}(X \otimes \operatorname{Spec}(\mathbb{C}(U)))$$

untwists all maximal singularities on the variety $X \otimes \operatorname{Spec}(\mathbb{C}(U))$ defined over the field of rational functions $\mathbb{C}(U)$ of U.

One can easily verify that any subset of $\operatorname{Aut}(X)$ universally untwists all maximal singularities if the Fano variety X is birationally superrigid.

Remark 1.34. As Kollár pointed out [44], if $\dim(X) \ge 2$, then a subset Γ of $\mathrm{Bir}(X)$ universally untwists all maximal singularities if and only if Γ untwists all maximal singularities and $\mathrm{Bir}(X)$ is countable.

Let X_1, \ldots, X_r be Fano varieties with terminal \mathbb{Q} -factorial singularities and assume that $\operatorname{rk}\operatorname{Pic}(X_i)=1$ for every $i=1,\ldots,r$. Consider the natural projection

$$\pi_i \colon X_1 \times \cdots \times X_{i-1} \times X_i \times X_{i+1} \times \cdots \times X_r \longrightarrow X_1 \times \cdots \times X_{i-1} \times \widehat{X_i} \times X_{i+1} \times \cdots \times X_r$$

and let \beth_i be a general fibre of π_i in the scheme sense.

Remark 1.35. \beth_i is a Fano variety defined over the field of rational functions of the variety

$$X_1 \times \cdots \times X_{i-1} \times \widehat{X_i} \times X_{i+1} \times \cdots \times X_r.$$

There are natural embeddings of groups

$$\prod_{i=1}^r \operatorname{Bir}(X_i) \subseteq \left\langle \operatorname{Bir}(\beth_1), \dots, \operatorname{Bir}(\beth_r) \right\rangle \subseteq \operatorname{Bir}(X_1 \times \dots \times X_r),$$

and the following result was proved in [45].

Theorem 1.36. If X_1, \ldots, X_r are universally birationally rigid and $lct(X_i) \ge 1$ for all $i = 1, \ldots, r$, then

$$\operatorname{Bir}(X_1 \times \cdots \times X_r) = \langle \operatorname{Bir}(\beth_1), \dots, \operatorname{Bir}(\beth_r), \operatorname{Aut}(X_1 \times \cdots \times X_r) \rangle,$$

the variety $X_1 \times \cdots \times X_r$ is non-rational and for every map $\rho: X_1 \times \cdots \times X_r \dashrightarrow Y$ whose general fibre is rationally connected there are a subset $\{i_1, \ldots, i_k\} \subseteq \{1, \ldots, r\}$ and a commutative diagram

where π is the natural projection and ξ and σ are birational maps.

Corollary 1.37. Suppose that there exist subgroups $\Gamma_i \subseteq \operatorname{Bir}(X_i)$ universally untwisting all maximal singularities and that $\operatorname{lct}(X_i) \geqslant 1$ for every $i = 1, \ldots, r$. Then

$$\operatorname{Bir}(X_1 \times \cdots \times X_r) = \left\langle \prod_{i=1}^r \Gamma_i, \operatorname{Aut}(X_1 \times \cdots \times X_r) \right\rangle.$$

Let X be a general well-formed quasismooth hypersurface in $\mathbb{P}(1, a_1, a_2, a_3, a_4)$ of degree $\sum_{i=1}^4 a_i$, that has at most terminal singularities, where $a_1 \leqslant a_2 \leqslant a_3 \leqslant a_4$. Then

$$-K_X \equiv \mathscr{O}_{\mathbb{P}(1,a_1,a_2,a_3,a_4)}(1),$$

and the group Cl(X) is generated by the divisor $-K_X$. We see that X is a Fano variety.

Remark 1.38. There are precisely 95 values of the quadruple (a_1, a_2, a_3, a_4) (see [33], [46]).

It follows from [47] that there are finitely many birational involutions $\tau_1, \ldots, \tau_k \in Bir(X)$ and that the following result holds.

Theorem 1.39. The group $\langle \tau_1, \ldots, \tau_k \rangle$ untwists universally maximal singularities.

Corollary 1.40. The variety X is universally birationally rigid.

The relations between τ_1, \ldots, τ_k were found in [48]. By [14] there is an exact sequence of groups

$$1 \longrightarrow \langle \tau_1, \dots, \tau_k \rangle \longrightarrow Bir(X) \longrightarrow Aut(X) \longrightarrow 1,$$

and by [45] and [49] we have the following result.

Theorem 1.41. Suppose that $-K_X^3 \leq 1$. Then lct(X) = 1.

In particular, there do exist varieties satisfying the hypotheses of Theorem 1.36 and Corollary 1.37 that are not birationally superrigid.

Example 1.42. Let X be a general hypersurface of degree 20 in $\mathbb{P}(1,1,4,5,10)$. Then there is an exact sequence of groups

$$1 \longrightarrow \prod_{i=1}^{m} (\mathbb{Z}_2 * \mathbb{Z}_2) \longrightarrow \operatorname{Bir}(\underbrace{X \times \cdots \times X}_{m \text{ factors}}) \longrightarrow S_m \longrightarrow 1,$$

where $\mathbb{Z}_2 * \mathbb{Z}_2$ is the infinite dihedral group.

The aim of this paper is to prove the following two results.

Theorem 1.43. Let $(a_1, a_2, a_3, a_4) = (1, 1, 2, 2)$. Then $lct(X) \ge 4/5$.

Theorem 1.44. Let $(a_1, a_2, a_3, a_4) = (1, 1, 2, 3)$. Then $lct(X) \ge 6/7$.

It follows from [49] that $lct(X) \ge 7/9$ for $(a_1, a_2, a_3, a_4) = (1, 1, 1, 2)$, but

$$-K_X^3 > 1 \iff (a_1, a_2, a_3, a_4) \in \{(1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 1, 3), (1, 1, 2, 2), (1, 1, 2, 3)\},\$$

which, in particular, implies the following result (see Examples 1.10 and 1.9).

Corollary 1.45. General well-formed quasismooth hypersurfaces in $\mathbb{P}(1, a_1, \dots, a_4)$ of degree $\sum_{i=1}^4 a_i$ that have terminal singularities admit Kähler-Einstein metrics.

We prove Theorem 1.43 in $\S 3$ and Theorem 1.44 in $\S 4$.

§ 2. Preliminaries

Let V be a variety with at most quotient singularities.

Remark 2.1. Let H be a nef divisor on V and let B and T, $B \neq T$, be effective and irreducible divisors on V. Let $\dim(V) = 3$ and let

$$B \cdot T = \sum_{i=1}^{r} \varepsilon_i L_i + \Delta,$$

where L_i is an irreducible curve, ε_i is a non-negative integer and Δ is an effective cycle whose support does not contain the curves L_1, \ldots, L_r . Then

$$\sum_{i=1}^{r} \varepsilon_i H \cdot L_i \leqslant B \cdot T \cdot H.$$

Let D be an effective \mathbb{Q} -divisor on V such that the log pair (V, D) is not log canonical.

Remark 2.2. Let B be an effective \mathbb{Q} -divisor on the variety V such that the singularities of the log pair (V,B) are log canonical. Then the singularities of the log pair

$$\left(V, \frac{1}{1-\alpha}(D-\alpha B)\right)$$

are not log canonical for all $\alpha \in \mathbb{Q}$ such that $0 \leqslant \alpha < 1$.

Let P be a point in V such that the log pair (V, D) is not log canonical at P.

Remark 2.3. Suppose that P is a singular point of V of type $\frac{1}{r}(1, a, r-a)$, where a and r are positive integers such that (a, r) = 1 and r > 2a. Let $\alpha \colon U \to V$ be a weighted blow up of the point P with weights (1, a, r-a). There exists a rational number μ such that

$$\overline{D} \equiv \alpha^*(D) - \mu E,$$

where \overline{D} is the proper transform of the divisor D on the variety U and E is the α -exceptional divisor. Then $\mu > 1/r$ by [1], Lemma 8.12.

It is clear that $\operatorname{mult}_P(D) > 1$ in the case when $P \notin \operatorname{Sing}(V)$.

Remark 2.4. Suppose that $P \notin \operatorname{Sing}(V)$ and $\dim(V) = 2$. Let

$$D = mC + \Omega$$

for an irreducible curve C, a non-negative rational number m and an effective \mathbb{Q} -divisor Ω on the surface V whose support does not contain the curve C. Then

$$C \cdot \Omega \geqslant \operatorname{mult}_{P}(\Omega|_{C}) > 1$$

by [1], Theorem 7.5 in the case when $P \in C \setminus \text{Sing}(C)$ and $m \leq 1$.

Suppose additionally that $\dim(V) = 3$ and that P is a smooth point of the variety V. Let $\pi: U \to V$ be a blow up of the point P. Then

$$\overline{D} \equiv \alpha^*(D) - \operatorname{mult}_P(D)E,$$

where E is the α -exceptional divisor and \overline{D} is the proper transform of D on U.

Lemma 2.5. Either $\operatorname{mult}_P(D) > 2$, or there is a line $L \subset E \cong \mathbb{P}^2$ such that

$$\operatorname{mult}_L(\overline{D}) + \operatorname{mult}_P(D) > 2.$$

Proof. Let H be a sufficiently general hyperplane section of the variety V passing through the point P and let \overline{H} be the proper transform of the divisor H on the variety U. Then

$$\overline{H} \equiv \alpha^*(D) - E,$$

and we can assume that \overline{H} is very ample. From

$$K_U + \overline{D} + (\text{mult}_P(D) - 2)E \equiv \alpha^*(K_V + D)$$

it follows that $(U, \overline{D} + (\text{mult}_P(D) - 2)E)$ is not log canonical in a neighbourhood of E. The log pair

$$(U, \overline{D} + (\text{mult}_P(D) - 1)E)$$

is not log canonical in a neighbourhood of divisor E either. Finally, the log pair

$$(U, \overline{D} + (\text{mult}_P(D) - 1)E + \overline{H})$$

is not log canonical in a neighbourhood of E as well. We point out that $\operatorname{mult}_P(D) > 1$.

Let $\beta = \alpha|_{\overline{H}} : \overline{H} \to H$ and $\overline{E} = E|_{\overline{H}}$. Then

$$K_{\overline{H}} + \overline{D}|_{\overline{H}} + (\text{mult}_P(D) - 1)\overline{E} \equiv \beta^* (K_H + D|_H),$$

and the support of the divisor $\overline{D}|_H$ does not contain the curve \overline{E} because of the generality in the choice of H. Then

$$\operatorname{mult}_P(D|_H) = \operatorname{mult}_P(D),$$

and the proper transform of the divisor $D|_H$ on the surface \overline{H} is the divisor $\overline{D}|_H$. The log pair $(H,D|_H)$ is not log canonical at the point P by [1], Theorem 7.5. Then

$$(\overline{H}, \overline{D}|_H + (\text{mult}_P(D) - 1)\overline{E})$$

is not log canonical in a neighbourhood of the curve \overline{E} .

Suppose that $\operatorname{mult}_P(D) < 2$. Then it follows from the connectedness principle ([1], Theorem 7.5) that there is a unique point $Q_{\overline{H}} \in \overline{E}$ such that the log pair

$$(\overline{H}, \overline{D}|_H + (\text{mult}_P(D) - 1)\overline{E})$$

is not log terminal at $Q_{\overline{H}}$, but is log terminal outside $Q_{\overline{H}}$ in a neighbourhood of \overline{E} . By the generality of the surface H we may assume that \overline{H} is a general hyperplane section of U. Hence there is a curve $L \subset E$ such that $L \cap \overline{H} = Q_{\overline{H}}$, and the log pair

$$(U, \overline{D} + (\text{mult}_P(D) - 1)E)$$

is not log terminal at a general point of the curve L, but is log terminal outside L in a neighbourhood of $Q_{\overline{H}}$.

The curve L is a line in \mathbb{P}^2 because the intersection $L\cap\overline{H}$ consists of a single point. Then

$$\operatorname{mult}_L(\overline{D}) + (\operatorname{mult}_P(D) - 1)\operatorname{mult}_L(E) \geqslant 1,$$

which implies that $\operatorname{mult}_L(\overline{D}) + \operatorname{mult}_P(D) \geqslant 2$.

Hence we see that either $\operatorname{mult}_P(D)\geqslant 2$ or there is a line $L\subset E$ such that

$$\operatorname{mult}_L(\overline{D}) + \operatorname{mult}_P(D) \geqslant 2,$$

but $(V, \lambda D)$ is not log canonical at P for some positive rational number $\lambda < 1$. Applying the last assertion to the log pair $(V, \lambda D)$ we obtain the required strict inequality and complete the proof.

The assertion of Lemma 2.5 is an easy generalization of Corollary 3.5 in [36].

\S 3. Fano threefold of degree 3/2

Let X be a general hypersurface in $\mathbb{P}(1,1,1,2,2)$ of degree 6. Then X has three singular points O_1 , O_2 , O_3 , which are singular points of type $\frac{1}{2}(1,1,1)$. Let D be an arbitrary divisor in the linear system $|-nK_X|$, where n is a positive integer. We set $\lambda = 4/(5n)$.

Remark 3.1. To prove Theorem 1.43 it is sufficient to show that the log pair $(X, \lambda D)$ is log canonical because D is an arbitrary divisor in $|-nK_X|$.

Suppose that the log pair $(X, \lambda D)$ is not log canonical. We shall show that this leads to a contradiction. We can assume that D is irreducible (see Remark 2.2).

Lemma 3.2. The inequality $n \neq 1$ holds.

Proof. Let n = 1. Then the log pair (X, D) is log canonical at every singular point of the hypersurface X by [1], Lemma 8.12 and Proposition 8.14. We have $a_1 = 1$.

Suppose that the log pair (X, D) is not log canonical at some smooth point P of the hypersurface X. We shall show that this assumption leads to a contradiction.

Consider the set of pairs

$$\mathscr{S} = \left\{ (O, F) \mid O \in \mathbb{P}(1, 1, 1, 2, 2), \ F \in H^0(\mathbb{P}(1, 1, 1, 2, 2), \ \mathscr{O}_{\mathbb{P}(1, 1, 1, 2, 2)}(6)) \right\}$$

with projections

$$\pi\colon \mathscr{S}\to H^0(\mathbb{P}(1,1,1,2,2),\mathscr{O}_{\mathbb{P}(1,1,1,2,2)}(6))\quad \text{and}\quad \zeta\colon \mathscr{S}\to \mathbb{P}(1,1,1,2,2).$$

Let

$$\mathscr{I} = \{(O, F) \in \mathscr{S} \mid F(O) = 0, \text{ the hypersurface } F = 0 \text{ is quasismooth and is smooth at } O\}.$$

Suppose that the point O is given by the equations x = y = w = t = 0 in

$$\mathbb{P}(1,1,1,2,2) \cong \operatorname{Proj}(\mathbb{C}[x,y,z,t,w]),$$

where $\operatorname{wt}(x) = \operatorname{wt}(y) = \operatorname{wt}(z) = 1$ and $\operatorname{wt}(t) = \operatorname{wt}(w) = 2$. Then

$$F = z^{5}q_{1}(x,y) + z^{4}q_{2}(x,y,t,w) + z^{3}q_{3}(x,y,t,w) + z^{2}q_{4}(x,y,t,w) + zq_{5}(x,y,t,w) + q_{6}(x,y,t,w),$$

where $q_i(x, y, t, w)$ is a quasihomogeneous polynomial of degree i.

We say that O is a bad point of F = 0 if $q_2(0, 0, t, w) = 0$ and the surface cut out on F = 0 by the equation $q_1(x, y) = 0$ has non-canonical singularities at O.

Let Q be a point in $\mathbb{P}(1,1,1,2,2)$ and let Ω be the fibre of π over the point Q. Then

$$\dim(\Omega) = \dim(H^0(\mathbb{P}(1,1,1,2,2), \mathcal{O}_{\mathbb{P}(1,1,1,2,2)}(6))),$$

and we can put

$$\mathscr{Y} = \big\{ (O,F) \in \mathscr{I} \mid \ O \text{ is a bad point of the hypersurface } F = 0 \big\}.$$

The restriction $\pi|_{\mathscr{Y}}: \mathscr{Y} \to \mathbb{P}(1,1,1,2,2)$ is surjective. Easy computations show that

$$\dim(\Omega \cap \mathscr{Y}) \leqslant \dim(\Omega) - 5,$$

which implies that the restriction

$$\zeta|_{\mathscr{Y}}: \mathscr{Y} \longrightarrow H^0(\mathbb{P}(1,1,1,2,2), \mathscr{O}_{\mathbb{P}(1,1,1,2,2)}(6))$$

is not surjective. Thus, a general hypersurface in $\mathbb{P}(1,1,1,2,2)$ of degree 6 has no bad points.

By assumption, the log pair (X, D) is not log canonical at the point P, which is a smooth point of the hypersurface X. In particular, the surface D is singular at the point P. However, we may assume that the surface D has canonical singularities at the point P.

Singularities of the surface D are not log canonical at P by [1], Theorem 7.5, which is a contradiction because D has canonical singularities at the point P. The proof is complete.

It follows form [50] that there is a commutative diagram

where ξ_1 , ψ and χ_1 are projections, α_1 is a blow up of O_1 with weights (1,1,1), β_1 is a blow up with weights (1,1,1) of the point dominating O_2 , γ_1 is a blow up with weights (1,1,1) of the point dominating O_3 , η is an elliptic fibration, ω_1 is a double cover and σ_1 is a birational morphism contracting 24 curves $\overline{C}_1^1, \ldots, \overline{C}_{24}^1$.

Remark 3.3. The curves $\overline{C}_1^1, \dots, \overline{C}_{24}^1$ are smooth, irreducible and rational.

We set $C_i^1 = \alpha_1(\overline{C}_i^1)$ for every $i = 1, \ldots, 24$. The rational map ξ_1 is undefined only at the point O_1 and contracts the curves C_1^1, \ldots, C_{24}^1 . Note that ψ is a natural projection.

Remark 3.4. The fibre of the projection ψ over the point $\psi(C_i^1)$ consists of the smooth rational curve C_i^1 and another irreducible smooth rational curve Z_i^1 such that

$$C_i^1\ni O_1\notin Z_i^1, \qquad Z_i^1\ni O_2\notin C_i^1, \qquad Z_i^1\ni O_3\notin C_i^1,$$

the curves C_i^1 and Z_i^1 intersect transversally at two points and

$$-K_X \cdot Z_i^1 = -2K_X \cdot C_i^1 = 1.$$

In a similar way we can construct maps $\xi_2 \colon X \dashrightarrow \mathbb{P}(1,1,1,2)$ and $\xi_3 \colon X \dashrightarrow \mathbb{P}(1,1,1,2)$, which are undefined only at the points O_2 and O_3 , respectively. These rational maps ξ_2 and ξ_3 contract precisely 48 curves C_1^2, \ldots, C_{24}^2 and C_1^3, \ldots, C_{24}^3 , respectively.

Remark 3.5. Let Z be a curve on the variety X such that $-K_X \cdot Z = 1/2$. Then

$$Z \in \{C_1^1, \dots, C_{24}^1, C_1^2, \dots, C_{24}^2, C_1^3, \dots, C_{24}^3\}.$$

In a similar way we see that there are smooth irreducible rational curves Z_1^2, \ldots, Z_{24}^2 and Z_1^3, \ldots, Z_{24}^3 that are components of the fibres of the rational map ψ over the points $\psi(C_1^2), \ldots, \psi(C_{24}^2)$ and $\psi(C_1^3), \ldots, \psi(C_{24}^3)$, respectively.

Remark 3.6. Let F be a reducible fibre of the map ψ . Then

$$F \in \left\{ C_1^1 \cup Z_1^1, \dots, C_{24}^1 \cup Z_{24}^1, C_1^2 \cup Z_1^2, \dots, C_{24}^2 \cup Z_{24}^2, C_1^3 \cup Z_1^3, \dots, C_{24}^3 \cup Z_{24}^3 \right\}.$$

Let P be a point in the variety V such that the log pair $(X, \lambda D)$ is not log canonical at P, and let F be a scheme fibre of the projection ψ that passes through the point P.

Remark 3.7. If $P \notin \operatorname{Sing}(X)$, then F is uniquely defined.

Note that F is reduced. Let S be a general surface in $|-K_X|$ such that $P \in S$.

Lemma 3.8. Suppose that $\operatorname{Sing}(X) \not\ni P \notin \operatorname{Sing}(F)$. Then F is reducible.

Proof. Suppose that F is irreducible. Let $\pi \colon \overline{X} \to X$ be a blow up of the point P. Then

$$\overline{D} \equiv \pi^*(D) - \operatorname{mult}_P(D)E,$$

where E is the π -exceptional divisor and \overline{D} is the proper transform of the divisor D on \overline{X} .

We point out that $\operatorname{mult}_P(D) > n$. Suppose that $\operatorname{mult}_P(D) > 3n/2$ and let

$$D|_{S} = mF + \Omega,$$

where m is a non-negative rational number and Ω is an effective \mathbb{Q} -divisor on S whose support does not contain the curve F. Then

$$\frac{3n}{2} = F \cdot (mF + \Omega) = \frac{3m}{2} + F \cdot \Omega \geqslant \frac{3m}{2} + \text{mult}_{P}(\Omega) > \frac{3m}{2} + \frac{3n}{2} - m = \frac{3n}{2} + \frac{m}{2},$$

which is a contradiction. We see that $\operatorname{mult}_{P}(D) \leq 3n/2$.

It follows from Lemma 2.5 that there is a line $L \subset E \cong \mathbb{P}^2$ such that

$$\operatorname{mult}_L(\overline{D}) + \operatorname{mult}_P(D) > \frac{2}{\lambda} = \frac{5n}{2}.$$

It follows from the smoothness of the curve F at P that $|-K_X|$ does not contain surfaces singular at the point P. Hence we see that

$$H^0(\mathscr{O}_{\overline{X}}(\pi^*(-2K_X)-2E))\cong \mathbb{C}^4,$$

and it follows from the standard exact sequence

$$H^{0}(\mathscr{O}_{\overline{X}}(\pi^{*}(-2K_{X})-3E)) \longrightarrow H^{0}(\mathscr{O}_{\overline{X}}(\pi^{*}(-2K_{X})-2E))$$
$$\longrightarrow H^{0}(\mathscr{O}_{E}(-2E|_{E})) \cong \mathbb{C}^{5}$$

that either there is a surface $T \in |-2K_X|$ such that $\operatorname{mult}_P(T) \geq 3$ or there is a surface $R \in |-2K_X|$ such that $\operatorname{mult}_P(R) = 2$ and $L \subset \overline{R}$, where \overline{R} is the proper transform of the surface R on the variety \overline{X} . The parameter count (see the proof of Lemma 3.2) shows that the former case is impossible.

We see that there exists a (possibly reducible) surface $R \in |-2K_X|$ such that $\operatorname{mult}_P(R) = 2$ and $L \subset \overline{R}$, where \overline{R} is the proper transform of this surface R on the variety \overline{X} . Then $D \not\subseteq \operatorname{Supp}(R)$ because $\operatorname{mult}_P(D) > n$. We have

$$\operatorname{mult}_P(R \cdot D) \geqslant \operatorname{mult}_L(\overline{D}) \operatorname{mult}_L(\overline{R}) + \operatorname{mult}_P(D) \operatorname{mult}_P(R)$$

$$\geqslant \operatorname{mult}_L(\overline{D}) + 2 \operatorname{mult}_P(D) > 3n.$$

Let $R \cdot D = \varepsilon F + \Delta$, where $\varepsilon \in \mathbb{Q}$ and Δ is an effective 1-cycle whose support does not contain the curve F. Then $\Delta \not\subset \operatorname{Supp}(S)$ and $\operatorname{mult}_P(\Delta) > 3n - \varepsilon$. We have

$$3n = S \cdot R \cdot D = \frac{3\varepsilon}{2} + S \cdot \Delta > \frac{3\varepsilon}{2} - 3n - \varepsilon = 3n + \frac{\varepsilon}{2},$$

which is a contradiction completing the proof.

Lemma 3.9. Suppose that $P \notin \operatorname{Sing}(X)$. Then F is reducible.

Proof. Suppose that F is irreducible. Then F is singular at the point P by Lemma 3.8, which implies that there is $T \in |-K_X|$ such that $\operatorname{mult}_P(T) \geq 2$. Then $T \neq D$ by Lemma 3.2. Now the generality of the hypersurface X implies that $\operatorname{mult}_P(F) = 2$.

Now let $T \cdot D = \varepsilon F + \Delta$, where $\varepsilon \in \mathbb{Q}$ and Δ is an effective 1-cycle whose support does not contain the curve F. Then $\Delta \not\subset \operatorname{Supp}(S)$ and $\operatorname{mult}_P(\Delta) > 2n - 2\varepsilon$. We have

$$\frac{3n}{2} = S \cdot T \cdot D = \frac{3\varepsilon}{2} + S \cdot \Delta > \frac{3\varepsilon}{2} + 2n - 2\varepsilon = 2n - \frac{\varepsilon}{2} \,,$$

which implies that $\varepsilon > n$, and this is impossible by Remark 2.1.

Lemma 3.10. P is a singular point of the hypersurface X.

Proof. Suppose that P is a smooth point of X. Then F is reducible by Lemma 3.9, and it follows from Remark 3.6 that

$$F \in \{C_1^1 \cup Z_1^1, \dots, C_{24}^1 \cup Z_{24}^1, C_1^2 \cup Z_1^2, \dots, C_{24}^2 \cup Z_{24}^2, C_1^3 \cup Z_1^3, \dots, C_{24}^3 \cup Z_{24}^3\}.$$

Without loss of generality we may assume that $F = C_1^1 \cup Z_1^1$. Let

$$D|_{S} = m_1 C_1^1 + m_2 Z_1^1 + \Omega \equiv -nK_X|_{S},$$

where m_1 and m_2 are non-negative rational numbers and Ω is an effective \mathbb{Q} -divisor on the surface S whose support does not contain the curves C_1^1 and Z_1^1 . Then the log pair

$$(S, \lambda m_1 C_1^1 + \lambda m_2 Z_1^1 + \lambda \Omega)$$

is not log canonical at the point P by [1], Theorem 7.5. We shall show that this contradicts the numerical equivalence $m_1C_1^1 + m_2Z_1^1 + \Omega \equiv -nK_X|_S$.

The singularities of the log pair $(S, C_1^1 + Z_1^1)$ are log canonical at the point P by the generality of the hypersurface X. Hence it follows from the numerical equivalence

$$C_1^1 + Z_1^1 \equiv -K_X|_S$$

and Remark 2.2 that we may assume that either $m_1 = 0$ or $m_2 = 0$.

Let $m_1 = 0$. Then it follows from

$$\frac{n}{2} = C_1^1 \cdot (m_2 Z_1^1 + \Omega) = 2m_2 + C_1^1 \cdot \Omega \geqslant 2m_2$$

that $m_2 \leq n/4$. We have $P \notin C_1^1$ because otherwise

$$\frac{n}{2} = C_1^1 \cdot (m_2 Z_1^1 + \Omega) = 2m_2 + C_1^1 \cdot \Omega > 2m_2 + \frac{1}{\lambda} \geqslant \frac{5n}{4}$$

by Remark 2.4. We see that $P \in \mathbb{Z}_1^1$. Then

$$n = Z_1^1 \cdot (m_2 Z_1^1 + \Omega) = -m_2 + Z_1^1 \cdot \Omega > -m_2 + \frac{1}{\lambda} \geqslant -m_2 + \frac{5n}{4}$$

by Remark 2.4, so that $m_2 > n/4$, although we have $m_2 \leq n/4$, which is a contradiction.

Hence we see that $m_2 = 0$. Arguing as above we obtain

$$n = Z_1^1 \cdot (m_1 C_1^1 + \Omega) = 2m_1 + Z_1^1 \cdot \Omega \geqslant 2m_1,$$

which implies that $m_1 \leq n/2$. Then $P \notin \mathbb{Z}_1^1$ because otherwise

$$n = Z_1^1 \cdot (m_1 C_1^1 + \Omega) = 2m_1 + Z_1^1 \cdot \Omega > 2m_1 + \frac{1}{\lambda} \geqslant \frac{5n}{4}$$

by Remark 2.4. We see that $P \in C_1^1$. Then

$$\frac{n}{2} = C_1^1 \cdot (m_1 C_1^1 + \Omega) = -\frac{3m_1}{2} + C_1^1 \cdot \Omega > -\frac{3m_1}{2} + \frac{1}{\lambda} \geqslant -\frac{3m_1}{2} + \frac{5n_1}{4}$$

by Remark 2.4. We see that $m_1 > n/2$, but $m_1 \leq n/2$, which is a contradiction completing the proof.

Without loss of generality we may assume that $P = O_1$. Then $-K_{U_1}^3 = 1$ and

$$\overline{D} \equiv \alpha_1^*(D) - \mu E_1,$$

where E_1 is the α_1 -exceptional divisor, \overline{D} is the proper transform of the divisor D on the variety U_1 , and $\mu \in \mathbb{Q}$. Then $\mu > n/(2\lambda)$ by Remark 2.3. We have

$$K_{U_1} + \lambda \overline{D} + \left(\lambda \mu - \frac{1}{2}\right) E_1 \equiv \alpha_1^* (K_X + \lambda D).$$

Lemma 3.11. $\mu \leq 3n/4$.

Proof. The point O_1 can be given by x = y = z = t = 0 and X can be given by

$$w^2t + wf_4(x, y, z, t) + f_6(x, y, z, t) = 0 \subset \mathbb{P}(1, 1, 1, 2, 2) \cong \text{Proj}(\mathbb{C}[x, y, z, t, w]),$$

where $\operatorname{wt}(x) = \operatorname{wt}(y) = \operatorname{wt}(z) = 1$, $\operatorname{wt}(t) = \operatorname{wt}(w) = 2$ and f_4 , f_6 are quasihomogeneous polynomials of degrees 4 and 6, respectively. In these coordinates the curves C_1^1, \ldots, C_{24}^1 are cut out on the hypersurface X by the equations

$$t = f_4(x, y, z, t) = f_6(x, y, z, t) = 0.$$

Let R be a surface on X that is cut out by the equation t = 0 and let \overline{R} be the proper transform of the surface R on the variety U_1 . The surface R is irreducible and

$$\overline{R} \equiv \alpha_1^*(-2K_X) - 2E;$$

but $(X, \frac{1}{2}R)$ is log canonical at the point O_1 by [1], Lemma 8.12 and Proposition 8.14 because we may assume that the hypersurface X is sufficiently general.

The log pair $(X, \lambda D)$, where $\lambda = 4/5$, is not log canonical at the point P. Hence $R \neq D$ and

$$0 \leqslant -K_{U_1} \cdot \overline{R} \cdot \overline{D} = 3n - 4\mu$$

because $-K_{U_1}$ is nef. Thus, $\mu \leq 3n/4$ and the proof is complete.

In particular, there is a point $Q \in E$ such that the log pair

$$\left(U_1, \lambda \overline{D} + \left(\lambda \mu - \frac{1}{2}\right) E_1\right)$$

is not log canonical at Q. Let \overline{S} be a general surface in $|-K_{U_1}|$ such that $Q \in \overline{S}$.

Remark 3.12. The proper transform of the surface E_1 on the variety W_1 is a section of the elliptic fibration η . In particular, the surface \overline{S} is smooth at Q.

Let \overline{Z}_i^k be the proper transform of Z_i^k on the threefold U_1 , where k=1,2,3 and $i=1,\ldots,24$.

Lemma 3.13. The point Q is not contained in $\bigcup_{i=1}^{24} \overline{C}_i^1$.

Proof. Suppose that $Q \in \bigcup_{i=1}^{24} \overline{C}_i^1$. We can assume that $Q \in \overline{C}_1^1$. Let

$$\overline{D}\big|_{\overline{S}} + \left(\mu - \frac{n}{2}\right)E\big|_{\overline{S}} = m_1\overline{C}_1^1 + m_2\overline{Z}_1^1 + \Omega \equiv -nK_{U_1}\big|_{\overline{S}},$$

where m_1 and m_2 are non-negative rational numbers and Ω is an effective \mathbb{Q} -divisor on the surface \overline{S} whose support does not contain the curves \overline{C}_1^1 and \overline{Z}_1^1 . The log pair

$$\left(\overline{S},\,\frac{m_1}{n}\,\overline{C}_1^1 + \frac{m_2}{n}\,\overline{Z}_1^1 + \frac{1}{n}\,\Omega\right)$$

is not log canonical at the point Q by [1], Theorem 7.5. We claim that this is impossible.

The log pair $(\overline{S}, \overline{C}_1^1 + \overline{Z}_1^1)$ is log canonical at the point Q. Thus, it follows from the equivalence

$$\overline{C}_1^1 + \overline{Z}_1^1 \equiv -K_{U_1} \big|_{\overline{S}}$$

and Remark 2.2 that we may assume that either $m_1 = 0$ or $m_2 = 0$.

It follows from Remark 2.4 that

$$0 = \overline{C}_1^1 \cdot \left(m_1 \overline{C}_1^1 + m_2 \overline{Z}_1^1 + \Omega \right) = 2m_2 + \overline{C}_1^1 \cdot \Omega > 2m_2 + n \geqslant n$$

in the case $m_1 = 0$. Hence we may assume that $m_2 = 0$. Then

$$n = \overline{Z}_1^1 \cdot (m_1 \overline{C}_1^1 + \Omega) = 2m_1 + \overline{Z}_1^1 \cdot \Omega \geqslant 2m_1,$$

which implies that $m_1 \leq n/2$. We see that

$$0 = \overline{C}_1^1 \cdot (m_1 \overline{C}_1^1 + \Omega) = -2m_1 + \overline{C}_1^1 \cdot \Omega > -2m_1 + n \geqslant -2m_1 + n$$

by Remark 2.4, so that $m_1 > n/2$, although we have $m_1 \leq n/2$. This is a contradiction completing the proof.

Let \overline{C}_i^k be the proper transform of C_i^k on the threefold U_1 , where k=2,3 and $i=1,\ldots,24$.

Lemma 3.14. The point Q is not contained in $\bigcup_{i=1}^{24} \overline{Z}_i^2$ or $\bigcup_{i=1}^{24} \overline{Z}_i^3$.

Proof. Suppose that $Q \in \bigcup_{i=1}^{24} \overline{Z}_i^2$ or $Q \in \bigcup_{i=1}^{24} \overline{Z}_i^3$. We shall show that this leads to a contradiction. We may assume without loss of generality that $Q \in \overline{Z}_1^2$. Then $Q \notin \overline{C}_1^2$. Let

$$\overline{D}\big|_{\overline{S}} + \left(\mu - \frac{n}{2}\right) E\big|_{\overline{S}} = m_1 \overline{C}_1^2 + m_2 \overline{Z}_1^2 + \Omega \equiv -nK_{U_1}\big|_{\overline{S}},$$

where m_1 and m_2 are non-negative rational numbers and Ω is an effective \mathbb{Q} -divisor on the surface \overline{S} whose support does not contain the curves \overline{C}_1^2 and \overline{Z}_1^2 .

It follows from [1], Theorem 7.5 that the log pair

$$\left(\overline{S}, \, \frac{m_1}{n} \, \overline{C}_1^2 + \frac{m_2}{n} \, \overline{Z}_1^2 + \frac{1}{n} \, \Omega\right)$$

is not log canonical at the point Q. We claim that this is impossible.

The log pair $(\overline{S}, \overline{C}_1^2 + \overline{Z}_1^2)$ is log canonical at Q, but

$$\overline{C}_1^2 + \overline{Z}_1^2 \equiv -K_{U_1}|_{\overline{S}},$$

which implies that we can assume that either $m_1 = 0$ or $m_2 = 0$ (see Remark 2.2). Let $m_2 = 0$. Then it follows from Remark 2.4 that

$$\frac{n}{2} = \overline{Z}_1^2 \cdot (m_1 \overline{C}_1^2 + \Omega) = 2m_1 + \overline{Z}_1^2 \cdot \Omega > 2m_1 + n \geqslant \frac{5n}{4},$$

which is a contradiction. Hence we may assume that $m_1 = 0$. Then

$$\frac{n}{2} = \overline{C}_1^2 \cdot (m_2 \overline{Z}_1^2 + \Omega) = 2m_2 + \overline{C}_1^2 \cdot \Omega \geqslant 2m_2,$$

which implies that $m_2 \leq n/4$. We see that

$$\frac{n}{2} = \overline{Z}_1^2 \cdot (m_2 \overline{Z}_1^2 + \Omega) = -\frac{3m_2}{2} + \overline{Z}_1^2 \cdot \Omega > -\frac{3m_2}{2} + n$$

by Remark 2.4, so that $m_2 > n/3$, although we have $m_2 \leq n/4$. This is a contradiction completing the proof.

Let \overline{F} be a scheme fibre of $\psi \circ \alpha_1$ passing through the point Q. Then \overline{F} is irreducible and the fibre \overline{F} is smooth at the point Q. Let

$$\overline{D}|_{\overline{S}} + \left(\mu - \frac{n}{2}\right)E|_{\overline{S}} = m\overline{F} + \Omega,$$

where m is a non-negative rational number and Ω is an effective \mathbb{Q} -divisor on \overline{S} whose support does not contain the curve \overline{F} . Then

$$n = \overline{F} \cdot (m\overline{F} + \Omega) = m + \overline{F} \cdot \Omega \geqslant m + \text{mult}_{\mathcal{O}}(\Omega) > m + n - m = n,$$

which is a contradiction. The proof of Theorem 1.43 is complete.

§ 4. Fano threefold of degree 7/6

Let X be a general hypersurface in $\mathbb{P}(1,1,1,2,3)$ of degree 7. Then X has two singular points O_1 and O_2 , which are singular points of type $\frac{1}{2}(1,1,1)$ and $\frac{1}{3}(1,1,2)$, respectively. There is a commutative diagram

where π , ψ and ζ are projections, α_1 is a blow up of O_1 with weights (1,1,1), β_1 is a blow up with weights (1,1,2) of the singular point dominating O_2 , γ_1 is a blow up with weights (1,1,1) of the singular point dominating O_2 , η is an elliptic fibration, ω_1 is a double cover and σ_1 is a birational morphism contracting 35 curves $\overline{C}_1^1, \ldots, \overline{C}_{35}^1$.

Remark 4.1. The curves $\overline{C}_1^1, \ldots, \overline{C}_{35}^1$ are smooth, irreducible and rational.

It follows from [50] that there is a commutative diagram

where ξ , ψ and χ are projections, α_2 is a blow up of O_2 with weights (1,1,2), β_2 is a blow up with weights (1,1,1) of the singular point of U_2 dominating the point O_2 , γ_2 is the blow up with weights (1,1,1) of the point dominating O_1 , η is an elliptic fibration, ω_2 is a double cover and σ_2 is a birational morphism contracting 14 curves $\overline{C}_1^2, \ldots, \overline{C}_{14}^2$.

Remark 4.2. The curves $\overline{C}_1^2, \dots, \overline{C}_{14}^2$ are smooth, irreducible and rational.

Let
$$C_i^1 = \alpha_1(\overline{C}_i^1)$$
 for all $i = 1, \dots, 35$.

Remark 4.3. The fibre of the projection ψ over the point $\psi(C_i^1)$ consists of the smooth rational curve C_i^1 and a smooth irreducible rational curve Z_i^1 such that

$$C_i^1 \ni O_1 \notin Z_i^1$$
 and $Z_i^1 \ni O_2 \notin C_i^1$,

where C_i^1 and Z_i^1 intersect transversally at two points, but $-K_X \cdot Z_i^1 = 2/3$ and $-K_X \cdot C_i^1 = 1/2$.

We set
$$C_i^2 = \alpha_2(\overline{C}_i^2)$$
 for all $i = 1, ..., 14$.

Remark 4.4. The fibre of the projection ψ over the point $\psi(C_i^2)$ consists of the smooth rational curve C_i^2 and a smooth irreducible rational curve Z_i^2 such that

$$C_i^2 \ni O_2 \in Z_i^1$$
 and $Z_i^2 \ni O_1 \notin C_i^2$,

where C_i^1 and Z_i^1 intersect at O_2 , the curves C_i^1 and Z_i^1 intersect transversally at a smooth point of X, and we have $-K_X \cdot Z_i^1 = 5/6$ and $-K_X \cdot C_i^1 = 1/3$.

Let D be a divisor in $|-nK_X|$, where $n \in \mathbb{N}$. We set $\mu = 6/(7n)$ and $\lambda = 1/n$.

Remark 4.5. To prove Theorem 1.44 it is sufficient to show that the log pair $(X, \mu D)$ has at most log canonical singularities because D is an arbitrary divisor in $|-nK_X|$.

To prove Theorem 1.44 we describe reducible fibres of ψ first.

Lemma 4.6. Let F be a reducible fibre of the rational map ψ . Then

$$F \in \left\{ C_1^1 \cup Z_1^1, \dots, C_{35}^1 \cup Z_{35}^1, C_1^2 \cup Z_1^2, \dots, C_{14}^2 \cup Z_{14}^2 \right\}.$$

Proof. Let C be an irreducible curve on the hypersurface X. Then

$$C \in \{C_1^1, \dots, C_{35}^1\}$$

if $-K_X \cdot C = 1/2$ because the proper transform of the curve C on the variety U_1 has trivial intersection with $-K_{U_1}$ in the case when $-K_X \cdot C = 1/2$.

Note that the equality $-K_X \cdot C = 1/6$ is impossible because otherwise the proper transform of the curve C on the variety U_1 has negative intersection with $-K_{U_1}$, which is nef.

Suppose that $-K_X \cdot C = 1/3$. Let \bar{C} be the proper transform of the curve C on the variety U_2 . Then

$$0 \leqslant -K_{U_2} \cdot \overline{C} = \left(\alpha_2^*(-K_X) - \frac{1}{3}E\right) \cdot \overline{C} = \frac{1}{3} - \frac{1}{3}E_2 \cdot \overline{C},$$

where E_2 is the exceptional divisor of α_2 . On the other hand, $2E_2 \cdot \overline{C}$ is a positive integer, so that $E_2 \cdot \overline{C} = 1/2$ or $E_2 \cdot \overline{C} = 1$. The equality $E_2 \cdot \overline{C} = 1/2$ implies that

$$-K_{U_2} \cdot \overline{C} = \left(\alpha_2^*(-K_X) - \frac{1}{3}E\right) \cdot \overline{C} = \frac{1}{3} - \frac{1}{3}E_2 \cdot \overline{C} = \frac{1}{6},$$

which is a contradiction because $-2K_{U_2}$ is Cartier. Hence $E_2 \cdot \overline{C} = 1$, and therefore $-K_{U_2} \cdot \overline{C} = 0$. Thus, we see that

$$C \in \{C_1^2, \dots, C_{14}^2\}$$

because the irreducible rational curves $\overline{C}_1^2, \dots, \overline{C}_{14}^2$ are the only curves on U_1 that have trivial intersection with $-K_{U_2}$.

Note that $-K_X \cdot F = 7/6$. Let C be an irreducible component of F such that $-K_X \cdot C$ is minimal. Then either $-K_X \cdot C = 1/2$ or $-K_X \cdot C = 1/3$ because $-6K_X \cdot C \in \mathbb{N}$. Then we must have

$$C \in \{C_1^1, \dots, C_{35}^1, C_1^2, \dots, C_{14}^2\},\$$

which immediately yields the required result.

Suppose that the log pair $(X, \mu D)$ is not log canonical. We shall show that this leads to a contradiction. We may assume that D is irreducible (see Remark 2.2).

Lemma 4.7. $n \neq 1$.

Proof. Arguing as in the proof of Lemma 3.2 we obtain the required result.

Let P be a point of the variety V such that the log pair $(X, \mu D)$ is not log canonical at P, and let F be a scheme fibre of the projection ψ that passes through the point P.

Remark 4.8. If $P \notin \operatorname{Sing}(X)$, then the fibre F is uniquely defined.

The fibre F is reduced. Let S be a general surface in $|-K_X|$ such that $P \in S$.

Lemma 4.9. Suppose that $\operatorname{Sing}(X) \not\supseteq P \notin \operatorname{Sing}(F)$. Then F is reducible.

Proof. Suppose that F is irreducible. Let $\pi \colon \overline{X} \to X$ be a blow up of the point P. Then

$$\overline{D} \equiv \pi^*(D) - \operatorname{mult}_P(D)E,$$

where E is the π -exceptional divisor and \overline{D} is the proper transform of D on the threefold \overline{X} .

Note that $\operatorname{mult}_P(D) > 1/\mu = 7n/6$. Let

$$D|_{S} = mF + \Omega,$$

where m is a non-negative rational number and Ω is an effective \mathbb{Q} -divisor on the surface S whose support does not contain the curve F. Then

$$\frac{7n}{6} = F \cdot (mF + \Omega) = \frac{7m}{6} + F \cdot \Omega \geqslant \frac{7m}{6} + \text{mult}_{P}(\Omega) > \frac{7m}{6} + \frac{7n}{6} - m = \frac{7n}{6} + \frac{m}{6},$$

which is a contradiction completing the proof.

The log pair $(X, \lambda D)$ is also not log canonical at the point P. In the remaining part of this section we show that the last assumption also leads to a contradiction.

Lemma 4.10. Suppose that $P \notin \text{Sing}(X)$. Then F is reducible.

Proof. Suppose that the fibre F is reducible. Then $\operatorname{mult}_P(F) \neq 1$ by Lemma 4.9 and it follows from the generality of the hypersurface X that $\operatorname{mult}_P(F) = 2$.

One can easily see that there exists a surface $T \in |-K_X|$ such that $\operatorname{mult}_P(T) \geqslant 2$. Let

$$T \cdot D = \varepsilon F + \Delta,$$

where ε is a non-negative rational number and Δ is an effective 1-cycle whose support does not contain the curve F. Then $\Delta \not\subseteq \operatorname{Supp}(S)$ and $\operatorname{mult}_P(\Delta) > 2n - 2\varepsilon$. We have

$$\frac{7n}{6} = S \cdot T \cdot D = \frac{7\varepsilon}{6} + S \cdot \Delta > \frac{7\varepsilon}{6} + 2n - 2\varepsilon,$$

which implies that $\varepsilon > n$. However, this is impossible by Remark 2.1 and the proof is complete.

Lemma 4.11. P is a singular point of the hypersurface X.

Proof. Let P be a smooth point of X. Then F is reducible by Lemma 4.10, and it follows from Lemma 4.6 that

$$F \in \left\{ C_1^1 \cup Z_1^1, \dots, C_{35}^1 \cup Z_{35}^1, C_1^2 \cup Z_1^2, \dots, C_{14}^2 \cup Z_{14}^2 \right\}.$$

Without loss of generality we may assume that either $F = C_1^1 \cup Z_1^1$ or $F = C_1^2 \cup Z_1^2$. Let $F = C_1^1 \cup Z_1^1$. Then

$$C_1^1 \cdot C_1^1 = -\frac{3}{2}, \qquad C_1^1 \cdot Z_1^1 = 2, \qquad Z_1^1 \cdot Z_1^1 = -\frac{4}{3}$$

on the surface S. Let

$$D|_{S} = m_1 C_1^1 + m_2 Z_1^1 + \Omega \equiv -nK_X|_{S},$$

where m_1 and m_2 are non-negative rational numbers and Ω is an effective \mathbb{Q} -divisor on the surface S whose support does not contain the curves C_1^1 and Z_1^1 . Then the log pair

$$(S, \lambda m_1 C_1^1 + \lambda m_2 Z_1^1 + \lambda \Omega)$$

is not log canonical at the point P by [1], Theorem 7.5. We claim that this contradicts the numerical effectiveness of

$$m_1 C_1^1 + m_2 Z_1^1 + \Omega \equiv -nK_X|_{S}$$

bearing in mind that $C_1^1 + Z_1^1 \equiv -K_X|_S$ on the surface S. The log pair $(S, C_1^1 + Z_1^1)$ is log canonical at the point P in view of the generality of the choice of X. Thus, we may assume that $m_1 = 0$ or $m_2 = 0$ by Remark 2.2.

Suppose that $m_1 = 0$. Then

$$\frac{n}{2} = C_1^1 \cdot (m_2 Z_1^1 + \Omega) = 2m_2 + C_1^1 \cdot \Omega \geqslant 2m_2,$$

which implies that $m_2 \leq n/4$. We have $P \notin C_1^1$ because otherwise

$$\frac{n}{2} = C_1^1 \cdot (m_2 Z_1^1 + \Omega) = 2m_2 + C_1^1 \cdot \Omega > 2m_2 + \frac{1}{\lambda} \geqslant n$$

by Remark 2.4. Hence we see that $P \in \mathbb{Z}_1^1$. Then

$$\frac{2n}{3} = Z_1^1 \cdot (m_2 Z_1^1 + \Omega) = -\frac{4m_2}{3} + Z_1^1 \cdot \Omega > -\frac{4m_2}{3} + \frac{1}{\lambda} \geqslant -\frac{4m_2}{3} + n$$

by Remark 2.4, so that $m_2 > n/4$. However, we have $m_2 \leq n/4$, which is a contradiction.

Suppose that $m_2 = 0$. Arguing as in the previous case we see that it follows from Remark 2.4 and the equality

$$\frac{2n}{3} = Z_1^1 \cdot (m_1 C_1^1 + \Omega) = 2m_1 + Z_1^1 \cdot \Omega$$

that $m_1 \leqslant n/3$ and $P \notin Z_1^1$. Then $P \in C_1^1$ and

$$\frac{n}{2} = C_1^1 \cdot (m_1 C_1^1 + \Omega) = -\frac{3m_1}{2} + C_1^1 \cdot \Omega > -\frac{3m_1}{2} + \frac{1}{\lambda} \geqslant -\frac{3m_1}{2+n}$$

by Remark 2.4. We see that $m_1 > n/3$, although we have $m_1 \leq n/3$, which is a contradiction.

Thus, $F = C_1^2 \cup Z_1^2$. Then

$$C_1^2 \cdot C_1^2 = -\frac{4}{3}$$
, $C_1^2 \cdot Z_1^2 = \frac{5}{3}$, $Z_1^2 \cdot Z_1^2 = -\frac{5}{6}$

on the surface S. As in the previous case, let

$$D|_{S} = n_1 C_1^2 + n_2 Z_1^2 + \Delta \equiv -nK_X|_{S},$$

where n_1 and n_2 are non-negative rational numbers and Δ is an effective \mathbb{Q} -divisor on S whose support does not contain the curves C_1^2 and Z_1^2 . Then the singularities of the log pair

$$(S, \lambda n_1 C_1^2 + \lambda n_2 Z_1^2 + \lambda \Delta)$$

are not log canonical at the point P by [1], Theorem 7.5. We claim that this contradicts the numerical effectiveness of

$$n_1 C_1^2 + n_2 Z_1^2 + \Delta \equiv n(C_1^2 + Z_1^2) \equiv -nK_X|_S$$

on S. We may assume that $n_1n_2 = 0$ by Remark 2.2 because the log pair $(S, C_1^2 + Z_1^2)$ is log canonical at the point P.

Suppose that $n_1 = 0$. Then

$$\frac{n}{3} = C_1^2 \cdot (n_2 Z_1^2 + \Delta) = \frac{5n_2}{3} + C_1^2 \cdot \Delta \geqslant \frac{5n_2}{3},$$

which implies that $n_2 \leq n/5$. We have $P \notin C_1^2$ because otherwise

$$\frac{n}{3} = C_1^2 \cdot (n_2 Z_1^2 + \Delta) = \frac{5n_2}{3} + C_1^2 \cdot \Delta > \frac{5n_2}{3} + \frac{1}{\lambda} \geqslant n$$

by Remark 2.4. Hence we see that $P \in \mathbb{Z}_1^2$. Then

$$\frac{5n}{6} = Z_1^2 \cdot (n_2 Z_1^2 + \Delta) = -\frac{5n_2}{6} + Z_1^2 \cdot \Delta > -\frac{5n_2}{6} + \frac{1}{\lambda} \geqslant -\frac{5n_2}{6} + n$$

by Remark 2.4. Thus, $n_2 > n/5$. However, we have $n_2 \le n/5$, which is a contradiction.

Let $n_2 = 0$. Arguing as in the previous case, we see that it follows from Remark 2.4 and the equality

$$\frac{5n}{6} = Z_1^1 \cdot (n_1 C_1^2 + \Delta) = \frac{5n_1}{3} + Z_1^2 \cdot \Delta$$

that $n_1 \leqslant n/2$ and $P \notin \mathbb{Z}_1^2$. Then $P \in \mathbb{C}_1^2$ and

$$\frac{n}{3} = C_1^2 \cdot (n_1 C_1^2 + \Delta) = -\frac{4n_1}{3} + C_1^2 \cdot \Delta > -\frac{4n_1}{3} + \frac{1}{\lambda} \geqslant -\frac{4n_1}{3} + n$$

by Remark 2.4. We see that $n_1 > n/2$. However, we have $n_1 \leq n/2$, which is a contradiction completing the proof.

Hence we see that either $P = O_1$ or $P = O_2$. Suppose that $P = O_1$. Then

$$D_1 \equiv \alpha_1^*(D) - \mu_1 E_1,$$

where E_1 is the α_1 -exceptional divisor, D_1 is the proper transform of the divisor D on the variety U_1 , and μ_1 is a rational number. Then $\mu_1 > n/2$ by Remark 2.3, and we have

$$K_{U_1} + \lambda D_1 + \left(\lambda \mu_1 - \frac{1}{2}\right) E_1 \equiv \alpha_1^* (K_X + \lambda D).$$

Lemma 4.12. $\mu_1 \leqslant 7n/10$.

Proof. The point O_1 can be given by x = y = z = w = 0, and X can be given by the equation

$$t^2w + tf_5(x, y, z, w) + f_7(x, y, z, w) = 0 \subset \mathbb{P}(1, 1, 1, 2, 3) \cong \text{Proj}(\mathbb{C}[x, y, z, t, w]),$$

where $\operatorname{wt}(x) = \operatorname{wt}(y) = \operatorname{wt}(z) = 1$, $\operatorname{wt}(t) = 2$, $\operatorname{wt}(w) = 2$, and f_5 , f_7 are quasihomogeneous polynomials of degrees 5 and 7, respectively. In these coordinates the curves C_1^1, \ldots, C_{35}^1 are cut out on the hypersurface X by the equations $w = f_5(x, y, z, w) = f_7(x, y, z, w) = 0$.

Let R be a surface on X cut out by the equation w = 0, and let \overline{R} be the proper transform of R on the variety U_1 . Then R is irreducible and

$$\overline{R} \equiv \alpha_1^*(-3K_X) - \frac{5}{2}E_1,$$

but $(X, \frac{1}{3}R)$ is log canonical at O_1 by [1], Lemma 8.12 and Proposition 8.14 because we may assume that X is sufficiently general.

The log pair $(X, \lambda D)$, where $\lambda = 1/n$, is not log canonical at the point P. Then $R \neq D$ and

$$0 \leqslant -K_{U_1} \cdot \overline{R} \cdot D_1 = \frac{7n}{2} - 5\mu_1$$

because $-K_{U_1}$ is nef. Hence $\mu_1 \leqslant 7n/10$.

In particular, there is a point $Q_1 \in E_1$ such that the log pair

$$\left(U_1, \lambda D_1 + \left(\lambda \mu_1 - \frac{1}{2}\right) E_1\right)$$

is not log canonical at Q_1 . Let S_1 be a general surface in $|-K_{U_1}|$ such that $Q_1 \in \overline{S}$.

Remark 4.13. The proper transform of the surface E_1 on the variety W_1 is a section of the elliptic fibration η . In particular, the surface S_1 is smooth at the point Q_1 .

Let \overline{Z}_i^1 be the proper transform of the curve Z_i^1 on the variety U_1 , where $i = 1, \ldots, 35$.

Lemma 4.14. The point Q_1 is not contained in $\bigcup_{i=1}^{35} \overline{C}_i^1$.

Proof. Suppose that $Q_1 \in \bigcup_{i=1}^{35} \overline{C}_i^1$. We may assume that $Q_1 \in \overline{C}_1^1$. Let

$$D_1\big|_{S_1} + \bigg(\mu_1 - \frac{n}{2}\bigg)E_1\big|_{S_1} = m_1\overline{C}_1^1 + m_2\overline{Z}_1^1 + \Omega \equiv -nK_{U_1}\big|_{S_1},$$

where m_1 and m_2 are non-negative rational numbers and Ω is an effective \mathbb{Q} -divisor on the surface S whose support does not contain the curves \overline{C}_1^1 and \overline{Z}_1^1 . Then the log pair

$$(S_1, \lambda m_1 \overline{C}_1^1 + \lambda m_2 \overline{Z}_1^1 + \lambda \Omega)$$

is not log canonical at Q_1 by [1], Theorem 7.5. We claim that this is impossible.

The log pair $(S_1, \overline{C}_1^1 + \overline{Z}_1^1)$ is log canonical at the point Q_1 . It follows from Remark 2.2 that we may assume that either $m_1 = 0$ or $m_2 = 0$ because $\overline{C}_1^1 + \overline{Z}_1^1 \equiv -K_{U_1}|_{S_1}$.

It follows from Remark 2.4 that

$$0 = \overline{C}_1^1 \cdot (m_1 \overline{C}_1^1 + m_2 \overline{Z}_1^1 + \Omega) = 2m_2 + \overline{C}_1^1 \cdot \Omega > 2m_2 + n$$

if $m_1 = 0$. Hence we may assume that $m_2 = 0$. Then

$$\frac{2n}{3} = \overline{Z}_1^1 \cdot (m_1 \overline{C}_1^1 + \Omega) = 2m_1 + \overline{Z}_1^1 \cdot \Omega \geqslant 2m_1,$$

which implies that $m_1 \leq n/3$. We see that

$$0 = \overline{C}_1^1 \cdot (m_1 \overline{C}_1^1 + \Omega) = -2m_1 + \overline{C}_1^1 \cdot \Omega > -2m_1 + n$$

by Remark 2.4. Hence $m_1 > n/2$. However, we have $m_1 \leq n/3$, which is a contradiction completing the proof.

Let C_i^2 and Z_i^2 be the proper transforms of C_i^2 and Z_i^2 on U_1 , respectively, where $i = 1, \ldots, 14$.

Lemma 4.15. The point Q_1 is not contained in $\bigcup_{i=1}^{14} \overset{.}{Z}_i^2$.

Proof. Suppose that Q_1 is contained in $\bigcup_{i=1}^{14} \dot{Z}_i^2$. We shall show that this leads to a contradiction. We may assume that $Q_1 \in \dot{Z}_1^2$. Then

$$\grave{C}_1^2 \cdot \grave{C}_1^2 = \grave{Z}_1^2 \cdot \grave{Z}_1^2 = -\frac{4}{3} \,, \qquad \grave{C}_1^2 \cdot \grave{Z}_1^2 = \frac{5}{3}$$

on the surface S_1 . Note that $Q_1 \notin \mathring{C}_1^2$. Let

$$D_1\big|_{S_1} + \left(\mu_1 - \frac{n}{2}\right)E_1\big|_{S_1} = m_1 \grave{C}_1^2 + m_2 \grave{Z}_1^2 + \Omega \equiv -nK_{U_1}\big|_{S_1},$$

where m_1 and m_2 are non-negative rational numbers and Ω is an effective \mathbb{Q} -divisor on the surface S_1 whose support does not contain the curves \check{C}_1^2 and \check{Z}_1^2 .

It follows from [1], Theorem 7.5 that the log pair

$$(S_1, \lambda m_1 \grave{C}_1^2 + \lambda m_2 \grave{Z}_1^2 + \lambda \Omega)$$

is not log canonical at the point Q_1 . We claim that this is impossible.

The log pair $(S_1, \dot{C}_1^2 + \dot{Z}_1^2)$ is log canonical at the point Q_1 . By Remark 2.2 we may assume that either $m_1 = 0$ or $m_2 = 0$ because $\dot{C}_1^2 + \dot{Z}_1^2 \equiv -K_{U_1}|_{S_1}$.

Suppose that $m_2 = 0$. Then it follows from Remark 2.4 that

$$\frac{n}{3} = \grave{Z}_1^2 \cdot (m_1 \grave{C}_1^2 + \Omega) = \frac{5m_1}{3} + \grave{Z}_1^2 \cdot \Omega > \frac{5m_1}{3} + \frac{1}{\lambda} \geqslant n,$$

which is a contradiction. Hence we may assume that $m_1 = 0$. Then

$$\frac{n}{3} = \dot{C}_1^2 \cdot (m_2 \dot{Z}_1^2 + \Omega) = \frac{5m_2}{3} + \dot{C}_1^2 \cdot \Omega \geqslant \frac{5m_2}{3} \,,$$

which implies that $m_2 \leq n/5$. We see that

$$\frac{n}{3} = \dot{Z}_1^2 \cdot (m_2 \dot{Z}_1^2 + \Omega) = -\frac{4m_2}{3} + \dot{Z}_1^2 \cdot \Omega > -\frac{4m_2}{3} + \frac{1}{\lambda} \geqslant -\frac{4m_2}{3} + n$$

by Remark 2.4. We obtain $m_2 > n/2$. However, we have $m_2 \leq n/5$, which is a contradiction completing the proof.

Let F_1 be the scheme fibre of the rational map $\psi \circ \alpha_1$ that passes through the point Q_1 . Then F_1 is irreducible by Lemmas 4.6, 4.14 and 4.15 (see Remark 4.13). The curve F_1 is smooth at the point Q_1 by Remark 4.13. Let

$$D_1|_{S_1} + \left(\mu_1 - \frac{n}{2}\right)E_1|_{S_1} = mF_1 + \Omega,$$

where m is a non-negative rational number and Ω is an effective \mathbb{Q} -divisor on S_1 whose support does not contain the curve F_1 . Then

$$\frac{2n}{3} = F_1 \cdot (mF_1 + \Omega) = \frac{2m}{3} + F_1 \cdot \Omega \geqslant \frac{2m}{3} + \text{mult}_{Q_1}(\Omega) > \frac{2m}{3} + n - m,$$

which implies that m > n. This is impossible by Remark 2.1. We see that the assumption $P = O_1$ leads to a contradiction.

Remark 4.16. The equality $P = O_2$ holds.

Let D_2 be the proper transform of the divisor D on the variety U_2 . Then

$$D_2 \equiv \alpha_2^*(D) - \mu_2 E_2,$$

where E_2 is the α_2 -exceptional divisor and μ_2 is a rational number. We have

$$K_{U_2} + \lambda D_2 + \left(\lambda \mu - \frac{1}{3}\right) E_2 \equiv \alpha_2^* (K_X + \lambda D),$$

where $\lambda \mu - 1/3 > 0$ by Remark 2.3.

The hypersurface X can be given by the equation

$$w^2x + wf_4(x, y, z, t) + f_7(x, y, z, t) = 0 \subset \mathbb{P}(1, 1, 1, 2, 3) \cong \text{Proj}(\mathbb{C}[x, y, z, t, w]),$$

where $\operatorname{wt}(x) = \operatorname{wt}(y) = \operatorname{wt}(z) = 1$, $\operatorname{wt}(t) = 2$, $\operatorname{wt}(w) = 3$ and f_4 , f_7 are quasi-homogeneous polynomials of degrees 4 and 7, respectively. Then O_2 is given by x = y = z = t = 0.

Remark 4.17. The curves C_1^2, \ldots, C_{14}^2 are cut out on X by $x = f_4 = f_7 = 0$.

Let R be a surface on X cut out by the equation x=0, and let \overline{R} be the proper transform of the surface R on the variety U_2 . Then R is irreducible and the equivalence

$$\overline{R} \equiv \alpha_2^*(-K_X) - \frac{4}{3} E_2$$

holds. The surface \overline{R} is smooth in a neighbourhood of E_2 because X is general.

Lemma 4.18. $\mu_2 \leqslant 7n/12$.

Proof. By Lemma 4.7 we obtain $R \neq D$. Then

$$0 \leqslant -K_{U_2} \cdot \overline{R} \cdot D_2 = \frac{7n}{6} - 2\mu_2,$$

because the divisor $-K_{U_2}$ is nef. Hence $\mu_2 \leqslant 7n/12$.

In particular, there is a point $Q_2 \in E_2$ such that the log pair

$$\left(U_2, \lambda D_2 + \left(\lambda \mu_2 - \frac{1}{3}\right) E_2\right)$$

is not log canonical at Q_2 . Let S_2 be a general surface in $|-K_{U_2}|$ such that $Q_2 \in S_2$.

Remark 4.19. The map ψ is induced by the embedding of graded algebras

$$\mathbb{C}[x, y, z] \subset \mathbb{C}[x, y, z, t, w],$$

where $\operatorname{wt}(x) = \operatorname{wt}(y) = \operatorname{wt}(z) = 1$, $\operatorname{wt}(t) = 2$ and $\operatorname{wt}(w) = 3$. Both E_2 and \overline{R} are contracted by

$$\psi \circ \alpha_2 \colon U_2 \dashrightarrow \mathbb{P}^2$$

to the line in $\mathbb{P}^2 \cong \operatorname{Proj}(\mathbb{C}[x,y,z])$ given by the equation x=0.

Let \overline{Z}_i^2 be the proper transform of the curve Z_i^2 on the variety U_2 , where $i=1,\ldots,14$.

Lemma 4.20. The point Q_2 is not contained in $\bigcup_{i=1}^{14} \overline{C}_i^2$ or $\bigcup_{i=1}^{14} \overline{Z}_i^2$.

Proof. Let $Q_2 \in \bigcup_{i=1}^{14} \overline{C}_i^2$ or $Q_2 \in \bigcup_{i=1}^{14} \overline{Z}_i^2$. Without loss of generality we may assume that $Q_2 \in \overline{C}_1^2 \cup \overline{Z}_1^2$. The surface \overline{R} contains the curves \overline{C}_1^2 and \overline{Z}_1^2 . Let

$$D_1|_{\overline{R}} + \left(\mu_2 - \frac{n}{3}\right) E_2|_{\overline{R}} = m_1 \overline{C}_1^2 + m_2 \overline{Z}_1^2 + \Omega \equiv -nK_{U_2}|_{\overline{R}},$$

where m_1 and m_2 are non-negative rational numbers and Ω is an effective \mathbb{Q} -divisor on the surface \overline{R} whose support does not contain the curves \overline{C}_1^2 and \overline{Z}_1^2 . The log pair

$$(\overline{R}, \lambda m_1 \overline{C}_1^2 + \lambda m_2 \overline{Z}_1^2 + \lambda \Omega)$$

is not log canonical at Q_2 by [1], Theorem 7.5. We claim that this is impossible.

The log pair $(\overline{R}, \overline{C}_1^2 + \overline{Z}_1^2)$ is log canonical at the point Q_2 and $\overline{C}_1^2 + \overline{Z}_1^2 \equiv -K_{U_2}|_{\overline{R}}$, so we may assume that either $m_1 = 0$ or $m_2 = 0$ (see Remark 2.2). On the surface \overline{R} we have

$$\overline{C}_1^2 \cdot \overline{C}_1^2 = -1, \qquad \overline{Z}_1^2 \cdot \overline{C}_1^2 = 1, \qquad \overline{Z}_1^2 \cdot \overline{Z}_1^2 = -\frac{1}{2} \,.$$

Let $m_1 = 0$. Then $m_2 = 0$ because

$$0 = \overline{C}_1^2 \cdot (m_2 \overline{Z}_1^2 + \Omega) = m_2 + \overline{C}_1^2 \cdot \Omega \geqslant m_2,$$

and it follows from Remark 2.4 that $0 = \overline{C}_1^2 \cdot \Omega > n$ if $Q_2 \in \overline{C}_1^2$. We see that $Q_2 \in \overline{Z}_1^2$. Then

$$\frac{n}{2} = \overline{Z}_1^2 \cdot \Omega > \frac{1}{\lambda} = n$$

by Remark 2.4. The contradiction obtained implies that $m_1 \neq 0$. Hence we may assume that $m_2 = 0$. Then

$$\frac{n}{2} = \overline{Z}_1^2 \cdot (m_1 \overline{C}_1^2 + \Omega) = m_1 + \overline{Z}_1^1 \cdot \Omega \geqslant m_1,$$

which implies that $m_1 \leq n/2$. By Remark 2.4 we obtain

$$\frac{n}{2} = \overline{Z}_1^2 \cdot (m_1 \overline{C}_1^2 + \Omega) = m_1 + \overline{Z}_1^1 \cdot \Omega > m_1 + \frac{1}{\lambda} \geqslant n$$

in the case when $Q_2 \in \overline{Z}_1^2$, which shows that $Q_2 \in \overline{C}_1^2$. Then

$$0 = \overline{C}_1^2 \cdot (m_1 \overline{C}_1^1 + \Omega) = -m_1 + \overline{C}_1^1 \cdot \Omega > -m_1 + n$$

by Remark 2.4. We see that $m_1 > n$. However, $m_1 \leq n/2$. which is a contradiction completing the proof.

Note that the surface \overline{R} does not contain the singular point of the surface E_2 .

Lemma 4.21. The surface \overline{R} does not contain Q_2 .

Proof. Suppose that $Q_2 \in \overline{R}$. Then it follows from Lemma 4.20 that

$$S_2\big|_{\overline{R}} = Z \equiv -K_{U_2}\big|_{\overline{R}},$$

where Z is a smooth curve such that $Q_2 \in Z$. Then $Z \cdot Z = 1/2$ on the surface \overline{R} . Let

$$D_1|_{\overline{R}} + \left(\mu_2 - \frac{n}{3}\right) E_2|_{\overline{R}} = mZ + \Omega \equiv -nK_{U_2}|_{\overline{R}},$$

where m is a non-negative rational number and Ω is an effective \mathbb{Q} -divisor on \overline{R} whose support does not contain the curve Z. Then the log pair

$$(\overline{R}, \lambda mZ + \lambda \Omega)$$

is not log canonical at Q_2 by [1], Theorem 7.5. We claim that this is impossible.

The log pair (\overline{R}, Z) is log canonical at Q_2 . By Remark 2.2 we may assume that m = 0. Then $n/2 = Z \cdot \Omega > n$, which is a contradiction completing the proof.

Let O_3 be the singular point of the surface $E_2 \cong \mathbb{P}(1,1,2)$, let C_i^1 and Z_i^1 be the proper transforms of the curves C_i^2 and Z_i^2 on the variety U_2 , respectively, where $i = 1, \ldots, 14$. Then

$$\dot{Z}_1^2 \cap E_2 = \dots = \dot{Z}_{14}^2 \cap E_2 = O_3, \qquad \dot{C}_1^2 \cap E_2 = \dots = \dot{C}_{14}^2 \cap E_2 = \varnothing.$$

Lemma 4.22. $Q_2 = O_3$.

Proof. Suppose that $Q_2 \neq O_3$. Let F_2 be the scheme fibre of the rational map $\psi \circ \alpha_2$ that passes through the point Q_2 . Then either

$$F_2 = L + \overline{C}_i^2 + \overline{Z}_i^2$$

for some i = 1, ..., 14 or $F_1 = L + Z$, where L is an irreducible curve contained in the divisor E_2 and Z is an irreducible curve not contained in the divisor E_2 .

Suppose that $F_1 = L + Z$. Then on the surface S_2 we have

$$L \cdot L = Z \cdot Z = -\frac{3}{2}, \qquad L \cdot Z = 2,$$

and it follows from Lemma 4.21 that $Q_2 \in L$ and $Q_2 \notin Z$ because $Z = \overline{R} \cap S_2$. Let

$$D_2\big|_{S_2} + \left(\mu_2 - \frac{n}{3}\right)E_2\big|_{S_2} = m_1L + m_2Z + \Omega \equiv -nK_{U_2}\big|_{S_2},$$

where m_1 and m_2 are non-negative rational numbers and Ω is an effective \mathbb{Q} -divisor on the surface S_2 whose support does not contain the curves L and Z.

By [1], Theorem 7.5 the log pair

$$(S_2, \lambda m_1 L + \lambda m_2 Z + \lambda \Omega)$$

is not log canonical at the point Q_2 . We claim that this is impossible.

The log pair $(S_2, L + Z)$ is log canonical at the point Q_2 . On the surface S_2 we have

$$L + Z \equiv -K_{U_2}\big|_{S_2},$$

which implies that we may assume that either $m_1 = 0$ or $m_2 = 0$ (see Remark 2.2). Suppose that $m_1 = 0$. Then it follows from Remark 2.4 that

$$\frac{n}{2} = L \cdot (m_2 Z + \Omega) = 2m_2 + L \cdot \Omega > 2m_2 + \frac{1}{\lambda} \geqslant n,$$

which is a contradiction. Hence we may assume that $m_2 = 0$. Then

$$\frac{n}{2} = Z \cdot (m_1 L + \Omega) = 2m_1 + Z \cdot \Omega \geqslant 2m_1,$$

which implies that $m_1 \leq n/4$. We see that

$$\frac{n}{2} = L \cdot (m_1 L + \Omega) = -\frac{3m_1}{2} + L \cdot \Omega > -\frac{3m_1}{2} + \frac{1}{\lambda} \geqslant -\frac{3m_1}{2} + n$$

by Remark 2.4. Thus, $m_1 > n/3$. However, $m_1 \leq n/4$, which is a contradiction.

We see that $F_2 = L + \overline{C}_i^2 + \overline{Z}_i^2$ for some i = 1, ..., 14, where L is an irreducible curve contained in the exceptional divisor E_2 such that

$$\overline{R}\big|_{S_2} = L + \overline{C}_i^2 + \overline{Z}_i^2 \equiv -K_{U_2}\big|_{S_2}$$

We may assume that $F_2 = L + \overline{C}_1^2 + \overline{Z}_1^2$. Then

$$L \cdot \overline{C}_1^2 = L \cdot \overline{Z}_1^2 = \overline{C}_1^2 \cdot \overline{Z}_1^2 = 1, \qquad \overline{C}_1^2 \cdot \overline{C}_1^2 = -2 \quad \text{and} \quad \overline{Z}_1^2 \cdot \overline{Z}_1^2 = L \cdot L = -\frac{3}{2}$$

on the surface S_2 . From Lemma 4.21 we see that $Q_2 \in L$ and $\overline{C}_1^2 \not\equiv Q_2 \notin \overline{Z}_1^2$. Let

$$D_2\big|_{S_2} + \left(\mu_2 - \frac{n}{3}\right) E_2\big|_{S_2} = m_1 L + m_2 \overline{C}_1^2 + m_3 \overline{Z}_1^2 + \Omega \equiv -nK_{U_2}\big|_{S_2},$$

where m_1 , m_2 and m_3 are non-negative rational numbers and Ω is an effective \mathbb{Q} -divisor on S_2 whose support does not contain the curves L, \overline{C}_1^2 and \overline{Z}_1^2 .

By [1], Theorem 7.5 the log pair

$$(S_2, \lambda m_1 L + \lambda m_2 \overline{C}_1^2 + \lambda \overline{Z}_1^2 + \lambda \Omega)$$

is not log canonical at the point Q_2 . We shall show that this leads to a contradiction. The log pair $(S_2, L + \overline{C}_1^2 + \overline{Z}_1^2)$ is log canonical at Q_2 . In view of the equivalence

$$L + \overline{C}_1^2 + \overline{Z}_1^2 \equiv -K_{U_2}\big|_{S_2}$$

and Remark 2.2, we may assume that $m_1m_2m_3=0$.

Suppose that $m_1 = 0$. Then it follows from Remark 2.4 that

$$\frac{n}{2} = L \cdot (m_2 \overline{C}_1^2 + m_2 \overline{Z}_1^2 + \Omega) = m_2 + m_3 + L \cdot \Omega > m_2 + m_3 + \frac{1}{\lambda} \geqslant n,$$

which is a contradiction. Hence we may assume that $m_1 \neq 0$.

Suppose that $m_2 = 0$. Then

$$0 = \overline{C}_1^2 \cdot (m_1 L + m_3 \overline{Z}_1^2 + \Omega) = m_1 + m_3 + \overline{C}_1^2 \cdot \Omega \geqslant m_1 + m_3,$$

which implies that $m_1 = m_3 = 0$. However, we know that $m_1 \neq 0$, which is a contradiction.

Hence we see that $m_1 \neq 0$ and $m_2 \neq 0$, which implies that $m_3 = 0$. Then

$$\frac{n}{2} = \overline{Z}_1^2 \cdot (m_1 L + m_2 \overline{C}_1^2 + \Omega) = m_1 + m_2 + \overline{Z}_1^2 \cdot \Omega \geqslant m_1 + m_2$$

because $\overline{Z}_1^2 \cdot \Omega \geqslant 0.$ On the other hand, it follows from Remark 2.4 that

$$\frac{n}{2} = L \cdot (m_1 L + m_2 \overline{C}_1^2 + \Omega) = -\frac{3m_1}{2} + m_2 + L \cdot \Omega > -\frac{3m_1}{2} + m_2 + n$$

because $m_1 \leq n/2$. These relations are not yet contradictory, but

$$0 = \overline{C}_1^2 \cdot (m_1 L + m_2 \overline{C}_1^2 + \Omega) = m_1 - 2m_2 + \overline{C}_1^2 \cdot \Omega \geqslant m_1 - 2m_2,$$

which implies that $m_2 \ge m_1/2$. The inequalities obtained are inconsistent, which completes the proof.

We see that $Q_2 = O_3$. Let \check{D} be the proper transform of D on the variety Y_2 . Then

$$\breve{D} \equiv (\alpha_2 \circ \beta_2)^*(D) - \mu_2 \alpha_2^*(E_2) - \varepsilon G,$$

where G is the β_2 -exceptional divisor and ε is a rational number. Now,

$$K_{Y_2} + \lambda \breve{D} + \left(\lambda \mu_2 - \frac{n}{3}\right) \breve{E}_2 + \left(\lambda \varepsilon + \frac{\lambda \mu_2}{2} - \frac{2}{3}\right) G \equiv (\alpha_2 \circ \beta_2)^* (K_X + \lambda D) \equiv 0,$$

where E_2 is the proper transform of the surface E_2 on the variety Y. Then

$$\varepsilon + \frac{\mu_2}{2} > \frac{2n}{3}$$

by Remark 2.3. We now find an upper bound for $\varepsilon + \mu_2/2$.

Lemma 4.23. $\varepsilon + \mu_2/2 \leqslant 7n/6$.

Proof. Let F be a sufficiently general fibre of the map $\psi \circ \alpha_2 \circ \beta_2$. Then

$$0 \leqslant \check{D} \cdot F = \left((\alpha_2 \circ \beta_2)^*(D) - \mu_2 \check{E}_2 - \left(\varepsilon + \frac{\mu_2}{2} \right) G \right) \cdot F = \frac{7n}{6} - \varepsilon - \frac{\mu_2}{2} ,$$

which yields the required inequality and completes the proof.

Thus, there is a point $Q \in G$ such that the log pair

$$\left(Y_2, \lambda \check{D} + \left(\lambda \mu_2 - \frac{n}{3}\right) \check{E}_2 + \left(\lambda \varepsilon + \frac{\lambda \mu_2}{2} - \frac{2}{3}\right) G\right)$$

is not log canonical at Q. Let \check{S} be a general surface in $|-K_{Y_2}|$ such that $Q \in \check{S}$.

Remark 4.24. The surface \check{S} is smooth at the point Q.

Let \check{F} be the fibre of the map $\psi \circ \alpha_2 \circ \beta_2$ passing through the point Q. Then $Q \notin \operatorname{Sing}(\check{F})$.

Lemma 4.25. The fibre \check{F} is reducible.

Proof. Suppose that \breve{F} is irreducible. Let

$$\overline{D}\big|_{\breve{S}} + \left(\mu_2 - \frac{n}{3}\right) \breve{E}_2\big|_{\breve{S}} + \left(\varepsilon + \frac{\mu_2}{2} - \frac{2n}{3}\right) G\big|_{\breve{S}} = m\breve{F} + \Omega \equiv -nK_{Y_2}\big|_{\breve{S}},$$

where m is a non-negative rational number and Ω is an effective \mathbb{Q} -divisor on \check{S} whose support does not contain the curve \check{F} .

By [1], Theorem 7.5 the log pair

$$(\breve{S}, \lambda m \breve{F} + \lambda \Omega)$$

is not log canonical at the point Q_2 . We claim that this is impossible.

Note that $m \leq n$ because

$$m\ddot{F} + \Omega \equiv n\ddot{F} \equiv -nK_{Y_2}|_{\ddot{S}}$$

on the surface \check{S} . By Remark 2.2 we may assume that m=0. Then

$$\frac{n}{2} = \breve{F} \cdot \Omega > \frac{1}{\lambda} = n$$

by Remark 2.4, which is a contradiction. The proof is complete.

Let \check{C}_i^1 and \check{Z}_i^1 be the proper transforms of C_i^1 and Z_i^1 on Y_2 , respectively, where $i=1,\ldots,35$.

Lemma 4.26. The fibre \check{F} does not contain any curve among

$$\breve{C}_1^1, \ldots, \breve{C}_{35}^1, \breve{Z}_1^1, \ldots, \breve{Z}_{35}^1.$$

Proof. Suppose that the support of the curve \check{F} contains one of the curves listed above. We shall show that this assumption leads to a contradiction.

Without loss of generality we may assume that the support of the curve \check{F} contains either the curve \check{C}_1^1 or the curve \check{Z}_1^1 . Then $\check{F}=\check{C}_1^1+\check{Z}_1^1$. On the surface \check{S} ,

$$\check{C}_1^1 \cdot \check{Z}_1^2 = 2, \qquad \check{C}_1^1 \cdot \check{C}_1^1 = -\frac{3}{2} \,, \qquad \check{Z}_1^1 \cdot \check{Z}_1^1 = -2$$

We have $\check{C}_1^1 \not\ni Q \in \check{Z}_1^1$. As usual, let

$$\check{D}\big|_{\check{S}} + \left(\mu_2 - \frac{n}{3}\right) \check{E_2}\big|_{\check{S}} + \left(\varepsilon + \frac{\mu_2}{2} - \frac{2n}{3}\right) G\big|_{\check{S}} = m_1 \check{C}_1^1 + m_2 \check{Z}_1^1 + \Omega \equiv n \check{C}_1^1 + n \check{Z}_1^1,$$

where m_1 and m_2 are non-negative rational numbers and Ω is an effective \mathbb{Q} -divisor on \check{S} whose support does not contain the curves \check{C}_1^1 and \check{Z}_1^1 .

By [1], Theorem 7.5 the log pair

$$(\breve{S}, \lambda m_1 \breve{C}_1^1 + \lambda m_2 \breve{Z}_1^1 + \lambda \Omega)$$

is not log canonical at the point Q. We shall show that this leads to a contradiction.

The log pair $(\breve{S}, \breve{C}_1^1 + \breve{Z}_1^1)$ is log canonical at Q. Hence we may assume by Remark 2.2 that $m_1 = 0$ or $m_2 = 0$.

Suppose that $m_1 = 0$. Then

$$\frac{n}{2} = \check{C}_1^1 \cdot \left(m_2 \check{Z}_1^1 + \Omega \right) = 2m_2 + \check{C}_1^1 \cdot \Omega \geqslant 2m_2,$$

which implies that $m_2 \leq n/2$. By Remark 2.4 we obtain

$$0 = \breve{Z}_1^1 \cdot (m_2 \breve{Z}_1^1 + \Omega) = -2m_2 + \breve{Z}_1^1 \cdot \Omega > -2m_2 + n,$$

which implies that $m_2 > n/2$. This inequality contradicts the relation $m_2 \leq n/2$. Thus, to complete the proof we may assume that $m_1 \neq 0$ and $m_2 = 0$. Then

$$0 = \breve{Z}_1^1 \cdot (m_1 \breve{C}_1^1 + \Omega) = 2m_1 + \breve{Z}_1^1 \cdot \Omega \geqslant 2m_1,$$

which is impossible because $m_1 \neq 0$. The proof is complete.

Let \check{C}_i^2 and \check{Z}_i^2 be the proper transforms of C_i^2 and Z_i^2 on Y_2 , respectively, where $i=1,\ldots,14$.

Lemma 4.27. The fibre \check{F} does not contain any curve among

$$\check{C}_1^2, \dots, \check{C}_{14}^2, \check{Z}_1^2, \dots, \check{Z}_{14}^2.$$

Proof. Suppose that the support of the curve \check{F} contains one of the curves listed above. We shall show that this leads to a contradiction.

We may assume that \check{F} contains \check{C}_1^2 or \check{Z}_1^2 . Then

$$\breve{F} = \breve{L} + \breve{C}_1^2 + \breve{Z}_1^2,$$

where \check{L} is an irreducible curve such that $\check{L} \subset \check{E}_2$. Then

$$\check{L}\cdot \check{C}_1^2=\check{L}\cdot \check{Z}_1^2=\check{C}_1^2\cdot \check{Z}_1^2=1, \qquad \check{C}_1^2\cdot \check{C}_1^2=\check{L}\cdot \check{L}=-2, \qquad \check{Z}_1^2\cdot \check{Z}_1^2=-\frac{3}{2}$$

on the surface \check{S} . We know that $Q \in \check{L}$ and $\check{C}_1^2 \not\ni Q \notin \check{Z}_1^2$. Let

$$\begin{split} \check{D}\big|_{\breve{S}} + \left(\mu_2 - \frac{n}{3}\right) \check{E}_2\big|_{\breve{S}} + \left(\varepsilon + \frac{\mu_2}{2} - \frac{2n}{3}\right) G\big|_{\breve{S}} \\ &= m_1 \check{L} + m_2 \check{C}_1^2 + m_3 \check{Z}_1^2 + \Omega \equiv n \check{L} + n \check{C}_1^2 + n \check{Z}_1^2, \end{split}$$

where m_1 , m_2 and m_3 are non-negative rational numbers and Ω is an effective \mathbb{Q} -divisor on \check{S} whose support does not contain the curves \check{L} , \check{C}_1^2 or \check{Z}_1^2 .

By [1], Theorem 7.5 the log pair

$$(\breve{S}, \lambda m_1 \breve{L} + \lambda m_2 \breve{C}_1^2 + \lambda m_3 \breve{Z}_1^2 + \lambda \Omega)$$

is not log canonical at Q. We shall show that this leads to a contradiction.

The log pair $(\check{S}, \check{L} + \check{C}_1^2 + \check{Z}_1^2)$ is log canonical at Q, so we may assume that either $m_1 = 0$, or $m_2 = 0$, or $m_3 = 0$ (see Remark 2.2).

Suppose that $m_1 = 0$. Then it follows from Remark 2.4 that

$$0 = \check{L} \cdot (m_2 \check{C}_1^2 + m_3 \check{Z}_1^2 + \Omega) = m_2 + m_3 + \check{L} \cdot \Omega > m_2 + m_3 + n,$$

which is a contradiction. Thus, we may assume that $m_1 \neq 0$.

Suppose that $m_2 = 0$. Then

$$0 = \breve{C}_1^2 \cdot (m_1 \breve{L} + m_3 \breve{Z}_1^2 + \Omega) = m_1 + m_3 + \breve{C}_1^2 \cdot \Omega \geqslant m_1 + m_3,$$

which implies that $m_1 = m_3 = 0$. However, $m_1 \neq 0$, which is a contradiction. Hence we see that $m_1 \neq 0$ and $m_2 \neq 0$. We may assume that $m_3 = 0$. Then

$$\frac{n}{2} = \breve{Z}_1^2 \cdot (m_1 \breve{L} + m_2 \breve{C}_1^2 + \Omega) = m_1 + m_2 + \breve{Z}_1^2 \cdot \Omega \geqslant m_1 + m_2,$$

which implies, in particular, that $m_1 \leq n/2$. By Remark 2.4 we obtain

$$0 = \breve{L} \cdot (m_1 \breve{L} + m_2 \breve{C}_1^2 + \Omega) = -2m_1 + m_2 + \breve{L} \cdot \Omega > -2m_1 + m_2 + n,$$

which means that $m_1 > n/2$. This contradicts the inequality $m_1 \leq n/2$ and completes the proof.

By Lemmas 4.25–4.27 we have $\check{F} = \check{L} + \check{Z}$, where \check{L} and \check{Z} are irreducible curves such that $\check{L} \subset \check{E}_2$ and $\check{Z} \not\subset \check{E}_2$. Note that $\check{Z} \not\supseteq Q \in \check{L}$ because $\check{Z} \cap G = \varnothing$. Then

$$\breve{L} \cdot \breve{Z} = 2, \qquad \breve{Z} \cdot \breve{Z} = -\frac{3}{2} \quad \text{and} \quad \breve{L} \cdot \breve{L} = -2$$

on the surface \check{S} . As usual, let

$$\breve{D}\big|_{\breve{S}} + \left(\mu_2 - \frac{n}{3}\right)\breve{E}_2\big|_{\breve{S}} + \left(\varepsilon + \frac{\mu_2}{2} - \frac{2n}{3}\right)G\big|_{\breve{S}} = m_1\breve{L} + m_2\breve{Z} + \Omega \equiv n\breve{L} + n\breve{Z},$$

where m_1 and m_2 are non-negative rational numbers and Ω is an effective \mathbb{Q} -divisor on the surface \check{S} whose support does not contain the curves \check{L} and \check{Z} .

By [1], Theorem 7.5 the log pair

$$(\breve{S}, \lambda m_1 \breve{L} + \lambda m_2 \breve{Z} + \lambda \Omega)$$

is not log canonical at the point Q. We shall show that this leads to a contradiction.

By Remark 2.2 we may assume that $m_1 = 0$ or $m_2 = 0$ because the singularities of the log pair $(\check{S}, \check{L} + \check{Z})$ are log canonical at the point Q.

Suppose that $m_1 = 0$. Then it follows from Remark 2.4 that

$$0 = \breve{L} \cdot (m_2 \breve{Z} + \Omega) = 2m_2 + \breve{L} \cdot \Omega > 2m_2 + n,$$

which is a contradiction. Hence we may assume that $m_2 = 0$. Then

$$\frac{n}{2} = \breve{Z} \cdot (m_1 \breve{L} + \Omega) = 2m_1 + \breve{Z} \cdot \Omega \geqslant 2m_1,$$

which implies that $m_1 \leq n/2$. By Remark 2.4 we obtain

$$0 = \breve{L} \cdot (m_1 \breve{L} + \Omega) = -2m_1 + \breve{L} \cdot \Omega > -2m_1 + n,$$

which implies that $m_1 > n/2$ —a contradiction. The proof of Theorem 1.44 is complete.

Bibliography

- J. Kollár, "Singularities of pairs", Algebraic geometry (Santa Cruz, CA, USA 1995), Proceedings of the Summer Research Institute, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI 1997, pp. 221–287.
- V. V. Shokurov, "3-fold log flips", Izv. Ross. Akad. Nauk Ser. Mat. 56:1 (1992), 105–203;
 English transl. in Russian Acad. Sci. Izv. Math. 40:1 (1993), 95–202.
- [3] G. Tian, "On Kähler-Einstein metrics on certain Kähler manifolds with $C_1(M) > 0$ ", Invent. Math. 89:2 (1987), 225–246.
- [4] I. A. Cheltsov, "Log canonical thresholds on hypersurfaces", Mat. Sb. 192:8 (2001), 155-172; English transl. in Sb. Math. 192:8 (2001), 1241-1257.
- [5] I. A. Cheltsov, "Double spaces with isolated singularities", Mat. Sb. 199:2 (2008), 131–148;
 English transl. in Sb. Math. 199:2 (2008), 291–306.
- [6] J.-M. Hwang, "Log canonical thresholds of divisors on Fano manifolds of Picard number 1", Compos. Math. 143:1 (2007), 89–94.
- [7] A. V. Pukhlikov, "Birational geometry of Fano direct products", Izv. Ross. Akad. Nauk Ser. Mat. 69:6 (2005), 153–186; English transl. in Izv. Math. 69:6 (2005), 1225–1255.

- [8] I. Cheltsov, J. Park and J. Won, Log canonical thresholds of certain Fano hypersurfaces, http://arxiv.org/abs/0706.0751.
- [9] I. Cheltsov, "Log canonical thresholds of del Pezzo surfaces", Geom. Funct. Anal. 18:4 (2008), 1118-1144; arXiv:math/0703175.
- [10] I. Cheltsov, "On singular cubic surfaces", Asian J. Math. (to appear); arXiv: abs/0706.2666.
- [11] G. Tian, "On a set of polarized Kähler metrics on algebraic manifolds", J. Differential Geom. 32:1 (1990), 99–130.
- [12] A.M. Nadel, "Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature", Ann. of Math. (2) 132:3 (1990), 549–596.
- [13] J.-P. Demailly and J. Kollár, "Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds", Ann. Sci. École Norm. Sup. (4) 34:4 (2001), 525–556.
- [14] T. Aubin, "Équations du type Monge-Ampère sur les variétés kählériennes compactes", Bull. Sci. Math. (2) 102:1 (1978), 63–95.
- [15] Sh.-T. Yau, "On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I", Comm. Pure Appl. Math. 31:3 (1978), 339-411.
- [16] Sh.-T. Yau, "Review on Kähler-Einstein metrics in algebraic geometry", Proceedings of the Hirzebruch 65 conference on algebraic geometry (Bar-Ilan University, Ramat Gan, Israel 1993), Israel Math. Conf. Proc., vol. 9, Ramat Gan, Bar-Ilan Univ. 1996, pp. 433–443.
- [17] Y. Matsushima, "Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kaehlérienne", Nagoya Math. J. 11 (1957), 145–150.
- [18] M. Lübke, "Stability of Einstein-Hermitian vector bundles", Manuscripta Math. 42:2–3 (1983), 245–257.
- [19] A. Futaki, "An obstruction to the existence of Einstein Kähler metrics", Invent. Math. 73:3 (1983), 437–443.
- [20] A. Steffens, "On the stability of the tangent bundle of Fano manifolds", Math. Ann. 304:1 (1996), 635–643.
- [21] G. Tian, "Kähler-Einstein metrics with positive scalar curvature", Invent. Math. 130:1 (1997), 1–37.
- [22] S. K. Donaldson, A note on the α-invariant of the Mukai-Umemura 3-fold, arXiv: abs/0711.4357.
- [23] T. Mabuchi, "Einstein-Kähler forms, Futaki invariants and convex geometry on toric Fano varieties", Osaka J. Math. 24:4 (1987), 705–737.
- [24] V. V. Batyrev and E. N. Selivanova, "Einstein-Kähler metrics on symmetric toric Fano manifolds", J. Reine Angew. Math. 512 (1999), 225–236.
- [25] X.-J. Wang and X. Zhu, "Kähler-Ricci solitons on toric manifolds with positive first Chern class", Adv. Math. 188:1 (2004), 87–103.
- [26] B. Nill, "Complete toric varieties with reductive automorphism group", Math. Z. 252:4 (2006), 767–786.
- [27] G. Tian, "On Calabi's conjecture for complex surfaces with positive first Chern class", Invent. Math. 101:1 (1990), 101–172.
- [28] C. Arezzo, A. Ghigi and G.P. Pirola, "Symmetries, quotients and Kähler-Einstein metrics", J. Reine Angew. Math. 591 (2006), 177–200.
- [29] W. Ding and G. Tian, "Kähler-Einstein metrics and the generalized Futaki invariant", Invent. Math. 110:1 (1992), 315–335.
- [30] J. M. Johnson and J. Kollár, "Kähler-Einstein metrics on log del Pezzo surfaces in weighted projective 3-spaces", Ann. Inst. Fourier (Grenoble) 51:1 (2001), 69–79.
- [31] Ch. P. Boyer, K. Galicki and M. Nakamaye, "Sasakian-Einstein structures on $9\#(S^2\times S^3)$ ", Trans. Amer. Math. Soc. **354**:8 (2002), 2983–2996.
- [32] C. Araujo, "Kähler-Einstein metrics for some quasi-smooth log del Pezzo surfaces", *Trans. Amer. Math. Soc.* **354**:11 (2002), 4303–4312.
- [33] J. M. Johnson and J. Kollár, "Fano hypersurfaces in weighted projective 4-spaces", Experiment. Math. 10:1 (2001), 151–158.

- [34] J. Park, "Birational maps of del Pezzo fibrations", J. Reine Angew. Math. 538 (2001), 213–221.
- [35] A. Corti, "Del Pezzo surfaces over Dedekind schemes", Ann. of Math. (2) 144:3 (1996), 641–683.
- [36] A. Corti, "Singularities of linear systems and 3-fold birational geometry", Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge 2000, pp. 259–312.
- [37] I. A. Cheltsov, "Birationally rigid Fano varieties", Uspekhi Mat. Nauk 60:5 (2005), 71–160; English transl. in Russian Math. Surveys 60:5 (2005), 875–965.
- [38] V. A. Iskovskih (Iskovskikh) and Yu. I. Manin, "Three-dimensional quartics and counterexamples to the Lüroth problem", Mat. Sb. 86(128):1(9) (1971), 140–166; English transl. in Math. USSR-Sb. 15:1 (1971), 141–166.
- [39] A. V. Pukhlikov, "Birational automorphisms of Fano hypersurfaces", *Invent. Math.* **134**:2 (1998), 401–426.
- [40] V. A. Iskovskikh, "Birational automorphisms of three-dimensional algebraic varieties", Itogi Nauki Tekhn. Ser. Sovrem. Probl. Mat., vol. 12, VINITI, Moscow 1979, pp. 159–236; English transl. in J. Soviet Math. 13:6 (1980), 815–868.
- [41] A. V. Pukhlikov, "Birational automorphisms of a double space and double quadric", *Izv. Akad. Nauk SSSR Ser. Mat.* **52**:1 (1988), 229–239; English transl. in *Math. USSR-Izv.* **32**:1 (1988), 233–243.
- [42] V. A. Iskovskikh and A. V. Pukhlikov, "Birational automorphisms of multidimensional algebraic manifolds", *J. Math. Sci.* **82**:4 (1996), 3528–3613.
- [43] A. V. Pukhlikov, "Birationally rigid Fano hypersurfaces with isolated singularities", Mat. Sb. 193:3 (2002), 135–160; English transl. in Sb. Math. 193:3 (2002), 445–471.
- [44] J.Kollár, "Universal untwisting of birational maps", Trudy Math. Inst. Steklova (to appear).
- [45] I. Cheltsov, "Fano varieties with many selfmaps", Adv. Math. 217:1 (2008), 97–124.
- [46] A. R. Iano-Fletcher, "Working with weighted complete intersections", Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge 2000, pp. 101–173.
- [47] A. Corti, A. Pukhlikov and M. Reid, "Fano 3-fold hypersurfaces", Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge 2000, pp. 175–258.
- [48] I. Cheltsov and J. Park, "Weighted Fano threefold hypersurfaces", J. Reine Angew. Math. 600 (2006), 81–116.
- [49] I. A. Cheltsov, "Log canonical thresholds of Fano threefold hypersurfaces", *Izv. Ross. Akad. Nauk Ser. Mat.* (to appear). (Russian)
- [50] I. A. Cheltsov, "Elliptic structures on weighted three-dimensional Fano hypersurfaces", Izv. Ross. Akad. Nauk Ser. Mat. 71:4 (2007), 115–224; English transl. in Izv. Math. 71:4 (2007), 765–862.

I. A. Cheltsov

University of Edinburgh, UK *E-mail*: cheltsov@yahoo.com

Received 7/FEB/08 and 4/APR/08 Translated by I. CHELTSOV