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1 Introduction

For a given variety, one of the substantial questions is whether it is rational
or not. Global holomorphic di�erential forms are natural birational invariants
of smooth algebraic varieties which solve the rationality problem for algebraic
curves and surfaces (see [147]). However, these birational invariants are not
sensitive enough to tell whether a given higher dimensional algebraic variety is
nonrational. There are only four known methods to prove the nonrationality
of a higher dimensional algebraic variety (see [79]).

The nonrationality of a smooth quartic 3-fold was proved in [80] using
the group of birational automorphisms as a birational invariant. The nonra-
tionality of a smooth cubic 3-fold was proved in [39] through the study of its
intermediate Jacobian. Birational invariance of the torsion subgroups of the
3rd integral cohomology groups was used in [4] to prove the nonrationality
of some unirational varieties. The nonrationality of a wide class of rationally
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connected varieties was proved in [88] via reductions into �elds of positive
characteristic (see [34], [89], and [90]). Meanwhile, the method of intermedi-
ate Jacobians works only in 3-folds. In most of the interesting cases, the 3rd
integral cohomology groups have no torsion. The method of paper [88] works
in every dimension, but its direct application gives the nonrationality just
for a very general element of a given family. Even though the method of [80]
works in every dimension, the area of its application is not so broad.

For this paper we mainly use the method that has evolved out of [80]. The
most signi�cant concept in the method is the birational super-rigidity that
was implicitly introduced in [80].

De�nition 1.1. A terminal Q-factorial Fano variety V with Pic(V ) ∼= Z is
birationally super-rigid if the following three conditions hold:

1. the variety V cannot be birationally transformed into a �bration3 whose
general enough �ber is a smooth variety of Kodaira dimension −∞;

2. the variety V cannot be birationally transformed into another terminal
Q-factorial Fano variety with Picard group Z that is not biregular to V ;

3. Bir(V ) = Aut(V ).

Implicitly the paper [80] proved that all the smooth quartic 3-folds in P4 are
birationally super-rigid. Moreover, some Fano 3-folds with nontrivial group of
birational automorphisms were also handled by the technique of [80], which
gave the following weakened version of the birational super-rigidity:

De�nition 1.2. A terminal Q-factorial Fano variety V with Pic(V ) ∼= Z is
called birationally rigid if the �rst two conditions of De�nition 1.1 are satis�ed.

It is clear that the birational rigidity implies the nonrationality. Initially the
technique of [80] was applied only to smooth varieties such as quartic 3-
folds, quintic 4-folds, certain complete intersections, double spaces, and so
on, but later, to singular varieties in [44], [65], [66], [67], [103], [111], [113],
and [119]. Moreover, similar results were proved for many higher-dimensional
conic bundles (see [125] and [126]) and del Pezzo �brations (see [115]). Re-
cently, Shokurov's connectedness principle in [130] shed a new light on the
birational rigidity, which simpli�ed the proofs of old results and helped to
obtain new results (see [25], [29], [42], [49], [114], and [118]).

A quartic 3-fold with a single simple double point is not birationally super-
rigid, but it is proved in [111] to be birationally rigid (for a simple proof,
see [42]). However, a quartic 3-fold with one nonsimple double point may
not necessarily be birationally rigid as shown in [44]. On the other hand, Q-
factorial quartic 3-folds with only simple double points are birationally rigid
(see [103]).

Double covers of P3 with at most simple double points, so-called double
solids, were studied in [37] with a special regard to quartic double solids, i.e.,

3For every �bration τ : Y → Z, we assume that dim(Y ) > dim(Z) 6= 0 and
τ∗(OY ) = OZ .
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double covers of P3 rami�ed along quartic nodal surfaces. It is natural to ask
whether a double solid is rational or not. We can immediately see that all
double solids are nonrational when their rami�cation surfaces are of degree
greater than six. However, if the rami�cation surfaces have lower degree, then
the problem is not simple.

Smooth quartic double solids are known to be nonrational (see [38], [94],
[133], [134], [135], [136], and [144]), but singular ones can be birationally trans-
formed into conic bundles. Quartic double solids cannot have more than 16
simple double points (see [12], [53], [92], [106], and [123]) and in the case
of one simple double point they are nonrational as well (see [13] and [138]).
There are non-Q-factorial quartic double solids with six simple double points
that can be birationally transformed into smooth cubic 3-folds (see [91]) and
therefore are not rational due to [39]. On the other hand, some quartic double
solids with seven simple double points are rational (see [91]). In general, the
rationality question of singular quartic double solids can be very subtle and
must be handled through the technique of intermediate Jacobians (see [13],
[128], and [129]).

In the present paper we will consider the remaining case�the nonrational-
ity question of sextic double solids, i.e., double covers of P3 rami�ed along
sextic nodal surfaces. To generate various examples of sextic double solids, we
note that a double cover π : X → P3 rami�ed along a sextic surface S ⊂ P3

can be considered as a hypersurface

u2 = f6(x, y, z, w)

of degree 6 in the weighted projective space P(1, 1, 1, 1, 3), where x, y, z, and
w are homogeneous coordinates of weight 1, u is a homogeneous coordinate
of weight 3, and f6 is a homogeneous polynomial of degree 6.

A smooth sextic double solid is proved to be birationally super-rigid in
[77]. Moreover, a smooth double space of dimension n ≥ 3 was considered
in [110]. The birational super-rigidity of a double cover of P3 rami�ed along
a sextic with one simple double point was proved in [113]. To complete the
study in this direction, one needs to prove the following:

Theorem A. Let π : X → P3 be a Q-factorial double cover rami�ed along a
sextic nodal surface S ⊂ P3. Then X is birationally super-rigid.

As an immediate consequence, we obtain:

Corollary A. Every Q-factorial double cover of P3 rami�ed along a sextic
nodal surface is nonrational and not birationally isomorphic to a conic bundle.

Remark 1.3. Our proof of Theorem A does not require the base �eld to be
algebraically closed. Therefore, the statement of Theorem A is valid over an
arbitrary �eld of characteristic zero.
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One can try to prove the nonrationality of a sextic double solid using the
technique of intermediate Jacobians (see [13], [128], and [129]), but it seems
to be very hard and still undone even in the smooth case (see [22]) except for
the nonrationality of a su�ciently general smooth sextic double solid via a
degeneration technique (see [13], [36], and [138]).

It is worthwhile to put emphasis on the Q-factoriality condition of The-
orem A. Indeed, rational sextic double solids do exist if we drop the Q-
factoriality condition.

Example 1.4. Let X be the double cover of P3 rami�ed in the Barth sextic
(see [6]) given by the equation

4(τ2x2 − y2)(τ2y2 − z2)(τ2z2 − x2)− w2(1 + 2τ)(x2 + y2 + z2 − w2)2 = 0

in Proj(C[x, y, z, w]), where τ = 1+
√

5
2 . Then X has only simple double points

and the number of singular points is 65. Moreover, there is a determinantal
quartic 3-fold V ⊂ P4 with 42 simple double points such that the diagram

V

ρ

���
�
�
� � f // P4

γ

���
�
�

X π
// P3

commutes (see [53] and [108]), where ρ is a birational map and γ is the pro-
jection from one simple double point of the quartic V . Therefore, the double
cover X is rational because determinantal quartics are rational (see [103] and
[108]). In particular, X is not Q-factorial by Theorem A. Indeed, one can show
that Pic(X) ∼= Z and Cl(X) ∼= Z14 (see Example 3.7 in [53]).

A point p on a double cover π : X → P3 rami�ed along a sextic surface
S is a simple double point on X if and only if the point π(p) is a simple
double point on S. Sextic surfaces cannot have more than 65 simple double
points (see [7], [82], and [143]). Furthermore, for each positive integer m not
exceeding 65 there is a sextic surface with m simple double points (see [6],
[21], and [132]), but in many cases it is not clear whether the corresponding
double cover is Q-factorial or not (see [37], [46], and [53]).

Example 1.4 shows that the Q-factoriality condition is crucial for The-
orem A. Accordingly, it is worthwhile to study the Q-factoriality of sextic
double solids.

A variety X is called Q-factorial if a multiple of each Weil divisor on the
variety X is a Cartier divisor. The Q-factoriality depends on both local types
of singularities and their global position (see [35], [37], and [103]). Moreover,
the Q-factoriality of the variety X depends on the �eld of de�nition of the
variety X as well. When X is a Fano 3-fold with mild singularities and de�ned
over C, the global topological condition
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rank(H2(X,Z)) = rank(H4(X,Z))

is equivalent to the Q-factoriality. The following three examples are inspired
by [5], [91], and [103].

Example 1.5. Let π : X → P3 be the double cover rami�ed along a sextic S
and given by

u2 + g2
3(x, y, z, w) = h1(x, y, z, w)f5(x, y, z, w) ⊂ P(1, 1, 1, 1, 3),

where g3, h1, and f5 are su�ciently general polynomials de�ned over R of
degree 3, 1, and 5, respectively; x, y, z, w are homogeneous coordinates of
weight 1; u is a homogeneous coordinate of weight 3. Then the double cover
X is not Q-factorial over C because the divisor h1 = 0 splits into two non-Q-
Cartier divisors conjugated by Gal(C/R) and given by the equation

(u+
√
−1g3(x, y, z, w))(u−

√
−1g3(x, y, z, w)) = 0.

The sextic surface S ⊂ Proj(C[x, y, z, w]) has 15 simple double points at
the intersection points of the three surfaces

{h1(x, y, z, w) = 0} ∩ {g3(x, y, z, w) = 0} ∩ {f5(x, y, z, w) = 0},

which gives 15 simple double points of X. Introducing two new variables s
and t of weight 2 de�ned by

s =
u+

√
−1g3(x, y, z, w)

h1(x, y, z, w)
=

f5(x, y, z, w)
u−

√
−1g3(x, y, z, w)

t =
u−

√
−1g3(x, y, z, w)

h1(x, y, z, w)
=

f5(x, y, z, w)
u+

√
−1g3(x, y, z, w)

we can unproject X ⊂ P(1, 1, 1, 1, 3) in the sense of [121] into two complete
intersections

Vs =

{
sh1(x, y, z, w) = u+

√
−1g3(x, y, z, w)

s(u−
√
−1g3(x, y, z, w)) = f5(x, y, z, w)

}
⊂ P(1, 1, 1, 1, 3, 2)

Vt =

{
th1(x, y, z, w) = u−

√
−1g3(x, y, z, w)

t(u+
√
−1g3(x, y, z, w)) = f5(x, y, z, w)

}
⊂ P(1, 1, 1, 1, 3, 2),

respectively, which are not de�ned over R. Eliminating variable u, we get{
Vs = {s2h1 − 2

√
−1sg3 − f5 = 0} ⊂ P(1, 1, 1, 1, 2)

Vt = {t2h1 + 2
√
−1tg3 − f5 = 0} ⊂ P(1, 1, 1, 1, 2)

and for the unprojections ρs : X 99K Vs and ρt : X 99K Vt we obtain a
commutative diagram
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Ys
ψs

~~~~
~~

~~
~

φs

  @
@@

@@
@@

@ Yt
φt

��~~
~~

~~
~~ ψt

��@
@@

@@
@@

Vs X
ρt //_______ρsoo_ _ _ _ _ _ _ Vt

with birational morphisms φs, ψs, φt, and ψt such that ψs and ψt are extremal
contractions in the sense of [41], while φs and φt are �opping contractions.
Both the weighted hypersurfaces Vs and Vt are quasi-smooth (see [75]) and
Q-factorial with Picard groups Z (Lemma 3.5 in [43], Lemma 3.2.2 in [50],
Théoréme 3.13 of Exp. XI in [68], see also [20]). Moreover, Vs and Vt are
projectively isomorphic in P(1, 1, 1, 1, 2) by the action of Gal(C/R) ∼= Z2. In
particular,

Pic(Ys) ∼= Pic(Yt) ∼= Z⊕ Z;

Ys and Yt are Q-factorial; Cl(X) = Z ⊕ Z. However, the Gal(C/R)-invariant
part of the group Cl(X) is Z. Thus the 3-fold X is Q-factorial over R. It
is therefore birationally super-rigid and nonrational over R by Theorem A.
It is also not rational over C because Vs ∼= Vt is birationally rigid (see [43]).
Moreover, the involution of X interchanging �bers of π induces a nonbiregular
involution τ ∈ Bir(Vs) which is regularized by ρs, i.e., the self-map ρ−1

s ◦τ ◦ρs :
X → X is biregular (see [32]).

Example 1.6. Let V ⊂ P4 be a quartic 3-fold with one simple double point
o. Then the quartic V is Q-factorial and Pic(V ) ∼= Z. In fact, V can be given
by the equation

t2f2(x, y, z, w)+tf3(x, y, z, w)+f4(x, y, z, w) = 0 ⊂ P4 = Proj(C[x, y, z, w, t]).

Here, the point o is located at [0 : 0 : 0 : 0 : 1]. It is well known that the
quartic 3-fold V is birationally rigid and hence nonrational (see [42], [103],
and [111]). However, the quartic V is not birationally super-rigid because
Bir(V ) 6= Aut(V ). Indeed, the projection φ : V 99K P3 from the point o
has degree 2 at a generic point of V and induces a nonbiregular involution
τ ∈ Bir(V ).

Let f : Y → V be the blowup at the point o. The linear system | − nKY |
is free for some natural number n � 0 and gives a birational morphism
g = φ|−nKY | : Y → X contracting every curve Ci ⊂ Y such that f(Ci) is
a line on V passing through the point o. We then obtain the double cover
π : X → P3 rami�ed along the sextic surface S ⊂ P3 given by the equation

f2
3 (x, y, z, w)− 4f2(x, y, z, w)f4(x, y, z, w) = 0.

The variety X, a priori, has canonical Gorenstein singularities.
We suppose that V is general enough. Each line f(Ci) then corresponds

to an intersection point of three surfaces

{f2(x, y, z, w) = 0} ∩ {f3(x, y, z, w) = 0} ∩ {f4(x, y, z, w) = 0}
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in P3 = Proj(C[x, y, z, w]) which gives 24 di�erent smooth rational curves
C1, C2, . . . , C24 on Y . For each curve Ci we have

NY/Ci
∼= OCi(−1)⊕OCi(−1)

and hence the morphism g is a standard �opping contraction which maps
every curve Ci to a simple double point of the 3-fold X. In particular, the
sextic S ⊂ P3 has exactly 24 simple double points. However, the 3-fold X is
not Q-factorial and Cl(X) = Z⊕ Z.

Put ρ := g ◦ f−1. Then the involution γ = ρ ◦ τ ◦ ρ−1 is biregular on
X and interchanges the �bers of the double cover π. Thus the map ρ is a
regularization of the birational nonbiregular involution τ in the sense of [32],
while the commutative diagram

Y
f

~~~~
~~

~~
~

g

  @
@@

@@
@@

Y
g

~~~~
~~

~~
~

f

  @
@@

@@
@@

V
ρ //_______ X γ

// X V
ρoo_ _ _ _ _ _ _

is a decomposition of the birational involution τ ∈ Bir(V ) in a sequence of
elementary links (or Sarkisov links) with a midpoint X (see [41], [43], and
[78]).

Suppose that f2(x, y, z, w) and f4(x, y, z, w) are de�ned over Q and

f3(x, y, z, w) =
√

2g3(x, y, z, w),

where g3(x, y, z, t) is de�ned over Q as well. Then the quartic 3-fold V is
de�ned over Q(

√
2) and not invariant under the action of Gal(Q(

√
2)/Q).

However, the sextic surface S ⊂ P3 is given by the equation

2g2
3(x, y, z, w)− 4f2(x, y, z, w)f4(x, y, z, w) = 0 ⊂ P3 = Proj(Q[x, y, z, w]),

which implies that the 3-fold X is de�ned over Q as well. Moreover, the
Gal(Q(

√
2)/Q)-invariant part of the group Cl(X) is Z. Therefore, the 3-fold

X is Q-factorial and birationally super-rigid over Q by Theorem A and Re-
mark 1.3.

Example 1.7. Let V be a smooth divisor of bidegree (2, 3) in P1 × P3. The
3-fold V is then de�ned by the bihomogeneous equation

f3(x, y, z, w)s2 + g3(x, y, z, w)st+ h3(x, y, z, w)t2 = 0,

where f3, g3, and h3 are homogeneous polynomials of degree 3. In addition,
we denote the natural projection of V to P3 by π : V −→ P3. Suppose that the
polynomials f3, g3, and h3 are general enough. The 3-fold V then has exactly
27 lines C1, C2, · · · , C27 such that −KV · Ci = 0 because the intersection

{f3(x, y, z, w) = 0} ∩ {g3(x, y, z, w) = 0} ∩ {h3(x, y, z, w) = 0}
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in P3 consists of exactly 27 points. The projection π has degree 2 in the outside
of the 27 points π(Ci). The anticanonical model

Proj

⊕
n≥0

H0 (V,OV (−nKV ))


of V is the double cover X of P3 rami�ed along the nodal sextic S de�ned by

g2
3(x, y, z, w)− 4f3(x, y, z, w)h3(x, y, z, w) = 0.

It has exactly 27 simple double points each of which comes from each line
Ci. The morphism φ|−KV | : V −→ X given by the anticanonical system of V
contracts these 27 lines to the simple double points. Therefore, it is a small
contraction and hence the double cover X cannot be Q-factorial. A generic
divisor of bidegree (2, 3) in P1 × P3 over C is known to be nonrational (see
[5], [33], and [131]), and hence the double cover X is also nonrational.

As shown in Examples 1.5, 1.6, and 1.7, there are non-Q-factorial sextic
double solids with 15, 24, and 27 simple double points. However, we will prove
the following:

Theorem B. Let π : X → P3 be a double cover rami�ed along a nodal sextic
surface S ⊂ P3. Then the 3-fold X is Q-factorial when #|Sing(S)| ≤ 14 and
it is not Q-factorial when #|Sing(S)| ≥ 57.

Using Theorem A with the theorem above, we immediately obtain:

Corollary B. Let π : X → P3 be a double cover rami�ed along a sextic
S ⊂ P3 with at most 14 simple double points. Then X is birationally super-
rigid. In particular, X is not rational and not birationally isomorphic to a
conic bundle.

In [21], there are explicit constructions of sextic surfaces in P3 with each
number of simple double points not exceeding 64, which give us many exam-
ples of nonrational singular sextic double solids with at most 14 simple double
points.

Besides the birational super-rigidity, a Q-factorial double cover of P3 ram-
i�ed in a sextic nodal surface has other interesting properties. Implicitly the
method of [80] to prove the birational (super-)rigidity also gives us informa-
tion on birational transformations to elliptic �brations and Fano varieties with
canonical singularities.

Construction A. Consider a double cover π : X → P3 rami�ed along a
sextic S ⊂ P3 with a simple double point o. Let f : W → X be the blowup
at the point o. Then the anticanonical linear system | −KW | is free and the
morphism φ|−KW | : W → P2 is an elliptic �bration such that the diagram
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W

φ|−KW |

��

f // X

π

��
P2 P3

γoo_ _ _ _ _ _

is commutative, where γ : P3 99K P2 is the projection from the point π(o).

It is a surprise that some double covers of P3 rami�ed in nodal sextics can
be birationally transformed into elliptic �brations in a way very di�erent from
the one described in Construction A.

Construction B. Let π : X → P3 be a double cover rami�ed along a sextic
S ⊂ P3 such that the surface S contains a line L ⊂ P3 and the line L passes
through exactly four simple double points of S. For a general enough point
p ∈ X, there is a unique hyperplane Hp ⊂ P3 containing π(p) and L. The set
L ∩ (C \ Sing(S)) consists of a single point qp, where C ⊂ Hp is the quintic
curve given by S ∩Hp = L ∪C. The two points π(p) and qp determine a line
Lp in P3. De�ne a rational map ΞL : X 99K Grass(2, 4) by ΞL(p) = Lp. The
image of the map ΞL is isomorphic to P2, hence we may assume that the map
ΞL is a rational map of X onto P2. Obviously the map ΞL is not de�ned over
L, the normalization of its general �ber is an elliptic curve, and a resolution
of indeterminacy of the map ΞL birationally transforms the 3-fold X into an
elliptic �bration.

In this paper we will prove that these two constructions are essentially
the only ways to transform X birationally into an elliptic �bration when X
is Q-factorial.

Theorem C. Let π : X → P3 be a Q-factorial double cover rami�ed along
a nodal sextic S. Suppose that we have a birational map ρ : X 99K Y , where
τ : Y → Z is an elliptic �bration. Then one of the following holds:

1. There are a simple double point o on X and a birational map β : P2 99K Z
such that the projection γ from the point π(o) makes the diagram

X

π

��

ρ //_______ Y

τ

��
P3

γ //___ P2
β //___ Z

commute.
2. The sextic S contains a line L ⊂ P3 with #|Sing(S)∩L| = 4 and there is

a birational map β : P2 99K Z such that the diagram

X

ΞL

���
�
�

ρ //______ Y

τ

��
P2

β //______ Z
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is commutative, where ΞL is the rational map de�ned in Construction B.

In the case of one simple double point, Theorem C was proved in [27].

Corollary C1. All birational transformations of a Q-factorial double cover
of P3 rami�ed along a sextic nodal surface into elliptic �brations4 are described
by Constructions A and B.

The following result was also proved in [24].

Corollary C2. A smooth double cover X of P3 rami�ed along a sextic surface
S ⊂ P3 cannot be birationally transformed into any elliptic �bration.

Remark 1.8. Let X be a double cover of P3 rami�ed in a sextic surface
S ⊂ P3 such that the surface S has a double line (see [67]). Then the set of
birational transformations of X into elliptic �brations is in�nite and cannot
be e�ectively described (see [31]).

The statement of Theorem C is valid over an arbitrary �eld F of charac-
teristic zero, but in Construction A the singular point must be de�ned over
F as we see in the example below. Similarly the same has to be satis�ed for
Theorem D, but the total number of singular points on a line must be counted
in geometric sense (over the algebraic closure of F).

Example 1.9. Let X be the double cover of P3 rami�ed in a sextic S ⊂ P3

and de�ned by the equation

u2 = x6 + xy5 + y6 + (x+ y)(z5 − 2zw4) + y(z4 − 2w4)(z − 3w)

in P(1, 1, 1, 1, 3). Then X is smooth in the outside of four simple double points
given by x = y = z4 − 2w4 = 0. Hence, X is Q-factorial, birationally super-
rigid, and nonrational over C by Theorems A and B. Moreover, x = y = 0
cuts a curve C ⊂ X such that −KX ·C = 1 and π(C) ⊂ S is a line. Therefore,
X can be birationally transformed over C into exactly �ve elliptic �brations
given by Constructions A and B. However, the 3-fold X de�ned over Q is
birationally isomorphic to only one elliptic �bration given by Construction B.

Birational transformations of other higher-dimensional algebraic varieties
into elliptic �brations were studied in [24], [25], [26], [28], [29], [30], [31], and
[124]. It turns out that classi�cation of birational transformations into ellip-
tic �brations implicitly gives classi�cation of birational transformations into
canonical Fano 3-folds.

In the present paper we will prove the following result.

4Fibrations τ1 : U1 → Z1 and τ2 : U2 → Z2 can be identi�ed if there are
birational maps α : U1 99K U2 and β : Z1 99K Z2 such that τ2 ◦ α = β ◦ τ1 and the
map α induces an isomorphism between generic �bers of τ1 and τ2.
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Theorem D. Let π : X → P3 be a Q-factorial double cover rami�ed in a
nodal sextic S ⊂ P3. Then X is birationally isomorphic to a Fano 3-fold
with canonical singularities that is not biregular to X if and only if the sextic
S contains a line L passing through �ve simple double points of the surface
S ⊂ P3.

During the proof of Theorem D, we will explicitly describe the construc-
tions of all possible birational transformations of sextic double solids into Fano
3-folds with canonical singularities.

Example 1.10. Let X be the double cover of P3 rami�ed in a sextic S ⊂ P3

and de�ned by the equation

u2 = x6 + xy5 + y6 + (x+ y)(z5 − zw4)

in P(1, 1, 1, 1, 3). Then X is smooth in the outside of �ve simple double points
given by x = y = z(z4 −w5) = 0. For the same reason as in Example 1.9, the
double cover X is Q-factorial, birationally super-rigid, and nonrational. As for
elliptic �brations, it can be birationally transformed into �ve elliptic �brations
given by Construction A. Also, the 3-fold X is birationally isomorphic to a
unique Fano 3-fold with canonical singularities that is not biregular to X.

The statements of Theorems A, C, and D are valid over all �elds of char-
acteristic zero, but over �elds of positive characteristic some di�culties may
occur. Indeed, the vanishing theorem of Y. Kawamata and E. Viehweg (see
[84], [142]) is no longer true in positive characteristic. Even though there are
some vanishing theorems over �elds of positive characteristic (see [55], [127]),
they are not applicable to our case. A smooth resolution of indeterminacy
of a birational map may fail as well because it implicitly uses resolution of
singularities (see [74]) which is completely proved only in characteristic zero.
However, resolution of singularities for 3-folds is proved in [1] for the case of
characteristic > 5 (see also [45]).

Consider the following very special example.

Example 1.11. Suppose that the base �eld is F5 = Z/5Z. Let X be the
double cover of P3 = Proj(F5[x, y, z, w]) rami�ed along the sextic S given by
the equation

x5y + x4y2 + x2y3z − y5z − 2x4z2 + xz5 + yz5 + x3y2w + 2x2y3w

−xyz3w − xyz2w2 − x2yw3 + xy2w3 + x2zw3 + xyw4 + xw5 + 2yw5 = 0.

Then X is smooth (see [52] and [63]) and Pic(X) ∼= Z by Lemma 3.2.2 in [50]
or Lemma 3.5 in [43] (see [20] and [68]). Moreover, X contains a curve C given
by the equations x = y = 0 whose image in P3 is a line L contained in the
sextic S ⊂ P3. For a general enough point p ∈ X, there is a unique hyperplane
Hp ⊂ P3 containing π(p) and L. The residual quintic curve Q ⊂ Hp given by



86 I. Cheltsov and J. Park

S ∩Hp = L ∪Q intersects L at a single point qp with multqp(Q|L) = 5. The
two points π(p) and qp determine a line Lp in P3. As in Construction B we can
de�ne a rational map Ψ : X 99K P2 by the lines Lp. As we see, the situation is
almost the same as that of Construction B. We, at once, see that a resolution
of indeterminacy of the map Ψ birationally transforms the 3-fold X into an
elliptic �bration.

Therefore, Theorem C and even Corollary C2 are not valid over some �elds
of positive characteristic. We will, however, prove the following result:

Theorem E. Let π : X → P3 be a double cover de�ned over a perfect �eld
F and rami�ed along a sextic nodal surface S ⊂ P3. Suppose that X is Q-
factorial and Pic(X) ∼= Z. Then X is birationally super-rigid and birational
maps of X into elliptic �brations are described by Constructions A and B if
char(F) > 5.

Nonrationality and related questions like nonruledness or birational rigid-
ity over �elds of positive characteristic may be interesting in the following
cases:

1. arithmetics of algebraic varieties over �nite �elds (see [54], [93], and [107]);
2. classi�cation of varieties over �elds of positive characteristic (see [102] and

[127]);
3. algebro-geometric coding theory (see [18], [61], [62], [73], [137], and [140]);
4. proofs of the nonrationality of certain higher-dimensional varieties by

means of reduction into �elds of positive characteristic (see [34], [88], [89],
and [90]), where even nonperfect �elds may appear in some very subtle
questions as in [90].

In arithmetic geometry, it is an important and di�cult problem to measure
the size of the set of rational points on a given variety de�ned over a number
�eld F. One of the most profound works in this area is, for example, Faltings'
theorem that a smooth curve of genus at least two de�ned over a number �eld
F has �nitely many F-rational points (see [56]). One of the higher-dimensional
generalizations of the theorem is the Weak Lang Conjecture that the set of
rational points of a smooth variety of general type de�ned over a number �eld
is not Zariski dense, which is still far away from proofs.

A counterpart of the Weak Lang Conjecture is the conjecture that for a
smooth variety X with ample −KX de�ned over a number �eld F there is a
�nite �eld extension of the �eld F over which the set of rational points of X
is Zariski dense. We can easily check that this conjecture is true for curves
and surfaces, where the condition implies that X is rational over some �nite
�eld extension. Therefore, smooth Fano 3-folds are the �rst nontrivial cases
testing the conjecture.

De�nition 1.12. The set of rational points of a variety X de�ned over a
number �eld F is said to be potentially dense if for some �nite �eld extension
K of the �eld F the set of K-rational points of X is Zariski dense in X.
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Using elliptic �brations, [15] and [70] have proved:

Theorem 1.13. The set of rational points is potentially dense on all smooth
Fano 3-folds de�ned over a number �eld F possibly except double covers of P3

rami�ed along smooth sextics.

Arithmetic properties of algebraic varieties are closely related to their
biregular and birational geometry (see [8], [9], [10], [11], [58], [95], [96], [97],
[98], [99], [100], and [101]). For example, the possible exception appears in
Theorem 1.13 because smooth double covers of P3 rami�ed in sextics are the
only smooth Fano 3-folds that are not birationally isomorphic to elliptic �-
brations (see [81]). Besides Fano varieties, on several other classes of algebraic
varieties the potential density of rational points has been proved (see [15],
[16], and [17]).

In Section 8 we prove the following result:

Theorem F. Let π : X → P3 be a double cover de�ned over a number �eld
F and rami�ed along a sextic nodal surface S ⊂ P3. If Sing(X) 6= ∅, then the
set of rational points on X is potentially dense.

As shown in Theorem C, the sextic double solid can be birationally trans-
formed into an elliptic �bration if it has a simple double point. Therefore, we
can adopt the methods of [15] and [70] in this case.
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2 Movable log pairs and Nöther�Fano inequalities

To study sextic double solids we frequently use movable log pairs introduced in
[2]. In this section we overview their properties and Nöther�Fano inequalities
that are the most important tools for birational (super-)rigidity.

De�nition 2.1. On a variety X a movable boundary MX =
∑n
i=1 aiMi is a

formal �nite Q-linear combination of linear systems Mi on X such that the
base locus of each Mi has codimension at least two and each coe�cient ai
is nonnegative. A movable log pair (X,MX) is a variety X with a movable
boundary MX on X.

Every movable log pair can be considered as a usual log pair by replacing
each linear system by its general element. In particular, for a given movable
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log pair (X,MX) we may handle the movable boundary MX as an e�ective
divisor. We can also consider the self-intersectionM2

X ofMX as a well-de�ned
e�ective codimension-two cycle when X is Q-factorial. We call KX +MX the
log canonical divisor of the movable log pair (X,MX). Throughout the rest of
this section, we will assume that log canonical divisors are Q-Cartier divisors.

De�nition 2.2. Movable log pairs (X,MX) and (Y,MY ) are birationally
equivalent if there is a birational map ρ : X 99K Y such that MY = ρ(MX).

The notions such as discrepancies, (log) terminality, and (log) canonicity
can be de�ned for movable log pairs as for usual log pairs (see [86]).

De�nition 2.3. A movable log pair (X,MX) has canonical (terminal, resp.)
singularities if for every birational morphism f : W → X each discrepancy
a(X,MX , E) in

KW + f−1(MX) ∼Q f∗(KX +MX) +
∑

E: f-exceptional divisor

a(X,MX , E)E

is nonnegative (positive, resp.).

Example 2.4. Let M be a linear system on a 3-fold X with no �xed com-
ponents. Then the log pair (X,M) has terminal singularities if and only if
the linear system M has only isolated simple base points which are smooth
points on the 3-fold X.

The Log Minimal Model Program holds good for three-dimensional mov-
able log pairs with canonical (terminal) singularities (see [2] and [86]). In
particular, it preserves their canonicity (terminality).

Every movable log pair is birationally equivalent to a movable log pair with
canonical or terminal singularities. Away from the base loci of the components
of its boundary, the singularities of a movable log pair coincide with those of
its variety.

De�nition 2.5. A proper irreducible subvariety Y ⊂ X is called a center
of the canonical singularities of a movable log pair (X,MX) if there are a
birational morphism f : W → X and an f-exceptional divisor E ⊂ W such
that the discrepancy a(X,MX , E) ≤ 0 and f(E) = Y . The set of all the
centers of the canonical singularities of the movable log pair (X,MX) will be
denoted by CS(X,MX).

Note that a log pair (X,MX) is terminal if and only if CS(X,MX) = ∅.
Let (X,MX) be a movable log pair and Z ⊂ X be a proper irreducible

subvariety such that X is smooth along the subvariety Z. Then elementary
properties of blowups along smooth subvarieties of smooth varieties imply
that

Z ∈ CS(X,MX) ⇒ multZ(MX) ≥ 1
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and in the case when codim(Z ⊂ X) = 2 we have

Z ∈ CS(X,MX) ⇐⇒ multZ(MX) ≥ 1.

For a movable log pair (X,MX) we consider a birational morphism
f : W → X such that the log pair (W,MW := f−1(MX)) has canonical
singularities.

De�nition 2.6. The number κ(X,MX) = dim(φ|nm(KW +MW )|(W )) for n�
0 is called the Kodaira dimension of the movable log pair (X,MX), where m
is a natural number such that m(KW + MW ) is a Cartier divisor. When
|nm(KW + MW )| = ∅ for all n ∈ N, the Kodaira dimension κ(X,MX) is
de�ned to be −∞.

Proposition 2.7. The Kodaira dimension of a movable log pair is well-
de�ned. In particular, it does not depend on the choice of the birationally
equivalent movable log pair with canonical singularities.

Proof. Let (X,MX) and (Y,MY ) be movable log pairs with canonical singu-
larities such that there is a birational map ρ : Y 99K X with MX = ρ(MY ).
Choose positive integers mX and mY such that both mX(KX + MX) and
mY (KY +MY ) are Cartier divisors. We must show that either

|nmX(KX +MX)| = |nmY (KY +MY )| = ∅ for all n ∈ N

or

dim(φ|nmX(KX+MX)|(X)) = dim(φ|nmY (KY +MY )|(Y )) for n� 0.

We consider a Hironaka hut of ρ : Y 99K X, i.e., a smooth variety W with
birational morphisms g : W → X and f : W → Y such that the diagram

W
g

  B
BB

BB
BB

B
f

~~}}
}}

}}
}}

Y
ρ //_______ X

commutes. We then obtain

KW +MW ∼Q g∗(KX +MX) +ΣX ∼Q f∗(KY +MY ) +ΣY ,

where MW = g−1(MX), ΣX and ΣY are the exceptional divisors of g and
f , respectively. Because the movable log pairs (X,MX) and (Y,MY ) have
canonical singularities, the exceptional divisors ΣX and ΣY are e�ective and
hence the linear systems |n(KW +MW )|, |g∗(n(KX+MX))|, and |f∗(n(KY +
MY ))| have the same dimension for a big and divisible enough natural number
n. Moreover, if these linear systems are not empty, then we have

φ|n(KW +MW )| = φ|g∗(n(KX+MX))| = φ|f∗(n(KY +MY ))|,

which implies the claim. ut
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By de�nition, the Kodaira dimension of a movable log pair is a bira-
tional invariant and a nondecreasing function of the coe�cients of the movable
boundary.

De�nition 2.8. A movable log pair (V,MV ) is called a canonical model of a
movable log pair (X,MX) if there is a birational map ψ : X 99K V such that
MV = ψ(MX), the movable log pair (V,MV ) has canonical singularities, and
the divisor KV +MV is ample.

Proposition 2.9. A canonical model of a movable log pair is unique if it
exists.

Proof. Let (X,MX) and (Y,MY ) be canonical models such that there is a
birational map ρ : Y 99K X with MX = ρ(MY ). Take a smooth variety W
with birational morphisms g : W → X and f : W → Y such that the diagram

W
g

  B
BB

BB
BB

B
f

~~}}
}}

}}
}}

Y
ρ //_______ X

commutes. We have

KW +MW ∼Q g∗(KX +MX) +ΣX ∼Q f∗(KY +MY ) +ΣY ,

where MW = g−1(MX) = f−1(MY ), ΣX and ΣY are the exceptional di-
visors of birational morphisms g and f , respectively. Let n ∈ N be a big
and divisible enough number such that n(KW + MW ), n(KX + MX), and
n(KY + MY ) are Cartier divisors. For the same reason as in the proof of
Proposition 2.7 we obtain

φ|n(KW +MW )| = φ|g∗(n(KX+MX))| = φ|f∗(n(KY +MY ))|.

Therefore, the birational map ρ is an isomorphism because KX + MX and
KY +MY are ample. ut

The existence of the canonical model of a movable log pair implies that its
Kodaira dimension is equal to the dimension of the variety.

Nöther�Fano inequalities can be immediately reinterpreted in terms of
canonical singularities of movable log pairs. For reader's understanding, we
give the theorems and their proofs on the relation between singularities of
movable log pairs and birational (super-)rigidity. In addition, with del Pezzo
surfaces of Picard number 1 de�ned over nonclosed �elds, we demonstrate how
to apply the theorems, which is so simple that one can easily understand.

The following result is known as a classical Nöther-Fano inequality.

Theorem 2.10. Let X be a terminal Q-factorial Fano variety with Pic(X) ∼=
Z. If every movable log pair (X,MX) with KX + MX ∼Q 0 has canonical
singularities, then X is birationally super-rigid.
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Proof. Suppose that there is a birational map ρ : X 99K V such that V is
a Fano variety with Q-factorial terminal singularities and Pic(V ) ∼= Z. We
are to show that ρ is an isomorphism. Let MV = r| − nKV | and MX =
ρ−1(MV ) for a natural number n � 0 and a rational number r > 0 such
that KX + MX ∼Q 0. Because | − nKV | is free for n � 0 and V has at
worst terminal singularities, the log pair (V,MV ) has terminal singularities.
In addition, the equality

κ(X,MX) = κ(V,MV ) = 0

implies that the divisor KV + MV is nef; otherwise the Kodaira dimension
κ(V,MV ) would be −∞.

Let f : W → X be a birational morphism of a smooth variety W such
that g = ρ ◦ f is a morphism. Then

KW +MW = f∗(KX +MX) +
l1∑
i=1

a(X,MX , Fi)Fi +
m∑
k=1

a(X,MX , Ek)Ek

= g∗(KV +MV ) +
l2∑
j=1

a(V,MV , Gj)Gj +
m∑
k=1

a(V,MV , Ek)Ek,

whereMW = f−1(MX), each divisor Fi is f -exceptional but not g-exceptional,
each divisor Gj is g-exceptional but not f -exceptional, and each Ek is both
f -exceptional and g-exceptional. Applying Lemma 2.19 in [87], we obtain

a(X,MX , Ek) = a(V,MV , Ek)

for each k and we see that there is no g-exceptional but not f -exceptional
divisor, i.e., l2 = 0 because the log pair (V,MV ) has terminal singularities.
Furthermore, there exits no f -exceptional but not g-exceptional divisor, i.e.,
l1 = 0 because the Picard numbers of V and X are the same. Therefore, the
log pair (X,MX) has at worst terminal singularities. For some d ∈ Q>1, both
the movable log pairs (X, dMX) and (V, dMV ) are canonical models. Hence,
ρ is an isomorphism by Proposition 2.9.

We now suppose that we have a birational map χ : X 99K Y of X into
a �bration τ : Y → Z, where Y is smooth and a general �ber of τ is a
smooth variety of Kodaira dimension −∞. Let MY = c|τ∗(H)| and MX =
χ−1(MY ), where H is a very ample divisor on Z and c is a positive rational
number such that KX +MX ∼Q 0. Then the Kodaira dimension κ(X,MX)
is zero because the log pair (X,MX) has at worst canonical singularities and
KX + MX ∼Q 0. However, the Kodaira dimension κ(Y,MY ) = −∞. This
contradiction completes the proof. ut

The proof of Theorem 2.10 shows a condition for the Fano variety X to
be birationally rigid as follows:
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Corollary 2.11. Let X be a terminal Q-factorial Fano variety with Pic(X) ∼=
Z. Suppose that for every movable log pair (X,MX) with KX + MX ∼Q 0
either the singularities of the log pair (X,MX) are canonical or the divisor
−(KX + ρ(MX)) is ample for some birational automorphism ρ ∈ Bir(X).
Then X is birationally rigid.

The Log Minimal Model Program tells us that the condition in Theo-
rem 2.10 is a necessary and su�cient one for X to be birationally super-rigid.

Proposition 2.12. Let X be a terminal Q-factorial Fano 3-fold with Pic(X) ∼=
Z. Then X is birationally super-rigid if and only if every movable log pair
(X,MX) with KX +MX ∼Q 0 has at worst canonical singularities.

Proof. Suppose thatX is birationally super-rigid. In addition, we suppose that
there is a movable log pair (X,MX) with noncanonical singularities such that
KX +MX ∼Q 0. Let f : W → X be a birational morphism such that the log
pair (W,MW := f−1(MX)) has canonical singularities. Then

KW +MW = f∗(KX +MX)+
k∑
i=1

a(X,MX , Ei)Ei ∼Q

k∑
i=1

a(X,MX , Ei)Ei,

where Ei is an f -exceptional divisor and a(X,MX , Ej) < 0 for some j.
Applying the relative Log Minimal Model Program to the log pair (W,MW )

over X we may assume KW +MW is f -nef. Then, Lemma 2.19 in [87] im-
mediately implies that a(X,MX , Ei) ≤ 0 for all i. The Log Minimal Model
Program for (W,MW ) gives a birational map ρ of W into a Mori �bration
space Y , i.e., a �bration π : Y → Z such that −KY is π-ample, the variety Y
has Q-factorial terminal singularities, and Pic(Y/Z) ∼= Z. However, the bira-
tional map ρ ◦ f−1 is not an isomorphism. ut

Despite its formal appearance, Theorem 2.10 can be e�ectively applied in
many di�erent cases. For example, the following result in [95] and [96] is an
application of Theorem 2.10.

Theorem 2.13. Let X be a smooth del Pezzo surface de�ned over a perfect
�eld F with Pic(X) ∼= Z and K2

X ≤ 3. Then X is birationally rigid and
nonrational over F.

Proof. Suppose that X is not birationally rigid. Then there is a movable log
pair (X,MX) de�ned over F such that KX + MX ∼Q 0 and that is not
canonical at some smooth point o ∈ X. Therefore, multo(MX) > 1 and

3 ≥ K2
X = M2

X ≥ mult2o(MX) deg(o⊗ F̄) > deg(o⊗ F̄),

where F̄ is the algebraic closure of the �eld F. In the case K2
X = 1, the strict

inequality is a contradiction. Moreover, if K2
X = 2, then the point o is de�ned
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over F, and if K3
X = 3, then the point o splits into no more than two points

over the �eld F̄.
Suppose that K2

X is either 2 or 3. Let f : V → X be the blowup at the
point o. Then

K2
V = K2

X − deg(o⊗ F̄)

and V is a smooth del Pezzo surface because Pic(X) = Z, the inequality
multo(MX) > 1 holds, and the boundary MX is movable. The double cover
φ|−KV | induces an involution τ ∈ Bir(X) that is classically known as Bertini or
Geizer involution. Simple calculations show the ampleness of divisor −(KX +
τ(MX)), which contradicts Corollary 2.11. ut

The proofs of Theorems 2.10 and 2.13 and Lemma 5.3.1 in [90] imply that
a result similar to Theorem 2.13 holds over a nonperfect �eld as well. Indeed,
one can prove that a nonsingular del Pezzo surface X de�ned over nonperfect
�eld F is nonrational over F and is not birationally isomorphic over F to
any nonsingular del Pezzo surface Y with Pic(Y ) = Z, which is smooth in
codimension one, if Pic(X) ∼= Z and K2

X ≤ 3.
Most applications of Theorem 2.10 have the pattern of the proof of Theo-

rem 2.13 implicitly.
The following result can be considered as a weak Nöther�Fano inequality.

Theorem 2.14. Let X be a terminal Q-factorial Fano variety with Pic(X) ∼=
Z, ρ : X 99K Y a birational map, and π : Y → Z a �bration. Suppose that
a general enough �ber of π is a smooth variety of Kodaira dimension zero.
Then the singularities of the movable log pair (X,MX) are not terminal,
where MX = rρ−1(|π∗(H)|) for a very ample divisor H on Z and r ∈ Q>0

such that KX +MX ∼Q 0.

Proof. Suppose CS(X,MX) = ∅. Let MY = r|π∗(H)|. Then we see

κ(X, cMX) = κ(Y, cMY ) ≤ dim(Z) < dim(X).

However, CS(X, cMX) = ∅ for small c > 1 and hence κ(X, cMX) = dim(X),
which is a contradiction. ut

The easy result below shows how to apply Theorem 2.14.

Proposition 2.15. Let X be a smooth del Pezzo surface of degree one with
Pic(X) ∼= Z de�ned over a perfect �eld F and o the unique base point of the
anticanonical linear system of the surface X. Let ρ : X 99K Y be a birational
map, where Y is a smooth surface. Suppose that π : Y → Z is a relatively
minimal elliptic �bration with connected �bers such that a general enough �ber
of π is smooth. Then the birational map ρ is the blowup at some F-rational
point p on the del Pezzo surface X and the morphism π is induced by |−nKY |
for some n ∈ N. Furthermore, p ∈ Ĉ and the equality pn = idĈ holds, where

Ĉ is the smooth part of the unique curve C of arithmetic genus one in |−KX |
passing through the point p and considered as a group scheme with the identity
idĈ = o.
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Proof. Let MX = cρ−1(|π∗(H)|), where H is a very ample on curve Z and
c ∈ Q>0, such that the equivalence KX + MX ∼Q 0 holds. Then the set
CS(X,MX) contains a point p on the surface X by Theorem 2.14. In partic-
ular, multp(MX) ≥ 1, but

1 = K2
X = M2

X ≥ mult2p(MX) deg(p⊗ F̄) ≥ deg(p⊗ F̄) ≥ 1,

where F̄ is the algebraic closure of the �eld F. Hence, multp(MX) = 1 and
the point p is de�ned over the �eld F. Let f : V → X be the blow up at the
point p. Then K2

V = 0 and

−KV ∼Q MV = f−1(MX),

which implies that the linear system | − rKV | is free for a natural number
r � 0. The morphism φ|−rKV | is a relatively minimal elliptic �bration and
MV · E = 0 for a general enough �ber E of the elliptic �bration φ|−rKV |.
Therefore the linear system (ρ◦f)−1(|π∗(H)|) is contained in the �bers of the
�bration φ|−rKV |. Relative minimality of the �brations π and φ|−rKV | implies
ρ ◦ f is an isomorphism.

Suppose p 6= o. Let C ∈ | −KX | be a curve passing through p. Because

1 = K2
X = C · MX ≥ multp(MX) multp(C) = multp(C) ≥ 1,

the curve C is smooth at the point p. Let C̃ = f−1(C) ∼ −KV . Then
h0(V,OV (C̃)) = 1 and the curve C̃ is Gal(F̄/F)-invariant. In particular, the
curve Z has an F-point φ|−rKV |(C̃) and we have Z ∼= P1. Take the smallest

natural n such that h0(V,OV (nC̃)) > 1. The exact sequence

0 → OV ((n− 1)C̃) → OV (nC̃) → OC̃(nC̃|C̃) → 0

implies h0(C,OC(n(p−o))) = h0(C̃,OC̃(nC̃|C̃)) 6= 0, which implies the claim.
ut

Corollary 2.16. Let X be a terminal Q-factorial Fano variety with Pic(X) ∼=
Z such that every movable log pair (X,MX) with KX+MX ∼Q 0 has terminal
singularities. Then X is not birationally isomorphic to a �bration of varieties
of Kodaira dimension zero.

Unfortunately, Corollary 2.16 is almost impossible to use. As far as we
know, there are no known examples of Fano varieties that are not birationally
isomorphic to �brations of varieties of Kodaira dimension zero. The only
known example of a rationally connected variety that cannot be birationally
transformed into a �bration of varieties of Kodaira dimension zero is a conic
bundle with a big enough discriminant locus in [30].

Theorem 2.17. Let X be a terminal Q-factorial Fano variety with Pic(X) ∼=
Z and ρ : X 99K Y be a nonbiregular birational map onto a Fano variety Y
with canonical singularities. Then KX +MX ∼Q 0 and
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CS(X,MX) 6= ∅,

where MX = 1
nρ

−1(| − nKY |) for a natural number n� 0.

Proof. Let MY = 1
n | − nKY |. We then see

κ(X,MX) = κ(Y,MY ) = 0,

which implies KX + MX ∼Q 0. Suppose CS(X,MX) = ∅. Both the log
pair (X, rMX) and (Y, rMY ) are canonical models for a rational number
r > 1 su�ciently close to 1. It is a contradiction that ρ is an isomorphism by
Proposition 2.9. ut

The following easy result shows how to apply Theorem 2.17.

Proposition 2.18. Let X be a smooth del Pezzo surface of degree one with
Pic(X) ∼= Z de�ned over an arbitrary perfect �eld F. Then the surface X is
not birationally isomorphic to a del Pezzo surface with du Val singularities
which is not isomorphic to the surface X.

Proof. Let ρ : X 99K Y be a birational map over the �eld F and MX =
1
nρ

−1(| − nKY |) for a natural number n� 0, where Y is a del Pezzo surface
with du Val singularities and ρ is not an isomorphism. Then KX +MX ∼Q 0
and CS(X,MX) contains some smooth point o on the del Pezzo surface X by
Theorem 2.17. In particular, multo(MX) ≥ 1, but

1 = K2
X = M2

X ≥ mult2o(MX) deg(o⊗ F̄) ≥ deg(o⊗ F̄) ≥ 1,

where F̄ is the algebraic closure of the �eld F. Hence, multo(MX) = 1 and
the point o is de�ned over the �eld F. Let f : V → X be the blow up at the
point o. Then K2

V = 0 and

−KV ∼Q MV = f−1(MX),

which implies freeness of the linear system |−rKV | for a natural number r � 0.
The morphism φ|−rKV | is an elliptic �bration and MV · E = 0 for a general
enough �ber E of φ|−rKV |. Therefore, the linear system (ρ ◦ f)−1(| − nKY |)
is compounded from a pencil, which is impossible. ut

The paper [80] by V. Iskovskikh and Yu. Manin was based on the idea
of G. Fano that can be summarized by Nöther�Fano inequalities. Since 1971
the method of Iskovskikh and Manin has evolved to show birational rigidity of
various Fano varieties. Recently, Shokurov's connectedness principle improved
the method so that one can extremely simplify the proof of the result of
Iskovskikh and Manin (see [42]). Furthermore, it also made it possible to
prove the birational super-rigidity of smooth hypersurfaces of degree n in Pn,
n ≥ 4 (see [118]). In what follows we will explain Shokurov's connectedness
principle and how it can be applied to birational rigidity.
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Movable boundaries always can be considered as e�ective divisors and
movable log pairs as usual log pairs. Therefore, we may use compound log
pairs that contain both movable and �xed components. From now on, we will
not assume any restrictions on the coe�cients of boundaries. In particular,
boundaries may not be e�ective unless otherwise stated.

De�nition 2.19. A log pair (V,BV ) is called the log pullback of a log pair
(X,BX) with respect to a birational morphism f : V → X if

BV = f−1(BX)−
n∑
i=1

a(X,BX , Ei)Ei,

where a(X,BX , Ei) is the discrepancy of an f-exceptional divisor Ei over
(X,BX). In particular, it satis�es KV +BV ∼Q f∗(KX +BX).

De�nition 2.20. A proper irreducible subvariety Y ⊂ X is called a center of
the log canonical singularities of (X,BX) if there are a birational morphism
f : W → X and a divisor E ⊂ W such that E is contained in the support
of the e�ective part of the divisor bBW c and f(E) = Y . The set of all the
centers of the log canonical singularities of a log pair (X,BX) will be denoted
by LCS(X,BX). In addition, the union of all the centers of log canonical
singularities of (X,MX) will be denoted by LCS(X,BX).

Consider a log pair (X,BX), where BX =
∑k
i=1 aiBi is e�ective and Bi's

are prime divisors on X. Choose a birational morphism f : Y → X such that
Y is smooth and the union of all the proper transforms of the divisors Bi and
all f -exceptional divisors forms a divisor with simple normal crossing. The
morphism f is called a log resolution of the log pair (X,BX). By de�nition,
the equality

KY +BY ∼Q f∗(KX +BX)

holds, where (Y,BY ) is the log pullback of the log pair (X,BX) with respect
to the birational morphism f .

De�nition 2.21. The subscheme L(X,BX) associated with the ideal sheaf
I(X,BX) = f∗(OY (d−BY e)) is called the log canonical singularity subscheme
of the log pair (X,BX).

The support of the subscheme L(X,BX) is exactly the locus of LCS(X,BX).
The following result is called Shokurov vanishing (see [130]).

Theorem 2.22. Let (X,BX) be a log pair with an e�ective divisor BX . Sup-
pose that there is a nef and big Q-divisor H on X such that D = KX+BX+H
is Cartier. Then Hi(X, I(X,BX)⊗OX(D)) = 0 for i > 0.

Proof. Let f : W −→ X be a log resolution of (X,BX). Because f∗H is nef
and big on W and f∗D = KW +BW + f∗H, we obtain
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Rif∗(f∗OX(D)⊗OW (d−BW e)) = 0

for i > 0 from relative Kawamata�Viehweg vanishing (see [84] and [142]). The
degeneration of local-to-global spectral sequence and

R0f∗(f∗OX(D)⊗OW (d−BW e)) = I(X,BX)⊗OX(D)

imply that for all i

Hi(X, I(X,BX)⊗OX(D)) = Hi(W, f∗OX(D)⊗OW (d−BW e)),

while Hi(W, f∗OX(D)⊗OW (d−BW e)) = 0 for i > 0 by Kawamata�Viehweg
vanishing. ut

Consider the following application of Theorem 2.22.

Lemma 2.23. Let V be a variety isomorphic to P1×P1. Let BV be an e�ective
Q-divisor on V of type (a, b), where a and b ∈ Q∩ [0, 1). Then LCS(V,BV ) =
∅.

Proof. Intersecting the boundary BV with the rulings of V , we see that the set
LCS(V,BV ) does not contain a curve on V . Suppose that the set LCS(V,BV )
contains a point o. There is a Q-divisor H on V of type (1 − a, 1 − b) such
that the divisor

D = KV +BV +H

is Cartier. Since the divisor H is ample, Theorem 2.22 implies the sequence

H0(V,OV (D)) → H0(L(V,BV ),OL(V,BV )(D)) → 0

is exact. However, H0(V,OV (D)) = 0, which is a contradiction. ut

For every Cartier divisor D on X, the sequence

0 → I(X,BX)⊗D → OX(D) → OL(X,BX)(D) → 0

is exact and Theorem 2.22 implies the following two connectedness theorems
of Shokurov.

Theorem 2.24. Let (X,BX) be a log pair with an e�ective boundary BX .
If the divisor −(KX + BX) is nef and big, then the locus LCS(X,BX) is
connected.

Theorem 2.25. Let (X,BX) be a log pair with an e�ective boundary. Let
g : X −→ Z be a contraction. If the divisor −(KX + BX) is g-nef and g-
big, then LCS(X,BX) is connected in a neighborhood of each �ber of the
contraction g.

The following result is Theorem 17.4 of [87].
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Theorem 2.26. Let g : X → Z be a contraction, where the varieties X and
Z are normal. Let DX =

∑m
i=1 diDi be a Q-divisor on X such that the divisor

−(KX+DX) is g-nef and g-big. Suppose that codim(g(Di) ⊂ Z) ≥ 2 whenever
di < 0. Then, for a log resolution h : V → X of the log pair (X,DX), the
locus ∪aE≤−1E is connected in a neighborhood of every �ber of the morphism
g◦h, where E is a divisor on V and the rational number aE is the discrepancy
of E with respect to (X,DX).

Proof. Let f = g ◦ h, A =
∑
aE>−1 aEE, and B =

∑
aE≤−1−aEE. Then

dAe − bBc = KV − h∗(KX +DX) + {−A}+ {B}

and R1f∗(OV (dAe − bBc)) = 0 by Kawamata�Viehweg vanishing. Hence, the
map

f∗(OV (dAe)) → f∗(ObBc(dAe))

is surjective. Every irreducible component of dAe is either h-exceptional or
the proper transform of some Dj with dj < 0. Thus h∗(dAe) is g-exceptional
and f∗(OV (dAe)) = OZ . Consequently, the map

OZ → f∗(ObBc(dAe))

is surjective, which implies the connectedness of bBc in a neighborhood of
every �ber of the morphism f because the divisor dAe is e�ective and has no
common component with bBc. ut

We de�ned the notions of centers of canonical singularities and the set of
centers of canonical singularities for movable log pairs. However, the movabil-
ity of boundaries has nothing to do with all these notions. So we are free to
use them for usual log pairs as well.

The following theorem, frequently referred to as adjunction, leads us to
the bridge between Shokurov's connectedness principle and Nöther�Fano in-
equalities.

Theorem 2.27. Let (X,BX) be a log pair with an e�ective divisor BX , Z an
element in CS(X,BX), and H an e�ective irreducible Cartier divisor on X.
Suppose that both the varieties X and H are smooth at a generic point of Z
and Z ⊂ H 6⊂ Supp(BX). Then, the set LCS(H,BX |H) is not empty.

Proof. Let f : W → X be a log resolution of (X,BX +H). Put Ĥ = f−1(H).
Then

KW + Ĥ = f∗(KX +BX +H) +
∑
E 6=Ĥ

a(X,BX +H,E)E

and by our assumption the subvarieties Z and H are centers of the log canon-
ical singularities of the pair (X,BX +H). Therefore, applying Theorem 2.26
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to the log pullback of (X,BX +H) on W , we obtain a divisor E 6= Ĥ on W
such that f(E) = Z, a(X,BX , E) ≤ −1, and Ĥ ∩ E 6= ∅. Now the equalities

KĤ = (KW + Ĥ)|Ĥ = f |∗
Ĥ

(KH +BX |H) +
∑
E 6=Ĥ

a(X,BX +H,E)E|Ĥ

imply the claim. ut

By taking Nöther�Fano inequalities into consideration, it is signi�cant for
us to study the singularities of certain movable log pairs on Fano varieties. It
requires us to investigate the multiplicities of certain movable boundaries or
their self-intersections.

The following result is Theorem 3.1 of [42].

Theorem 2.28. Let S be a smooth surface and MS an e�ective movable
boundary on the surface S. Suppose that there is a point o in LCS(S, (1 −
a1)B1 + (1− a2)B2 +MS), where ai's are nonnegative rational numbers and
Bi's are irreducible and reduced curves on S intersecting normally at the point
o. Then, we have

multo(M2
S) ≥

{
4a1a2 if a1 ≤ 1 or a2 ≤ 1
4(a1 + a2 − 1) if a1 > 1 and a2 > 1.

Furthermore, the inequality is strict if the singularities of the log pair (S, (1−
a1)B1 +(1−a2)B2 +MS) are not log canonical in a neighborhood of the point
o.

Proof. Let D = (1−a1)B1 +(1−a2)B2 +MS and f : S′ → S be a birational
morphism such that the surface S′ is smooth. We consider

KS′ + f−1(D) = Ei)Ei,

where Ei is an f -exceptional curve. We suppose that a(S,D,E1) ≤ −1 and
the curve E1 is contracted to the point o. Then the birational morphism f is
a composition of k blowups at smooth points.

Claim 1. The statement is true when a1 > 1 and a2 > 1 if the statement
holds when a1 ≤ 1 or a2 ≤ 1.

De�ne the numbers a(S,Ei), m(S,MS , Ei), and m(S,Bj , Ei) as follows:

k∑
i=1

a(S,Ei)Ei = KS′ − f∗(KS),

k∑
i=1

m(S,MS , Ei)Ei = f−1(MS)− f∗(MS),

k∑
i=1

m(S,Bj , Ei)Ei = f−1(Bj)− f∗(Bj).
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We then observe that the equality

a(S,D,Ei) = a(S,Ei)−m(S,MS , Ei)+m(S,B1, Ei)(a1−1)+m(S,B2, Ei)(a2−1)

holds. We may assume that m(S,B1, E1) ≥ m(S,B2, E1). Then,

−1 ≥ a(S,D,E1) ≥ a(S,E1)−m(S,MS , E1) +m(S,B2, E1)(a1 + a2 − 2)

and hence o ∈ LCS(S, (2−a1−a2)B2+MS). Because the log pair (S, (2−a1−
a2)B2+MS) satis�es our assumption, we obtain multo(M2

S) ≥ 4(a1+a2−1).

Claim 2. The statement holds when a1 ≤ 1 or a2 ≤ 1.
We may assume that a1 ≤ 1. Let h : T → S be the blowup at the point

o and E be an exceptional curve of h. Then f factors through h such that
f = g ◦ h for some birational morphism g : S′ → T which is a composition of
k − 1 blowups at smooth points. Then

KT + (1− a1)B̄1 + (1− a2)B̄2 + (1− a1 − a2 +m)E +MT = h∗(KS +D),

where B̄j = h−1(Bj), m = multo(MS), and MT = h−1(MS).
We are to use the induction on k. In the case k = 1, we have S′ = T ,

E1 = E, and a(S,D,E1) = a1 + a2 −m− 1 ≤ −1. Thus

multo(M2
S) ≥ m2 ≥ (a1 + a2)2 ≥ 4a1a2

and we are done.
We therefore suppose that k > 1 and g(E1) is a point p ∈ E. We see

p ∈ LCS(T, (1− a1)B̄1 + (1− a2)B̄2 + (1− a1 − a2 +m)E +MT ).

There are three possible cases: p ∈ E ∩ B̄1, p ∈ E ∩ B̄2, and p 6∈ B̄1 ∪ B̄2. By
the induction hypothesis, the statement holds for the log pair

(T, (1− a1)B̄1 + (1− a1 − a2 +m)E +MT )

in the case p ∈ E ∩ B̄1, for the log pair

(T, (1− a2)B̄2 + (1− a1 − a2 +m)E +MT )

in the case p ∈ E ∩ B̄2, and for the log pair

(T, (1− a1 − a2 +m)E +MT )

in the case p 6∈ B̄1 ∪ B̄2 because all conditions of the theorem are satis�ed in
these cases and the morphism g consists of k − 1 blowups at smooth points.
Also we have

multo(M2
S) ≥ m2 + multp(M2

T ).

In the case p ∈ E ∩ B̄1, we obtain
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multo(M2
S) ≥ m2 + 4a1(a1 + a2 −m) = (2a1 −m)2 + 4a1a2 ≥ 4a1a2.

Consider the case p ∈ E ∩ B̄2. If either a2 ≤ 1 or a1 + a2 −m ≤ 1, then
we can proceed as in the previous case. If not, then we have

multo(M2
S) ≥ m2 + 4(a1 + 2a2 −m− 1) > 4a2 ≥ 4a1a2.

If p 6∈ B̄1 ∪ B̄2, then we obtain

multo(M2
S) ≥ m2 + 4(a1 + a2 −m) > m2 + 4a1(a1 + a2 −m) ≥ 4a1a2,

which completes the proof. ut

Instead of Theorem 2.28, the following simpli�ed version, which is a special
case of Theorem 2.1 in [49], is more often applied.

Theorem 2.29. Let S be a smooth surface, o a point on S, andMS an e�ec-
tive movable boundary on S such that o ∈ LCS(S,MS). Then multo(M2

S) ≥
4. Moreover, if the equality holds, then multo(MS) = 2.

Even though Theorems 2.28 and 2.29 are results on surfaces, they can
be applied to 3-folds via Theorem 2.27. The following result is Corollary 7.3
of [116], which holds even over �elds of positive characteristic and implicitly
goes back to the classical paper [80].

Theorem 2.30. Let X be a smooth 3-fold and MX an e�ective movable
boundary on X. Suppose that a point o belongs to CS(X,MX). Then the
inequality multo(M2

X) ≥ 4 holds, with equality only when multo(MX) = 2.

Proof. Let H be a general very ample divisor on X containing o. Then the
point o is a center of log canonical singularities of the log pair (H,MX |H) by
Theorem 2.27. On the other hand,

multo(M2
X) = multo((MX |H)2)

and multo(MX) = multo(MX |H). Hence, the claim follows from Theo-
rem 2.29. ut

As a matter of fact, Theorem 2.30 can be proved in a more geometric way.

Lemma 2.31. Let X be a smooth 3-fold andMX an e�ective movable bound-
ary on X. Suppose that the log pair (X,MX) has canonical singularities
and CS(X,MX) contains a point o. Then there is a birational morphism
f : V → X such that V has Q-factorial terminal singularities, f contracts
exactly one exceptional divisor E to the point o, and

KV +MV = f∗(KX +MX),

where MV = f−1(MX).
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Proof. Because the log pair (X,MX) has at worst canonical singularities,
there are �nitely many divisorial discrete valuations ν of the �eld of rational
functions of X whose centers on X are the point o and whose discrepancies
a(X,MX , ν) are nonpositive. Therefore, we may consider a birational mor-
phism g : W → X such that the 3-fold W is smooth, g contracts k divisors,

KW +MW = g∗(KX +MX) +
k∑
i=1

aiEi,

the movable log pair (W,MW ) has canonical singularities, and the set
CS(W,MW ) does not contain subvarieties of ∪ki=1Ei, whereMW = g−1(MX),
g(Ei) = o, and ai ∈ Q. Applying the relative version of the Log Minimal Model
Program (see [86]) to the movable log pair (W,MW ) over X, we may assume
that W has Q-factorial terminal singularities and

KW +MW = g∗(KX +MX)

because of the canonicity of (X,MX). Applying the relative Minimal Model
Program to W over the variety X, we get the necessary 3-fold and the bira-
tional morphism. ut

The following result was conjectured in [41] and proved in [83].

Theorem 2.32. Let X be a smooth 3-fold and f : V → X be a birational
morphism of a 3-fold V with Q-factorial terminal singularities. Suppose that
the morphism f contracts exactly one exceptional divisor E and contracts it
to a point o. Then the morphism f is the weighted blowup at the point o
with weights (1, n1, n2) in suitable local coordinates on X, where the natural
numbers n1 and n2 are coprime.

With Theorem 2.32, Theorem 2.30 was proved in [41] in the following way,
which explains the geometrical nature of the inequality in Theorem 2.30.

Proposition 2.33. Let X be a smooth 3-fold with an e�ective movable bound-
ary MX on X. Suppose that CS(X,MX) contains a point o. Let f : V → X
be the weighted blowup at the point o with weights (1, n1, n2) in suitable local
coordinates on X such that

KV +MV = f∗(KX +MX),

where natural numbers n1 and n2 are coprime and MV = f−1(MX). Then

multo(M2
X) ≥ (n1 + n2)2

n1n2
= 4 +

(n1 − n2)2

n1n2
≥ 4.

Moreover, if n1 = n2, then f is the regular blowup at the point o and
multo(MX) = 2.
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Proof. Let E ⊂ V be the f -exceptional divisor. Then

KV = f∗(KX) + (n1 + n2)E

and MV = f∗(MX)−mE for some m ∈ Q>0. Thus, m = n1 + n2 and

multo(M2
X) ≥ m2E3 =

(n1 + n2)2

n1n2
.

ut

The following application of Theorem 2.27 is Theorem 3.10 in [42].

Theorem 2.34. Let X be a 3-fold with a simple double point o and BX
an e�ective boundary on X such that o ∈ CS(X,BX). Then the inequality
multo(BX) ≥ 1 holds.

Proof. Let f : W → X be the blowup at the point o and E be the f -
exceptional divisor. Then

KW +BW = f∗(KX +BX) + (1−multo(BX))E,

where BW = f−1(BX). Suppose that multo(BX) < 1. Then, there is a center
Z ∈ CS(W,BW ) that is contained in E, and hence

LCS(E,BW |E) 6= ∅

by Theorem 2.27. But it is impossible because of Lemma 2.23. ut

3 Birational super-rigidity

The goal of this section is to prove Theorem A.
Let π : X → P3 be a Q-factorial double cover rami�ed along a nodal

sextic S ⊂ P3. We then see that Pic(X) ∼= ZKX , −KX ∼ π∗(OP3(1)), and
−K3

X = 2. Consider an arbitrary movable boundary MX on the 3-fold X
such that the divisor −(KX +MX) is ample. To prove Theorem A we must
show that CS(X,MX) = ∅ and then apply Theorem 2.10.

We suppose that CS(X,MX) 6= ∅. In what follows, we will derive a con-
tradiction.

Lemma 3.1. Smooth points of the 3-fold X are not contained in CS(X,MX).

Proof. Suppose that CS(X,MX) has a smooth point o on X. Let H be a
general enough divisor in the linear system |−KX | passing through the point
o. We then obtain

2 = H ·K2
X > H · M2

X ≥ multo(M2
X) ≥ 4

from Theorem 2.30, which is absurd. ut
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Lemma 3.2. Singular points of the 3-fold X are not contained in CS(X,MX).

Proof. If CS(X,MX) contains a singular point o on X, then Theorem 2.34
gives us

2 = H ·K2
X > H · M2

X ≥ 2 mult2o(MX) ≥ 2,

where H is a general enough divisor in | −KX | passing through the point o.
It is absurd. ut

Lemmas 3.1 and 3.2 together show that any element of the set CS(X,MX)
cannot be a point ofX. Therefore, it must contain a curve C ⊂ X. To complete
the proof of Theorem A it is enough to show that the set CS(X,MX) cannot
contain a curve.

Lemma 3.3. The intersection number −KX · C is 1.

Proof. Let H be a general enough divisor in the anticanonical linear system
| −KX |. Then

2 = H ·K2
X > H · M2

X ≥ multC(M2
X)H · C ≥ −KX · C,

which implies −KX · C = 1. ut

Corollary 3.4. The curve π(C) ⊂ P3 is a line and C ∼= P1.

Lemma 3.5. The curve C is not contained in the smooth locus of the 3-fold
X.

Proof. Suppose that the curve C lies on the smooth locus of the 3-fold X.
Let f : W → X be the blowup along the curve C and E be the f -exceptional
divisor. We then get multC(MX) ≥ 1 and

MW = f−1(MX) = f∗(MX)−multC(MX)E.

The linear system | −KW | = |f∗(−KX)−E| has just one base curve C̃ such
that

π ◦ f(C̃) = π(C) ⊂ P3.

We see that C̃ ⊂ E if and only if π(C) ⊂ S.
Let H = f∗(−KX). Then the divisor 3H−E has nonnegative intersection

with all the curves on W possibly except C̃. We are to show that the divisor
3H − E is nef. We obtain (3H − E) · C̃ = 0 unless C̃ is contained in E.
Therefore, we suppose that the curve C̃ is contained in E.

The normal bundle NX/C of the curve C ∼= P1 on the 3-fold X splits into

NX/C ∼= OC(a)⊕OC(b)

for some integers a ≥ b. The exact sequence

0 → TC → TX |C → NX/C → 0
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shows deg(NX/C) = a+ b = −KX · C + 2g(C)− 2 = −1.
On the other hand, the curve C is contained in the smooth locus of the

proper transform Ŝ ∼= S of the sextic S ⊂ P3. The exact sequence

0 → NŜ/C → NX/C → NX/Ŝ |C → 0

and NŜ/C ∼= OC(−4) imply b ≥ −4. In particular, a− b ≤ 7.
Let s∞ be the exceptional section of the ruled surface f |E : E → C.

Because E3 = −deg(NX/C) = 1 and −KX · C = 1, we obtain

(3H − E) · s∞ =
7 + b− a

2
≥ 0,

which implies that the divisor 3H − E is nef.
Because 3H − E is nef, we get (3H − E) · M2

W ≥ 0, but

(3H − E) · M2
W = 6r2 − 4 mult2C(MX)− 2rmultC(MX) < 0,

where r ∈ Q ∩ (0, 1) such that MX ∼Q −rKX . ut

Corollary 3.6. The curve C contains a simple double point of the 3-fold X.

Lemma 3.7. The line π(C) is contained in the sextic surface S.

Proof. Suppose π(C) 6⊂ S. LetH be the linear subsystem in |−KX | of surfaces
containing the curve C. The base locus of H consists of the curve C and the
curve C̃ such that π(C) = π(C̃). Choose a general enough surface D in the
pencil H. The restriction MX |D is not movable, but

MX |D = multC(MX)C + mult eC(MX)C̃ +RD,

where RD is a movable boundary. The surface D is smooth outside of the sin-
gular points pi of the 3-fold X which are contained in the curve C. Moreover,
each point pi is a simple double point on the surface D. Thus, on the surface
D, we have

C2 = C̃2 = −2 +
k

2
,

where k is the number of the points pi on C. Hence, we obtain C
2 = C̃2 < 0

on the surface D because k ≤ 3. Immediately, the inequality

(1−multC̃(MX))C̃2 ≥ (multC(MX)− 1)C · C̃ +RD · C̃ ≥ 0

follows, which implies multC̃(MX) ≥ 1. Therefore, for a general member
H ∈ | −KX | we have a contradiction

2 = H ·K2
X > H · M2

X ≥ mult2C(MX)H · C + mult2
C̃

(MX)H · C̃ ≥ 2.

ut
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Lemma 3.8. The line π(C) is not contained in the sextic surface S.

Proof. Suppose π(C) ⊂ S. Let p be a general enough point on the curve
C and L ⊂ P3 be a general line tangent to S at the point π(p). Then the
proper transform L̃ ⊂ X of L is an irreducible curve which is singular at the
point p. By construction, the curve L is not contained in the base locus of
the components of the movable boundaryMX . Thus, we obtain contradictory
inequalities

2 > L̃ · MX ≥ multp L̃multp(MX) ≥ 2 multC(MX) ≥ 2.

ut

We have shown that the set CS(X,MX) is empty. Now, we can immedi-
ately obtain Theorem A from Theorem 2.10.

4 Q-factoriality

In this section we study the Q-factoriality on double covers of P3 rami�ed
along nodal sextics and prove Theorem B.

The Q-factoriality depends both on local types of singularities and on their
global position. In the case of Fano 3-folds, the Q-factoriality is equivalent to
the global topological condition

rank(H2(X,Z)) = rank(H4(X,Z)).

In the case of the double solids, the condition means the 4th integral homology
group of X generated by the class of the pullback of a hyperplane in P3 via
the covering morphism.

Using the method in [37], we study the Q-factoriality on a double cover X
of P3 rami�ed along a sextic S. As before, we assume that X has only simple
double points. Note that Pic(X) ∼= H2(X,Z) when X has at worst rational
singularities.

For us in order to see whether a double solid X is Q-factorial, the main
job is to compute the rank of the group H4(X,Z). Indeed, the double solid X
is Q-factorial if and only if rank(H4(X,Z)) = 1 because rankH2(X,Z) = 1.
The paper [37] gives us a method to compute it by studying the number of
singularities of S, their position in P3, and the sheaf I ⊗ OP3(5), where I is
the ideal sheaf of the set Σ of singular points of S in P3. The following result
was proved in [37] (see also [48] and [47]).

Theorem 4.1. Under the same notation, we have

rank(H4(X,Z)) = #(Σ)− I + 1,

where I is the number of independent conditions which vanishing on Σ imposes
on homogeneous forms of degree 5 on P3.
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We de�ne the defect of X to be the nonnegative integer #(Σ) − I. Then
we can restate the Q-factoriality as follows:

Corollary 4.2. The double cover X is Q-factorial if and only if the defect of
X is 0.

On the other hand, from the exact sequence

0 → I ⊗OP3(5) → OP3(5) →
⊕
p∈Σ

C → 0

we obtain a long exact sequence

H0(P3, I⊗OP3(5)) ↪→ H0(P3,OP3(5)) → H0(P3,
⊕
p∈Σ

C) → H1(P3, I⊗OP3(5)) → 0,

which tells us
defect of X = dim(H1(P3, I ⊗ OP3(5))).

An immediate application of this method is the second part of Theorem B.
Since dim(H0(P3,OP3(5))) = 56, the defect of X is positive if #(Σ) ≥ 57.

We can easily observe that if #(Σ) ≤ 6, then the sequence

0 → H0(P3, I ⊗ OP3(5)) → H0(P3,OP3(5)) → H0(P3,
⊕
p∈Σ

C) → 0

is exact regardless of their position. Therefore, when #(Σ) ≤ 6 the defect of
X is trivially 0, i.e., the sextic double solid X is Q-factorial. As a matter of
fact, we can go farther. As Theorem B states, if the surface S has at most 14
nodes, then the 3-fold X is Q-factorial regardless of their position. In what
follows, we prove the �rst part of Theorem B.

De�nition 4.3. We say that a set of points Γ on P3 is on sextic-node position
if no 5k+ 1 points of Γ can lie on a curve of degree k in P3 for every positive
integer k.

Lemma 4.4. Let Σ be the set of singular points of the sextic S. Then the set
Σ is on sextic-node position.

Proof. Suppose that the surface S is de�ned by a homogeneous polynomial
equation F (x0, x1, x2, x3) = 0 of degree six. We consider the linear system

L :=

∣∣∣∣∣
3∑
i=0

λi
∂F

∂xi
= 0

∣∣∣∣∣ .
The base locus of the linear system L is exactly the singular locus of the
surface S. A curve of degree k in P3 intersects a generic member of the linear
system L exactly 5k times since L ⊂ |OP3(5)|. Therefore, the set Σ is on
sextic-node position. ut
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For convenience, we state an elementary lemma.

Lemma 4.5. Let Γ = {q1, . . . , qs} be a set of s ≥ 4 points in P3. For a given
point q 6∈ Γ , there is a hyperplane H which contains at least three points of Γ
but not the point q unless all the points q, q1, . . . , qs lie on a single hyperplane.

Proof. Because not all the points q, q1, · · · , qs lie on a single hyperplane, we
may assume there are two distinct hyperplanes H1 and H2 such that H1 ∪H2

contains the point q and four points, say q1, q2, q3, and q4, of Γ , q1 ∈ H1 \H2,
and q2 ∈ H2 \H1. Then one of the hyperplanes generated by {q1, q2, q3} and
{q1, q2, q4} must not pass through the point q; otherwise all of the �ve points
q, q1, . . . , q4 would be on a single hyperplane. ut

Also, the following result of [14] is useful.

Theorem 4.6. Let π : Y → P2 be the blowup at points p1, . . . , ps ∈ P2. Then
the linear system |π∗(OP2(d))−

∑s
i=1Ei| is base-point-free for all

s ≤ 1
3
(h0(P2,OP2(d+ 3))− 5),

where d ≥ 3 and Ei = π−1(pi), if at most k(d+ 3− k)− 2 of the points pi lie
on a curve of degree 1 ≤ k ≤ 1

2 (d+ 3).

Theorem 4.1 tells us that the �rst part of Theorem B immediately follows
from the lemma below.

Lemma 4.7. Let γ : V → P3 be the blowup at k di�erent points Γ =
{p1, . . . , pk} and p be a point in V \ ∪ki=1Ei such that the set Γ ∪ {γ(p)}
is on sextic-node position, where Ei = γ−1(pi). If k ≤ 13, then the linear

system |γ∗(OP3(5))−
∑k
i=1Ei| is base-point-free at the point p.

Proof. It is enough to �nd a quintic hypersurface in P3 that passes through all
the points of Γ but not the point q := γ(p). We may assume that k = 13. Let
r be the maximal number of points of Γ that belong to a single hyperplane of
P3 together with the point q. Note that 2 ≤ r ≤ 13. Without loss of generality,
we may also assume that the �rst r points of Γ , i.e., p1, . . . , pr, are contained
in a hyperplane H together with the point q.

We prove the statement case by case.

Case 1. (r = 2)
We divide the set Γ into �ve subsets of Γ such that each subset contains

exactly three points of Γ and the union of all the �ve subsets is Γ . Because
r = 2, the hyperplane generated by each subset cannot contain the point q.
The product of these �ve hyperplanes is what we want.

Before we proceed, we note that the points q and p1, . . . , pr do not lie on
a single line. If they do, then the hyperplane H must contain more than r
points of Γ .
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Case 2. (r = 3)
By Lemma 4.5, we can �nd three points of Γ outside of H such that

generate a hyperplane not passing through the point q. Since r = 3, we can
repeat this procedure two more times with the remaining points of Γ in the
outside of H. Only one point, say p13, then remains in the outside of H.
Because the four points, q, p1, p2, p3, cannot lie on a line, there is a quadric
hypersurface passing through the points p1, p2, p3, p13, but not the point q.

Case 3. (r = 4)
As in the previous case, we can �nd two hyperplanes which together con-

tains six points of Γ in the outside of H but not q. We then have three remain-
ing points of Γ in the outside of H. There is a line passing though two points,
say p1, p2, of p1, . . . , p4, but not the point q. Then these two points together
with one of the remaining points in the outside of H generate a hyperplane
not containing the point q. Now, we have four points, two of them are on H
and the others not on H. Obviously, these four points belong to a quadric
hypersurface not passing through the point q. Therefore, the product of the
quadric hypersurface and the hyperplanes gives us a quintic hypersurface that
we are looking for.

Case 4. (r = 5)
First of all, by Lemma 4.5, we �nd a hyperplane which contains three

points, say p6, p7, p8, of Γ in the outside of H but not the point q. We split
the case into two subcases.

Subcase 4.1. When four points of Γ on H together with the point q lie on
a line.

Assume that the points q and p1, . . . , p4 lie on a single line. The hyperplane
generated by the points p4, p5, and p9 cannot contain q. The hyperplane gen-
erated by {p3, p10, p11} cannot pass through the point q; otherwise the number
r would be bigger than �ve. By the same reason, we can �nd a hyperplane
which contains {p2, p12, p13} but not the point q. Choose a hyperplane which
passes through the point p1 but not the point q. Then we are done.

Subcase 4.2. When no four points of Γ on H lie on a line together with
the point q.

In this case, two pairs of points of Γ on H give two lines which do not
contain the point q. Therefore, we can �nd a quadric hypersurface containing
six points of Γ , four from H and two from Γ \ (H ∪ {p6, p7, p8}), but not the
point q. Furthermore, because the number r is �ve we may choose the two
points from Γ \ (H ∪{p6, p7, p8}) so that the other three points in the outside
of H cannot belong to a single line together with the point q. We then have
four points which we have not covered yet, three points, say p11, p12, p13, from
the outside of H, and one point, say p1, on H. Because the points p11, p12, p13

and q do not lie on a line, we can easily �nd a quadric hypersurface passing
through all the four points but not the point q.
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Case 5. (r = 6)
Again, by Lemma 4.5, we �nd a hyperplane which contains three points,

say p7, p8, p9, of Γ in the outside of H but not the point q. By the sextic-node
position condition, we can �nd two lines on H which together contain four
points of Γ on H but not the point q. They give us a quadric hypersurface in
P3 which pass though six points of Γ \ {p7, p8, p9}. Among these six points,
two points are from the outside of H and the others from H. Therefore, we
have four points that have not been yet covered. Because two of them are in
the outside of H, we can easily �nd a quadric hypersurface which contains
these four points but not the point q.

Case 6. (r = 7)
In this case, we can �nd three pairs of points of Γ on H such that each

pair gives us a line not passing through the point q. It implies that we can
construct a cubic hypersurface which passes through six points of Γ on H and
three points of Γ in the outside of H but not the point q. Moreover, we may
assume that the remaining three points in the outside of H do not lie on a
single line together with the point q due to the sextic-node position condition.
It is easy to �nd a quadric hypersurface containing the remaining points of Γ
but not q. So we are done.

Case 7. (r = 8 or 9)
We can �nd four pairs of points of Γ on H such that each pair gives us a

line not passing through the point q. From this fact, we easily obtain a quartic
hypersurface passing eight points of Γ on H and four points of Γ outside of
H but not the point q. We then have only one point of Γ that is not covered.
Just take a hyperplane passing through this point but not the point q, and
we are done.

Case 8. (r = 10)
Because of the sextic-node position condition, we can �nd three pairs, say

{p1, p2}, {p3, p4}, {p5, p6}, of points of Γ on H such that each pair gives us a
line not passing through the point q and, in addition, no three of the points
p7, p8, p9, p10 cannot lie on a line passing through point q. This shows there is
a quintic hypersurface which passes through Γ but not the point q.

Case 9. (r = 11)
We have eleven points of Γ on H and two points, p12, p13, of Γ in the

outside of H. We can �nd a quintic curve C on H which passes through the
eleven points on H but not the point q by Theorem 4.6. Note that the support
of the curve C is not a line because of the sextic-node position condition. A
generic hyperplane passing through p12, p13 meets C at more than two points.
Choose two points p′ and p′′ among these intersection points. Let v be the
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point at which two lines p12, p′ and p13, p′′ intersect. Then the cone over the
curve C with vertex v has all the points of Γ but not the point q.

Case 10. (r = 12)
All the points except one point, p13, lie on the hyperplane H. It immedi-

ately follows from Theorem 4.6 that we can �nd a plane quintic curve which
passing {p1, . . . , p12} but not the point q. Taking the cone over the plane
quintic curve with vertex p13, we obtain a quintic hypersurface that we want.

Case 11. (r = 13)
In this case, all the points lie on the hyperplane H. It immediately follows

from Theorem 4.6 that we can �nd a plane quintic passing all the points
except the point q, which gives us a quintic hypersurface in P3 that we want.

Consequently, we complete the proof. ut

Therefore, the �rst part of Theorem B has been proved.
The three-dimensional conjecture of Fujita (see [51], [85], and [122]) implies

Lemma 4.7 in the case when the points in Γ are in very general position.
Moreover, in the case when points in Σ are in very general position, the Q-
factoriality of X follows from Lefschetz theory (see Theorem 1.34 in [37]).
However, neither the three-dimensional nor the two-dimensional conjecture of
Fujita can be applied, in general, to an appropriate adjoint linear system in
our case. The crucial point here is that the proof of Theorem 4.6 is based
on the vanishing theorem of Ramanujam (see [19] and [120]) for 2-connected
e�ective divisors on an algebraic surface (see Proposition 2 in [141]) which is
slightly stronger in some cases than the vanishing theorem of Kawamata and
Viehweg (see [84] and [142]).

The method of [37] also explains the non-Q-factoriality of Examples 1.5,
1.6, and 1.7 over C. Let X −→ P3 be a double cover rami�ed along a sextic
S. Suppose that the sextic S ⊂ P3 is given by the equation

g2
3(x, y, z, w) + hr(x, y, z, w)f6−r(x, y, z, w) = 0,

where g3, hr, and f6−r, 1 ≤ r ≤ 3, are generic homogeneous polynomials over
C of degree 3, r, and 6− r, respectively. Then the number of singular points
is 18r − 3r2. All of them are simple double points. The defect of V is

h1(P3, I ⊗ OP3(5)) = h0(P3, I ⊗ OP3(5))− h0(P3,OP3(5)) + h0(P3,
⊕
p∈Σ

C)

= h0(P3, I ⊗ OP3(5))− 56 + 18r − 3r2.

Let H be the hypersurface of degree r de�ned by hr = 0. Then it is easy to
check h0(P3, I ⊗ OP3(5)) is bigger than or equal to

h0(P3,OP3(4)) + h0(H,OH(2)) + h0(H,OH) = 42 when r = 1,

h0(P3,OP3(3)) + h0(H,OH(2)) + h0(H,OH(1)) = 33 when r = 2,

h0(P3,OP3(2)) + h0(H,OH(2)) + h0(H,OH(2)) = 30 when r = 3.
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In all the cases, the defect of V is positive. Therefore, the double cover X is
not Q-factorial.

5 Elliptic �brations

This section is devoted to Theorem C.
Let π : X → P3 be a Q-factorial double cover rami�ed along a nodal

sextic S ⊂ P3. Consider a �bration τ : Y → Z whose general enough �ber is
a smooth elliptic curve. Suppose that we have a birational map ρ of X onto
Y . We then put MX = 1

nM with M = ρ−1(|τ∗(HZ)|), where HZ is a very
ample divisor on Z and n is the natural number such that M⊂ | − nKX |.

X

π

��

ρ //______ Y

τ

��
P3 Z

It immediately follows from Theorem 2.14 that the set CS(X,MX) is
nonempty.

Remark 5.1. The linear systemM is not composed from a pencil and cannot
be contained in the �bers of any dominant rational map χ : X 99K P1.

Using the proof of Lemma 3.1, we can easily show that the set CS(X,MX)
does not contain any smooth point of X.

Lemma 5.2. Let o be a simple double point on X that belongs to CS(X,MX).
Then there is a birational map β : P2 99K Z such that the diagram

X

π

��

ρ //_______ Y

τ

��
P3

γ //___ P2
β //___ Z

commutes, where γ is the projection from the point π(o).

Proof. Let f : W → X be the blowup at the point o and C be a general
enough �ber of the elliptic �bration φ|−KW | : W → P2. Then for a general
surface D in f−1(M),

2(n−multo(M)) = C ·D ≥ 0,

while multo(M) ≥ n by Theorem 2.34. We can therefore conclude that
multo(M) = n and f−1(M) lies in the �bers of the elliptic �bration
φ|−KW | : W → P2, which implies the claim. ut



Sextic Double Solids 113

Corollary 5.3. The set CS(X,MX) cannot contain two singular points of
the 3-fold X.

We assume that CS(X,MX) does not contain any point and that it con-
tains a curve C ⊂ X.

Lemma 5.4. The intersection number −KX · C is 1.

Proof. Let H be a general enough divisor in the linear system | −KX |. Then
we have

2 = H ·K2
X = H · M2

X ≥ multC(M2
X)H · C ≥ −KX · C,

which implies −KX · C ≤ 2.
Suppose −KX · C = 2. Then Supp(M2

X) = C and

multC(M2
X) = mult2C(MX) = 1,

which means that for two di�erent divisors M1 and M2 in the linear system
M we have

multC(M1 ·M2) = n2, multC(M1) = multC(M2) = n,

and set-theoretically M1 ∩ M2 = C. However, the linear system M is not
composed from a pencil. Therefore, for a general enough point p 6∈ C the linear
subsystem D of M passing through the point p has no base components. Let
D1 and D2 be general enough divisors in D. Then in set-theoretic sense

p ∈ D1 ∩D1 = M1 ∩M2 = C,

which is a contradiction. ut

Corollary 5.5. The curve π(C) ⊂ P3 is a line and C ∼= P1.

Remark 5.6. In the second part of the proof of Lemma 5.4, we have never
used the irreducibility of the curve C. Hence, we may assume CS(X,MX) =
{C}. Moreover, the same arguments imply multC(M2) < 2n2.

Lemma 5.7. The line π(C) is contained in the sextic surface S.

Proof. It follows from the proof of Lemma 3.7 and Remark 5.6. ut

Before we proceed, we observe

#|Sing(X) ∩ C| ≤

{
3, π(C) 6⊂ S

5, π(C) ⊂ S,

by intersecting S with either the line π(C) or a hyperplane in P3 passing
through π(C). Furthermore, when π(C) ⊂ S, the equality #|Sing(X)∩C| = 5
holds if and only if all the hyperplanes tangent to the sextic surface S at points
of π(C\Sing(X)) coincide.
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Lemma 5.8. The curve C passes through at least four singular points of X.

Proof. Let H be a general hyperplane in P3 containing the line π(C). Then
the curve

D = H ∩ S = π(C) ∪Q

is reduced, where Q is a quintic curve. The curve D is singular at each singular
point pi of S such that pi ∈ π(C) for i ∈ {1, . . . , k}. The set π(C) ∩ Q
consists of at most �ve points and Sing(D) ∩ π(C) ⊂ π(C) ∩ Q. Thus k =
#|Sing(X) ∩ C| ≤ 5.

Suppose k ≤ 3. Then the intersection π(C)∩Q contains two points o1 and
o2 di�erent from pi due to the generality in the choice of H. The hyperplane H
is therefore tangent to the sextic S at o1 and o2. Hyperplanes passing through
the line π(C) form a pencil whose proper transforms on the 3-fold X are K3
surfaces in | −KX | passing through C. Hence, the lines tangent to the sextic
surface S at a general point of the line π(C) span whole P3. Note that this is
no longer true in the case k = 5 as we mentioned right before the lemma.

Let L1 and L2 be general enough lines in H passing through the points o1
and o2, respectively. Then Lj is tangent to the sextic surface S at the point

oj . Therefore, the proper transform L̃j ⊂ X of the curve Lj is an irreducible

curve such that −KX · L̃j = 2. Also, it is singular at the point õj = π−1(oj).
Consider the proper transform H̃ of the surface H on X and a general surface
M in the linear system M. Then

M |H̃ = multC(M)C +R,

where R is an e�ective divisor on H̃ such that C 6⊂ Supp(R). Moreover,

2n = M ·L̃j ≥ multõj (L̃j) multC(M)+
∑

p∈(M\C)∩L̃j

multp(M)·multp(L̃j) ≥ 2n,

which implies M ∩ L̃j ⊂ C set-theoretically. However, on H̃ the curves L̃1

and L̃2 span two pencils with the base loci consisting of the points õ1 and õ2,
respectively. Therefore, we see R = ∅ due to the generality in the choice of
two curves L1 and L2. Note that if k = 4, then this is not true.

Hence, set-theoretically M ∩ H̃ = C for a general divisor H̃ ∈ | − KX |
passing through the curve C and a divisorM ∈M with H̃ 6⊂ Supp(M). Let p̃
be a general point on the surface H̃ and Mp̃ be the linear system of surfaces
in M containing p̃. Then Mp̃ has no base components due to Remark 5.1.

Therefore, for a general divisor M̃ in Mp̃

p̃ ∈ M̃ ∩ H̃ = C

because H̃ 6⊂ Supp(M̃), which contradicts the generality of the point p̃ ∈ H̃.
ut
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Lemma 5.9. Suppose that the curve C contains exactly four singular points
of the 3-fold X. Then there is a birational map β : P2 99K Z such that the
diagram

X

Ξπ(C)

���
�
�

ρ //______ Y

τ

��
P2

β //______ Z

is commutative, where Ξπ(C) is a rational map de�ned as in Construction B.

Proof. By our assumption, the curve C passes through four singular points p1,
p2, p3, p4 of X. We consider the blowup g1 : X̃ → X at the points p1, . . . , p4

and the blowup g2 : W → X̃ along the proper transform of the curve C on
X̃. Put g := g2 ◦ g1 : W → X. We then get

−KW = g∗(−KX)−
4∑
i=1

Ei − F,

where Ei and F are the g-exceptional divisors such that g(Ei) = pi and
g(F ) = C. Let L be a curve on W such that π ◦ g(L) is a line tangent to S at
some general point of π(C). Then

MW · L ≤ 2− 2 multC(MX) ≤ 0,

whereMW = g−1(MX). Because such curves as L span a Zariski dense subset
inW , we obtain multC(MX) = 1. Each elliptic curve L is a �ber of the elliptic
�bration Ξπ(C) ◦ g : W → P2. Thus MW lies in the �bers of Ξπ(C) ◦ g, which
implies the claim. ut

Lemma 5.10. The curve C passes through at most four singular points of X.

Proof. Suppose that the curve C passes through �ve singular points p1, . . . , p5

of X. Again, we consider the blowup g1 : X̃ → X at the points p1, . . . , p5 and
the blowup g2 : W → X̃ along the proper transform of the curve C on X̃. Put
g := g2 ◦ g1 : W → X. Then we obtain

−KW = g∗(−KX)−
5∑
i=1

Ei − F,

where Ei and F are the g-exceptional divisors such that g(Ei) = pi and
g(F ) = C. Let f : U → W be a birational morphism such that h = ρ ◦ g ◦ f
is a morphism. Then we obtain

KU +MU = (g ◦ f)∗(KX +MX) +
r∑
i=0

aiGi,
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where MU = (g ◦ f)−1(MX), Gi are the (g ◦ f)-exceptional divisors, and
ai ∈ Q. Whenever ai ≤ 0, we have g ◦ f(Gi) = C. But multC(MX) < 2 by
Remark 5.6 and hence there is exactly one i, say i = 0, such that a0 ≤ 0. It
implies f(G0) = F and a0 = 0.

Consider a general enough �ber L̂ of the morphism τ ◦ h : U → Z. Then
KU ·L̂ = 0 because the curve L̂ is elliptic. However,MU ·L̂ = 0 by construction.
So we see Gi · L̂ = 0 for i 6= 0, which means that f is an isomorphism near L̂.
Thus MW · L̃ = 0, where MW = f−1(MX) and L̃ = f(L̂).

There is a surface D ⊂W such that π ◦ g(D) ⊂ P3 is the plane tangent to
the sextic surface S along the whole line π(C). The surface D is the closure
of the set spanned by curves whose images via π ◦ g are lines tangent to the
surface S at some point of π(C).

By the same argument as in the proof of Lemma 5.9, we obtain that
multC(MX) = 1, and hence

D ∼MW − F +
5∑
i=1

biEi

for some bi ∈ Z. On the other hand, because L̂ ·Gi = 0 for i 6= 0, we get

Ej · L̃ = f∗(Ej) · L̂ =
r∑
i=1

cijGi · L̂ = 0

where cij ∈ N. Therefore, L̃ ·D < 0, which means L̃ ⊂ D. This is impossible

because the curves L̃ span a Zariski dense subset in W . ut

Therefore, Theorem C is proven.

6 Canonical Fano 3-folds

To prove Theorem D, we let π : X → P3 be a Q-factorial double cover ram-
i�ed in a nodal sextic S ⊂ P3. We then suppose that there is a nonbiregular
birational map ρ : X 99K Y of X onto a Fano 3-fold Y with canonical singu-
larities. We are to show that there is a curve C ⊂ X such that π(C) is a line
on the surface S passing through �ve nodes of the sextic S.

We putM = ρ−1(|−nKY |) andMX = 1
nM for a natural number n� 0.

We then see that KX + MX ∼Q 0 and the singularities of the movable log
pair (X,MX) are not terminal by Theorem 2.17. By our construction, the
linear system M cannot be contained in the �bers of any dominant rational
map χ : X 99K Z with 0 < dim(Z) ≤ 2.

Proposition 6.1. The set CS(X,MX) consists of a single curve C ⊂ X
which satis�es

1. −KX · C = 1,
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2. π(C) ⊂ S,
3. #|Sing(X) ∩ C| = 5.

Proof. For the proof, we literally repeat the proofs in Section 5 except those
of Lemmas 5.2 and 5.9. ut

Let p1, p2, p3, p4, p5 ∈ C be singular points of X. We consider the blowup
f1 : X̃ → X at all the points pi and the blowup f2 : W → X̃ along the proper
transform of the curve C on X̃. Put f = f2 ◦ f1 : W → X. We then note that
W is smooth and

−KW ∼ f∗(−KX)−
5∑
i=1

Ei −G,

where Ei and G are the f -exceptional divisors with f(Ei) = pi and f(G) = C.
Each surface Ei is isomorphic to the blowup of P1×P1 at one point. We have
the proper transforms F i1 and F i2 of two rulings of the quadric P1 × P1 with
self-intersection −1 on each surface Ei.

The normal bundle NW/F i
j
of the curve F ij

∼= P1 in the 3-foldW splits into

NW/F i
j

∼= OF i
j
(a)⊕OF i

j
(b)

for some integers a ≥ b. The exact sequence

0 → TF i
j
→ TW |F i

j
→ NW/F i

j
→ 0

implies deg(NW/F i
j
) = a + b = −KW · F ij + 2g(F ij ) − 2 = −2. On the other

hand, the exact sequence

0 → NEi/F i
j
→ NW/F i

j
→ NW/Ei

|F i
j
→ 0

together with NEi/F i
j

∼= OF i
j
(−1) implies b ≥ −1. Therefore, a = b = −1 and

we can make a standard �op for each curve F ij . Indeed, we let h : W̃ → W

be the blowup along all the curves F ij and Rij be the h-exceptional divisor

dominating the curve F ij . Then R
i
j
∼= P1 × P1 and there is a birational mor-

phism ĥ : W̃ → Ŵ which contracts each surface Rij to a curve F̂ ij ⊂ Ŵ and

for which ĥ ◦ h−1 is not an isomorphism in a neighborhood of each curve F ij .

Let Êi = ĥ ◦ h−1(Ei) ⊂ Ŵ . Then Êi ∼= P2 and

Êi|Êi

∼= OP2(−2),

which implies that each divisor Êi can be contracted to a terminal cyclic
quotient singularity of type 1

2 (1, 1, 1). Let f̂ : Ŵ → V be the contraction of

all the Êi. Then V has exactly �ve singular points oi of type
1
2 (1, 1, 1), it is

Q-factorial, and Pic(V ) ∼= Z⊗ Z.
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Let F = f̂ ◦ ĥ ◦ h−1(G). Then there is a birational morphism g : V → X
contracting the surface F to the curve C.

W̃
h

��~~
~~

~~
~~ ĥ

��@
@@

@@
@@

W

f

��

ĥ◦h−1
//_______ Ŵ

f̂

��
X

ρ

���
�
� V

goo

φ|−rKV |

��
Y //_______ U

At a generic point of C the morphism g is a blowup. In fact, the morphism
g is the blowup of the ideal sheaf of the curve C ⊂ X by Proposition 1.2 in
[139]. Moreover, the proof of Lemma 3.8 implies multC(MX) = 1. Hence,

−KV ∼Q MV ∼Q g∗(−KX)− F,

whereMV = g−1(MX). The morphism g|F : F → C has �ve reducible �bers
consisting of two copies of P1 intersecting transversally at the corresponding
singular point oi that is a simple double point on the surface F .

Let C̃ ⊂ F be the unique base curve of the pencil | − KV |. Then the
numerical equivalence C̃ ≡ K2

V holds. Therefore, we have

−KV is nef ⇐⇒ −KV · C̃ ≥ 0 ⇐⇒ −K3
V ≥ 0.

Because elementary calculations imply −K3
V = 1

2 , the anticanonical divisor
−KV is nef and big. Hence, | − rKV | is base-point-free for a natural number
r � 0 by the Base Point Freeness theorem (see [86]). The morphism φ|−rKV | :
V → U is birational and U is a canonical Fano 3-fold with −K3

U = 1
2 .

The image of every element in the set CS(V,MV ) on the 3-fold X is an
element in CS(X,MX) because KV + MV = g∗(KX + MX). Hence, every
element in CS(V,MV ) must be a curve dominating the curve C due to the
assumption made in Remark 5.6, which implies multC(M) ≥ 2n2. However,
it is impossible because of Remark 5.6. Therefore, the set CS(V,MV ) = ∅.

For a rational number c slightly bigger than 1, the singularities of the log
pair (V, cMV ) are still terminal and the equivalence

KV + cMV = φ∗|−rKV |(KU + cMU )

holds, where MU = φ|−rKV |(MV ). Hence, the movable log pair (U, cMU ) is
a canonical model. On the other hand, the movable log pair (Y, cn | −nKY |) is
a canonical model as well. Consequently, the map

φ|−rKV | ◦ (ρ ◦ g)−1 : Y 99K U
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is an isomorphism by Proposition 2.9.
All the statements above do not depend on the existence of a birational

map ρ of X onto Y . They depend only on the condition that X has a curve C
such that π(C) ⊂ S is a line passing through �ve nodes of the sextic surface S.
Once such a curve C ⊂ X exists, we can construct a birational transformation
of X into a canonical Fano 3-fold by means of blowing up the ideal sheaf of
the curve C ⊂ X and the birational morphism given by a plurianticanonical
linear system.

We have proved Theorem D. In addition, we have obtained explicit classi-
�cation of all birational transformations of a double cover X into Fano 3-folds
with canonical singularities.

As we mentioned before, �ve singular points of the surface S lying on the
line π(C) ⊂ S force every hyperplane in P3 tangent to S at some point of
π(C) smooth on S to be tangent to the surface S along the whole line π(C).
Such a tangent hyperplane is unique and its proper transform on V is the only
divisor in the linear system | −KV −F | which is contracted by the birational
morphism φ|−rKV | to a nonterminal point of the canonical Fano 3-fold U .

7 Sextic double solids over �nite �elds

We consider a double cover π : X → P3 de�ned over a perfect �eld F of
characteristic char(F) > 5. Suppose that the 3-fold X is Q-factorial and that
it is rami�ed along a nodal sextic surface S ⊂ P3. Actually, we may assume
that the �eld F is algebraically closed because F is perfect. We are to adjust
the proofs of both Theorems A and C to the case char(F) > 5.

We �rst list valid statements in Sections 3 and 5 in the case char(F) > 5.
The following remain valid:

1. Propositions 2.7, 2.9, and Theorem 2.30;
2. negativity of exceptional loci (see [3] and Lemma 2.19 in [87]);
3. resolution of singularities of 3-folds (see [1] and [45]);
4. numerical intersection theory on smooth 3-folds (see [59]);
5. elementary properties of blowups (see [71]).

Lemma 7.1. Theorems 2.10 and 2.14 are valid in the case char(F) > 5.

Proof. The proofs for the case char(F) = 0 depend only on the facts listed
above. ut

The following may not remain valid in the case char(F) 6= 0:

1. Theorem 2.34;
2. special cases of Bertini's theorem (see [64]).

For the birational super-rigidity, we need Theorem 2.34 and Bertini's the-
orem.
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The characteristic-free method for the proof of Theorem 2.30 in [116] can
be used to prove Theorem 2.34. However, we used Theorem 2.34 just to prove
Lemma 3.2. So instead of proving Theorem 2.34 in the case char(F) > 5, we
prove Lemma 3.2 only with Theorem 2.30, which is enough for the birational
super-rigidity.

Lemma 7.2. Let (X,MX) be a movable log pair such that −(KX +MX) is
ample and let o ∈ X be a simple double point. Then the point o does not belong
to CS(X,MX).

Proof. Suppose that the point o belongs to the set CS(X,MX). Let f : W →
X be the blowup at the point o and C be a general enough �ber of the elliptic
�bration φ|−KW | : W → P2. Then

2(1−multo(MX)) > C · MW ≥ 0,

where MW = f−1(MX). This implies multo(MX) < 1.
We consider

KW +MW = f∗(KX +MX) + (1−multo(MX))G,

where G is the f -exceptional divisor. We then see that there is a center B ∈
CS(W,MW ) with B ⊂ G.

The intersection number of MW with each ruling of G ∼= P1 × P1 is
multoMX < 1. On the other hand, we have multB(MW ) ≥ 1. Therefore, the
center B must be a point and

multB(M2
W ) ≥ 4

by Theorem 2.30.
Let H1 and H2 be two general surfaces in | − KW | passing through the

point B. Then H1 ∩H2 consists of the �ber E of the elliptic �bration φ|−KW |
with B ∈ E. Consider general enough divisors D ∈ | − 2KW | and F1, F2 ∈
|f∗(−KX)|. Then the divisors D, F1, and F2 do not pass through the point
B at all. The divisors H1 +F1, H2 +F2, and D+G are elements of the linear
subsystem H ⊂ |f∗(−2KX)−G| of surfaces passing B. The intersection

Supp(H1 + F1) ∩ Supp(H2 + F2) ∩ Supp(D +G)

contains B and consists of a �nite number of points. In particular, the linear
system H has no base curves but B is a base point of H. Let H be a general
surface in H. Then we obtain

4 > H · M2
W ≥ multB(H) multB(M2

W ) ≥ 4,

which is absurd. ut

During excluding a one-dimensional member of CS(X,MX), we implicitly
used Bertini's theorem only one time just for the following special case.
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Lemma 7.3. Let C ⊂ X be a curve with −KX · C = 1 and π(C) 6⊂ S. Then
a general enough surface H ∈ | − KX | passing through C is smooth along
C \ Sing(X).

Proof. The simple double points of the 3-fold X correspond to the simple
double points of the sextic surface S because char(F) 6= 2. Meanwhile, the
curve L := π(C) on P3 is a line. The line L cannot pass through more than
three singular points of S; otherwise it would be contained in S. The surface
D = π(H) ⊂ P3 is a plane containing L. The singularities of surface H
correspond to the singularities of the curve D ∩ S which is the rami�cation
divisor of the double cover π : H → D. For a general enough surface H ∈
|−KX |, the plane D is not tangent to the sextic S at the points of L\Sing(S),
which implies the claim. ut

Therefore, the birational super-rigidity remains true over the �eld F.
Now, we consider the statements in Section 5 over the �eld F. They also

require both Theorem 2.34 and Bertini's theorem.
The reason why Theorem 2.34 is required again is the lemma below. How-

ever, it can be proved only with Theorem 2.30.

Lemma 7.4. Let ρ : X 99K Y be a birational map and τ : Y → Z be a
�bration whose general �ber is a smooth elliptic curve. Let (X,MX) be the
movable log pair such that M := ρ−1(|τ∗(H)|) and MX = 1

nM, where H
is a very ample divisor on surface Z and n is the natural number such that
M ⊂ | − nKX |. Suppose that the set CS(X,MX) contains a singular point
o ∈ X. Then there is a birational map β : P2 99K Z such that the diagram

X

π

��

ρ //_______ Y

τ

��
P3

γ //___ P2
β //___ Z

commutes, where γ is the projection from the point π(o).

Proof. Consider the blowup f : W → X at the point o. Let C be a general
�ber of φ|−KW |. Then

2n− 2 multo(M) = C · f−1(M) ≥ 0,

which implies multo(MX) ≤ 1. Furthermore, the multiplicity multo(MX)
cannot be less than 1. Indeed, if multo(MX) < 1, then the proof of Lemma 7.2
shows contradictory inequalities

4 ≥ H · M2
W ≥ multB(H) multB(M2

W ) > 4,

where MW = f−1(MX), B is a center of CS(W,MW ), and H is a general
surface in |f∗(−2KX)− E| passing through B.

In the case multo(MX) = 1, the linear system f−1(M) lies in the �bers
of the elliptic �bration φ|−KW | : W → P2, which implies the claim. ut
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Bertini's Theorem is required again only for the following statement that
can be proved without using Bertini's theorem.

Lemma 7.5. Let C be a curve on X such that −KX · C = 1 and π(C) ⊂ S.
Suppose that #|Sing(X)∩C| ≤ 3. Then a general surface H ∈ |−KX | passing
through curve C has at least two di�erent simple double points on the curve
C ⊂ X at which the 3-fold X is smooth.

Proof. The surface π(H) ⊂ P3 is a plane passing through the line L := π(C) ⊂
S. Therefore,

π(H) ∩ S = L ∪Q,

where Q is a plane quintic. Whenever H moves in the pencil of surfaces in
| − KX | passing through C, the quintic Q moves in a pencil on S whose
base locus is Sing(S) ∩ L. It gives a �nite morphism γ : L → P1 of degree
5−#|Sing(S)∩L| such that in the outside of the set Sing(S)∩L the morphism
γ is rami�ed at the points where L∪Q is not a normal crossing divisor on the
plane π(H). These points correspond to nonsimple double points of the surface
H contained in the curve C and di�erent from Sing(X) ∩ C. However, this
morphism cannot be rami�ed everywhere because we assumed char(F) > 5.

ut

Corollary 7.6. Lemma 5.8 remains true in the case char(F) > 5.

Proof. Apply Lemma 7.5 to the proof of Lemma 5.8. ut

Because the proofs of Lemmas 5.9 and 5.10 are characteristic-free, Theo-
rem E is true.

8 Potential density

Now, we prove Theorem F.
Consider a double cover π : X → P3 de�ned over a number �eld F and

rami�ed along a nodal sextic surface S ⊂ P3. We suppose that Sing(X) 6= ∅.
We will show that the set of rational points of the 3-fold X is potentially
dense, which means that there exists a �nite extension K of the �eld F such
that the set of all K-rational points of the 3-fold X is Zariski dense.

The rationality and the unirationality of the 3-foldX over the �eld Q would
automatically imply potential density of rational points on X. However, the
3-fold X is nonrational in general due to Theorem A and the unirationality
of the 3-fold X is unknown. Moreover, X is expected to be nonunirational in
general. Actually, the degree of a rational dominant map from P3 to a double
cover of P3 rami�ed in a very generic smooth sextic surface must be divisible
by 2 and 3 due to [89] and [90].

The following result was proved in [16]:
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Theorem 8.1. Let τ : D → P2 be a double cover de�ned over a number �eld
F and rami�ed along a reduced sextic curve R ⊂ P2. Suppose Sing(D) 6= ∅.
Then the set of rational points on the surface D is potentially dense if and
only if the curve R ⊂ P2 is not a union of six lines intersecting at a single
point.

Actually, Theorem 8.1 is a special case of the following result in [17].

Theorem 8.2. Let D be a K3 surface de�ned over a number �eld F such
that D has either a structure of an elliptic �bration or an in�nite group of
automorphisms. Then the set of rational points on D is potentially dense.

Hence, taking Theorem C into consideration, we see that Theorem F is a
three-dimensional analogue of Theorem 8.1.

When singularities of the sextic surface S are worse than simple double
points but are not too bad, the double cover X tends to be more rational (see
[23]). Thus Theorem F must be true for sextic surfaces with any singularities
possibly except cones over sextic curves. If the sextic surface S ⊂ P3 is a
reduced union of six hyperplanes passing through one line, the set of rational
points on X is not potentially dense due to Faltings' theorem ([56] and [57])
because the 3-fold X is birationally isomorphic to a product P2×C, where C
is a smooth curve of genus 2.

As a matter of fact, the sets of rational points are potentially dense on
double covers of Pn rami�ed along general enough sextic hypersurfaces for
n� 0 due to the following result ([40]):

Theorem 8.3. Let V be a double cover of Pn rami�ed in a su�ciently general
hypersurface of degree 2d > 4. Then V is unirational if n ≥ c(d), where
c(d) ∈ N depends only on d.

We will prove the potential density of the set of rational points on X using
the technique of [15], [16], and [70] which relies on the following result proved
in [104].

Theorem 8.4. Let F be a number �eld. Then there is an integer nF such
that no elliptic curve de�ned over F has an F-rational torsion point of order
n > nF.

Let o be a simple double point on X. The point π(o) is a node of the
sextic surface S. Replacing the �eld F by a �nite extension of F, we may
assume that the point o and some other �nitely many points that we will
need in the sequel are de�ned over F. Let f : V → X be the blowup at the
point o with f -exceptional divisor E. Then the linear system | −KV | is free
and the morphism

φ|−KV | : V → P2

is an elliptic �bration. The surface E is a multisection of φ|−KV | of degree 2.
Let H be a general surface in |−f∗(KX)|. Then H is a multisection of φ|−KV |
of degree 2 as well.

The following lemma is a corollary of Proposition 2.4 in [15].
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Lemma 8.5. Suppose that there is a multisectionM of φ|−KV | of degree d ≥ 2
such that the morphism φ|−KV ||M is branched at a point p ∈ M which is
contained in a smooth �ber of the elliptic �bration φ|−KV |. Then the divisor
p1 − p2 ∈ Pic(Cb) is not a torsion for some distinct points p1 and p2 of the
intersection M ∩Cb, where Cb = φ−1

|−KV |(b) and b is a C-rational point in the

complement to a countable union of proper Zariski closed subsets in P2.

Proof. See [15]. ut

Lemma 8.6. Let M ∈ |H| be an irreducible multisection of φ|−KV | of degree
2 de�ned over F such that the set of rational points on M is potentially dense
in M and φ|−KV ||M is branched at a point contained in a smooth �ber of
φ|−KV |. Then the set of rational points on X is potentially dense.

Proof. For each n ∈ N, we let Φn be the set of points p of M satisfying the
following two conditions:

1. the point p is contained in a smooth �ber Cp of the elliptic �bration
φ|−KV |;

2. 2np = nH|Cp in Pic(Cp).

Let Φn be the Zariski closure of the set Φn in M .
Suppose Φn = M for some n. Take a very general �ber C of φ|−KV | and

let
C ∩M = {p1, p2},

where p1 6= p2. Then either 2np1 ∼ nH|C or 2np2 ∼ nH|C because Φn = M .
However, p1 + p2 ∼ H|C . Thus

2np1 ∼ 2np2 ∼ nH|C

and the element p1−p2 is a torsion in Pic(C). Therefore, the C-rational point
φ|−KV |(C) is contained in the countable union of proper Zariski closed subsets
in P2 of Lemma 8.5, which contradicts the very general choice of the �ber C.
Accordingly, the set Φn is not Zariski dense in M for any n ∈ N. Moreover, it
follows from Theorem 8.4 that each set Φn for n > nF, where nF is the number
de�ned in Theorem 8.4, is disjoint from the set of F-rational points on M .

Because of the assumption on the multisectionM , we may assume that the
set of F-rational points on the surface M is Zariski dense. Take an F-rational
point

q ∈M ′ := M\(Z ∪nF
i=1 Φi),

where the set Z ⊂M consists of points contained in singular �bers of φ|−KV |.
Let Cq be the �ber of φ|−KV | passing through q. Then both the curve Cq
and the point φ|−KV |(q) are de�ned over the �eld F. The divisor 2q−H|Cq ∈
Pic(Cq) is de�ned over F as well. Moreover, 2q−H|Cq is not a torsion divisor.
By Riemann�Roch theorem, for each n ∈ N there is a unique F-rational point
qn ∈ Cq such that
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qn + (2n− 1)q = nH|Cq

in Pic(Cq). Because 2q −H|Cq
is not a torsion divisor, we see that qi 6= qj if

and only if i 6= j. We obtain an in�nite collection of F-rational points on Cq.
Consequently, for each F-rational point q in M ′, the curve Cq is contained in
the Zariski closure of the set of F-rational points of V . Because the set M ′

is a Zariski dense subset of M , the set of rational points on the 3-fold X is
potentially dense. ut

In order to prove Theorem F, it is enough to �nd an element in |H| satis-
fying the conditions of Lemma 8.6. To �nd such an element, we let T be the
set of points (p, q) ∈ S × S satisfying the following conditions:

1. p 6= q;
2. the points p and q are smooth points on the sextic surface S;
3. the point q is contained in the hyperplane D ⊂ P3 tangent to S at p;
4. the point q is a smooth point of the intersection S ∩D;
5. the intersection S ∩D is reduced.

We also let ψ : T → S be the projection on the second factor.

Lemma 8.7. The image ψ(T ) contains a Zariski open subset of the sextic
S ⊂ P3.

Proof. Let p be a general point on the sextic S ⊂ P3 and D be the hyperplane
tangent to the surface S at the point p in P3. To prove the claim we just need
to show that D∩S is reduced, which is nothing but the �niteness of the Gauss
map at a generic point of S.

When the surface S is smooth, the intersection D ∩ S is known to be
reduced (see [60], [76], or [112]). Even though S can have double points in
our case, the intersection D ∩ S is reduced because S is not ruled (see [105]).
Here, we prove it only with simple calculation.

Suppose that D ∩ S is not reduced and

D ∩ S = mC + F ⊂ D ∼= P2,

where m ≥ 2. Then C is a line, a conic, or a plane cubic curve. Let γ : S̃ → S
be the blowup at the double points of S and C̃ = γ−1(C). Then S is a surface
of general type,

KS̃ = γ∗(OP3(2)|S),

and C̃ is either a rational curve or an elliptic curve. Moreover, the self-
intersection number C̃2 of C̃ is negative by adjunction formula, but C̃ moves
in a family on the surface S̃ when we move the point p in S, which is a con-
tradiction. ut

Therefore, by Lemma 8.7 we can �nd a hyperplane D ⊂ P3 such that D∩S
is reduced and singular at some smooth point of S. Moreover, we may assume
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that D does not contain the point π(o) and there is a line L ⊂ P3 passing
through the point π(o) such that

L ∩D ∩ S 6= ∅

and L intersects the sextic S transversally at four di�erent smooth points of
S. Let D̃ be the surface in the linear system |H| such that π ◦ f(D̃) = D.
Then D̃ is an irreducible multisection of the elliptic �bration φ|−KV | of degree

2 such that φ|−KV ||D̃ is branched at a point q ∈ D̃ contained in the �ber C
of φ|−KV | such that π ◦ f(C) = L. By construction, the �ber C is a smooth

elliptic curve, π ◦ f(q) = L∩D ∩ S, and q is a smooth point on D̃. Moreover,
extending the �eld F we can assume that D̃ is de�ned over F. Hence, the set
of rational points is potentially dense on D̃ by Theorem 8.1. Theorem F is
proven.

It would be natural to prove Theorem F in the case when the sextic S is
singular and reduced (see Theorem 8.1). Most of the arguments in this section
work for any reduced singular sextic surface. Actually, in the case when the
sextic S has nonisolated singularities (for example, when it is reducible) we
do not need to use Lemma 8.7 at all, but in the case when the sextic S is
irreducible and has isolated singularities we can prove Lemma 8.7 using the
�niteness of the Gauss map for curves (see [69]) in the assumption S is not a
scroll (see [105], [145], and [146]), which is satis�ed automatically if S is not
a cone. Moreover, in general the proof of Theorem F must be simpler for bad
singularities. For instance, in the case when the sextic S has a singular point
of multiplicity 4, the double cover X is unirational and nonrational in general
due to [138], but it is rational when S has a singular point of multiplicity 5.
However, when S is a cone over a smooth sextic curve R ⊂ P2, the double cover
X is birationally equivalent to P1×D, whereD is a double cover of P2 rami�ed
along R. The potential density of rational points on X is therefore equivalent
to the potential density of rational points on D, which is still unknown in
general (see [17]).
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