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Abstract I prove new local inequality for divisors on smooth surfaces, describe its
applications, and compare it to a similar local inequality that is already known by
experts.
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Let X be a Fano variety of dimension n > 1 with at most Kawamata log terminal

singularities (see [6, Definition 6.16]). In many applications, it is useful to measure
how singular effective Q-divisors D on X can be provided that D �Q �KX . Of
course, this can be done in many ways depending on what I mean by measure.
A possible measurement can be given by the so-called ˛-invariant of the Fano
variety X that can be defined as

˛.X/ D sup

(
� 2 Q

ˇ̌̌
ˇ̌ the pair .X; �D/ is Kawamata log terminal

for every effective Q-divisor D �Q �KX:

)
2 R:

The invariant ˛.X/ has been studied intensively by many people who used
different notation for ˛.X/. The notation ˛.X/ is due to Tian who defined ˛.X/

in a different way. However, his definition coincides with the one I just gave by
[4, Theorem A.3]. The ˛-invariants play a very important role in Kähler geometry
due to

Throughout this chapter, I assume that most of the considered varieties are algebraic, normal, and
defined over complex numbers.
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Theorem 1 ([13], [7, Criterion 6.4]). Let X be a Fano variety of dimension n

that has at most quotient singularities. If ˛.X/ > n
nC1

, then X admits an orbifold
Kähler–Einstein metric.

The ˛-invariants are usually very tricky to compute. But they are computed in
many cases. For example, the ˛-invariants of smooth del Pezzo surfaces have been
computed as follows:

Theorem 2 ([1, Theorem 1.7]). Let Sd be a smooth del Pezzo surface of degree d .
Then

˛.Sd / D

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
:̂

1

3
if d D 9; 7 or Sd D F1;

1

2
if d D 5; 6 or Sd D P1 � P1;

2

3
if d D 4;

˛.S3/ D

8̂̂
<
ˆ̂:

2

3
if S3 is a cubic surface in P3 with an Eckardt point;

3

4
if S3 is a cubic surface in P3 without Eckardt points;

˛.S2/ D

8̂̂
<
ˆ̂:

3

4
if j � KS2 j has a tacnodal curve;

5

6
if j � KS2 j has no tacnodal curves;

˛.S1/ D
8<
:

5

6
if j � KS1 j has a cuspidal curve;

1 if j � KS1 j has no cuspidal curves:

Note that ˛.X/ < 1 if and only if there exists an effective Q-divisor D on X

such that D �Q �KX and the pair .X; D/ is not log canonical. Such divisors (if
they exist) are called non-log canonical special tigers by Keel and McKernan (see
[9, Definition 1.13]). They play an important role in birational geometry of X . How
does one describe non-log canonical special tigers? Note that if D is a non-log
canonical special tiger on X , then

.1 � �/D C �D0

is also a non-log canonical special tiger on X for any effective Q-divisor D0 on X

such that D0 �Q �KX and any sufficiently small � > 0. Thus, to describe non-log
canonical special tigers on X , I only need to consider those of them whose supports
do not contain supports of other non-log canonical special tigers. Let me call such
non-log canonical special tigers Siberian tigers. Unfortunately, Siberian tigers are
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not easy to describe in general. But sometimes it is possible. For example, Kosta
proved

Lemma 3 ([11, Lemma 3.1]). Let S be a hypersurface of degree 6 in P.1; 1; 2; 3/

that has exactly one singular point O . Suppose that O is a Du Val singular point of
type A3. Then all Siberian tigers on X are cuspidal curves in j�KS j, which implies,
in particular, that

˛.S/ D
8<
:

5

6
if there is a cuspidal curve in j � KS j,

1 otherwise.

The original proof of Lemma 3 is global and lengthy. In [11], Kosta applied the
very same global method to compute the ˛-invariants of all del Pezzo surfaces of
degree 1 that has at most Du Val singularities (in most of cases her computations do
not give description of Siberian tigers). Later I noticed that the nature of her global
method is, in fact, purely local. Implicitly, Kosta proved

Theorem 4 ([3, Corollary 1.29]). Let S be a surface, let P be a smooth point in
S , let �1 and �2 be two irreducible curves on S that are both smooth at P and
intersect transversally at P , and let a1 and a2 be non-negative rational numbers.
Suppose that 2n�2

nC1
a1 C 2

nC1
a2 6 1 for some positive integer n > 3. Let � be an

effective Q-divisor on the surface S whose support does not contain the curves �1

and �2. Suppose that the log pair .S; a1�1 C a2�2 C �/ is not log canonical at P .
Then multP .� � �1/ > 2a1 � a2 or multP .� � �2/ > n

n�1
a2 � a1.

Unfortunately, Theorem 4 has a very limited application scope. Together with
Kosta, I generalized Theorem 4 as

Theorem 5 ([3, Theorem 1.28]). Let S be a surface, let P be a smooth point in
S , let �1 and �2 be two irreducible curves on S that both are smooth at P and
intersect transversally at P , let a1 and a2 be non-negative rational numbers, and
let � be an effective Q-divisor on the surface S whose support does not contain
the curves �1 and �2. Suppose that the log pair .S; a1�1 C a2�2 C �/ is not
log canonical at P . Suppose that there are non-negative rational numbers ˛, ˇ,
A, B , M , and N such that ˛a1 C ˇa2 6 1, A.B � 1/ > 1, M 6 1, N 6 1,
˛.A C M � 1/ > A2.B C N � 1/ˇ, ˛.1 � M / C Aˇ > A. Suppose, in addition,
that 2M C AN 6 2 or ˛.B C 1 � MB � N / C ˇ.A C 1 � AN � M / > AB � 1.
Then multP .� � �1/ > M C Aa1 � a2 or multP .� � �2/ > N C Ba2 � a1.

Despite the fact that Theorem 5 looks very ugly, it is much more flexible and
much more applicable than Theorem 4. By [6, Excercise 6.26], an analogue of
Theorem 5 holds for surfaces with at most quotient singularities. This helped me to
find in [2] many new applications of Theorem 5 that do not follow from Theorem 4.

Remark 6. How does one apply Theorem 5? Let me say few words about this. Let
S be a smooth surface, and let D be an effective Q-divisor on S . The purpose of
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Theorem 5 is to prove that .S; D/ is log canonical provided that D satisfies some
global numerical conditions. To do so, I assume that .S; D/ is not log canonical at
P and seek for a contradiction. First, I look for some nice curves that pass through
P that has very small intersection with D. Suppose I found two such curves, say
�1 and �2, that are both irreducible and both pass through P . If �1 or �2 are
not contained in the support of the divisor D, I can bound multP .D/ by D � �1

or D � �2 and, hopefully, get a contradiction with multP .D/ > 1, which follows
from the fact .S; D/ is not log canonical at P . This shows that I should look for
the curves �1 and �2 among the curves which are close enough to the boundary of
the Mori cone NE.S/. Suppose that both curves �1 and �2 lie in the boundary of
the Mori cone NE.S/. Then �2

1 6 0 and �2
2 6 0. Keeping in mind, that the curves

�1 and �2 can, a priori, be contained in the support of the divisor D, I must put
D D a1�1 Ca2�2 C� for some non-negative rational numbers a1 and a2, where �

is an effectiveQ-divisor on S whose support does not contain the curves �1 and �2.
Then I try to bound a1 and a2 using some global methods. Usually, I end up with two
non-negative rational numbers ˛ and ˇ such that ˛a1 C ˇa2 6 1. Put M D D � �1,
N D C � �2, A D ��2

1, and B D ��2
1. Suppose that �1 and �2 are both smooth

at P and intersect transversally at P (otherwise I need to blow up the surface S and
replace the pair .S; D/ by its log pull back). If I am lucky, then A.B � 1/ > 1,
M 6 1, N 6 1, ˛.A C M � 1/ > A2.B C N � 1/ˇ, ˛.1 � M / C Aˇ > A, and
either 2M C AN 6 2 or ˛.B C 1 � MB � N / C ˇ.A C 1 � AN � M / > AB � 1

(or both), which implies that

M CAa1 �a2 > M CAa1 �a2�1 ��2 D � ��1 > multP
�
� ��1

�
> M CAa1 �a2

or

N CBa2 �a1 > N CBa2 �a1�1 ��2 D � ��2 > multP
�
� ��2

�
> N CBa2 �a1

by Theorem 5. This is the contradiction I was looking for.

Unfortunately, the hypotheses of Theorem 5 are not easy to verify in general.
Moreover, the proof of Theorem 5 is very lengthy. It seems likely that Theorem 5 is
a special case or, perhaps, a corollary of a more general statement that looks better
and has a shorter proof. Ideally, the proof of such generalization, if it exists, should
be inductive like the proof of

Theorem 7 ([6, Excercise 6.31]). Let S be a surface, let P be a smooth point in
S , let � be an irreducible curve on S that is smooth at P , let a be a non-negative
rational number such that a 6 1, and let � be an effective Q-divisor on the surface
S whose support does not contain the curve �. Suppose that the log pair .S; a� C
�/ is not log canonical at P . Then multP .� � �/ > 1.

Proof. Put m D mult.�/. If m > 1, then I am done, since multP .� � �/ > m.
In particular, I may assume that the log pair .S; a� C �/ is log canonical in a
punctured neighborhood of the point P . Since the log pair .S; a� C �/ is not log
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canonical at P , there exists a birational morphism hW OS ! S that is a composition
of r > 1 blow ups of smooth points dominating P , and there exists an h-exceptional
divisor, say Er , such that er > 1, where er is a rational number determined by

K OS C a O� C O� C
rX

iD1

ei Ei �Q h��KS C a� C �
�
;

where each ei is a rational number, each Ei is an h-exceptional divisor, O� is a proper
transform on OS of the divisor �, and O� is a proper transform on OS of the curve �.

Let f W QS ! S be the blow up of the point P , let Q� be the proper transform of
the divisor � on the surface QS , let E be the f -exceptional curve, and let Q� be the
proper transform of the curve � on the surface QS . Then the log pair . QS; a Q� C .a C
m � 1/E C Q�/ is not log canonical at some point Q 2 E .

Let me prove the inequality multP .� � �/ > 1 by induction on r . If r D 1, then
aCm�1 > 1, which implies that m > 2�a > 1. This implies that multP .���/ > 1

if r D 1. Thus, I may assume that r > 2. Since

multP
�
� � �

�
> m C multQ

� Q� � Q�
�
;

it is enough to prove that m C multQ. Q� � Q�/ > 1. Moreover, I may assume that
m 6 1, since multP .� � �/ > m. Then the log pair . QS; a Q� C .a C m � 1/E C Q�/ is
log canonical at a punctured neighborhood of the point Q 2 E , since aCm�1 6 2.

If Q 62 Q�, then the log pair . QS; .a C m � 1/E C Q�/ is not log canonical at
the point Q, which implies that

m D Q� � E > multQ
� Q� � E

�
> 1

by induction. The latter implies that Q D Q� \ E , since m 6 1. Then

a C m � 1 C multQ
� Q� � Q�

�
D multQ

 �
.a C m � 1/E C Q�

�
� Q�
!

> 1

by induction. This implies that multQ. Q� � Q�/ > 2�a�m. Then mCmultQ. Q� � Q�/ >

2 � a > 1 as required. ut
Recently, I jointly with Park and Won proved that all Siberian tigers on smooth

cubic surfaces are just anticanonical curves that have non-log canonical singularities
(see [5, Theorem 1.12]). This follows from

Theorem 8 ([5, Corollary 1.13]). Let S be a smooth cubic surface in P3, let P be a
point in S , let TP be the unique hyperplane section of the surface S that is singular
at P , let D be any effective Q-divisor on the surface S such that D �Q �KS . Then



88 I. Cheltsov

.S; D/ is log canonical at P provided that Supp.D/ does not contain at least one
irreducible component of Supp.TP /.

Siberian tigers on smooth del Pezzo surfaces of degree 1 and 2 are also just anti-
canonical curves that have non-log canonical singularities (see [5, Theorem 1.12]).
This follows easily from the proofs of [1, Lemmas 3.1 and 3.5]. Surprisingly, smooth
del Pezzo surfaces of degree 4 contains much more Siberian tigers.

Example 9. Let S be a smooth complete intersection of two quadric hypersurfaces
in P4, let L be a line on S , and let P0 be a point in L such that L is the only line in
S that passes though P0. Then there exists exactly five conics in S that pass through
P0. Let me denote them by C 0

1 , C 0
2 , C 0

3 , C 0
4 , and C 0

5 . Then

P5
iD1 C 0

i

3
C 2

3
L �Q �KS;

is a Siberian tiger. Let Z be a general smooth rational cubic curve in S such that
Z C L is cut out by a hyperplane section and P 2 Z. Then Z \ L consists of
a point P and another point which I denote by Q. Let f W QS ! S be a blow up
of the point Q, and let E be its exceptional curve. Denote by QL and QZ the proper
transforms of the curves L and Z on the surface QS , respectively. Then QZ \ QL D ¿.
Let gW OS ! QS be the blow up of the point QZ \ E , and let F be its exceptional
curve. Denote by OE, OL and OZ the proper transforms of the curves E , QL and QZ on
the surface OS , respectively. Then OS is a minimal resolution of a singular del Pezzo
surface of degree 2, and j � K OS j gives a morphism OS ! P2 that is a double cover
away from the curves OE and OL. This double cover induces an involution � 2 Bir.S/.
Put C 1

i D �.C 0
i / for every i . Then C 1

1 , C 1
2 , C 1

3 , C 1
4 and C 1

5 are curves of degree
5 that all intersect exactly in one point in L. Denote this point by P1. Iterate this
constriction k times. This gives me five irreducible curves C k

1 , C k
2 , C k

3 , C k
4 and C k

5

that intersect exactly in one point Pk . Then

P5
iD1 C k

i

a2kC1 C a2kC3

C 4a2kC1 � a2kC3

a2kC1 C a2kC3

L �Q �KS; (1)

where ai is the i -th Fibonacci number. Moreover, each curve C k
i is a curve of degree

a2kC3. Furthermore, the log canonical threshold of the divisor (1) is

a2kC3.a2kC1 C a2kC3/

1 C a2kC3.a2kC1 C a2kC3/
< 1;

which easily implies that the divisor (1) is a Siberian tiger.

Quite surprisingly, Theorem 8 has other applications as well. For example, it
follows from [10, Corollary 2.12], [5, Lemma 1.10] and Theorem 8 that every
cubic cone in A4 having unique singular point does not admit non-trivial regular
Ga-actions (cf. [8, Question 2.22]).
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The crucial part in the proof of Theorem 8 is played by two sibling lemmas.
The first one is

Lemma 11 ([5, Lemma 4.8]). Let S be a smooth cubic surface in P3, let P be a
point in S , let TP be the unique hyperplane section of the surface S that is singular
at P , let D be any effective Q-divisor on the surface S such that D �Q �KS .
Suppose that TP consists of three lines such that one of them does not pass through
P . Then .S; D/ is log canonical at P .

Its younger sister is

Lemma 12 ([5, Lemma 4.9]). Let S be a smooth cubic surface in P3, let P be a
point in S , let TP be the unique hyperplane section of the surface S that is singular
at P , let D be any effective Q-divisor on the surface S such that D �Q �KS .
Suppose that TP consists of a line and a conic intersecting transversally. Then
.S; D/ is log canonical at P .

The proofs of Lemmas 11 and 12 we found in [5] are global. In fact, they
resemble the proofs of classical results by Segre and Manin on cubic surfaces (see
[6, Theorems 2.1 and 2.2]). Once the paper [5] has been written, I asked myself a
question: can I prove Lemmas 11 and 12 using just local technique? To answer this
question, let me sketch their global proofs first.

Global proof of Lemma 11. Let me use the notation and assumptions of Lemma 11.
I write TP D L C M C N , where L, M , and N are lines on the cubic surface S .
Without loss of generality, I may assume that the line N does not pass through the
point P . Let D be any effective Q-divisor on the surface S such that D �Q �KS .
I must show that .S; D/ is log canonical at P . Suppose that the log pair .S; D/ is
not log canonical at the point P . Let me seek for a contradiction.

Put D D aL C bM C cN C �, where a, b, and c are non-negative rational
numbers and � is an effective Q-divisor on S whose support contains none of the
lines L, M and N . Put m D multP .�/. Then a 6 1, b 6 1 and c 6 1. Moreover,
the pair .S; D/ is log canonical outside finitely many points. This follows from [6,
Lemma 5.3.6] and is very easy to prove (see, for example, [5, Lemma 4.1] or the
proof of [1, Lemma 3.4]).

Since .S; D/ is not log canonical at the point P , I have

m C a C b D multP .D/ > 1

by [6, Excercise 6.18] (this also follows from Theorem 7). In particular, the rational
number a must be positive, since otherwise I would have

1 D L � D > multP .D/ > 1:

Similarly, the rational number b must be positive as well.
The inequality m C a C b > 1 is very handy. However, a stronger inequality

m C a C b > c C 1 holds. Indeed, there exists a non-negative rational number �
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such that the divisor .1C�/D ��TP is effective and its support does not contain at
least one components of TP . Now to obtain mCaCb > c C1, it is enough to apply
[6, Excercise 6.18] to the divisor .1 C �/D � �TP , since .S; .1 C �/D � �TP / is
not log canonical at P .

Since a, b, c do not exceed 1 and .S; L C M C N / is log canonical, � ¤ 0. Let
me write � D Pr

iD1 eiCi , where every ei is a positive rational number, and every
Ci is an irreducible reduced curve of degree di > 0 on the surface S . Then

a C b C c C
rX

iD1

eidi D 3;

since �KS � D D 3.
Let f W QS ! S be a blow up of the point P , and let E be the exceptional divisor

of f . Denote by QL, QM and QN the proper transforms on QS of the lines L, M and N ,
respectively. For each i , denote by QCi the proper transform of the curve Ci on the
surface QS . Then

K QS C a QL C b QM C c QN C .a C b C m � 1/ E C
rX

iD1

ei
QCi �Q f � .KS C D/ ;

which implies that the log pair . QS; a QLCb QM Cc QN C.aCbCm�1/ECPr
iD1 ei

QCi /

is not log canonical at some point Q 2 E .
I claim that either Q 2 QL \ E or Q 2 QM \ E . Indeed, it follows from

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

1 D D � L D
�

aL C bM C cN C �
�

� L D �a C b C c C � � L > �a C b C c C m;

1 D D � M D
�

aL C bM C cN C �
�

� M D a � b C c C � � M > a � b C c C m;

1 D D � N D
�

aL C bM C cN C �
�

� N D a C b � c C � � N > a C b � c;

that m 6 1 � c and a C b C m � 1 6 1, because a 6 1 and b 6 1. On the other
hand, if Q 62 QL [ QM , then the log pair . QS; .a C b C m � 1/ E CPr

iD1 ei
QCi / is not

log canonical at Q, which implies that

m D
� rX

iD1

ei
QCi

�
� E > 1

by Theorem 7. This shows that either Q 2 QL\E or Q 2 QM \E , since m 6 1�c 6
1. Without loss of generality, I may assume that Q D QL \ E .

Let �W S Ü P2 be the linear projection from the point P . Then � is a generically
two-to-one rational map. Thus the map � induces an involution � 2 Bir.S/ known
as the Geiser involution (see [6, Sect. 2.14]). The involution � is biregular outside
P [ N , �.L/ D L and �.M / D M .
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For each i , denote by Odi the degree of the curve �.Ci /. Put O� D Pr
iD1 ei�.Ci /.

Then

aL C bM C .a C b C m � 1/N C O� �Q �KS ;

and .S; aLCbM C .a Cb Cm�1/M C O�/ is not log canonical at the point L\N .
Thus, I can replace the original effective Q-divisor D by the divisor

aL C bM C .a C b C m � 1/N C O� �Q �KS

that has the same properties as D. Moreover, I have

rX
iD1

ei
Odi <

rX
iD1

eidi ;

since mCaCb > c C1. Iterating this process, I obtain a contradiction after finitely
many steps. ut
Global proof of Lemma 12. Let me use the notations and assumptions of
Lemma 12. I write TP D L C C , where L is a line, and C is a conic. Let D

be any effective Q-divisor on the surface S such that D �Q �KS . I must show that
the log pair .S; D/ is log canonical at P . Suppose that .S; D/ is not log canonical
at the point P . Let me seek for a contradiction.

Let me write D D nL C kC C �, where n and k are non-negative rational
numbers and � is an effective Q-divisor on S whose support contains none of the
curves L and C . Put m D multP .�/. Then 2n C m 6 2 and 2k C m 6 1 C n, since

8̂<
:̂

1 D D � L D
�

nL C kC C �
�

� L D �n C 2k C � � L > �n C 2k C m;

2 D D � C D
�

nL C kC C �
�

� C D 2n C � � C > 2n C m:

Arguing as in the proof [1, Lemma 3.4], I see that the log pair .S; D/ is
log canonical outside finitely many points (this follows, for example, from [6,
Lemma 5.3.6]). In particular, both rational numbers n and k do not exceed 1. On
the other hand, it follows from [6, Excercise 6.18] that

m C n C k D multP .D/ > 1;

because the log pair .S; D/ is not log canonical at the point P . The later implies
that n > 0, since 1 D L � D > multP .D/ if n D 0.

I claim that n > k and m C n > 1. Indeed, there exists a non-negative rational
number � such that the divisor .1 C �/D � �TP is effective and its support does
not contain at least one components of TP . Then .S; .1 C �/D � �TP / is not log



92 I. Cheltsov

canonical at P . If n 6 k, then the support of .1 C �/D � �TP does not contain L,
which is impossible, since

multP
�
.1 C �/D � �TP

�
> 1

and 1 D L � ..1 C �/D � �TP /. Thus, I proved that n > k. Now I can apply [6,
Excercise 6.18] to the divisor .1 C �/D � �TP and obtain m C n > 1.

Let f W QS ! S be the blow up of the point P , let Q� be the proper transform of
the divisor � on the surface QS , let QL be the proper transform of the line L on the
surface QS , let QC be the proper transform of the conic C on the surface QS , and let E

be the f -exceptional curve. Then

K QS C n QL C k QC C Q� C �
n C k C m � 1

�
E �Q f ��KS C D

� �Q 0;

which implies that the log pair . QS; n QL C k QC C .n C k C m � 1/E C Q�/ is not log
canonical at some point Q 2 E . On the other hand, I must have n C k C m � 1 6 1,
because 2n C m 6 2, 2k C m 6 1 C n and n 6 1.

I claim that Q 2 QL. Indeed, if Q 2 QC , then the log pair . QS; k QC C .n C k C m �
1/E C Q�/ is not log canonical at Q, which implies that k > n, since

1 � n C k D
� Q� C �

n C k C m � 1
�
E
�

� QC > 1;

by Theorem 7. Since I proved already that n > k, the curve QC does not contain Q.
Thus, if Q 62 QL, then Q 62 QL [ QC , which contradicts [5, Lemma 3.2], since

n QL C k QC C Q� C .n C k C m � 1/E �Q �K QS :

Since n and k do not exceed 1 and the log pair .S; L C C / is log canonical,
the effective Q-divisor � cannot be the zero-divisor. Let r be the number of
the irreducible components of the support of the Q-divisor �. Let me write
� D Pr

iD1 eiCi , where every ei is a positive rational number, and every Ci is
an irreducible reduced curve of degree di > 0 on the surface S . Then

n C 2k C
rX

iD1

ai di D 3;

since �KS � D D 3.
Let �W S Ü P2 be the linear projection from the point P . Then � is a generically

2-to-1 rational map. Thus the map � induces a birational involution � of the cubic
surface S . This involution is also known as the Geiser involution (cf. the proof of
Lemma 11). The involution � is biregular outside of the conic C , and �.L/ D L.

For every i , put OCi D �.Ci /, and denote by Odi the degree of the curve OCi . Put
O� D Pr

iD1 ei
OCi . Then
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nL C .n C k C m � 1/C C O� �Q �KS;

and .S; nL C .n C k C m � 1/C C O�/ is not log canonical at the point L \ C

that is different from P . Thus, I can replace the original effective Q-divisor D by
nL C .n C k C m � 1/C C O� that has the same properties as D. Moreover, since
m C n > 1, the inequality

rX
iD1

ei
Odi <

rX
iD1

ei di

holds. Iterating this process, I obtain a contradiction in a finite number of steps as in
the proof of Lemma 11. ut

It came as a surprise that Theorem 5 can be used to replace the global proof of
Lemma 12 by its local counterpart. Let me show how to do this.

Local proof of Lemma 12. Let me use the assumptions and notation of Lemma 12.
I write TP D L C C , where L is a line, and C is a conic. Let D be any effective
Q-divisor on the surface S such that D �Q �KS . I must show that the log pair
.S; D/ is log canonical at P . Suppose that .S; D/ is not log canonical at the point
P . Let me seek for a contradiction.

Put D D nL C kC C �, where n and k are non-negative rational numbers and
� is an effective Q-divisor on S whose support contains none of the curves L and
C . Put m D multP .�/. Then

m C n C k D multP .D/ > 1;

since .S; D/ is not log canonical at P . The later implies that n > 0, since 1 D
L � D > multP .D/ if n D 0.

Replacing D by an effectiveQ-divisor .1C�/D��TP for an appropriate � > 0,
I may assume that k D 0. Then 2 D C � D D 2n C � � C > 2n C m. Moreover,
the log pair .S; D/ is log canonical outside finitely many points. The latter follows,
for example, from [6, Lemma 5.3.6] and is very easy to prove (cf. the proof of [1,
Lemma 3.4]).

Let f W QS ! S be the blow up of the point P , let Q� be the proper transform of
the divisor � on the surface QS , let QL be the proper transform of the line L on the
surface QS , and let E be the f -exceptional curve. Then

K QS C n QL C Q� C �
n C m � 1

�
E �Q f ��KS C D

� �Q 0;

which implies that . QS; n QL C .n C m � 1/E C Q�/ is not log canonical at some point
Q 2 E . Arguing as in the proof of [1, Lemma 3.5], I get Q D QL \ E . Now I can
apply Theorem 5 to the log pair . QS; n QL C .n C m � 1/E C Q�/ at the point Q.
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Put �1 D E , �2 D QL, M D 1, A D 1, N D 0, B D 2, and ˛ D ˇ D 1. Check that
all hypotheses of Theorem 5 are satisfied. By Theorem 5, I have

m D multQ. Q� � E/ > 1 C .n C m � 1/ � n D m

or 1Cn�m D multQ. Q� � QL/ > 2n�.nCm�1/ D 1Cn�m, which is absurd. ut
I tried to apply Theorem 5 to find a local proof of Lemma 11 as well. But I failed.

This is not surprising. Let me explain why. The proof of Theorem 5 is asymmetric
with respect to the curves �1 and �2. The global proof of Lemma 12 is also
asymmetric with respect to the curves L and C . The proof of Theorem 5 is based
on uniquely determined iterations of blow ups: I must keep blowing up the point of
the proper transform of the curve �2 that dominates the point P . The global proof
of Lemma 12 is based on uniquely determined composition of Geiser involutions.
So, Lemma 12 can be considered as a global wrap up of a purely local special case
of Theorem 5, where the line L plays the role of the curve �2 in Theorem 5. On the
other hand, Lemma 11 is symmetric with respect to the lines L and M . Moreover,
its proof is not deterministic at all, since the composition of Geiser involutions in
the proof of Lemma 11 is not uniquely determined by the initial data, i.e., every time
I apply Geiser involution, I have exactly two possible candidates for the next one:
either I can use the Geiser involution induced by the projection from L \ N or I can
use the Geiser involution induced by the projection from M \ N . So, there is a little
hope that Theorem 5 can be used to replace the usage of Geiser involutions in the
proof of Lemma 11. Of course, there is a chance that the proof of Lemma 11 cannot
be localized like the proof of Lemma 12. Fortunately, this is not the case. Indeed,
instead of using Geiser involutions in the global proof of Lemma 11, I can use

Theorem 13. Let S be a surface, let P be a smooth point in S , let �1 and �2 be two
irreducible curves on S that both are smooth at P and intersect transversally at P ,
let a1 and a2 be non-negative rational numbers, and let � be an effective Q-divisor
on the surface S whose support does not contain the curves �1 and �2. Suppose that
the log pair .S; a1�1 C a2�2 C �/ is not log canonical at P . Put m D multP .�/.
Suppose that m 6 1. Then multP .� ��1/ > 2.1�a2/ or multP .� ��2/ > 2.1�a1/.

Proof. I may assume that a1 6 1 and a2 6 1. Then the log pair .S; a1�1 C a2�2 C
�/ is log canonical in a punctured neighborhood of the point P , because m 6 1.

Since the log pair .S; a1�1 C a2�2 C �/ is not log canonical at P , there exists
a birational morphism hW OS ! S that is a composition of r > 1 blow ups of smooth
points dominating P , and there exists an h-exceptional divisor, say Er , such that
er > 1, where er is a rational number determined by

K OS C a1
O�1 C a2

O�2 C O� C
rX

iD1

ei Ei �Q h��KS C a1�1 C a2�2 C �
�
;
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where ei is a rational number, each Ei is an h-exceptional divisor, O� is a proper
transform on OS of the divisor �, O�1 and O�2, are proper transforms on OS of the
curves �1 and �2, respectively.

Let f W QS ! S be the blow up of the point P , let Q� be the proper transform of
the divisor � on the surface QS , let E be the f -exceptional curve, let Q�1 and Q�2 be
the proper transforms of the curves �1 and �2 on the surface QS , respectively. Then

K QS C a1
Q�1 C a2

Q�2 C �
a1 C a2 C m � 1

�
E C Q� �Q f ��KS C a1�1 C a2�2 C �

�
:

which implies that the log pair . QS; a1
Q�1 C a2

Q�2 C �
a1 C a2 C m � 1

�
E C Q�/ is

not log canonical at some point Q 2 E .
If r D 1, then a1 C a2 C m � 1 > 1, which implies that m > 2 � a1 � a2. On the

other hand, if m > 2�a1 �a2, then either m > 2.1�a1/ or m > 2.1�a2/, because
otherwise I would have 2m 6 4�2.a1 Ca2/, which contradicts to m > 2�a1 �a2.
Thus, if r D 1, them multP .� � �1/ > 2.1 � a2/ or multP .� � �2/ > 2.1 � a1/.

Let me prove the required assertion by induction on r . The case r D 1 is done.
Thus, I may assume that r > 2. If Q ¤ E \ Q�1 and Q ¤ E \ Q�2, then it
follows from Theorem 7 that m D Q� � E > 1, which is impossible, since m 6 1 by
assumption. Thus, either Q D E \ Q�1 or Q D E \ Q�2. Without loss of generality,
I may assume that Q D E \ Q�1.

By induction, I can apply the required assertion to . QS; a1
Q�1 C .a1 C a2 C m �

1/E C Q�/ at the point Q. This implies that either

multQ
� Q� � Q�1

�
> 2

�
1 � .a1 C a2 C m � 1/

�
D 4 � 2a1 � 2a2 � 2m

or multQ. Q� � E/ > 2.1 � a1/. In the latter case, I have

multP
�
� � �2

�
> m > 2.1 � a1/;

since m D multQ. Q� � E/ > 2.1 � a1/, which is exactly what I want. Thus, to
complete the proof, I may assume that multQ. Q� � Q�1/ > 4 � 2a1 � 2a2 � 2m.

If multP .� � �2/ > 2.1 � a1/, then I am done. Thus, to complete the proof, I
may assume that multP .� � �2/ 6 2.1 � a1/. This gives me m 6 2.1 � a1/, since
multP .� � �2/ > m. Then

multP
�
� � �1

�
> m C multQ

� Q� � Q�1

�
> m C 4 � 2a1 � 2a2 � 2m

D 4 � 2a1 � 2a2 � m > 2.1 � a2/;

because m 6 2.1 � a1/. This completes the proof. ut
Let me show how to prove Lemma 11 using Theorem 13. This is very easy.

Local proof of Lemma 11. Let me use the assumptions and notation of Lemma 11.
I write TP D L C M C N , where L, M , and N are lines on the cubic surface S .
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Without loss of generality, I may assume that the line N does not pass through the
point P . Let D be any effective Q-divisor on the surface S such that D �Q �KS . I
must show that the log pair .S; D/ is log canonical at P . Suppose that the log pair
.S; D/ is not log canonical at P . Let me seek for a contradiction.

The log pair .S; D/ is log canonical in a punctured neighborhood of the point P

(use [6, Lemma 5.3.6] or the proof of [1, Lemma 3.4]). Put D D aLCbM CcN C�,
where a, b, and c are non-negative rational numbers and � is an effective Q-divisor
on S whose support contains none of the lines L, M , and N . Put m D multP .�/.

Since .S; L C M C N / is log canonical, D ¤ L C M C N . Then there exists a
non-negative rational number � such that the divisor .1 C �/D � �TP is effective
and its support does not contain at least one components of TP D L C M C N .
Thus, replacing D by .1C�/D��TP , I can assume that at least one number among
a, b, and c is zero. On the other hand, I know that

multP .D/ D m C a C b > 1;

because the log pair .S; D/ is not log canonical at P . Thus, if a D 0, then

1 D L � D > multP
�
L
�
multP

�
D
� D multP

�
D
� D m C b > 1;

which is absurd. This shows that a > 0. Similarly, b > 0. Therefore, c D 0. Then

1 D N � D D N � .aL C bM C �/ D a C b C N � � > a C b;

which implies that a C b 6 1. On the other hand, I know that

8̂<
:̂

1 D L �
�

aL C bM C �
�

D �a C b C L � � > �a C b C m;

1 D M �
�

aL C bM C �
�

D a � b C M � � > a � b C m;

which implies that m 6 1. Thus, I can apply Theorem 13 to .S; aLCbM C�/. This
gives either

1 C a � b D multP .� � L/ > 2.1 � b/

or 1 � a C b D multP .� � M / > 2.1 � a/. Then either 1 C a � b > 2 � 2b or
1 � a C b > 2 � 2a. In both cases, a C b > 1, which is not the case (I proved this
earlier). ut

I was very surprised to find out that Theorem 13 has many other applications as
well. Let me show how to use Theorem 13 to give a short proof of Lemma 3.

Proof of Lemma 3. Let me use the assumptions and notation of Lemma 3. Every
cuspidal curve in j � KS j is a Siberian tigers, since all curves in j � KS j are
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irreducible. Let D be a Siberian tiger. I must prove that D is a cuspidal curve in
j � KS j.

The pair .S; D/ is not log canonical at some point P 2 S . Let C be a curve in
j � KS j that contains P . If P is the base locus of the pencil j � KS j, then .S; C /

is log canonical at P , because every curve in the pencil j � KS j is smooth at its
unique base point. Moreover, if P D O , then .S; C / is also log canonical at P by
[12, Theorem 3.3]. In the latter case, the curve C has an ordinary double point at P

by [12, Theorem 3.3], which also follows from Kodaira’s table of singular fibers of
elliptic fibration. Furthermore, if C is singular at P and .S; C / is not log canonical
at P , then C has an ordinary cusp at P .

If D D C and C is a cuspidal curve, then I am done. Thus, I may assume that
this is not the case. Let me seek for a contradiction.

I claim that C 6� Supp.D/. Indeed, if C is cuspidal curve, then C 6� Supp.D/,
since D is a Siberian tiger. If .S; C / is log canonical, put D D aC C �, where a is
a non-negative rational number, and � is an effective Q-divisor on S whose support
does not contain the curve C . Then a < 1, since D �Q C and D ¤ C . Then

1

1 � a
D � a

1 � a
C D 1

1 � a
.aC C �/ � a

1 � a
C D 1

1 � a
� �Q �KS

and the log pair .S; 1
1�a

�/ is not log canonical at P , because .S; C / is log canonical
at P , and .S; D/ is not log canonical at P . Since D is a Siberian tiger, I see that
a D 0, i.e., C 6� Supp.D/.

If P ¤ O , then

1 D C � D > multP .D/;

which is impossible by [6, Excercise 6.18], since the log pair .S; D/ is not log
canonical at the point P . Thus, I see that P D O .

Let f W QS ! S be a minimal resolution of singularities of the surface S . Then
there are three f -exceptional curves, say E1, E2, and E3, such that E2

1 D E2
2 D

E2
3 D �2. I may assume that E1 � E3 D 0 and E1 � E2 D E2 � E3 D 1. Let QC be

the proper transform of the curve C on the surface QS . Then QC �Q f �.C / � E1 �
E2 � E3.

Let QD be the proper transform of the Q-divisor D on the surface QS . Then

QD �Q f ��D� � a1E1 � a2E2 � a3E3

for some non-negative rational numbers a1, a2 and a3. Then

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:

1 � a1 � a3 D QD � QC > 0;

2a1 � a2 D QD � E1 > 0;

2a2 � a1 � a3 D QD � E2 > 0;

2a3 � a2 D QD � E3 > 0;
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which gives 1 > a1 C a3, 2a1 > a2, 3a2 > 2a3, 2a3 > a2, 3a2 > 2a1, a1 6 3
4
,

a2 6 1, a3 6 3
4
. On the other hand, I have

K QS C QD C
3X

iD1

ai Ei �Q f �.KS C D/ �Q 0;

which implies that . QS; QD Ca1E1 Ca2E2 Ca3E3/ is not log canonical at some point
Q 2 E1 [ E2 [ E3.

Suppose that Q 2 E1 and Q 62 E2. Then . QS; QD C a1E1/ is not log canonical at
Q. Then 2a1 � a2 D QD � E1 > 1 by Theorem 7. Therefore, I have

1 > 4

3
a1 > 2a1 � 2

3
a1 > 2a1 � a2 > 1;

which is absurd. Thus, if Q 2 E1, then Q D E1 \ E2. Similarly, I see that if
Q 2 E3, then Q D E3 \ E2.

Suppose that Q 2 E2 and Q 62 E1 [E3. Then . QS; QDCa2E2/ is not log canonical
at Q. Then 2a2 � a1 � a3 D QD � E2 > 1 by Theorem 7. Therefore, I have

1 > a2 D 2a2 � a2

2
� a2

2
> 2a2 � a1 � a3 > 1;

which is absurd. Thus, I proved that either Q D E1 \ E2 or Q D E3 \ E2. Without
loss of generality, I may assume that Q D E1 \ E2.

The log pair . QS; QDCa1E1Ca2E2/ is not log canonical at Q. Put m D multQ. QD/.
Then

8̂̂
<
ˆ̂:

2a1 � a2 D QD � E1 > m;

2a2 � a1 � a3 D QD � E2 > m;

2a3 � a2 D QD � E3 > 0;

which implies that a1 C a3 > 2m. Since I already proved that a1 C a3 6 1, m 6 1
2
.

Applying Theorem 13 to the log pair . QS; QD C a1E1 C a2E2/ at the point Q, I see
that QD � E1 > 2.1 � a2/ or QD � E2 > 2.1 � a1/. In the former case, one has

2a1 � a2 D QD � E1 > 2.1 � a2/;

which implies that 2 > 2a1 C2a3 > 2a1 Ca2 > 2, since 1 > a1 Ca3 and 2a3 > a2.
Thus, I proved that

2a2 � a1 � a3 D QD � E2 > 2.1 � a1/;
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which implies that 2a2 C a1 > 2 C a3. Then 2a2 C 1 � a3 > 2a2 C a1 > 2 C a3,
since a1 C a3 6 1. The last inequality implies that 2a2 > 1 C 2a3. Since I already
proved that 2a3 > a2 , I conclude that 2a2 > 1 C a2, which is impossible, since
a1 6 1. The obtained contradiction completes the proof. ut

Similarly, I can use Theorem 13 instead of Theorem 5 in the local proof
of Lemma 12 (I leave the details to the reader). Theorem 13 has a nice and
clean inductive proof like Theorem 7 has. So, what if Theorem 13 is the desired
generalization of Theorem 5? This may seem unlikely keeping in mind how both
theorems look like. However, Theorem 13 does generalize Theorem 4, which is the
ancestor and a special case of Theorem 5. The latter follows from

Remark 14. Let S be a surface, let �1 and �2 be two irreducible curves on S that
are both smooth at P and intersect transversally at P . Take an effective Q-divisor
a1�1 C a2�2 C �, where a1 and a2 are non-negative rational numbers, and � is an
effective Q-divisor on the surface S whose support does not contain the curves �1

and �2. Put m D multP .�/. Let n be a positive integer such that n > 3. Theorem 4
asserts that multP .� � �1/ > 2a1 � a2 or

multP
�
� � �2

�
>

n

n � 1
a2 � a1

provided that 2n�2
nC1

a1 C 2
nC1

a2 6 1 and the log pair .S; a1�1 C a2�2 C �/ is not
log canonical at P . On the other hand, multP .� ��1/ > m and multP .� ��2/ > m.
Thus, Theorem 4 asserts something non-obvious only if

8̂̂
ˆ̂̂<
ˆ̂̂̂̂:

2a1 � a2 > m;

n

n � 1
a2 � a1 > m;

2n � 2

n C 1
a1 C 2

n C 1
a2 6 1:

(15)

Note that (15) implies that a1 6 1
2
, a2 6 1, and m 6 1. Thus, if (15) holds, then I

can apply Theorem 13 to the log pair .S; a1�1 Ca2�2 C�/ to get multP .� ��1/ >

2.1 � a2/ or multP .� � �2/ > 2.1 � a1/. On the other hand, if (15) holds, then
2.1 � a2/ > 2a1 � a2 and

2.1 � a1/ > 2n � 2

n C 1
a1 C 2

n C 1
a2:

Nevertheless, Theorem 13 is not a generalization of Theorem 5, i.e., I cannot
use Theorem 13 instead of Theorem 5 in general. I checked this in many cases
considered in [2]. To convince the reader, let me give

Example 16. Put S D P2. Take some integers m > 2 and k > 2. Put r D km.m �
1/. Let C be a curve in S that is given by zr�1y D xr , where Œx W y W z� are
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projective coordinates on S . Put � D �C for some positive rational number �. Let
�1 be a line in S that is given by x D 0, and let �2 be a line in S that is given by
y D 0. Put a1 D 1

m
and a2 D 1 � 1

m
. Let P be the intersection point �1 \ �2. Then

.S; a1�1 C a2�2 C �/ is log canonical P if and only if � 6 1
m

C 1
km2 . Take any

� > 1
m

C 1
km2 such that � < k

km�1
. Then multP .�/ D � < 2

m
6 1 and

multP
�
� � �1

�
D � <

k

km � 1
<

2

m
D 2.1 � a2/;

which implies that

k.m � 1/ C m � 1

m
> km.m � 1/� D multP

�
� � �2

�
> 2.1 � a1/ D 2m � 2

m

by Theorem 13. Taking � close enough to 1
m

C 1
km2 , I can get multP .� ��2/ as close

to k.m � 1/ C m�1
m

as I want. Thus, the inequality multP .� � �2/ > 2m�2
m

provided
by Theorem 13 is not very good when k � 0. Now let me apply Theorem 5 to the
log pair .S; a1�1 C a2�2 C �/ to get much better estimate for multP .� � �2/. Put
˛ D 1, ˇ D 1, M D 1, B D km, A D 1

km�1
, and N D 0. Then

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
:̂

1 D ˛a1 C ˇa2 6 1;

1 D A.B � 1/ > 1;

1 D M 6 1;

0 D N 6 1;

1

km � 1
D ˛.A C M � 1/ > A2.B C N � 1/ˇ D 1

km � 1
;

1

km � 1
D ˛.1 � M / C Aˇ > A D 1

km � 1
;

2 D 2M C AN 6 2:

By Theorem 5, multP .� � �1/ > M C Aa1 � a2 or multP .� � �2/ > N C Ba2 � a1.
Since multP

�
� � �1

� D � < k
km�1

D M C Aa1 � a2, it follows from Theorem 5
that

multP .� � �2/ > N C Ba2 � a1 D k.m � 1/ � 1

m
:

For k � 0, the latter inequality is much stronger than multP .� � �2/ > 2m�2
m

given
by Theorem 13. Moreover, I can always choose � close enough to 1

m
C 1

km2 so that
the multiplicity multP .� � �2/ D km.m � 1/� is as close to k.m � 1/ C m�1

m
as I

want. This shows that the inequality multP .� � �2/ > k.m � 1/ � 1
m

provided by
Theorem 5 is almost sharp.
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I have a strong feeling that Theorems 5 and 13 are special cases of some more
general result that is not yet found. Perhaps, it can be found by analyzing the proofs
of Theorems 5 and 13.
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