TWO RATIONAL NODAL QUARTIC 3-FOLDS

by IVAN CHELTSOV[†]

(School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD) (National Research University Higher School of Economics, 6 Usacheva Street, Moscow 119048, Russia)

and CONSTANTIN SHRAMOV[‡]

(Steklov Institute of Mathematics, 8 Gubkina Street, Moscow 119991, Russia) (National Research University Higher School of Economics, 6 Usacheva Street, Moscow 119048, Russia)

[Received 11 August 2016]

Abstract

We prove that the quartic 3-folds defined by

$$\sum_{i=0}^{5} x_i = \sum_{i=0}^{5} x_i^4 - t \left(\sum_{i=0}^{5} x_i^2 \right)^2 = 0$$

in \mathbb{P}^5 are rational for $t = \frac{1}{6}$ and $t = \frac{7}{10}$.

1. Introduction

Consider the six-dimensional permutation representation \mathbb{W} of the group \mathfrak{S}_6 . Choose coordinates x_0, \ldots, x_5 in \mathbb{W} so that they are permuted by \mathfrak{S}_6 . Then, x_0, \ldots, x_5 also serve as homogeneous coordinates in the projective space $\mathbb{P}^5 = \mathbb{P}(\mathbb{W})$.

Let us identify \mathbb{P}^4 with a hyperplane

$$x_0 + x_1 + x_2 + x_3 + x_4 + x_5 = 0$$

in \mathbb{P}^5 . Denote by X_t the quartic 3-fold in \mathbb{P}^4 that is given by the equation

$$x_0^4 + x_1^4 + x_2^4 + x_3^4 + x_4^4 + x_5^4 = t \left(x_0^2 + x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 \right)^2,$$
(1.1)

where *t* is an element of the ground field, which we will always assume to be the field \mathbb{C} of complex numbers. Every \mathfrak{S}_6 -invariant quartic in $\mathbb{P}(\mathbb{W})$ is one of the quartics X_t . Moreover, every quartic 3-fold with a faithful \mathfrak{S}_6 -action is isomorphic to some X_t . All quartics X_t are singular. Indeed,

[†]E-mail: I.Cheltsov@ed.ac.uk

[‡]Corresponding author. E-mail: costya.shramov@gmail.com

denote by Σ_{30} the \mathfrak{S}_6 -orbit of the point $[1:1:\omega:\omega:\omega^2:\omega^2]$, where $\omega = e^{\frac{2\pi i}{3}}$. Then, $|\Sigma_{30}| = 30$, and X_t is singular at every point of Σ_{30} for every $t \in \mathbb{C}$ (see, for example, [12, Theorem 4.1]).

The possible singularities of the quartic 3-fold X_t have been described by van der Geer in [12, Theorem 4.1]. To recall his description, denote by \mathcal{L}_{15} the \mathfrak{S}_6 -orbit of the line that passes through the points [1:0:-1:1:0:-1] and [0:1:-1:0:1:-1], and denote by Σ_6 , Σ_{10} and Σ_{15} the \mathfrak{S}_6 -orbits of the points [-5:1:1:1:1], [-1:-1:-1:1:1] and [1:-1:0:0:0:0], respectively. Then, the curve \mathcal{L}_{15} is a union of 15 lines, while $|\Sigma_6| = 6$, $|\Sigma_{10}| = 10$ and $|\Sigma_{15}| = 15$. Moreover, one has

$$\operatorname{Sing}(X_{t}) = \begin{cases} \mathcal{L}_{15} \text{ if } t = \frac{1}{4}, \\ \Sigma_{30} \cup \Sigma_{15} \text{ if } t = \frac{1}{2}, \\ \Sigma_{30} \cup \Sigma_{10} \text{ if } t = \frac{1}{6}, \\ \Sigma_{30} \cup \Sigma_{6} \text{ if } t = \frac{7}{10}, \\ \Sigma_{30} \text{ otherwise.} \end{cases}$$

Furthermore, if $t \neq \frac{1}{4}$, then all singular points of the quartic 3-fold X_t are isolated ordinary double points (nodes).

The 3-fold $X_{\frac{1}{2}}$ is classical. It is the so-called *Burkhardt quartic*. In [3], Burkhardt discovered that the subset $\Sigma_{30} \cup \Sigma_{15}$ is invariant under the action of the simple group $PSp_4(F_3)$ of order 25 920. In [7], Coble proved that $\Sigma_{30} \cup \Sigma_{15}$ is the singular locus of the 3-fold $X_{\frac{1}{2}}$, and proved that $X_{\frac{1}{2}}$ is also $PSp_4(F_3)$ -invariant. Later Todd proved in [22] that $X_{\frac{1}{2}}$ is rational. In [15], de Jong, Shepherd-Barron and Van de Ven proved that $X_{\frac{1}{2}}$ is the unique quartic 3-fold in \mathbb{P}^4 with 45 singular points.

The quartic 3-fold $X_{\frac{1}{4}}$ is also classical. It is known as the *Igusa quartic* from its modular interpretation as the Satake compactification of the moduli space of Abelian surfaces with level 2 structure (see [12]). The projectively dual variety of the quartic 3-fold $X_{\frac{1}{4}}$ is the so-called *Segre cubic*. Since the Segre cubic is rational, $X_{\frac{1}{4}}$ is rational as well.

During *Kul!fest* conference dedicated to the 60th anniversary of Viktor Kulikov which was held in Moscow in December 2012, Alexei Bondal and Yuri Prokhorov posed

PROBLEM 1.1 Determine all $t \in \mathbb{C}$ such that X_t is rational.

Since X_t is singular, we cannot apply Iskovskikh and Manin's theorem from [14] to X_t . Similarly, we cannot apply Mella's [18, Theorem 2] to X_t either, because the quartic 3-fold X_t is not \mathbb{Q} -factorial by Beauville [1, Lemma 2]. Nevertheless, Beauville proved

THEOREM 1.2 [(1)]. If $t \notin \left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{7}{10}\right\}$, then X_t is non-rational.

Both $X_{\frac{1}{2}}$ and $X_{\frac{1}{4}}$ are rational. The goal of this paper is to prove

THEOREM 1.3 The quartic 3-folds $X_{\frac{1}{6}}$ and $X_{\frac{7}{10}}$ are also rational.

Surprisingly, the proof of Theorem 1.3 goes back to two classical papers of Todd. Namely, we will construct an explicit \mathfrak{A}_6 -birational map $\mathbb{P}^3 \to X_{\frac{7}{10}}$ that is a special case of Todd's construction from Todd [20]. Similarly, we will construct an explicit \mathfrak{S}_5 -birational map $\mathbb{P}^3 \to X_{\frac{1}{6}}$ that is a degeneration of Todd's construction from [21]. We emphasize that our proof is self-contained, that is, it does not rely on the results proved in [20] and [21], but recovers the necessary facts in our particular situation using additional symmetries arising from group actions.

REMARK 1.4 Todd proved in [22] that the Burkhardt quartic $X_{\frac{1}{2}}$ is determinantal (see also [19, Section 5.1]). The constructions of our birational maps $\mathbb{P}^3 \to X_{\frac{7}{10}}$ and $\mathbb{P}^3 \to X_{\frac{1}{6}}$ imply that both $X_{\frac{7}{10}}$ and $X_{\frac{1}{6}}$ are determinantal (see [19, Example 6.4.2] and [19, Example 6.2.1]). Yuri Prokhorov pointed out that the quartic 3-fold

$$\det \begin{pmatrix} y_0 & y_1 & y_2 & y_3 \\ y_4 & y_0 & y_3 & y_4 \\ y_2 & y_1 & y_1 & y_0 \\ y_0 & y_3 & y_2 & y_4 \end{pmatrix} = 0$$

in \mathbb{P}^4 with homogeneous coordinates y_0, \ldots, y_4 has exactly 45 singular points. Thus, it is isomorphic to the Burkhardt quartic $X_{\frac{1}{2}}$ by de Jong [15]. It would be interesting to find similar determinantal equations of the 3-folds $X_{\frac{1}{10}}$ and $X_{\frac{1}{4}}$.

The plan of the paper is as follows. In Section 2, we recall some preliminary results on representations of a central extension of the group \mathfrak{S}_6 , and some of its subgroups. In Section 3, we collect results concerning a certain action of the group \mathfrak{A}_5 on \mathbb{P}^3 , and study \mathfrak{A}_5 -invariant quartic surfaces; the reason we pay so much attention to this group is that it is contained both in \mathfrak{A}_6 and in \mathfrak{S}_5 , and thus the information about its properties simplifies the study of the latter two groups. In Section 4, we collect auxiliary results about the groups \mathfrak{S}_6 , \mathfrak{A}_6 and \mathfrak{S}_5 , in particular about their actions on curves and their five-dimensional irreducible representations. In Section 5, we construct an \mathfrak{A}_6 -equivariant birational map $\mathbb{P}^3 \to X_{\frac{7}{10}}$. Finally, in Section 6, we construct an \mathfrak{S}_5 -equivariant birational map $\mathbb{P}^3 \to X_{\frac{1}{20}}$ and make some concluding remarks.

Throughout the paper, we denote a cyclic group of order *n* by μ_n , and we denote a dihedral group of order 2n by D_{2n} . In particular, one has $D_{12} \cong \mathfrak{S}_3 \times \mu_2$. By F_{36} we denote a group isomorphic to $(\mu_3 \times \mu_3) \rtimes \mu_4$, and by F_{20} we denote a group isomorphic to $\mu_5 \rtimes \mu_4$.

2. Representation theory

Recall that the permutation group \mathfrak{S}_6 has two central extensions $2^+\mathfrak{S}_6$ and $2^-\mathfrak{S}_6$ by the group μ_2 with the central subgroup contained in the commutator subgroup (see [8, p. xxiii] for details). We denote the first of them (i.e. the one where the preimages of a transposition in \mathfrak{S}_6 under the natural projection have order two) by $2.\mathfrak{S}_6$ to simplify notation. Similarly, for any group Γ we denote by $2.\Gamma$ a non-split central extension of Γ by the group μ_2 .

We start with recalling some facts about four- and five-dimensional representations of the group 2. \mathfrak{S}_6 we will be working with. A reader who is not interested in details here can skip to Corollary 2.1, or even to Section 4 where we reformulate everything in geometric language. Also, we will see in Section 4 that our further constructions do not depend much on the choice of representations, and all computations one makes for one of them actually apply to all others.

Let I and J be the trivial and the non-trivial one-dimensional representations of the group \mathfrak{S}_6 , respectively. Consider the six-dimensional permutation representation \mathbb{W} of \mathfrak{S}_6 . One has

$$\mathbb{W}\cong\mathbb{I}\oplus\mathbb{W}_5\otimes\mathbb{J}$$

for some irreducible representation \mathbb{W}_5 of \mathfrak{S}_6 . We can regard \mathbb{I} , \mathbb{J} and \mathbb{W}_5 as representations of the group 2. \mathfrak{S}_6 . Recall that there is a double cover

$$\nabla: \mathrm{SL}_4(\mathbb{C}) \to \mathrm{SO}_6(\mathbb{C}),$$

see, for example, [10, Exercise 20.39]. Taking the embedding of the group $2.\mathfrak{S}_6$ into $SO_6(\mathbb{C})$ via the representation $\mathbb{I} \oplus \mathbb{W}_5$ and considering its preimage with respect to ∇ , we produce an embedding of the group $2.\mathfrak{S}_6$ into $SL_4(\mathbb{C})$. This embedding gives rise to two four-dimensional representations of $2.\mathfrak{S}_6$ that differ by a tensor product with \mathbb{J} . We fix one of these two representations \mathbb{U}_4 . Note that

$$\mathbb{I} \oplus \mathbb{W}_5 \cong \Lambda^2(\mathbb{U}_4).$$

Recall that there are coordinates $x_0, ..., x_5$ in \mathbb{W} that are permuted by the group \mathfrak{S}_6 . We will refer to a subgroup of $2.\mathfrak{S}_6$ fixing one of the corresponding points as a *standard* subgroup $2.\mathfrak{S}_5$; we denote any such subgroup by $2.\mathfrak{S}_5^{st}$. A subgroup of $2.\mathfrak{S}_6$ that is isomorphic to $2.\mathfrak{S}_5$, but is not conjugate to a standard $2.\mathfrak{S}_5$, will be called a *non-standard* subgroup $2.\mathfrak{S}_5$; we denote any such subgroup by $2.\mathfrak{S}_5^{st}$. These agree with standard and non-standard subgroups of \mathfrak{S}_6 isomorphic to \mathfrak{S}_5 , although outer automorphisms of \mathfrak{S}_6 do not lift to $2.\mathfrak{S}_6$. Any subgroup of $2.\mathfrak{S}_6$ that is isomorphic to $2.\mathfrak{A}_5$, $2.\mathfrak{S}_4$ or $2.\mathfrak{A}_4$ and is contained in $2.\mathfrak{S}_5^{st}$ is denoted by $2.\mathfrak{A}_5^{st}$, $2.\mathfrak{S}_{4st}$ or $2.\mathfrak{A}_4^{st}$, respectively. Similarly, any subgroup of $2.\mathfrak{S}_6$ that is isomorphic to $2.\mathfrak{A}_5$, $2.\mathfrak{S}_4$ or $2.\mathfrak{A}_4$ and is contained in $2.\mathfrak{S}_5^{nst}$ is denoted by $2.\mathfrak{A}_5^{nst}$, $2.\mathfrak{S}_4^{nst}$ or $2.\mathfrak{A}_4^{nst}$, respectively.

The values of characters of important representations of the group $2.\mathfrak{S}_6$, and the information about some of its subgroups are presented in Table 1, cf. [8, p. 5]. The first two columns of

ord	Туре	\mathbb{W}	\mathbb{W}_5	\mathbb{U}_4	$2.\mathfrak{S}_6$	$2.\mathfrak{A}_6$	$2.\mathfrak{S}_5^{nst}$	$2.\mathfrak{A}_{5st}$	$2.\mathfrak{A}_5^{nst}$	$2.\mathfrak{S}_4^{nst}$	$2.\mathfrak{A}_4^{nst}$	2. <i>F</i> ₃₆	$2.F_{20}$	2. D ₁₂ ^{nst}
1	id	6	5	4	1	1	1	1	1	1	1	1	1	1
2	z	6	5	$^{-4}$	1	1	1	1	1	1	1	1	1	1
2	[2]	4	-3	0	30	0	0	0	0	0	0	0	0	0
4	[2, 2]	2	1	0	90	90	30	30	30	6	6	18	10	6
4	[2, 2, 2]	0	1	0	30	0	20	0	0	12	0	0	0	8
6	[3]	3	2	2	40	40	0	20	0	0	0	4	0	0
3	[3]	3	2	-2	40	40	0	20	0	0	0	4	0	0
6	[3, 2]	1	0	0	120	0	0	0	0	0	0	0	0	0
6	[3, 2]	1	0	0	120	0	0	0	0	0	0	0	0	0
6	[3, 3]	0	-1	-1	40	40	20	0	20	8	8	4	0	2
3	[3, 3]	0	$^{-1}$	1	40	40	20	0	20	8	8	4	0	2
8	[4]	2	$^{-1}$	0	180	0	60	0	0	12	0	0	20	0
8	[4, 2]	0	$^{-1}$	0	180	180	0	0	0	0	0	36	0	0
10	[5]	1	0	1	144	144	24	24	24	0	0	0	4	0
5	5	1	0	-1	144	144	24	24	24	0	0	0	4	0
12	[6]	0	1	$\sqrt{-3}$	120	0	20	0	0	0	0	0	0	2
12	[6]	0	1	$-\sqrt{-3}$	120	0	20	0	0	0	0	0	0	2

Table 1. Characters and subgroups of the group $2.\mathfrak{S}_6$.

Table 1 describes conjugacy classes of elements of the group 2. \mathfrak{S}_6 . The first column lists the orders of the elements in the corresponding conjugacy class, and the second column, except for the entries in the second and the third rows, gives a cycle type of the image of an element under projection to \mathfrak{S}_6 (for example, [3, 2] denotes a product of two disjoint cycles of lengths 3 and 2). By id we denote the identity element of 2. \mathfrak{S}_6 , and z denotes the unique non-trivial central element of 2. \mathfrak{S}_6 . Note that the preimages of some of conjugacy classes in \mathfrak{S}_6 split into a union of two conjugacy classes in 2. \mathfrak{S}_6 . The next three columns list the values of the characters of the representations \mathbb{W} , \mathbb{W}_5 and \mathbb{U}_4 of 2. \mathfrak{S}_6 . Note that there is no real ambiguity in the choice of $\sqrt{-3}$ since we did not specify any way to distinguish the two conjugacy classes in $2.\mathfrak{S}_6$ whose elements are projected to cycles of length 6 in \mathfrak{S}_6 up to this point (note that the two ways to choose a sign here is exactly a tensor multiplication of the representation with \mathbb{J} , that is, the choice between two homomorphisms of 2. \mathfrak{S}_6 to $SL_4(\mathbb{C})$ having the same image). The remaining columns list the numbers of elements from each of the conjugacy classes of 2. \mathfrak{S}_6 in subgroups of certain types. By 2. F_{36} (respectively, by 2. F_{20} , by $2.D_{12}^{nst}$) we denote a subgroup of $2.\mathfrak{S}_6$ (respectively, of $2.\mathfrak{S}_6$, or of $2.\mathfrak{S}_5^{nst}$) isomorphic to a central extension of F_{36} (respectively, of F_{20} , or of D_{12}) by μ_2 . A subgroup 2. F_{20} is actually contained in a subgroup 2. $\mathfrak{S}_5 st$ and in a subgroup 2. \mathfrak{S}_5^{sst} . Note that the intersection of a conjugacy class in a group with a subgroup may (and often does) split into several conjugacy classes in this subgroup.

It is immediate to see from Table 1 that \mathbb{U}_4 is an irreducible representation of the group 2. \mathfrak{S}_6 . Using the information provided by Table 1, we immediately obtain the following results.

COROLLARY 2.1 Let Γ be a subgroup of 2. \mathfrak{S}_6 . After restriction to the subgroup Γ the 2. \mathfrak{S}_6 -representation \mathbb{U}_4

- remains irreducible, if Γ is one of the subgroups 2. \mathfrak{A}_6 , 2. \mathfrak{S}_5^{nst} , 2. \mathfrak{A}_5^{nst} , 2. \mathfrak{S}_4^{nst} , 2. F_{36} or 2. F_{20} ;
- splits into a sum of two non-isomorphic irreducible two-dimensional representations, if Γ is one of the subgroups 2.st₅, 2.st₄ or 2.D^{nst}₁₂.

Proof. Compute inner products of the corresponding characters with themselves, and keep in mind that neither of the groups $2.\mathfrak{A}_5^{st}$, $2.\mathfrak{A}_4^{nst}$ and $2.D_{12}^{nst}$ has an irreducible three-dimensional representation with a non-trivial action of the central subgroup.

REMARK 2.2 By Corollary 2.1(i), the $2.\mathfrak{S}_5^{nst}$ -representation \mathbb{U}_4 is irreducible. One can check that it is not induced from any proper subgroup of $2.\mathfrak{S}_5^{nst}$, that is, it defines a primitive subgroup isomorphic to $2.\mathfrak{S}_5$ in $\mathrm{GL}_4(\mathbb{C})$. Note that this subgroup is not present in the list given in [9, Section 8.5]. It is still listed by some other classical surveys, see, for example, [2, Section 119].

COROLLARY 2.3 Let Γ be a subgroup of \mathfrak{S}_6 . After restriction to the subgroup Γ , the \mathfrak{S}_6 -representation \mathbb{W}_5

- (i) remains irreducible, if Γ is one of the subgroups \mathfrak{A}_6 , \mathfrak{S}_5^{nst} or \mathfrak{A}_5^{nst} ;
- (ii) splits into a sum of the trivial and an irreducible four-dimensional representation if Γ is a subgroup \mathfrak{A}_5^{st} ;
- (iii) splits into a sum of the trivial and two different irreducible two-dimensional representations if Γ is a subgroup D_{12}^{nst} .

In the sequel, we will denote the restrictions of the $2.\mathfrak{S}_6$ -representation \mathbb{U}_4 and of the \mathfrak{S}_6 -representation \mathbb{W}_5 to various subgroups by the same symbols for simplicity. The next two corollaries are implied by direct computations (we used GAP software [11] to perform them).

COROLLARY 2.4 The following assertions hold:

- (i) the \mathfrak{A}_6 -representation Sym²(\mathbb{U}_4^{\vee}) does not contain one-dimensional subrepresentations;
- (ii) the \mathfrak{A}_6 -representation Sym⁴(\mathbb{U}_4^{\vee}) does not contain one-dimensional subrepresentations;
- (iii) the 𝔅^{nst}-representation Sym²(𝔅^V₄) splits into a sum of two different irreducible threedimensional representations and one irreducible four-dimensional representation;
- (iv) the 2. \mathfrak{A}_5^{nst} -representation Sym³(\mathbb{U}_4^{\vee}) does not contain one-dimensional subrepresentations;
- (v) the \mathfrak{A}_5^{nst} -representation Sym⁴(\mathbb{U}_4^{\vee}) has a unique two-dimensional subrepresentation, and this subrepresentation splits into a sum of two trivial representations of \mathfrak{A}_5^{nst} .

Recall that all representations of a symmetric group are self-dual. Therefore, to study invariant hypersurfaces in $\mathbb{P}(\mathbb{W}_5)$, we will use the following result.

COROLLARY 2.5 Let Γ be one of the groups \mathfrak{S}_6 , \mathfrak{A}_6 or \mathfrak{S}_5^{nst} . Then,

- (i) the Γ -representation Sym²(\mathbb{W}_5) has a unique one-dimensional subrepresentation;
- (ii) the Γ -representation Sym⁴(\mathbb{W}_5) has a unique two-dimensional subrepresentation, and this subrepresentation splits into a sum of two trivial representations of Γ .

We conclude this section by recalling some information about several subgroups of $2.\mathfrak{S}_6$ that are smaller than those listed in Table 1. Namely, we list in Table 2 orders, types and numbers of elements in certain subgroups of $2.\mathfrak{A}_5^{nst}$. We keep the notation used in Table 1. By $2.\mathfrak{S}'_3$ we denote a subgroup of $2.\mathfrak{A}_5^{nst}$ isomorphic to $2.\mathfrak{S}_3$. Note that the preimage in $2.\mathfrak{S}_6$ of any subgroup $\mu_5 \subset \mathfrak{S}_6$ is isomorphic to μ_{10} .

Looking at Table 2 (and keeping in mind character values provided by Table 1) we immediately obtain the following.

COROLLARY 2.6 Let Γ be a subgroup of $2.\mathfrak{A}_5^{nst} \subset 2.\mathfrak{S}_6$. After restriction to Γ the $2.\mathfrak{S}_6$ -representation \mathbb{U}_4

- (i) splits into a sum of two non-isomorphic irreducible two-dimensional representations if Γ is a subgroup 2.D₁₀;
- (ii) splits into a sum of an irreducible two-dimensional representation and two non-isomorphic one-dimensional representations if Γ is a subgroup 2. S₃;
- splits into a sum of two isomorphic irreducible two-dimensional representations if Γ is a subgroup 2.(µ₂ × µ₂);
- (iv) splits into a sum of four pairwise non-isomorphic one-dimensional representations if Γ is a subgroup μ_{10} .

				-	
ord	type	2.D ₁₀	$2.\mathfrak{S}_3'$	$2.(\mu_2 imes \mu_2)$	μ_{10}
1	id	1	1	1	1
2	z	1	1	1	1
4	[2, 2]	10	6	6	0
6	3, 3	0	2	0	0
3	3, 3	0	2	0	0
10	[5]	4	0	0	4
5	5	4	0	0	4

Table 2. Subgroups of $2.\mathfrak{A}_5^{nst}$.

3. Icosahedral group in 3 dimensions

In this section, we consider the action of the group \mathfrak{A}_5 on the projective space \mathbb{P}^3 arising from a non-standard embedding of $\mathfrak{A}_5 \hookrightarrow \mathfrak{S}_6$. Namely, we identify \mathbb{P}^3 with the projectivization $\mathbb{P}(\mathbb{U}_4)$, where \mathbb{U}_4 is the restriction of the four-dimensional irreducible representation of the group $2.\mathfrak{S}_6$ introduced in Section 2 to a subgroup $2.\mathfrak{A}_5^{nst}$ (which we will refer to just as $2.\mathfrak{A}_5$ in this section). Recall from Corollary 2.1(i) that \mathbb{U}_4 is an irreducible representation of 2.\mathfrak{A}_5. Moreover, this is the unique faithful four-dimensional irreducible representation of the group $2.\mathfrak{A}_5$ (see e.g. [8, p. 2]).

REMARK 3.1 (see e.g. [8, p. 2]). Let Γ be a proper subgroup of \mathfrak{A}_5 such that the index of Γ is at most 15. Then, Γ is isomorphic either to \mathfrak{A}_4 , or to D_{10} , or to \mathfrak{S}_3 , or to μ_5 , or to $\mu_2 \times \mu_2$. In particular, if \mathfrak{A}_5 acts transitively on the set of r < 15 elements, then $r \in \{5, 6, 10, 12\}$.

LEMMA 3.2 Let Ω be an \mathfrak{A}_5 -orbit of length $r \leq 15$ in \mathbb{P}^3 . Then, either r = 10, or r = 12. Moreover, \mathbb{P}^3 contains exactly two \mathfrak{A}_5 -orbits of length 10 and exactly two \mathfrak{A}_5 -orbits of length 12.

Proof. By Remark 3.1 one has $r \in \{1, 5, 6, 10, 12, 15\}$. The case r = 1 is impossible since \mathbb{U}_4 is an irreducible $2.\mathfrak{A}_5$ -representation. Restricting \mathbb{U}_4 to subgroups of $2.\mathfrak{A}_5$ isomorphic to $2.\mathfrak{A}_4$, $2.D_{10}$ and $2.(\mu_2 \times \mu_2)$, and applying Corollaries 2.1(ii) and 2.6(i), (iii), we see that $r \notin \{5, 6, 15\}$.

Restricting \mathbb{U}_4 to a subgroup of 2. \mathfrak{A}_5 isomorphic to 2. \mathfrak{S}_3 , applying Corollary 2.6(ii) and keeping in mind that there are 10 subgroups isomorphic to \mathfrak{S}_3 in \mathfrak{A}_5 , we see that \mathbb{P}^3 contains exactly two \mathfrak{A}_5 -orbits of length 10.

Finally, restricting \mathbb{U}_4 to a subgroup of 2. \mathfrak{A}_5 isomorphic to μ_{10} , applying Corollary 2.6(iv) and keeping in mind that there are six subgroups isomorphic to μ_5 in \mathfrak{A}_5 , we see that \mathbb{P}^3 contains exactly two \mathfrak{A}_5 -orbits of length 12.

LEMMA 3.3 There are no \mathfrak{A}_5 -invariant surfaces of degree at most three in \mathbb{P}^3 .

Proof. Apply Corollary 2.4(iii), (iv).

By Corollary 2.1(ii), the subgroup $\mathfrak{A}_4 \subset \mathfrak{A}_5$ leaves invariant two disjoint lines in \mathbb{P}^3 , say L_1 and L'_1 . Let L_1, \ldots, L_5 be the \mathfrak{A}_5 -orbit of the line L_1 , and let L'_1, \ldots, L'_5 be the \mathfrak{A}_5 -orbit of the line L'_1 .

LEMMA 3.4 The lines L_1, \ldots, L_5 (respectively, the lines L'_1, \ldots, L'_5) are pairwise disjoint.

Proof. Suppose that some of the lines $L_1, ..., L_5$ have a common point. Since the action of \mathfrak{A}_5 on the set $\{L_1, ..., L_5\}$ is doubly transitive, this implies that every two of the lines $L_1, ..., L_5$ have a common point. Therefore, either all lines $L_1, ..., L_5$ are coplanar, or all of them pass through one point. Both of these cases are impossible since the $2.\mathfrak{A}_5$ -representation \mathbb{U}_4 is irreducible by Corollary 2.1(i). Therefore, the lines $L_1, ..., L_5$ are pairwise disjoint. The same argument applies to the lines $L'_1, ..., L'_5$.

COROLLARY 3.5 Any \mathfrak{A}_5 -orbit contained in the union $L_1 \cup \ldots \cup L_5$ has length at least 20.

Proof. Corollary 2.1(ii) implies that the stabilizer $\Gamma \cong \mathfrak{A}_4$ of the line L_1 acts on L_1 faithfully. Therefore, the length of any Γ -orbit contained in L_1 is at least four. Thus, the required assertion follows from Lemma 3.4.

We are going to describe the configuration formed by the lines $L_1, ..., L_5, L'_1, ..., L'_5$.

DEFINITION 3.6 Let $T_1, ..., T_5, T'_1, ..., T'_5$ be different lines in a projective space. We say that they form a *double five configuration* if the following conditions hold:

- the lines T_1, \ldots, T_5 (respectively, the lines T'_1, \ldots, T'_5) are pairwise disjoint;
- for every *i* the lines T_i and T'_i are disjoint;
- for every $i \neq j$, the line T_i meets the line T'_i .

LEMMA 3.7 The lines $L_1, ..., L_5, L'_1, ..., L'_5$ form a double five configuration. Moreover, the only line in \mathbb{P}^3 that intersects all lines of $L_1, ..., L_5$, but L_i is the line L'_i , and the only line in \mathbb{P}^3 that intersects all lines of $L'_1, ..., L'_5$, but L'_i is the line L'_i .

Proof. For any *i*, the lines L_i and L'_i are disjoint by construction. The lines L_1, \ldots, L_5 (respectively, the lines L'_1, \ldots, L'_5) are pairwise disjoint by Lemma 3.4.

Since any three pairwise skew lines in \mathbb{P}^3 are contained in a smooth quadric surface, and an intersection of two different quadric surfaces in \mathbb{P}^3 cannot contain three pairwise skew lines, we see that for any three indices $1 \le i < j < k \le 5$ there is a unique quadric surface Q_{ijk} in \mathbb{P}^3 passing through the lines L_i , L_j and L_k . Moreover, the quadric Q_{ijk} is smooth. Note also that the quadric Q_{ijk} is not \mathfrak{A}_5 -invariant by Lemma 3.3. This implies that all five lines L_1, \ldots, L_5 are not contained in a quadric.

Therefore, we may assume that the quadric Q_{123} does not contain the line L_4 . It is well known that in this case either there is a unique line L meeting all four lines L_1, \ldots, L_4 , or there are exactly two lines L and L' meeting L_1, \ldots, L_4 . In the latter case, the stabilizer $\Gamma \subset \mathfrak{A}_5$ of the quadruple L_1, \ldots, L_4 (that is, the stabilizer of the line L_5) preserves the lines L_5 , L and L'. However, the lines L and L' are different from L_5 since L_5 meets neither of the lines L_1, \ldots, L_4 ; moreover, the group $\Gamma \cong \mathfrak{A}_4$ fixes both L and L'. But Γ cannot fix three different lines in \mathbb{P}^3 by Corollary 2.1(ii). The contradiction shows that there is a unique line L meeting L_1, \ldots, L_4 . Again we see that $L \neq L_5$, so that $L = L_5'$ by Corollary 2.1(ii).

Since the group \mathfrak{A}_5 permutes the lines L_1, \ldots, L_5 transitively, we conclude that the only line in \mathbb{P}^3 that intersects all lines of L_1, \ldots, L_5 except L_i is the line L'_i . Similarly, we see that the only line in \mathbb{P}^3 that intersects all lines of L'_1, \ldots, L'_5 except L'_i is the line L_i . In particular, the lines $L_1, \ldots, L_5, L'_1, \ldots, L'_5$ form a double five configuration.

LEMMA 3.8 Every \mathfrak{A}_5 -invariant curve of degree at most three in \mathbb{P}^3 is a twisted cubic. Moreover, there are exactly two \mathfrak{A}_5 -invariant twisted cubic curves in \mathbb{P}^3 .

Proof. Let C be an \mathfrak{A}_5 -invariant curve of degree at most three in \mathbb{P}^3 . Since the 2. \mathfrak{A}_5 -representation \mathbb{U}_4 is irreducible, we conclude that C is a twisted cubic.

By Corollary 2.4(iii), one has

$$\operatorname{Sym}^{2}(\mathbb{U}_{4}) \cong \mathbb{V}_{3} \oplus \mathbb{V}'_{3} \oplus \mathbb{V}_{4}, \tag{3.1}$$

where \mathbb{V}_3 , \mathbb{V}'_3 and \mathbb{V}_4 , are irreducible representations of the group \mathfrak{A}_5 of dimensions 3, 3 and 4, respectively. Note that \mathbb{V}_3 and \mathbb{V}'_3 are not isomorphic.

Denote by Q and Q' the linear systems of quadrics in \mathbb{P}^3 that correspond to \mathbb{V}_3 and \mathbb{V}'_3 , respectively. Since \mathbb{P}^3 does not contain \mathfrak{A}_5 -orbits of lengths less than or equal to eight by Lemma 3.2, we see that the base loci of Q and Q' contain \mathfrak{A}_5 -invariant curves \mathscr{C}^1 and \mathscr{C}^2 , respectively. The degrees of these curves must be <4, so that they are twisted cubic curves. This also implies that the base loci of Q and Q' are exactly the curves \mathscr{C}^1 and \mathscr{C}^2 , respectively.

Now take an arbitrary \mathfrak{A}_5 -invariant twisted cubic curve *C* in \mathbb{P}^3 . The quadrics in \mathbb{P}^3 passing through *C* define a three-dimensional \mathfrak{A}_5 -subrepresentation in $\operatorname{Sym}^2(\mathbb{U}_4)$. Moreover, different \mathfrak{A}_5 -invariant twisted cubics give different \mathfrak{A}_5 -subrepresentations of $\operatorname{Sym}^2(\mathbb{U}_4)$. Thus, Equation (3.1) implies that *C* coincides either with \mathscr{C}^1 or with \mathscr{C}^2 .

Keeping in mind Lemma 3.8, we will denote the two \mathfrak{A}_5 -invariant twisted cubic curves in \mathbb{P}^3 by \mathscr{C}^1 and \mathscr{C}^2 throughout this section.

REMARK 3.9 The curves \mathscr{C}^1 and \mathscr{C}^2 are disjoint. Indeed, otherwise, their intersection would contain at least 12 points, which is impossible, since a twisted cubic curve is an intersection of quadrics.

The lines in \mathbb{P}^3 that are tangent to the curves \mathscr{C}^1 and \mathscr{C}^2 sweep out quartic surfaces \mathcal{S}^1 and \mathcal{S}^2 , respectively. These surfaces are \mathfrak{A}_5 -invariant. The singular loci of \mathcal{S}^1 and \mathcal{S}^2 are the curves \mathscr{C}^1 and \mathscr{C}^2 , respectively. In particular, the surfaces \mathcal{S}^1 and \mathcal{S}^2 are different. Their singularities along these curves are locally isomorphic to a product of \mathbb{A}^1 and an ordinary cusp.

Denote by \mathcal{P} the pencil of quartics in \mathbb{P}^3 generated by \mathcal{S}^1 and \mathcal{S}^2 .

LEMMA 3.10 All \mathfrak{A}_5 -invariant quartic surfaces in \mathbb{P}^3 are contained in the pencil \mathcal{P} .

Proof. This follows from Corollary 2.4(v).

We proceed by describing the base locus of the pencil \mathcal{P} . This was done in [4, Remark 2.6], but we reproduce the details here for the convenience of the reader.

LEMMA 3.11 The base locus of the pencil \mathcal{P} is an irreducible curve B of degree 16. It has 24 singular points, these points are in a union of two \mathfrak{A}_5 -orbits of length 12, and each of them is an ordinary cusp of the curve B. The curve B contains a unique \mathfrak{A}_5 -orbit of length 20.

Proof. Denote by *B* the base curve of the pencil \mathcal{P} . Let us show that the curves \mathscr{C}^1 and \mathscr{C}^2 are not contained in *B*. Since \mathscr{C}^1 is projectively normal, there is an exact sequence of 2. \mathfrak{A}_5 -representations

$$0 o H^0({\mathcal I}_{{\mathscr C}^1} \otimes {\mathcal O}_{{\mathbb P}^3}(4)) o H^0({\mathcal O}_{{\mathbb P}^3}(4)) o H^0({\mathcal O}_{{\mathscr C}^1} \otimes {\mathcal O}_{{\mathbb P}^3}(4)) o 0,$$

where $\mathcal{I}_{\mathscr{C}^1}$ is the ideal sheaf of \mathscr{C}^1 . The 2. \mathfrak{A}_5 -representation $H^0(\mathcal{O}_{\mathscr{C}^1} \otimes \mathcal{O}_{\mathbb{P}^3}(4))$ contains a onedimensional subrepresentation corresponding to the unique \mathfrak{A}_5 -orbit of length 12 in $\mathscr{C}^1 \cong \mathbb{P}^1$. This shows that \mathcal{P} contains a surface that does not pass through \mathscr{C}^1 , so that \mathscr{C}^1 is not contained in B. Similarly, we see that \mathscr{C}^2 is not contained in B.

Let $\rho: \hat{\mathcal{S}}^1 \to \mathcal{S}^1$ be the normalization of the surface \mathcal{S}^1 , and let $\hat{\mathcal{C}}^1$ be the preimage of the curve \mathcal{C}^1 via ρ . Then, the action of the group \mathfrak{A}_5 lifts to $\hat{\mathcal{S}}^1$. One has $\hat{\mathcal{S}}^1 \cong \mathbb{P}^1 \times \mathbb{P}^1$, and $\rho^*(\mathcal{O}_{\mathcal{S}^1} \otimes \mathcal{O}_{\mathbb{P}^3}(1))$ is a divisor of bi-degree (1, 2). This shows that $\hat{\mathcal{C}}^1$ is of bi-degree (1, 1). Thus, the action of \mathfrak{A}_5 on $\hat{\mathcal{S}}$ is diagonal by Cheltsov and Shramov [6, Lemma 6.4.3(i)].

Denote by \hat{B} be the preimage of the curve B via ρ . Then, \hat{B} is a divisor of bi-degree (4, 8). Hence, the curve \hat{B} is irreducible by Cheltsov and Shramov [6, Lemma 6.4.4(i)], so that the curve B is irreducible as well.

Note that the curve \hat{B} is singular. Indeed, the intersection $S^1 \cap \mathscr{C}^2$ is an \mathfrak{A}_5 -orbit Σ_{12} of length 12, because \mathscr{C}^2 is not contained in S^1 . Similarly, we see that the intersection $S^2 \cap \mathscr{C}^1$ is also an \mathfrak{A}_5 -orbit Σ'_{12} of length 12. These \mathfrak{A}_5 -orbits Σ_{12} and Σ'_{12} are different by Remark 3.9. Since *B* is the scheme theoretic intersection of the surfaces S^1 and S^2 , it must be singular at every point of

 $\Sigma_{12} \cup \Sigma'_{12}$. Denote by $\hat{\Sigma}_{12}$ and $\hat{\Sigma}'_{12}$ the preimages via ρ of the \mathfrak{A}_5 -orbits Σ_{12} and Σ'_{12} , respectively. Then, \hat{B} is singular in every point of $\hat{\Sigma}'_{12}$.

The curve \hat{B} is smooth away of $\hat{\Sigma}'_{12}$, because its arithmetic genus is 21, and the surface \hat{S}^1 does not contain \mathfrak{A}_5 -orbits of length <12. However, we have

$$\hat{B} \cap \hat{\mathscr{C}}^1 = \hat{\Sigma}_{12},$$

because $\hat{B} \cdot \mathscr{C}^1 = 12$ and $\hat{\Sigma}_{12} \subset \hat{B}$. This shows that *B* is an irreducible curve whose only singularities are the points of $\Sigma_{12} \cup \Sigma'_{12}$, and each such point is an ordinary cusp of the curve *B*. In particular, the genus of the normalization of the curve *B* is 9. By Cheltsov and Shramov [18, Lemma 5.1.5], this implies that *B* contains a unique \mathfrak{A}_5 -orbit of length 20.

The following classification of \mathfrak{A}_5 -invariant quartic surfaces in \mathbb{P}^3 was obtained in [17, Theorem 2.4].

LEMMA 3.12 The pencil \mathcal{P} contains two surfaces \mathcal{R}^1 and \mathcal{R}^2 with ordinary double singularities, such that the singular loci of \mathcal{R}^1 and \mathcal{R}^2 are \mathfrak{A}_5 -orbits of length 10. Every surface in \mathbb{P}^3 is different from \mathcal{S}^1 , \mathcal{S}^2 , \mathcal{R}^1 and \mathcal{R}^2 is smooth.

Proof. Let S be a surface in \mathcal{P} that is different from \mathcal{S}^1 and \mathcal{S}^2 . It follows from Lemma 3.3 that S is irreducible. Assume that S is singular.

We claim that *S* has isolated singularities. Indeed, suppose that *S* is singular along some \mathfrak{A}_5 -invariant curve *Z*. Taking a general plane section of *S*, we see that the degree of *Z* is at most three. Thus, one has either $Z = \mathscr{C}^1$ or $Z = \mathscr{C}^2$ by Lemma 3.8. Since neither of these curves is contained in the base locus of \mathcal{P} by Lemma 3.11, this would imply that either $S = S^1$ or $S = S^2$. The latter is not the case by assumption.

We see that the singularities of *S* are isolated. Hence, *S* contains at most two non-Du Val singular points by [23, Theorem 1] applied to the minimal resolution of singularities of the surface *S*. Since the set of all non-Du Val singular points of the surface *S* must be \mathfrak{A}_5 -invariant, we see that *S* has none of them by Lemma 3.2. Thus, all singularities of *S* are Du Val.

By Cheltsov and Shramov [6, Lemma 6.7.3(iii)], the surface *S* has only ordinary double singularities, the set Sing(S) consists of one \mathfrak{A}_5 -orbit, and

$$|\text{Sing}(S)| \in \{5, 6, 10, 12, 15\}.$$

Since \mathbb{P}^3 does not contain \mathfrak{A}_5 -orbits of lengths 5, 6 and 15 by Lemma 3.2, we see that Sing(*S*) is either an \mathfrak{A}_5 -orbit of length 10 or an \mathfrak{A}_5 -orbit of length 12.

Suppose that the singular locus of S is an \mathfrak{A}_5 -orbit Σ_{12} of length 12. Then, S does not contain other \mathfrak{A}_5 -orbits of length 12 by Cheltsov and Shramov [6, Lemma 6.7.3(iv)]. Since \mathscr{C}^1 is not contained in the base locus of \mathcal{P} by Lemma 3.11, and \mathscr{C}^1 is contained in \mathcal{S}^1 , we see that $\mathscr{C}^1 \subset S$. Since

$$S \cdot \mathscr{C}^1 = 12$$

and Σ_{12} is the only \mathfrak{A}_5 -orbit of length at most 12 in $\mathscr{C}^1 \cong \mathbb{P}^1$, we have $S \cap \mathscr{C}^1 = \Sigma_{12}$. Thus,

$$12 = S \cdot \mathscr{C}^1 \ge \sum_{P \in \Sigma_{12}} \operatorname{mult}_P(S) = 2|\Sigma_{12}| = 24,$$

which is absurd.

Therefore, we see that the singular locus of *S* is an \mathfrak{A}_5 -orbit Σ_{12} of length 10. Vice versa, if an \mathfrak{A}_5 -invariant quartic surface passes through an \mathfrak{A}_5 -orbit of length 10, then it is singular by Cheltsov and Shramov [6, Lemma 6.7.1(ii)]. We know from Lemma 3.2 that there are exactly two \mathfrak{A}_5 -orbits of length 10 in \mathbb{P}^3 , and it follows from Lemma 3.11 that they are not contained in the base locus of \mathcal{P} . Thus, there are two surfaces \mathcal{R}^1 and \mathcal{R}^2 that are singular exactly at the points of these two \mathfrak{A}_5 -orbits, respectively. The above argument shows that every surface in \mathcal{P} except \mathcal{S}^1 , \mathcal{S}^2 , \mathcal{R}^1 and \mathcal{R}^2 is smooth.

Keeping in mind Lemma 3.12, we will denote by \mathcal{R}^1 and \mathcal{R}^2 the two nodal surfaces contained in the pencil \mathcal{P} until the end of this section.

LEMMA 3.13 There is a unique \mathfrak{A}_5 -invariant quartic surface in \mathbb{P}^3 that contains the lines L_1, \ldots, L_5 (respectively, the lines L'_1, \ldots, L'_5). Moreover, this surface is smooth, and it does not contain the lines L'_1, \ldots, L'_5 (respectively, L_1, \ldots, L_5).

Proof. Put $\mathcal{L} = \sum_{i=1}^{5} L_i$ and $\mathcal{L}' = \sum_{i=1}^{5} L'_i$. Corollary 2.1(ii) implies that the stabilizer in \mathfrak{A}_5 of a general point of L_1 is trivial. Therefore, there exists a surface $S \in \mathcal{P}$ that contains all lines L_1, \dots, L_5 . By Lemma 3.11 such surface S is unique.

We claim that $S \neq S^1$. Indeed, all lines contained in S^1 are tangent to the curve \mathscr{C}^1 , and there are no \mathfrak{A}_5 -orbits of length five in $\mathscr{C}^1 \cong \mathbb{P}^1$. Similarly, one has $S \neq S^2$.

We claim that *S* is not one of the two nodal surfaces \mathcal{R}^{l} and \mathcal{R}^{2} contained in the pencil \mathcal{P} . Indeed, suppose that $S = \mathcal{R}^{l}$. Since the singular locus of \mathcal{R}^{l} is an \mathfrak{A}_{5} -orbit of length 10 by Lemma 3.12, we see that the lines L_{1}, \ldots, L_{5} are contained in the smooth locus of \mathcal{R}^{l} by Corollary 3.5. However, one has $\mathcal{L}^{2} = -10$ by Lemma 3.4. This means that rk Pic $(S)^{\mathfrak{A}_{5}} \geq 2$, which is impossible by Cheltsov and Shramov [6, Lemma 6.7.3(i), (ii)].

We see that the surface S is different from \mathcal{R}^{l} . The same argument shows that S is different from \mathcal{R}^{2} . Hence, S is smooth by Lemma 3.12.

Let us show that S does not contain the lines $L'_1, ..., L'_5$. Suppose that it does. By Lemma 3.4 one has

$$\mathcal{L} \cdot \mathcal{L} = \mathcal{L}' \cdot \mathcal{L}' = -10.$$

By Cheltsov and Shramov [6, Lemma 6.7.1(i)], we have rk $Pic(S)^{\mathfrak{A}_5} = 2$. Let Π_S be the class of a plane section of S. Then, the determinant of the matrix

$$\begin{pmatrix} \mathcal{L} \cdot \mathcal{L} & \mathcal{L} \cdot \mathcal{L}' & \Pi_{S} \cdot \mathcal{L} \\ \mathcal{L} \cdot \mathcal{L}' & \mathcal{L}' \cdot \mathcal{L}' & \Pi_{S} \cdot \mathcal{L}' \\ \Pi_{S} \cdot \mathcal{L} & \Pi_{S} \cdot \mathcal{L}' & \Pi_{S} \cdot \Pi_{S} \end{pmatrix} = \begin{pmatrix} -10 & 20 & 5 \\ 20 & -10 & 5 \\ 5 & 5 & 4 \end{pmatrix}$$

must vanish. This is a contradiction, because it is equal to 300.

Applying the same argument, we see that the lines $L'_1, ..., L'_5$ are contained in a unique \mathfrak{A}_5 -invariant quartic surface, this surface is smooth and does not contain the lines $L_1, ..., L_5$.

REMARK 3.14 One can use the properties of the pencil \mathcal{P} to give an alternative proof of Lemma 3.7. Namely, we know from Lemma 3.13 that there are two (different) smooth \mathfrak{A}_5 -invariant quartic surfaces *S* and *S'* containing the lines L_1, \ldots, L_5 and L'_1, \ldots, L'_5 , respectively. By Lemma 3.11, the base locus of the pencil \mathcal{P} is an irreducible curve *B* that contains a unique \mathfrak{A}_5 -orbit Σ of length 20. By Corollary 3.5, this implies that Σ is contained in the union $L_1 \cup \ldots \cup L_5$, because

$$B\cdot (L_1+\ldots+L_5)=20$$

on the surface S. Similarly, we see that Σ is contained in $L'_1 \cup ... \cup L'_5$. These facts together with Lemma 3.4 easily imply that the lines $L_1, ..., L_5$ and $L'_1, ..., L'_5$ form a double five configuration.

Now we will obtain some restrictions on low degree \mathfrak{A}_5 -invariant curves in \mathbb{P}^3 .

LEMMA 3.15 Let C be an irreducible \mathfrak{A}_5 -invariant curve in \mathbb{P}^3 of degree $d \leq 10$. Denote by g the genus of the normalization of the curve C. Then,

$$g \le \frac{d^2}{8} + 1 - |\operatorname{Sing}(C)|.$$

Proof. Since \mathbb{U}_4 is an irreducible 2. \mathfrak{A}_5 -representation, the curve *C* is not contained in a plane in \mathbb{P}^3 . This implies that a stabilizer in \mathfrak{A}_5 of a general point of the curve *C* is trivial. In particular, the \mathfrak{A}_5 -orbit of a general point of *C* has length $|\mathfrak{A}_5| = 60$.

Let S be a surface in the pencil \mathcal{P} that passes through a general point of C. Then, the curve C is contained in S, because otherwise one would have

$$60 \le |S \cap C| \le S \cdot C = 4d \le 40,$$

which is absurd. Since the assertion of the lemma clearly holds for the twisted cubic curves \mathscr{C}^1 and \mathscr{C}^2 , we may assume that *C* is different from these two curves.

Suppose that $S = S^1$. Let us use the notation of the proof of Lemma 3.11. Denote by \hat{C} the preimage of the curve C via ρ . Then, \hat{C} is a divisor of bi-degree (a, b) for some non-negative integers a and b such that d = 2a + b. However, one has

$$|\hat{C} \cap \hat{\mathscr{C}}^{1}| \leq \hat{C} \cdot \hat{\mathscr{C}}^{1} = a + b \leq 2a + b = d \leq 10,$$

which is impossible, since the curve $\hat{\mathscr{C}}^1 \cong \mathscr{C}^1 \cong \mathbb{P}^1$ does not contain \mathfrak{A}_5 -orbits of length <12.

We see that $S \neq S^1$. Similarly, we see that $S \neq S^2$. By Lemma 3.12, either S is a smooth quartic K3 surface, or S is one of the surfaces \mathcal{R}^1 and \mathcal{R}^2 . Denote by \prod_S a plane section of S. Then,

$$\det \begin{pmatrix} \Pi_S^2 & \Pi_S \cdot C \\ \Pi_S \cdot C & C^2 \end{pmatrix} = \det \begin{pmatrix} 4 & d \\ d & C^2 \end{pmatrix} = 4C^2 - d^2 \le 0$$

by the Hodge index theorem.

Suppose that *C* is contained in the smooth locus of the surface *S*. Denote by $p_a(C)$ the arithmetic genus of the curve *C*. Then,

$$C^2 = 2p_a(C) - 2,$$

by the adjunction formula. Thus, we get

$$p_a(C) \le \frac{d^2}{8} + 1.$$

Since $g \le p_a(C) - |Sing(C)|$, this implies the assertion of the lemma.

To complete the proof, we may assume that *C* contains a singular point of the surface *S*. By Lemma 3.12, this means either $S = \mathcal{R}^1$ or $S = \mathcal{R}^2$. The singularities of the surface *S* are ordinary double points, and its singular locus is an \mathfrak{A}_5 -orbit of length 10. In particular, the curve *C* contains the whole singular locus of *S*. By Cheltsov and Shramov [6, Lemma 6.7.3(i), (ii)], one has Pic $(S)^{\mathfrak{A}_5} \cong \mathbb{Z}$. Since $\Pi_S^2 = 4$ and the self-intersection of any Cartier divisor on the surface *S* is even, we see that the group Pic $(S)^{\mathfrak{A}_5}$ is generated by Π_S .

Suppose that C is a Cartier divisor on S. Then, either $C \sim \Pi_S$ or $C \sim 2\Pi_S$, because $d \leq 10$. Since the restriction map

$$H^0(\mathcal{O}_{\mathbb{P}^3}(n)) \to H^0(\mathcal{O}_S(n\Pi_S))$$

is an isomorphism for $n \leq 3$, we conclude that there is an \mathfrak{A}_5 -invariant quadric in \mathbb{P}^3 . This is not the case by Lemma 3.3.

Therefore, we see that C is not a Cartier divisor on S. Since S has only ordinary double points, the divisor 2C is Cartier. Thus,

$$2C \sim l\Pi_S$$

for some odd positive integer l. Since

$$2d = 2C \cdot \Pi_S = l\Pi_S \cdot \Pi_S = 4l,$$

we see that $l = \frac{d}{2}$. In particular, d is even and $l \le 5$.

Let $\theta: \tilde{S} \to S$ be the minimal resolution of singularities of the surface S. Denote by \tilde{C} the proper transform of the curve C on the surface \tilde{S} , and denote by $\Theta_1, \ldots, \Theta_{10}$ the exceptional curves of θ . Then,

$$2\tilde{C}\sim heta^*(l\Pi_S)-m\sum_{i=1}^{10}\Theta_i,$$

for some positive integer m. Moreover, m is odd, because C is not a Cartier divisor. We have

$$4\tilde{C}^2 = \Pi_S^2 l^2 - 20m^2 = 4l^2 - 20m^2,$$

which implies that $\tilde{C}^2 = l^2 - 5m^2$. Since \tilde{C}^2 is even, *m* is odd and $l \le 5$, we see that either l = 3 or l = 5.

Denote by $p_a(\tilde{C})$ the arithmetic genus of the curve \tilde{C} . Then,

$$l^2 - 5m^2 = \tilde{C}^2 = 2p_a(\tilde{C}) - 2,$$

by the adjunction formula. In particular, we have

$$25 - 5m^2 \ge l^2 - 5m^2 \ge -2,$$

so that $l \in \{3, 5\}$ and m = 1. The latter means that C is smooth at every point of Sing(S), so that

$$|\operatorname{Sing}(\tilde{C})| = |\operatorname{Sing}(C)|.$$

If $l = \frac{d}{2} = 3$, then $p_a(\tilde{C}) = 3$. This gives

$$g \le p_a(\tilde{C}) - |\operatorname{Sing}(\tilde{C})| = 3 - |\operatorname{Sing}(C)| \le \frac{d^2}{8} + 1 - |\operatorname{Sing}(C)|.$$

Similarly, if $l = \frac{d}{2} = 5$, then $p_a(\tilde{C}) = 11$. This gives

$$g \le p_a(\tilde{C}) - |\operatorname{Sing}(\tilde{C})| = 11 - |\operatorname{Sing}(C)| \le \frac{d^2}{8} + 1 - |\operatorname{Sing}(C)|.$$

Recall from [6, Lemma 5.4.1] that there exists a unique smooth irreducible curve of genus 4 with a faithful action of the group \mathfrak{A}_5 . This curve is known as Bring's curve. Its canonical model is a complete intersection of a quadric and a cubic in a three-dimensional projective space. However, this sextic curve does not appear in our $\mathbb{P}^3 = \mathbb{P}(\mathbb{U}_4)$.

LEMMA 3.16 Let C be a smooth irreducible \mathfrak{A}_5 -invariant curve in \mathbb{P}^3 of degree $d \leq 6$ and genus g. Then, $g \neq 4$.

Proof. Suppose that g = 4. Denote by Π_C the plane section of the curve C. Then,

$$h^0(\mathcal{O}_C(\Pi_C)) = d - 3 + h^0(\mathcal{O}_C(K_C - \Pi_C))$$

by the Riemann–Roch theorem. Since *C* is not contained in a plane, this implies that $\Pi_C \sim K_C$. Therefore, the projective space \mathbb{P}^3 is identified with a projectivization of an \mathfrak{A}_5 -representation $H^0(\mathcal{O}_C(K_C))^{\vee}$, that is, of a representation of the group 2. \mathfrak{A}_5 where the center of 2. \mathfrak{A}_5 acts trivially. The latter is not the case by construction of \mathbb{U}_4 .

LEMMA 3.17 Let C be an irreducible smooth \mathfrak{A}_5 -invariant curve in \mathbb{P}^3 of degree d = 10 and genus g. Then, $g \neq 10$.

Proof. Suppose that g = 10. By Lemma 3.11, the base locus of the pencil \mathcal{P} is an irreducible curve *B* of degree 16. In particular, there exists a surface $S \in \mathcal{P}$ that does not contain *C*. Thus, the intersection $S \cap C$ is an \mathfrak{A}_5 -invariant set that consists of

$$C \cdot S = 4d = 40$$

points (counted with multiplicities). However, by Cheltsov and Shramov [6, Lemma 5.1.5], any \mathfrak{A}_5 -orbit in *C* has length 12, 30 or 60.

4. Large subgroups of \mathfrak{S}_6

In this section, we collect some auxiliary results about the groups \mathfrak{S}_6 , \mathfrak{A}_6 and \mathfrak{S}_5 . We start with recalling some general properties of the group \mathfrak{A}_6 .

REMARK 4.1 (see, for example, [8, p. 4]). Let Γ be a proper subgroup of \mathfrak{A}_6 such that the index of Γ is at most 15. Then, Γ is isomorphic either to \mathfrak{A}_5 , or to F_{36} , or to \mathfrak{S}_4 . In particular, if \mathfrak{A}_6 acts transitively on the set of r < 15 elements, then either r = 6 or r = 10.

We will need the following result about possible actions of the group \mathfrak{A}_6 on curves of small genera (cf. [5, Theorem 2.18] and [6, Lemma 5.1.5]).

LEMMA 4.2 Suppose that C is a smooth irreducible curve of genus $g \le 15$ with a non-trivial action of the group \mathfrak{A}_6 . Then, g = 10.

Proof. Let $\Omega \subset C$ be an \mathfrak{A}_6 -orbit. Then, a stabilizer of a point in Ω is a cyclic subgroup of \mathfrak{A}_6 , which implies that

$$|\Omega| \in \{72, 90, 120, 180, 360\}.$$

From the classification of finite subgroups of $\operatorname{Aut}(\mathbb{P}^1) \cong \operatorname{PGL}_2(\mathbb{C})$, we know that $g \neq 0$. Also, it follows from the non-solvability of the group \mathfrak{A}_6 that $g \neq 1$.

Put $\bar{C} = C/\mathfrak{A}_6$. Then, \bar{C} is a smooth curve. Let \bar{g} be the genus of the curve \bar{C} . The Riemann–Hurwitz formula gives

$$2g - 2 = 360(2\bar{g} - 2) + 180a_{180} + 240a_{120} + 270a_{90} + 288a_{72},$$

where a_k is the number of \mathfrak{A}_6 -orbits in *C* of length *k*.

Since $a_k \ge 0$ and $2 \le g \le 15$, one has $\overline{g} = 0$. Thus, we obtain

$$2g - 2 = -720 + 180a_{180} + 240a_{120} + 270a_{90} + 288a_{72}.$$

Going through the values $2 \le g \le 15$, and solving this equation case by case, we see that the only possibility is g = 10.

We proceed by recalling some general properties of the group \mathfrak{S}_5 .

REMARK 4.3 (see e.g. [12, p. 2]). Let Γ be a proper subgroup of \mathfrak{S}_5 such that the index of Γ is <12. Then, Γ is isomorphic either to \mathfrak{A}_5 , or to \mathfrak{S}_4 , or to F_{20} , or to \mathfrak{A}_4 , or to D_{12} . In particular, if \mathfrak{S}_5 acts transitively on the set of r < 12 elements, then $r \in \{2, 5, 6, 10\}$.

LEMMA 4.4 The group \mathfrak{S}_5 cannot act faithfully on a smooth irreducible curve of genus 5.

Proof. Suppose that *C* is a curve of genus 5 with a faithful action of \mathfrak{S}_5 . Considering the action of the subgroup $\mathfrak{A}_5 \subset \mathfrak{S}_5$ on *C* and applying [6, Lemma 5.4.3], we see that *C* is hyperelliptic. This gives a natural homomorphism

$$\theta \colon \mathfrak{S}_5 \to \operatorname{Aut}(\mathbb{P}^1) \cong \operatorname{PGL}_2(\mathbb{C})$$

whose kernel is either trivial or isomorphic to μ_2 . Thus, θ is injective, which gives a contradiction.

Now we will prove some auxiliary facts about actions of the groups \mathfrak{S}_6 , \mathfrak{A}_6 and \mathfrak{S}_5 on the fourdimensional projective space.

REMARK 4.5 The group \mathfrak{S}_6 has exactly four irreducible five-dimensional representations (see e.g. [8, p. 5]). Starting from one of them, one more can be obtained by a twist by an outer automorphism of \mathfrak{S}_6 , and two remaining ones are obtained from these two by a tensor product with the sign representation. Although these four representations are not isomorphic, the images of \mathfrak{S}_6 in $\mathrm{PGL}_5(\mathbb{C})$ under them are the same. Every irreducible five-dimensional representation of \mathfrak{S}_6 restricts to an irreducible representation of the subgroup $\mathfrak{A}_6 \subset \mathfrak{S}_6$, and restricts to an irreducible representations, each of them arising this way (see e.g. [8, p. 5]). Similarly, the group \mathfrak{S}_5 has exactly two irreducible five-dimensional representations, each of them arising this way (see e.g. [8, p. 5]). Similarly, the group \mathfrak{S}_5 has exactly two irreducible five-dimensional representations, each of the arising this way (see e.g. [8, p. 5]). Similarly, the group \mathfrak{S}_5 has exactly two irreducible five-dimensional representations, each of the arising this way (see e.g. [8, p. 2]). Note also that every five-dimensional representation of a group \mathfrak{A}_6 or \mathfrak{S}_5 that does not contain one-dimensional subrepresentations is irreducible.

Let \mathbb{V}_5 be an irreducible five-dimensional representation of the group \mathfrak{S}_6 . Put $\mathbb{P}^4 = \mathbb{P}(\mathbb{V}_5)$. Keeping in mind Remark 4.5, we see that the image of the corresponding homomorphism \mathfrak{S}_6 to $PGL_5(\mathbb{C})$ is the same for any choice of \mathbb{V}_5 , and thus the \mathfrak{S}_6 -orbits and \mathfrak{S}_6 -invariant hypersurfaces in \mathbb{P}^4 do not depend on \mathbb{V}_5 either.

Remark 4.5 implies that there are six linear forms $x_0, ..., x_5$ on \mathbb{P}^4 that are permuted by the group \mathfrak{S}_6 (cf. Sections 1 and 2). Indeed, up to a twist by an outer automorphoism of \mathfrak{S}_6 and a tensor product with the sign representation, \mathbb{V}_5 is a subrepresentation of the six-dimensional representation \mathbb{W} of \mathfrak{S}_6 , so that one can take restrictions of the natural coordinates in \mathbb{W} to be these linear forms. Let Q be the three-dimensional quadric in \mathbb{P}^4 given by equation

$$x_0^2 + x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 = 0. (4.1)$$

The quadric Q is smooth and \mathfrak{S}_6 -invariant. Note also that Equation (1.1) makes sense in our \mathbb{P}^4 .

We will use the notation introduced above until the end of the paper.

LEMMA 4.6 Let Γ be either the group \mathfrak{S}_6 , or its subgroup \mathfrak{A}_6 , or a subgroup \mathfrak{S}_5 of \mathfrak{S}_6 such that \mathbb{V}_5 is an irreducible representation of Γ . Then, the only Γ -invariant quadric 3-fold in \mathbb{P}^4 is the quadric Q. Similarly, every (reduced) Γ -invariant quartic 3-fold in \mathbb{P}^4 is given by Equation (1.1) for some $t \in \mathbb{C}$.

Proof. Apply Corollary 2.5.

By a small abuse of notation, we will refer to the points in \mathbb{P}^4 using x_i as if they were homogeneous coordinates, that is, a point in \mathbb{P}^4 will be encoded by a ratio of six linear forms x_i . As in

Section 1, let Σ_6 and Σ_{10} be the \mathfrak{S}_6 -orbits of the points [-5:1:1:1:1:1] and [-1:-1:-1:1:1:1], respectively. Looking at Equation (4.1), we obtain Corollary 4.7.

COROLLARY 4.7 The quadric Q does not contain the \mathfrak{S}_6 -orbits Σ_6 and Σ_{10} .

Now we will have a look at the action of the group \mathfrak{A}_6 on \mathbb{P}^4 . Note that \mathbb{V}_5 is an irreducible \mathfrak{A}_6 -representation by Remark 4.5.

LEMMA 4.8 There are no \mathfrak{A}_6 -orbits of length < 6 in \mathbb{P}^4 . Moreover, the only \mathfrak{A}_6 -orbit of length six in \mathbb{P}^4 is Σ_6 .

Proof. The only subgroup of \mathfrak{A}_6 of index < 6 is \mathfrak{A}_6 itself (cf. Remark 4.1), so that the first assertion of the lemma follows from irreducibility of the \mathfrak{A}_6 -representation \mathbb{V}_5 . Also, the only subgroups of \mathfrak{A}_6 of index six are \mathfrak{A}_5^{st} and \mathfrak{A}_5^{nst} , so that the second assertion of the lemma also follows from Corollary 2.3. \Box

LEMMA 4.9 Let X be an \mathfrak{A}_6 -invariant quartic 3-fold in \mathbb{P}^4 that contains an \mathfrak{A}_6 -orbit of length at most six. Then, $X = X_{\frac{7}{10}}$.

Proof. By Lemma 4.6, one has $X = X_t$ for some $t \in \mathbb{C}$, and by Lemma 4.8 the \mathfrak{A}_6 -orbit Σ_6 is contained in X_t . Since Σ_6 is not contained in the quadric Q by Corollary 4.7, we see that there is a unique $t \in \mathbb{C}$ such that Σ_6 is contained in a quartic given by Equation (1.1). Therefore, we conclude that $t = \frac{7}{10}$.

Now we will make a couple of observations about the action of the group \mathfrak{S}_5 on \mathbb{P}^4 . We choose \mathfrak{S}_5 to be a subgroup of \mathfrak{S}_6 such that \mathbb{V}_5 is an irreducible \mathfrak{S}_5 -representation (cf. Remark 4.5 and Corollary 2.3).

LEMMA 4.10 Let $P \in \mathbb{P}^4$ be a point such that its stabilizer in \mathfrak{S}_5 contains a subgroup isomorphic to D_{12} . Then, the \mathfrak{S}_5 -orbit of P is Σ_{10} .

Proof. By Corollary 2.3(iii), the point in \mathbb{P}^4 fixed by a subgroup $D_{12} \subset \mathfrak{S}_5$ is unique. However, it is straightforward to check that a stabilizer in \mathfrak{S}_5 of a point of Σ_{10} contains a subgroup isomorphic to D_{12} . It remains to notice that the latter stabilizer is actually isomorphic to D_{12} , since the only subgroups of \mathfrak{S}_5 that contain D_{12} are D_{12} and \mathfrak{S}_5 itself, while \mathfrak{S}_5 has no fixed points on \mathbb{P}^4 . \Box

LEMMA 4.11 Let X be an \mathfrak{S}_5 -invariant quartic 3-fold in \mathbb{P}^4 that contains Σ_{10} . Then, $X = X_{\frac{1}{4}}$.

Proof. By Lemma 4.6, one has $X = X_t$ for some $t \in \mathbb{C}$. Since Σ_{10} is not contained in the quadric Q by Corollary 4.7, we see that there is a unique $t \in \mathbb{C}$ such that Σ_{10} is contained in a quartic given by Equation (1.1). Therefore, we conclude that $t = \frac{1}{6}$.

5. Rationality of the quartic 3-fold $X_{\frac{7}{10}}$

In this section, we will construct an explicit \mathfrak{A}_6 -equivariant birational map $\mathbb{P}^3 \to X_{\frac{7}{10}}$. Implicitly, the construction of this map first appeared in the proof of Cheltsov and Shramov [5, Theorem 1.20]. Here we will present a much simplified proof of its existence.

We identify \mathbb{P}^3 with the projectivization $\mathbb{P}(\mathbb{U}_4)$, where \mathbb{U}_4 is the restriction of the fourdimensional irreducible representation of the group 2. \mathfrak{S}_6 introduced in Section 2 to the subgroup 2. \mathfrak{A}_6 . By Corollary 2.1(i), the 2. \mathfrak{A}_6 -representation \mathbb{U}_4 is irreducible. LEMMA 5.1 There are no \mathfrak{A}_6 -invariant surfaces of odd degree in \mathbb{P}^3 , and no \mathfrak{A}_6 -invariant pencils of surfaces of odd degree in \mathbb{P}^3 . Moreover, there are no \mathfrak{A}_6 -invariant quadric and quartic surfaces in \mathbb{P}^3 .

Proof. Recall that the only one-dimensional representation of the group $2.\mathfrak{A}_6$ is the trivial representation. Therefore, any \mathfrak{A}_6 -invariant surface of odd degree d in \mathbb{P}^3 gives rise to a trivial $2.\mathfrak{A}_6$ -subrepresentation in $R_d = \operatorname{Sym}^d(\mathbb{U}_4)$. However, the non-trivial central element z of $2.\mathfrak{A}_6$ acts on R_d by a scalar matrix with diagonal entries equal to -1, which shows that R_d does not contain trivial $2.\mathfrak{A}_6$ -representations. Also, since the only two-dimensional representation of $2.\mathfrak{A}_6$ is the sum of two trivial representations, this implies that there are no \mathfrak{A}_6 -invariant pencils of surfaces of odd degree in \mathbb{P}^3 .

The last assertion of the lemma follows from Corollary 2.4(i), (ii).

LEMMA 5.2 Let Ω be an \mathfrak{A}_6 -orbit in \mathbb{P}^3 . Then, $|\Omega| \ge 16$.

Proof. Lemma 5.1 implies that there are no \mathfrak{A}_6 -orbits of odd length in \mathbb{P}^3 . Thus, if Ω is an \mathfrak{A}_6 -orbit in \mathbb{P}^3 of length at most 15, then by Remark 4.1 a stabilizer of its general point is isomorphic either to \mathfrak{A}_5 or to F_{36} . Both of these cases are impossible by Corollary 2.1.

Actually, the minimal degree of an \mathfrak{A}_6 -invariant surface in \mathbb{P}^3 equals 8 (see [5, Lemma 3.7]), and the minimal length of an \mathfrak{A}_6 -orbit in \mathbb{P}^3 equals to 36 (see [5, Lemma 3.8]), but we will not need this here.

LEMMA 5.3 (cf. [20, Lemma 4.26]) Let C be a smooth irreducible \mathfrak{A}_6 -invariant curve of degree 9 and genus g in \mathbb{P}^3 . Then, $g \neq 10$.

Proof. Suppose that g = 10. Then, it follows from Hartshorne [13, Example 6.4.3] that either *C* is contained in a unique quadric surface in \mathbb{P}^3 , or *C* is a complete intersection of two cubic surfaces in \mathbb{P}^3 . The former case is impossible, since there are no \mathfrak{A}_6 -invariant quadrics in \mathbb{P}^3 by Lemma 5.1. The latter case is impossible, because there are no \mathfrak{A}_6 -invariant pencils of cubic surfaces in \mathbb{P}^3 by Lemma 5.1. \Box

Recall that the group \mathfrak{A}_6 contains six standard subgroups isomorphic to \mathfrak{A}_5 and six nonstandard subgroups isomorphic to \mathfrak{A}_5 (see the conventions made in Section 2). Denote the former ones by H'_1, \ldots, H'_6 , and denote the latter ones by H_1, \ldots, H_6 . By Corollary 2.1(ii), each group H'_i leaves invariant two lines L^1_i and L^2_i in \mathbb{P}^3 . Note that each group H_i permutes transitively the lines L^1_1, \ldots, L^4_6 (respectively, L^2_1, \ldots, L^2_6).

 L_1^1, \dots, L_6^1 (respectively, L_1^2, \dots, L_6^2). Put $\mathcal{L}^l = L_1^1 + \dots + L_6^1$ and $\mathcal{L}^2 = L_1^2 + \dots + L_6^2$. Then, the curves \mathcal{L}^l and \mathcal{L}^2 are \mathfrak{A}_6 -invariant, and the curve $\mathcal{L}^l + \mathcal{L}^2$ is \mathfrak{S}_6 -invariant.

LEMMA 5.4 The lines L_1^1, \ldots, L_6^1 (respectively, the lines L_1^2, \ldots, L_6^2) are pairwise disjoint. Moreover, the curves \mathcal{L}^1 and \mathcal{L}^2 are disjoint.

Proof. We use an argument similar to one in the proof of Lemma 3.4. Suppose that some of the lines $L_1^1, ..., L_6^1$ have a common point. Since the action of \mathfrak{A}_6 on the set $\{L_1^1, ..., L_6^1\}$ is doubly transitive, this implies that any two of the lines $L_1^1, ..., L_6^1$ have a common point. Therefore, either all lines $L_1^1, ..., L_6^1$ are coplanar, or all of them pass through one point. Both of these cases are impossible since \mathbb{U}_4 is an irreducible 2. \mathfrak{A}_6 -representation (see Corollary 2.1(i)). Therefore, the lines $L_1^1, ..., L_6^1$ are pairwise disjoint. The same argument applies to the lines $L_1^2, ..., L_6^2$.

Suppose that some of the lines L_1^1, \ldots, L_6^1 , say, L_1^1 , intersects some of the lines L_1^2, \ldots, L_6^2 . Since the lines L_1^1 and L_2^1 are disjoint by construction, we may assume that L_1^1 intersects L_2^2 . Since the

stabilizer $H'_1 \subset \mathfrak{A}_6$ of L^1_1 acts transitively on the lines L^2_2, \ldots, L^2_6 , we conclude that all five lines L^2_2, \ldots, L^2_6 intersect L^1_1 . Therefore, the line L^1_1 contains a subset of at most five points that is invariant with respect to the group $H'_1 \cong \mathfrak{A}_5$, which is a contradiction. Thus, \mathcal{L}^1 and \mathcal{L}^2 are disjoint. \Box

LEMMA 5.5 Let C be an
$$\mathfrak{A}_6$$
-invariant curve in \mathbb{P}^3 of degree $d \leq 10$. Then, either $C = \mathcal{L}^1$ or $C = \mathcal{L}^2$.

Proof. Suppose first that *C* is reducible. We may assume that \mathfrak{A}_6 permutes the irreducible components of *C* transitively. Thus, *C* has either 6 or 10 irreducible components by Remark 4.1, and these irreducible components are lines. By Remark 4.1 and Corollary 2.1, the latter case is impossible, and in the former case one has either $C = \mathcal{L}^1$ or $C = \mathcal{L}^2$.

Therefore, we assume that the curve C is irreducible. Let g be the genus of the normalization of the curve C. We have

$$g \le \frac{d^2}{8} + 1 - |\operatorname{Sing}(C)| \le 13 - |\operatorname{Sing}(C)|$$
(5.1)

by Lemma 3.15. This implies that the curve *C* is smooth, because \mathbb{P}^3 does not contain \mathfrak{A}_6 -orbits of length <16 by Lemma 5.2.

If $d \le 8$, then Equation (5.1) gives $g \le 9$. This is impossible by Lemma 4.2.

If d = 9, then Equation (5.1) gives $g \le 11$, so that g = 10 by Lemma 4.2. This is impossible by Lemma 5.3.

Therefore, we see that d = 10. Thus, Equation (5.1) gives $g \le 13$, so that g = 10 by Lemma 4.2. The latter is impossible by Lemma 3.17.

Denote by \mathcal{M} the linear system on \mathbb{P}^3 consisting of all quartic surfaces passing through the lines L_1^1, \ldots, L_6^1 . Then, \mathcal{M} is not empty. In fact, its dimension is at least four by parameter count. Moreover, the linear system \mathcal{M} does not have base components by Lemma 5.1.

LEMMA 5.6 The base locus of \mathcal{M} does not contain curves except the lines L_1^1, \ldots, L_6^1 . Moreover, a general surface in \mathcal{M} is smooth at a general point of each of the lines L_1^1, \ldots, L_6^1 .

Proof. Denote by Z the union of the curves that are contained in the base locus of \mathcal{M} and are different from the lines L_1^1, \ldots, L_6^1 . Then, Z is a (possibly empty) \mathfrak{A}_6 -invariant curve. Denote its degree by d. Pick two general surfaces M_1 and M_2 in \mathcal{M} . Then,

$$M_1 \cdot M_2 = Z + m\mathcal{L}^1 + \Delta,$$

where *m* is a positive integer, and Δ is an effective one-cycle on \mathbb{P}^3 that contains none of the lines L_1^1, \ldots, L_6^1 . Note that Δ may contain irreducible components of the curve *Z*. Let Π be a plane in \mathbb{P}^3 . Then,

$$16 = \Pi \cdot M_1 \cdot M_2 = \Pi \cdot Z + m\Pi \cdot \mathcal{L}^1 + \Pi \cdot \Delta = d + 6m + \Pi \cdot \Delta \leq d + 6m,$$

which implies that $m \le 2$ and $d \le 10$. By Lemma 5.5, we have d = 0, so that Z is empty. Since

$$2 \geq m \geq \operatorname{mult}_{L_i^1}(M_1)\operatorname{mult}_{L_i^1}(M_2),$$

we see that a general surface in \mathcal{M} is smooth at a general point of L_i^{\perp} .

Let $\alpha: U \to \mathbb{P}^3$ be a blow up along the lines L_1^1, \ldots, L_6^1 . Then, the action of \mathfrak{A}_6 lifts to U. Denote by E_1, \ldots, E_6 the α -exceptional surfaces that are mapped to L_1^1, \ldots, L_6^1 , respectively. Denoting by Π a plane in \mathbb{P}^3 , we compute

$$(-K_U)^3 = \left(4\alpha^*\Pi - \sum_{i=1}^6 E_i\right)^3 = 64\left(\alpha^*\Pi\right)^3 + 12\sum_{i=1}^6 \alpha^*\Pi \cdot E_i^2 - \sum_{i=1}^6 E_i^3 = 64 - 72 + 12 = 4.$$

LEMMA 5.7 The action of the stabilizer $H'_i \cong \mathfrak{A}_5$ in \mathfrak{A}_6 of the line L^1_i on the surface $E_i \cong \mathbb{P}^1 \times \mathbb{P}^1$ is twisted diagonal, that is, E_i is identified with $\mathbb{P}(\mathbb{U}_2) \times \mathbb{P}(\mathbb{U}'_2)$, where \mathbb{U}_2 and \mathbb{U}'_2 are different two-dimensional irreducible representations of the group 2. \mathfrak{A}_5 .

Proof. This follows from Corollary 2.1(ii).

Let us denote by M_U the proper transform of the linear system M on the 3-fold U. Then, $M_U \sim -K_U$ by Lemma 5.6.

LEMMA 5.8 The linear system M_U is base point free.

Proof. Let us first show that \mathcal{M}_U is free from base curves. Suppose that the base locus of the linear system \mathcal{M}_U contains some curves. Then, each of these curves is contained in some of the α -exceptional surfaces by Lemma 5.6. Denote by Z the union of all such curves that are contained in E_1 . Then, Z is an \mathcal{H}'_1 -invariant curve. For some non-negative integers a and b, one has

$$Z \sim as + bl$$
,

where s is a section of the natural projection $E_1 \rightarrow L_1^1$ such that $s^2 = 0$ on E_1 , and l is a fiber of this projection. However, we have

$$\mathcal{M}_U|_{E_1} \sim -K_U|_{E_1} \sim s+3l.$$

This gives $a \le 1$ and $b \le 3$. Since the action of H'_1 on the surface E_1 is twisted diagonal by Lemma 5.7, the latter is impossible by Cheltsov and Shramov [6, Lemma 6.4.2(i)] and [6, Lemma 6.4.11(o)].

We see that \mathcal{M}_U is free from base curves. Since $\mathcal{M}_U \sim -K_U$, the linear system \mathcal{M}_U cannot have more than $-K_U^3 = 4$ base points. By Lemma 5.2, this implies that \mathcal{M}_U is base point free. \Box

COROLLARY 5.9 The base locus of the linear system \mathcal{M} consists of the lines L_1^1, \ldots, L_6^1 .

By Lemma 5.8, the divisor $-K_U$ is nef. Since $-K_U^3 = 4$, it is also big. Thus, we have

$$h^{1}(\mathcal{O}_{U}(-K_{U})) = h^{2}(\mathcal{O}_{U}(-K_{U})) = 0$$

by the Kawamata–Viehweg vanishing theorem (see [16]). Hence, the Riemann–Roch formula gives

$$h^0(\mathcal{O}_U(-K_U)) = 5.$$
(5.2)

In particular, we see that $|-K_U| = \mathcal{M}_U$.

LEMMA 5.10 The \mathfrak{A}_6 -representation $H^0(\mathcal{O}_U(-K_U))$ is irreducible.

Proof. By Lemma 5.1, there are no \mathfrak{A}_6 -invariant quartic surfaces in \mathbb{P}^3 . This implies that $H^0(\mathcal{O}_U(-K_U))$ does not contain one-dimensional subrepresentations. Hence, it is irreducible by Remark 4.5.

Lemma 5.8, together with Equation (5.2), implies that there is an \mathfrak{A}_6 -equivariant commutative diagram

where ϕ is the rational map given by \mathcal{M} , and β is a morphism given by the anticanonical linear system $|-K_U|$. By Lemma 5.10, the projective space \mathbb{P}^4 in Equation (5.3) is a projectivization of an irreducible \mathfrak{A}_6 -representation.

Recall from Lemma 3.8 that \mathbb{P}^3 contains exactly two H_1 -invariant twisted cubic curves \mathscr{C}_1^1 and \mathscr{C}_1^2 .

LEMMA 5.11 The curve \mathcal{L}^1 intersects exactly one curve among \mathcal{C}^1_1 and \mathcal{C}^2_1 . Moreover, each line among L^1_1, \ldots, L^1_6 contains two points of this intersection. Similarly, the curve \mathcal{L}^2 intersects exactly one curve among \mathcal{C}^1_1 and \mathcal{C}^2_1 , and this curve is different from the one that intersects \mathcal{L}^1 .

Proof. By Remark 3.1, the stabilizer in H_1 of the curve L_1^1 is isomorphic to D_{10} , and thus it has an orbit of length 2 on L_1^1 . Thus, the curve \mathcal{L}^1 contains an H_1 -orbit Σ_{12}^1 of length 12 by Lemma 3.2. Similarly, the curve \mathcal{L}^2 contains an H_1 -orbit Σ_{12}^2 of length 12. By Lemma 5.4, one has $\Sigma_{12}^1 \neq \Sigma_{12}^2$. Moreover, Σ_{12}^1 and Σ_{12}^2 are the only H_1 -orbits in \mathbb{P}^3 of length 12 by Lemma 3.2. Since \mathscr{C}_1^1 and \mathscr{C}_1^2 are disjoint by Remark 3.9, and each of them contains an H_1 -orbit of length 12, we see that either $\Sigma_{12}^1 \subset \mathscr{C}_1^1$ and $\Sigma_{12}^2 \subset \mathscr{C}_1^2$, or $\Sigma_{12}^2 \subset \mathscr{C}_1^1$ and $\Sigma_{12}^1 \subset \mathscr{C}_1^2$. Since a line cannot have more than two common points with a twisted cubic, this also implies the last assertion of the lemma.

Without loss of generality, we may assume that the curve \mathcal{L}^1 intersects \mathscr{C}_1^1 , and the curve \mathcal{L}^2 intersects \mathscr{C}_1^2 . Let $\mathscr{C}_1^1, \ldots, \mathscr{C}_6^1$ be the \mathfrak{A}_6 -orbit of the curve \mathscr{C}_1^1 , and let $\mathscr{C}_1^2, \ldots, \mathscr{C}_6^2$ be the \mathfrak{A}_6 -orbit of the curve \mathscr{C}_1^1 . By Lemma 3.8, the curves \mathscr{C}_i^1 and \mathscr{C}_i^2 are the only twisted cubic curves in \mathbb{P}^3 that are H_i -invariant. By Lemma 5.11, we have

COROLLARY 5.12 Every twisted cubic curve \mathscr{C}_i^1 intersects each line among L_1^1, \ldots, L_6^1 by two points. Similarly, every twisted cubic curve \mathscr{C}_i^2 intersects each line among L_1^2, \ldots, L_6^2 by two points.

Denote by $\widetilde{\mathscr{C}}_1^1, \ldots, \widetilde{\mathscr{C}}_6^1$ the proper transforms on U of the curves $\mathscr{C}_1^1, \ldots, \mathscr{C}_6^1$, respectively.

LEMMA 5.13 One has $-K_U \cdot \widetilde{\mathscr{C}}_1^1 = \ldots = -K_U \cdot \widetilde{\mathscr{C}}_6^1 = 0.$

Proof. This follows from Corollary 5.12.

Downloaded from https://academic.oup.com/gjmath/article-abstract/67/4/573/2452959 by University of Edinburgh user on 03 June 2019

We see that each curve $\widetilde{\mathscr{C}}_i^1$ is contracted by β to a point. Since the \mathfrak{A}_6 -orbit of $\widetilde{\mathscr{C}}_1^1$ consists of six curves, we also obtain the following.

COROLLARY 5.14 The image of the morphism β contains an \mathfrak{A}_6 -orbit of length at most six.

Since $-K_U^3 = 4$, the image of β is either an \mathfrak{A}_6 -invariant quartic 3-fold or an \mathfrak{A}_6 -invariant quadric 3-fold. Using results of [24], one can show that the latter case is impossible. However, this immediately follows from Corollary 5.14. Indeed, an \mathfrak{A}_6 -orbit of length at most six cannot be contained in the \mathfrak{A}_6 -invariant quadric by Corollary 4.7 and Lemma 4.8.

COROLLARY 5.15 The morphism β is birational onto its image, and its image is a quartic 3-fold.

Now Lemma 4.9 implies that the image of β is the quartic $X_{\frac{1}{10}}$. This proves

COROLLARY 5.16 The 3-fold $X_{\frac{7}{10}}$ is rational.

Let us conclude this section by recalling two related results proved in [5, Section 4]. The commutative diagram (5.3) can be extended to an \mathfrak{A}_6 -equivariant commutative diagram

Here σ is an automorphism of the quartic 3-fold $X_{\frac{\gamma}{10}}$ given by an odd permutation in \mathfrak{S}_6 acting on \mathbb{P}^4 , cf. Remark 4.5. The birational map ρ is a composition of Atiyah flops in 36 curves contracted by γ , and the birational map ψ is not regular.

The diagram (5.4) is a so-called \mathfrak{A}_6 -Sarkisov link. The subgroup $\mathfrak{A}_6 \subset \operatorname{Aut}(\mathbb{P}^3)$ together with $\psi \in \operatorname{Bir}^{\mathfrak{A}_6}(\mathbb{P}^3)$ generates a subgroup isomorphic to \mathfrak{S}_6 . Moreover, the subgroup

$$\operatorname{Aut}^{\mathfrak{A}_6}(\mathbb{P}^3) \subset \operatorname{Bir}^{\mathfrak{A}_6}(\mathbb{P}^3)$$

is also isomorphic to \mathfrak{S}_6 . By Cheltsov and Shramov [5, Theorem 1.24], the whole group Bir $^{\mathfrak{A}_6}(\mathbb{P}^3)$ is a free product of these two copies of \mathfrak{S}_6 amalgamated over the original \mathfrak{A}_6 .

6. Rationality of the quartic 3-fold $X_{\frac{1}{4}}$

In this section, we will construct an explicit \mathfrak{S}_5 -equivariant birational map $\mathbb{P}^3 \to X_{\frac{1}{6}}$. We identify \mathbb{P}^3 with the projectivization $\mathbb{P}(\mathbb{U}_4)$, where \mathbb{U}_4 is the restriction of the four-dimensional irreducible representation of the group 2. \mathfrak{S}_6 introduced in Section 2 to a subgroup 2. \mathfrak{S}_5^{nst} , and denote the latter subgroup simply by 2. \mathfrak{S}_5 . By Corollary 2.1(i), the 2. \mathfrak{S}_5 -representation \mathbb{U}_4 is irreducible.

LEMMA 6.1 Let Ω be an \mathfrak{S}_5 -orbit in \mathbb{P}^3 . Then, $|\Omega| \geq 12$.

Proof. Apply Remark 4.3 together with Corollary 2.1.

LEMMA 6.2 Let C be an \mathfrak{S}_5 -invariant curve in \mathbb{P}^3 of degree d. Then, $d \ge 6$.

Proof. Suppose that $d \le 5$. To start with, assume that *C* is reducible and denote by *r* the number of its irreducible components. We may assume that \mathfrak{S}_5 permutes the irreducible components of *C* transitively. Thus, either r = 2 or r = 5 by Remark 4.3. If r = 5, the irreducible components of *C* are lines, so that this case is impossible by Remark 4.3 and Corollary 2.1(i). Hence, we have r = 2, and the stabilizer of each of the two irreducible components C_1 and C_2 of *C* is the subgroup $\mathfrak{A}_5 \subset \mathfrak{S}_5$. Moreover, in this case one has

$$\deg(C_1) = \deg(C_2) \le 2,$$

which is impossible by Lemma 3.8.

Therefore, we assume that the curve C is irreducible. Let g be the genus of the normalization of the curve C. Then,

$$g \le \frac{d^2}{8} + 1 - |\operatorname{Sing}(C)|$$

by Lemma 3.15, so that $g \le 4 - |\text{Sing}(C)|$. This implies that C is smooth, because there are no \mathfrak{S}_5 -orbits of length <12 by Lemma 6.1.

Since \mathfrak{S}_5 does not act faithfully on \mathbb{P}^1 , we see that $g \neq 0$. Thus, either g = 4 or g = 5 by Cheltsov and Shramov [6, Lemma 5.1.5]. The former case is impossible by Lemma 3.16, while the latter case is impossible by Lemma 4.4.

Recall from Section 3 that the subgroup $\mathfrak{A}_4 \subset \mathfrak{A}_5 \subset \mathfrak{S}_5$ fixes two disjoint lines L_1 and L'_1 . As before, we consider the \mathfrak{A}_5 -orbit L_1, \ldots, L_5 of the line L_1 and the \mathfrak{A}_5 -orbit L'_1, \ldots, L'_5 of the line L'_1 . By Lemma 3.7, the lines $L_1, \ldots, L_5, L'_1, \ldots, L'_5$ form a double five configuration (see Definition 3.6). Corollary 2.1(i) implies that the \mathfrak{S}_5 -orbit of the line L_1 is $L_1, \ldots, L_5, L'_1, \ldots, L'_5$.

REMARK 6.3 Any subgroup $F_{20} \subset \mathfrak{S}_5$ permutes the 10 lines $L_1, \ldots, L_5, L'_1, \ldots, L'_5$ transitively. Indeed, let $c \in F_{20}$ be an element of order five. Then, c is not contained in a stabilizer of the line L_1 , so that the orbit of L_1 with respect to the group $\Gamma \cong \mu_5$ generated by c is L_1, \ldots, L_5 . Similarly, the Γ -orbit of the line L'_1 is L'_1, \ldots, L'_5 . Also, the group F_{20} is not contained in \mathfrak{A}_5 , so that the F_{20} -orbit of L_1 contains some of the lines L'_1, \ldots, L'_5 , and thus contains all the 10 lines $L_1, \ldots, L_5, L'_1, \ldots, L'_5$.

Let \mathcal{M} be the linear system on \mathbb{P}^3 consisting of all quartic surfaces passing through all lines L_1, \ldots, L_5 and L'_1, \ldots, L'_5 . Then, \mathcal{M} is not empty. In fact, Lemma 3.7 and parameter count imply that its dimension is at least four. Moreover, the linear system \mathcal{M} does not have base components by Lemma 3.3.

LEMMA 6.4 The base locus of \mathcal{M} does not contain curves that are different from the lines $L_1, \ldots, L_5, L'_1, \ldots, L'_5$. Moreover, a general surface in \mathcal{M} is smooth in a general point of each of these lines. Furthermore, two general surfaces in \mathcal{M} intersect transversally at a general point of each of these lines.

Proof. Denote by Z the union of all curves that are contained in the base locus of the linear system \mathcal{M} and are different from the lines $L_1, \ldots, L_5, L'_1, \ldots, L'_5$. Then, Z is a (possibly empty) \mathfrak{S}_5 -invariant curve. Denote its degree by d. Pick two general surfaces M_1 and M_2 in \mathcal{M} . Then,

$$M_1 \cdot M_2 = Z + m \sum_{i=1}^{5} L_i + m \sum_{i=1}^{5} L'_i + \Delta,$$

where *m* is a positive integer, and Δ is an effective one-cycle on \mathbb{P}^3 that contains none of the lines L_1, \ldots, L_5 and L'_1, \ldots, L'_5 . Note that Δ may contain irreducible components of the curve *Z*. Note also that $\Delta \neq 0$, because \mathcal{M} is not a pencil.

Let Π be a plane in \mathbb{P}^3 . Then,

$$16 = \Pi \cdot Z + m \sum_{i=1}^{5} \Pi \cdot L_{i} + m \sum_{i=1}^{5} \Pi \cdot L_{i}' + \Pi \cdot \Delta = d + 10m + \Pi \cdot \Delta > d + 10m,$$

which implies that m = 1 and $d \le 5$. By Lemma 6.2, we have d = 0, so that Z is empty. Since

$$1 \geq m \geq \operatorname{mult}_{L_i}(M_1 \cdot M_2) \geq \operatorname{mult}_{L_i}(M_1) \operatorname{mult}_{L_i}(M_2),$$

we see that a general surface in \mathcal{M} is smooth at a general point of L_i , and two general surfaces in \mathcal{M} intersect transversally at a general point of L_i . Similarly, we see that a general surface in \mathcal{M} is smooth at a general point of L'_i , and two general surfaces in \mathcal{M} intersect transversally at a general point of L'_i . \Box

Let $g: W \to \mathbb{P}^3$ be a blow up along the lines L_1, \ldots, L_5 , and let $g': W' \to \mathbb{P}^3$ be a blow up along the lines L'_1, \ldots, L'_5 . Denote by $\widetilde{L}'_1, \ldots, \widetilde{L}'_5$ (respectively, $\widetilde{L}_1, \ldots, \widetilde{L}_5$) the proper transforms of the lines L'_1, \ldots, L'_5 on the 3-fold W (respectively, on the 3-fold W'). Let $h: V \to W$ be a blow up along the curves $\widetilde{L}'_1, \ldots, \widetilde{L}'_5$, and let $h': V' \to W'$ be a blow up along the curves $\widetilde{L}_1, \ldots, \widetilde{L}_5$. Finally, let $\alpha: U \to \mathbb{P}^3$ be a blow up of the (singular) curve that is a union of all lines $L_1, \ldots, L_5, L'_1, \ldots, L'_5$. Then, U has 20 nodes by Lemma 3.7, and there exists a commutative diagram

where v and v' are small resolutions of singularities of the 3-fold U, and τ is a composition of 20 Atiyah flops.

REMARK 6.5 By construction, the action of group \mathfrak{A}_5 lifts to the 3-folds W, W', V, V' and U. Similarly, the action of the group \mathfrak{S}_5 lifts to the 3-fold U, but this action does not lift to W and W'. On the 3-folds V and V', the group \mathfrak{S}_5 acts biregularly outside of the curves flopped by τ and τ^{-1} , respectively.

Denote by E_1, \ldots, E_5 the g-exceptional surfaces that are mapped to L_1, \ldots, L_5 , respectively. Similarly, denote by E'_1, \ldots, E'_5 the g'-exceptional surfaces that are mapped to L'_1, \ldots, L'_5 , respectively. Then, all surfaces $E_1, \ldots, E_5, E'_1, \ldots, E'_5$ are isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$.

Denote by $\hat{E}'_1, ..., \hat{E}'_5$ the *h*-exceptional surfaces that are mapped to the curves $\tilde{L}'_1, ..., \tilde{L}'_5$, respectively. Similarly, denote by $\check{E}_1, ..., \check{E}_5$ the *h'*-exceptional surfaces that are mapped to the curves $\tilde{L}_1, ..., \tilde{L}_5$, respectively. Denote by $\hat{E}_1, ..., \hat{E}_5$ the proper transforms on *V* of the surfaces $E_1, ..., E_5$, respectively. Finally, denote by $\check{E}'_1, ..., \check{E}'_5$ the proper transforms on *V'* of

the surfaces E'_1, \ldots, E'_5 , respectively. Then, τ maps the surfaces $\hat{E}_1, \ldots, \hat{E}_5$ to the surfaces $\check{E}_1, \ldots, \check{E}_5$, respectively, and it maps the surfaces $\hat{E}'_1, \ldots, \hat{E}'_5$ to the surfaces $\check{E}'_1, \ldots, \check{E}'_5$, respectively. Denoting by Π a plane in \mathbb{P}^3 , we compute

$$(-K_W)^3 = \left(4g^*(\Pi) - \sum_{i=1}^5 E_i\right)^3 = 64\left(g^*(\Pi)\right)^3 + 12\sum_{i=1}^5 g^*(\Pi) \cdot E_i^2 - \sum_{i=1}^5 E_i^3 = 64 - 60 + 10 = 14,$$

and

$$(-K_V)^3 = \left(-h^*(K_W) - \sum_{i=1}^5 \hat{E}'_i\right)^3 = \left(-h^*(K_W)\right)^3 - 3\sum_{i=1}^5 h^*(K_W) \cdot \hat{E}'^2_i - \sum_{i=1}^5 \hat{E}'^3_i = 14 - 10 = 4.$$

Denote by \mathcal{M}_W , \mathcal{M}_V , $\mathcal{M}_{W'}$, $\mathcal{M}_{V'}$ and \mathcal{M}_U the proper transforms of the linear system \mathcal{M} on the 3-folds W, V, W', V' and U, respectively. Then, it follows from Lemma 6.4 that

$$\mathcal{M}_W \sim -K_W, \quad \mathcal{M}_V \sim -K_V, \quad \mathcal{M}_{W^{\prime}} \sim -K_{W^{\prime}}, \quad \mathcal{M}_{V^{\prime}} \sim -K_{V^{\prime}}$$

and $\mathcal{M}_U \sim -K_U$.

LEMMA 6.6 The base locus of the linear system \mathcal{M}_W does not contain curves that are different from the curves $\widetilde{L}'_1, ..., \widetilde{L}'_5$. Similarly, the base locus of $\mathcal{M}_{W'}$ does not contain curves that are different from the curves $\widetilde{L}_1, ..., \widetilde{L}_5$.

Proof. It is enough to prove the first assertion of the lemma. Suppose that the base locus of the linear system \mathcal{M}_W contains an irreducible curve Z that is different from the curves $\tilde{L}'_1, ..., \tilde{L}'_5$. Then, Z is contained in one of the surfaces $E_1, ..., E_5$ by Lemma 6.4.

By Lemma 6.4, the curve Z is a fiber of some of the natural projections $E_i \to L_i$, because otherwise two general surfaces in \mathcal{M}_W would be tangent in a general point of L_i . In particular, the only curves in the base locus of the linear system \mathcal{M}_W are \tilde{L}'_i and possibly some fibers of the projections $E_i \to L_i$. This shows that $-K_W$ is nef. Indeed, $-K_W$ has positive intersections with the fibers of the projections $E_i \to L_i$, it has trivial intersection with all curves $\tilde{L}'_1, \dots, \tilde{L}'_5$, and $-K_W \sim \mathcal{M}_W$ has non-negative intersection with any other curve.

Let $Z_1 = Z, Z_2, ..., Z_r$ be the \mathfrak{A}_5 -orbit of the curve Z. Then, $r \ge 20$ by Corollary 3.5. Pick two general surfaces M_1 and M_2 in the linear system \mathcal{M}_W . By Lemma 6.4, one has

$$M_1 \cdot M_2 = \sum_{i=1}^5 \widetilde{L}'_i + m \sum_{i=1}^r Z_i + \Delta$$

for some positive integer *m* and some effective one-cycle Δ whose support contains none of the curves $\tilde{L}'_1, ..., \tilde{L}'_5$ and $Z_1, ..., Z_r$. Hence,

$$14 = -K_W^3 = -K_W \cdot M_1 \cdot M_2 = -K_W \cdot \left(\sum_{i=1}^5 \widetilde{L}'_i + m \sum_{i=1}^r Z_i + \Delta\right)$$
$$= -5K_W \cdot \widetilde{L}'_1 - mrK_W \cdot Z - K_W \cdot \Delta = mr - K_W \cdot \Delta \ge mr \ge r \ge 20,$$

which is absurd.

LEMMA 6.7 The linear system M_V is base point free.

Proof. It is enough to show that \mathcal{M}_V is free from base curves. Indeed, if the base locus of the linear system \mathcal{M}_V does not contain base curves, then \mathcal{M}_V cannot have more than $-K_V^3 = 4$ base points, because $\mathcal{M}_V \sim -K_V$. However, V does not contain \mathfrak{S}_5 -orbits of length <12, because there are no \mathfrak{S}_5 -orbits of such length on \mathbb{P}^3 by Lemma 6.1.

Suppose that the base locus of the linear system \mathcal{M}_V contains an irreducible curve Z. If Z is not contained in any of the surfaces $\hat{E}'_1, \dots, \hat{E}'_5$, then the curve h(Z) is a base curve of the linear system \mathcal{M}_W and h(Z) is different from the curves $\tilde{L}'_1, \dots, \tilde{L}'_5$. This is impossible by Lemma 6.6. Similarly, if Z is not contained in any of the surfaces $\hat{E}_1, \dots, \hat{E}_5$, then the curve $h' \circ \tau(Z)$ is a base curve of the linear system $\mathcal{M}_{W'}$ that is different from the curves $\tilde{L}_1, \dots, \tilde{L}_5$. This is again impossible by Lemma 6.6. Thus, Z is contained in one of the surfaces $\hat{E}_1, \dots, \hat{E}_5$, and in one of the surfaces $\hat{E}'_1, \dots, \hat{E}'_5$. In particular, the curves flopped by τ are not contained in the base locus of \mathcal{M}_V .

Without loss of generality, we may assume that $Z = \hat{E}_1 \cap \hat{E}'_2$. Let *C* be the curve flopped by τ that is contained in \hat{E}_1 and intersects \hat{E}'_2 . Then, *C* intersects *Z* by one point. However, we have $-K_V \cdot C = 0$. Since $\mathcal{M}_V \sim -K_V$, this implies that *C* is disjoint from a general surface in \mathcal{M}_V . This is impossible, because $C \cap Z \neq \emptyset$, while *Z* is contained in the base locus of the linear system \mathcal{M}_V .

COROLLARY 6.8 The linear systems $\mathcal{M}_{V'}$ and \mathcal{M}_{U} are also base point free.

Proof. Recall that $\mathcal{M}_V \sim -K_V$. Thus, the general surface of \mathcal{M}_V is disjoint from all curves flopped by τ , because \mathcal{M}_V is base point free by Lemma 6.7.

COROLLARY 6.9 The base locus of \mathcal{M} consists of the lines $L_1, \ldots, L_5, L'_1, \ldots, L'_5$.

By Lemma 6.7 and Corollary 6.8, the divisors $-K_V$, $-K_{V'}$ and $-K_U$ are nef. Since

$$-K_V^3 = -K_{V'}^3 = -K_U^3 = 4,$$

these divisors are also big. Thus, the Kawamata–Viehweg vanishing theorem and the Riemann– Roch formula give

$$h^{0}(\mathcal{O}_{V}(-K_{V})) = h^{0}(\mathcal{O}_{V'}(-K_{V'})) = h^{0}(\mathcal{O}_{U}(-K_{U})) = 4.$$
(6.1)

In particular, one has $|-K_V| = \mathcal{M}_V$, $|-K'_V| = \mathcal{M}_{V'}$ and $|-K_U| = \mathcal{M}_U$.

LEMMA 6.10 The \mathfrak{S}_5 -representation $H^0(\mathcal{O}_U(-K_U))$ is irreducible.

Proof. By Lemma 3.13, there are no \mathfrak{S}_5 -invariant quartic surfaces in \mathbb{P}^3 that pass through the 10 lines $L_1, \ldots, L_5, L'_1, \ldots, L'_5$. This implies that $H^0(\mathcal{O}_U(-K_U))$ does not contain one-dimensional sub-representations. Hence, it is irreducible by Remark 4.5.

Lemma 6.7 together with Equation (6.1) implies that there is an \mathfrak{S}_5 -equivariant commutative diagram

where ϕ is the rational map given by \mathcal{M} , and β is a morphism given by the anticanonical linear system $|-K_U|$. By Lemma 6.10, the projective space \mathbb{P}^4 in Equation (6.2) is a projectivization of an irreducible \mathfrak{S}_5 -representation.

For $1 \le i < j \le 5$, let Λ_{ij} be the intersection line of the plane spanned by L_i and L'_j with the plane spanned by L'_i and L_j . Note that the stabilizer of Λ_{ij} in \mathfrak{S}_5 contains a subgroup isomorphic to D_{12} . Actually, this implies that the stabilizer of Λ_{ij} in \mathfrak{S}_5 is isomorphic to D_{12} , since D_{12} is a maximal proper subgroup in \mathfrak{S}_5 (see Remark 4.3) and there are no \mathfrak{S}_5 -invariant lines in \mathbb{P}^3 by Corollary 2.1(i). Denote by $\hat{\Lambda}_{ij}$ the proper transform of the line Λ_{ij} on the 3-fold V, and denote by $\overline{\Lambda}_{ij}$ its proper transform on U. Then,

$$-K_V \cdot \hat{\Lambda}_{ij} = 0.$$

Since v is a small birational morphism, we also obtain $-K_U \cdot \overline{\Lambda}_{ij} = 0$.

We see that each curve $\overline{\Lambda}_{ij}$ is contracted by β to a point. Note that the stabilizer of Λ_{ij} in \mathfrak{S}_5 is isomorphic to D_{12} . Since $-K_U^3 = 4$, the image of β is either an \mathfrak{S}_5 -invariant quartic 3-fold or an \mathfrak{S}_5 -invariant quadric 3-fold. Applying Corollary 4.7 together with Lemma 4.10, we obtain the following.

COROLLARY 6.11 The morphism β is birational on its image, and its image is a quartic 3-fold.

Now Lemmas 4.10 and 4.11 imply that the image of β is the quartic $X_{\frac{1}{2}}$. This proves

COROLLARY 6.12 The 3-fold $X_{\frac{1}{4}}$ is rational.

Ten curves $\overline{\Lambda}_{ij}$ are mapped by γ to 10 singular points of the 3-fold $X_{\frac{1}{6}}$. Twenty singular points of U are mapped by γ to another 20 singular points of $X_{\frac{1}{6}}$. Let us describe the curves in U that are contracted by γ to the remaining 10 singular points of the 3-fold $X_{\frac{1}{2}}$. To do this, we need

LEMMA 6.13 Let ℓ_1 , ℓ_2 , ℓ_3 and ℓ_4 be pairwise skew lines in \mathbb{P}^3 . Suppose that there is a unique line $\ell \subset \mathbb{P}^3$ that intersects ℓ_1 , ℓ_2 , ℓ_3 and ℓ_4 . Let $\pi: Y \to \mathbb{P}^3$ be a blow up of the line ℓ , and $E \cong \mathbb{P}^1 \times \mathbb{P}^1$ be the exceptional divisor of π . Denote by $\tilde{\ell}_1$, $\tilde{\ell}_2$, $\tilde{\ell}_3$ and $\tilde{\ell}_4$ the proper transforms on Y of the lines ℓ_1 , ℓ_2 , ℓ_3 and ℓ_4 , respectively. Then, there exists a unique curve $C \subset E$ of bi-degree (1, 1) that intersects the curves $\tilde{\ell}_1$, $\tilde{\ell}_2$, $\tilde{\ell}_3$ and $\tilde{\ell}_4$.

Proof. The lines ℓ_1 , ℓ_2 and ℓ_3 are contained in a unique quadric surface $S \subset \mathbb{P}^3$. Note that S is smooth, because ℓ_1 , ℓ_2 and ℓ_3 are disjoint. Furthermore, the line ℓ is contained in S, because ℓ intersects the lines ℓ_1 , ℓ_2 and ℓ_3 by assumption. Moreover, the line ℓ_4 is tangent to S, since otherwise there would be either two or infinitely many lines in \mathbb{P}^3 that intersect ℓ_1 , ℓ_2 , ℓ_3 and ℓ_4 . Denote by \tilde{S} the proper transform on Y of the quadric surface S. Then, \tilde{S} contains the curves $\tilde{\ell}_1$, $\tilde{\ell}_2$ and $\tilde{\ell}_3$. Moreover, \tilde{S} intersects the curve $\tilde{\ell}_4$. Thus, $\tilde{S}|_E$ is the required curve C.

By Lemmas 3.7 and 6.13, each surface $E_i \cong \mathbb{P}^1 \times \mathbb{P}^1$ contains a unique smooth rational curve C_i of bi-degree (1, 1) that passes through all four points of the intersection of E_i with the curves $\tilde{L}'_1, ..., \tilde{L}'_5$ (recall that $E_i \cap \tilde{L}'_i = \emptyset$). Similarly, each surface $E'_i \cong \mathbb{P}^1 \times \mathbb{P}^1$ contains a unique smooth rational curve C'_i of bi-degree (1, 1) that passes through all four points of the intersection of E'_i with the curves $\tilde{L}_1, ..., \tilde{L}_5$. Denote by $\hat{C}_1, ..., \hat{C}_5$ the proper transforms on the 3-fold V of the curves $C_1, ..., C_5$, respectively. Similarly, denote by $\check{C}'_1, ..., \check{C}'_5$ the proper transforms on the 3-fold V of the curves $C'_1, ..., C'_5$, respectively. Then,

$$-K_V \cdot \hat{C}_i = -K_{V'} \cdot \check{C}'_i = 0.$$

This implies that the proper transforms of the curves $\hat{C}_1, ..., \hat{C}_5$ on the 3-fold V' are (-2)-curves on the surfaces $\check{E}_1, ..., \check{E}_5$, respectively. Similarly, the proper transforms of the curves $\check{C}'_1, ..., \check{C}'_5$ on the 3-fold V are (-2)-curves on the surfaces $\hat{E}'_1, ..., \hat{E}'_5$, respectively. Thus, all surfaces $\hat{E}'_1, ..., \hat{E}'_5$, $\check{E}_1, ..., \check{E}_5$ are isomorphic to the Hirzebruch surface \mathbb{F}_2 .

Denote by $\overline{C}_1, ..., \overline{C}_5, \overline{C}'_1, ..., \overline{C}'_5$ the images of the curves $\hat{C}_1, ..., \hat{C}_5, \check{C}'_1, ..., \check{C}'_5$ on the 3-fold U, respectively. Then,

$$-K_U \cdot \overline{C}_i = -K_U \cdot \overline{C}'_i = 0,$$

because $-K_V \cdot \hat{C}_i = -K_{V'} \cdot \check{C}'_i = 0$, and v and v' are small birational morphisms. Thus, the 10 curves $\overline{C}_1, \ldots, \overline{C}_5, \overline{C}'_1, \ldots, \overline{C}'_5$ are contracted by the morphism β to 10 singular points of $X_{\frac{1}{6}}$.

It would be interesting to extend the commutative diagram (6.2) to an \mathfrak{S}_5 -Sarkisov link similar to the \mathfrak{A}_6 -Sarkisov link (5.4).

Acknowledgements

This work was supported within the framework of a subsidy granted to the HSE by the Government of the Russian Federation for the implementation of the Global Competitiveness Program. Constantin Shramov was also supported by the grants RFFI 15-01-02158, RFFI 15-01-02164, RFFI 14-01-00160, MK-2858.2014.1 and NSh-2998.2014.1, and by Dynasty foundation. We are grateful to Dmitrii Pasechnik, Yuri Prokhorov, Kristian Ranestad, Leonid Rybnikov and Andrey Trepalin for very helpful and useful discussions.

References

- A. Beauville, Non-rationality of the S₆-symmetric quartic threefolds, *Rend. Sem. Mat. Univ. Politec. Torino* 71 (2013), 385–388.
- 2. H. Blichfeldt, Finite Collineation Groups (University of Chicago Press), Chicago, 1917.
- H. Burkhardt, Untersuchungen aus dem Gebiete der hyperelliptischen Modulfunctionen, Math. Ann. 38 (1891), 161–224.
- 4. I. Cheltsov, V. Przyjalkowski and C. Shramov, Quartic double solids with icosahedral symmetry, *European J. of Math* 2 (2016), 96–119.
- 5. I. Cheltsov and C. Shramov, Five embeddings of one simple group, *Trans. of the AMS* 366 (2014), 1289–1331.
- 6. I. Cheltsov and C. Shramov, Cremona Groups and the Icosahedron (CRC Press), 2015.

- 7. A. Coble, An invariant condition for certain automorphic algebraic forms, *Amer. J. Math.* 28 (1906), 333–366.
- 8. J. Conway, R. Curtis, S. Norton, R. Parker and R. Wilson, *Atlas of Finite Groups* (Clarendon Press), Oxford, 1985.
- 9. W. Feit, The Current Situation in the Theory of Finite Simple Groups, Actes du Congres International des Mathematiciens, Gauthier-Villars, Paris, 1971, 55–93.
- 10. W. Fulton and J. Harris, Representation Theory, A First Course, *Graduate Texts in Mathematics* 129, Springer-Verlag, New York, 1991.
- 11. The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.7.4; 2014. http://www.gap-system.org
- 12. G. van der Geer, On the geometry of a Siegel modular threefold, *Math. Ann.* 260 (1982), 317–350.
- 13. R. Hartshorne, *Algebraic Geometry*, Graduate Texts in Mathematics 52 (1977) Springer-Verlag, New York–Heidelberg.
- 14. V. Iskovskikh and Yu. Manin, Three-dimensional quartics and counterexamples to the Lüroth problem, *Math. USSR-Sb* 15 (1971), 141–166.
- 15. A. de Jong, N. Shepherd-Barron and A. Van de Ven, On the Burkhardt quartic, *Math. Ann.* 286 (1990), 309–328.
- **16.** Y. Kawamata, A generalization of Kodaira-Ramanujam's vanishing theorem, *Math. Ann.* **261** (1982), 43–46.
- J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties, *Cambridge Tracts in Mathematics* 134, Cambridge University Press, 1998.
- M. Mella, Birational geometry of quartic 3-folds. II. The importance of being Q-factorial, Math. Ann. 330 (2004), 107–126.
- **19.** K. Pettersen, On nodal determinantal quartic hypersurfaces in \mathbb{P}^4 , Ph.D. Thesis, University of Oslo, 1998.
- **20.** J. Todd, Configurations defined by six lines in space of three dimensions, *Math. Proc. of the Cambridge Phil. Soc.* **29** (1933), 52–68.
- 21. J. Todd, A note on two special primals in four dimensions, Q. J. Math 6 (1935), 129–136.
- 22. J. Todd, On a quartic primal with forty-five nodes, in space of four dimensions, Q. J. Math 7 (1935), 168–174.
- 23. Y. Umezu, On normal projective surfaces with trivial dualizing sheaf, *Tokyo J. Math* 4 (1981), 343–354.
- 24. D. Vazzana, Invariants and projections of six lines in projective space, *Trans. Amer. Math. Soc.* 353 (2001), 2673–2688.