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Abstract

We prove that the quartic 3-folds defined by
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1. Introduction

Consider the six-dimensional permutation representation  of the group S6. Choose coordinates
¼x x, ,0 5 in  so that they are permuted by S6. Then, ¼x x, ,0 5 also serve as homogeneous co-

ordinates in the projective space   = ( )5 .
Let us identify 4 with a hyperplane

+ + + + + =x x x x x x 00 1 2 3 4 5

in 5. Denote by Xt the quartic 3-fold in 4 that is given by the equation

( )+ + + + + = + + + + + ( )x x x x x x t x x x x x x , 1.10
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where t is an element of the ground field, which we will always assume to be the field  of com-
plex numbers. EveryS6-invariant quartic in  ( ) is one of the quartics Xt. Moreover, every quartic
3-fold with a faithful S6-action is isomorphic to some Xt. All quartics Xt are singular. Indeed,
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denote by S30 the S6-orbit of the point w w w w[ ]1 : 1 : : : :2 2 , where w =
p

e
i2

3 . Then, S =∣ ∣ 3030 ,
and Xt is singular at every point of S30 for every Ît (see, for example, [12, Theorem 4.1]).

The possible singularities of the quartic 3-fold Xt have been described by van der Geer in [12,
Theorem 4.1]. To recall his description, denote by 15 the S6-orbit of the line that passes through
the points [ - - ]1 : 0 : 1 : 1 : 0 : 1 and [ - - ]0 : 1 : 1: 0 : 1 : 1 , and denote by S6, S10 and S15 the
S6-orbits of the points [- ]5 : 1 : 1 : 1 : 1 : 1 , [- - - ]1 : 1 : 1 : 1 : 1 : 1 and [ - ]1 : 1 : 0 : 0 : 0 : 0 ,
respectively. Then, the curve 15 is a union of 15 lines, while S =∣ ∣ 66 , S =∣ ∣ 1010 and
S =∣ ∣ 1515 . Moreover, one has
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Furthermore, if ¹t 1

4
, then all singular points of the quartic 3-fold Xt are isolated ordinary double

points (nodes).
The 3-fold X 1

2
is classical. It is the so-called Burkhardt quartic. In [3], Burkhardt discovered

that the subset ÈS S30 15 is invariant under the action of the simple group ( )FPSp4 3 of order
25 920. In [7], Coble proved that ÈS S30 15 is the singular locus of the 3-fold X 1

2
, and proved that

X 1
2
is also ( )FPSp4 3 -invariant. Later Todd proved in [22] that X 1

2
is rational. In [15], de Jong,

Shepherd-Barron and Van de Ven proved that X 1
2
is the unique quartic 3-fold in 4 with 45

singular points.
The quartic 3-fold X 1

4
is also classical. It is known as the Igusa quartic from its modular inter-

pretation as the Satake compactification of the moduli space of Abelian surfaces with level 2 struc-
ture (see [12]). The projectively dual variety of the quartic 3-fold X 1

4
is the so-called Segre cubic.

Since the Segre cubic is rational, X 1
4
is rational as well.

During Kul!fest conference dedicated to the 60th anniversary of Viktor Kulikov which was held
in Moscow in December 2012, Alexei Bondal and Yuri Prokhorov posed

PROBLEM 1.1 Determine all Ît such that Xt is rational.

Since Xt is singular, we cannot apply Iskovskikh and Manin’s theorem from [14] to Xt.
Similarly, we cannot apply Mella’s [18, Theorem 2] to Xt either, because the quartic 3-fold Xt is
not -factorial by Beauville [1, Lemma 2]. Nevertheless, Beauville proved

THEOREM 1.2 [(1)]. If { }Ït , , ,1

2

1

4

1

6

7

10
, then Xt is non-rational.

Both X 1
2
and X 1

4
are rational. The goal of this paper is to prove

THEOREM 1.3 The quartic 3-folds X 1
6
and X 7

10
are also rational.
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Surprisingly, the proof of Theorem 1.3 goes back to two classical papers of Todd. Namely, we
will construct an explicit A6-birational map   X3 7

10
that is a special case of Todd’s construction

from Todd [20]. Similarly, we will construct an explicit S5-birational map   X3 1
6
that is a

degeneration of Todd’s construction from [21]. We emphasize that our proof is self-contained, that
is, it does not rely on the results proved in [20] and [21], but recovers the necessary facts in our
particular situation using additional symmetries arising from group actions.

REMARK 1.4 Todd proved in [22] that the Burkhardt quartic X 1
2
is determinantal (see also [19,

Section 5.1]). The constructions of our birational maps   X3 7
10

and   X3 1
6
imply that both

X 7
10
and X 1

6
are determinantal (see [19, Example 6.4.2] and [19, Example 6.2.1]). Yuri Prokhorov

pointed out that the quartic 3-fold
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in 4 with homogeneous coordinates ¼y y, ,0 4 has exactly 45 singular points. Thus, it is iso-
morphic to the Burkhardt quartic X 1

2
by de Jong [15]. It would be interesting to find similar

determinantal equations of the 3-folds X 7
10
and X 1

6
.

The plan of the paper is as follows. In Section 2, we recall some preliminary results on repre-
sentations of a central extension of the group S6, and some of its subgroups. In Section 3, we
collect results concerning a certain action of the group A5 on 3, and study A5-invariant quartic
surfaces; the reason we pay so much attention to this group is that it is contained both in A6 and in
S5, and thus the information about its properties simplifies the study of the latter two groups. In
Section 4, we collect auxiliary results about the groups S6, A6 and S5, in particular about their
actions on curves and their five-dimensional irreducible representations. In Section 5, we construct
an A6-equivariant birational map   X3 7

10
. Finally, in Section 6, we construct an S5-equivariant

birational map   X3 1
6
and make some concluding remarks.

Throughout the paper, we denote a cyclic group of order n by mn, and we denote a dihedral
group of order n2 by D n2 . In particular, one has m@ ´SD12 3 2. By F36 we denote a group iso-
morphic to m m m( ´ )3 3 4, and by F20 we denote a group isomorphic to m m5 4.

2. Representation theory

Recall that the permutation group S6 has two central extensions +S2 6 and -S2 6 by the group m2
with the central subgroup contained in the commutator subgroup (see [8, p. xxiii] for details). We
denote the first of them (i.e. the one where the preimages of a transposition inS6 under the natural
projection have order two) by S2. 6 to simplify notation. Similarly, for any group Γ we denote by
G2. a non-split central extension of Γ by the group m2.
We start with recalling some facts about four- and five-dimensional representations of the group
S2. 6 we will be working with. A reader who is not interested in details here can skip to Corollary

2.1, or even to Section 4 where we reformulate everything in geometric language. Also, we will
see in Section 4 that our further constructions do not depend much on the choice of representa-
tions, and all computations one makes for one of them actually apply to all others.
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Let  and  be the trivial and the non-trivial one-dimensional representations of the group S6,
respectively. Consider the six-dimensional permutation representation  ofS6. One has

   @ Å Ä5

for some irreducible representation 5 ofS6. We can regard ,  and 5 as representations of the
group S2. 6. Recall that there is a double cover

  ( )  ( ): SL SO ,4 6

see, for example, [10, Exercise 20.39]. Taking the embedding of the group S2. 6 into ( )SO6 via
the representation  Å 5 and considering its preimage with respect to ∇, we produce an embedding
of the group S2. 6 into ( )SL4 . This embedding gives rise to two four-dimensional representations
of S2. 6 that differ by a tensor product with . We fix one of these two representations 4. Note that

  ( )Å @ L .5
2

4

Recall that there are coordinates ¼x x, ,0 5 in  that are permuted by the group S6. We will
refer to a subgroup of S2. 6 fixing one of the corresponding points as a standard subgroup S2. ;5

we denote any such subgroup by S2. 5
st. A subgroup of S2. 6 that is isomorphic to S2. 5, but is not

conjugate to a standard S2. 5, will be called a non-standard subgroup S2. ;5 we denote any such
subgroup by S2. nst

5 . These agree with standard and non-standard subgroups of S6 isomorphic to
S5, although outer automorphisms of S6 do not lift to S2. 6. Any subgroup of S2. 6 that is iso-
morphic to A2. 5, S2. 4 or A2. 4 and is contained in S2. st

5 is denoted by A2. st
5 , S2. st4 or A2. st

4 ,
respectively. Similarly, any subgroup of S2. 6 that is isomorphic to A2. 5, S2. 4 or A2. 4 and is con-
tained in S2. nst

5 is denoted by A2. nst
5 , S2. nst

4 or A2. nst
4 , respectively.

The values of characters of important representations of the group S2. 6, and the information
about some of its subgroups are presented in Table 1, cf. [8, p. 5]. The first two columns of

Table 1. Characters and subgroups of the group S2. 6.

ord Type  5 4 S2. 6 A2. 6 S2. nst
5 A2. st5 A2. nst

5 S2. nst
4 A2. nst

4 F2. 36 F2. 20 2.Dnst
12

1 id 6 5 4 1 1 1 1 1 1 1 1 1 1
2 z 6 5 −4 1 1 1 1 1 1 1 1 1 1
2 [ ]2 4 −3 0 30 0 0 0 0 0 0 0 0 0
4 [ ]2, 2 2 1 0 90 90 30 30 30 6 6 18 10 6
4 [ ]2, 2, 2 0 1 0 30 0 20 0 0 12 0 0 0 8
6 [ ]3 3 2 2 40 40 0 20 0 0 0 4 0 0
3 [ ]3 3 2 −2 40 40 0 20 0 0 0 4 0 0
6 [ ]3, 2 1 0 0 120 0 0 0 0 0 0 0 0 0
6 [ ]3, 2 1 0 0 120 0 0 0 0 0 0 0 0 0
6 [ ]3, 3 0 −1 −1 40 40 20 0 20 8 8 4 0 2
3 [ ]3, 3 0 −1 1 40 40 20 0 20 8 8 4 0 2
8 [ ]4 2 −1 0 180 0 60 0 0 12 0 0 20 0
8 [ ]4, 2 0 −1 0 180 180 0 0 0 0 0 36 0 0
10 [ ]5 1 0 1 144 144 24 24 24 0 0 0 4 0
5 [ ]5 1 0 −1 144 144 24 24 24 0 0 0 4 0
12 [ ]6 0 1 -3 120 0 20 0 0 0 0 0 0 2
12 [ ]6 0 1 - -3 120 0 20 0 0 0 0 0 0 2
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Table 1 describes conjugacy classes of elements of the group S2. 6. The first column lists the orders
of the elements in the corresponding conjugacy class, and the second column, except for the entries
in the second and the third rows, gives a cycle type of the image of an element under projection to
S6 (for example, [ ]3, 2 denotes a product of two disjoint cycles of lengths 3 and 2). By id we denote
the identity element of S2. 6, and z denotes the unique non-trivial central element of S2. 6. Note that
the preimages of some of conjugacy classes in S6 split into a union of two conjugacy classes in
S2. 6. The next three columns list the values of the characters of the representations , 5 and 4

of S2. 6. Note that there is no real ambiguity in the choice of -3 since we did not specify any
way to distinguish the two conjugacy classes in S2. 6 whose elements are projected to cycles of
length 6 inS6 up to this point (note that the two ways to choose a sign here is exactly a tensor multi-
plication of the representation with , that is, the choice between two homomorphisms of S2. 6 to

( )SL4 having the same image). The remaining columns list the numbers of elements from each of
the conjugacy classes of S2. 6 in subgroups of certain types. By F2. 36 (respectively, by F2. 20, by
2.Dnst

12 ) we denote a subgroup of S2. 6 (respectively, of S2. 6, or of S2. nst
5 ) isomorphic to a central

extension of F36 (respectively, of F20, or of D12) by m2. A subgroup F2. 20 is actually contained in a
subgroup S st2. 5 and in a subgroup S2. nst

5 . Note that the intersection of a conjugacy class in a group
with a subgroup may (and often does) split into several conjugacy classes in this subgroup.

It is immediate to see from Table 1 that 4 is an irreducible representation of the group S2. 6.
Using the information provided by Table 1, we immediately obtain the following results.

COROLLARY 2.1 Let Γ be a subgroup of S2. 6. After restriction to the subgroup Γ the
S2. 6-representation 4

• remains irreducible, if Γ is one of the subgroups A2. 6, S2. nst
5 , A2. nst

5 , S2. nst
4 , F2. 36 or F2. ;20

• splits into a sum of two non-isomorphic irreducible two-dimensional representations, if Γ is
one of the subgroups A2. st

5 , A2. nst
4 or 2.Dnst

12 .

Proof. Compute inner products of the corresponding characters with themselves, and keep in
mind that neither of the groups A2. st

5 , A2. nst
4 and 2.Dnst

12 has an irreducible three-dimensional
representation with a non-trivial action of the central subgroup. □

REMARK 2.2 By Corollary 2.1(i), the S2. nst
5 -representation 4 is irreducible. One can check that

it is not induced from any proper subgroup of S2. nst
5 , that is, it defines a primitive subgroup iso-

morphic to S2. 5 in ( )GL4 . Note that this subgroup is not present in the list given in [9,
Section 8.5]. It is still listed by some other classical surveys, see, for example, [2, Section 119].

COROLLARY 2.3 Let Γ be a subgroup ofS6. After restriction to the subgroup Γ, theS6-representa-
tion5

(i) remains irreducible, if Γ is one of the subgroups A6,S
nst
5 or A ;nst

5
(ii) splits into a sum of the trivial and an irreducible four-dimensional representation if Γ is a

subgroup A ;st
5

(iii) splits into a sum of the trivial and two different irreducible two-dimensional representations
if Γ is a subgroup Dnst

12 .

In the sequel, we will denote the restrictions of the S2. 6-representation 4 and of the
S6-representation 5 to various subgroups by the same symbols for simplicity. The next two
corollaries are implied by direct computations (we used GAP software [11] to perform them).

577TWO RATIONAL NODAL QUARTIC 3-FOLDS

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article-abstract/67/4/573/2452959 by U
niversity of Edinburgh user on 03 June 2019



COROLLARY 2.4 The following assertions hold:

(i) the A6-representation ( )Sym2
4 does not contain one-dimensional subrepresentations;

(ii) the A6-representation ( )Sym4
4 does not contain one-dimensional subrepresentations;

(iii) the Anst
5 -representation ( )Sym2

4 splits into a sum of two different irreducible three-
dimensional representations and one irreducible four-dimensional representation;

(iv) the A2. nst
5 -representation ( )Sym3

4 does not contain one-dimensional subrepresentations;
(v) the Anst

5 -representation ( )Sym4
4 has a unique two-dimensional subrepresentation, and

this subrepresentation splits into a sum of two trivial representations of Anst
5 .

Recall that all representations of a symmetric group are self-dual. Therefore, to study invariant
hypersurfaces in  ( ),5 we will use the following result.

COROLLARY 2.5 Let Γ be one of the groupsS6, A6 orSnst
5 . Then,

(i) the Γ-representation ( )Sym2
5 has a unique one-dimensional subrepresentation;

(ii) the Γ-representation ( )Sym4
5 has a unique two-dimensional subrepresentation, and this

subrepresentation splits into a sum of two trivial representations of Γ.

We conclude this section by recalling some information about several subgroups of S2. 6 that
are smaller than those listed in Table 1. Namely, we list in Table 2 orders, types and numbers of
elements in certain subgroups of A2. nst

5 . We keep the notation used in Table 1. By ¢S2. 3 we denote
a subgroup of A2. nst

5 isomorphic to S2. 3. Note that the preimage in S2. 6 of any subgroup
m Ì S5 6 is isomorphic to m10.

Looking at Table 2 (and keeping in mind character values provided by Table 1) we immediately
obtain the following.

COROLLARY 2.6 Let Γ be a subgroup of ÌA S2. 2.nst
5 6. After restriction to Γ the S2. 6-represen-

tation 4

(i) splits into a sum of two non-isomorphic irreducible two-dimensional representations if Γ is
a subgroup 2.D ;10

(ii) splits into a sum of an irreducible two-dimensional representation and two non-isomorphic
one-dimensional representations if Γ is a subgroup ¢S2. ;3

(iii) splits into a sum of two isomorphic irreducible two-dimensional representations if Γ is a
subgroup m m( ´ )2. ;2 2

(iv) splits into a sum of four pairwise non-isomorphic one-dimensional representations if Γ is a
subgroup m10.

Table 2. Subgroups of A2. nst
5 .

ord type 2.D10 ¢S2. 3 m m( ´ )2. 2 2 m10

1 id 1 1 1 1
2 z 1 1 1 1
4 [ ]2, 2 10 6 6 0
6 [ ]3, 3 0 2 0 0
3 [ ]3, 3 0 2 0 0
10 [ ]5 4 0 0 4
5 [ ]5 4 0 0 4
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3. Icosahedral group in 3 dimensions

In this section, we consider the action of the group A5 on the projective space 3 arising from a
non-standard embedding of ↪A S5 6. Namely, we identify 3 with the projectivization  ( )4 ,
where 4 is the restriction of the four-dimensional irreducible representation of the group S2. 6

introduced in Section 2 to a subgroup A2. nst
5 (which we will refer to just as A2. 5 in this section).

Recall from Corollary 2.1(i) that 4 is an irreducible representation of A2. 5. Moreover, this is the
unique faithful four-dimensional irreducible representation of the group A2. 5 (see e.g. [8, p. 2]).

REMARK 3.1 (see e.g. [8, p. 2]). Let Γ be a proper subgroup of A5 such that the index of Γ is at
most 15. Then, Γ is isomorphic either to A4, or to D10, or toS3, or to m5, or to m m´2 2. In par-
ticular, if A5 acts transitively on the set of <r 15 elements, then Î { }r 5, 6, 10, 12 .

LEMMA 3.2 Let Ω be an A5-orbit of length £r 15 in 3. Then, either r = 10, or r = 12.
Moreover, 3 contains exactly two A5-orbits of length 10 and exactly two A5-orbits of length 12.

Proof. By Remark 3.1 one has Î { }r 1, 5, 6, 10, 12, 15 . The case r = 1 is impossible since 4 is
an irreducible A2. 5-representation. Restricting 4 to subgroups of A2. 5 isomorphic to A2. 4, 2.D10

and m m( ´ )2. 2 2 , and applying Corollaries 2.1(ii) and 2.6(i), (iii), we see that Ï { }r 5, 6, 15 .
Restricting 4 to a subgroup of A2. 5 isomorphic to S2. 3, applying Corollary 2.6(ii) and keeping

in mind that there are 10 subgroups isomorphic to S3 in A5, we see that 3 contains exactly two
A5-orbits of length 10.

Finally, restricting 4 to a subgroup of A2. 5 isomorphic to m10, applying Corollary 2.6(iv) and
keeping in mind that there are six subgroups isomorphic to m5 in A5, we see that 3 contains
exactly two A5-orbits of length 12. □

LEMMA 3.3 There are no A5-invariant surfaces of degree at most three in 3.

Proof. Apply Corollary 2.4(iii), (iv). □

By Corollary 2.1(ii), the subgroup ÌA A4 5 leaves invariant two disjoint lines in 3, say L1 and
¢L1 . Let ¼L L, ,1 5 be the A5-orbit of the line L1, and let ¢ ¼ ¢L L, ,1 5 be the A5-orbit of the line ¢L1 .

LEMMA 3.4 The lines ¼L L, ,1 5 (respectively, the lines ¢ ¼ ¢L L, ,1 5) are pairwise disjoint.

Proof. Suppose that some of the lines ¼L L, ,1 5 have a common point. Since the action of A5 on
the set { ¼ }L L, ,1 5 is doubly transitive, this implies that every two of the lines ¼L L, ,1 5 have a
common point. Therefore, either all lines ¼L L, ,1 5 are coplanar, or all of them pass through one
point. Both of these cases are impossible since the A2. 5-representation 4 is irreducible by
Corollary 2.1(i). Therefore, the lines ¼L L, ,1 5 are pairwise disjoint. The same argument applies to
the lines ¢ ¼ ¢L L, ,1 5. □

COROLLARY 3.5 Any A5-orbit contained in the union È È¼L L1 5 has length at least 20.

Proof. Corollary 2.1(ii) implies that the stabilizer G @ A4 of the line L1 acts on L1 faithfully.
Therefore, the length of any Γ-orbit contained in L1 is at least four. Thus, the required assertion
follows from Lemma 3.4. □

We are going to describe the configuration formed by the lines ¼ ¢ ¼ ¢L L L L, , , , ,1 5 1 5.
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DEFINITION 3.6 Let ¼ ¢ ¼ ¢T T T T, , , , ,1 5 1 5 be different lines in a projective space. We say that they
form a double five configuration if the following conditions hold:

• the lines ¼T T, ,1 5 (respectively, the lines ¢ ¼ ¢T T, ,1 5) are pairwise disjoint;
• for every i the lines Ti and ¢Ti are disjoint;
• for every ¹i j, the line Ti meets the line ¢Tj .

LEMMA 3.7 The lines ¼ ¢ ¼ ¢L L L L, , , , ,1 5 1 5 form a double five configuration. Moreover, the only
line in 3 that intersects all lines of ¼L L, ,1 5, but Li is the line ¢Li , and the only line in 3 that
intersects all lines of ¢ ¼ ¢L L, ,1 5, but ¢Li is the line Li.

Proof. For any i, the lines Li and ¢Li are disjoint by construction. The lines ¼L L, ,1 5 (respectively,
the lines ¢ ¼ ¢L L, ,1 5) are pairwise disjoint by Lemma 3.4.

Since any three pairwise skew lines in 3 are contained in a smooth quadric surface, and an
intersection of two different quadric surfaces in 3 cannot contain three pairwise skew lines, we
see that for any three indices £ < < £i j k1 5 there is a unique quadric surface Qijk in 3

passing through the lines Li, Lj and Lk. Moreover, the quadric Qijk is smooth. Note also that the
quadric Qijk is not A5-invariant by Lemma 3.3. This implies that all five lines ¼L L, ,1 5 are not
contained in a quadric.

Therefore, we may assume that the quadric Q123 does not contain the line L4. It is well known that
in this case either there is a unique line L meeting all four lines ¼L L, ,1 4, or there are exactly two lines
L and ¢L meeting ¼L L, ,1 4. In the latter case, the stabilizer G Ì A5 of the quadruple ¼L L, ,1 4 (that is,
the stabilizer of the line L5) preserves the lines L5, L and ¢L . However, the lines L and ¢L are different
from L5 since L5 meets neither of the lines ¼L L, , ;1 4 moreover, the group G @ A4 fixes both L and
¢L . But Γ cannot fix three different lines in 3 by Corollary 2.1(ii). The contradiction shows that there

is a unique line L meeting ¼L L, ,1 4. Again we see that ¹L L5, so that = ¢L L5 by Corollary 2.1(ii).
Since the group A5 permutes the lines ¼L L, ,1 5 transitively, we conclude that the only line in 3

that intersects all lines of ¼L L, ,1 5 except Li is the line ¢Li . Similarly, we see that the only line in
3 that intersects all lines of ¢ ¼ ¢L L, ,1 5 except ¢Li is the line Li. In particular, the lines

¼ ¢ ¼ ¢L L L L, , , , ,1 5 1 5 form a double five configuration. □

LEMMA 3.8 Every A5-invariant curve of degree at most three in 3 is a twisted cubic. Moreover,
there are exactly two A5-invariant twisted cubic curves in 3.

Proof. Let C be an A5-invariant curve of degree at most three in 3. Since the A2. 5-representation
4 is irreducible, we conclude that C is a twisted cubic.

By Corollary 2.4(iii), one has

   ( ) @ Å ¢ Å ( )Sym , 3.12
4 3 3 4

where 3, ¢3 and 4, are irreducible representations of the group A5 of dimensions 3, 3 and 4,
respectively. Note that 3 and ¢3 are not isomorphic.

Denote by and¢ the linear systems of quadrics in 3 that correspond to 3 and ¢3, respec-
tively. Since 3 does not contain A5-orbits of lengths less than or equal to eight by Lemma 3.2,
we see that the base loci of and¢ contain A5-invariant curves C1 and C2, respectively. The degrees
of these curves must be <4, so that they are twisted cubic curves. This also implies that the base
loci of and¢ are exactly the curves C1 and C2, respectively.
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Now take an arbitrary A5-invariant twisted cubic curve C in 3. The quadrics in 3 passing
through C define a three-dimensional A5-subrepresentation in ( )Sym2

4 . Moreover, different
A5-invariant twisted cubics give different A5-subrepresentations of ( )Sym2

4 . Thus, Equation (3.1)
implies that C coincides either with C1 or with C2. □

Keeping in mind Lemma 3.8, we will denote the two A5-invariant twisted cubic curves in 3

by C1 and C2 throughout this section.

REMARK 3.9 The curves C1 and C2 are disjoint. Indeed, otherwise, their intersection would contain
at least 12 points, which is impossible, since a twisted cubic curve is an intersection of quadrics.

The lines in 3 that are tangent to the curves C1 and C2 sweep out quartic surfaces 1 and 2,
respectively. These surfaces are A5-invariant. The singular loci of 1 and 2 are the curves C1 and
C2, respectively. In particular, the surfaces 1 and 2 are different. Their singularities along these
curves are locally isomorphic to a product of 1 and an ordinary cusp.

Denote by  the pencil of quartics in 3 generated by 1 and 2.

LEMMA 3.10 All A5-invariant quartic surfaces in 3 are contained in the pencil  .

Proof. This follows from Corollary 2.4(v). □

We proceed by describing the base locus of the pencil  . This was done in [4, Remark 2.6],
but we reproduce the details here for the convenience of the reader.

LEMMA 3.11 The base locus of the pencil  is an irreducible curve B of degree 16. It has 24
singular points, these points are in a union of two A5-orbits of length 12, and each of them is an
ordinary cusp of the curve B. The curve B contains a unique A5-orbit of length 20.

Proof. Denote by B the base curve of the pencil  . Let us show that the curves C1 and C2 are not
contained in B. Since C1 is projectively normal, there is an exact sequence of A2. 5-representations

C C      ( ( )) ( ( )) ( ( )) Ä   Ä H H H0 4 4 4 0,0 0 01 3 3 1 3

where C 1 is the ideal sheaf of C1. The A2. 5-representation C ( Ä ( ))H 40 1 3 contains a one-
dimensional subrepresentation corresponding to the unique A5-orbit of length 12 in C @1 1. This
shows that  contains a surface that does not pass through C1, so that C1 is not contained in B.
Similarly, we see that C2 is not contained in B.

Let  r ˆ:
1 1 be the normalization of the surface 1, and let Ĉ

1
be the preimage of the curve

C1 via ρ. Then, the action of the group A5 lifts to ̂
1
. One has   @ ´ˆ 1 1 1, and

*   r ( Ä ( ))11 3 is a divisor of bi-degree ( )1, 2 . This shows that Ĉ
1
is of bi-degree ( )1, 1 . Thus,

the action of A5 on ̂ is diagonal by Cheltsov and Shramov [6, Lemma 6.4.3(i)].
Denote by B̂ be the preimage of the curve B via ρ. Then, B̂ is a divisor of bi-degree ( )4, 8 .

Hence, the curve B̂ is irreducible by Cheltsov and Shramov [6, Lemma 6.4.4(i)], so that the curve
B is irreducible as well.

Note that the curve B̂ is singular. Indeed, the intersection C Ç1 2 is an A5-orbit S12 of length
12, because C2 is not contained in 1. Similarly, we see that the intersection C Ç2 1 is also an
A5-orbit S¢12 of length 12. These A5-orbits S12 and S¢12 are different by Remark 3.9. Since B is the
scheme theoretic intersection of the surfaces 1 and 2, it must be singular at every point of
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ÈS S¢12 12. Denote by Ŝ12 and S¢ˆ
12 the preimages via ρ of the A5-orbits S12 and S¢12, respectively.

Then, B̂ is singular in every point of S¢ˆ
12.

The curve B̂ is smooth away of S¢ˆ
12, because its arithmetic genus is 21, and the surface ̂

1
does

not contain A5-orbits of length<12. However, we have

CÇ = Sˆ ˆ ˆB ,
1

12

because C =ˆ ·B 121 and S Ìˆ B̂12 . This shows that B is an irreducible curve whose only singular-
ities are the points of ÈS S¢12 12, and each such point is an ordinary cusp of the curve B. In par-
ticular, the genus of the normalization of the curve B is 9. By Cheltsov and Shramov [18, Lemma
5.1.5], this implies that B contains a unique A5-orbit of length 20. □

The following classification of A5-invariant quartic surfaces in 3 was obtained in [17,
Theorem 2.4].

LEMMA 3.12 The pencil  contains two surfaces 1 and 2 with ordinary double singularities,
such that the singular loci of1 and 2 are A5-orbits of length 10. Every surface in 3 is different
from 1, 2, 1 and 2 is smooth.

Proof. Let S be a surface in  that is different from 1 and 2. It follows from Lemma 3.3 that S
is irreducible. Assume that S is singular.

We claim that S has isolated singularities. Indeed, suppose that S is singular along some
A5-invariant curve Z. Taking a general plane section of S, we see that the degree of Z is at most
three. Thus, one has either C=Z 1 or C=Z 2 by Lemma 3.8. Since neither of these curves is con-
tained in the base locus of  by Lemma 3.11, this would imply that either =S 1 or =S 2. The
latter is not the case by assumption.

We see that the singularities of S are isolated. Hence, S contains at most two non-Du Val singu-
lar points by [23, Theorem 1] applied to the minimal resolution of singularities of the surface S.
Since the set of all non-Du Val singular points of the surface S must be A5-invariant, we see that S
has none of them by Lemma 3.2. Thus, all singularities of S are Du Val.

By Cheltsov and Shramov [6, Lemma 6.7.3(iii)], the surface S has only ordinary double singu-
larities, the set ( )SSing consists of one A5-orbit, and

( ) Î { }∣ ∣SSing 5, 6, 10, 12, 15 .

Since 3 does not contain A5-orbits of lengths 5, 6 and 15 by Lemma 3.2, we see that ( )SSing is
either an A5-orbit of length 10 or an A5-orbit of length 12.

Suppose that the singular locus of S is an A5-orbit S12 of length 12. Then, S does not contain
other A5-orbits of length 12 by Cheltsov and Shramov [6, Lemma 6.7.3(iv)]. Since C1 is not con-
tained in the base locus of  by Lemma 3.11, and C1 is contained in 1, we see that C Ì S1 . Since

C =·S 121

and S12 is the only A5-orbit of length at most 12 in C @1 1, we have CÇ = SS 1
12. Thus,
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C å= ³ ( ) = S =
ÎS

· ∣ ∣S S12 mult 2 24,
P

P
1

12

12

which is absurd.
Therefore, we see that the singular locus of S is an A5-orbit S12 of length 10. Vice versa, if an

A5-invariant quartic surface passes through an A5-orbit of length 10, then it is singular by
Cheltsov and Shramov [6, Lemma 6.7.1(ii)]. We know from Lemma 3.2 that there are exactly two
A5-orbits of length 10 in 3, and it follows from Lemma 3.11 that they are not contained in the
base locus of  . Thus, there are two surfaces 1 and 2 that are singular exactly at the points of
these two A5-orbits, respectively. The above argument shows that every surface in  except 1,
2, 1 and 2 is smooth. □

Keeping in mind Lemma 3.12, we will denote by 1 and 2 the two nodal surfaces contained
in the pencil  until the end of this section.

LEMMA 3.13 There is a unique A5-invariant quartic surface in 3 that contains the lines
¼L L, ,1 5 (respectively, the lines ¢ ¼ ¢L L, ,1 5). Moreover, this surface is smooth, and it does not con-

tain the lines ¢ ¼ ¢L L, ,1 5 (respectively, ¼L L, ,1 5).

Proof. Put  = å = Li i1
5 and ¢ = å ¢= Li i1

5 . Corollary 2.1(ii) implies that the stabilizer in A5 of a
general point of L1 is trivial. Therefore, there exists a surface ÎS that contains all lines

¼L L, ,1 5. By Lemma 3.11 such surface S is unique.
We claim that ¹S 1. Indeed, all lines contained in 1 are tangent to the curve C1, and there are

no A5-orbits of length five in C @1 1. Similarly, one has ¹S 2.
We claim that S is not one of the two nodal surfaces 1 and 2 contained in the pencil  .

Indeed, suppose that =S 1. Since the singular locus of 1 is an A5-orbit of length 10 by Lemma
3.12, we see that the lines ¼L L, ,1 5 are contained in the smooth locus of 1 by Corollary 3.5.
However, one has  = -102 by Lemma 3.4. This means that ( ) ³ASrk Pic 25 , which is impos-
sible by Cheltsov and Shramov [6, Lemma 6.7.3(i), (ii)].

We see that the surface S is different from 1. The same argument shows that S is different from
2. Hence, S is smooth by Lemma 3.12.

Let us show that S does not contain the lines ¢ ¼ ¢L L, ,1 5. Suppose that it does. By Lemma 3.4
one has

   = ¢ ¢ = -· · 10.

By Cheltsov and Shramov [6, Lemma 6.7.1(i)], we have ( ) =ASrk Pic 25 . Let PS be the class of a
plane section of S. Then, the determinant of the matrix

    

    

 

æ

è

ççççççç

¢ P
¢ ¢ ¢ P ¢

P P ¢ P P

ö

ø

÷÷÷÷÷÷÷÷
=

æ

è

ççççç

-
-

ö

ø

÷÷÷÷÷÷

· · ·
· · ·
· · ·

10 20 5
20 10 5
5 5 4

S

S

S S S S

must vanish. This is a contradiction, because it is equal to 300.
Applying the same argument, we see that the lines ¢ ¼ ¢L L, ,1 5 are contained in a unique

A5-invariant quartic surface, this surface is smooth and does not contain the lines ¼L L, ,1 5. □

583TWO RATIONAL NODAL QUARTIC 3-FOLDS

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article-abstract/67/4/573/2452959 by U
niversity of Edinburgh user on 03 June 2019



REMARK 3.14 One can use the properties of the pencil  to give an alternative proof of Lemma
3.7. Namely, we know from Lemma 3.13 that there are two (different) smooth A5-invariant quartic
surfaces S and ¢S containing the lines ¼L L, ,1 5 and ¢ ¼ ¢L L, ,1 5, respectively. By Lemma 3.11, the
base locus of the pencil  is an irreducible curve B that contains a unique A5-orbit Σ of length 20.
By Corollary 3.5, this implies that Σ is contained in the union È È¼L L1 5, because

( + ¼ + ) =·B L L 201 5

on the surface S. Similarly, we see that Σ is contained in È È¢ ¼ ¢L L1 5. These facts together with
Lemma 3.4 easily imply that the lines ¼L L, ,1 5 and ¢ ¼ ¢L L, ,1 5 form a double five configuration.

Now we will obtain some restrictions on low degree A5-invariant curves in 3.

LEMMA 3.15 Let C be an irreducible A5-invariant curve in 3 of degree £d 10. Denote by g the
genus of the normalization of the curve C. Then,

£ + - ( )∣ ∣g
d

C
8

1 Sing .
2

Proof. Since 4 is an irreducible A2. 5-representation, the curve C is not contained in a plane in
3. This implies that a stabilizer in A5 of a general point of the curve C is trivial. In particular, the
A5-orbit of a general point of C has length =∣ ∣A 605 .

Let S be a surface in the pencil  that passes through a general point of C. Then, the curve C is
contained in S, because otherwise one would have

Ç£ £ = £∣ ∣ ·S C S C d60 4 40,

which is absurd. Since the assertion of the lemma clearly holds for the twisted cubic curves C1 and
C2, we may assume that C is different from these two curves.

Suppose that =S 1. Let us use the notation of the proof of Lemma 3.11. Denote by Ĉ the pre-
image of the curve C via ρ. Then, Ĉ is a divisor of bi-degree (a, b) for some non-negative integers
a and b such that = +d a b2 . However, one has

C CÇ £ = + £ + = £∣ ˆ ˆ ∣ ˆ · ˆC C a b a b d2 10,
1 1

which is impossible, since the curve C C @ @ˆ 1 1 1 does not contain A5-orbits of length<12.
We see that ¹S 1. Similarly, we see that ¹S 2. By Lemma 3.12, either S is a smooth quartic

K3 surface, or S is one of the surfaces 1 and 2. Denote by PS a plane section of S. Then,

æ

è
çççç

P P
P

ö

ø
÷÷÷÷
=

æ
è
ççç

ö
ø
÷÷÷ = - £

·
·

C

C C

d
d C

C ddet det 4 4 0S S

S

2

2 2
2 2

by the Hodge index theorem.
Suppose that C is contained in the smooth locus of the surface S. Denote by pa(C) the arithmetic

genus of the curve C. Then,
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= ( ) -C p C2 2,a
2

by the adjunction formula. Thus, we get

( ) £ +p C
d

8
1.a

2

Since £ ( ) - ( )∣ ∣g p C CSinga , this implies the assertion of the lemma.
To complete the proof, we may assume that C contains a singular point of the surface S. By Lemma

3.12, this means either =S 1 or =S 2. The singularities of the surface S are ordinary double
points, and its singular locus is an A5-orbit of length 10. In particular, the curve C contains the
whole singular locus of S. By Cheltsov and Shramov [6, Lemma 6.7.3(i), (ii)], one has ( ) @ASPic 5 .
Since P = 4S

2 and the self-intersection of any Cartier divisor on the surface S is even, we see that the
group ( )ASPic 5 is generated byPS.

Suppose that C is a Cartier divisor on S. Then, either ~ PC S or ~ PC 2 S, because £d 10.
Since the restriction map

 ( ( ))  ( ( P ))H n H nS S
0 03

is an isomorphism for £n 3, we conclude that there is an A5-invariant quadric in 3. This is not
the case by Lemma 3.3.

Therefore, we see that C is not a Cartier divisor on S. Since S has only ordinary double points,
the divisor C2 is Cartier. Thus,

~ PC l2 ,S

for some odd positive integer l. Since

= P = P P =· ·d C l l2 2 4 ,S S S

we see that =l d

2
. In particular, d is even and £l 5.

Let q S̃ S: be the minimal resolution of singularities of the surface S. Denote by C̃ the proper
transform of the curve C on the surface S̃, and denote by Q ¼ Q, ,1 10 the exceptional curves of θ.
Then,

* åq~ ( P ) - Q
=

C̃ l m2 ,S
i

i
1

10

for some positive integer m. Moreover, m is odd, because C is not a Cartier divisor. We have

= P - = -C̃ l m l m4 20 4 20 ,S
2 2 2 2 2 2

which implies that = -C̃ l m52 2 2. Since C̃2 is even, m is odd and £l 5, we see that either l = 3
or l = 5.

Denote by ( )˜p Ca the arithmetic genus of the curve C̃. Then,
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- = = ( ) -˜ ˜l m C p C5 2 2,a
2 2 2

by the adjunction formula. In particular, we have

- ³ - ³ -m l m25 5 5 2,2 2 2

so that Î { }l 3, 5 and m = 1. The latter means that C is smooth at every point of ( )SSing , so that

( ) = ( )∣ ˜ ∣ ∣ ∣C CSing Sing .

If = =l 3d

2
, then ( ) =˜p C 3a . This gives

£ ( ) - ( ) = - ( ) £ + - ( )˜ ∣ ˜ ∣ ∣ ∣ ∣ ∣g p C C C
d

CSing 3 Sing
8

1 Sing .a

2

Similarly, if = =l 5d

2
, then ( ) =˜p C 11a . This gives

£ ( ) - ( ) = - ( ) £ + - ( )˜ ∣ ˜ ∣ ∣ ∣ ∣ ∣g p C C C
d

CSing 11 Sing
8

1 Sing .a

2

□

Recall from [6, Lemma 5.4.1] that there exists a unique smooth irreducible curve of genus 4
with a faithful action of the group A5. This curve is known as Bring’s curve. Its canonical model
is a complete intersection of a quadric and a cubic in a three-dimensional projective space.
However, this sextic curve does not appear in our   = ( ).3

4

LEMMA 3.16 Let C be a smooth irreducible A5-invariant curve in 3 of degree £d 6 and genus
g. Then, ¹g 4.

Proof. Suppose that g = 4. Denote by PC the plane section of the curve C. Then,

 ( (P )) = - + ( ( - P ))h d h K3C C C C C
0 0

by the Riemann–Roch theorem. Since C is not contained in a plane, this implies that P ~ KC C.
Therefore, the projective space 3 is identified with a projectivization of an A5-representation

( ( ))H KC C
0 , that is, of a representation of the group A2. 5 where the center of A2. 5 acts trivi-

ally. The latter is not the case by construction of 4. □

LEMMA 3.17 Let C be an irreducible smooth A5-invariant curve in 3 of degree d = 10 and
genus g. Then, ¹g 10.

Proof. Suppose that g = 10. By Lemma 3.11, the base locus of the pencil  is an irreducible
curve B of degree 16. In particular, there exists a surface ÎS that does not contain C. Thus, the
intersection ÇS C is an A5-invariant set that consists of

= =·C S d4 40
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points (counted with multiplicities). However, by Cheltsov and Shramov [6, Lemma 5.1.5], any
A5-orbit in C has length 12, 30 or 60. □

4. Large subgroups ofS6

In this section, we collect some auxiliary results about the groups S6, A6 and S5. We start with
recalling some general properties of the group A6.

REMARK 4.1 (see, for example, [8, p. 4]). Let Γ be a proper subgroup of A6 such that the index
of Γ is at most 15. Then, Γ is isomorphic either to A5, or to F36, or toS4. In particular, if A6 acts
transitively on the set of <r 15 elements, then either r = 6 or r = 10.

We will need the following result about possible actions of the group A6 on curves of small
genera (cf. [5, Theorem 2.18] and [6, Lemma 5.1.5]).

LEMMA 4.2 Suppose that C is a smooth irreducible curve of genus £g 15 with a non-trivial
action of the group A6. Then, g = 10.

Proof. Let W Ì C be an A6-orbit. Then, a stabilizer of a point in Ω is a cyclic subgroup of A6,
which implies that

W Î { }∣ ∣ 72, 90, 120, 180, 360 .

From the classification of finite subgroups of  ( ) @ ( )Aut PGL1
2 , we know that ¹g 0. Also,

it follows from the non-solvability of the group A6 that ¹g 1.
Put =¯ AC C 6. Then, C̄ is a smooth curve. Let ḡ be the genus of the curve C̄ . The Riemann–

Hurwitz formula gives

- = ( - ) + + + +¯g g a a a a2 2 360 2 2 180 240 270 288 ,180 120 90 72

where ak is the number of A6-orbits in C of length k.
Since ³a 0k and £ £g2 15, one has =ḡ 0. Thus, we obtain

- = - + + + +g a a a a2 2 720 180 240 270 288 .180 120 90 72

Going through the values £ £g2 15, and solving this equation case by case, we see that the only
possibility is g = 10. □

We proceed by recalling some general properties of the groupS5.

REMARK 4.3 (see e.g. [12, p. 2]). Let Γ be a proper subgroup of S5 such that the index of Γ is
<12. Then, Γ is isomorphic either to A5, or to S4, or to F20, or to A4, or to D12. In particular, if
S5 acts transitively on the set of <r 12 elements, then Î { }r 2, 5, 6, 10 .

LEMMA 4.4 The groupS5 cannot act faithfully on a smooth irreducible curve of genus 5.
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Proof. Suppose that C is a curve of genus 5 with a faithful action ofS5. Considering the action of
the subgroup ÌA S5 5 on C and applying [6, Lemma 5.4.3], we see that C is hyperelliptic. This
gives a natural homomorphism

 ( ) ( )q  @S: Aut PGL5
1

2

whose kernel is either trivial or isomorphic tom2. Thus, θ is injective, which gives a contradiction. □

Now we will prove some auxiliary facts about actions of the groupsS6, A6 andS5 on the four-
dimensional projective space.

REMARK 4.5 The groupS6 has exactly four irreducible five-dimensional representations (see e.g.
[8, p. 5]). Starting from one of them, one more can be obtained by a twist by an outer automorph-
ism of S6, and two remaining ones are obtained from these two by a tensor product with the sign
representation. Although these four representations are not isomorphic, the images of S6 in

( )PGL5 under them are the same. Every irreducible five-dimensional representation of S6

restricts to an irreducible representation of the subgroup ÌA S6 6, and restricts to an irreducible
representation of some of the subgroups ÌS S5 6. The group A6 has exactly two irreducible five-
dimensional representations, each of them arising this way (see e.g. [8, p. 5]). Similarly, the group
S5 has exactly two irreducible five-dimensional representations, each of them arising this way (see
e.g. [8, p. 2]). Note also that every five-dimensional representation of a group A6 or S5 that does
not contain one-dimensional subrepresentations is irreducible.

Let 5 be an irreducible five-dimensional representation of the group S6. Put   = ( )4
5 .

Keeping in mind Remark 4.5, we see that the image of the corresponding homomorphism S6 to
( )PGL5 is the same for any choice of 5, and thus the S6-orbits and S6-invariant hypersurfaces

in 4 do not depend on 5 either.
Remark 4.5 implies that there are six linear forms ¼x x, ,0 5 on 4 that are permuted by the

group S6 (cf. Sections 1 and 2). Indeed, up to a twist by an outer automorphoism of S6 and a
tensor product with the sign representation, 5 is a subrepresentation of the six-dimensional
representation  of S6, so that one can take restrictions of the natural coordinates in  to be
these linear forms. Let Q be the three-dimensional quadric in 4 given by equation

+ + + + + = ( )x x x x x x 0. 4.10
2

1
2

2
2

3
2

4
2

5
2

The quadric Q is smooth andS6-invariant. Note also that Equation (1.1) makes sense in our 4.
We will use the notation introduced above until the end of the paper.

LEMMA 4.6 Let Γ be either the group S6, or its subgroup A6, or a subgroup S5 of S6 such that
5 is an irreducible representation of Γ. Then, the only Γ-invariant quadric 3-fold in 4 is the
quadric Q. Similarly, every (reduced) Γ-invariant quartic 3-fold in 4 is given by Equation (1.1)
for some Ît .

Proof. Apply Corollary 2.5. □

By a small abuse of notation, we will refer to the points in 4 using xi as if they were homo-
geneous coordinates, that is, a point in 4 will be encoded by a ratio of six linear forms xi. As in
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Section 1, let S6 and S10 be the S6-orbits of the points [- ]5 : 1 : 1 : 1 : 1 : 1 and
[- - - ]1 : 1 : 1 : 1 : 1 : 1 , respectively. Looking at Equation (4.1), we obtain Corollary 4.7.

COROLLARY 4.7 The quadric Q does not contain theS6-orbits S6 and S10.

Now we will have a look at the action of the group A6 on 4. Note that 5 is an irreducible
A6-representation by Remark 4.5.

LEMMA 4.8 There are no A6-orbits of length< 6 in 4. Moreover, the only A6-orbit of length six
in 4 is S6.

Proof. The only subgroup of A6 of index< 6 is A6 itself (cf. Remark 4.1), so that the first assertion of
the lemma follows from irreducibility of the A6-representation 5. Also, the only subgroups of A6 of
index six are Ast

5 and Anst
5 , so that the second assertion of the lemma also follows from Corollary 2.3. □

LEMMA 4.9 Let X be an A6-invariant quartic 3-fold in 4 that contains an A6-orbit of length at
most six. Then, =X X 7

10
.

Proof. By Lemma 4.6, one has =X Xt for some Ît , and by Lemma 4.8 the A6-orbit S6 is con-
tained in Xt. Since S6 is not contained in the quadric Q by Corollary 4.7, we see that there is a
unique Ît such that S6 is contained in a quartic given by Equation (1.1). Therefore, we con-
clude that =t 7

10
. □

Now we will make a couple of observations about the action of the groupS5 on 4. We choose
S5 to be a subgroup of S6 such that 5 is an irreducible S5-representation (cf. Remark 4.5 and
Corollary 2.3).

LEMMA 4.10 Let ÎP 4 be a point such that its stabilizer inS5 contains a subgroup isomorphic
to D12. Then, theS5-orbit of P is S10.

Proof. By Corollary 2.3(iii), the point in 4 fixed by a subgroup Ì SD12 5 is unique. However, it
is straightforward to check that a stabilizer inS5 of a point of S10 contains a subgroup isomorphic
to D12. It remains to notice that the latter stabilizer is actually isomorphic to D12, since the only
subgroups ofS5 that contain D12 are D12 andS5 itself, whileS5 has no fixed points on 4. □

LEMMA 4.11 Let X be anS5-invariant quartic 3-fold in 4 that contains S10. Then, =X X 1
6
.

Proof. By Lemma 4.6, one has =X Xt for some Ît . Since S10 is not contained in the quadric
Q by Corollary 4.7, we see that there is a unique Ît such that S10 is contained in a quartic
given by Equation (1.1). Therefore, we conclude that =t 1

6
. □

5. Rationality of the quartic 3-fold X 7
10

In this section, we will construct an explicit A6-equivariant birational map   X3 7
10
. Implicitly,

the construction of this map first appeared in the proof of Cheltsov and Shramov [5, Theorem
1.20]. Here we will present a much simplified proof of its existence.

We identify 3 with the projectivization  ( )4 , where 4 is the restriction of the four-
dimensional irreducible representation of the group S2. 6 introduced in Section 2 to the subgroup
A2. 6. By Corollary 2.1(i), the A2. 6-representation 4 is irreducible.
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LEMMA 5.1 There are no A6-invariant surfaces of odd degree in 3, and no A6-invariant pencils of
surfaces of odd degree in 3. Moreover, there are no A6-invariant quadric and quartic surfaces in 3.

Proof. Recall that the only one-dimensional representation of the group A2. 6 is the trivial
representation. Therefore, any A6-invariant surface of odd degree d in 3 gives rise to a trivial
A2. 6-subrepresentation in = ( )R Symd

d
4 . However, the non-trivial central element z of A2. 6

acts on Rd by a scalar matrix with diagonal entries equal to −1, which shows that Rd does not con-
tain trivial A2. 6-representations. Also, since the only two-dimensional representation of A2. 6 is
the sum of two trivial representations, this implies that there are no A6-invariant pencils of surfaces
of odd degree in 3.

The last assertion of the lemma follows from Corollary 2.4(i), (ii). □

LEMMA 5.2 Let Ω be an A6-orbit in 3. Then, W ³∣ ∣ 16.

Proof. Lemma 5.1 implies that there are no A6-orbits of odd length in 3. Thus, if Ω is an
A6-orbit in 3 of length at most 15, then by Remark 4.1 a stabilizer of its general point is iso-
morphic either to A5 or to F36. Both of these cases are impossible by Corollary 2.1. □

Actually, the minimal degree of an A6-invariant surface in 3 equals 8 (see [5, Lemma 3.7]),
and the minimal length of an A6-orbit in 3 equals to 36 (see [5, Lemma 3.8]), but we will not
need this here.

LEMMA 5.3 (cf. [20, Lemma 4.26]) Let C be a smooth irreducible A6-invariant curve of degree 9
and genus g in 3. Then, ¹g 10.

Proof. Suppose that g = 10. Then, it follows from Hartshorne [13, Example 6.4.3] that either C is con-
tained in a unique quadric surface in 3, or C is a complete intersection of two cubic surfaces in 3.
The former case is impossible, since there are no A6-invariant quadrics in 3 by Lemma 5.1. The latter
case is impossible, because there are no A6-invariant pencils of cubic surfaces in 3 by Lemma 5.1. □

Recall that the group A6 contains six standard subgroups isomorphic to A5 and six non-
standard subgroups isomorphic to A5 (see the conventions made in Section 2). Denote the former
ones by ¢ ¼ ¢H H, ,1 6, and denote the latter ones by ¼H H, ,1 6. By Corollary 2.1(ii), each group ¢Hi

leaves invariant two lines Li
1 and Li

2 in 3. Note that each group Hi permutes transitively the lines
¼L L, ,1

1
6
1 (respectively, ¼L L, ,1

2
6
2).

Put  = + ¼ +L L1
1
1

6
1 and  = + ¼ +L L2

1
2

6
2. Then, the curves 1 and 2 are A6-invari-

ant, and the curve  +1 2 isS6-invariant.

LEMMA 5.4 The lines ¼L L, ,1
1

6
1 (respectively, the lines ¼L L, ,1

2
6
2) are pairwise disjoint. Moreover,

the curves 1 and 2 are disjoint.

Proof. We use an argument similar to one in the proof of Lemma 3.4. Suppose that some of the
lines ¼L L, ,1

1
6
1 have a common point. Since the action of A6 on the set { ¼ }L L, ,1

1
6
1 is doubly tran-

sitive, this implies that any two of the lines ¼L L, ,1
1

6
1 have a common point. Therefore, either all

lines ¼L L, ,1
1

6
1 are coplanar, or all of them pass through one point. Both of these cases are impos-

sible since 4 is an irreducible A2. 6-representation (see Corollary 2.1(i)). Therefore, the lines
¼L L, ,1

1
6
1 are pairwise disjoint. The same argument applies to the lines ¼L L, ,1

2
6
2.

Suppose that some of the lines ¼L L, ,1
1

6
1, say, L1

1, intersects some of the lines ¼L L, ,1
2

6
2. Since

the lines L1
1 and L2

1 are disjoint by construction, we may assume that L1
1 intersects L2

2. Since the
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stabilizer ¢ Ì AH1 6 of L1
1 acts transitively on the lines ¼L L, ,2

2
6
2, we conclude that all five lines

¼L L, ,2
2

6
2 intersect L1

1. Therefore, the line L1
1 contains a subset of at most five points that is invariant

with respect to the group ¢ @ AH1 5, which is a contradiction. Thus, 1 and 2 are disjoint. □

LEMMA 5.5 Let C be an A6-invariant curve in 3 of degree £d 10. Then, either =C 1 or
=C 2.

Proof. Suppose first that C is reducible. We may assume that A6 permutes the irreducible compo-
nents of C transitively. Thus, C has either 6 or 10 irreducible components by Remark 4.1, and
these irreducible components are lines. By Remark 4.1 and Corollary 2.1, the latter case is impos-
sible, and in the former case one has either =C 1 or =C 2.

Therefore, we assume that the curve C is irreducible. Let g be the genus of the normalization of
the curve C. We have

£ + - ( ) £ - ( ) ( )∣ ∣ ∣ ∣g
d

C C
8

1 Sing 13 Sing 5.1
2

by Lemma 3.15. This implies that the curve C is smooth, because 3 does not contain A6-orbits of
length<16 by Lemma 5.2.

If £d 8, then Equation (5.1) gives £g 9. This is impossible by Lemma 4.2.
If d = 9, then Equation (5.1) gives £g 11, so that g = 10 by Lemma 4.2. This is impossible by

Lemma 5.3.
Therefore, we see that d = 10. Thus, Equation (5.1) gives £g 13, so that g = 10 by Lemma

4.2. The latter is impossible by Lemma 3.17. □

Denote by  the linear system on 3 consisting of all quartic surfaces passing through the
lines ¼L L, ,1

1
6
1. Then, is not empty. In fact, its dimension is at least four by parameter count.

Moreover, the linear system does not have base components by Lemma 5.1.

LEMMA 5.6 The base locus of does not contain curves except the lines ¼L L, ,1
1

6
1. Moreover, a

general surface in is smooth at a general point of each of the lines ¼L L, ,1
1

6
1.

Proof. Denote by Z the union of the curves that are contained in the base locus of  and are
different from the lines ¼L L, ,1

1
6
1. Then, Z is a (possibly empty) A6-invariant curve. Denote its

degree by d. Pick two general surfaces M1 and M2 in. Then,

= + + D·M M Z m ,1 2
1

where m is a positive integer, and Δ is an effective one-cycle on 3 that contains none of the lines
¼L L, ,1

1
6
1. Note that Δ may contain irreducible components of the curve Z. Let Π be a plane in 3.

Then,

= P = P + P + P D = + + P D £ +· · · · · ·M M Z m d m d m16 6 6 ,1 2
1

which implies that £m 2 and £d 10. By Lemma 5.5, we have d = 0, so that Z is empty. Since

³ ³ ( ) ( )m M M2 mult mult ,L L1 2
i i
1 1
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we see that a general surface in is smooth at a general point of Li
1. □

Let a U: 3 be a blow up along the lines ¼L L, ,1
1

6
1. Then, the action of A6 lifts to U.

Denote by ¼E E, ,1 6 the α-exceptional surfaces that are mapped to ¼L L, ,1
1

6
1, respectively.

Denoting by Π a plane in 3, we compute

* * *å å å( )a a a(- ) =
æ

è
çççç

P -
ö

ø
÷÷÷÷

= P + P - = - + =
= = =

·K E E E4 64 12 64 72 12 4.U
i

i
i

i
i

i
3

1

6 3
3

1

6
2

1

6
3

LEMMA 5.7 The action of the stabilizer ¢ @ AHi 5 in A6 of the line Li
1 on the surface

 @ ´Ei
1 1 is twisted diagonal, that is, Ei is identified with    ( ) ´ ( ¢ )2 2 , where 2 and ¢2

are different two-dimensional irreducible representations of the group A2. 5.

Proof. This follows from Corollary 2.1(ii). □

Let us denote by U the proper transform of the linear system  on the 3-fold U. Then,
 ~ -KU U by Lemma 5.6.

LEMMA 5.8 The linear systemU is base point free.

Proof. Let us first show that U is free from base curves. Suppose that the base locus of the
linear systemU contains some curves. Then, each of these curves is contained in some of the
α-exceptional surfaces by Lemma 5.6. Denote by Z the union of all such curves that are con-
tained in E1. Then, Z is an ¢H1 -invariant curve. For some non-negative integers a and b, one has

~ +Z as bl,

where s is a section of the natural projection E L1 1
1 such that =s 02 on E1, and l is a fiber of

this projection. However, we have

 ~ - ~ +∣ ∣K s l3 .U E U E1 1

This gives £a 1 and £b 3. Since the action of ¢H1 on the surface E1 is twisted diagonal by
Lemma 5.7, the latter is impossible by Cheltsov and Shramov [6, Lemma 6.4.2(i)] and [6, Lemma
6.4.11(o)].

We see that U is free from base curves. Since  ~ -KU U , the linear system U cannot
have more than- =K 4U

3 base points. By Lemma 5.2, this implies thatU is base point free. □

COROLLARY 5.9 The base locus of the linear system consists of the lines ¼L L, ,1
1

6
1.

By Lemma 5.8, the divisor-KU is nef. Since- =K 4U
3 , it is also big. Thus, we have

 ( (- )) = ( (- )) =h K h K 0U U U U
1 2

by the Kawamata–Viehweg vanishing theorem (see [16]). Hence, the Riemann–Roch formula
gives
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( (- )) = ( )h K 5. 5.2U U
0

In particular, we see that - =∣ ∣KU U .

LEMMA 5.10 The A6-representation ( (- ))H KU U
0 is irreducible.

Proof. By Lemma 5.1, there are no A6-invariant quartic surfaces in 3. This implies that
( (- ))H KU U

0 does not contain one-dimensional subrepresentations. Hence, it is irreducible by
Remark 4.5. □

Lemma 5.8, together with Equation (5.2), implies that there is an A6-equivariant commutative
diagram

ð5:3Þ

where φ is the rational map given by, and β is a morphism given by the anticanonical linear
system -∣ ∣KU . By Lemma 5.10, the projective space 4 in Equation (5.3) is a projectivization of
an irreducible A6-representation.

Recall from Lemma 3.8 that 3 contains exactly two H1-invariant twisted cubic curves C1
1 and C1

2.

LEMMA 5.11 The curve 1 intersects exactly one curve among C1
1 and C1

2. Moreover, each line
among ¼L L, ,1

1
6
1 contains two points of this intersection. Similarly, the curve 2 intersects exactly

one curve among C1
1 and C1

2, and this curve is different from the one that intersects 1.

Proof. By Remark 3.1, the stabilizer in H1 of the curve L1
1 is isomorphic to D10, and thus it has an

orbit of length 2 on L1
1. Thus, the curve 1 contains an H1-orbit S12

1 of length 12 by Lemma 3.2.
Similarly, the curve 2 contains an H1-orbit S12

2 of length 12. By Lemma 5.4, one has S ¹ S12
1

12
2 .

Moreover, S12
1 and S12

2 are the only H1-orbits in 3 of length 12 by Lemma 3.2. Since C1
1 and C1

2

are disjoint by Remark 3.9, and each of them contains an H1-orbit of length 12, we see that either
CS Ì12

1
1
1 and CS Ì12

2
1
2, or CS Ì12

2
1
1 and CS Ì12

1
1
2. Since a line cannot have more than two

common points with a twisted cubic, this also implies the last assertion of the lemma. □

Without loss of generality, we may assume that the curve 1 intersects C1
1, and the curve 2

intersects C1
2. Let C C¼, ,1

1
6
1 be the A6-orbit of the curve C1

1, and let C C¼, ,1
2

6
2 be the A6-orbit of

the curve C1
2. By Lemma 3.8, the curves Ci

1 and Ci
2 are the only twisted cubic curves in 3 that are

Hi-invariant. By Lemma 5.11, we have

COROLLARY 5.12 Every twisted cubic curve Ci
1 intersects each line among ¼L L, ,1

1
6
1 by two points.

Similarly, every twisted cubic curve Ci
2 intersects each line among ¼L L, ,1

2
6
2 by two points.

Denote by C C¼
~ ~

, ,1
1

6
1
the proper transforms on U of the curves C C¼, ,1

1
6
1 , respectively.

LEMMA 5.13 One has C C- = ¼ = - =
~ ~· ·K K 0U U1

1
6
1

.

Proof. This follows from Corollary 5.12. □
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We see that each curve C
~

i
1
is contracted by β to a point. Since the A6-orbit of C

~
1
1
consists of six

curves, we also obtain the following.

COROLLARY 5.14 The image of the morphism β contains an A6-orbit of length at most six.

Since- =K 4U
3 , the image of β is either an A6-invariant quartic 3-fold or an A6-invariant quad-

ric 3-fold. Using results of [24], one can show that the latter case is impossible. However, this
immediately follows from Corollary 5.14. Indeed, an A6-orbit of length at most six cannot be con-
tained in the A6-invariant quadric by Corollary 4.7 and Lemma 4.8.

COROLLARY 5.15 The morphism β is birational onto its image, and its image is a quartic 3-fold.

Now Lemma 4.9 implies that the image of β is the quartic X 7
10
. This proves

COROLLARY 5.16 The 3-fold X 7
10
is rational.

Let us conclude this section by recalling two related results proved in [5, Section 4]. The com-
mutative diagram (5.3) can be extended to an A6-equivariant commutative diagram

ð5:4Þ

Here σ is an automorphism of the quartic 3-fold X 7
10
given by an odd permutation inS6 acting on

4, cf. Remark 4.5. The birational map ρ is a composition of Atiyah flops in 36 curves contracted
by γ, and the birational map ψ is not regular.

The diagram (5.4) is a so-called A6-Sarkisov link. The subgroup Ì ( )A Aut6
3 together with

y Î ( )ABir 36 generates a subgroup isomorphic toS6. Moreover, the subgroup

 ( ) ( )ÌA AAut Bir3 36 6

is also isomorphic toS6. By Cheltsov and Shramov [5, Theorem 1.24], the whole group ( )ABir 36

is a free product of these two copies ofS6 amalgamated over the original A6.

6. Rationality of the quartic 3-fold X 1
6

In this section, we will construct an explicit S5-equivariant birational map   X3 1
6
. We identify

3 with the projectivization  ( )4 , where 4 is the restriction of the four-dimensional irreducible
representation of the group S2. 6 introduced in Section 2 to a subgroup S2. nst

5 , and denote the
latter subgroup simply by S2. 5. By Corollary 2.1(i), the S2. 5-representation 4 is irreducible.

LEMMA 6.1 Let Ω be anS5-orbit in 3. Then, W ³∣ ∣ 12.

Proof. Apply Remark 4.3 together with Corollary 2.1. □

LEMMA 6.2 Let C be anS5-invariant curve in 3 of degree d. Then, ³d 6.
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Proof. Suppose that £d 5. To start with, assume that C is reducible and denote by r the number
of its irreducible components. We may assume that S5 permutes the irreducible components of C
transitively. Thus, either r = 2 or r = 5 by Remark 4.3. If r = 5, the irreducible components of C
are lines, so that this case is impossible by Remark 4.3 and Corollary 2.1(i). Hence, we have
r = 2, and the stabilizer of each of the two irreducible components C1 and C2 of C is the subgroup

ÌA S5 5. Moreover, in this case one has

( ) = ( ) £C Cdeg deg 2,1 2

which is impossible by Lemma 3.8.
Therefore, we assume that the curve C is irreducible. Let g be the genus of the normalization of

the curve C. Then,

£ + - ( )∣ ∣g
d

C
8

1 Sing
2

by Lemma 3.15, so that £ - ( )∣ ∣g C4 Sing . This implies that C is smooth, because there are no
S5-orbits of length<12 by Lemma 6.1.

Since S5 does not act faithfully on 1, we see that ¹g 0. Thus, either g = 4 or g = 5 by
Cheltsov and Shramov [6, Lemma 5.1.5]. The former case is impossible by Lemma 3.16, while
the latter case is impossible by Lemma 4.4. □

Recall from Section 3 that the subgroup Ì ÌA A S4 5 5 fixes two disjoint lines L1 and ¢L1 . As
before, we consider the A5-orbit ¼L L, ,1 5 of the line L1 and the A5-orbit ¢ ¼ ¢L L, ,1 5 of the line ¢L1 .
By Lemma 3.7, the lines ¼ ¢ ¼ ¢L L L L, , , , ,1 5 1 5 form a double five configuration (see Definition 3.6).
Corollary 2.1(i) implies that theS5-orbit of the line L1 is ¼ ¢ ¼ ¢L L L L, , , , ,1 5 1 5.

REMARK 6.3 Any subgroup Ì SF20 5 permutes the 10 lines ¼ ¢ ¼ ¢L L L L, , , , ,1 5 1 5 transitively.
Indeed, let c ∈ F20 be an element of order five. Then, c is not contained in a stabilizer of the line
L1, so that the orbit of L1 with respect to the group mG @ 5 generated by c is ¼L L, ,1 5. Similarly,
the Γ-orbit of the line ¢L1 is ¢ ¼ ¢L L, ,1 5. Also, the group F20 is not contained in A5, so that the
F20-orbit of L1 contains some of the lines ¢ ¼ ¢L L, ,1 5, and thus contains all the 10 lines

¼ ¢ ¼ ¢L L L L, , , , ,1 5 1 5.

Let  be the linear system on 3 consisting of all quartic surfaces passing through all lines
¼L L, ,1 5 and ¢ ¼ ¢L L, ,1 5. Then, is not empty. In fact, Lemma 3.7 and parameter count imply

that its dimension is at least four. Moreover, the linear system does not have base components
by Lemma 3.3.

LEMMA 6.4 The base locus of  does not contain curves that are different from the lines
¼ ¢ ¼ ¢L L L L, , , , ,1 5 1 5. Moreover, a general surface in  is smooth in a general point of each of

these lines. Furthermore, two general surfaces in intersect transversally at a general point of
each of these lines.

Proof. Denote by Z the union of all curves that are contained in the base locus of the linear system
 and are different from the lines ¼ ¢ ¼ ¢L L L L, , , , ,1 5 1 5. Then, Z is a (possibly empty)S5-invariant
curve. Denote its degree by d. Pick two general surfaces M1 and M2 in. Then,
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å å= + + ¢ + D
= =

·M M Z m L m L ,
i

i
i

i1 2
1

5

1

5

where m is a positive integer, and Δ is an effective one-cycle on 3 that contains none of the lines
¼L L, ,1 5 and ¢ ¼ ¢L L, ,1 5. Note that Δ may contain irreducible components of the curve Z. Note also

thatD ¹ 0, because is not a pencil.
Let Π be a plane in 3. Then,

å å= P + P + P ¢ + P D = + + P D > +
= =

· · · · ·Z m L m L d m d m16 10 10 ,
i

i
i

i
1

5

1

5

which implies that m = 1 and £d 5. By Lemma 6.2, we have d = 0, so that Z is empty. Since

³ ³ ( ) ³ ( ) ( )·m M M M M1 mult mult mult ,L L L1 2 1 2i i i

we see that a general surface in is smooth at a general point of Li, and two general surfaces in
 intersect transversally at a general point of Li. Similarly, we see that a general surface in is smooth
at a general point of ¢Li , and two general surfaces in intersect transversally at a general point of ¢Li . □

Let g W: 3 be a blow up along the lines ¼L L, ,1 5, and let ¢ ¢ g W: 3 be a blow up along
the lines ¢ ¼ ¢L L, ,1 5. Denote by ¢ ¼ ¢ L L, ,1 5 (respectively, ¼ L L, ,1 5) the proper transforms of the lines
¢ ¼ ¢L L, ,1 5 on the 3-fold W (respectively, on the 3-fold ¢W ). Let h V W: be a blow up along the

curves ¢ ¼ ¢ L L, ,1 5, and let ¢ ¢  ¢h V W: be a blow up along the curves ¼ L L, ,1 5. Finally, let
a U: 3 be a blow up of the (singular) curve that is a union of all lines ¼ ¢ ¼ ¢L L L L, , , , ,1 5 1 5.

Then, U has 20 nodes by Lemma 3.7, and there exists a commutative diagram

where υ and u¢ are small resolutions of singularities of the 3-fold U, and τ is a composition of 20
Atiyah flops.

REMARK 6.5 By construction, the action of group A5 lifts to the 3-folds W, ¢W , V, ¢V and U. Similarly,
the action of the group S5 lifts to the 3-fold U, but this action does not lift to W and ¢W . On the
3-folds V and ¢V , the groupS5 acts biregularly outside of the curves flopped by τ and t-1, respectively.

Denote by ¼E E, ,1 5 the g-exceptional surfaces that are mapped to ¼L L, ,1 5, respectively.
Similarly, denote by ¢ ¼ ¢E E, ,1 5 the ¢g -exceptional surfaces that are mapped to ¢ ¼ ¢L L, ,1 5, respec-
tively. Then, all surfaces ¼ ¢ ¼ ¢E E E E, , , , ,1 5 1 5 are isomorphic to  ´1 1.

Denote by ¢ ¼ ¢ˆ ˆE E, ,1 5 the h-exceptional surfaces that are mapped to the curves ¢ ¼ ¢ L L, ,1 5,
respectively. Similarly, denote by ¼ E E, ,1 5 the ¢h -exceptional surfaces that are mapped to the
curves ¼ L L, ,1 5, respectively. Denote by ¼ˆ ˆE E, ,1 5 the proper transforms on V of the
surfaces ¼E E, ,1 5, respectively. Finally, denote by ¢ ¼ ¢ E E, ,1 5 the proper transforms on ¢V of
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the surfaces ¢ ¼ ¢E E, ,1 5, respectively. Then, τ maps the surfaces ¼ˆ ˆE E, ,1 5 to the surfaces ¼ E E, ,1 5,
respectively, and it maps the surfaces ¢ ¼ ¢ˆ ˆE E, ,1 5 to the surfaces ¢ ¼ ¢ E E, ,1 5, respectively. Denoting
by Π a plane in 3, we compute

* * *å å å( )(- ) =
æ

è
çççç

(P) -
ö

ø
÷÷÷÷

= (P) + (P) - = - + =
= = =

·K g E g g E E4 64 12 64 60 10 14,W
i

i
i

i
i

i
3

1

5 3
3

1

5
2

1

5
3

and

* * *å å å( )(- ) =
æ

è
çççç
- ( ) - ¢

ö

ø
÷÷÷÷

= - ( ) - ( ) ¢ - ¢ = - =
= = =

ˆ · ˆ ˆK h K E h K h K E E3 14 10 4.V W
i

i W
i

W i
i

i
3

1

5 3
3

1

5
2

1

5
3

Denote byW ,V , ¢W , ¢V andU the proper transforms of the linear system on the
3-folds W, V, ¢W , ¢V and U, respectively. Then, it follows from Lemma 6.4 that

   ~ - ~ - ~ - ~ -¢ ¢ ¢ ¢K K K K, , ,W W V V W W V V

and ~ -KU U .

LEMMA 6.6 The base locus of the linear system W does not contain curves that are different
from the curves ¢ ¼ ¢ L L, ,1 5. Similarly, the base locus of  ¢W does not contain curves that are
different from the curves ¼ L L, ,1 5.

Proof. It is enough to prove the first assertion of the lemma. Suppose that the base locus of the
linear system W contains an irreducible curve Z that is different from the curves ¢ ¼ ¢ L L, ,1 5.
Then, Z is contained in one of the surfaces ¼E E, ,1 5 by Lemma 6.4.

By Lemma 6.4, the curve Z is a fiber of some of the natural projections E Li i, because
otherwise two general surfaces inW would be tangent in a general point of Li. In particular, the
only curves in the base locus of the linear systemW are ¢Li and possibly some fibers of the pro-
jections E Li i. This shows that -KW is nef. Indeed, -KW has positive intersections with the
fibers of the projections E Li i, it has trivial intersection with all curves ¢ ¼ ¢ L L, ,1 5, and

- ~KW W has non-negative intersection with any other curve.
Let = ¼Z Z Z Z, , , r1 2 be the A5-orbit of the curve Z. Then, ³r 20 by Corollary 3.5. Pick two

general surfaces M1 and M2 in the linear systemW . By Lemma 6.4, one has

å å= ¢ + + D
= =

·M M L m Z
i

i
i

r

i1 2
1

5

1

for some positive integer m and some effective one-cycle Δ whose support contains none of the
curves ¢ ¼ ¢ L L, ,1 5 and ¼Z Z, , r1 . Hence,

å å= - =- = -
æ

è
çççç

¢ + + D
ö

ø
÷÷÷÷

=- ¢ - - D = - D ³ ³ ³

= =





· · ·

· · · ·

K K M M K L m Z

K L mrK Z K mr K mr r

14

5 20,

W W W
i

i
i

r

i

W W W W

3
1 2

1

5

1

1

which is absurd. □
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LEMMA 6.7 The linear systemV is base point free.

Proof. It is enough to show thatV is free from base curves. Indeed, if the base locus of the linear
systemV does not contain base curves, thenV cannot have more than - =K 4V

3 base points,
because ~ -KV V . However, V does not contain S5-orbits of length <12, because there are no
S5-orbits of such length on 3 by Lemma 6.1.

Suppose that the base locus of the linear systemV contains an irreducible curve Z. If Z is
not contained in any of the surfaces ¢ ¼ ¢ˆ ˆE E, ,1 5 , then the curve h(Z) is a base curve of the linear
systemW and h(Z) is different from the curves ¢ ¼ ¢ L L, ,1 5. This is impossible by Lemma 6.6.
Similarly, if Z is not contained in any of the surfaces ¼ˆ ˆE E, ,1 5, then the curve t¢ ( )◦h Z is a base
curve of the linear system ¢W that is different from the curves ¼ L L, ,1 5. This is again impos-
sible by Lemma 6.6. Thus, Z is contained in one of the surfaces ¼ˆ ˆE E, ,1 5, and in one of the sur-
faces ¢ ¼ ¢ˆ ˆE E, ,1 5 . In particular, the curves flopped by τ are not contained in the base locus of
V .

Without loss of generality, we may assume that Ç= ¢ˆ ˆZ E E1 2 . Let C be the curve flopped by τ

that is contained in Ê1 and intersects ¢Ê2 . Then, C intersects Z by one point. However, we have
- =·K C 0V . Since  ~ -KV V , this implies that C is disjoint from a general surface in V .
This is impossible, because Ç ¹ ÆC Z , while Z is contained in the base locus of the linear system
V . □

COROLLARY 6.8 The linear systems ¢V andU are also base point free.

Proof. Recall that  ~ -KV V . Thus, the general surface of V is disjoint from all curves
flopped by τ, becauseV is base point free by Lemma 6.7. □

COROLLARY 6.9 The base locus of consists of the lines ¼ ¢ ¼ ¢L L L L, , , , ,1 5 1 5.

By Lemma 6.7 and Corollary 6.8, the divisors-KV ,- ¢KV and-KU are nef. Since

- = - = - =¢K K K 4,V V U
3 3 3

these divisors are also big. Thus, the Kawamata–Viehweg vanishing theorem and the Riemann–
Roch formula give

  ( (- )) = ( (- )) = ( (- )) = ( )¢ ¢h K h K h K 4. 6.1V V V V U U
0 0 0

In particular, one has - =∣ ∣KV V , - ¢ = ¢∣ ∣KV V and - =∣ ∣KU U .

LEMMA 6.10 TheS5-representation ( (- ))H KU U
0 is irreducible.

Proof. By Lemma 3.13, there are no S5-invariant quartic surfaces in 3 that pass through the 10
lines ¼ ¢ ¼ ¢L L L L, , , , ,1 5 1 5. This implies that ( (- ))H KU U

0 does not contain one-dimensional sub-
representations. Hence, it is irreducible by Remark 4.5. □
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Lemma 6.7 together with Equation (6.1) implies that there is an S5-equivariant commutative
diagram

ð6:2Þ

where φ is the rational map given by, and β is a morphism given by the anticanonical linear
system -∣ ∣KU . By Lemma 6.10, the projective space 4 in Equation (6.2) is a projectivization of
an irreducibleS5-representation.

For £ < £i j1 5, let Lij be the intersection line of the plane spanned by Li and ¢Lj with the
plane spanned by ¢Li and Lj. Note that the stabilizer of Lij inS5 contains a subgroup isomorphic to
D12. Actually, this implies that the stabilizer of Lij inS5 is isomorphic to D12, since D12 is a maximal
proper subgroup inS5 (see Remark 4.3) and there are noS5-invariant lines in 3 by Corollary 2.1(i).
Denote by L̂ij the proper transform of the line Lij on the 3-fold V, and denote by Lij its proper
transform on U. Then,

- L =· ˆK 0.V ij

Since υ is a small birational morphism, we also obtain- L =·K 0U ij .
We see that each curve Lij is contracted by β to a point. Note that the stabilizer of Lij in S5 is

isomorphic to D12. Since - =K 4U
3 , the image of β is either an S5-invariant quartic 3-fold or an

S5-invariant quadric 3-fold. Applying Corollary 4.7 together with Lemma 4.10, we obtain the
following.

COROLLARY 6.11 The morphism β is birational on its image, and its image is a quartic 3-fold.

Now Lemmas 4.10 and 4.11 imply that the image of β is the quartic X 1
6
. This proves

COROLLARY 6.12 The 3-fold X 1
6
is rational.

Ten curves Lij are mapped by γ to 10 singular points of the 3-fold X 1
6
. Twenty singular points

of U are mapped by γ to another 20 singular points of X 1
6
. Let us describe the curves in U that are

contracted by γ to the remaining 10 singular points of the 3-fold X 1
6
. To do this, we need

LEMMA 6.13 Let ℓ1, ℓ2, ℓ3 and ℓ4 be pairwise skew lines in 3. Suppose that there is a unique line
Ìℓ 3 that intersects ℓ1, ℓ2, ℓ3 and ℓ4. Let p Y: 3 be a blow up of the line ℓ, and  @ ´E 1 1

be the exceptional divisor of π. Denote by ℓ̃1, ℓ̃2, ℓ̃3 and ℓ̃4 the proper transforms on Y of the lines
ℓ1, ℓ2, ℓ3 and ℓ4, respectively. Then, there exists a unique curve ÌC E of bi-degree ( )1, 1 that
intersects the curves ℓ̃1, ℓ̃2, ℓ̃3 and ℓ̃4.

Proof. The lines ℓ1, ℓ2 and ℓ3 are contained in a unique quadric surface ÌS 3. Note that S is
smooth, because ℓ1, ℓ2 and ℓ3 are disjoint. Furthermore, the line ℓ is contained in S, because ℓ inter-
sects the lines ℓ1, ℓ2 and ℓ3 by assumption. Moreover, the line ℓ4 is tangent to S, since otherwise
there would be either two or infinitely many lines in 3 that intersect ℓ1, ℓ2, ℓ3 and ℓ4. Denote by S̃
the proper transform on Y of the quadric surface S. Then, S̃ contains the curves ℓ̃1, ℓ̃2 and ℓ̃3.
Moreover, S̃ intersects the curve ℓ̃4. Thus, ˜∣S E is the required curve C. □
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By Lemmas 3.7 and 6.13, each surface  @ ´Ei
1 1 contains a unique smooth rational curve

Ci of bi-degree ( )1, 1 that passes through all four points of the intersection of Ei with the curves
¢ ¼ ¢ L L, ,1 5 (recall that Ç ¢ = ÆE Li i ). Similarly, each surface  ¢ @ ´Ei

1 1 contains a unique
smooth rational curve ¢Ci of bi-degree ( )1, 1 that passes through all four points of the intersection
of ¢Ei with the curves ¼ L L, ,1 5. Denote by ¼ˆ ˆC C, ,1 5 the proper transforms on the 3-fold V of the
curves ¼C C, ,1 5, respectively. Similarly, denote by ¢ ¼ ¢ C C, ,1 5 the proper transforms on the 3-fold
¢V of the curves ¢ ¼ ¢C C, ,1 5, respectively. Then,

- = - ¢ =¢ · ˆ ·K C K C 0.V i V i

This implies that the proper transforms of the curves ¼ˆ ˆC C, ,1 5 on the 3-fold ¢V are (- )2 -curves on
the surfaces ¼ E E, ,1 5, respectively. Similarly, the proper transforms of the curves ¢ ¼ ¢ C C, ,1 5 on the
3-fold V are (- )2 -curves on the surfaces ¢ ¼ ¢ˆ ˆE E, ,1 5 , respectively. Thus, all surfaces
¢ ¼ ¢ ¼ ˆ ˆE E E E, , , , ,1 5 1 5 are isomorphic to the Hirzebruch surface 2.
Denote by ¼ ¢ ¼ ¢C C C C, , , , ,1 5 1 5 the images of the curves ¼ ¢ ¼ ¢ ˆ ˆC C C C, , , , ,1 5 1 5 on the 3-fold U,

respectively. Then,

- = - ¢ =· ·K C K C 0,U i U i

because - = - ¢ =¢ · ˆ ·K C K C 0V i V i , and υ and u¢ are small birational morphisms. Thus, the 10
curves ¼ ¢ ¼ ¢C C C C, , , , ,1 5 1 5 are contracted by the morphism β to 10 singular points of X 1

6
.

It would be interesting to extend the commutative diagram (6.2) to an S5-Sarkisov link similar
to the A6-Sarkisov link (5.4).
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