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1. Introduction

In [11], Tian defined the α-invariant of a smooth Fano variety1 and proved

Theorem 1 ([11]). Let X be a smooth Fano variety of dimension n such that
α(X) > n

n+1 . Then X admits a Kähler–Einstein metric.

In [10], Odaka and Sano proved

Theorem 2. Let X be a smooth Fano variety of dimension n such that α(X) > n
n+1 .

Then X is K-stable.

Two-dimensional smooth Fano varieties are also known as smooth del Pezzo
surfaces. The possible values of their α-invariants are given by

Theorem 3 ([1, Theorem 1.7]). Let S be a smooth del Pezzo surface. Then

α(S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
3 if S ∼= F1 or K2

S ∈ {7, 9},
1
2 if S ∼= P1 × P1 or K2

S ∈ {5, 6},
2
3 if K2

S = 4,
2
3 if S is a cubic surface in P3 with an Eckardt point,
3
4 if S is a cubic surface in P3 without Eckardt points,
3
4 if K2

S = 2 and | −KS | has a tacnodal curve,
5
6 if K2

S = 2 and | −KS | has no tacnodal curves,
5
6 if K2

S = 1 and | −KS | has a cuspidal curve,

1 if K2
S = 1 and | −KS| has no cuspidal curves.

1All varieties are assumed to be algebraic, projective and defined over C.
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Let X be an arbitrary smooth algebraic variety, and let L be an ample Q-
divisor on it. Donaldson, Tian and Yau conjectured that the following conditions
are equivalent:

• the pair (X,L) is K-polystable,
• the variety X admits a constant scalar curvature Kähler metric in c1(L).

In [6], this conjecture has been proved in the case when X is a Fano variety and
L = −KX .

In [12], Tian defined a new invariant α(X,L) that generalizes the classical
α-invariant. If X is a smooth Fano variety, then α(X) = α(X,−KX). By [3,
Theorem A.3], one has

α
(
X,L

)
= sup

{
λ ∈ Q

∣∣∣∣∣ the log pair (X,λD) is log canonical

for every effective Q-divisor D ∼Q L

}
∈ R>0.

In [8], Dervan generalized Theorem 2 as follows:

Theorem 4 ([8, Theorem 1.1]). Suppose that −KX − n
n+1

−KX ·Ln−1

Ln L is nef, and

α
(
X,L

)
>

n

n+ 1

−KX · Ln−1

Ln
.

Then the pair (X,L) is K-stable.

For smooth del Pezzo surfaces, Theorem 4 gives

Theorem 5 ([2, 9]). Let S be a smooth del Pezzo surface such that K2
S = 1 or

K2
S = 2. Let A be an ample Q-divisor on the surface S such that the divisor

−KS − 2

3

−KS · A
A2

A

is nef. Then the pair (S,A) is K-stable.

This result is closely related to

Problem 6 (cf. Theorem 3). Let S be a smooth del Pezzo surface. Compute

α(S,A) ∈ R>0

for every ample Q-divisor A on the surface S.

Hong and Won suggested an answer to Problem 6 for del Pezzo surfaces of
degree one. This answer is given by their [9, Conjecture 4.3], which is Conjecture 11
in Section 2.

The main result of this paper is

Theorem 7 (cf. Theorem 3). Let S be a smooth del Pezzo surface such that K2
S = 1.

Let C be an irreducible smooth curve in S such that C2 = −1. Then there is a
unique curve

C̃ ∈
∣∣− 2KS − C

∣∣.
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The curve C̃ is also irreducible and smooth. One has C̃2 = −1 and 1 � |C ∩ C̃| �
C · C̃ = 3. Let λ be a rational number such that 0 � λ < 1. Then −KS + λC is
ample and

α
(
S,−KS + λC

)
=

⎧⎨⎩min
(
α(S), 2

1+2λ

)
if |C ∩ C̃| � 2,

min
(
α(S), 4

3+3λ

)
if |C ∩ C̃| = 1.

Theorem 7 implies that [9, Conjecture 4.3] is wrong. To be precise, this follows
from

Example 8. Let S be a surface in P(1, 1, 2, 3) that is given by

w2 = z3 + zx2 + y6,

where x, y, z, w are coordinates such that wt(x) = wt(y) = 1, wt(z) = 2 and
wt(w) = 3. Then S is a smooth del Pezzo surface and K2

S = 1. Let C be the curve
in X given by

z = w − y3 = 0.

Similarly, let C̃ be the curve in S that is given by z = w+ y3 = 0. Then C + C̃ ∼
−2KS. Both curves C and C̃ are smooth rational curves such that C2 = C̃2 = −1
and |C ∩ C̃| = 1. All singular curves in | − KS | are nodal. Then α(S) = 1 by
Theorems 3, so that

α
(
S,−KS + λC

)
= min

(
1,

4

3 + 3λ

)
by Theorem 7. But [9, Conjecture 4.3] says that α(S,−KS + λC) = min(1, 2

1+2λ).

Theorem 7 has two applications. By Theorem 4, it implies

Corollary 9 ([8, Theorem 1.2]). Let S be a smooth del Pezzo surface such that
K2

S = 1. Let C be an irreducible smooth curve in S such that C2 = −1. Fix λ ∈ Q
such that

3−
√
10 � λ �

√
10− 1

9
.

Then the pair (S,−KS + λC) is K-stable.

By [5, Remark 1.1.3], Theorem 7 implies

Corollary 10. Let S be a smooth del Pezzo surface. Suppose that K2
S = 1 and

α(S) = 1. Let C be an irreducible smooth curve in S such that C2 = −1. Fix
λ ∈ Q such that

−1

4
� λ � 1

3
.

Then S does not contain (−KS + λC)-polar cylinders (see [5, Definition 1.2.1]).

Corollary 9 follows from Theorem 5. Corollary 10 follows from [5, Theorem
2.2.3].

Let us describe the structure of this paper. In Section 2, we describe [9,
Conjecture 4.3]. In Section 3, we present several well-known local results about
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singularities of log pairs. In Section 4, we prove eight local lemmas that are crucial
for the proof of Theorem 7. In Section 5, we prove Theorem 7 using Lemmas 23,
24, 25, 26, 27, 28, 29, 30.

2. Conjecture of Hong and Won

Let S be a smooth del Pezzo surface, and let A be an ample Q-divisor on S. Put

μ = inf
{
λ ∈ Q>0

∣∣∣ the Q-divisor KS + λA is pseudo-effective
}
∈ Q>0.

Then KS + μA is contained in the boundary of the Mori cone NE(S) of the sur-
face S.

Suppose that K2
S = 1. Then NE(S) is polyhedral and is generated by (−1)-

curves in S. By a (−1)-curve, we mean a smooth irreducible rational curve E ⊂ S
such that E2 = −1.

Let ΔA be the smallest extremal face of the Mori cone NE(S) that contains
KS + μA. Let φ : S → Z be the contraction given by the face ΔA. Then

• either φ is a birational morphism and Z is a smooth del Pezzo surface,
• or φ is a conic bundle and Z ∼= P1.

If φ is birational and Z �∼= P1 × P1, we call A a divisor of P2-type. In this
case, we have

KS + μA ∼Q

8∑
i=1

aiEi,

where E1, E2, E3, E4, E5, E6, E7, E8 are eight disjoint (−1)-curves in our surface
S, and a1, a2, a3, a4, a5, a6, a7, a8 are non-negative rational numbers such that

1 > a1 � a2 � a3 � a4 � a5 � a6 � a7 � a8 � 0.

In this case, we put sA = a2 + a3 + a4 + a5 + a6 + a7 + a8.

If our ample divisor A is not a divisor of P2-type, then the surface S contains
a smooth irreducible rational curve C such that C2 = 0 and

KS + μA ∼Q δC +
7∑

i=1

aiEi,

where E1, E2, E3, E4, E5, E6, E7 are disjoint (−1)-curves in S that are disjoint
from C, and δ, a1, a2, a3, a4, a5, a6, a7 are non-negative rational numbers such
that

1 > a1 � a2 � a3 � a4 � a5 � a6 � a7 � 0.

In this case, let ψ : S → S be the contraction of the curves E1, E2, E3, E4, E5,
E6, E7, and let η : S → P1 be a conic bundle given by |C|. Then either S ∼= F1 or
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S ∼= P1 × P1. In both cases, there exists a commutative diagram

S

η ���
��

��
��

�
ψ �� S

π����
��
��
��

P1

where π is a natural projection. Then δ > 0 ⇐⇒ φ is a conic bundle and φ = η.
Similarly, if φ is birational and Z ∼= P1 ×P1, then δ = 0, a7 > 0, and φ = ψ. Then

• we call A a divisor of F1-type in the case when S ∼= F1,
• we call A a divisor of P1 × P1-type in the case when S ∼= P1 × P1.

In both cases, we put sA = a2 + a3 + a4 + a5 + a6 + a7.
In order to study α(S,A), we may assume that μ = 1, because

α(S,A) = μα(S, μA)

If A is a divisor of P2-type, let us define a number αc(S,A) as follows:

• if sA > 4, we put αc(S,A) =
1

2+a1
,

• if 4 � sA > 1, we let αc(S,A) to be

max

(
2

2 + 2a1 + sA − a2 − a3
,

4

3 + 4a1 + 2sA − a2 − a3 − a4
,

3

2 + 3a1 + sA

)
,

• if 1 � sA, we put αc(S,A) = min( 2
1+2a1+sA

, 1).

Similarly, if A is a divisor of F1-type, we define αc(S,A) as follows:

• if sA > 4, we put αc(S,A) =
1

2+a1+δ ,

• if 4 � sA > 1, we let αc(S,A) to be

max

(
2

2 + 2a1 + sA − a2 − a3 + 2δ
,

4

3 + 4a1 + 2sA − a2 − a3 − a4 + 4δ
,

3

2 + 3a1 + sA + 3δ

)
,

• if 1 � sA, we put αc(S,A) = min( 2
1+2a1+sA+2δ , 1).

Finally, if A is a divisor of P1 × P1-type, we define αc(S,A) as follows:

• if sA > 4, we put αc(S,A) =
1

2+a1+δ ,

• if 4 � sA > 1, we let αc(S,A) to be

max

(
2

2 + sA − a7 − a2 − a3 + 2δ
,

4

3 + 2sA − 2a7 − a2 − a3 − a4 + 4δ
,

3

2 + sA − a7 + 3δ

)
,

• if 1 � sA, we put αc(S,A) = min
(

2
1+sA−a7+2δ , 1

)
.
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The conjecture of Hong and Won is

Conjecture 11 ([9, Conjecture 4.3]). If α(S) = 1, then α(S,A) = αc(S,A).

The main evidence for this conjecture is

Theorem 12 ([9]). Let D be an effective Q-divisor on the surface S such that
D ∼Q A. Then the log pair (S, αc(S,A)D) is log canonical outside of finitely many
points.

As we already mentioned in Section 1, Example 8 shows that Conjecture 11
is wrong. However, the smooth del Pezzo surface of degree one in Example 8 is
rather special. Therefore, Conjecture 11 may hold for general smooth del Pezzo
surfaces of degree one.

By [5, Remark 1.1.3], it follows from Conjecture 11 that S does not contain
A-polar cylinders (see [5, Definition 1.2.1]) when α(S) = 1 and a1 and δ are small
enough.

3. Singularities of log pairs

Let S be a smooth surface, and let D be an effective Q-divisor on it. Write

D =

r∑
i=1

aiCi

where each Ci is an irreducible curve on S, and each ai is a non-negative rational
number. We assume here that all curves C1, . . . , Cr are different.

Let γ : S → S be a birational morphism such that the surface S is smooth
as well. It is well known that the morphism γ is a composition of n blow ups of
smooth points. Thus, the morphism γ contracts n irreducible curves. Denote these
curves by Γ1, . . . ,Γn. For each curve Ci, denote by Ci its proper transform on the
surface S. Then

KS +

r∑
i=1

aiCi +
n∑

j=1

bjΓj ∼Q γ∗(KS +D
)

for some rational numbers b1, . . . , bn. Suppose, in addition, that the divisor
r∑

i=1

Ci +
n∑

j=1

Γj

has simple normal crossing singularities. Fix a point P ∈ S.

Definition 13. The log pair (S,D) is log canonical (respectively Kawamata log
terminal) at the point P if the following two conditions are satisfied:

• ai � 1 (respectively ai < 1) for every Ci such that P ∈ Ci,
• bj � 1 (respectively bj < 1) for every Γj such that π(Γj) = P .

This definition does not depend on the choice of the birational morphism γ.
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The log pair (S,D) is said to be log canonical (respectively Kawamata log
terminal) if it is log canonical (respectively, Kawamata log terminal) at every point
in S.

The following result follows from Definition 13. But it is very handy.

Lemma 14. Suppose that the singularities of the pair (S,D) are not log canonical
at P . Let D′ be an effective Q-divisor on S such that (S,D′) is log canonical at P
and D′ ∼Q D. Then there exists an effective Q-divisor D′′ on the surface S such
that

D′′ ∼Q D,

the log pair (S,D′′) is not log canonical at P , and Supp(D′) �⊆ Supp(D′′).

Proof. Let ε be the largest rational number such that (1 + ε)D − εD′ is effective.
Then

(1 + ε)D − εD′ ∼Q D.

Put D′′ = (1 + ε)D − εD′. Then (S,D′′) is not log canonical at P , because

D =
1

1 + ε
D′′ +

ε

1 + ε
D′.

Furthermore, we have Supp(D′) �⊆ Supp(D′′) by construction. �

Let f : S̃ → S be a blow up of the point P . Let us denote the f -exceptional

curve by F . Denote by D̃ the proper transform of the divisor D via f . Put m =
multP (D).

Theorem 15 ([7, Exercise 6.18]). If (S,D) is not log canonical at P , then m > 1.

Let C be an irreducible curve in the surface S. Suppose that P ∈ C and

C �⊆ Supp(D). Denote by C̃ the proper transform of the curve C via f . Fix a ∈ Q
such that 0 � a � 1. Then (S, aC +D) is not log canonical at P if and only if the
log pair (

S̃, aC̃ + D̃ +
(
amultP

(
C
)
+m− 1

)
F

)
(1)

is not log canonical at some point in F . This follows from Definition 13.

Theorem 16 ([7, Exercise 6.31]). Suppose that C is smooth at P , and (D ·C)P � 1.
Then the log pair (S, aC +D) is log canonical at P .

Corollary 17. Suppose that the log pair (1) is not log canonical at some point in

F \ C̃. Then either amultP (C) +m > 2 or m > 1 (or both).

Let us give another application of Theorem 16.

Lemma 18. Suppose that there is a double cover π : S → P2 branched in a curve
R ⊂ P2. Suppose also that (S,D) is not log canonical at P , and D ∼Q π∗(OP2(1)).
Then π(P ) ∈ R.
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Proof. The log pair (S̃, D̃ + (m− 1)F ) is not log canonical at some point Q ∈ F .
Then

m+multQ
(
D̃
)
> 2 (2)

by Theorem 15. Suppose that π(P ) �∈ R. Then there is Z ∈ |π∗(OP2(1))| such that

• the curve Z passes through the point P ,

• the proper transform of the curve Z on the surface S̃ contains Q.

Denote by Z̃ the proper transform of the curve Z on the surface S̃.
By Lemma 14, we may assume that the support of the Q-divisor D does not

contain at least one irreducible component of the curve Z, because (S,Z) is log

canonical at P . Thus, if Z is irreducible, then 2−m = Z̃ · D̃ � multQ(D̃), which
contradicts (2).

We see that Z = Z1 + Z2, where Z1 and Z2 are irreducible smooth rational
curves. We may assume that Z2 �⊆ Supp(D). If P ∈ Z2, then 1 = D · Z2 � m > 1
by Theorem 15. This shows that P ∈ Z1 and Z1 ⊆ Supp(D).

Let d be the degree of the curve R. Then Z2
1 = Z2

2 = 2−d
2 and Z1 · Z2 = d

2 .

We may assume that C1 = Z1. Put Δ = a2C2 + · · · + arCr. Then a1 � 2
d ,

since

1 = Z2 ·D = Z2 ·
(
a1C1 +Δ

)
= a1Z2 · C1 + Z2 ·Δ � a1Z2 · C1 =

a1d

2
.

Denote by C̃1 the proper transform of the curve C1 on the surface S̃. Then

Q ∈ C̃1. Denote by Δ̃ the proper transform of the Q-divisor Δ on the surface S̃.
The log pair (

S̃, a1C̃1 + Δ̃ +
(
a1 +multP

(
Δ
)
− 1

)
F

)
is not log canonical at the point Q by construction. By Theorem 16, we have

1 +
d− 2

2
a1 −multP

(
Δ
)
= C̃1 · Δ̃ �

(
C̃1 · Δ̃

)
Q
> 1−

(
a1 +multP

(
Δ
)
− 1

)
,

so that a1 > 2
d . But we already proved that a1 � 2

d . �

Fix a point Q ∈ F . Put m̃ = multQ(D̃). Let g : Ŝ → S̃ be a blow up of the

point Q. Denote by Ĉ and F̂ the proper transforms of the curves C̃ and F via g,

respectively. Similarly, let us denote by D̂ the proper transform of the Q-divisor

D on the surface Ŝ. Denote by G the g-exceptional curve. If the log pair (1) is not
log canonical at Q, then(

Ŝ, aĈ+D̂+
(
amultP

(
C
)
+m−1

)
F̂+

(
amultP

(
C
)
+amultQ

(
C̃
)
+m+m̃−2

)
G

)
(3)

is not log canonical at some point in G.

Lemma 19. Suppose m � 1, amultP (C)+m � 2 and amultP
(
C
)
+amultQ(C̃)+

2m � 3. Then (3) is log canonical at every point in G \ Ĉ.
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Proof. Suppose that (3) is not log canonical at some point O ∈ G such that O �∈ Ĉ.

If O �∈ F̂ , then 1 � m � m̃ = D̂ ·G � (D̂ ·G)O > 1 by Theorem 16. Then O ∈ F̂ .
Then

m− m̃ =
(
D̂ · F̂

)
O
> 1−

(
amultP

(
C
)
+ amultQ

(
C̃
)
+m+ m̃− 2

)
by Theorem 16. This is impossible, since amultP (C) + amultQ(C̃) + 2m � 3. �

Fix a point O ∈ G. Put m̂ = multO(D̂). Let h : S → Ŝ be a blow up of the

point O. Denote by C, F , G the proper transforms of the curves Ĉ, F̂ and G via
h, respectively. Similarly, let us denote by D the proper transform of the Q-divisor

D on the surface S. Let H be the h-exceptional curve. If O = G ∩ F̂ and (3) is
not log canonical at O, then(

S,aC+D+
(
2amultP

(
C
)
+amultQ

(
C̃
)
+amultO

(
Ĉ
)
+2m+m̃+m̂−4

)
H

+
(
amultP

(
C
)
+m−1

)
F +

(
amultP

(
C
)
+amultQ

(
C̃
)
+m+m̃−2

)
G

)
(4)

is not log canonical at some point in H .

Lemma 20. Suppose that O = G∩ F̂ , m � 1, amultP (C)+amultQ(C̃)+m+ m̃ �
3 and

2amultP
(
C
)
+ amultQ

(
C̃
)
+ amultO

(
Ĉ
)
+ 4m � 5.

Then the log pair (4) is log canonical at every point in H \ C.

Proof. Suppose that the pair (4) is not log canonical at some point E ∈ H such
that E �∈ C. If E �∈ F ∪G, then m � m̂ = D ·H � (D ·H)E > 1 by Theorem 16.
Then E ∈ F ∪G.

If E ∈ G, then E �∈ F , so that Theorem 16 gives

m̃− m̂ =
(
D · F

)
E

> 1−
(
2amultP

(
C
)
+ amultQ

(
C̃
)
+ amultO

(
Ĉ
)
+ 2m+ m̃+ m̂− 4

)
,

which is impossible, since 2amultP (C) + amultQ(C̃) + amultO(Ĉ) + 4m � 5 by

assumption. Similarly, if E ∈ F , then E �∈ G, so that Theorem 16 gives

m− m̃− m̂ =
(
D · F

)
E

> 1−
(
2amultP

(
C
)
+ amultQ

(
C̃
)
+ amultO

(
Ĉ
)
+ 2m+ m̃+ m̂− 4

)
,

which is impossible, since 2amultP (C) + amultQ(C̃) + amultO(Ĉ) + 4m � 5. �

Let Z be an irreducible curve in S such that P ∈ Z. Suppose also that

Z �⊆ Supp(D). Denote its proper transforms on the surfaces S̃ and Ŝ by the
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symbols Z̃ and Ẑ, respectively. Fix b ∈ Q such that 0 � b � 1. If (S, aC + bZ+D)
is not log canonical at P , then(

S̃, aC̃ + bZ̃ + D̃ +
(
amultP

(
C
)
+ bmultP

(
Z
)
+m− 1

)
F

)
(5)

is not log canonical at some point in F .

Lemma 21. Suppose that m � 1 and

amultP
(
C
)
+ bmultP

(
Z
)
+m � 2.

Then (5) is log canonical at every point in Q ∈ F \ (C̃ ∪ Z̃).

Proof. Suppose that (5) is not log canonical at some point Q ∈ F such that

Q �∈ C̃ ∪ Z̃. Then m = D̃ · F � (D̃ · F )Q > 1 by Theorem 16. But m � 1 by
assumption. �

If the log pair (5) is not log canonical at Q, then the log pair(
Ŝ, aĈ + bẐ + D̂ +

(
amultP

(
C
)
+ bmultP

(
Z
)
+m− 1

)
F (6)

+
(
amultP

(
C
)
+ amultQ

(
C̃
)
+ bmultP

(
Z
)
+ bmultQ

(
Z̃
)
+m+ m̃− 2

)
G

)

is not log canonical at some point in G.

Lemma 22. Suppose that m � 1, amultP (C) + bmultP (Z) +m � 2 and

amultP
(
C
)
+ amultQ

(
C̃
)
+ bmultP

(
Z
)
+ bmultQ

(
Z̃
)
+ 2m � 3.

Then the log pair (6) is log canonical at every point in G \ (Ĉ ∪ Ẑ).

Proof. Wemay assume that the log pair (6) is not log canonical atO andO �∈ Ĉ∪Ẑ.

If O �∈ F̂ , then m � m̃ = D̂ · G � (D̂ · G)O > 1 by Theorem 16, so that O ∈ F̂ .
Then

m− m̃ =
(
D̂ · F̂

)
O

> 1−
(
amultP

(
C
)
+ amultQ

(
C̃
)
+ bmultP

(
Z
)
+ bmultQ

(
Z̃
)
+m+ m̃− 2

)
,

by Theorem 16, so that

amultP
(
C
)
+ amultQ(C̃) + bmultP (Z) + bmultQ(Z̃) + 2m > 3. �
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4. Eight local lemmas

Let us use notations and assumptions of Section 3. Fix x ∈ Q such that 0 � x �
1. Put

lctP
(
S,C

)
= sup

{
λ ∈ Q

∣∣∣ the log pair
(
S, λC

)
is log canonical at P

}
∈ Q>0.

Lemma 23. Suppose that C has an ordinary node or an ordinary cusp at P , a � x
2

and (
D · C

)
P
� 4

3
+

x

6
− a.

Then the log pair (S, aC +D) is log canonical at P .

Proof. We have 2m � multP (D)multP (C) � (D·C)P � 4
3+

x
6−a, so that 2m+a �

4
3+

x
6 . Thenm � 3

4 andm+2a = m+ a
2+

3a
2 �

4
3+

x
6

2 + 3a
2 �

4
3+

x
6

2 + 3x
4 = 2

3+
5
6x � 3

2 .
Suppose that (S, aC + D) is not log canonical at P . Let us seek for a con-

tradiction. We may assume that (1) is not log canonical at Q. Then Q ∈ C̃ by
Corollary 17. Then(

D̃ · C̃
)
O
> 1−

(
2a+m− 1

)(
C̃ · F

)
O
� 1− 2

(
2a+m− 1

)
= 3− 4a− 2m.

On the other hand, we have 4
3 + x

6 − a � (D · C)P � 2m + (D̃ · C̃)O, so that

a > 5
9 − x

18 . Then
x
2 � a > 5

9 − x
18 , so that x > 1. But x � 1 by assumption. �

Lemma 24. Suppose that C has an ordinary node or an ordinary cusp at P , and(
D · C

)
P
� lctP (S,C) +

x

2
.

Suppose also that a � lctP (S,C)− x
2 . Then (S, aC +D) is log canonical at P .

Proof. We have 2m � (D · C)P . This gives 2m + a � 1 + x
2 . Thus, we have

m � 1+ x
2

2 � 3
4 . Similarly, we getm+2a = m+a

2+
3a
2 � 1+ x

2

2 + 3a
2 � 1+ x

2

2 + 3
2 (1−

x
2 ) =

2− x
2 � 2.
Suppose that (S, aC +D) is not log canonical at P . Let us seek for a contra-

diction. We may assume that the pair (1) is not log canonical at Q. Then Q ∈ C̃

by Corollary 17. We may assume that (3) is not log canonical at O. Then O ∈ Ĉ
by Lemma 19, since

3a+ 2m � 2a+ 1 +
x

2
� 2− x+ 1 +

x

2
= 3− x

2
� 3,

because 2m+ a � 1 + x
2 and a � 1− x

2 . If O �∈ F̂ , then Theorem 16 gives

1 +
x

2
− a �

(
D · C

)
P
− 2m− m̃ �

(
D̂ · Ĉ

)
O
> 1−

(
3a+m+ m̃− 2

)
,

which implies that 2a+ x
2 > 2+m. But 2a+ x

2 � 2− x
2 , because a � lctP (S,C)− x

2 �
1− x

2 . This shows that O = G∩ F̂ ∩ Ĉ. In particular, the curve C has an ordinary

cusp at P . By assumption, we have a � 5
6 − x

2 and 2m + a � 5
6 + x

2 . This gives
6a+ 4m � 5− x � 5.
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Put E = H ∩C. Then (4) is not log canonical at E by Lemma 20. Then(
D · C

)
E
> 1−

(
6a+ 2m+ m̃+ m̂− 4

)
= 5− 6a− 2m− m̃− m̂

by Theorem 16. Thus, we have 5
6+

x
2−a � (D·C)P � 2m+m̃+m̂+(D·C)E > 5−6a.

This gives a > 5
6 − x

10 . But a � 5
6 − x

2 , which is absurd. �

Lemma 25. Suppose that C is smooth at P , a � 1
3 + x

2 , m+ a � 1 + x
2 and(

D · C
)
P
� 1− x

2
+ a.

Then the log pair (S, aC +D) is log canonical at P .

Proof. We have m � (D · C)P , so that m − a � 1 − x
2 . Then m � 1, since

m+ a � 1 + x
2 .

Suppose that (S, aC +D) is not log canonical at P . Let us seek for a contra-

diction. We may assume that the pair (1) is not log canonical at Q. Then Q ∈ C̃

by Corollary 17. We may assume that (3) is not log canonical at O. Then O ∈ Ĉ
by Lemmas 19. Then(

D̂ · Ĉ
)
O
> 1−

(
2a+m+ m̃− 2

)
= 3− 2a−m− m̃

by Theorem 16. Then 1− x
2 + a � (D ·C)P � m+(D̃ · C̃)Q � m+ m̃+(D̂ · Ĉ)O >

3− 2a. This give a > 2
3 + x

6 , which is impossible, since a � 1
3 + x

2 and x � 1. �

Lemma 26. Suppose that C is smooth at P , a � 8
9 − x

18 , m+ a � 4
3 + x

6 and(
D · C

)
P
� x

2
+ a.

Then the log pair (S, aC +D) is log canonical at P .

Proof. We have m � (D · C)P , so that m − a � x
2 . Then m � 2

3 + x
3 � 1, since

m+ a � 4
3 + x

6 .
Suppose that (S, aC +D) is not log canonical at P . Let us seek for a contra-

diction. We may assume that the pair (1) is not log canonical at Q. Then Q ∈ C̃

by Corollary 17. We may assume that (3) is not log canonical at O. Then O ∈ Ĉ
by Lemmas 19. Then(

D̂ · Ĉ
)
O
> 1−

(
2a+m+ m̃− 2

)
= 3− 2a−m− m̃

by Theorem 16. Then x
2 +a � (D ·C)P � m+(D̃ ·C̃)Q � m+m̃+(D̂ ·Ĉ)O > 3−2a.

This gives a > 1− x
6 , which is impossible, since a � 8

9 − x
18 and x � 1. �

Lemma 27. Suppose that C has an ordinary node or an ordinary cusp at P , a �
1+x
3 and (

D · C
)
P
� 2− 2a.

Then the log pair (S, aC +D) is log canonical at P .
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Proof. We have 2m � (D · C)P � 2 − 2a. This gives m+ a � 1, so that we have
m � 1. Then m + 2a � 1 + a � 1 + 1+x

3 = 4+x
3 � 5

3 and 3a + 2m � 2 + a �
2 + 1+x

3 = 7+x
3 � 8

3 .
Suppose that (S, aC +D) is not log canonical at P . Let us seek for a contra-

diction. We may assume that the pair (1) is not log canonical at Q. Then Q ∈ C̃

by Corollary 17. We may assume that (3) is not log canonical at O. Then O ∈ Ĉ
by Lemma 19.

If O �∈ F̂ , then (D̂ · Ĉ)O > 3− 3a−m− m̃ by Theorem 16, so that

2− 2a �
(
D · C

)
P
� 2m+

(
D̃ · C̃

)
Q
� 2m+ m̃+

(
D̂ · Ĉ

)
O
> 3− 3a,

which is absurd. This shows that O = G ∩ F̂ ∩ Ĉ. Then(
D̂ · Ĉ

)
O
> 1−

(
2a+m− 1

)
−

(
3a+m+ m̃− 2

)
= 4− 5a− 2m− m̃

by Theorem 16. Then 2− 2a � (D · C)P � 2m+ m̃+ (D̂ · Ĉ)O > 4− 5a, so that
a > 2

3 . But a � 1+x
3 � 2

3 by assumption. This is a contradiction. �

Lemma 28. Suppose that C has an ordinary node or an ordinary cusp at P , a � 2
3

and (
D · C

)
P
� 4

3
+

2x

3
− 2a.

Then the log pair (S, aC +D) is log canonical at P .

Proof. We have 2m � (D · C)P , so that m + a � 2
3 + x

3 � 1. Then m � 1 and

m+2a � 5
3 . Similarly, we see that 3a+2m � 4

3 +
2x
3 + a � 4

3 +
2x
3 + 2

3 = 2+ 2x
3 �

8
3 < 3.

Suppose that (S, aC +D) is not log canonical at P . Let us seek for a contra-

diction. We may assume that the pair (1) is not log canonical at Q. Then Q ∈ C̃

by Corollary 17. We may assume that (3) is not log canonical at O. Then O ∈ Ĉ
by Lemma 19.

If O �∈ F̂ , then 4
3 + 2x

3 − 2a � (D · C)P � 2m+ m̃+ (D̂ · Ĉ)O > m+ 3 − 3a

by Theorem 16. Therefore, if O �∈ F̂ , then a > 5
3 −

2x
3 � 1. But a � 2

3 . This shows

that O = G∩F̂ ∩Ĉ. Then (D̂ ·Ĉ)O > 1−(2a+m−1)−(3a+m+m̃−2) = 4−5a−
2m−m̃ by Theorem 16. Then 4

3+
2x
3 −2a � (D ·C)P � 2m+m̃+(D̂ ·Ĉ)O > 4−5a,

which gives a > 2
3 . �

Lemma 29. Suppose that C and Z are smooth at P , (C · Z)P � 2, and a + b +
m � 1 + x

2 . Suppose also that a � 1+x
3 , b � 1+x

3 , (D · C)P � 1 + a − 2b and
(D · Z)P � 1 + b− 2a. Then the log pair (S, aC + bZ +D) is log canonical at P .

Proof. We have m � (D · C)P � 1 + a − 2b and m � (D · Z)P � 1 + b − 2a.
Then m+ a+b

2 � 1.
Suppose that (S, aC + bZ + D) is not log canonical at P . Let us seek for a

contradiction. We may assume that (5) is not log canonical at Q. Then Q ∈ C̃ ∪ Z̃

by Lemma 21. Without loss of generality, we may assume that C̃ contains Q. Then
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Z̃ also contains Q. Indeed, if Q �∈ Z̃, then 1+ a− 2b � (D ·C)P � m+(D̃ · C̃)Q >

2 − a − b by Theorem 16. But 1 + b − 2a � 0. Thus, we have Q = G ∩ C̃ ∩ Z̃, so
that (C · Z)P = 2.

We may assume that (6) is not log canonical at O. Then O ∈ Ĉ ∪ Ẑ by

Lemma 22. In particular, we have O �∈ F̂ . Without loss of generality, we may

assume that O ∈ Ĉ. By Theorem 16, we have 1+a− 2b−m− m̃� (D̂ · Ĉ)O > 1−
(2a+2b+m+m̃−2). This gives a > 2

3 , which is impossible, since a � 1+ x
2 � 2

3 . �

Lemma 30. Suppose that C and Z are smooth at P , (C · Z)P � 2, and a + b +
m � 4

3 + x
6 . Suppose also that a � 2

3 , b � 2
3 , (D · C)P � 2+x

3 + a − 2b and

(D ·Z)P � 2+x
3 + b− 2a. Then the log pair (S, aC + bZ+D) is log canonical at P .

Proof. We have m � (D · C)P � 2+x
3 + a − 2b and we have m � (D · Z)P �

2+x
3 + b− 2a. Then m+ a+b

2 � 2+x
3 � 1, m+ a+ b � 4

3 + x
6 � 3

2 and 2a− b � 1.

Suppose that (S, aC + bZ + D) is not log canonical at P . Let us seek for a

contradiction. We may assume that (5) is not log canonical at Q. Then Q ∈ C̃ ∪ Z̃
by Lemma 21. Without loss of generality, we may assume that Q is contained

in C̃. Then Q ∈ C̃ ∩ Z̃. Indeed, if Z̃ does not contain Q, then 2+x
3 + a − 2b �

m+
(
D̃ · C̃

)
Q
> 2− a− b by Theorem 16. The later inequality immediately leads

to a contradiction, since 2a− b � 1.

We may assume that (6) is not log canonical at O. Then O ∈ Ĉ ∪ Ẑ by

Lemmas 22. In particular, we have O �∈ F̂ . Without loss of generality, we may

assume that O ∈ Ĉ. Then 2+x
3 +a−2b−m−m̃ � (D̂·Ĉ)O > 1−(2a+2b+m+m̃−2)

by Theorem 16. This gives a > 7−x
9 , which is impossible, since a � 2

3 . �

5. The proof of the main result

Let S be a smooth del Pezzo surface such that K2
S = 1. Then | − 2KS| is base

point free. It is well known that the linear system | − 2KS| gives a double cover
S → P(1, 1, 2). This double cover induces an involution τ ∈ Aut(S).

Let C be an irreducible curve in S such that C2 = −1. Then −KS · C = 1
and C ∼= P1. Put C̃ = τ(C). Then C̃2 = KS · C̃ = −1 and C̃ ∼= P1. Moreover, we

have C+ C̃ ∼ −2KS. Furthermore, the irreducible curve C̃ is uniquely determined

by this rational equivalence. Since C · (C + C̃) = −2KS · C = 2 and C2 = −1, we

have C · C̃ = 3, so that 1 � |C ∩ C̃| � 3.

Fix λ ∈ Q. Then −KS + λC is ample ⇐⇒ − 1
3 < λ < 1. Indeed, we have

−KS+λC ∼Q

1

2

(
C+ C̃

)
+λC =

(1
2
+λ

)
C+

1

2
C̃ ∼Q

(
1+2λ

)(
−KS−

λ

1 + 2λ
C̃
)
.

(7)

One the other hand, we have (−KS+λC) ·C = 1−λ and (−KS+λC) ·C̃ = 1−3λ.



On a Conjecture of Hong and Won 169

Note that Theorem 7 and (7) imply

Corollary 31. Suppose that − 1
3 < λ < 1. If |C ∩ C̃| � 2, then

α
(
S,−KS + λC

)
=

⎧⎨⎩min
(

α(X)
1+2λ , 2

)
if − 1

3 < λ < 0,

min
(
α(X), 2

1+2λ

)
if 0 � λ < 1.

Similarly, if |C ∩ C̃| = 1, then

α
(
S,−KS + λC

)
=

⎧⎨⎩min
(

α(X)
1+2λ ,

4
3+3λ

)
if − 1

3 < λ < 0,

min
(
α(X), 4

3+3λ

)
if 0 � λ < 1.

Now let us prove Theorem 7. Suppose that 0 � λ < 1. Put

μ =

⎧⎨⎩min
(
α(S), 2

1+2λ

)
when |C ∩ C̃| � 2,

min
(
α(S), 4

3+3λ

)
when |C ∩ C̃| = 1.

(8)

Lemma 32. One has α(S,−KS + λC) � μ.

Proof. Since we have (12 +λ)C+ 1
2 C̃ ∼Q −KS+λC, we see that α(S,−KS+λC) �

2
1+2λ . Similarly, we see that α(S,−KS + λC) � α(S). If |C ∩ C̃| = 1, then the log
pair (

S,
2 + 4λ

3 + 3λ
C +

2

4 + 3λ
C̃

)
is not Kawamata log terminal at the point C ∩ C̃, so that α(S,−KS + λC) �

4
3+3λ . �

Thus, to complete the proof of Theorem 7, we have to show that α(S,−KS+
λC) � μ. Suppose that α(S,−KS + λC) < μ. Let us seek for a contradiction.

Since α(S,−KS + λC) < μ, there exists an effective Q-divisor D on S such
that

D ∼Q −KS + λC,

and (S, μD) is not log canonical at some point P ∈ S.

By Lemma 14 and (7), we may assume that Supp(D) does not contain C or

C̃. Indeed, one can check that the log pair (S, μ(12 + λ)C + μ
2 C̃) is log canonical

at P .

Let C be a curve in the pencil |−KS| that passes through P . Then C+λC ∼
−KS + λC. Moreover, the curve C is irreducible, and the log pair (S, μC + μλC)
is log canonical at P . Thus, we may assume that Supp(D) does not contain C or
C by Lemma 14.

Lemma 33. The curve C is smooth at the point P .
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Proof. Suppose that C is singular at P . If C �⊆ Supp(D), then Theorem 15 gives

1 + λ = C ·
(
−KS + λC

)
= C ·D � multP

(
C
)
multP

(
D
)
� 2multP

(
D
)
>

2

μ
,

which is impossible by (8). Thus, we have C ⊆ Supp(D). Then C �⊆ Supp(D).
Write D = εC+Δ, where ε is a positive rational number, and Δ is an effective

Q-divisor on the surface S whose support does not contain the curves C and C.
Then

1− λ = C ·
(
−KS + λC

)
= C ·D = C ·

(
εC +Δ

)
= ε+ C ·Δ � ε,

so that ε � 1− λ. Similarly, we have

1 + λ− ε = C ·Δ �
(
C ·Δ

)
P
. (9)

We claim that λ � 1
2 . Indeed, suppose that λ > 1

2 . Then it follows from (9)
that (

Δ · C
)
P
� 1 + λ− ε =

1 + 2λ

2

(
4

3
+

4−4λ
1+2λ

6
− 2

1 + 2λ
ε

)
.

Thus, we can apply Lemma 23 to the log pair (S, 2
1+2λD) with x = 4−4λ

1+2λ and

a = 2
1+2λε. This implies that (S, 2

1+2λD) is log canonical at P , which is impossible,

because μ � 2
1+2λ .

If C has a node at P , then we can apply Lemma 24 to (S,D) with x = 2λ
and a = ε. This implies that (S,D) is log canonical, which is absurd, since μ � 1.

Therefore, the curve C has an ordinary cusp at P and λ � 1
2 . Then μ �

α(S) = 5
6 . Thus, we can apply Lemma 23 to the log pair (S, 5

6D) with x = 5
3λ and

a = 5
6ε, since (

Δ · C
)
P
� 6

5

(
5

6
+

5

6
λ− 5

6
ε

)
.

This implies that (S, 5
6D) is log canonical at P , which is impossible, since

μ � 5
6 . �

The next step in the proof of Theorem 7 is

Lemma 34. The point P is not contained in the curve C.

Proof. Suppose that P ∈ C. Let us seek for a contradiction. If C �⊆ Supp(D), then

1− λ = C ·
(
−KS + λC

)
= C ·D � multP

(
C
)
multP

(
D
)
� multP

(
D
)
>

1

μ

by Theorem 15. But (8) implies that μ > 1
1−λ , which is impossible, because μ �

1. Therefore, we must have C ⊆ Supp(D). Then C �⊆ Supp(D) and also C̃ �⊆
Supp(D).

Write D = εC + Δ, where ε is a positive rational number, and Δ is an

effective divisor whose support does not contain C, C and C̃. Then 1 + λ − ε =
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C · Δ � multP (Δ). Similarly, we have 1 + 3λ − 3ε = C̃ · Δ � 0. Finally, we have
1− λ+ ε = C ·Δ � (C ·Δ)P .

If λ � 1
2 , we can apply Lemma 25 to the log pair (S,D) with x = 2λ and

a = ε. This implies that (S,D) is log canonical, which is impossible since μ � 1.

Therefore, we have λ > 1
2 . Since ε � 1

3 + λ, we have 2
1+2λ ε �

2
1+2λ (

1
3 + λ) =

8
9 −

4−4λ
1+2λ

18 . Since ε+multP (Δ) � 1+λ, we have 2
1+2λε+

2
1+2λ multP (Δ) � 2

1+2λ(1+

λ) = 4
3 +

4−4λ
1+2λ

6 . But

(
Δ · C

)
P
� 1− λ+ ε =

1 + 2λ

2

(
4−4λ
1+2λ

2
+

2

1 + 2λ
ε

)
.

Thus, we can apply Lemma 26 to the log pair (S, 2
1+2λD) with x = 4−4λ

1+2λ and

a = 2
1+2λε. This implies that (S, 2

1+2λD) is log canonical at P , which is impossible,

since μ � 2
1+2λ . �

Let h : S → S be the contraction of the curve C. Put D = h(D). Then
D ∼Q −KS. Moreover, it follows from Lemma 34 that (S, μD) is not log canonical
at the point h(P ).

By construction, the surface S is a smooth del Pezzo surface such that K2
S
=

K2
S + 1 = 2. Then | −KS| gives a double cover π : S → P2 branched in a smooth

quartic curve R4 ⊂ P2. By Lemma 18, there exists a unique curve Z ∈ | − KS |
such that Z is singular at h(P ). Moreover, the log pair (S,Z) is not log canonical
at the point h(P ) by [4, Theorem 1.12]. Note that π(Z) is the line in P2 that is
tangent to the curve R4 at the point π ◦ h(P ).

Let Z be the proper transform of the curve Z on the surface S. Then h(C) �∈
Z. Indeed, if h(C) is contained in Z, then Z ∼ −KS, which is impossible by
Lemma 33. Thus, we see that C ∩ Z = ∅. Then Z ∼ −KS + C.

Lemma 35. The curve Z is reducible.

Proof. Suppose that Z is irreducible. Then Z has an ordinary node or ordinary
cusp at P . In fact, if Z �⊆ Supp(D), then 2 = Z · D > 2

μ by Theorem 15, which

contradicts to (8). Therefore, we have Z ⊆ Supp(D). Put Z̃ = τ(Z). Then Z+Z̃ ∼
−4KS and

3λ+ 1

4
Z +

1− λ

4
Z̃ ∼Q

1− λ

4

(
Z + Z̃

)
+ λZ ∼Q −KS + λC.

Furthermore, one can show (using Definition 13) that the log pair(
S, μ

3λ+ 1

4
Z + μ

1− λ

4
Z̃

)

is log canonical at P . Hence, we may assume that Z̃ �⊆ Supp(D) by Lemma 14.
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Write D = εZ + Δ, where ε is a positive rational number, and Δ is an

effective Q-divisor on the surface S whose support does not contain Z and Z̃.

Then 2 + 4λ− 6ε = Z̃ ·Δ � 0. Thus, we have ε � 1+2λ
3 . Finally, we have

2− 2ε = Z ·Δ �
(
Z ·Δ

)
P
.

Therefore, if λ � 1
2 , then we can apply Lemma 27 to (S,D) with x = 2λ and a = ε.

This implies that (S,D) is log canonical at P . But μ � 1. Thus, we have λ > 1
2 .

We have μ � 2
1+2λ . Then (S, 2

1+2λD) is not log canonical at P . We have
2

1+2λε � 2
3 . Thus, we can apply Lemma 28 to (S, 2

1+2λD) with x = 4−4λ
1+2λ and

a = 2
1+2λε, because(

Δ · Z
)
P
� 1 + 2λ

2

(
4

3
+

2 4−4λ
1+2λ

3
− 2

2

1 + 2λ
ε

)
= 2− 2ε.

This implies that (S, 2
1+2λD) is log canonical at P , which is absurd, since μ �

2
1+2λ . �

Since Z is reducible, Z = Z1 + Z2, where Z1 and Z2 are smooth irreducible
curves. Then Z2

1 = Z2
2 = −1 and Z1 ·Z2 = 2. Moreover, we have P ∈ Z1 ∩Z2 and

(Z1 · Z2)P � 2. Furthermore, we have Z1 ∩ C = ∅ and Z2 ∩ C = ∅.
We have Z1 ⊆ Supp(D) and Z2 ⊆ Supp(D). Indeed, if Z1 �⊆ Supp(D), then

1 = Z1 ·
(
−KS + λC

)
= Z1 ·D � multP

(
Z1

)
multP

(
D
)
� multP

(
D
)
>

1

μ
� 1

by Theorem 15. This shows that Z1 ⊆ Supp(D). Similarly, we have Z2 ⊆ Supp(D).
But (

1− λ
)
C + λ

(
Z1 + Z2

)
∼Q −KS + λC.

On the other hand, the log pair (S, μ(1−λ)C+μλ(Z1+Z2)) is log canonical at P .
Therefore, we may assume that C �⊆ Supp(D) by Lemma 14.

Put Z̃1 = τ(Z1) and put Z̃2 = τ(Z2). Then Z1 + Z̃1 ∼ −2KS and Z2 + Z̃2 ∼
−2KS. This gives C · Z1 = C · Z2 = 1, Z1 · Z̃1 = Z2 · Z̃2 = 3, Z1 · Z̃2 = Z2 · Z̃1 = 0,

Z̃1 · C = Z̃2 · C = 2. Moreover, we have Z1 + Z2 ∼ −KS + C. Then

1 + λ

2
Z1 + λZ2 +

1− λ

2
Z̃1 ∼Q

1− λ

2

(
Z1 + Z̃1

)
+ λ

(
Z1 + Z2

)
∼Q −KS + λC

Note that P �∈ Z̃1, because P ∈ Z2 and Z̃1 · Z2 = 0. Using this, we see that the
log pair (

S, μ
1 + λ

2
Z1 + μλZ2 + μ

1− λ

2
Z̃1

)
is log canonical at the point P . Hence, we may assume that Z̃1 �⊆ Supp(D) by

Lemma 14. Similarly, we may assume that Z̃2 �⊆ Supp(D) using Lemma 14 one
more time.
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Now let us write D = ε1Z1 + ε2Z2 +Δ, where ε1 and ε2 are positive rational
numbers, and Δ is an effective divisor whose support does not contain Z1 and Z2.
Then

1 + λ− ε1 − ε2 = C ·Δ � multP
(
Δ
)
.

This gives ε1 + ε2 +multP (Δ) � 1 + λ. We also have ε1 � 1+2λ
3 , since

1 + 2λ− 3ε1 = Z̃1 ·Δ � 0.

Similarly, see that ε2 � 1+2λ
3 . Moreover, we have

1 + ε1 − 2ε2 = Z1 ·Δ �
(
Z1 ·Δ

)
P
.

Finally, we have

1 + ε2 − 2ε1 = Z2 ·Δ �
(
Z2 ·Δ

)
P
.

Thus, if λ � 1
2 , then we can apply Lemma 29 to (S,D) with x = 2λ, a = ε1

and b = ε1. This implies that (S,D) is log canonical at P , which is absurd. Hence,
we have λ > 1

2 .

Since λ > 1
2 , we have μ � 2

1+2λ . Then the log pair (S, 2
1+2λD) is not log

canonical at P . On the other hand, we have 2
1+2λ ε1 � 2

3 and 2
1+2λ ε2 � 2

3 . We also
have

2

1 + 2λ
ε1 +

2

1 + 2λ
ε2 +

2

1 + 2λ
multP (Δ) � 2

1 + 2λ

(
1 + λ

)
=

2

1 + 2λ
+ λ

2

1 + 2λ
=

4

3
+

4−4λ
1+2λ

6
,

Moreover, we have(
Δ · Z1

)
P
� 1 + ε1 − 2ε2 =

1 + 2λ

2

(
2

3
+

4−4λ
1+2λ

3
+

2

1 + 2λ
ε1 − 2

2

1 + 2λ
ε2

)
.

Furthermore, we also have(
Δ · Z2

)
P
� 1 + ε1 − 2ε2 =

1 + 2λ

2

(
2

3
+

4−4λ
1+2λ

3
+

2

1 + 2λ
ε2 − 2

2

1 + 2λ
ε1

)
.

Thus, we can apply Lemma 30 to (S, 2
1+2λD) with x = 4−4λ

1+2λ , a = 2
1+2λε1 and

b = 2
1+2λ ε2. This implies that (S, 2

1+2λD) is log canonical at P , which is absurd.

The obtained contradiction completes the proof of Theorem 7.
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