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Log Pairs on Hypersurfaces  of  D e g r e e  N in F N 
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ABSTRACT. The objective of this paper is to study the birational structure of smooth hypersurfaces of degree N 
in pN by examining properties of moving log pairs on them. 
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AU the varieties under consideration are projective and defined over the field (2, unless otherwise stated. 
The basic definitions, notions and notations are contained in [1]. 

i .  I n t r o d u c t i o n  

By a moving log pair 

i----1 

we mean a variety X together with a formal finite linear combination of linear systems r without fixed 
components such that all the coefficients b~ belong to Q>0. 

Discrepancy, terminality, canonicity, the Iitaka map I (X ,  Mx) ,  and the Kodalra dimension a(X,  Mx)  
are defined for moving log pairs (X,  Mx)  similarly to the corresponding notions for usual log pairs (see [1, 
2]). 

We say that an irreducible subvariety Y C X is a center of canonical singularities of a moving log 
pair (X, Mx)  if there exist a birational morphism f :  W -+ X and an f-exceptional divisor E C W 
such that a(X, M x ,  E) <_ 0 and f (E)  = Y .  The set of all centers of canonical singularities of a moving 
log pair (X, Mx)  is denoted by CS(X ,  M x ) .  

In what follows, we refer to moving log pairs briefly as log pairs. 
From now on, X denotes a sufficiently general smooth hypersurface of degree N in pN for N >__ 5. 

Note that we then have 
Pit(X) --- - Z K x  and - K x  ~ O~(1)Ix. 

Consider A E Q>0 u {+oo} such that K x  + AMx ,',~Q 0; for M x  = 0 ,  A = +co. 
The main result of this paper is the following theorem. 

T h e o r e m  1. Let A = 1. Then the log pair (X,  Mx)  is canonical, to(X, Mx)  --- O, and 

{ CS(X ,  Mx)  = X N H .for a linear space H of dimension N - 2. 

We prove Theorem 1 in Sets. 3 and 4; in Sec. 5, we derive the following important result, which is a 
corollary and a refinement of Theorem 1. 

T h e o r e m  2. If  A = 1 and CS(X ,  Mx)  # 0 ,  then the boundary M x  can be lifted from p1 by a 
rational mapping ~ ,  for some pencil 7=' in I - KxI  such that CS(X ,  Mx)  = {Bs(7~)}. 

In Sec. 6, we apply Theorems 1 and 2 to prove the following two theorems concerning log pairs 
with A # 1. 
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T h e o r e m  3. / f  A < 1 and ~(X,  M x )  ~ N - 1, then the log pair (X ,  M x )  is not canonical, 
~(X,  M x )  = 1, and there exists a pencil 7 9 in the linear system I-Kx[ such that the boundary M x  can 
be lifted from p1 by the rational mapping ~o~, coinciding with I ( X ,  M x ) .  

T h e o r e m  4. I f  A > 1, then ,~(X, M x )  = -c~  and the log pair (X ,  M x )  is terminal. 

The main applications of Theorems 1-4 are described in Sec. 2. 

2. T h e  b i r a t i o n a l  g e o m e t r y  o f  t h e  h y p e r s u r f a c e  X 

In this section, we describe the main applications of Theorems 2-4. 
Recall that  X is a sufficiently general smooth hypersurface of degree N in pN for N _> 5. 

T h e o r e m  5. The hypersurface X is birationally nonisomorphic to a fibration into varieties of Kodaira 
dimension -oo  . 

We assume that  all fibrations have connected fibers, they are not birational, and their bases are not 
points. 

P r o o f .  Suppose that  there exists a birational surgery p of the hypersurface X into a fibration 
r :  Y --+ Z such that  the Kodaira dimension of its general fiber equals - c ~ .  We put  7/ = I~-*(H)] 
for a "sufficiently large" very ample divisor H on the  variety Z .  Take # E Q>o such tha t  the log pair 
(X ,  M x )  = (X,/~p-i(7/))  satisfies the relation 

K x  + M x  ~Q O. 

The log pair (X ,  M x )  constructed is not terminal, because otherwise, for small (~ E Q>0, we have 

N -  1 = ~(X, (1 + ~)Mx)  = -oo.  

The required assertion now follows from Theorem 2. [] 

T h e o r e m  6. The hypersurface X is not birationally isomorphic to any Fano variety with canonical 
singularities other than X and Bir(X) -- Au t (X) .  

P r o o f .  Suppose that  there exists a birational map  p: X - - .  Y such that  Y is a Fano variety with 
canonical singularities. Let us show that  p is then an isomorphism. 

Take n E Z~>o and consider the  log pair 

For M x  = p - l ( M r ) ,  we have ~(X,  A/x) = 0. Take A E QM (0, 1] such that  

Kx + AMx ,,,Q O. 

Theorem 2 readily implies that  the log pair (X,  AMx) is terminal. 
Suppose that  A < 1. Consider ~ E QM (A, 1) such tha t  the log pair (X, 5~Ix)  is terminal.  We have 

N - 1 = a(X,  5Mx)  <_ a(X ,  M x )  = O. 

Thus A =  1. 
Let us resolve the indeterminacies of the rational map  p by means of the commutat ive  diagram 

W 

X o ~ y ,  

1 1 4  



where W is a smooth variety. Then 

k l 

E a(X, Mx,  Fj)Fj ,-.,Q g*(Ky q- My) + E a(Y, My, Gi)Gi, 
j=l i=i 

where Gi and Fj are exceptional divisors for the morphisms g and f ,  respectively. Lemma 2.19 from [3] 
implies that 

a(X, Mx , E) = a(Y , My,  E) 

for all divisors E on the variety W.  In particular, the log pair (Y, M r )  is terminal, and there exists 
�9 Q>I such that both log pairs (X, ~Mx) and (Y, ~My) are canonical models. Since the canonical 

model is unique, the map p is an isomorphism. [] 

T h e o r e m  7. All fibrations into varieties birationally isomorphic to X and having Kodaira dimension 
zero are birationally equivalent to a fibration into hypersurfaces of degree N in pN-1 associated to a pencil 
of hyperplane sections of X .  

Proof .  Suppose that there exists a birational surgery p of the hypersurface X into a fibration 
T: Y --+ Z such that the Kodaira dimension of its general fiber equals 0. We must show that ~- o p = ~ 
for some pencil 7 ~ in [ - Kx[. 

Consider the complete linear system 7 / =  [T*(H)[ for a "sufficiently large" very ample divisor H on 
the variety Z .  The log pairs (X, Mx) --- (X, p-I(7/)) satisfy the equality 

n(X, lVlx) = dim(Z). 

It remains to apply Theorems 2-4. [] 

3. P r o o f  of  T h e o r e m  1, p a r t  I 

We use the notation of Sec. 1 and assume that  A = 1. The main result this section is the following 
theorem. 

T h e o r e m  8. The set CS(X,  Mx) contains no points. 

Suppose that  CS(X,  Mx) contains a smooth point O. 
We abandon our convention that all log pairs under consideration are moving. Hopefully, this will cause 

no confusion, because it will always be clear whether or not a log pair is moving. 
We need the following version of Theorem 3.1 from [4]. 

L e m m a  1. If a moving log pair (H, MH) is not log canonical at a smooth point 0 on the surface, 
then multp(M~) > 4. 

The following result is usually called the Iskovskikh-Pukhlikov inequality. 

L e m m a  2. The inequality mul to(M 2)  > 4 holds. 

Proof .  Let H be a sufficiently general very ample divisor on X containing the point O. Then 

multo (M 2)  = multo (( Mx [H )2) 

and 0 E LCS(X,  H + Mx),  where LCS denotes the set of centers of log canonical singularities (see [4]). 
Shokurov's connectedness theorem (see [4]) implies that  O �9 LCS(H, MXIH). 

Repeating the construction described above, we can assume that X is two-dimensional and the log 
pair (X, Mx) is not log canonical at the point O. Now the required assertion follows from Lemma 1. [] 

P r o o f  of T h e o r e m  8. It follows from the results obtained in [5] and Lemma 2. [] 
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4. P r o o f  o f  T h e o r e m  1~ part II 

In this section, we complete the proof of Theorem 1. We use the notation of Sec. 1 and assume that  
A = I .  

By virtue of the results of the preceding section, we can assume that  CS(X ,  M x )  contains a variety S 
of nonzero dimension. The results obtained in [6] imply that  mults(Mx)  = 1; in particular, the log 
pair (X, Mx)  is canonical. 

L e m m a  3. The equality dim(S) = N - 3 holds. 

P r o o f .  Let f :  W --+ X be a blow-up of a general point  of the variety S .  We can assume that  the 
variety W is quasi-projective. Then  

a(X, M x ,  E) = N - 2 - dim(S) - m u l t s ( M x )  - g - 3 - dim(S).  

If the assertion of the lemma does not hold, then there exists a variety T C E such that  the morphism 
f[T: T ~ S is surjective and 

in particular, 

T q CS(W,  f - l ( M x )  - a(X,  M x ,  E ) E ) ;  

mults (Mx)  >_ m u l t T ( f - l ( M x ) )  > 1. [] 

Thus we can assume that  dim(S) = N - 3. 

L e m m a  4. The inequality deg(S) < N holds. 

P r o o f .  We have N = ( - g x )  N-3.  M 2 > mults(M2)deg(S) .  [] 

We can assume that  deg(S) r 1. The proof of the following lemma is the main technical difficulty in 
this section. 

L e m m a  5. The variety S lies in a linear space of dimension N - 2. 

P r o o f .  Considering intersections with sufficiently general hyperplane sections, we can assume that  X 
is a hypersurface of degree N in ~ and contains a curve S such that  

mults(Mx)  = 1 and M x  ~Q O~,(1)[x. 

We must show that  the curve S is contained in a plane. We assume the converse and obtain a contradiction 
by using a trick from [6]. 

Consider a sufficiently general cone Rs over a curve S .  We have 

R s . X = S U S  

The  generality of the cone Rs implies that  

and deg(S) -- (N - 1) deg(S). 

n 

i = l  

and the curves S and S have (N - 1) deg(S) different intersection points (see [6]). 
On the other hand, 

( N -  1) des(S) -- deg(S) -- deg(Mx[$) > (N - 1)deg(S)mults(Mx) = (N - 1) deg(S).  

Therefore, the curve S only intersects the boundary  M x  at points of S n S .  
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Note that  the proof of the last inequality does not use the assumption that  the boundary Mx is moving. 
In particular, there exist no hyperplanes tangent to the hypersurface X along the curve S.  This implies 
that  the general secant of the curve S intersects X at precisely N points, because otherwise, it should 
be contained in X and must  coincide with the curve S .  

Consider the divisor 

D = ~b~Mi, 
i = 1  

where Ms is a sufficiently general divisor from the linear system J~4i. By assumption, 

mul t s (D)  -- 1. 

Let us take two sufficiently general points Ps  and PD on the curve S and in the divisor D,  respectively, 
and consider the straight line L through the points Ps  and PD and a sufficiently general point P on this 
line. Let Rs,p be the cone over the curve S with vertex at the point P ,  and let 

Rs,p . X = S U Sp. 

As shown above, the curve Sp either is contained in the divisor D or intersects it only at points of SNSp. 
By construction, PD E Sp N D and PD ~ S. Therefore, Sp c D; in particular, L A X C D. Since the 
last condition is closed, we can assume that the point PD belongs to the curve S but does not coincide 
with the point Is. This implies that the general secant of the curve S intersects 

?% 

U 
at N different points. On the other hand, the intersection points of the last set with the general hyperplane 
must  be in general position, because this set contains the curve S .  [] 

P r o o f  o f  T h e o r e m  1. By virtue of Theorem 8 and Lemmas 3 and 5, we can assume that  CS(X, Mx) 
contains a variety S of dimension N - 3 lying in a linear space T of dimension N - 2. Lemma 4 and 
the  generality of the hypersurface X allow us to assume that  deg(S) 6 (1, N ) .  

Consider the pencil 7"{T o n  X consisting of the varieties cut out by the hyperplanes that  cont.aln the 
linear space T .  We have 

7" 

X . T  =Su~-'~ S~, 
i = l  

where S~ are irreducible reduced varieties on the hypersurface X (the reducedness of all the varieties Si 
was implicitly obtained in the proof of Lemma 5). It  is sufficient to show that  all S~ are contained 
in CS(X, Mx). 

As in the proof of Lemma 5, considering intersections with sufficiently general hyperplane sections, we 
can assume that  

d i m ( X ) - -  3, deg(X) -- N ,  d im(T) - -  2, and dim(S) -- dim(Si) ---- 1 for i = 1 , . . . , r .  

Under these assumptions, it suffices to show that  

mu l t s , (Mx)  >_ 1 

for all Si. 
Consider a smooth surface D from the pencil 7-/T. Let us show that  the intersection form of the 

curves S~ is negative definite on D.  First, on the surface D,  we have 

Si �9 Sj = (DID -- S). Sj = deg(Sj) - S-Sj. 
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Secondly, on the plane T ,  

deg(Sj) - S .  Sj = deg(Sj) - deg(S) deg(Sj) < 0. 

Thirdly, (S.  Sj)D = (S. Sj)T, because all the curves Sj differ from S and the surface D is smooth.  The  
results obtained in [7] imply the negative definiteness of the intersection form of Si on D .  

The  divisor 

MXID -- S - ~ mults ,  (Mx)Si  
i = 1  

is numerically effective on the surface D.  On the  other hand, 

?. ?. 

MXID -- S - ~ mults , (Mx)Si  ~Q ~'~(1 - mults,  (Mx))Si ,  
i = 1  i = 1  

and 

on D. 

mults~(Mx) >_ 1 for all Si. 

~'~(1 - mults , (Mx))Si  . Sj > 0 
i = 1  

for j = 1 , . . . , r  

The  fact that  the intersection form of the curves S~ on D is negative definite implies that  
[] 

5. Log  pa i r s  w i t h  K o d a i r a  d i m e n s i o n  zero  

In this section, we show how Theorem 2 is derived from Theorem 1. 

P r o o f  of  T h e o r e m  2. Suppose that  the  variety S i s  the union of all elements C S ( X ,  M x ) .  Theorem 1 
implies that  the dimension of S equals N - 3 and S is contained in a linear space T of dimension N - 2. 

Consider the pencil 7-/T on X consisting of the  hyperplane sections of X tha t  contain the variety S .  
Let us resolve the indeterminacies of the rational map ~anr by means of the  morphism f :  W -~ X ,  
where W is a smooth variety; over a general point  of each irreducible component  of the  variety S ,  exactly 
one divisor lies, and f is an isomorphism outside S .  We put  

g = ~ n r ~  and E = f - I ( S ) .  

Let D be the general fiber D of the morphism g. Then 

k 

D ~ f * ( - K x )  - E - ~ a, Fi, 
i = l  

where all ai belong to N and d im(f(Fi ) )  < N - 4 for all the divisors Fi.  We have 

k 

i = 1  

where all ci belong to Q,  which implies tha t  f - l ( M x )  lies in fibers of the morphism g.  [] 

6. Log  pairs  o f  n o n z e r o  K o d a i r a  d i m e n s i o n  

In this section, we derive Theorems 3 and 4 from Theorems 1 and 2. 
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Proof  of T h eo rem 3. We assume that s(X, Mx) r N - 1. T h e o r e m  1 implies that the log pair 
(X, AMx) is canonical and s(X, AMx) = O. Therefore, 

~(X, Mx) >_ ~(X, AMx) k O. 

Suppose that the log pair (X, AMx) is terminal. Take ~ E QA (A, 1) such that the log pair (X, ~Mx) 
is also terminal. We have 

N - 1 = ,~(Z, ~Mx) <_ ~(X, Mx) < N - 1. 

Therefore, CS(X,  AMx) ~ 0 ,  and the required assertion readily follows from Theorems 1 and 2. V1 

Proof  of T h e o rem 4. By Theorem 1, the log pair (X, AMx) is canonical. Therefore, the log 
pair (X, Mx) is terminal, and ~(X, Mx) = -oa. [] 
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