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A Fano 3-fold with a unique elliptic structure

I.A. Cheltsov

Abstract. An example of a Fano 3-fold that has a unique representation as an
elliptic fibration is presented. No other examples of rationally connected varieties
with such a property are known so far.

Bibliography: 5 titles.

All varieties in this paper are assumed to be projective and defined over C. The
main definitions, notation, and concepts can be found in [1].
The author would like to thank Professors V.A. Iskovskikh, A. V. Pukhlikov,

and V.V. Shokurov for useful conversations and helpful comments.

§ 1. Introduction
In this paper we shall study properties of the following 3-fold.

Main object. Let θ : X → P3 be a double cover ramified over a sextic S such that
X has one singular point O, which is a simple double point.

The birational structure of X was studied in [2], where the following result was
proved.

Birational rigidity of XXX.
BirX = AutX,

and X is not birationally isomorphic to

(1) Mori 3-folds1 that are not isomorphic to X,
(2) conic bundles,
(3) fibrations of surfaces of Kodaira dimension −∞.

Besides birational rigidity X has other interesting properties.

Elliptic structure on XXX. Let f : W → X be a blow up of the singular point O.
Then the linear system |−KW | is free and the morphism

ϕ|−KW | : W → P2

is an elliptic fibration.

1Mori 3-folds are Fano 3-folds with terminal Q-factorial singularities and Picard group Z.

This work was carried out with the partial support of the NSF (grant no. DMS-9800807).
AMS 2000 Mathematics Subject Classification. Primary 14J30, 14E05.
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Note that the image in P3 of a fibre of the elliptic fibration so constructed is a
line passing through the point θ(O).

Convention. We identify fibrations that are birationally equivalent (as fibrations).
The aim of this paper is to prove the following result.

Main theorem. X cannot be birationally transformed into other elliptic fibrations.

Note that each rationally connected surface is birationally isomorphic to infin-
itely many distinct elliptic fibrations.

Important remark. X is the only known example of a rationally connected variety
that can be birationally represented in a unique way (in the class of birationally
isomorphic varieties) as an elliptic fibration.
Our methods also describe other properties of X.

K3 structures on XXX. Let P be a pencil in |−KX | and assume that the commu-
tative diagram

W

f ↙ ↘ g

X
ϕP��� P1

resolves the indeterminacy of the map ϕP. Then the general fibre of g is a smooth
K3 surface.

The following result complements the Main theorem.

Additional theorem. X is not birationally isomorphic to

(1) Fano 3-folds with canonical singularities that are not biregular to X,
(2) fibrations into surfaces of Kodaira dimension zero, except for the K3 fibra-

tions constructed above.

§ 2. Auxiliary objects

This chapter introduces objects that will be used in the proof of the Main
theorem.

Movable log pair. A movable log pair

(X,MX) =

(
X,

n∑
i=1

biMi

)

is a variety X together with a formal finite linear combination of linear systems Mi
without fixed components such that all bi ∈ Q�0.
Note that (X,MX) can be regarded as a usual log pair.

Observation. The strict transform of MX is defined in a natural way for each
birational map.
We shall assume that the log canonical divisors of all the log pairs considered

are Q-Cartier divisors. Hence discrepancies, terminality, canonicity, log terminality,
and log canonicity can be defined for movable log pairs in a similar way to the usual
ones.
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Centre of canonical singularities. A proper irreducible subvariety Y ⊂ X is
a centre of canonical singularities of (X,MX) if there exist a birational morphism
f : W → X and an f-exceptional divisor E ⊂W such that

a(X,MX , E) � 0 and f(E) = Y.

Set of centres of canonical singularities. We denote by CS(X,MX) the set
of centres of canonical singularities of (X,MX).

The next result follows from [3].

Uniqueness theorem. A canonical model is unique if it exists.

For an arbitrary movable log pair (X,MX) we consider a birational morphism
f : W → X such that the log pair

(W,MW ) = (W, f−1(MX))

has canonical singularities.

Iitaka map and Kodaira dimension. If the linear system |n(KW +MW )| is
non-empty for n	 0, then the map

I(X,MX ) = ϕ|n(KW+MW )| ◦ f−1 for n	 0

is called the Iitaka map of (X,MX) and

κ(X,MX) = dim(I(X,MX )(X))

is called the Kodaira dimension of (X,MX). Otherwise I(X,MX) is considered to
be undefined everywhere and κ(X,MX) = −∞.
One can prove the following result.

Correctness theorem. The map I(X,MX ) and the quantity κ(X,MX) do not
depend on one’s choice of the morphism f .

Note that the Iitaka map and the Kodaira dimension of a movable log pair
depend a priori on the positive integer n 	 0 involved in their definition. One
can show that the Kodaira dimension does not depend on this number. Moreover,
in dimension 3 it follows from the Log Abundance (see [1]) that the Iitaka map
also depends only on the properties of the movable log pair. We shall mainly use
movable log pairs and shall call them simply log pairs.

§ 3. Log Calabi–Yau structures

We now outline relations between the previous chapter and the Main theorem.
We shall use the notation of § 1. One can show that

PicX = ZKX and KX ∼ θ∗(OP3(−1)).

We fix a log pair (X,MX) and choose λ ∈ Q>0 ∪ {+∞} such that

KX + λMX ∼Q 0,

where λ = +∞ for MX = ∅.
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Definition. In the case λ = 1 we call (X,MX) a log Calabi–Yau 3-fold.

Core theorem. Assume that (X,MX) is a log Calabi–Yau 3-fold. Then (X,MX)
is canonical, κ(X,MX) = 0, and

CS(X,MX) =




{O},
{BsP} for the pencil P in |−KX | such that O /∈ BsP,
{BsP, O} for the pencil P in |−KX | such that O ∈ BsP,
∅.

It turns out that both the Main and the Additional theorems can easily be
deduced from the Core theorem. We can obtain a rather precise description of the
boundary MX on the basis of the Core theorem in the case when the singularities
of the log pair (X,MX) are not terminal.

Refinement of the Core theorem. Assume that (X,MX) is a log Calabi–Yau
3-fold and the log pair (X,MX) is not terminal. Then

MX = ψ−1(MY ),

where the rational map ψ : X ��� Y is the composite of θ and the projection from
θ(CS(X,MX)).

Proof. Let Z be the union of curves in CS(X,MX) if the last set contains a curve.
Otherwise let Z = O.
Note that in the case when CS(X,MX) contains the point O we have

multO(MX) = 1.

This follows from Corti’s theorem (see § 6).
Consider the linear system H of surfaces in |−KX | containing Z. We choose a

birational morphism f : W → X such that the linear system f−1(H) is free, the
3-fold W is smooth, and f is an isomorphism outside Z. We set

g = ϕH ◦ f and (W,MW ) = (W, f−1(MX)).

We fix a sufficiently general divisor D in f−1(H).
Four cases are now possible: θ(Z) does not lie in S; θ(Z) is a line in S not

passing through the point θ(O); θ(Z) is a line in S passing through the point θ(O);
Z = O.
Assume that θ(Z) �⊂ S. We may also assume that W contains precisely one

f-exceptional divisor lying over the generic point of each irreducible component
of Z. Then

MW |D ∼Q
k∑
i=1

ciFi|D,

where all the f(Fi) are points on X and all the ci are rational. Hence MW lies in
the fibres of g and

I(X,MX) = g ◦ f−1.
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Assume that θ(Z) is a line in S not passing through the point θ(O). We may also
assume that f is the composite of the blow up of Z and the blow up of a section of
the exceptional surface of the first blow up. Then

MW |D ∼Q a(X,MX , E2)E2|D,

where E2 is the exceptional surface of the second blow up. On the other hand, it
is easy to see that E2|D is a smooth rational curve on the smooth K3 surface D.
Thus,

a(X,MX , E2) = 0.

Hence MW lies in the fibres of g and

I(X,MX) = g ◦ f−1.

Assume that θ(Z) is a line in S passing through the point θ(O). We may also
assume that f is the composite of the blow up of O, the blow up of the proper
transform of Z, and the blow up of a section of the exceptional surface of the
second blow up. Then

MW |D ∼Q (a(X,MX , E)E + a(X,MX , E2)E2)|D,

where E and E2 are the exceptional surfaces of the first and the third blow ups,
respectively. On the other hand, E|D and E2|D are two smooth rational curves on
the smooth K3 surface D that intersect transversally at one point. Hence

a(X,MX , E) = a(X,MX , E2) = 0.

It easily follows from this that MW lies in the fibres of g and

I(X,MX) = g ◦ f−1.

Assume now that Z = O. Then g is an elliptic fibration. We may also assume
that f is the blow up of O. For a sufficiently general fibre C of g,

MW · C = 0.

Hence MW lies in the fibres of g and

I(X,MX) = g ◦ f−1.

§ 4. Iitaka maps

We shall use the notation of the introduction.

Corollary to the Core theorem. The following relations hold :

λ = 1 ⇐⇒ κ(X,MX) = 0,

λ < 1 ⇐⇒ κ(X,MX) > 0,

λ > 1 ⇐⇒ κ(X,MX) = −∞.

Log pairs with κ(X,MX) = 1 or 2 can be explicitly described.
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Description theorem I. Let κ(X,MX) = 1. Then the log pair (X,MX) is not
canonical, I(X,MX) is the composite of θ and the projection from some line in P3,
and

MX = I(X,MX)
−1(P1).

Description theorem II. Let κ(X,MX) = 2. Then the log pair (X,MX) is not
canonical, I(X,MX) is the composite of θ and the projection from the point θ(O)
in P3, and

MX = I(X,MX)
−1(P2).

Proof of Description theorems I and II. The Core theorem yields the canonicity of
the log pair (X, λMX). Thus,

κ(X,MX) � κ(X, λMX) = 0.

Assume that (X, λMX) is terminal. We take δ ∈ Q ∩ (λ, 1) such that (X, δMX)
is still terminal. Then

3 = κ(X, δMX) � κ(X,MX) � 2.

Hence
CS(X, λMX) �= ∅.

The assertion now follows from the refinement of the Core theorem.

What can be said about log pairs of Kodaira dimension −∞?
Description theorem III. If κ(X,MX) = −∞, then CS(X,MX) = ∅.
Proof. (X, λMX) is canonical by the Core theorem and the assertion follows from
the inequality λ > 1.

Note that the birational rigidity of X follows from Description theorem III.

§ 5. Birational geometry of XXX

In this section we prove both the Main and the Additional theorems together
with the birational rigidity of X using results of the previous section, the Core
theorem, and the refinement of the Core theorem.

TheoremA. X is not birational to a fibration with general fibre of Kodaira dimen-
sion −∞.
Proof. Assume that ρ is a birational transformation of X into a fibration τ : Y → Z
such that the general fibre of τ has Kodaira dimension −∞. We take a ‘sufficiently
big’ very ample divisor H on Z and choose µ ∈ Q>0 such that

(X,MX) = (X, µρ−1(|τ∗(H)|))

is a log Calabi–Yau 3-fold. By construction

κ(X,MX) = −∞,

which contradicts the Core theorem.
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Theorem B. BirX = AutX and X is not birational to any Fano 3-fold with
canonical singularities that is not biregular to X.

Proof. We shall prove a slightly stronger result. Assume that we have a birational
map ρ : X ��� Y such that Y has canonical singularities and big and nef anticanon-
ical divisor. We claim that ρ is an isomorphism.
It is well known that |−nKY | is free for n	 0. We consider the log pairs

(Y,MY ) =

(
Y,
1

n
|−nKY |

)
and (X,MX) = (X, ρ−1(MY )).

The corollary to the Core theorem shows that (X,MX) is a log Calabi–Yau 3-fold
and the refinement of the Core theorem yields the terminality of (X,MX). Hence
we can take ζ ∈ Q>1 such that both log pairs (X, ζMX) and (Y, ζMY ) are canonical
models. The Uniqueness theorem shows that ρ is an isomorphism.

Theorem C. All fibrations birational to X with general fibre of Kodaira dimension
zero are described in § 1.

Proof. Let ρ be a birational transformation of the 3-fold X into a fibration τ : Y →
Z such that the Kodaira dimension of the general fibre of τ is zero. Consider a
‘sufficiently big’ very ample divisor H on Z. The equality

κ
(
X, ρ−1(|τ∗(H)|)

)
= dimZ

and Description theorems I and II bring us to the required result.

§ 6. Proof of Core theorem

In this section we prove the Core theorem. We shall use the notation of the
introduction. We fix a log Calabi–Yau 3-fold (X,MX).

The global strategy : (1) show that CS(X,MX) contains no points with the possible
exception of O; (2) prove that (X,MX) is canonical in O; (3) describe curves in
CS(X,MX).

To implement the global strategy we require several auxiliary results. The fol-
lowing result is established in [4].

Shokurov’s Connectedness theorem. Let

(1) f : W →X be a morphism of normal varieties such that f∗(OW ) = OX ;
(2) D =

∑n
i=1 diDi be a divisor such that Di is f-exceptional whenever di < 0;

(3) −(KW +D) be Q-Cartier, f-nef, and f-big ;
(4) g : V →W be a log resolution of (W,D).

Then the divisor ∑
a(W,D,E)�−1

E

is connected in the neighbourhood of each fibre of f ◦ g.
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Corti’s lemma ([5], Theorem 3.1). Let P be a smooth point on a surface H and
assume that for some non-negative rational numbers a1 and a2,

P ∈ LCS(H, (1− a1)∆1 + (1− a2)∆2 +MH),

where the boundary MH is movable and the irreducible reduced curves ∆1 and ∆2
intersect normally at the point P . Then

multP (M
2
H) �

{
4a1a2 if a1 � 1 or a2 � 1,
4(a1 + a2 − 1) if a1 > 1 and a2 > 1.

Corollary to Corti’s lemma. Let P ∈ LCS(H,MH), where P is a smooth point
of the surface H and the log pair (H,MH) is movable. Then

multP (M
2
H) � 4.

Corti’s theorem ([5], Theorem 3.11). Let O ∈ CS(X,MX), where O is a simple
double point of a 3-fold X and the log pair (X,MX) is movable. Then

multO(MX) � 1.

What do we do now?

The local strategy : (1) use Shokurov’s connectedness theorem and Corti’s lemma to
show that CS(X,MX) does not contain smooth points of X; (2) derive from Corti’s
theorem the canonicity of the log pair (X,MX) at the point O.

Lemma I. CS(X,MX) contains no smooth points of X.

Proof. Assume that CS(X,MX) contains a smooth point P . Consider the log pair

(X,BX) = (X,HX +MX),

where HX is a sufficiently general hyperplane section of X passing through P . By
construction,

P ∈ LCS(X,BX).
Hence Shokurov’s connectedness theorem yields

P ∈ LCS(HX ,MX |HX).

Next, the corollary to Corti’s lemma shows that

multP (M
2
X) = multP ((MX |HX)2) � 4.

On the other hand,
2 = −KX ·M2X � multP (M2X).

The inequality
2 = −KX ·M2X � 2mult2P (MX)

in combination with Corti’s theorem easily yields the following result.
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Lemma II. (X,MX) is canonical at O.

Thus, to prove the Core theorem we may assume that CS(X,MX) contains some
irreducible reduced curve C.

The local strategy : (1) show that θ(C) is a line in P3; 2) prove that all components
of θ−1(θ(C)) belong to CS(X,MX).

The inequality

2 = −KX ·M2X � multC(M2X)(−KX ) · C � −KX · C � deg θ(C)

brings us to the following result.

Lemma III. −KX ·C � 2, and θ(C) is either a conic or a line.
Lemma IV. θ(C) is a line.

Proof. Assume the contrary. Then the above inequality shows that −KX · C = 2,
θ(C) is a conic, θ|C is an isomorphism, and

multC(MX) = 1.

We choose a sufficiently general divisor H in |−KX |. H is a smooth K3 surface
intersecting the curve C precisely at two distinct points, x1 and x2. Let g : V → H
be the blow up of x1 and x2. Let E1 = g

−1(x1) and E2 = g
−1(x2). Then the linear

system
|g∗(H|H)− E1 − E2|

contains precisely one effective divisor D.
Note that D is a smooth curve of genus 2. On the other hand,

(g−1(MX |H)) ∼Q g∗(H|H) −E1 −E2

and
(g−1(MX |H))2 = 0.

Hence the linear system |nD| has no fixed components for n 	 0 and D2 = 0.
Thus, for some n	 0 the linear system |nD| is free and

ϕ|nD|(V ) = P
1.

Hence, for k ∈ (1, n] the fibration ϕ|nD| has a multiple fibre kD. This means that
the genus of the curve D must be 1.

We can now complete the proof of the Core theorem.

Proof of the Core theorem. Assume that

CS(X,MX) �= ∅ and CS(X,MX) �= {O}.

It follows from Lemmas I–IV that CS(X,MX) contains a smooth rational curve C
such that −KX · C = 1. Moreover, C �⊂ S. Hence

θ−1(θ(C)) = C ∪ C ′,

where C ′ is a smooth rational curve such that −KX · C ′ = 1.
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Consider now the pencil H of surfaces in |−KX | containing C and C ′. We choose
a birational morphism f : W → X such that the pencil f−1(H) is free, W is smooth,
and f is an isomorphism outside C and C ′. Setting

(W,MW ) = (W, f−1(MX))

we fix a sufficiently general divisor D in the pencil f−1(H).
Two cases are now possible: the curves C and C ′ pass through the point O; the

curves C and C ′ do not pass through the point O. In the first case we must show
that

C ′ ∈ CS(X,MX) and O ∈ CS(X,MX).
In the last case we must show that

C ′ ∈ CS(X,MX).
Assume that the curves C and C ′ pass through the point O. We may also assume

that f is the composite of the blow up of O, the blow up of the proper transform
of C, and the blow up of the proper transform of C ′. Then

MW |D ∼Q (a(X,MX , E)E + a(X,MX , E2)E2)|D,
where E and E2 are the exceptional surfaces of the first and the third blow ups,
respectively. On the other hand E|D and E2|D are two smooth rational curves on
the smooth K3 surface D that intersect transversally at one point. Hence

a(X,MX , E) = a(X,MX , E2) = 0.

Assume now that the curves C and C ′ do not pass through the point O. We
may also assume that f is the composite of the blow up of C and the blow up of
the proper transform of C ′. Then

MW |D ∼Q a(X,MX , E2)E2|D,
where E2 is the exceptional surface of the second blow up. On the other hand E2|D
is a smooth rational curve on the smooth K3 surface D, which shows that

a(X,MX , E2) = 0.

Bibliography

[1] Y. Kawamata, K. Matsuda, and K. Matsuki, “Introduction to the minimal model problem”,

Adv. Stud. Pure Math. 10 (1987), 283–360.
[2] A.V. Pukhlikov, “Birational automorphisms of double spaces with singularities”, J. Math.

Sci. 85 (1997), 2128–2141.
[3] V.V. Shokurov, “3-fold log models”, J. Math. Sci. 81 (1996), 2667–2699.

[4] V.V. Shokurov, “3-fold log flips”, Izv. Ross. Akad. Nauk Ser. Mat. 56:1 (1992), 105–201;
English transl. in Russian Acad. Sci. Izv. Math. 40 (1993).

[5] A. Corti, “Singularities of linear systems and 3-fold birational geometry”, Explicit birational
geometry of 3-folds, Lond. Math. Soc. Lecture Note Series, vol. 281, Cambridge Univ. Press,

Cambridge 2000, pp. 259–312.

Moscow
E-mail address : cheltsov@yahoo.com

Received 11/JUN/99
Translated by I. CHELTSOV

Typeset by AMS-TEX


