

A Fano 3-fold with a unique elliptic structure

To cite this article: I A Cheltsov 2001 Sb. Math. 192 785

View the article online for updates and enhancements.

Related content

- <u>On a smooth quintic 4-fold</u> I A Cheltsov
- <u>Anticanonical models of three-dimensional</u> <u>Fano varieties of degree 4</u> I A Cheltsov
- Non-rationality of the 4-dimensional smooth complete intersection of a quadric and a quartic not containing planes
 I A Cheltsov

Recent citations

- <u>Birationally rigid Fano varieties</u> I A Cheltsov
- <u>Birationally superrigid cyclic triple spaces</u> I A Cheltsov
- <u>Double space with double line</u> I A Cheltsov

Matematicheskii Sbornik 192:5 145-156

DOI 10.1070/SM2001v192n05ABEH000568

A Fano 3-fold with a unique elliptic structure

I.A. Cheltsov

Abstract. An example of a Fano 3-fold that has a unique representation as an elliptic fibration is presented. No other examples of rationally connected varieties with such a property are known so far.

Bibliography: 5 titles.

All varieties in this paper are assumed to be projective and defined over \mathbb{C} . The main definitions, notation, and concepts can be found in [1].

The author would like to thank Professors V.A. Iskovskikh, A.V. Pukhlikov, and V.V. Shokurov for useful conversations and helpful comments.

§1. Introduction

In this paper we shall study properties of the following 3-fold.

Main object. Let $\theta: X \to \mathbb{P}^3$ be a double cover ramified over a sextic S such that X has one singular point O, which is a simple double point.

The birational structure of X was studied in [2], where the following result was proved.

Birational rigidity of X.

$$\operatorname{Bir} X = \operatorname{Aut} X,$$

and X is not birationally isomorphic to

- (1) Mori 3-folds¹ that are not isomorphic to X,
- (2) conic bundles,
- (3) fibrations of surfaces of Kodaira dimension $-\infty$.

Besides birational rigidity X has other interesting properties.

Elliptic structure on X. Let $f: W \to X$ be a blow up of the singular point O. Then the linear system $|-K_W|$ is free and the morphism

$$\varphi_{|-K_W|} \colon W \to \mathbb{P}^2$$

is an elliptic fibration.

¹Mori 3-folds are Fano 3-folds with terminal \mathbb{Q} -factorial singularities and Picard group \mathbb{Z} . This work was carried out with the partial support of the NSF (grant no. DMS-9800807).

AMS 2000 Mathematics Subject Classification. Primary 14J30, 14E05.

I.A. Cheltsov

Note that the image in \mathbb{P}^3 of a fibre of the elliptic fibration so constructed is a line passing through the point $\theta(O)$.

Convention. We identify fibrations that are birationally equivalent (as fibrations). The aim of this paper is to prove the following result.

Main theorem. X cannot be birationally transformed into other elliptic fibrations.

Note that each rationally connected surface is birationally isomorphic to infinitely many distinct elliptic fibrations.

Important remark. X is the only known example of a rationally connected variety that can be birationally represented in a unique way (in the class of birationally isomorphic varieties) as an elliptic fibration.

Our methods also describe other properties of X.

K3 structures on X. Let \mathcal{P} be a pencil in $|-K_X|$ and assume that the commutative diagram

$$\begin{array}{c}
W \\
f \swarrow & \searrow g \\
X & \xrightarrow{\varphi_{\mathcal{P}}} & \mathbb{P}^{1}
\end{array}$$

resolves the indeterminacy of the map $\varphi_{\mathcal{P}}$. Then the general fibre of g is a smooth K3 surface.

The following result complements the Main theorem.

Additional theorem. X is not birationally isomorphic to

- (1) Fano 3-folds with canonical singularities that are not biregular to X,
- (2) fibrations into surfaces of Kodaira dimension zero, except for the K3 fibrations constructed above.

§2. Auxiliary objects

This chapter introduces objects that will be used in the proof of the Main theorem.

Movable log pair. A movable log pair

$$(X, M_X) = \left(X, \sum_{i=1}^n b_i \mathcal{M}_i\right)$$

is a variety X together with a formal finite linear combination of linear systems \mathcal{M}_i without fixed components such that all $b_i \in \mathbb{Q}_{\geq 0}$.

Note that (X, M_X) can be regarded as a usual log pair.

Observation. The strict transform of M_X is defined in a natural way for each birational map.

We shall assume that the log canonical divisors of all the log pairs considered are \mathbb{Q} -Cartier divisors. Hence discrepancies, terminality, canonicity, log terminality, and log canonicity can be defined for movable log pairs in a similar way to the usual ones.

786

Centre of canonical singularities. A proper irreducible subvariety $Y \subset X$ is a *centre of canonical singularities* of (X, M_X) if there exist a birational morphism $f: W \to X$ and an f-exceptional divisor $E \subset W$ such that

$$a(X, M_X, E) \leq 0$$
 and $f(E) = Y$.

Set of centres of canonical singularities. We denote by $CS(X, M_X)$ the set of centres of canonical singularities of (X, M_X) .

The next result follows from [3].

Uniqueness theorem. A canonical model is unique if it exists.

For an arbitrary movable log pair (X, M_X) we consider a birational morphism $f: W \to X$ such that the log pair

$$(W, M_W) = (W, f^{-1}(M_X))$$

has canonical singularities.

Iitaka map and Kodaira dimension. If the linear system $|n(K_W + M_W)|$ is non-empty for $n \gg 0$, then the map

$$I(X, M_X) = \varphi_{|n(K_W + M_W)|} \circ f^{-1} \quad \text{for } n \gg 0$$

is called the *Iitaka map* of (X, M_X) and

$$\varkappa(X, M_X) = \dim(I(X, M_X)(X))$$

is called the Kodaira dimension of (X, M_X) . Otherwise $I(X, M_X)$ is considered to be undefined everywhere and $\varkappa(X, M_X) = -\infty$.

One can prove the following result.

Correctness theorem. The map $I(X, M_X)$ and the quantity $\varkappa(X, M_X)$ do not depend on one's choice of the morphism f.

Note that the Iitaka map and the Kodaira dimension of a movable log pair depend a priori on the positive integer $n \gg 0$ involved in their definition. One can show that the Kodaira dimension does not depend on this number. Moreover, in dimension 3 it follows from the Log Abundance (see [1]) that the Iitaka map also depends only on the properties of the movable log pair. We shall mainly use movable log pairs and shall call them simply log pairs.

§3. Log Calabi–Yau structures

We now outline relations between the previous chapter and the Main theorem. We shall use the notation of $\S1$. One can show that

Pic
$$X = \mathbb{Z}K_X$$
 and $K_X \sim \theta^*(\mathcal{O}_{\mathbb{P}^3}(-1)).$

We fix a log pair (X, M_X) and choose $\lambda \in \mathbb{Q}_{>0} \cup \{+\infty\}$ such that

$$K_X + \lambda M_X \sim_{\mathbb{Q}} 0,$$

where $\lambda = +\infty$ for $M_X = \emptyset$.

I.A. Cheltsov

Definition. In the case $\lambda = 1$ we call (X, M_X) a log Calabi–Yau 3-fold.

Core theorem. Assume that (X, M_X) is a log Calabi–Yau 3-fold. Then (X, M_X) is canonical, $\varkappa(X, M_X) = 0$, and

$$\mathrm{CS}(X, M_X) = \begin{cases} \{O\}, \\ \{\mathrm{Bs}\,\mathcal{P}\} & \text{for the pencil } \mathcal{P} \text{ in } |-K_X| \text{ such that } O \notin \mathrm{Bs}\,\mathcal{P}, \\ \{\mathrm{Bs}\,\mathcal{P}, O\} & \text{for the pencil } \mathcal{P} \text{ in } |-K_X| \text{ such that } O \in \mathrm{Bs}\,\mathcal{P}, \\ \varnothing. \end{cases}$$

It turns out that both the Main and the Additional theorems can easily be deduced from the Core theorem. We can obtain a rather precise description of the boundary M_X on the basis of the Core theorem in the case when the singularities of the log pair (X, M_X) are not terminal.

Refinement of the Core theorem. Assume that (X, M_X) is a log Calabi–Yau 3-fold and the log pair (X, M_X) is not terminal. Then

$$M_X = \psi^{-1}(M_Y),$$

where the rational map $\psi: X \dashrightarrow Y$ is the composite of θ and the projection from $\theta(CS(X, M_X))$.

Proof. Let Z be the union of curves in $CS(X, M_X)$ if the last set contains a curve. Otherwise let Z = O.

Note that in the case when $CS(X, M_X)$ contains the point O we have

$$\operatorname{mult}_O(M_X) = 1.$$

This follows from Corti's theorem (see $\S 6$).

Consider the linear system \mathcal{H} of surfaces in $|-K_X|$ containing Z. We choose a birational morphism $f: W \to X$ such that the linear system $f^{-1}(\mathcal{H})$ is free, the 3-fold W is smooth, and f is an isomorphism outside Z. We set

$$g = \varphi_{\mathcal{H}} \circ f$$
 and $(W, M_W) = (W, f^{-1}(M_X)).$

We fix a sufficiently general divisor D in $f^{-1}(\mathcal{H})$.

Four cases are now possible: $\theta(Z)$ does not lie in S; $\theta(Z)$ is a line in S not passing through the point $\theta(O)$; $\theta(Z)$ is a line in S passing through the point $\theta(O)$; Z = O.

Assume that $\theta(Z) \not\subset S$. We may also assume that W contains precisely one f-exceptional divisor lying over the generic point of each irreducible component of Z. Then

$$M_W|_D \sim_{\mathbb{Q}} \sum_{i=1}^k c_i F_i|_D,$$

where all the $f(F_i)$ are points on X and all the c_i are rational. Hence M_W lies in the fibres of g and

$$I(X, M_X) = g \circ f^{-1}$$

Assume that $\theta(Z)$ is a line in S not passing through the point $\theta(O)$. We may also assume that f is the composite of the blow up of Z and the blow up of a section of the exceptional surface of the first blow up. Then

$$M_W|_D \sim_{\mathbb{Q}} a(X, M_X, E_2)E_2|_D,$$

where E_2 is the exceptional surface of the second blow up. On the other hand, it is easy to see that $E_2|_D$ is a smooth rational curve on the smooth K3 surface D. Thus,

$$a(X, M_X, E_2) = 0.$$

Hence M_W lies in the fibres of g and

$$I(X, M_X) = g \circ f^{-1}.$$

Assume that $\theta(Z)$ is a line in S passing through the point $\theta(O)$. We may also assume that f is the composite of the blow up of O, the blow up of the proper transform of Z, and the blow up of a section of the exceptional surface of the second blow up. Then

$$M_W|_D \sim_{\mathbb{Q}} (a(X, M_X, E)E + a(X, M_X, E_2)E_2)|_D$$

where E and E_2 are the exceptional surfaces of the first and the third blow ups, respectively. On the other hand, $E|_D$ and $E_2|_D$ are two smooth rational curves on the smooth K3 surface D that intersect transversally at one point. Hence

$$a(X, M_X, E) = a(X, M_X, E_2) = 0.$$

It easily follows from this that M_W lies in the fibres of g and

$$I(X, M_X) = g \circ f^{-1}.$$

Assume now that Z = O. Then g is an elliptic fibration. We may also assume that f is the blow up of O. For a sufficiently general fibre C of g,

$$M_W \cdot C = 0.$$

Hence M_W lies in the fibres of g and

$$I(X, M_X) = g \circ f^{-1}.$$

§4. Iitaka maps

We shall use the notation of the introduction.

Corollary to the Core theorem. The following relations hold:

$$egin{aligned} \lambda &= 1 \iff arkappa(X,M_X) = 0, \ \lambda &< 1 \iff arkappa(X,M_X) > 0, \ \lambda &> 1 \iff arkappa(X,M_X) = -\infty \end{aligned}$$

Log pairs with $\varkappa(X, M_X) = 1$ or 2 can be explicitly described.

I.A. Cheltsov

Description theorem I. Let $\varkappa(X, M_X) = 1$. Then the log pair (X, M_X) is not canonical, $I(X, M_X)$ is the composite of θ and the projection from some line in \mathbb{P}^3 , and

$$M_X = I(X, M_X)^{-1}(\mathbb{P}^1).$$

Description theorem II. Let $\varkappa(X, M_X) = 2$. Then the log pair (X, M_X) is not canonical, $I(X, M_X)$ is the composite of θ and the projection from the point $\theta(O)$ in \mathbb{P}^3 , and

$$M_X = I(X, M_X)^{-1}(\mathbb{P}^2).$$

Proof of Description theorems I and II. The Core theorem yields the canonicity of the log pair $(X, \lambda M_X)$. Thus,

$$\varkappa(X, M_X) \geqslant \varkappa(X, \lambda M_X) = 0.$$

Assume that $(X, \lambda M_X)$ is terminal. We take $\delta \in \mathbb{Q} \cap (\lambda, 1)$ such that $(X, \delta M_X)$ is still terminal. Then

$$3 = \varkappa(X, \delta M_X) \leqslant \varkappa(X, M_X) \leqslant 2.$$

Hence

$$\operatorname{CS}(X, \lambda M_X) \neq \emptyset.$$

The assertion now follows from the refinement of the Core theorem.

What can be said about log pairs of Kodaira dimension $-\infty$?

Description theorem III. If $\varkappa(X, M_X) = -\infty$, then $CS(X, M_X) = \emptyset$.

Proof. $(X, \lambda M_X)$ is canonical by the Core theorem and the assertion follows from the inequality $\lambda > 1$.

Note that the birational rigidity of X follows from Description theorem III.

§ 5. Birational geometry of X

In this section we prove both the Main and the Additional theorems together with the birational rigidity of X using results of the previous section, the Core theorem, and the refinement of the Core theorem.

Theorem A. X is not birational to a fibration with general fibre of Kodaira dimension $-\infty$.

Proof. Assume that ρ is a birational transformation of X into a fibration $\tau: Y \to Z$ such that the general fibre of τ has Kodaira dimension $-\infty$. We take a 'sufficiently big' very ample divisor H on Z and choose $\mu \in \mathbb{Q}_{>0}$ such that

$$(X, M_X) = (X, \mu \rho^{-1}(|\tau^*(H)|))$$

is a log Calabi-Yau 3-fold. By construction

$$\varkappa(X, M_X) = -\infty,$$

which contradicts the Core theorem.

Theorem B. Bir X = Aut X and X is not birational to any Fano 3-fold with canonical singularities that is not biregular to X.

Proof. We shall prove a slightly stronger result. Assume that we have a birational map $\rho: X \dashrightarrow Y$ such that Y has canonical singularities and big and nef anticanonical divisor. We claim that ρ is an isomorphism.

It is well known that $|-nK_Y|$ is free for $n \gg 0$. We consider the log pairs

$$(Y, M_Y) = \left(Y, \frac{1}{n} | -nK_Y|\right)$$
 and $(X, M_X) = (X, \rho^{-1}(M_Y)).$

The corollary to the Core theorem shows that (X, M_X) is a log Calabi–Yau 3-fold and the refinement of the Core theorem yields the terminality of (X, M_X) . Hence we can take $\zeta \in \mathbb{Q}_{>1}$ such that both log pairs $(X, \zeta M_X)$ and $(Y, \zeta M_Y)$ are canonical models. The Uniqueness theorem shows that ρ is an isomorphism.

Theorem C. All fibrations birational to X with general fibre of Kodaira dimension zero are described in §1.

Proof. Let ρ be a birational transformation of the 3-fold X into a fibration $\tau: Y \to Z$ such that the Kodaira dimension of the general fibre of τ is zero. Consider a 'sufficiently big' very ample divisor H on Z. The equality

$$\varkappa(X,\rho^{-1}(|\tau^*(H)|)) = \dim Z$$

and Description theorems I and II bring us to the required result.

§6. Proof of Core theorem

In this section we prove the Core theorem. We shall use the notation of the introduction. We fix a log Calabi–Yau 3-fold (X, M_X) .

The global strategy: (1) show that $CS(X, M_X)$ contains no points with the possible exception of O; (2) prove that (X, M_X) is canonical in O; (3) describe curves in $CS(X, M_X)$.

To implement the global strategy we require several auxiliary results. The following result is established in [4].

Shokurov's Connectedness theorem. Let

- (1) $f: W \to X$ be a morphism of normal varieties such that $f_*(\mathcal{O}_W) = \mathcal{O}_X$;
- (2) $D = \sum_{i=1}^{n} d_i D_i$ be a divisor such that D_i is f-exceptional whenever $d_i < 0$;
- (3) $-(K_W + D)$ be Q-Cartier, f-nef, and f-big;
- (4) $g: V \to W$ be a log resolution of (W, D).

Then the divisor

$$\sum_{a(W,D,E)\leqslant -1} E$$

is connected in the neighbourhood of each fibre of $f \circ g$.

Corti's lemma ([5], Theorem 3.1). Let P be a smooth point on a surface H and assume that for some non-negative rational numbers a_1 and a_2 ,

$$P \in \mathrm{LCS}(H, (1-a_1)\Delta_1 + (1-a_2)\Delta_2 + M_H)$$

where the boundary M_H is movable and the irreducible reduced curves Δ_1 and Δ_2 intersect normally at the point P. Then

$$\operatorname{mult}_{P}(M_{H}^{2}) \geqslant \begin{cases} 4a_{1}a_{2} & \text{if } a_{1} \leqslant 1 \text{ or } a_{2} \leqslant 1, \\ 4(a_{1}+a_{2}-1) & \text{if } a_{1} > 1 \text{ and } a_{2} > 1. \end{cases}$$

Corollary to Corti's lemma. Let $P \in LCS(H, M_H)$, where P is a smooth point of the surface H and the log pair (H, M_H) is movable. Then

$$\operatorname{mult}_P(M_H^2) \ge 4.$$

Corti's theorem ([5], Theorem 3.11). Let $O \in CS(X, M_X)$, where O is a simple double point of a 3-fold X and the log pair (X, M_X) is movable. Then

$$\operatorname{mult}_O(M_X) \ge 1.$$

What do we do now?

The local strategy: (1) use Shokurov's connectedness theorem and Corti's lemma to show that $CS(X, M_X)$ does not contain smooth points of X; (2) derive from Corti's theorem the canonicity of the log pair (X, M_X) at the point O.

Lemma I. $CS(X, M_X)$ contains no smooth points of X.

Proof. Assume that $CS(X, M_X)$ contains a smooth point P. Consider the log pair

$$(X, B_X) = (X, H_X + M_X),$$

where H_X is a sufficiently general hyperplane section of X passing through P. By construction,

$$P \in LCS(X, B_X).$$

Hence Shokurov's connectedness theorem yields

$$P \in \mathrm{LCS}(H_X, M_X|_{H_X}).$$

Next, the corollary to Corti's lemma shows that

$$\operatorname{mult}_P(M_X^2) = \operatorname{mult}_P((M_X|_{H_X})^2) \ge 4.$$

On the other hand,

$$2 = -K_X \cdot M_X^2 \ge \operatorname{mult}_P(M_X^2).$$

The inequality

$$2 = -K_X \cdot M_X^2 \ge 2 \operatorname{mult}_P^2(M_X)$$

in combination with Corti's theorem easily yields the following result.

Lemma II. (X, M_X) is canonical at O.

Thus, to prove the Core theorem we may assume that $CS(X, M_X)$ contains some irreducible reduced curve C.

The local strategy: (1) show that $\theta(C)$ is a line in \mathbb{P}^3 ; 2) prove that all components of $\theta^{-1}(\theta(C))$ belong to $\mathrm{CS}(X, M_X)$.

The inequality

$$2 = -K_X \cdot M_X^2 \ge \operatorname{mult}_C(M_X^2)(-K_X) \cdot C \ge -K_X \cdot C \ge \operatorname{deg} \theta(C)$$

brings us to the following result.

Lemma III. $-K_X \cdot C \leq 2$, and $\theta(C)$ is either a conic or a line.

Lemma IV. $\theta(C)$ is a line.

Proof. Assume the contrary. Then the above inequality shows that $-K_X \cdot C = 2$, $\theta(C)$ is a conic, $\theta|_C$ is an isomorphism, and

$$\operatorname{mult}_C(M_X) = 1.$$

We choose a sufficiently general divisor H in $|-K_X|$. H is a smooth K3 surface intersecting the curve C precisely at two distinct points, x_1 and x_2 . Let $g: V \to H$ be the blow up of x_1 and x_2 . Let $E_1 = g^{-1}(x_1)$ and $E_2 = g^{-1}(x_2)$. Then the linear system

$$|g^*(H|_H) - E_1 - E_2|$$

contains precisely one effective divisor D.

Note that D is a smooth curve of genus 2. On the other hand,

$$(g^{-1}(M_X|_H)) \sim_{\mathbb{Q}} g^*(H|_H) - E_1 - E_2$$

and

$$(g^{-1}(M_X|_H))^2 = 0$$

Hence the linear system |nD| has no fixed components for $n \gg 0$ and $D^2 = 0$. Thus, for some $n \gg 0$ the linear system |nD| is free and

$$\varphi_{|nD|}(V) = \mathbb{P}^1.$$

Hence, for $k \in (1, n]$ the fibration $\varphi_{|nD|}$ has a multiple fibre kD. This means that the genus of the curve D must be 1.

We can now complete the proof of the Core theorem.

Proof of the Core theorem. Assume that

$$\operatorname{CS}(X, M_X) \neq \emptyset$$
 and $\operatorname{CS}(X, M_X) \neq \{O\}$.

It follows from Lemmas I–IV that $CS(X, M_X)$ contains a smooth rational curve C such that $-K_X \cdot C = 1$. Moreover, $C \not\subset S$. Hence

$$\theta^{-1}(\theta(C)) = C \cup C',$$

where C' is a smooth rational curve such that $-K_X \cdot C' = 1$.

Consider now the pencil \mathcal{H} of surfaces in $|-K_X|$ containing C and C'. We choose a birational morphism $f: W \to X$ such that the pencil $f^{-1}(\mathcal{H})$ is free, W is smooth, and f is an isomorphism outside C and C'. Setting

$$(W, M_W) = (W, f^{-1}(M_X))$$

we fix a sufficiently general divisor D in the pencil $f^{-1}(\mathcal{H})$.

Two cases are now possible: the curves C and C' pass through the point O; the curves C and C' do not pass through the point O. In the first case we must show that

$$C' \in \mathrm{CS}(X, M_X)$$
 and $O \in \mathrm{CS}(X, M_X)$.

In the last case we must show that

$$C' \in \mathrm{CS}(X, M_X).$$

Assume that the curves C and C' pass through the point O. We may also assume that f is the composite of the blow up of O, the blow up of the proper transform of C, and the blow up of the proper transform of C'. Then

$$M_W|_D \sim_{\mathbb{Q}} (a(X, M_X, E)E + a(X, M_X, E_2)E_2)|_D,$$

where E and E_2 are the exceptional surfaces of the first and the third blow ups, respectively. On the other hand $E|_D$ and $E_2|_D$ are two smooth rational curves on the smooth K3 surface D that intersect transversally at one point. Hence

$$a(X, M_X, E) = a(X, M_X, E_2) = 0.$$

Assume now that the curves C and C' do not pass through the point O. We may also assume that f is the composite of the blow up of C and the blow up of the proper transform of C'. Then

$$M_W|_D \sim_{\mathbb{O}} a(X, M_X, E_2)E_2|_D,$$

where E_2 is the exceptional surface of the second blow up. On the other hand $E_2|_D$ is a smooth rational curve on the smooth K3 surface D, which shows that

$$a(X, M_X, E_2) = 0.$$

Bibliography

- Y. Kawamata, K. Matsuda, and K. Matsuki, "Introduction to the minimal model problem", Adv. Stud. Pure Math. 10 (1987), 283–360.
- [2] A. V. Pukhlikov, "Birational automorphisms of double spaces with singularities", J. Math. Sci. 85 (1997), 2128-2141.
- [3] V. V. Shokurov, "3-fold log models", J. Math. Sci. 81 (1996), 2667-2699.
- [4] V. V. Shokurov, "3-fold log flips", Izv. Ross. Akad. Nauk Ser. Mat. 56:1 (1992), 105–201; English transl. in Russian Acad. Sci. Izv. Math. 40 (1993).
- [5] A. Corti, "Singularities of linear systems and 3-fold birational geometry", *Explicit birational geometry of 3-folds*, Lond. Math. Soc. Lecture Note Series, vol. 281, Cambridge Univ. Press, Cambridge 2000, pp. 259–312.

Moscow

 $E\text{-}mail\ address:\ cheltsov@yahoo.com$

Received 11/JUN/99 Translated by I. CHELTSOV Typeset by AMS-TEX