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Factoriality of nodal three-dimensional varieties and
connectedness of the locus of log canonical singularities

I. A. Cheltsov

Abstract. Shokurov’s vanishing theorem is used for the proof of the
Q-factoriality of the following nodal threefolds: a complete intersection of
hypersurfaces F and G in P5 of degrees n and k, n > k, such that G is smooth
and |Sing(F ∩G)| 6 (n+k−2)(n−1)/5; a double cover of a smooth hypersur-
face F ⊂ P4 of degree n branched over the surface cut on F by a hypersurface
G ⊂ P4 of degree 2r > n, provided that |Sing(F ∩G)| 6 (2r + n− 2)r/4.

Bibliography: 71 titles.

§ 1. Introduction

Recall that a Weil divisor is a Q-Cartier divisor if some non-zero multiple of it is
a Cartier divisor and a variety 1 has Q-factorial singularities if each Weil divisor on
it is a Q-Cartier divisor; a variety is Q-factorial if its singularities are Q-factorial.
In particular, smooth varieties are Q-factorial.

The birational geometry of many singular varieties depends crucially on the
condition of Q-factoriality. For example, all Q-factorial nodal 2 (see [1]–[4]) and all
Q-factorial double covers of P3 branched over nodal sextic surfaces are non-rational
(see [5]–[7]). Of course, both results fail without the global topological condition of
Q-factoriality.

Example 1. As is well known, a nodal quartic threefold in P4 has at most 45
singular points (see [8], [9]). One can show that there exist nodal quartic threefolds
with an arbitrary number of singular points between 0 and 45 (see [9]), and there
exists a unique (see [10]) nodal quartic threefold B4 with 45 singular points, which
is called the Burkhardt quartic (see [11]–[14]) and can be defined by the equation

w4 − w(x3 + y3 + z3 + t3) + 3xyzt = 0 ⊂ P4 ∼= Proj (C[x, y, z, t, w]),

so that it is determinantal and rational. The quartic B4 is the unique invariant of
degree 4 of the simple group PSp(4,Z3) of order 25920 (see [15]–[18]), and singular
points of B4 correspond to the 45 tritangents of a smooth cubic surface, which is
related to the fact that the Weil group E6 is a non-trivial extension of the group
PSp(4,Z3) by Z2. It is easy to see that the quartic B4 contains a plane, which is
not a Cartier divisor because the plane is not cut on B4 by a hypersurface in P4.
On the other hand the local class group of an ordinary double point is Z, therefore

1All varieties are assumed to be projective, normal, and defined over C.
2A variety is said to be nodal if all its singularities are isolated ordinary double points.
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no non-zero multiple of the plane lying in B4 is a Cartier divisor either. Hence
the singularities of B4 are not Q-factorial. Moreover, it follows from [17] that
Cl(B4) ∼= Z16, whereas Pic(B4) ∼= Z by Lefschetz’s theorem (see [19], [20]).

Example 2. Let π : X → P3 be a double cover ramified in the Barth sextic surface

4(τ2x2 − y2)(τ2y2 − z2)(τ2z2 − x2)− t2(1 + 2τ)(x2 + y2 + z2 − t2)2 = 0

⊂ P3 ∼= Proj (C[x, y, z, t]),

where τ = (1 +
√

5)/2. Then X is nodal and |Sing(X)| = 65 (see [21]). One can
show that a nodal sextic in P3 has at most 65 singular points (see [22], [23]), and
there exist nodal sextics in P3 with an arbitrary number of singular points between 0
and 65 (see [24]), so that X has the maximum possible number of singular points.
Moreover, there exists a determinantal quartic threefold Y ⊂ P4 with 42 ordinary
double points such that the diagram

Y

ρ
���
�

� � // P4

γ
���
�

X
π
// P3

is commutative (see [25], [14]), where ρ is a birational map and γ is the projection
from an ordinary double point of Y . Hence X is rational because determinantal
quartics are rational. The rational map ρ is a composite of the blow-up of a singular
point of the quartic Y and a subsequent blow-down of the proper transforms of 24
lines on the quartic Y passing through the singular point blown up. A non-zero
multiple of the image of the exceptional divisor of the blow-up of the singular point
of Y cannot be a Cartier divisor on Y , so that X is not Q-factorial. Furthermore,
one can show that Pic(X) ∼= Z and Cl(X) ∼= Z14 (see [25]).

It is therefore natural to ask how the global topological condition of being
Q-factorial depends on the number of singular points of a nodal threefold. To
illustrate the general picture we consider nodal hypersurfaces. Let V be a nodal
hypersurface in P4 of degree n with at most ordinary double points. Then V is
Q-factorial if and only if

rkH2(V,Z) = rkH4(V,Z),

which always holds in the smooth case in view of the Poincaré duality. Moreover,
the following important result holds (see [26]–[29]).

Proposition 3. The hypersurface V is Q-factorial if and only if its singular points
impose independent linear conditions on global sections of the sheaf OP4(2n− 5).

In particular, V is Q-factorial if |Sing(V )| 6 2n− 4.

Remark 4. Let X be either a nodal complete intersection of two hypersurfaces
in P5 or a nodal double cover of a smooth hypersurface in P4. Then by Lefschetz’s
theorem for varieties with isolated singularities (see [30]) Pic(X) is generated either
by the class of a hyperplane section of X or by the pull-back of the class of a
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hyperplane section. The threefold X is usually said to be factorial in the case
when a similar result holds for the group Cl(X) However, the local class group of
an isolated ordinary double point is Z [31], therefore the following conditions are
equivalent:

– the variety V is Q-factorial;
– the variety V is factorial;
– Cl(V ) ∼= Pic(V );
– Cl(V ) ∼= Z;
– rkCl(V ) = 1.

We now consider the simplest example of a hypersurface V that is not Q-factorial.

Example 5. Let V be the hypersurface given by the equation

xg(x, y, z, t, w) + yf(x, y, z, t, w) = 0 ⊂ P4 ∼= Proj (C[x, y, z, t, w]),

where g and f are sufficiently general polynomials of degree n−1. Then V is nodal,
it contains the plane x = y = 0, and |Sing(V )| = (n − 1)2; in particular, V is not
Q-factorial.

As pointed out in [32], the problem of the Q-factoriality of nodal threefolds is
related to the Shokurov vanishing (see [33]–[36]). We illustrate this relation by the
following example.

Proposition 6. Let H be the linear system of hypersurfaces of degree k < n/2
in P4 passing through the singular points of V and let Ĥ = H |V . Suppose that
dim(Bs(Ĥ )) = 0. Then V is Q-factorial.

Proof. Let P be an arbitrary singular point of V . It follows from Proposition 3
that for the proof of the proposition we must find a hypersurface in P4 of degree
2n− 5 passing through all the points in Sing(V ) \ P , but not passing through P .

Assume first that dim(Bs(H )) = 0. Let Λ be the base locus of H . Then
Sing(V ) ⊆ Λ. Consider sufficiently general divisors H1, . . . ,Hs in H for s� 0, let
X = P4 and

BX =
4
s

s∑
i=1

Hi.

Let Sing(V ) \ P = {P1, . . . , Pr}, where the Pi are points of X. We consider the
blow-up f : V → X of all points in Sing(V ) \ P . Then

KV +
(
BV +

r∑
i=1

(multPi
(BX)− 4)Ei

)
+ f∗(H) = f∗((4k − 4)H)−

r∑
i=1

Ei,

where Ei = f−1(Pi), BV = f−1(BX), and H is a hyperplane in P4.
Let P = f−1(P ) and let

B̂V = BV +
r∑
i=1

(multPi(BX)− 4)Ei.
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Then the divisor B̂V is effective because multPi
(BX) > 4 for each i. Moreover,

multP (BX) > 4, therefore P is an isolated centre of log canonical singularities of
the log pair (V, B̂V ). On the other hand the map

H0

(
OV

(
f∗((4k − 4)H)−

r∑
i=1

Ei

))

→ H0

(
OL (V, bBV ) ⊗ OV

(
f∗((4k − 4)H)−

r∑
i=1

Ei

))

is surjective by Shokurov’s vanishing theorem (see Theorem 23), where L (V, B̂V ) is
the subscheme of log canonical singularities of the log pair (V, B̂V ). However, in
the neighbourhood of the point P the support of the subscheme L (V, B̂V ) contains
only the point P , therefore there exists an effective divisor

D ∈
∣∣∣∣f∗((4k − 4)H)−

r∑
i=1

Ei

∣∣∣∣
not passing through the point P . Therefore, the divisor f(D) is a hypersurface of
degree 4k−4 in P4 passing through all points in the set Sing(V )\P , but not passing
through P . By assumption 4k − 4 6 2n− 5, so that there exists a hypersurface of
degree 2n− 5 in P4 containing the set Sing(V ) \ P and not passing through P .

In the general case we can apply the previous arguments to the linear system Ĥ
instead of H setting X = V , and then use the projective normality of the hyper-
surface V .

Corollary 7. Let Sing(V ) ⊂ P4 be a set-theoretical intersection of hypersurfaces
of degree k < n/2. Then the hypersurface V is Q-factorial.

As shown in [37], if Sing(V ) < (n−1)2, then each smooth surface in V is a Cartier
divisor . It is natural to expect that V is Q-factorial for |Sing(V )| < (n−1)2, which
is proved however only for n 6 4 (see [38], [39]). The arguments used in the
proof of Proposition 6, and the properties of linear systems on rational surfaces
enabled us to prove in [32] that the hypersurface V is Q-factorial in the case when
|Sing(V )| 6 (n− 1)2/4.

The main result of the present paper is as follows.

Theorem 8. The following nodal threefolds X are Q-factorial :
– X is the complete intersection of hypersurfaces F and G of degrees n

and k, respectively, in P5 such that G is smooth, n > k, and |Sing(X)| 6
(n+ k − 2)(n− 1)/5;

– there exists a double cover η : X → F of a smooth hypersurface F of degree
n > 2 in P4 ramified in a surface S ⊂ F cut out on F by a hypersurface
G ⊂ P4 of degree 2r > n such that the number of singular points of S is at
most (2r + n− 2)r/4.

Nodal threefolds arise in a natural way in many problems of algebraic geometry.
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Example 9. Let Y be a general divisor of bidegree (2, 3) in P1 × P3 given by a
bihomogeneous equation

f3(x, y, z, w)s2 + g3(x, y, z, w)st+ h3(x, y, z, w)t2 = 0

in bihomogeneous coordinates (s : t; x : y : z : w) on P1 × P3 (see [40]), where
f3, g3, and h3 are sufficiently general homogeneous polynomials of degree 3. Let
ξ : Y → P3 be the natural projection. Then Y contains precisely 27 smooth rational
curves C1, C2, . . . , C27 such that −KY · Ci = 0 because the system of equations

f3(x, y, z, w) = g3(x, y, z, w) = h3(x, y, z, w) = 0

has precisely 27 solutions. The projection ξ has degree 2 outside the 27 curves Ci,
and

X = Proj
( ⊕
n>0

H0(Y,OV (−nKY ))
)

is a double cover of P3 branched over the nodal surface

g2
3(x, y, z, w)− 4f3(x, y, z, w)h3(x, y, z, w) = 0,

so that the threefold X is nodal with precisely 27 ordinary double points that are
the images of the smooth rational curves Ci contracted by the morphism

ϕ|−nKY | : Y → X

for some integer n � 0. The threefold X is not Q-factorial, and it is well known
that X is not rational (see [41]–[43]).

We point out, however that the geometry of nodal threefolds can be more com-
plicated than that of smooth ones, as seen in the following examples:

– each surface on a smooth hypersurface in P4 is a complete intersection by
Lefschetz’s theorem, which is no longer true in the nodal case (see Example 2);

– the birational automorphisms of a smooth quadric threefold form a finite
group (see [1]), which does not hold in the nodal case (see [2], [4]);

– smooth cubic threefolds are not rational (see [44]), while nodal ones are ratio-
nal.

An isolated ordinary double point has two small resolutions, which are birational
via an ordinary flop (see [27], [45]). Therefore, a nodal threefold with k singular
points has precisely 2k small resolutions, which must all be non-projective in the
Q-factorial case because each exceptional curve in that case must be homologous to
zero. It is therefore natural to expect that a singular nodal threefold is Q-factorial
if and only if all its small resolutions are non-projective. The following example,
which is due to Wotzlaw, shows that this is not true.

Example 10. Let I5 be the quintic hypersurface

x5 − 6x3
5

6∑
i=0

xi − 27x5

(( 5∑
i=0

xi

)2

− 4
5∑
i=0

5∑
j=i+1

xixj

)
− 648x0x1x2x3x4 = 0
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in P5 ∼= Proj (C[x0, x1, x2, x3, x4, x5]). Then I5 is invariant under the standard
action of the Weil group E6 on P5 by reflections; moreover, I5 is the unique invari-
ant of degree 5 of E6 under such action (see [16], § 6; [46]).

The singularities of the quintic I5 consist of 120 lines Li intersecting at 36
points Ok, i = 1, . . . , 120 and k = 1, . . . , 36, and the projectivization of the tangent
cone to I5 at each point Ok is isomorphic to the so-called Segre cubic (see [47],
[16], [46]), while at each point of the set

120⋃
i=1

Li \
36⋃
k=1

Ok

the quintic I5 is locally isomorphic to the product C×A, where A is a neighbour-
hood of a three-dimensional ordinary double point.

Let Hα be a hyperplane section of the quintic I5 corresponding to a general
point α ∈ (P5)∗, and let Tβ be a hyperplane section of I5 corresponding to a
general point β ∈ (I5)∗ ⊂ (P5)∗. In particular, Tβ is tangent to I5 at some point
P ∈ I5. There exist therefore a five-dimensional family of hyperplane sections Hα

of I5 and a four-dimensional family of tangent hyperplane sections Hβ . It follows
from [16] or from explicit computer-based calculations (see [48], [49]) that both
families are versal. By construction Hα is a nodal hypersurface in P4 of degree 5
with 120 ordinary double points Qi = Li ∩ Hα, and Tβ is a nodal hypersurface
of degree 5 with 121 ordinary double points Pi = Li ∩ Tβ and P . It follows by
Lefschetz’s theorem that

rkPic(Hα) = rkPic(Tβ) = 1,

but it follows from [50] that

rkCl(Hα) = rkCl(Tβ) = 25,

so that Hα and Tβ are not Q-factorial.
Let π : T̂β → Tβ be a small resolution and let Ci and C be curves on T̂β contracted

to the points Pi and P , respectively. Then

NC/bTβ

∼= NCi/bTβ

∼= OP1(−1)⊕ OP1(−1),

where C ∼= Ci ∼= P1.
Let ψ : Hα → Hα be a small resolution and τ : T̂β → T β a small contraction

of a smooth rational curve C into an ordinary double point P ∈ T β . Then P is
the unique singular point of T β , and the five-dimensional family of smooth three-
folds Hα is a smooth deformation of the threefold T β . Therefore, there exists an
exact sequence (see [27])

0 → H3(T̂β ,Z) → H3(T β ,Z) → H2(C,Z) → H2(T̂β ,Z) → H2(T β ,Z) → 0

and an isomorphism H2(T β ,Z) ∼= H2(Hα,Z); but

h2(T̂β ,Z) = rkCl(Tβ) = rkCl(Hα) = h2(Hα,Z),
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so that the natural map H2(C,Z) → H2(T̂β ,Z) takes the entire homology group
H2(C,Z) to zero. Hence the curve C on the smooth threefold T̂β is homologous to
zero, and therefore T̂β is not projective.

We consider now two examples inspired by [51] and [4].

Example 11. Let π : X → P3 be the double cover ramified along a nodal hyper-
surface S ⊂ P3 of degree 6 such that X can be defined by an equation

y2 + g2
3(x0, x1, x2, x3) = h1(x0, x1, x2, x3)f5(x0, x1, x2, x3)

in P(14, 3) ∼= Proj (C[x0, x1, x2, x3, y]), where g3, h1, and f5 are general polynomials
of degrees 3, 1, and 5, respectively, defined over R. Then X is not Q-factorial over C
because the divisor h1 = 0 on X splits into the union of two non Q-Cartier divisors
conjugate by means of Gal(C/R) and given by the equation(

y +
√
−1 g3(x0, x1, x2, x3)

)(
y −

√
−1 g3(x0, x1, x2, x3)

)
= 0.

The surface S ⊂ Proj (C[x0, x1, x2, x3]) has 15 ordinary double points, which are
defined on X by the equations

h1(x, y, z, w) = g3(x, y, z, w) = f5(x, y, z, w) = 0.

Introducing new variables α and β of weight 2 by the formulae

α =
y +

√
−1 g3(x0, x1, x2, x3)
h1(x0, x1, x2, x3)

=
f5(x0, x1, x2, x3)

y −
√
−1 g3(x0, x1, x2, x3)

,

β =
y −

√
−1 g3(x0, x1, x2, x3)
h1(x0, x1, x2, x3)

=
f5(x0, x1, x2, x3)

y +
√
−1 g3(x0, x1, x2, x3)

,

we can unproject X ⊂ P(14, 3) in the sense of [52] into two complete intersections

V̂ =

{
αh1(x0, x1, x2, x3) = y +

√
−1 g3(x0, x1, x2, x3)

α(y −
√
−1 g3(x0, x1, x2, x3)) = f5(x0, x1, x2, x3)

}
⊂ P(14, 3, 2),

V =

{
βh1(x0, x1, x2, x3) = y −

√
−1 g3(x0, x1, x2, x3)

β(y +
√
−1 g3(x0, x1, x2, x3)) = f5(x0, x1, x2, x3)

}
⊂ P(14, 3, 2),

which are not defined over R. Eliminating the variable u we obtain the isomor-
phisms

V̂ ∼= {α2h1 − 2
√
−1αg3 − f5 = 0} ⊂ P(14, 2),

V ∼= {β2h1 + 2
√
−1βg3 − f5 = 0} ⊂ P(14, 2).

The maps ρ̂ : X 99K V̂ and ρ : X 99K V fit in a commutative diagram

Ŷbψ
����

��
��

� bϕ
��>

>>
>>

>>
> Y

ϕ

����
��

��
�� ψ

��>
>>

>>
>>

V̂ X
bρ //_______ρoo_ _ _ _ _ _ _ V
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with birational morphisms ϕ̂, ψ̂, ϕ, and ψ such that ψ̂ and ψ are extremal
contractions in the sense of [53], while ϕ̂ and ϕ are flopping contractions.

It is easy to verify that the weighted hypersurfaces V̂ and V are quasismooth
(see [54]) and Q-factorial, with Picard group Z (see [55], [56], [57], [58]). In fact,
the weighted hypersurfaces V̂ and V are projectively isomorphic in P(14, 2) by the
natural action of the Galois group Gal(C/R) ∼= Z2. Thus,

Pic(Ŷ ) ∼= Pic(Y ) ∼= Z⊕ Z,

which shows that Ŷ and Y are Q-factorial and Cl(X) ∼= Z⊕ Z.
By construction the Gal(C/R)-invariant part of the group Cl(X) is Z, so that

the threefold X is Q-factorial over R and therefore not rational over R (see [7]),
but one can also show that X is not rational over C either [55]. Moreover, the
biregular involution of X interchanging the fibres of π induces a non-biregular
birational involution τ ∈ Bir(V̂ ), which is regularized by ρ̂ (see [59]).

Example 12. Let V ⊂ P4 be a general hypersurface of degree 4 with precisely one
ordinary double point O. Then V is Q-factorial and Pic(V ) ∼= Z. It is easy to see
that V can be described by an equation

t2f2(x, y, z, w) + tf3(x, y, z, w) + f4(x, y, z, w) = 0 ⊂ P4 = Proj (C[x, y, z, w, t]),

where O = (0 : 0 : 0 : 0 : 1). The threefold V is known to be non-rational, but
Bir(V ) 6= Aut(V ) since the projection ϕ : V 99K P3 from the singular point O has
degree 2 at a generic point of V and induces a non-biregular involution τ ∈ Bir(V ).

Let f : Y → V be the blow-up of the point O. Then the linear system |−nKY |
has no base points for some n� 0 and defines a birational morphism

g = ϕ|−nKY | : Y → X

contracting each curve Ci ⊂ Y such that f(Ci) is a line on the quartic threefold V
passing through the point O. The singularities of X are canonical Gorenstein. 3

We obtain next a double cover π : X → P3 ramified along the surface S ⊂ P3 given
by the equation

f2
3 (x, y, z, w)− 4f2(x, y, z, w)f4(x, y, z, w) = 0.

Each line f(Ci) corresponds to an intersection point of three surfaces

f2(x, y, z, w) = f3(x, y, z, w) = f4(x, y, z, w) = 0 ⊂ P3 = Proj (C[x, y, z, w]),

which gives one 24 distinct smooth rational curves C1, C2, . . . , C24 on Y such that

NCi/Y
∼= OCi

(−1)⊕ OCi
(−1),

and therefore g is a standard flopping contraction mapping each curve Ci into an
ordinary double point of the threefold X. In particular, the sextic S has precisely
24 ordinary double points. However, X is not Q-factorial and Cl(X) = Z⊕ Z.

3Canonical Gorenstein singularities are rational Gorenstein singularities (see [60]).
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We set ρ = g ◦ f−1. Then the involution γ = ρ ◦ τ ◦ ρ−1 is biregular on X and
interchanges the fibres of the double cover π. Thus, the map ρ is a regularization of
the birational non-biregular involution τ in the sense of [59], while the commutative
diagram

Y
f

~~~~
~~

~~
~

g

  @
@@

@@
@@

Y
g

~~~~
~~

~~
~

f

  @
@@

@@
@@

V
ρ //_______ X γ

// X V
ρoo_ _ _ _ _ _ _

is a decomposition of τ ∈ Bir(V ) into a sequence of so-called Sarkisov links (see
[53], [55], [61]).

Assume now that f2(x, y, z, w) and f4(x, y, z, w) are defined over Q, and let

f3(x, y, z, w) =
√

2 g3(x, y, z, w),

where g3(x, y, z, t) is also defined over Q. Then V is defined over the field Q(
√

2),
but not over Q, and V is not invariant under the action of Gal(Q(

√
2)/Q). However,

the sextic S ⊂ P3 has the equation

2g2
3(x, y, z, w)− 4f2(x, y, z, w)f4(x, y, z, w) = 0 ⊂ P3 = Proj (Q[x, y, z, w]),

therefore X is also defined over Q. Moreover, the Gal(Q(
√

2 )/Q)-invariant part of
Cl(X) is Z, so that X is Q-factorial and non-rational over Q.

The author cordially thanks L.W̃otzlaw, M. M. Grinenko, V. A. Iskovskikh,
J. Park, Yu. G. Prokhorov, A.V. Pukhlikov, and V. V. Shokurov for helpful conver-
sations.

§ 2. Preliminaries

The following result is well known ([29], [26], [62], [27], [28]).

Theorem 13. Let W be a smooth fourfold and Y ⊂ W an ample reduced and
irreducible divisor such that all singularities of Y are nodal and

h2(Ω1
W ) = h3(Ω1

W ⊗ OW (−Y )) = h1(OW ) = h2(OW ) = 0.

Let Ỹ be a small resolution of Y . Then h1(OeY ) =h2(OeY ) = 0, h1(Ω1eY ) =h1(Ω1
W )+δ

and

h2(Ω1eY ) = h0(KW ⊗ OW (2Y )) + h3(OW )− h0(KW ⊗ OW (Y ))

− h3(Ω1
W )− h4(Ω1

W ⊗ OW (−Y ))− |Sing(Y )|+ δ,

where δ is the number of dependent conditions that vanishing at the nodes of Y
imposes on global sections of the line bundle KW ⊗ OW (2Y ).

The following result is a consequence of Theorem 13 in [29].

Corollary 14. Let W be a smooth fourfold and Y a reduced and irreducible divisor
on W with nodal singularities. Let

h2(Ω1
W ) = h1(OW ) = h2(OW ) = 0,



396 I. A. Cheltsov

and assume that singular points of Y impose independent linear conditions on global
sections of the line bundle KW ⊗ OW (2Y ). Then Y is Q-factorial.

The following result is proved in [63].

Theorem 15. Let π : Y → P2 be a blow-up of points P1, . . . , Ps such that

s 6
d2 + 9d+ 10

6
,

and at most k(d+3−k)−2 points among the Pi lie in a curve of degree k 6 (d+3)/2
for some integer d > 3. Then the linear system∣∣∣∣π∗(OP2(d))−

s∑
i=1

Ei

∣∣∣∣
where Ei = π−1(Pi), has no base points.

In the case d = 3 the assertion of Theorem 15 is the base-point freeness of the
anticanonical system of a weak del Pezzo surface of degree 9− s > 2 (see [64]–[66]).

Corollary 16. Let Σ be a finite subset of P2 and d > 3 an integer such that

|Σ| 6 d2 + 9d+ 16
6

,

and at most k(d+3−k)−2 points in the set Σ lie on a (possibly reducible) curve P2

of degree k 6 (d+ 3)/2. Then for each point P in Σ there exists a curve C ⊂ P2 of
degree d passing through all points in the set Σ \ P , but not passing through P .

Theorem 15 was improved in [67] in the following way.

Theorem 17. Let π : Y → P2 be a blow-up of points P1, . . . , Ps in P2 such that

s 6 max
{⌊

d+ 3
2

⌋(
d+ 3−

⌊
d+ 3

2

⌋)
− 1,

⌊
d+ 3

2

⌋2}
,

and at most k(d + 3 − k) − 2 points among {P1, . . . , Ps} lie on a curve of degree
k 6 (d+ 3)/2 for some integer d > 3. Then the linear system∣∣∣∣π∗(OP2(d))−

s∑
i=1

Ei

∣∣∣∣
where Ei = π−1(Pi), has no base points.

§ 3. Connectedness principle

Let (X,BX) be a log pair, that is, X is a variety and BX =
∑k
i=1 aiBi, where ai

is a rational number and Bi is an effective irreducible reduced divisor. One usually
assumes (see [68]) that for all indices i we either have ai > 0 or ai ∈ [0, 1]. We do not
make this agreement, but assume for simplicity that X has Q-factorial singularities.
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In particular, the divisor KX+BX is Q-Cartier. We observe that BX is often called
the boundary of the log pair (X,BX).

Let f : V → X be a birational morphism such that V has Q-factorial singulari-
ties. We set

BV = f−1(BX)−
n∑
i=1

a(X,BX , Ei)Ei,

where a(X,BX , Ei) ∈ Q, Ei is an f -exceptional divisor for each i, and we have the
relation

KV +BV ∼Q f∗(KX +BX),

which is easily seen to define BV uniquely. Then the log pair (V,BV ) is called the
log pull-back of the log pair (X,BX).

Definition 18. A proper irreducible subvariety Y ⊂ X is called a centre of log
canonical singularities of the log pair (X,BX) if there exists a birational morphism
f : W → X and a (not necessarily f -exceptional) divisor E ⊂ W such that W
has Q-factorial singularities and E lies in the support of the effective part of the
divisor bBY c.

We shall denote the set of all centres of log canonical singularities of the log pair
(X,BX) by LCS(X,BX). In a similar way, the union of all centres of log canonical
singularities of the log pair (X,BX) regarded as a proper subset of X is usually
called the locus of log canonical singularities and is denoted by LCS(X,BX).

Example 19. Let O be a smooth point on X. Then it follows from the inequality
multO(BX) > dim(X) that O ∈ LCS(X,BX). Moreover, if O ∈ LCS(X,BX) and
the boundary BX is effective, then multO(BX) > 1.

Remark 20. Let H be a general hyperplane section of the variety X and Z a sub-
variety of the variety X that is an element of LCS(X,BX). Then each component
of the intersection Z ∩H belongs to LCS(H,BX |H).

Example 21. Let O be a smooth point of the variety X that is an element of
LCS(X,BX). Let f : V → X be the blow-up of the point O and E the f -exceptional
divisor. Then either E ∈ LCS(V,BV ) or there exists a proper irreducible sub-
variety Z ⊂ E that is a centre of log canonical singularities of the log pair (V,BV ).
Moreover, the exceptional divisor E is a centre of log canonical singularities of the
log pair (V,BV ) if and only if multO(BX) > dim(X).

Let f : Y → X be a birational morphism, where Y is a smooth variety and the
union of all divisors f−1(Bi) and all f -exceptional divisors is a divisor with simple
normal crossings. Then one usually calls f a log resolution of the log pair (X,BX).
For the log pull-back (Y,BY ) of the log pair (X,BX) we have the relation

KY +BY ∼Q f∗(KX +BX).

Definition 22. The subscheme associated with the ideal sheaf

I (X,BX) = f∗(d−BY e),

is called the log canonical singularity subscheme of (X,BX); it is denoted by
L (X,BX).
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We point out that Supp(L (X,BX)) = LCS(X,BX) ⊂ X. The following result
is Shokurov’s vanishing theorem (see [33]–[36]).

Theorem 23. Assume that BX is effective. Let H be an arbitrary nef and big
divisor 4 on X such that D = KX +BX +H is numerically equivalent to a Cartier
divisor. Then Hi(X,I (X,BX)⊗D) = 0 for all i > 0.

Proof. It follows by the Kawamata–Vieweg vanishing theorem that

Rif∗(f∗(KX +BX +H) + d−BW e) = 0

for all i > 0 (see [68]–[70]). The degeneracy of the local-to-global spectral sequence
and the equality

R0f∗(f∗(KX +BX +H) + d−BW e) = I (X,BX)⊗D

yield the equalities

Hi(X,I (X,BX)⊗D) = Hi(W, f∗(KX +BX +H) + d−BW e)

for i > 0. On the other hand,

Hi(W, f∗(KX +BX +H) + d−BW e) = 0

for i > 0 by the Kawamata–Vieweg vanishing theorem.

For an arbitrary Cartier divisor D on the variety X consider the exact sequence
of sheaves

0 → I (X,BX)⊗D → OX(D) → OL (X,BX)(D) → 0

and the corresponding exact sequence of cohomology groups

H0(OX(D)) → H0(OL (X,BX)(D)) → H1(I (X,BX)⊗D).

Theorem 23 immediately yields the following result, usually called Shokurov’s
connectedness principle for the locus of log canonical singularities.

Theorem 24. Let BX be an effective boundary and let −(KX +BX) be a nef and
big divisor. Then the set LCS(X,BX) ⊂ X is connected.

We now consider the following application of Theorem 23 (see [32]).

Lemma 25. Let Σ be a finite subset of Pn and M the linear system of all hypersur-
faces of degree k passing through all points in Σ. Assume that the base locus of M
is zero-dimensional. Then the points in Σ impose independent linear conditions on
hypersurfaces in Pn of degree n(k − 1).

4We point out that a Q-Cartier divisor H ∈ Div(X)⊗Q is said to be numerically effective or
nef if for each curve C ⊂ X one has H · C > 0. A numerically effective divisor H on a variety X
is said to be big if Hn > 0, where n = dim(X).
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Proof. Let Λ be the base locus of the linear system M . Then Σ ⊆ Λ. LetH1, . . . ,Hs

be general divisors in M , where s� 0. We set X = Pn and

BX =
n

s

s∑
i=1

Hi.

Then
Supp(L (X,BX)) = Λ,

where L (X,BX) is the subscheme of log canonical singularities of the log pair
(X,BX).

It is sufficient for the proof to construct for an arbitrary point P ∈ Σ a hypersur-
face of degree n(k−1) in Pn passing through all points in Σ\P , but not through P .

Let Σ \ P = {P1, . . . , Pk}, where the Pi are points in X = Pn. Consider the
blow-up f : V → X of all points in Σ \ P . Then

KV +
(
BV +

k∑
i=1

(multPi(BX)− n)Ei

)
+ f∗(H) = f∗(n(k − 1)H)−

k∑
i=1

Ei,

where Ei = f−1(Pi), BV = f−1(BX), and H is a hypersurface in Pn. By construc-
tion

multPi(BX) = nmultPi(M ) > n,

and the divisor

B̂V = BV +
k∑
i=1

(multPi
(BX)− n)Ei

is effective.
Let P = f−1(P ). Then

P ∈ LCS(V, B̂V )

and P is an isolated centre of log canonical singularities of the log pair (V, B̂V )
because the birational morphism f : V → X is an isomorphism in a neighbourhood
of P .

On the other hand, the map

H0

(
OV

(
f∗(n(k − 1)H)−

k∑
i=1

Ei

))

→ H0

(
OL (V, bBV ) ⊗ OV

(
f∗(n(k − 1)H)−

k∑
i=1

Ei

))
is surjective by Theorem 23. However, in the neighbourhood of P the support of
the scheme L (V, B̂V ) consists of the point P alone, therefore there exists a divisor

D ∈
∣∣∣∣f∗(n(k − 1)H)−

k∑
i=1

Ei

∣∣∣∣
not passing through P . Hence f(D) is a hypersurface in PPPn of degree n(k − 1)
passing through all the points in Σ\P , but avoiding P ∈ Σ. The proof is complete.
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§ 4. Complete intersections in PPP5

Let X be a complete intersection of hypersurfaces F and G in P5 such that the
singularities of X are nodal. We set n = deg(F ) and k = deg(G) and assume that
n > k.

Example 26. Let F and G be general hypersurfaces in P5 containing a plane
Π ⊂ P5. Then X is nodal and not Q-factorial, both F and G are smooth, and
|Sing(X)| = (n+ k − 2)2.

The following result is proved in [71].

Theorem 27. Suppose that G is smooth and |Sing(X)| 6 3n/8. Then X is
Q-factorial.

In this section we prove the following result.

Theorem 28. Suppose that G is smooth and |Sing(X)| 6 (n + k − 2)(n − 1)/5.
Then X is Q-factorial.

Theorem 28 fails in the case when the hypersurface G is singular.

Example 29. Let Q be a smooth quadric surface in P5, G a cone over Q the
vertex of which is a general line L ⊂ P5, F a general hypersurface of degree n,
and X the complete intersection of the hypersurfaces G and F . Then X is a nodal
threefold of degree 2n and |Sing(X)| = n. Let Ω be a linear subspace of P5 spanned
by L and a line lying in Q. Then Ω ⊂ G, the surface Ω∩F has degree n and is not
a Q-Cartier divisor on X.

For k = 1 the assertion of Theorem 28 follows from [32].

Conjecture 30. Suppose that G is smooth and |Sing(X)| 6 (n + k − 2)2. Then
the threefold X is Q-factorial.

The following result is a consequence of Corollary 14.

Proposition 31. Suppose that G is smooth. Then X is Q-factorial if its singular
points impose independent linear conditions on sections in H0(OP5(2n+ k− 6)|G).

Corollary 32. Suppose that G is smooth and that |Sing(X)| 6 2n+k−5. Then X
is Q-factorial.

The variety X is Q-factorial if and only if the group Cl(X) is generated by the
class of a hyperplane section of X (see Remark 4). In particular, if X is Q-factorial,
then each surface in X is a complete intersection in P5.

We now prove Theorem 28.

Proof of Theorem 28. Suppose that |Sing(X)| 6 (n + k − 2)(n − 1)/5, and let G
be a smooth hypersurface. We observe that n = deg(F ) > k = deg(G). We claim
that the singular points of the complete intersection X ⊂ P5 impose independent
linear conditions on a hypersurface in P5 of degree 2n + k − 6, which yields the
result of Theorem 28. We shall assume that k > 2 and n > 5, since for k = 1
the result of Theorem 28 is a consequence of [32], and for 4 > n > k > 2 it is an
easy consequence of Corollary 32.
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Lemma 33. There exists a hypersurface F̂ ⊂ P5 of degree n such that the three-
fold X is a complete intersection of F̂ and G, but Sing(F̂ ) ⊆ Sing(X).

Proof. Assume that X is given by a system of equations{
f(x0, x1, x2, x3, x4, x5) = 0,
g(x0, x1, x2, x3, x4, x5) = 0

⊂ P5 ∼= Proj (C[x0, x1, x2, x3, x4, x5]),

where f and g are homogeneous polynomials of degrees n and k defining the hyper-
surfaces F and G, respectively. Consider the linear system

L =
∣∣λf + h(x0, x1, x2, x3, x4, x5)g

∣∣ ⊂ |OP5(n)|,

where λ ∈ C and h is a homogeneous polynomial of degree n − k. Then the base
locus of the linear system L is the variety X. By Bertini’s theorem there exists a
hypersurface F̂ ⊂ L with the required properties.

We shall assume that Sing(F ) ⊆ Sing(X).

Definition 34. The points in a subset Γ of Pr have property (?) if a curve of degree
t ∈ N in Pr contains at most t(n+ k − 2) points in Γ.

Let Σ = Sing(X) ⊂ P5.

Proposition 35. The points in Σ ⊂ P5 have property (?).

Proof. The hypersurface F ⊂ P5 can be defined by an equation

f(x0, x1, x2, x3, x4, x5) = 0 ⊂ P5 ∼= Proj (C[x0, x1, x2, x3, x4, x5]),

where f is a homogeneous polynomial of degree n and G ⊂ P5 can be defined by
an equation

g(x0, x1, x2, x3, x4, x5) = 0 ⊂ P5 ∼= Proj (C[x0, x1, x2, x3, x4, x5]),

where g is a homogeneous polynomial of degree k. Then the set Σ is defined by the
vanishing of the polynomials f and g and of all the minors of order 1 of the matrix

∂f

∂x0

∂f

∂x1

∂f

∂x2

∂f

∂x3

∂f

∂x4

∂f

∂x5

∂g

∂x0

∂g

∂x1

∂g

∂x2

∂g

∂x3

∂g

∂x4

∂g

∂x5

 ,

so that Σ is a set-theoretical intersection of hypersurfaces of degree n+k− 2 in P5,
which completes the proof.

Consider an arbitrary point P ∈ Σ. We must show the existence of a hypersurface
in P5 of degree 2n+k−6 that contains the set Σ\P and does not contain P , which
will prove Theorem 28 since P can be arbitrary.

Lemma 36. Let Π ⊂ P5 be a plane such that Σ ⊂ Π ⊂ P5. Then there exists a
hypersurface of degree 2n+ k− 6 in P5 containing the set Σ \P and not containing
P ∈ Σ.
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Proof. We wish to apply Corollary 16 to Σ ⊂ Π and d = 2n+ k − 6 > 6. We shall
verify that all the assumptions of Corollary 16 are satisfied.

We must show that |Σ| 6 (d2 + 9d+ 16)/6. Assume that |Σ| > (d2 + 9d+ 16)/6.
Then

(n+ k − 2)(n− 1)
5

>
(2n+ k − 6)2 + 9(2n+ k − 6) + 16

6

for n > 5 and k > 2. We set A = n+ k > 7; then

0 > (A+ n− 6)2 + 9(A+ n− 6) + 16− 6An

= 5A2 − 3A− 10 + 5n2 − 3n+ 4An > 464,

which is a contradiction.
We must now show that at most t(2n+ k − 3− t)− 2 points in the set Σ lie on

a curve of degree t 6 (2n+ k− 3)/2. However, at most t(n+ k− 2) points of Σ lie
on a curve of degree t by Proposition 35. In particular, for t = 1 we have

t(2n+ k − 3− t)− 2 = 2n+ k − 6 > n+ k − 2 = t(n− 1)

because n > 5. In the case when t > 1 it is sufficient to show that

t(2n+ k − 3− t)− 2 > t(n+ k − 2)

for each t 6 (2n+ k − 3)/2 such that t(2n+ k − 3− t)− 2 < |Σ|. We have

t(2n+ k − 3− t)− 2 > t(n+ k − 2) ⇐⇒ n− 1 > t

for t > 1. We can therefore assume that t > n− 1, in which case

t(2n+ k − 3− t)− 2 > (n− 1)(n+ k − 2) > |Σ|.

It therefore follows by Corollary 16 that there exists a curve C ⊂ Π of degree
2n + k − 6 containing the set Σ \ P , but not containing P . Let Y be a general
four-dimensional cone in P5 over the curve C. Then Y is the required hypersurface.

Let Π and Γ be sufficiently general hypersurfaces in P5 and

ψ : P5 99K Π

the projection from Γ. We set Σ′ = ψ(Σ) ⊂ Π ∼= P2 and P̂ = ψ(P ) ∈ Σ′.

Lemma 37. Assume that the points of Σ′ ⊂ Π have property (?). Then there
exists a hypersurface of degree 2n + k − 6 in P5 containing the set Σ \ P and not
containing P ∈ Σ.

Proof. The proof of Lemma 36 yields the existence of a curve C ⊂ Π of degree
2n + k − 6 containing Σ′ \ P̂ but not passing through the point P̂ . Let Y ⊂ P5

be the four-dimensional cone over C whose vertex is Γ. Then Y is the required
hypersurface.
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We can thus assume that the points of the set

Σ′ ⊂ Π ∼= P2

do not have property (?). Hence there exists Λ1
r ⊂ Σ such that |Λ1

r| > r(n+ k− 2),
while the set

Λ̃1
r = ψ(Λ1

r) ⊂ Σ′ ⊂ Π ∼= P2

lies in a curve C ⊂ Π of degree r. Moreover, we can assume that r is the smallest
positive integer with this property, so that the curve C is irreducible and reduced.

We iterate the construction of Λ1
r ⊂ Σ and obtain a disjoint union of subsets

Λij ⊂ Σ, j = r, . . . , l > r, such that |Λij | > j(n+ k − 2), the points of the set

Λ̃ij = ψ(Λij) ⊂ Σ′

lie on an irreducible curve in Π ∼= P2 of degree j, and the points of the subset

Σ = Σ′ \
l⋃

j=r

cj⋃
i=1

Λ̃ij ( Σ′ ⊂ Π ∼= P2

satisfy property (?), where cj > 0 is the number of the subsets Λ̃ij .
By construction cr > 0 and

|Σ| < (n+ k − 2)(n− 1)
5

−
l∑
i=r

ci(n− 1)i =
n+ k − 2

5

(
n− 1−

l∑
i=r

5ici

)
. (1)

Corollary 38. The inequality
∑l
i=r ici < (n− 1)/5 holds.

In particular, if Λij 6= ∅, then we have j < (n− 1)/5.

Lemma 39. Suppose that Λij 6= ∅. Let M be a linear system of hypersurfaces
in P5 of degree j containing Λij . Then the base locus of M is zero-dimensional.

Proof. It follows by the construction of the set Λij that all points in the subset

Λ̃ij = ψ(Λij) ⊂ Σ′ ⊂ Π ∼= P2

lie in an irreducible curve C ⊂ Π of degree j. Let Y be a cone over C in P5 whose
vertex is some plane Υ ⊂ P5. Then Y is a hypersurface in P5 of degree j containing
all the points of the set Λij , therefore Y ∈ M .

Assume that the base locus of the linear system M contains an irreducible curve
Z ⊂ P5. Then Z ⊂ Y . However, it follows from the generality of ψ and the
irreducibility of Z and C that ψ(Z) = C and

Λij ⊂ Z,

and the restriction ψ|Z : Z → C is a birational morphism; in particular, we have the
equality deg(Z) = j; but Z contains at least |Λij | > j(n+ k − 2) points of Σ ⊂ P4,
which is impossible by Proposition 35.



404 I. A. Cheltsov

Corollary 40. The inequality r > 2 holds.

Let Ξij ⊂ P5 be the base locus of the linear system of hypersurfaces of degree j
in P5 containing the set Λij . For Λij = ∅ we set Ξij = ∅. Then Ξij is a finite subset
of P5 by Lemma 39, and we have Λij ⊆ Ξij .

Lemma 41. Suppose that Ξij 6= ∅. Then the points in the set Ξij impose indepen-
dent linear conditions on hypersurfaces of degree 5(j − 1) in P5.

This follows from Lemma 25.
In particular, the points in Λij impose independent linear conditions on the hyper-

surfaces in P5 of degree 5(j − 1), provided that Λij 6= ∅.

Lemma 42. Suppose that Σ = ∅. Then there exists a hypersurface in P5 of degree
2n+ k − 6 containing all points in the set Σ \ P and not containing P ∈ Σ.

Proof. We have a disjoint union of subsets

Σ =
l⋃

j=r

cj⋃
i=1

Λij ,

and therefore there exists a unique set Λba containing the point P . In particular, P
also lies in Ξba, although it is possible in principle that P lies in several sets Ξij .

It follows from Lemma 41 that for each non-empty set Ξij containing P there
exists a hypersurface of degree 5(j− 1) passing through all points in the set Ξij \P ,
but not containing the point P . On the other hand, we see from the construction
of the sets Ξij that for each non-empty set Ξij not containing P there exists a
hypersurface of degree j passing through all the points in Ξij and not containing P .

We have j < 5(j − 1) because j > r > 2 (see Corollary 40).
Thus, for each Ξij containing P there exists a hypersurface F ij ⊂ P5 of degree

5(j − 1) that contains the set Ξij \ P , but does not contain the point P . Consider
the hypersurface

F =
l⋃

j=r

cj⋃
i=1

F ij ⊂ P5

of degree
∑l
i=r 5(i−1)ci. Then F contains Σ\P and does not contain P ; moreover,

deg(F ) =
l∑
i=r

5(i− 1)ci <
l∑
i=r

5ici 6 n− 1 6 2n+ k − 6

by Corollary 38 because n > 5.

Let Σ̂ =
⋃l
j=r

⋃cj

i=1 Λij and Σ̌ = Σ \ Σ̂. Then Σ = Σ̂ ∪ Σ̌ and ψ(Σ̌) = Σ ⊂ Π.

Remark 43. It follows from the proof of Lemma 42 that there exists a hypersurface
F ⊂ P5 of degree

∑l
i=r 5(i− 1)ci such that F passes through all the points of the

subset Σ̂ \ P ( Σ and does not contain the point P ∈ Σ.
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We set d = 2n+k−6−
∑l
i=r 5(i−1)ci. We shall verify that the subset Σ ⊂ Π ∼= P2

and the positive integer d satisfy all conditions of Theorem 15. We can assume that
Σ̂ 6= ∅ and Σ̌ 6= ∅.

Lemma 44. The inequality d > 5 holds.

This follows from Corollary 38 because cr > 1.

Lemma 45. The inequality |Σ| 6 (d2 + 9d+ 10)/6 holds.

Proof. We shall show that 6(n+ k − 2)
(
n− 1−

∑l
i=r 5ici

)
does not exceed

5
(

2n+ k − 6−
l∑
i=r

5(i− 1)ci

)2

+ 45
(

2n+ k − 6−
l∑
i=r

5(i− 1)ci

)
+ 50,

which will yield the required result because

|Σ| < (n+ k − 2)
5

(
n− 1− 5

l∑
i=r

ici

)
by inequality (1).

Assume that the inequality in question fails. We set A = n− 1−
∑l
i=r 5ici and

B =
∑l
i=r 5ci. Then

6A(n+ k − 2) > 5(A+ n+ k − 5 +B)2 + 45(A+ n+ k − 5 +B) + 50,

which is impossible since A > 0 by Corollary 38 and n > 5.

Lemma 46. At most t(d+ 3− t)− 2 points in the set Σ lie on a curve of degree t
in P2 for each t 6 (d+ 3)/2.

Proof. First, let t = 1. Then

t(d+ 3− t)− 2 = d = 2n+ k − 6−
l∑
i=r

5(i− 1)ci > n+ k − 5 +
l∑
i=r

5ci

> n+ k − 5 + 5cr > n+ k − 2

by Corollary 38. This means that at most d points in Σ lie on a line in P2 by
Proposition 35.

Assume now that t > 1. The points in Σ ⊂ P2 have property (?), therefore at
most (n+k−2)t points in Σ lie on a curve of degree t in P2. It is therefore sufficient
to show that

t(d+ 3− t)− 2 > (n+ k − 2)t

for all t > 1 such that t 6 (d+ 3)/2 and t(d+ 3− t)− 2 < |Σ|.
It is easy to see that

t(d+ 3− t)− 2 > t(n+ k − 2) ⇐⇒ n− 1−
l∑
i=r

5(i− 1)ci > t
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because t > 1. Assume that

n− 1−
l∑
i=r

5(i− 1)ci 6 t 6
d+ 3

2

and t(d+ 3− t)− 2 < |Σ|. We shall show that this leads to a contradiction.
Let g(x) = x(d+ 3− x)− 2. Then g(x) increases for x 6 (d+ 3)/2. Hence

g(t) > g

(
n− 1−

l∑
i=r

5(i− 1)ci

)
,

therefore

n+ k − 2
5

(
n− 1−

l∑
i=r

5ici

)
> |Σ| > g(t) > g

(
n− 1−

l∑
i=r

5(i− 1)ci

)
.

Let A = n− 1−
∑l
i=r 5ici and B =

∑l
i=r 5ci. Then

A
n+ k − 2

5
> g(A+B),

where A > 0 by Corollary 38. Hence

0 > 4(n+ k − 2)(A+B) + 5(A+B)− 2 > 118,

which is a contradiction.

It follows by Lemmas 44–46 that we can apply Theorem 15 to Σ \ P̂ ⊂ Π ∼= P2

and the positive integer d. Hence there exists a curve C ⊂ Π of degree

2n+ k − 6−
l∑
i=r

5(i− 1)ci

containing Σ \ P̂ , but not containing P̂ = ψ(P ). Let G be the four-dimensional
cone in P5 over C with vertex Γ. Then G is a hypersurface of degree

2n+ k − 6−
l∑
i=r

5(i− 1)ci

containing Σ̌ \ P and avoiding P . On the other hand, it follows from Remark 43
that there exists a hypersurface F ⊂ P5 of degree

l∑
i=r

5(i− 1)ci

containing Σ̂ \ P and not containing P . Then F ∪ G is a hypersurface of degree
2n+ k − 6 in P5 containing Σ \ P and not containing P ∈ Σ, which completes the
proof of Theorem 28.
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§ 5. Double hypersurfaces in PPP4

Let η : X → F be a double cover such that F is a smooth hypersurface of degree
n > 2 and η is branched in a nodal surface S ⊂ F cut on the hypersurface F by a
hypersurface G ⊂ P4 of degree 2r > n. In this section we prove the following result.

Theorem 47. Suppose that |Sing(X)| 6 (2r + n− 2)r/4. Then X is Q-factorial.

The following result is a consequence of Corollary 14.

Proposition 48. The three-dimensional variety X is Q-factorial if and only if the
singular points of the surface S impose independent linear conditions on the sections
in H0(OP4(3r + n− 5)|F ).

Corollary 49. Suppose that |Sing(X)| 6 3r + n− 4. Then X is Q-factorial.

We now prove Theorem 47. Assume that

|Sing(X)| 6 (2r + n− 2)r
4

.

We shall show that the singular points of S ⊂ P4 impose independent linear condi-
tions on hypersurfaces of degree 3r − n− 5. We can assume that r > 3 and n > 2
because otherwise the assertion of Theorem 47 follows from Corollary 49 and [32].

Lemma 50. There exists a hypersurface Ĝ ⊂ P4 of degree 2r such that the sur-
face S is a complete intersection of Ĝ and F , but Sing(Ĝ) ⊆ Sing(S).

Proof. See the proof of Lemma 33.

We can thus assume that Sing(G) ⊆ Sing(S).
Let Σ = Sing(S) ⊂ P4, and let P be an arbitrary point in Σ. We must prove the

existence of a hypersurface of degree 3r+ n− 5 in P4 that contains Σ \P and does
not contain P . It follows from the proof of Proposition 35 that at most t(2r+n−2)
points in the set Σ can lie on a curve of degree t ∈ N in P4.

Lemma 51. Let Π ∼= P2 be a plane such that Σ ⊂ Π ⊂ P4. Then there exists a
hypersurface of degree 3r+n− 5 in P4 containing Σ \P and not containing P ∈ Σ.

Proof. We shall verify all the conditions of Corollary 16 for the set Σ ⊂ Π and the
integer d = 3r + n− 5 > 6.

The inequality

|Σ| 6 d2 + 9d+ 16
6

is obvious because r > 3, 2r > n, and |Σ| 6 (2r+n−2)r/4. We must therefore show
that at most t(3r+n−2−t)−2 points in Σ lie on a curve of degree t 6 (3r+n−2)/2
in P2. It is sufficient to show that

t(3r + n− 2− t)− 2 > t(2r + n− 2)

for all t such that t 6 (3r + n− 2)/2 and t(3r + n− 2− t)− 2 < |Σ|.
We can assume that t > 2 because 3r + n− 5 > 2r + n− 2. Then

t(3r + n− 2− t)− 2 > t(2r + n− 2) ⇐⇒ r > t.
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Assume that r 6 t for some positive integer t such that

t 6
3r + n− 2

2

and t(3r+n−2− t)−2 < |Σ|. Let g(x) = x(3r+n−2−x)−2. Then g(x) increases
for x < (3r + n− 2)/2, and therefore g(t) > g(r). Thus,

(2r + n− 1)r
4

> |Σ| > g(t) > g(r) = r(2r + n− 2)− 2,

which is impossible for r > 3.
It now follows by Corollary 16 that there exists a curve C ⊂ Π of degree 3r+n−5

passing through all the points in Σ \ P and not passing through P . Let Y be a
sufficiently general three-dimensional cone in P4 over C. Then Y is the required
hypersurface.

Let Π and Γ be a general plane and a line in P4, respectively. Let ψ : P4 99K Π
be the projection from the line Γ. We set Σ′ = ψ(Σ) ⊂ Π ∼= P2 and P̂ = ψ(P ) ∈ Σ′.

Lemma 52. Suppose that at most t(2r + n − 2) points of the set Σ′ can lie on a
(possibly reducible) curve Π ∼= P2 of degree t ∈ N. Then there exists a hypersurface
in P4 of degree 3r + n− 5 that contains the set Σ \ P and does not contain P ∈ Σ.

Proof. It follows by the proof of Lemma 51 that there exists a curve C ⊂ Π of
degree 3r + n − 5 containing the set Σ′ \ P̂ and not containing the point P̂ . Let
Y be a three-dimensional cone over C the vertex of which is the line Γ. Then Y is
the required hypersurface in P4.

We can thus assume that the points in the set

Σ′ ⊂ Π ∼= P2

fail the conditions of Lemma 52. Hence there exists a subset Λ1
k ⊂ Σ such that

|Λ1
k| > k(2r + n− 2), but all points of the set

Λ̃1
k = ψ(Λ1

k) ⊂ Σ′ ⊂ Π ∼= P2

lie in a curve C ⊂ Π of degree k. Moreover, we can assume that k is the minimum
positive integer with this property, so that C is irreducible and reduced.

We can iterate the construction of the set Λ1
k ⊂ Σ to obtain a disjoint union of

subsets Λij of Σ, j = k, . . . , l > k, such that |Λij | > j(2r + n− 2), the points of the
set

Λ̃ij = ψ(Λij) ⊂ Σ′

lie on an irreducible curve of degree j in Π and at most t(2r + n− 2) points of the
set

Σ = Σ′ \
l⋃

j=k

cj⋃
i=1

Λ̃ij ( Σ′ ⊂ Π ∼= P2

lie in a curve of degree t in P2, where cj > 0 is the number of subsets Λ̃ij .
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By construction we have ck > 0 and

|Σ| < (2r + n− 2)r
4

−
l∑

i=k

ci(2r + n− 2)i =
2r + n− 2

4

(
r −

l∑
i=k

4ici

)
. (2)

Corollary 53. The inequality
∑l
i=k ici < r/4 holds.

Lemma 54. Assume that Λij 6= ∅. Let M be the linear system of hypersurfaces of
degree j in P4 containing all points in the set Λij . Then the base locus of the linear
system M is zero-dimensional.

Proof. See the proof of Lemma 39.

Corollary 55. The inequality k > 2 holds.

Let Ξij ⊂ P4 be the base locus of the linear system of hypersurfaces of degree j
in P4 that contain the set Λij . For Λij = ∅ we set Ξij = ∅. Then Ξij is a finite subset
of P4 by Lemma 54, and Λij ⊆ Ξij .

Lemma 56. Suppose that Ξij 6= ∅. Then the points of Ξij impose independent
linear conditions on hypersurfaces of degree 4(j − 1) in P4.

Proof. This follows by Lemma 25.

In particular, the points in Λij impose independent linear conditions on hyper-
surfaces of degree 4(j − 1) in P4 if Λij 6= ∅.

Lemma 57. Let Σ = ∅. Then there exists a hypersurface of degree 3r + n − 5
in P4 containing the set Σ \ P , but not containing the point P ∈ Σ.

Proof. See the proof of Lemma 42.

Let Σ̂ =
⋃l
j=k

⋃cj

i=1 Λij and Σ̌ = Σ \ Σ̂. Then Σ = Σ̂ ∪ Σ̌ and ψ(Σ̌) = Σ ⊂ Π.
Moreover, it follows from the proof of Lemma 57 that there exists a hypersurface
Υ ⊂ P4 of degree

∑l
i=k 4(i− 1)ci containing all points in the subset Σ̂ \P ( Σ and

not containing P ∈ Σ.
Let d = 3r+n−5−

∑l
i=k 4(i−1)ci. We shall verify that we can apply Theorem 15

to the subset Σ ⊂ Π ∼= P2 and the positive integer d; we can assume here that Σ̂ 6= ∅
and Σ̌ 6= ∅.

Lemma 58. The inequality d > 3 holds.

This follows from Corollary 53 because r > 3 and ck > 1.

Lemma 59. The inequality |Σ| 6 (d2 + 9d+ 10)/6 holds.

Proof. We shall show that

6(2r + n− 2)
(
r −

l∑
i=k

4ici

)
6 4(d2 + 9d+ 10),
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which yields the required result. Assume that

6(2r + n− 2)
(
r −

l∑
i=k

4ici

)
> 4(d2 + 9d+ 10),

and let A = r −
∑l
i=k 4ici and B =

∑l
i=k ci. Then we see that

6A(2r + n− 2) > 4(2r + n− 5 +A+ 4B)2 + 36(2r + n− 5 +A+ 4B) + 40,

where A > 0 by Corollary 53 and r > 3, which is a contradiction.

Lemma 60. At most t(d+3−t)−2 points in the set Σ lie on a (possibly reducible)
curve of degree t in P2 for each t 6 (d+ 3)/2.

Proof. We start with the case t = 1. Then it follows from Corollary 53 that

t(d+ 3− t)− 2 = d = 3r + n− 5−
l∑

i=k

4(i− 1)ci > 2r + n− 5 + 4ck > 2r + n− 2.

Assume now that t > 1. Then at most (2r + n− 2)t points in the set Σ lie on a
curve of degree t in P2. It is therefore sufficient to show that

t(d+ 3− t)− 2 > (2r + n− 2)t

for all t > 1 such that t 6 (d+ 3)/2 and t(d+ 3− t)− 2 < |Σ|. However,

t(d+ 3− t)− 2 > t(2r + n− 2) ⇐⇒ r −
l∑

i=k

4(i− 1)ci > t

because t > 1. We can thus assume that

r −
l∑

i=k

4(i− 1)ci 6 t 6
d+ 3

2

and t(d+ 3− t)− 2 < |Σ|. We shall now derive a contradiction.
Let g(x) = x(d+ 3− x)− 2. Then g(x) increases for x 6 (d+ 3)/2. Hence

g(t) > g

(
r −

l∑
i=k

4(i− 1)ci

)
.

Let A = r −
∑l
i=k 4ici and B =

∑l
i=k ci. Then

A
2r + n− 2

4
> g(A+ 4B) = (A+ 4B)(2r + n− 5)− 2,

which is impossible because A > 0 by Corollary 53.
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We have thus proved that we can apply Theorem 15 to the subset Σ\P̂ ⊂ Π ∼= P2

and the positive integer d. Hence there exists a curve C ⊂ Π of degree

3r + n− 5−
l∑

i=k

4(i− 1)ci

containing the set Σ \ P̂ and not containing P̂ = ψ(P ). Let Φ be the three-
dimensional cone in P4 over C with vertex Γ. Then Φ is a hypersurface of degree

3r + n− 5−
l∑

i=k

4(i− 1)ci

containing Σ̌ \ P and not containing P . On the other hand, we already have a
hypersurface Υ ⊂ P4 of degree

l∑
i=k

4(i− 1)ci

that contains Σ̂ \ P and does not contain P . Hence Φ ∪Υ is a hypersurface in P4

of degree 3r + n− 5 that contains Σ \ P and does not contain the point P ∈ Σ.
The proof of Theorem 47 and therefore also of Theorem 8 is now complete.
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