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Birationally rigid Fano varieties

Ivan Chel’tsov

Abstract. The birational superrigidity and, in particular, the non-rationality of a
smooth three-dimensional quartic was proved by V. Iskovskikh and Yu. Manin in
1971, and this led immediately to a counterexample to the three-dimensional Lüroth
problem. Since then, birational rigidity and superrigidity have been proved for a
broad class of higher-dimensional varieties, among which the Fano varieties occupy
the central place. The present paper is a survey of the theory of birationally rigid
Fano varieties.
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Introduction

§ 0.1. Non-rationality
The rationality problem for algebraic varieties1 is one of the most deep and

interesting problems in algebraic geometry. The global holomorphic differential
forms give a natural birational invariant for smooth surfaces and completely solve
the rationality problem for algebraic curves and surfaces (see [182], [160], [91]).
However, even in the three-dimensional case there are non-rational varieties
that are close to rational varieties in many respects, and the known discrete invari-
ants are insufficient to establish whether or not these varieties are rational. In
particular, the following well-known result, which was announced already in [61],
was proved in [94].

Theorem 0.1.1. Let V be a smooth hypersurface in P4 of degree 4. Then the group
Bir(V ) of birational automorphisms coincides with the group Aut(V ) of biregular
automorphisms.

One can readily see that Theorem 0.1.1 implies the non-rationality of every
smooth quartic threefold in P4. Indeed, in the notation of Theorem 0.1.1,
the linear system |OP4(1)|V | is invariant under the action of the group Aut(V ),
because the divisor −KV is linearly equivalent to a hyperplane section of the quar-
tic V. Therefore, the group of biregular automorphisms of the quartic hypersurface
V consists of projective automorphisms, and hence is finite (see [127]). Thus, the
group of birational automorphisms of the smooth quartic threefold V is finite, which
implies that V is non-rational, because the group Bir(P3) is infinite. Later, the
technique of [94] was usually called the method of maximal singularities (see 0.2).
The non-rationality of any smooth quartic threefold immediately implied the

negative solution of the Lüroth problem in dimension 3. We recall that the Lüroth
problem in dimension n is as follows: Is it true that all subfields of the field
C(x1, . . . , xn) that contain the field C are of the form C(f1, . . . , fk), where fi =
fi(x1, . . . , xn) is a rational function? Thus, there are non-rational threefolds that
are unirational.2 For example, the quartic

x40 + x0x
3
4 + x

4
1 − 6x21x22 + x42 + x43 + x33x4 = 0 ⊂ Proj(C[x0, x1, x2, x3, x4]) ∼= P4

is unirational (see [87] and [123]), smooth, and hence non-rational by Theorem 0.1.1.
We note that, by the rationality criterion in [182], every unirational curve or surface
is rational. The existence of counterexamples to the Lüroth problem was conjec-
tured long ago (see [61]). For example, in the book [16] it is claimed that the
three-dimensional Lüroth problem has a negative solution and, as an argument,

1All varieties under consideration are assumed to be projective, normal, and defined over the
field of complex numbers. A variety V is said to be rational if the field of rational functions on V is

isomorphic to the field C(x1, . . . , xn), or, equivalently, if there is a birationalmap ρ : P
n ��� V . By

a divisor we always mean a Q-divisor, that is, a formal finite Q-linear combination of subvarieties

of codimension one.
2A variety V is said to be unirational if there is a dominant rational map ρ : Pn ��� V or,

equivalently, if the field of rational functions of V is a subfield of C(x1, . . . , xn). Some non-trivial
constructions of higher-dimensional unirational varieties can be found in [87], [113], [123], [44].
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reference is made to the papers [57] and [60], which do not meet modern criteria of
mathematical rigour.

The approach to the proof of Theorem 0.1.1 goes back to the theorem on the
generators of the two-dimensional Cremona group (see [138] and Theorem 1.6.15).
Moreover, the technique in the proof of the latter theorem was used earlier to study
the birational geometry of rational surfaces over algebraically non-closed fields, and
thus a general approach to the proof of Theorem 0.1.1 was known long before the
paper [94]. However, the realization of the approach in the three-dimensional case
faced unexpected difficulties related to the exclusion of infinitely close maximal
singularities.

There are no simple ways to prove non-rationality in a non-trivial situation, for
instance, in the class of higher-dimensional rationally connected varieties3 or in the
class of unirational varieties (see [92]). We note that any smooth quartic three-
fold is rationally connected (see [114]), but the unirationality of the quartic has
been shown only in some special cases (see [123]), and the unirationality of a
general smooth quartic threefold is an open problem. Moreover, it is even unknown
whether or not there is a rationally connected non-unirational variety. At present
there are only four known ways to prove that a rationally connected variety is
non-rational:

• the method of maximal singularities (see [87], [96], [152], [93]);
• the use of the Griffiths component of the intermediate Jacobian of a ratio-
nally connected threefold as a birational invariant (see [41], [175]);
• the use of the torsion subgroup of the third integral cohomology group as a
birational invariant (see [3], [43], [140]);
• the reduction to a positive characteristic with the subsequent application
of the degeneration method (see [109], [110], [112], [48], [38]) to prove the
non-rationality of many rationally connected varieties, for instance, the non-
rationality of a general hypersurface in Pn of degree d � 2

3 (n + 2) � 4
(see [109]).

Each of the existing methods for proving the non-rationality of rationally con-
nected varieties has some advantages and disadvantages:

• the method of the intermediate Jacobian can be applied only to threefolds
and, except for a single known example (a double cover of P3 ramified over a
quartic; see [179] and [125]), only to threefolds fibred into conics (see [175]);
• in many cases the method of the intermediate Jacobian together with the
degeneration method is the only way to prove the non-rationality of a three-
fold (see [4], [28], [31]), for instance, important special cases of the ratio-
nality criterion for conic bundles were proved in [167] by the method of the
intermediate Jacobian (see [90]);
• there are non-rational rationally connected threefolds with trivial interme-
diate Jacobian (see [163]);

3A variety V is said to be rationally connected if for any two sufficiently general points of V

there is a rational curve passing through them (see [114], [115], [110]). Any unirational variety is
rationally connected.



878 Ivan Chel’tsov

• the third integral cohomology group is torsion-free in many interesting cases,
for instance, for smooth complete intersections, and hence the approach
of [3] cannot be used to prove the non-rationality;
• the method of [109] works in all dimensions, but its direct application proves
the non-rationality of only a very general variety in a given family (with a
single exception; see [48]);
• the method of maximal singularities works in all dimensions (see [152]), but
it can be applied effectively only to varieties which are very far in a sense
from being rational, for instance, it is hard to suppose that one can use
the approach of [94] to construct an example of a smooth deformation of a
non-rational variety into a rational one (see [175]).

Thus, the method of maximal singularities is the only known way to prove that
a given rationally connected variety of dimension at least four is non-rational.

§ 0.2. Maximal singularity
The technique used in [94] was applied later to prove the non-rationality of many

higher-dimensional rationally connected varieties. Moreover, the finiteness of the
group of birational automorphisms is in fact inessential in the proof of the non-
rationality of a smooth quartic threefold! Namely, as was implicitly proved in [94],
there are no non-biregular birational maps between a smooth quartic threefold and
a very broad class of threefolds including, for instance, the projective space, any
cubic in P4, any complete intersection of a cubic and a quadric in P6, any arbitrary
conic bundle, and any threefold fibred into rational surfaces. It turned out that,
in a sense, the birational properties of a smooth quartic threefold recall those of a
variety of general type4 with ample canonical divisor.5

It later became clear that not only the smooth quartic threefolds but also some
other rationally connected threefolds have similar properties. In time these varieties
came to be called birationally rigid varieties. The notion of birational rigidity can
be formalized in a very simple way. However, before formalizing, we shall first
describe the geometric nature of birational rigidity, the so-called Noether–Fano–
Iskovskikh inequality, or the existence of a maximal singularity. Let us consider the
following rather informal questions:

• When does a birational map realize an isomorphism?
• What birational invariant can be used to prove the birational inequivalence
of two varieties in a general situation?

We do not consider curves and surfaces, due to their marginality. For the same
reason, we ignore the group of birational automorphisms and neglect conditions like
the condition that the spaces of global holomorphic forms have different dimensions,

4A varietyX is said to be of general type if dim(φ|nKX |(X)) = dim(X) for all positive integers
n� 0. The varieties of general type are not rationally connected (see [115]).

5A divisor D on a variety X is said to be ample if nD is very ample for some positive integer
n > 0, that is, if nD is a hyperplane section of the variety X. The property of being ample for

a divisor means geometrically that the divisor has positive intersections with all curves on X. It
follows from the Kleiman ampleness criterion [108] that D is ample if and only if D defines a

positive function on the closure of the cone of effective one-dimensional cycles on X, the so-called
Mori cone NE(X) (see [106]).
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because there are no global holomorphic forms on rationally connected varieties. A
possible answer to the first question is given by the following result.

Theorem 0.2.1. Let ρ : X ��� Y be a birational map, where X and Y are smooth
varieties such that the divisors KX and KY are ample. Then ρ is an isomorphism.

Proof. The groups H0(OX(nKX)) and H
0(OY (nKY )) are canonically isomorphic,

because there is a birational map ρ inducing an isomorphism of the corresponding
graded algebras. However, since the divisors KX and KY are ample, it follows that

X ∼= Proj
(⊕
n�0
H0(OX(nKX))

)
∼= Proj

(⊕
n�0
H0(OY (nKY ))

)
∼= Y.

We now present an alternative proof or, more precisely, a more geometric version
of the above proof. To this end, we consider a Hironaka hut for the birational
map ρ, that is, the commutative diagram

W
g

����
��

��
�� f

���
��

��
��

�

X ρ
��������� Y

such that W is a smooth variety and g and f are birational morphisms. Then

KW ∼ g∗(KX) + ΣX ∼ f∗(KY ) + ΣY , (0.2.2)

where ΣX and ΣY are exceptional divisors of the morphisms g and f , respectively.
Since the varieties X and Y are smooth, it follows from the elementary properties
of blow-ups that both the divisors ΣX and ΣY are effective. Moreover, to prove
this fact, it suffices to use only the formula for the modification of the canonical
divisor under a blow-up of a smooth variety along a smooth subvariety, because we
can always assume that one of the morphisms f and g is a composition of blow-
ups of smooth subvarieties (see [76]). Moreover, the coefficients of the irreducible
exceptional components of the divisors ΣX and ΣY depend only on the correspond-
ing discrete valuations, which can always be realized by blow-ups along subvarieties
that are smooth at a general point of the varieties, and this enables one to explicitly
compute the coefficients of ΣX and ΣY in terms of the corresponding graph of the
blow-ups (see [152]).
We choose a sufficiently large positive integer n. Since the divisors ΣX and ΣY

are effective and exceptional, it follows that the divisors nΣX and nΣY are fixed
components of the complete linear system

|nKW | = |n(g∗(KX) + ΣX)| = |n(f∗(KY ) + ΣY )|

for any positive integer n. Thus, the rational maps given by the complete linear
systems |nKW |, |g∗(nKX)|, and |f∗(nKY )| coincide. However, for n � 0 the
complete linear system |g∗(nKX)| determines the morphism g up to a twist by a
biregular automorphism of the variety X, because the divisor KX is ample. On the
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other hand, the complete linear system |f∗(nKY )| determines the morphism f up
to a twist by an automorphism of the variety Y , because the divisor KY is ample.
Thus, ρ = f ◦ g−1 is an isomorphism.
We note that the assertion of Theorem 0.2.1 is the very uniqueness of a canonical

model.6

The most well-known answer to the second question posed above is the so-called
Kodaira dimension. Let us recall what this is.

Definition 0.2.3. By the Kodaira dimension κ(X) of a smooth variety X one
means the maximal dimension of the image φ|nKX|(X) for n� 0 if at least one of
the complete linear systems |nKX | is non-empty. Otherwise, κ(X) = −∞.
The Kodaira dimension is a birational invariant. To prove this well-known result,

it suffices to only slightly modify the proof of Theorem 0.2.1. We note that, by
definition, the Kodaira dimension of a variety which is a canonical model coincides
with the dimension of the variety itself.
Both Theorem 0.2.1 and Definition 0.2.3 relate mainly to varieties whose canon-

ical divisor is positive in a certain sense. However, we are interested in varieties
whose canonical divisor is negative, for example, rationally connected varieties, or,
to be even more precise, varieties whose anticanonical divisor is ample. A vari-
ety with ample anticanonical divisor is called a Fano variety. The smooth Fano
threefolds were classified in [85], [86], [135], [136], where 105 deformation families
of smooth Fano threefolds were found (see [95]). The main discrete invariant of a
smooth Fano threefold is its genus, that is, the genus of a smooth curve obtained
as the intersection of two general anticanonical divisors. If the Picard group is one-
dimensional, then the known values of the genera of smooth Fano threefolds recall
somewhat the classification of groups of rational points of elliptic curves defined
over the field of rational numbers (see [128]). This phenomenon is possibly related
to some unknown connections between birational geometry and number theory
(see [69]). Let us now show for the example of a smooth quartic threefold how one
can modify Theorem 0.2.1 and Definition 0.2.3 to make them useful in the modified
form.
Let V be a smooth quartic threefold in P4. We want to prove, say, that V is

non-rational. Suppose that V is rational; let ρ : V ��� P3 be a birational map.
We try to use the construction in the proof of Theorem 0.2.1 to show that ρ is an
isomorphism. The last assertion is clearly absurd, and therefore the proof of this
assertion means that the quartic V is non-rational. We use the notation of the
proof of Theorem 0.2.1, keeping in mind that the role of the variety X is played in
the new situation by the quartic threefold V and the role of the variety Y by the
projective space P3.
In the proof of Theorem 0.2.1 we made essential use of the fact that the varieties

X and Y are smooth and the divisors KX and KY are ample. The smoothness
of X and Y was really used, for instance, in the proof of the very existence of
the relation (0.2.2). However, this is not very important, because instead of the
assumption that the varieties X and Y are smooth, one can assume that KX and
KY are Cartier divisors or that some multiples of the canonical divisorsKX and KY

6A smooth variety X is called a canonical model if the divisor KX is ample.
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are Cartier divisors. The last condition is usually referred to as the Q-Gorenstein
property of the varieties X and Y , respectively. The rational equivalence in the
relation (0.2.2) must also be replaced by Q-rational equivalence7 or even by
numerical equivalence (see [106]). In fact, the smoothness of X and Y is used
in an essential way in the proof of Theorem 0.2.1 to show that the exceptional
divisors ΣX and ΣY are effective. As we shall see below, this simple remark is very
important.
The varieties V and P3 are indeed smooth, but the canonical divisors KV and

KP3 are not ample. On the contrary, the anticanonical divisors

−KV ∼ OP4(1)|V and −KP3 ∼ OP3(4)

are very ample! The last problem can readily be resolved; however, this can lead
to the loss in a sense of the existing smoothness of V and P3. To make a negative
divisor positive, we must add a sufficiently positive divisor. For example, we can
take an arbitrary hyperplane H ⊂ P3 and consider a log pair (P3, 5H) instead
of the projective plane P3 and the log canonical divisor KP3 + 5H, which is an
ample divisor by construction, instead of the divisor KP3 . In these cases the addi-
tional divisor 5H is called a boundary. We now consider the commutative diagram

W
g

����
��

��
�� f

���
��

��
��

�

V ρ
��������� P3 ,

where the variety W is smooth and g : W → V and f : W → P3 are birational
morphisms.
Let us try to literally repeat the scheme of the proof of Theorem 0.2.1. One

must compare the log canonical divisor of the variety W with the pullback of the
log canonical divisor KP3 + 5H and with the pullback of the log canonical divisor
of the quartic. However, the canonical divisor is said to be canonical for the very
reason that it is canonically defined on all birationally equivalent models, and the
log canonical divisor is no longer defined canonically!
We must choose how to define an appropriate log pair on the variety W and

on the quartic V . The simplest way is to take as boundaries the proper
transforms of the hyperplane H on W and V that are formally multiplied by 5,
but the following problem can occur: in principle, the birational map ρ−1 can
contract the hyperplane H to a point or to a curve. In this case the analogue of
the relation (0.2.2) does not meet the necessary requirements. However, instead
of the hyperplane H, we can take a hypersurface in P3 of a sufficiently large degree
or take a hyperplane H in a sufficiently general way, which automatically ensures
its incontractibility by the birational map ρ−1. Nevertheless, it is better to proceed
in another way.
Instead of the hyperplaneH ⊂ P3, let us take the complete linear system Λ = |H|

as the boundary and consider a movable log pair (P3, µΛ), where µ is an arbitrary

7Divisors D1 and D2 are said to be Q-rationally equivalent if nD1 ∼ nD2 for some integer
n �= 0.
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positive rational number. In this case one can always take a proper transform of
the linear system Λ on the variety W and on the quartic V . We denote these
transforms by ΛW and ΛV , respectively.
The linear systems Λ, ΛW , and ΛV have the following properties:

• Λ, ΛW , and ΛV have no fixed components, which means that their base loci
have codimension at least two;
• we can treat each of Λ, ΛW , and ΛV as a divisor, replacing the corresponding
linear system by a sufficiently general divisor belonging to the system;
• the formal sums KP3 + µΛ, KW + µΛW , and KV + µΛV are well defined as
elements of the groups Pic(P3)⊗Q, Pic(W )⊗Q, and Pic(V )⊗Q, respectively,
for which the notion of ampleness is defined;
• by taking general divisors in each of Λ, ΛW , and ΛV , we can define in a
natural way multiplicities of the linear systems Λ, ΛW , and ΛV at general
points of subvarieties of the varieties P3, W , and V , respectively, and the
multiplicity of Λ at every point or curve is zero, because the base locus of
Λ is empty;
• by taking two general divisors in each of Λ, ΛW , and ΛV , we can define in
a natural way one-dimensional effective cycles Λ2, Λ2W , and Λ

2
V .

We can now repeat the arguments in the proof of Theorem 0.2.1 for the chosen
movable log pairs, replacing the canonical divisors by the log canonical ones. We
have

KW + µΛW ∼Q g∗(KV + µΛV ) + ΣV ∼Q f∗(KP3 + µΛ) + ΣP3 , (0.2.4)

where ΣV and ΣP3 are exceptional divisors of the morphisms g and f , respectively.
However, the divisors ΣV and ΣP3 can fail to be effective. To be precise, the
divisor ΣV can fail to be effective, whereas the divisor ΣP3 is effective. Indeed,
the linear system Λ is free, which readily implies that the exceptional divisor ΣP3
in the equivalence (0.2.4) must be the same as that for Λ = ∅. On the other hand,
by construction, the linear system ΛV can have base points or base curves, which
implies that the divisor ΣV can also have negative coefficients.
The fact that the g-exceptional divisor ΣV can have negative coefficients is

directly related to the notion of singularities of the movable log pair (V, µΛV ).
The singularities of log pairs generalize singularities of varieties (see [111]). In
particular, the singularities of the log pair (V, µΛV ) are said to be canonical (see
Definition 1.3.3) if the exceptional divisor ΣV in the equivalence (0.2.4) is effective
for any choice of the birational morphism g. If the boundary is empty, then this
definition coincides with the classical definition of canonical singularities of a vari-
ety. Canonical singularities occur naturally on canonical models of smooth varieties
of general type. For instance, let U be a smooth variety of dimension n having a
big and nef canonical divisor KU , that is, let KU · C � 0 for every curve C ⊂ U
and let KnU > 0. Then the canonical model Proj(⊕n�0H0(OU (nKU ))) has canon-
ical singularities. Canonical singularities are rational, whereas Gorenstein rational
singularities are canonical (see [55]) and canonical singularities in dimension 2 are
Du Val points (see [2]).
The singularities of the log pair (P3, µΛ) are canonical, because the linear system

Λ has no base points. On the other hand, one can readily make the divisorsKP3+µΛ
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and KV + µΛV ample by choosing µ sufficiently large. Indeed, the group Pic(V ) is
generated by the anticanonical divisor −KV by the Lefschetz theorem, and hence
the divisor KV + µΛV is ample for every rational µ >

1
n
, where n is a positive

integer such that ΛV ⊂ |−nKV |. That is, the surfaces in the linear system ΛV are
cut out by hypersurfaces of degree n on the quartic threefold V ⊂ P4. However,
the divisor KP3 + µΛ is ample for every µ > 4. Therefore, if µ > 4, then we have
everything we need to use the arguments in the proof of Theorem 0.2.1, except for
the effectiveness of the g-exceptional divisor ΣV defined by the relation (0.2.4).

Since the divisor ΣV can fail to be effective, we cannot efficiently apply the
scheme of the proof of Theorem 0.2.1 to the quartic V and the projective space P3.
This is not surprising, because otherwise we could apply the previous arguments
to P3 instead of the quartic V and prove the coincidence of the groups Bir(P3) and
Aut(P3), which is certainly absurd.

Thus, the scheme of the proof of Theorem 0.2.1 has logically led us to the con-
structions of the movable log pairs (P3, µΛ) and (V, µΛV ), which can be called
birationally equivalent pairs (see 1.3). Let us now recall the classical birational
invariant, namely, the Kodaira dimension.

We can readily define the Kodaira dimension of the movable log pairs (P3, µΛ)
and (V,ΛV ) thus constructed by simply replacing the canonical divisor in Defini-
tion 0.2.3 by the corresponding log canonical divisor. The numbers (or the symbol
−∞) thus obtained can be denoted by κ(P3, µΛ) and κ(V,ΛV ) by analogy with the
classical case. However, it is desirable that the Kodaira dimension of a movable
log pair be a birational invariant, that is, be the same for birationally equiva-
lent movable log pairs. For example, it would be desirable to have the equality
κ(P3, µΛ) = κ(V, µΛV ). Although we face a small problem here, the problem can
readily be resolved.

Above we defined the Kodaira dimension for smooth varieties (see Defini-
tion 0.2.3). However, due to possible non-effectiveness of the divisor ΣV defined by
the relation (0.2.4), one must define the Kodaira dimension of movable log pairs
as a generalization of the Kodaira dimension of singular varieties. On the other
hand, it is easy to see that the above classical definition of the Kodaira dimension
is no longer a birational invariant if we omit the smoothness condition on X in
Definition 0.2.3.

Example 0.2.5. Let S be a quartic surface in P3. Then it follows immediately
from Definition 0.2.3 that κ(S) = 0. On the other hand, if S is a cone over a
plane quartic curve C, then the quartic S is birationally equivalent to P1 × C,
but κ(P1 × C) = −∞ by Definition 0.2.3. Thus, the correctly defined Kodaira
dimension κ(S) vanishes if and only if the surface S has at most Du Val singularities
(see Remarks 0.2.6 and 1.3.17).

Therefore, we must define the Kodaira dimension of a singular variety as the
Kodaira dimension of its desingularization. Using the proof of Theorem 0.2.1,
one can readily see that, under this definition, the Kodaira dimension is then well
defined, that is, it does not depend on the choice of a desingularization and is a
birational invariant.
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Remark 0.2.6. The Kodaira dimension of a variety with canonical singularities can
be defined at once in the same way as in Definition 0.2.3, that is, without passing
to a desingularization (see Remark 1.3.17).
The definition of the Kodaira dimension of a singular variety easily generalizes

to movable log pairs (see Definition 1.3.15). For example, one must set the number
κ(P3, µΛ) equal to the maximal dimension of the image dim(φ|n(KW+µΛW )|(W )) for
a sufficiently divisible positive integer n � 0 and simply set κ(P3, µΛ) = −∞ if
|n(KW +MW )| = ∅. Then κ(P3, µΛ) = κ(V, µΛV ).
It follows from Remark 0.2.6 that we can define the Kodaira dimension of mov-

able log pairs having canonical singularities without taking their desingularization.
This implies the equality

κ(P3, µΛ) =



−∞ for µ < 4,

0 for µ = 4,

3 for µ > 4.

The elements of the linear system ΛV = ρ
−1(Λ) are cut out on V ⊂ P4 by

hypersurfaces of degree n ∈ N in P4. We write µ = 1
n . Then

κ(V, µΛV ) = κ(P
3, µΛ) = −∞,

because 1n < 4. On the other hand, the divisor −KV is rationally equivalent to
a hyperplane section of the quartic V . Hence, the divisor KV + µΛV is numeri-
cally trivial by the very choice µ = 1

n , and the divisor n(KV + µΛV ) is rationally
equivalent to zero.
If we were to define the number κ(V, µΛV ) immediately by analogy with Defi-

nition 0.2.3, then we would obtain the equality κ(V, µΛV ) = 0, which contradicts
the above equality κ(V, µΛV ) = −∞. The contradiction is due to the fact that the
singularities of the log pair (V, 1nΛV ) are not canonical (see Remark 0.2.6) and, to
be more specific, the divisor ΣV in the relation (0.2.4) is not effective.
Hence, the assumption that the quartic V is rational led us to the existence of a

linear system ΛV on V such that ΛV has no fixed components and the singularities
of the movable log pair (V, 1nΛV ) are not canonical, namely, there is a birational
morphism g : W → V such that the following Q-rational equivalence holds:

KW +
1

n
ΛW ∼Q g∗

(
KV +

1

n
ΛV

)
+

k∑
i=1

aiEi ∼Q
k∑
i=1

aiEi,

where ΛW = g
−1(ΛV ), Ei is an irreducible exceptional divisor of the morphism g, ai

is a rational number, and the inequality ar < 0 holds for some r. The image g(Er)
of the divisor Er on the quartic threefold V is usually called a maximal singularity
(see [87], [45], [152]).
The above arguments can be applied not only to a smooth quartic threefold

but also to an arbitrary smooth Fano threefold whose Picard group is Z and, in
particular, to the projective space P3. So what then is the specific feature of a
smooth quartic threefold? The point is that a maximal singularity cannot exist on
a smooth quartic threefold, because its anticanonical degree is relatively small.
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We present an outline for proving that a smooth quartic threefold cannot have
a maximal singularity (see 2.1). Let C = g(Er) ⊂ V . Then:

• either the maximal singularity C is an irreducible curve;
• or the maximal singularity C is a point.

Suppose that C is a curve. In this case at a general point of C the morphism g
is a composition of blow-ups of smooth curves dominating C and a blow-up of C
itself. We can compute the coefficient ar locally in a neighbourhood of a general
point of C by induction on the number of blow-ups forming the morphism g at a
general point of C. This implies the inequality

multC(ΛV ) > n,

which means that the multiplicity of a general surface in the linear system ΛV
at a general point of C exceeds n, and the surfaces in ΛV are cut out on V by
hypersurfaces of degree n in P4. We use the original approach of [147] to prove
that the inequality multC(ΛV ) > n is impossible (see Proposition 1.3.12).
Suppose that C is a line. Let Π be a general plane in P4 containing C. Then

Π ∩ V = C ∪ Z,

where Z is a planar cubic curve. The curves C and Z intersect at three points on
the plane Π. It is not obvious that the points of intersection are distinct, but this
follows from the fact that the plane is in general position and the quartic threefold V
is smooth (see the proof of Proposition 1.3.12). It is also clear that the cubic curve
Z is not contained in the base locus of the linear system ΛV . Hence, by restricting
a general surface S of the linear system ΛV to the curve Z, we see immediately
that

3n = deg(Z)n = deg(S|Z ) �
∑

O∈Z∩C
multO(S)multO(Z) >

∑
O∈Z∩C

n = 3n,

which is a contradiction. If C is not a line, then we can consider a general cone
over the curve C instead of the plane Π and arrive at a contradiction in a similar
way (see [147] and [48]).

Remark 0.2.7. In the situation treated above, the inequality multC(ΛV ) > n read-
ily implies the inequality deg(C) < 4. Thus, the above scheme of arriving at a
contradiction can be replaced by considering all possible cases with respect to the
degree of the curve C ⊂ P4, as in [94].
Thus, we must eliminate the case in which C is a point. This is the most

complicated part of the proof of non-rationality of a quartic threefold. The fact
that this case is impossible was proved in [94] by using global methods. However, a
new local approach to the problem was found in [149]. Namely, it was proved that
the non-canonical property of singularities of the movable log pair (V, 1nΛV ) at the
point C implies the inequality

multC(S1 · S2) > 4n2 (0.2.8)
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for general divisors S1 and S2 in the linear system ΛV , where the intersection S1 ·S2
is understood in the scheme-theoretic sense (see Theorem 1.7.18). The inequal-
ity (0.2.8) leads immediately to a contradiction. Indeed, it suffices to intersect the
one-dimensional cycle S1 · S2 by a sufficiently general hyperplane section passing
through C of the smooth quartic threefold V and to use the equality −K3V = 4.
The contradiction thus obtained implies the non-rationality of the smooth quartic
threefold V ⊂ P4.
We note that the non-rationality of the quartic V ⊂ P4 holds due to the

fact that the number −K3V , which is usually referred to as the degree of the Fano
threefold V , is relatively small. For example, for the projective space P3 we have
−K3

P3
= 64, but all smooth Fano threefolds of degrees greater than 24 are rational

(see [95]).
The inequality (0.2.8) is usually called the 4n2-inequality. We note that this

inequality is local in nature and is not related to any smooth quartic threefold
(see Theorem 1.7.18). Moreover, it turned out later that the inequality (0.2.8) has
a very deep geometric meaning related to the classification of extremal birational
contractions into a smooth threefold point (see [45] and [102]).

§ 0.3. Birational rigidity
To define a birationally rigid variety, we must recall what the Minimal Model

Programme is (see 1.1), which is abbreviated to MMP everywhere below. The
MMP is an algorithm birationally transforming any variety X into a variety Y for
which one of the following possibilities holds:

• the canonical divisor KY is numerically effective;8
• there is a morphism ξ : Y → Z such that ξ has connected fibres and is
not birational, the anticanonical divisor −KY is ξ-ample, and rk Pic(Y ) =
rk Pic(Z)+1, where the ξ-ampleness of −KY means that the divisor−KY +
ξ∗(D) is ample for some ample divisor D on the variety Z.

Generally, the output product of the MMP is not uniquely determined.

Example 0.3.1. The surfaces P2 and Fn are birationally equivalent, and each of
them is an output product of the MMP. Moreover, when applying the MMP to any
rational surface, we birationally transform this surface either to P2 or to Fn.

On the other hand, the varieties satisfying the conditions of Theorem 0.2.1 are
also output products of the MMP. However, these products are uniquely determined
due to Theorem 0.2.1, even up to a biregular automorphism.

Example 0.3.2. Let V be a smooth quartic threefold in P4. It follows from the
adjunction formula and the Lefschetz theorem that V is an output product of
the MMP, and it follows from arguments in [94] that V is a unique output product
of the MMP. In particular, all birational transformations of V used during the MMP
lead back to the quartic threefold V , whereas the resulting birational transformation
is certainly a biregular automorphism of V and is in turn projective.

In a sense the property of being a unique output product of the MMP was taken
as a definition of a birationally rigid variety.

8A divisorD on a varietyX is said to be numerically effective or, briefly, nef if the intersection
of D with any curve on X is non-negative.



Birationally rigid Fano varieties 887

Definition 0.3.3. A Fano variety X with terminal and Q-factorial singularities
(see Definition 1.1.1; for example, a smooth variety) such that rk Pic(X) = 1 is
said to be birationally rigid if the following conditions hold:

• X cannot be birationally transformed into a variety Y for which there is
a non-birational surjective morphism ξ : Y → Z whose general fibre has
Kodaira dimension −∞;
• X cannot be birationally transformed into a variety Y such that Y is a Fano
variety with terminal and Q-factorial singularities, the equality rk Pic(Y ) =
1 holds, and Y is not biregularly equivalent to X.

The birationally rigid Fano varieties are non-rational, and they cannot be bira-
tionally transformed into conic bundles or fibrations into rational surfaces. In
particular, there are no birationally rigid del Pezzo surfaces defined over an alge-
braically closed field, though there are birationally rigid del Pezzo surfaces defined
over a field which is not algebraically closed (see [120]–[122], [91], Theorem 1.5.1).
We recall that del Pezzo surfaces are two-dimensional Fano varieties.

Definition 0.3.4. A birationally rigid Fano variety X having terminal and Q-
factorial singularities (for example, a smooth variety) such that rk Pic(X) = 1 is
said to be birationally superrigid if the groups Bir(X) (of birational automorphisms)
and Aut(X) (of biregular automorphisms) coincide.

There are birationally rigid Fano varieties that are not birationally superrigid.

Example 0.3.5. Let X be a nodal three-dimensional quartic in P4, that is, the
singularities of the variety X are isolated ordinary double points. Suppose that
rk Cl(X) = 1. Then X is a birationally rigid Fano variety with terminal and
Q-factorial singularities (see [94], [146], [46], [129]), and the quartic X is bira-
tionally superrigid if and only if X is smooth. The equality rk Cl(X) = 1 holds for
| Sing(X)| � 8 (see Corollary 2.1.10), but nodal rational quartic threefolds exist,
for example, determinantal quartics (see [139]).

The proof of the non-rationality of a smooth quartic threefold V sketched in 0.2
can readily be modified to show that the threefold V is birationally superrigid (see
Theorem 1.4.1). Moreover, as was already mentioned in 0.2, the non-rationality of V
is due mainly to the inequality −K3V � 4, because the proof of the non-rationality
of V made essential use of the inequality (0.2.8).

Remark 0.3.6. Among the smooth three-dimensional Fano varieties, only the fol-
lowing four varieties are birationally rigid:

• a smooth quartic in P4 (see 2.1),
• a double cover of P3 ramified along a smooth sextic surface (see 2.2; this
variety can also be realized as a smooth hypersurface of degree 6 in P(14, 3)),
• a double cover of a smooth quadric in P4 ramified along a smooth surface
of degree 8 (see 2.3; this variety can also be realized as a smooth complete
intersection of a quadric cone and a quartic in P(15, 2)),
• a smooth complete intersection of a quadric and a cubic in P5 (see 2.4),

where only the smooth three-dimensional quartic and the double cover of P3 rami-
fied along a smooth sextic surface are birationally superrigid.
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Let us now consider an arbitrary n-dimensional smooth Fano variety X such
that rk Pic(X) = 1. It is natural to expect that X is birationally superrigid for rel-
atively small values of (−KX)n, because the inequality (0.2.8) holds in any dimen-
sion greater than 2 (see Theorem 1.7.18). Moreover, many examples confirm this
assumption (see [145], [154], [63], [29]). However, the proof of birational superrigid-
ity of a smooth quartic threefold makes essential use of the projective geometry of
the threefold. Hence, the birational superrigidity of X for small values of (−KX)n
is not obvious in general. For example, the following very natural conjecture is still
open for any n, though it seems to be obvious.

Conjecture 0.3.7. If (−KX)n = 1, then X is birationally superrigid.
The equality (−KX)n = 1 is impossible if n = 3. If n is even, then the equality

(−KX)n = 1 holds, for example, for smooth hypersurfaces of degree 2(n+1) in the
weighted projective space P(14, 2, n+ 1). For n = 2 the condition rk Pic(X) = 1
can hold if the field of definition of the variety X is not algebraically closed
(see [120], [121]). There are some much more general conjectures similar to Con-
jecture 0.3.7, and one of them is as follows (see [156]).

Conjecture 0.3.8. Suppose that n � 5 and the group Pic(X) is generated by the
anticanonical divisor of the variety X. Then X is birationally superrigid.

The number (−KX )n is called the degree of the Fano variety X. The inequal-
ity (0.2.8) readily implies the birational rigidity of X if (−KX )n � 4 whenever the
linear system | −KX | has no base points (see [87], [145], [29]). However, there are
few Fano varieties satisfying the last two conditions (for example, double spaces
and double quadrics). The first example of a birationally superrigid Fano variety of
degree greater than 4 was found in [144], where it was proved that a smooth quintic
hypersurface in P5, which is a Fano variety of degree 5, is birationally superrigid.
Informally speaking, this overcame the degree barrier for the first time, but a quali-
tative step in overcoming the degree barrier was made in [149], where the following
result was proved (see 3.1).

Theorem 0.3.9. Let X ⊂ Pn be a general hypersurface of degree n � 5. Then X
is a birationally superrigid Fano variety of degree n.

The methods of [149] were later used in [151], [153], [156], and an 8n2-inequality
proved in [21] logically generalized the 4n2-inequality to the case of smooth varieties
of dimension 4 and higher. This result led to a new proof of birational superrigidity
for a smooth quintic fourfold in P5 and to a proof of birational superrigidity for
smooth hypersurfaces of degree n in Pn when n � 8. The methods of [21] were
used later in [27] and [34]. The birational superrigidity of any smooth hypersurface
of degree n in Pn for all n � 6 was proved in [154]. As was indicated in [63], the
proof of the main result in [154] contained a small gap, but the gap was removed
in [63] for n � 12.

PART 1. PRELIMINARIES

§ 1.1. Minimal Model Programme
The paper [106] and the book [126] give a very good introduction to the Minimal

Model Programme, which is abbreviated to MMP in what follows. Informally, we
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can describe the MMP as a black box into which you can put a variety X and
then take out a birationally equivalent variety Y for which one of the following two
possibilities holds:

• the divisor KY is numerically effective;
• there is a morphism ξ : Y → Z such that ξ has connected fibres, the inequal-
ity dim(Z) < dim(Y ) holds, the anticanonical divisor −KY is ξ-ample, the
equality rk Pic(Y/Z) = 1 holds, and, in particular, the variety Y is covered
by curves having negative intersection with the divisor KY .

If the canonical divisor KY is numerically effective, then it is customary to
refer to the variety Y as a minimal model. If the morphism ξ exists, then it is cus-
tomary to call ξ a Mori fibration and to call the variety Y a Mori fibred space. The
output product of the MMP can fail to be uniquely determined (see Example 0.3.1),
but there are varieties for which the output product of the MMP is uniquely deter-
mined, even up to biregular automorphism: for example, two-dimensional minimal
models or canonical models (see Theorem 0.2.1). At the moment, the MMP has
been proved for varieties of dimension not exceeding 4 (see [106], [134], [171]).
Beginning with dimension 3, the variety Y can be singular in each possible case,

and singular varieties must be admissible. The following types of singularities can
occur during the MMP.

Definition 1.1.1. A varietyX is said to have terminal singularities if the canonical
divisor KX is a Q-Cartier divisor (that is, some multiple of KX is a Cartier divisor)
and for any birational morphism f : W → X we have

KW ∼Q f∗(KX) +
k∑
i=1

a(X,Ei)Ei,

where Ei is an irreducible f-exceptional divisor and a(X,Ei) is a positive rational
number.

It can readily be seen that a smooth variety has terminal singularities and that
surfaces with terminal singularities are smooth. Terminal singularities have been
extensively studied in dimension 3 (see [133] and [159]). Isolated ordinary double
points are terminal singularities starting from dimension 3.

Remark 1.1.2. It is usually assumed when using the MMP that the singularities of
varieties are Q-factorial, because Q-factoriality is preserved by the MMP (we recall
that a variety is said to have Q-factorial singularities if every Weil divisor on the
variety has a multiple which is a Cartier divisor).
We describe an iterative application of the MMP to a three-dimensional

variety X, assuming that the singularities of X are terminal and Q-factorial. Let
NE(X) be the closure of the cone of one-dimensional effective cycles on the
variety X. Then the divisor KX can be regarded as a linear function on
the cone NE(X).
If KX · Z � 0 for every one-dimensional cycle Z ∈ NE(X), then the divisor KX

is numerically effective and the variety X is an output product of the MMP. In this
case it is natural to conjecture that the linear system |nKX | is free for n� 0, which
is indeed the case even in a more general context (see [113] and [107]). Moreover, the
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dimension of the variety φ|nKX|(X) is the Kodaira dimension κ(X) of the varietyX.
If κ(X) = dim(X), then the variety φ|nKX|(X) has canonical singularities

9 and its
canonical divisor is ample, and φ|nKX|(X) is called a canonical model.
If the canonical divisorKX is not numerically effective, then there is an extremal

ray R of the cone NE(X) such that KX ·R < 0, and there is a surjective morphism
ψ : X → Y with connected fibres such that Y is normal and any curve C ⊂ X is
contracted by ψ to a point if and only if C ∈ R. The morphism ψ is usually called
a contraction of the extremal ray R. We have the following possibilities:

• ψ is birational and contracts a curve C ⊂ X;
• ψ is birational and contracts an irreducible divisor E ⊂ X;
• the variety Y is a smooth curve, the morphism ψ is a fibration into del
Pezzo surfaces, and the equality rk Pic(X) = 2 holds;
• Y is a surface having cyclic quotient-singularities, ψ is a conic bundle, and
rk Pic(X) = rk Pic(Y ) + 1, and moreover, it is conjectured that the sin-
gularities of Y are Du Val singularities (see Conjecture III in [90], [141],
[142]);
• Y is a point, X is a Fano variety with terminal Q-factorial singularities, and
rk Pic(X) = 1.

If dim(Y ) < dim(X), then the variety X is an output product of the MMP,
and the Kodaira dimension of X is assumed to be equal to −∞. If ψ contracts
an irreducible divisor E ⊂ X, then the singularities of the variety Y are also
terminal and Q-factorial, and rk Pic(Y ) = rk Pic(X)−1. In this case the birational
morphism ψ is an iterative step of the MMP, because we can apply the above
considerations to the variety Y . If the morphism ψ contracts a (possibly reducible)
curve C ⊂ X, then KY is no longer a Q-Cartier divisor.
Definition 1.1.3. Let V be a threefold, let the divisor KV be a Q-Cartier divisor,
let γ : V → U be a birational contraction of an extremal ray of the cone NE(V ),
and let γ contract a curve ∆ ⊂ V . Then a map ρ : V ��� V̂ is called a flip (antiflip,
flop, respectively) if there is a curve ∆̂ ⊂ V̂ such that ρ induces an isomorphism
V \∆ ∼= V̂ \ ∆̂ and the diagram

V

γ
���

��
��

��
�

ρ ��������� V̂

γ̂����
��

��
��

U

is commutative, where γ̂ is a contraction of an extremal ray of the cone NE(V̂ ),

and the inequalities KV ·∆ < 0 and KV̂ · ∆̂ > 0 hold (the inequalities KV ·∆ > 0
and KV̂ · ∆̂ < 0 hold, the equalities KV ·∆ =KV̂ · ∆̂ = 0 hold, respectively).
If the morphism ψ constructed is birational and contracts a curve C ⊂ X, then

there is a flip η : X → X̂ in the curve C (see [134], [168]), and η can be regarded as
9A variety V is said to have canonical singularities if KV is a Q-Cartier divisor and if the

relation KW ∼Q f∗(KX) +
∑k
i=1 a(X,Ei)Ei holds for every birational morphism f : W → X,

where Ei is an exceptional divisor of the birational morphism f and a(X,Ei) is a non-negative
rational number.
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an iterative step of the MMP, because the variety X̂ has terminal and Q-factorial
singularities. Moreover, one can show that there is no infinite sequence of flips of
three-dimensional varieties with terminal singularities. Thus, after finitely many
iterations we obtain a birational transformation of the three-dimensional variety X
either into a minimal model or into a Mori fibred space.

The MMP algorithm seems to be rather abstract. However, this is not the case,
as can be seen from the following example of application of the MMP to a specific
problem (see [8], [83], [17], [18]).

Proposition 1.1.4. Let X be a normal three-dimensional variety containing an
ample effective Cartier divisor S which has Du Val singularities and is a minimal
surface of Kodaira dimension zero. Then either X has canonical singularities or X
is a contraction of a section on the variety P(OS ⊕OS(S|S)).

Proof. It is easy to see that the divisor −KX is a Q-Cartier divisor and −KX ∼Q S
(see [18]). Suppose that the singularities of the threefold X are not canonical. Then
the MMP implies the existence of a birational morphism π : V → X such that the
variety V has canonical singularities and the divisor KV is π-ample (in particular,
the divisor KV has positive intersection with every curve contracted by π). This
implies the relation −KV ∼Q π∗(S) − B, where B is an effective and non-zero
π-exceptional divisor (see [113], Proposition 2.18). Then there is an extremal ray
R ∈ NE(V ) such that −B · R < 0. Let ψ : V → Z be a contraction of the ray R.
Then the following cases are possible:

• the morphism ψ is birational;
• the variety Z is a curve;
• Z is a surface.

It follows from the π-ampleness of KV , the ψ-ampleness of B, and the for-

mula (2.3.2) in [134] that ψ is a conic bundle. We set Ŝ = π−1(S). Then Ŝ is
a section of the morphism ψ. The equalities R1ψ∗(OV ) = Ext

1(OS(S|S),OS) = 0
readily imply the isomorphisms V ∼= P(ψ∗(OV (Ŝ))) and ψ∗(OV (Ŝ)) ∼= OS⊕OS(S|S).

We note that the assertion of Proposition 1.1.4 generalizes the following two-
dimensional results: the singularities of a cubic surface in P3 with isolated singu-
larities are not Du Val singularities if and only if the cubic surface is a cone; the
singularities of a double cover of P2 ramified along a reduced quartic curve are not
Du Val singularities if and only if the quartic curve is a union of four lines passing
through a single point.

Corollary 1.1.5. Let X be a normal subvariety in Pn such that some hyperplane
section S of X is a minimal smooth surface of Kodaira dimension zero. It follows
from the classification of surfaces that the section S can be one of the following
surfaces: anAbeliansurface, a bi-elliptic surface, a K3 surface, and an Enriques sur-
face. In this case either the variety X has canonical singularities (and the surface S
is either a K3 surface or an Enriques surface) or X is a cone.

In particular, it follows from Corollary 1.1.5 that an Abelian surface cannot be
a hyperplane section of any threefold but a cone (see [65]).
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§ 1.2. Log Minimal Model Programme
For several important reasons, a study of the birational properties of a pair

consisting of a variety and some divisor on the variety is often needed. One can
consider the birational transforms thus arising by analogy with the birational trans-
forms arising during the MMP. For example, let X be a three-dimensional variety
and let BX be an effective divisor on X such that BX =

∑r
i=1 aiBi, where Bi is

an irreducible reduced subvariety of codimension 1 on X and ai is a non-negative
rational number less than 1. A pair of this kind (consisting of a variety X and a
divisor BX) is usually called a log pair and denoted by (X,BX). The divisor BX
is usually called the boundary of the log pair (X,BX) and the divisor KX +BX is
called a log canonical divisor of the log pair (X,BX).

Definition 1.2.1. A log pair (X,BX) is said to have log terminal (log canonical)
singularities if the divisor KX + BX is a Q-Cartier divisor and for any birational
morphism f : W → X there is an equivalence

KW +BW ∼Q f∗(KX +BX) +
k∑
i=1

a(X,BX , Ei)Ei,

where BW =
∑r
i=1 aif

−1(Bi), Ei is an f-exceptional divisor, and a(X,BX , Ei) is
a rational number such that a(X,BX , Ei) > −1 (a(X,BX , Ei) � −1, respectively).
Suppose that a log pair (X,BX) has log terminal singularities, but the log canon-

ical divisor KX +BX is not numerically effective. Then there is an extremal ray R
of the cone NE(X) such that (KX+BX) ·R < 0, and there is a surjective morphism
with connected fibres ψ : X → Y such that the variety Y is normal and any curve
C ⊂ X is contracted by ψ to a point if and only if C is contained in the extremal
ray R. Moreover, the following cases are possible:

• the morphism ψ is birational and contracts a curve C ⊂ X;
• ψ is birational and contracts an irreducible divisor E ⊂ X;
• ψ is a Mori fibration.

If ψ contracts an irreducible divisor E ⊂ X, then one can consider a new log pair
(Y,BY ), where BY =

∑r
i=1 aiψ(Bi). Then the singularities of the log pair (Y,BY )

are also log terminal, and we have rk Pic(Y ) = rk Pic(X) − 1.
If ψ contracts a (possibly reducible) curve C ⊂ X, then there is a birational

map ρ : X ��� X̂ and a (possibly reducible) curve Ĉ ⊂ X̂ such that ρ induces an
isomorphism X \ C ∼= X̂ \ Ĉ and the diagram

X

ψ ���
��

��
��

�
ρ ��������� X̂

ψ̂����
��

��
�

Y

is commutative, where ψ̂ is a birational morphism contracting the curve Ĉ to a
point and is a contraction of an extremal ray of the cone NE(X̂); furthermore, the

strict inequality (KX̂ + BX̂) · Ĉ > 0 holds for BX̂ =
∑r
i=1 aiρ(Bi). Moreover,
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the log pair (X̂, BX̂) also has log terminal singularities. The birational map ρ is
usually called a log flip in the curve C for the log pair (X,BX). The existence of ρ
was proved in [171].
Thus, if the morphism ψ is birational, then we can apply the above arguments

either to the log pair (Y,BY ) or to the log pair (X̂, BX̂). Moreover, one can show
that there is no infinite sequence of three-dimensional log flips (see [106]). Hence,
after finitely many iterations we obtain a birational map σ : X ��� V and a log
pair (V,BV ), where BV =

∑r
i=1 aiσ(Bi), such that the singularities of the log pair

(V,BV ) are log terminal and one of the following two possibilities holds:

• the log canonical divisor KV + BV is numerically effective;
• there is a Mori fibration ξ : V → Z such that the divisor −(KV + BV ) is
ample with respect to the morphism ξ.

The above way to construct the birational map σ is a general scheme of the Log
Minimal Model Programme (see [106], [168], [169]), which is briefly denoted below
by log MMP. There is a relative version of the log MMP for varieties admitting a
morphism to a given variety (see [106]).

Remark 1.2.2. One can readily see that log terminality and Q-factoriality are pre-
served by the log MMP. Moreover, terminality of singularities is also preserved by
the log MMP if no component of a boundary is contracted during the log MMP.
There are specific applications of the log MMP (see [19], [20], [35]). For example,

the log MMP implies the following result (see [35] and [62]).

Proposition 1.2.3. Let S be a hypersurface in P3 of degree 4 having isolated
singularities. Then the singularities of the log pair (P3, 3

4
S) are not log terminal if

and only if the surface S is a cone.

Proof. Suppose that the singularities of the log pair (P3, 3
4
S) are not log terminal at

a point O. One can show that such a point is unique and the log pair (P3, 34S) has
log canonical singularities (see Theorem 1.7.10). Let h : Y → P3 be a log terminal
modification (see [113], Proposition 2.18) of the log pair (P3, 3kS). Consider a
terminal modification t : V → Y of the variety Y . Then the composition f = h◦ t is
biregular outside the point O, the variety V has terminal Q-factorial singularities,
and

KV +
3

k
S̃ ∼Q f∗

(
KP3 +

3

k
S

)
−E,

where S̃ = f−1(S), E is an effective f-exceptional divisor whose support coincides
with f−1(O), and �E
 �= 0. There is an extremal contraction g : V →W such that
the divisor −(KV + 3k S̃+E) is g-ample. One can readily see that the morphism g is
either a contraction of the surface S̃ to a curve or a conic bundle contracting S̃ to a
curve. Let C be a general fibre of the morphism g. Then elementary computations
show that f(C) is a line, which implies that S is a cone.

It follows from Proposition 1.2.3 and Theorem 1.7.10 that the cones have the
highest log canonical threshold (see [111]) among the two-dimensional quartics in
P3 having isolated singularities. Using results obtained in [177], [74], [75], [52],
[84], [143], one can find all log canonical thresholds of quartic surfaces in P3 with
isolated singularities. This is important for a deeper understanding of the birational
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geometry of Fano threefolds, because quartic surfaces with isolated singularities
arise as hyperplane sections of smooth quartic threefolds.

§1.3. Movable log pairs
The solution of many important problems of birational geometry of higher-

dimensional algebraic varieties has showed that it is natural to consider global
and local properties of pairs consisting of a variety and a divisor on the variety
(see 1.2). On the other hand, it is often convenient to consider pairs of this kind
formed by a variety and some (not necessarily complete) linear system on it without
fixed components.

Definition 1.3.1. A movable log pair (X,MX) consists of a variety X and a
movable boundary MX on X, where MX =

∑n
i=1 aiMi is a formal finite linear

combination, Mi is a linear system on X without fixed components, and ai is a
non-negative rational number for any i.

A movable log pair can always be regarded as an ordinary log pair with effective
boundary by replacing every linear system by a weighted sum of its general elements.
In particular, for a movable log pair (X,MX) the formal sum KX +MX can be
regarded as a divisor on X usually called the log canonical divisor of the log pair
(X,MX). In the rest of this section we assume that the log canonical divisors of
all movable log pairs are Q-Cartier divisors.

Remark 1.3.2. For a movable log pair (X,MX) one can treat the self-intersection
M2X as an effective cycle on X of codimension 2 if X has Q-factorial singularities.
Namely, let MX =

∑n
i=1 aiMi, where Mi is a linear system on X without fixed

components. For every index i we choose two sufficiently general divisors Si and

Ŝi in the linear system Mi and set M
2
X =

∑n
i, j=1 aiaj Si · Ŝj .

The image of a movable boundary under a birational map is well defined. Mov-
able log pairs (X,MX) and (Y,MY ) are said to be birationally equivalent if there
is a birational map ρ : X ��� Y such that MY = ρ(MX). For a movable log pair
we can define some rational numbers, so-called discrepancies, and several classes of
singularities, as done in the case of ordinary log pairs (see [106], [113], [111]); how-
ever, the most natural classes of singularities in this case are terminal and canonical
singularities.

Definition 1.3.3. A log pair (X,MX) is said to have canonical (terminal) singu-
larities if every rational number a(X,MX , Ei) determined by the equivalence

KW + f
−1(MX) ∼Q f∗(KX +MX) +

k∑
i=1

a(X,MX , Ei)Ei

is non-negative (positive) for every birational morphism f : W → X, where Ei is
an exceptional divisor of the birational morphism f . The number a(X,MX , Ei)
is called the discrepancy of the movable log pair (X,MX) at the divisor Ei.

Remark 1.3.4. If the singularities of a log pair (X,MX) are terminal, then the
singularities of the log pair (X, εMX) are also terminal for a sufficiently small
rational number ε > 1.
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The singularities of a given movable log pair coincide with the singularities of
the variety outside the union of the base loci of the components of the movable
boundary. Thus, it follows from the existence of a resolution of singularities of an
algebraic variety (see [76]) that every movable log pair is birationally equivalent to
a movable log pair with terminal singularities.

Example 1.3.5. Let us consider a movable log pair (P2, γH), where H is a com-
plete linear system |OP2(1)| and γ is a rational number. Let τ : P2 ��� P2 be a
rational map such that

τ(x : y : z) = (yz : xz : xy),

where (x : y : z) are homogeneous coordinates on P2. In this case the map τ is
undefined at the points (1 : 0 : 0), (0 : 1 : 0), and (0 : 0 : 1) and is an involution,
which is usually called a Cremona involution. By construction, τ(H) is a linear
system formed by conics passing through the points (1 : 0 : 0), (0 : 1 : 0), and
(0 : 0 : 1). Moreover, the singularities of the movable log pair (P2, γH) are terminal
for any choice of γ, and the singularities of the movable log pair (P2, γτ(H)) are
terminal for γ < 1 and canonical for γ � 1.
Example 1.3.6. Let M be a linear system without fixed components on a three-
fold X which has Q-factorial and terminal singularities. Then, according to [168]
and [124], the singularities of the log pair (X,M) are terminal if and only if all base
points of the linear system M are isolated, smooth on a general divisor in the linear
system M, and smooth on the variety X.

Example 1.3.7. Let X be a normal variety such that the dualizing sheaf ωX is
locally free, let M be a linear system on X having no fixed components, and let
S be a general divisor in the linear system M. Then the variety S has canonical
singularities if and only if the log pair (X,M) has canonical singularities (see [111],
Theorems 4.5.1 and 7.9).

Any application of the log MMP to canonical and terminal movable log pairs
preserves their canonicity and terminality, respectively (see [106]).

Definition 1.3.8. A proper irreducible subvariety Y of a variety X is called a
centre of canonical singularities of a movable log pair (X,MX) if there exist
a birational morphism f : W → X and an f-exceptional divisor E1 ⊂ W such
that

KW + f
−1(MX) ∼Q f∗(KX +MX) +

k∑
i=1

a(X,MX , Ei)Ei,

where a(X,MX , Ei) is a rational number, Ei is an exceptional divisor of the bira-
tional morphism f : W → X, f(E1) = Y , and a(X,MX , E1) � 0. The set of all
centres of canonical singularities of the log pair (X,MX) is denoted by CS(X,MX).

Remark 1.3.9. Let us consider a movable log pair (X,MX) and a proper irreducible
subvariety Z ⊂ X such that X is smooth at a general point of Z. Then

Z ∈ CS(X,MX)⇒ multZ(MX) � 1,

and we also have multZ(MX) � 1⇒ Z ∈ CS(X,MX) if codim(Z ⊂ X) = 2.
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Remark 1.3.10. Let (X,MX) be a movable log pair, let H be a sufficiently general
hyperplane section of the variety X, and let Z be a proper irreducible subvariety
such that Z ∈ CS(X,MX). Then every component of the intersection Z ∩ H is
contained in the set CS(H,MX |H).

Example 1.3.11. Let S be a smooth cubic surface in P3, let P be a point on S,
and let ψ : S ��� P2 be the projection from the point P . Then ψ is of degree 2 at a
general point of S and induces an involution τ ∈ Bir(S). Let us consider the linear
system H consisting of all hyperplane sections of S. Let M = τ(H). Suppose that
P is not an Eckardt point, namely, P is not an intersection of three lines contained
in S. Then one can readily show that a general curve in the linear system M has
multiplicity three at the point P and is cut out on the surface S by a quadric in
P3. Moreover, it can be shown that the relation KS +

1
2M ∼Q 0 holds, the set

CS(S, 1
2
M) consists of the point P , and the singularities of the log pair (S, 1

2
M) are

not canonical (see 1.5).

Thus, the singularities of movable log pairs depend essentially on the multiplic-
ities of the corresponding movable boundaries. An effective way to bound these
multiplicities is to use the following result (see [147] and [27]).

Proposition 1.3.12. Let X be a smooth complete intersection ∩ki=1Gi ⊂ Pm and
let D be an effective divisor on the variety X such that D ∼ OPm(n)|X , where Gi
is a hypersurface. Then multS(D) � n for every irreducible subvariety S ⊂ X such
that dim(S) � k.

Proof. One can assume that dim(S) = k � (m−1)/2. We consider a cone C over S
with vertex at a general point P ∈ Pm. Then C ∩X = S ∪ R, where R is a curve
on the complete intersection X.

Let π : X → Pm−1 be the projection from the point P and let Dπ ⊂ X be the
corresponding subvariety along which the projection π is ramified. We show that
R∩S = Dπ∩S in the set-theoretic sense. Let C∩Gi = S∪Ri. Then Ri∩S = Diπ∩S
by Lemma 3 in [154], where Diπ ⊂ Gi is the ramification divisor of the projection
πi : Gi → Pm−1 from the point P . Thus, the set-theoretic equalities R = ∩ki=1Ri
and Dπ = ∩ki=1Diπ imply that R ∩ S = Dπ ∩ S.
We consider homogeneous coordinates (z0 : . . . : zm) on P

m such that the point
P has some coordinates (p0 : . . . : pm) and the hypersurface Gj is given by the
equation Fj(z0, . . . , zm) = 0. In this case the subvariety Dπ is given by the k
equations

m∑
i=0

∂Fj
∂zi
pi = 0,

and the linear systems of divisors of the form
∑m
i=0 λi

∂Fj
∂zi
= 0, where λi ∈ C,

do not have base points on X because X is smooth. Thus, the set-theoretic inter-

section Dπ ∩ S consists of d
∏k
i=1(di − 1) distinct points, where di is the degree

of the hypersurface Gi and d is the degree of the variety S ⊂ Pm. Therefore,
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we have the inequality

nd

k∏
i=1

(di − 1) = deg(D|R) �
∑
O∈R∩S

multO(D) �
∑
O∈R∩S

multS(D)

= multS(D)d
k∏
i=1

(di − 1),

which shows that multS(D) � n.

Corollary 1.3.13. Under the assumptions and with the notation of Proposi-
tion 1.3.12, suppose that µ is a positive rational number such that µ < 1

n
. Then the

set CS(X, µD) contains no subvarieties of X of dimension greater than or equal
to k.

The claim in Proposition 1.3.12 cannot be sharpened in general.

Example 1.3.14. Let us consider a smooth complete intersection X ∈ P5 of a
quadric hypersurface Q and a cubic hypersurface V . Let C be an irreducible conic
on the variety X such that the plane Π ⊂ P5 containing C is contained in Q. In
this case Π∩V consists of the conic C and a line L. On the other hand, the general
fibre F of the projection from Π is a smooth plane cubic curve which intersects L
at a single point. There is a natural involution of the elliptic curve F : reflection
in the point L ∩ F , which induces a birational involution τ . We take the complete
linear system H consisting of hyperplane sections of the variety X, let M = τ(H),
and consider a general surface D in the linear system M. Then one can show that
D ∼ OP5(13)|X (see [87], Proposition 4.5); however, multC(D) = 14.

Definition 1.3.15. For a movable log pair (X,MX) we consider a birationally
equivalent movable log pair (W,MW ) with canonical singularities and a positive
integer m such that the divisor m(KW + MW ) is a Cartier divisor. We define
the Kodaira dimension κ(X,MX) of the movable log pair (X,MX) as the maximal
dimension of the variety φ|nm(KW+MW )|(W ) for n� 0 if at least one complete linear
system |nm(KW +MW )| is non-empty and we set κ(X,MX) = −∞ otherwise.

The Kodaira dimension of a movable log pair is a birational invariant and a
non-decreasing function of the boundary coefficients.

Lemma 1.3.16. The Kodaira dimension of a movable log pair is well defined,
namely, it does not depend on the choice of a birationally equivalent movable log
pair with canonical singularities in Definition 1.3.15.

Proof. Let (X,MX) and (Y,MY ) be movable log pairs having canonical singularities
such thatMX = ρ(MY ) for some birational map ρ : Y ��� X and letm be a positive
integer such that m(KX +MX) and m(KY +MY ) are Cartier divisors. To prove
the desired assertion, it suffices to show that either the divisors |nm(KX +MX)|
and |nm(KY +MY )| are empty for any n ∈ N or

φ|nm(KX+MX)|(X)
∼= φ|nm(KY+MY )|(Y )
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for any n� 0. Let us consider the commutative diagram

W
g

����
��

��
�� f

����
��

��
��

X ρ
��������� Y ,

where W is smooth and g : W → X and f : W → Y are birational morphisms.
Then

KW +MW ∼Q g∗(KX +MX) +
k∑
i=1

aiGi ∼Q f∗(KY +MY ) +
l∑
i=1

biFi,

where MW = g
−1(MX), ai and bj are rational numbers, and Gi and Fi are irre-

ducible exceptional divisors of g and f , respectively. Moreover, since the movable
log pairs (X,MX) and (Y,MY ) are canonical, it follows that ai � 0 and bj � 0.
It follows from Lemma 2.19 in [113] that the dimensions of |nm(KW + MW )|,
|g∗(nm(KX +MX))|, and |f∗(nm(KY +MY ))| are equal and that

φ|nm(KW+MW )|(W )
∼= φ|g∗(nm(KX+MX))|(W ) ∼= φ|f∗(nm(KY +MY ))|(W )

provided that these varieties are non-empty, which implies the desired assertion.

If the boundary is empty, then Definition 1.3.15 coincides with the classical
definition of the Kodaira dimension (see Definition 0.2.3). One can define the
Kodaira dimension for arbitrary log pairs exactly as for movable log pairs (see [173]
and [106]), and the assertion of Lemma 1.3.16 remains valid. The Kodaira dimen-
sion can be used for the birational classification of planar curves (see [80] and [81]).
For example, it follows from the results of [173] that κ(P2, C) = −∞ for an irre-
ducible curve C ⊂ P2 if and only if there is a σ ∈ Bir(P2) such that σ(C) is a
line. As was proved in [79], for two irreducible planar curves C1 and C2 there
is a ρ ∈ Bir(P2) such that ρ(C1) ∪ ρ(C2) is a union of two lines if and only if
κ(P2, C1 + C2) = −∞.
Remark 1.3.17. Let (X,MX) be a movable log pair for which the equivalence
KX +MX ∼Q 0 holds. Then κ(X,MX) � 0, and the equality κ(X,MX) = 0 holds
if and only if the singularities of the movable log pair (X,MX) are canonical.

Example 1.3.18. We consider a smooth three-dimensional quartic X ⊂ P4 and a
line L on X. Let ψ : W → X be a blow-up of the line L. We note that a smooth
quartic X contains a one-dimensional family of lines (see [42] and [166]). In this
case the linear system | −KW | is free and induces an elliptic fibration φ : W → P2.
We set MX = µψ(| −KW |) for µ ∈ Q. Then

κ(X,MX) =



−∞ for µ < 1,

0 for µ = 1,

2 for µ > 1.
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Definition 1.3.19. A movable log pair (V,MV ) is called a canonical model of
a movable log pair (X,MX) if there is a birational map ψ : X ��� V such that
MV = ψ(MX), the divisor KV +MV is ample, and the singularities of the log pair
(V,MV ) are canonical.

This definition of canonical model coincides with the classical definition of canon-
ical model if the boundary is empty, and the following assertion results from the
proof of Lemma 1.3.16.10

Theorem 1.3.20. A canonical model is unique whenever it exists.

In most applications one uses movable log pairs whose boundary consists of a
single linear system without fixed components which is multiplied by a positive
rational number (see [46]). On the other hand, all assertions which can be proved
for movable log pairs can be derived by linearity from analogous assertions for
movable log pairs whose boundaries have a single component. However, sometimes
one must use log pairs of more complicated structure.

§ 1.4. Noether–Fano–Iskovskikh inequality
Let us consider Fano varieties X having terminal Q-factorial singularities such

that rk Pic(X) = 1. The following theorem was proved in [45], although many
special cases of the assertion can be found in [120], [121], and [94].

Theorem 1.4.1. Suppose that every movable log pair (X,MX) such that KX +
MX ∼Q 0 has canonical singularities. Then the Fano variety X is birationally
superrigid.

Proof. Let ρ : X ��� Y be a birational map such that either the variety Y admits a
structure of a fibration τ : Y → Z into varieties whose Kodaira dimension is equal to
−∞, or Y is a Fano variety of Picard rank 1 with terminal Q-factorial singularities.
We claim that the first case is impossible, while the rational map ρ is biregular in
the second case.
Suppose that we have a fibration τ : Y → Z into varieties of Kodaira dimension

−∞. We arbitrarily choose a sufficiently general very ample divisor H on the
variety Z and consider the movable boundary MY = µ|τ∗(H)| for an arbitrary
positive rational number µ. By construction, the Kodaira dimension κ(Y,MY ) of
the movable log pair (Y,MY ) is equal to −∞. Let MY = µρ−1(|τ∗(H)|). Then

κ(X,MX) = κ(Y,MY ) = −∞

by the definition of the Kodaira dimension (see Lemma 1.3.16). Let us now choose
a rational number µ in such a way that KX +MX ∼Q 0. Then κ(X,MX) = 0,
because the log pair (X,MX) has canonical singularities by the assumption of the
theorem. This is a contradiction.

10In the case of an empty movable boundary the assertion of Theorem 1.3.20 about the
uniqueness of a canonical model of an algebraic variety is well known. In particular, it follows

from Theorem 1.3.20 that all birational automorphisms of canonical models are biregular, but
it is this property that is the classical attribute of a birationally superrigid variety (see Defini-

tion 0.3.4). Moreover, Theorem 1.3.20 explains the geometric nature of this phenomenon in both
cases (see 1.4).
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Suppose that Y is a Fano variety of Picard rank 1 with Q-factorial terminal
singularities. We set MY =

µ
n
| − nKY | and MX = ρ−1(MY ) for n� 0 and µ ∈ Q

and choose a µ in such a way that the relation KX +MX ∼Q 0 holds. Then the
singularities of the movable log pair (X,MX) are canonical by the assumption of
the theorem. In particular, κ(X,MX) = κ(Y,MY ) = 0, and hence µ = 1.
Let us consider the commutative diagram (see [76])

W
f

����
��

��
�� g

���
��

��
��

�

X ρ
��������� Y

such that W is smooth and g : W → X and f : W → Y are birational morphisms.
Then

k∑
j=1

a(X,MX , Fj)Fj ∼Q
l∑
i=1

a(Y,MY , Gi)Gi,

where Gi is an irreducible g-exceptional divisor and Fj is an f-exceptional divisor.
The singularities of the log pairs (X,MX) and (Y,MY ) are canonical. More-

over, the singularities of the movable log pair (Y,MY ) are terminal. In particular,
all the numbers a(X,MX , Fj) are non-negative and all the numbers a(Y,MY , Gi)
are strictly positive. It follows from Lemma 2.19 in [113] that a(X,MX , E) =
a(Y,MY , E) for any divisor E on W , which implies that the singularities of the
movable log pair (X,MX) are terminal.
We take a rational number ζ > 1 such that the singularities of (X,MX) and

(Y,MY ) are terminal (see Remark 1.3.4). In this case the divisors KX + ζMX
and KY + ζMY are ample and each of the movable log pairs (X,MX) and (Y,MY )
is a canonical model. Thus, the rational map ρ is biregular by Theorem 1.3.20.

The assertion of Theorem 1.4.1 holds over any field of characteristic zero.

Example 1.4.2. Let us consider a smooth del Pezzo surface S defined over Q and
such that K2S = 1 and rk Pic(S) = 1. Then it follows from Theorem 1.4.1, the
equality K2S = 1, and Remark 1.3.9 that S is birationally superrigid (see Theo-
rem 1.5.1 and [120], [121], [91], [23], [48]).

One can show that the assertion of Theorem 1.4.1 is a criterion for the birational
superrigidity of the Fano variety X if the log MMP exists.

Corollary 1.4.3. Let dim(X) = 3. Then X is birationally superrigid if and only
if the singularities of every movable log pair (X,MX) with KX +MX ∼Q 0 are
canonical.

The following generalization of Theorem 1.4.1 was obtained in [23].

Theorem 1.4.4. Suppose that ζ : X ��� Z is a map such that the normalization
of a general fibre of ζ is an elliptic curve. Let us consider the commutative diagram

V
ρ

��																		
τ

��














X
ζ

������������������ Z ,
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where V is a smooth variety, τ is an elliptic fibration, and the morphism ρ is
birational. Take a very ample divisor D on Z, consider the linear system D =
|τ∗(D)|, and let M = ρ(D). Then CS(X, γM) �= ∅, where γ is a positive rational
number such that KX + γM ∼Q 0.

Proof. Let CS(X, γM) = ∅. Then the singularities of the log pair (X, γM) are
terminal and the log pair (X, εM) is a canonical model for some rational number
ε > γ (see Remark 1.3.4). In particular, we have the equalities

κ(V, εD) = κ(X, εM) = dim(X);

however, κ(V, εD) � dim(Z) = dim(X) − 1, a contradiction.

One can readily see that the assertion of Theorem 1.4.4 can be generalized to
the case of a birational transformation into a fibration whose general fibre has
Kodaira dimension zero, and to any birational transformation into a Fano variety
with arbitrary canonical singularities (see [23]).

§ 1.5. Cubic surfaces
Let S be a smooth cubic surface in P3 defined over a field F of characteristic zero.

Then the adjunction formula implies the rational equivalence −KS ∼ OP3(1)|S. In
particular, the surface S is a del Pezzo surface. As is known, the surface S is
rational if the field F is algebraically closed. However, S need not be rational if F
is not algebraically closed. The following result holds (see [120]–[122], [45], [91]).

Theorem 1.5.1. Suppose that rk Pic(S) = 1. Then S is a birationally rigid del
Pezzo surface.

In particular, a surface S is non-rational if rk Pic(S) = 1.

Corollary 1.5.2. Let Y be a smooth cubic surface in P3 such that rk Pic(S) =
rk Pic(Y ) = 1. In this case the cubic surfaces S and Y are birationally equivalent
if and only if they are projectively equivalent.

Smooth cubic surfaces whose Picard group is Z do indeed exist.

Example 1.5.3. Let F = Q and let the equation

2x3 + 3y3 + 5z3 + 7w3 = 0 ⊂ Proj(Q[x, y, z, w]) ∼= P3

define a surface S ⊂ P3. Then rk Pic(S) = 1 (see [164], [122], [48]).

We show how to prove Theorem 1.5.1 using Theorem 1.4.1, for example, by
proving Corollary 1.5.2. Suppose that rk Pic(S) = 1. In particular, the field F is
not algebraically closed. Let ρ : S ��� Y be a birationalmap such that Y is a smooth
cubic surface with rk Pic(Y ) = 1. We must show that S and Y are projectively
equivalent; we note that the surfaces Y and S are projectively equivalent if they
are isomorphic.
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We set M = ρ−1(| − KY |). Then there is a positive integer n such that the
equivalence M ∼ −nKS holds. Let us consider a movable log pair (S, 1nM). The
singularities of the log pair (S, 1nM) are canonical if and only if ρ is an isomorphism
(see the proof of Theorem 1.4.1). Suppose that ρ is not an isomorphism. Then there
is an irreducible (but perhaps geometrically reducible) zero-dimensional subvariety
Z ⊂ S defined over F and such that multZ(M) > n (see Remark 1.3.9).
Let F be the algebraic closure of the field F. Then the subvariety Z defined

over F consists of finitely many F-points O1, . . . , Or such that multOi(M) > n. In
particular, for two general curves C1 and C2 in the linear system M we have

3n2 = C1 · C2 �
∑

P∈C1∩C2

multP (C1)multP (C2) �
r∑
i=1

multOi (C1)multOi(C2) > n
2r,

which implies that r � 2.
Let r = 2, let α : W → S be a blow-up of the surface S at Z, and let E be an

exceptional divisor of α which splits into a disjoint union of smooth rational curves
over the field F. Then it follows immediately from the conditions

multO1(M) = multO2(M) > n

that W is a smooth del Pezzo surface defined over F and such that K2W = 1. As
is well known, the surface W is a hypersurface of degree 6 in P(1, 1, 2, 3), and the
natural projection W → P(1, 1, 2) is a double cover and coincides with the map
φ|−2KW |. Let τ be the biregular involution of W interchanging the fibres of the
double cover φ|−2KW | and let σ1 = α ◦ τ ◦ α−1. In this case,{

τ∗(α∗(−KS)) = 5α∗(−KS)− 6E,
τ∗(E) = 4α∗(−KS)− 5E.

(1.5.4)

Let r = 1, that is, let Z be an F-point. We consider a blow-up β : U → S of the
cubic surface S at the point Z and denote the exceptional divisor of the birational
morphism β by F . Then it follows immediately from the inequality multZ(M) > n
that U is a smooth del Pezzo surface such that U is defined over the field F, K2U = 2,
the surface U is a hypersurface of degree 4 in P(1, 1, 1, 2), and the natural projection
of U on P2 is a double cover which coincides with the anticanonical map φ|−KU |.
Let η be the involution of U interchanging the fibres of the double cover φ|−KU |
and let σ1 = β ◦ η ◦ β−1. Then{

η∗(β∗(−KS)) = 2β∗(−KS)− 3F,
η∗(F ) = 4β∗(−KS)− 2F.

(1.5.5)

The involution σ1 is birational and non-biregular. If r = 2, then σ1 is called a
Bertini involution, and if r = 1, then the birational involution σ1 is called a Geiser
involution. Let B = σ1(M) and let k be a positive integer such that the rational
equivalence B ∼ −kKS holds. Then the relations (1.5.4) and (1.5.5) immediately
imply the inequality k < n. Thus, the proof of Theorem 1.4.1 implies that either
the birational map ρ ◦ σ1 : S ��� Y is an isomorphism or the singularities of the
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movable log pair (S, 1kB) are not canonical. In the latter case we can apply to

the movable log pair (S, 1
k
B) all the arguments used above for (S, 1

n
M). Thus, we

have proved that there are s � n birational (Bertini or Geiser) involutions σ1, . . . , σs
such that the map ρ ◦ σ1 ◦ · · · ◦ σs is an isomorphism. In particular, the surfaces S
and Y are isomorphic.
It is easy to see that the arguments in the above proof of Corollary 1.5.2 prove

both Theorem 1.5.1 and also the following well-known result.

Theorem 1.5.6. Let rk Pic(S) = 1. Then the group Bir(S) is generated by the
projective automorphisms of the surface S, the Bertini involutions, and the Geiser
involutions.

The possible relations between Bertini and Geiser involutions of the surface S
are described in Theorem 7.8 of Chapter V in the book [122]. One can readily
see from the proof of Corollary 1.5.2 that the results analogous to Theorems 1.5.1
and 1.5.6 hold for del Pezzo surfaces of degrees 1 and 2 (see [120] and [121]).

§ 1.6. Sarkisov Programme
Let us consider a morphism π : X → Z such that the variety X has Q-factorial

and terminal singularities, the divisor −KX is π-ample, the inequality dim(Z) <
dim(X) and the equality rk Pic(X) = rk Pic(Z) + 1 hold, and the fibres of π are
connected. In this case the variety X is usually called a Mori fibred space and the
morphism π is called a Mori fibration. If Z is a point, then X is a Fano variety
with Q-factorial terminal singularities such that rk Pic(X) = 1.
If Z is a point, then Theorem 1.4.1 gives a necessary condition for the birational

superrigidity of the variety X, and this condition is even a criterion in the three-
dimensional case (see Corollary 1.4.3). It is natural to consider the following two
problems:

• how to generalize the assertions of Theorem 1.4.1 and Corollary 1.4.3 to the
case of dim(Z) > 0;
• how to generalize the assertion of Theorem 1.4.1 to the case in which Z is
a point and the variety X is not birationally rigid.

In a sense the answer to these questions is the so-called Sarkisov Programme
(see [45]) which has so far been proved only for surfaces and threefolds, and its
proof is non-trivial even in the three-dimensional case. However, one can readily
understand and even feel the geometric meaning of the Sarkisov Programme without
going into the details of proving that every sequence of elementary links terminates.
In the rest of this section we briefly show how to logically approach the three-
dimensional Sarkisov Programme starting from the two problems posed above.
Let dim(X) = 3. Then the following result (whose proof readily follows from

the proof of Theorem 1.4.1, which in turn is Theorem 4.2 in [45]) is a natural
generalization of Theorem 1.4.1.

Theorem 1.6.1. Let π : X → Z be a Mori fibration and let ρ : X ��� X be a
birational map. Take a very ample divisor D on Z and choose an n ∈ N such
that the linear system | − nKX + π∗(nD)| has no base points. Let M be the
proper transform of the linear system | − nKX + π∗(nD)| on the variety X and
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consider a positive rational number µ such that KX + µM ∼Q π∗(H) for some
divisor H on the variety Z. Suppose that the movable log pair (X, µM) has canonical
singularities and that the divisor H is numerically effective. In this case ρ is an
isomorphism and there is an isomorphism α : Z → Z such that the diagram

X

π

		

ρ �� X

π

		
Z α

�� Z

(1.6.2)

is commutative.

If dim(Z) �= 0, then it is impossible to obtain a criterion (similar to Corol-
lary 1.4.3) for the birational superrigidity of a Mori fibration π : X → Z in terms
of numerical properties of movable log pairs on the variety X. The main reason
for this fact is that the birational superrigidity (respectively, rigidity) of the Mori
fibration π is defined as the uniqueness of a Mori fibred space in a given class of
birational equivalence up to the commutative diagram

X

π

		

ρ �������� X

π

		
Z

α �������� Z ,

(1.6.3)

where ρ and α are birational but not biregular isomorphisms and the rational map
ρ induces a biregular isomorphism of the general fibres of the fibrations π and π
(respectively, a birational isomorphism of the general fibres of the fibrations π
and π, which must be isomorphic in this case). In particular, if π is birationally
superrigid (respectively, rigid), then the general fibre of the fibration π is a bira-
tionally superrigid (respectively, rigid) Fano variety, where the general fibre
of π is regarded as a variety defined over the field of rational functions of the
variety Z. However, it can be seen from Theorem 1.6.1 that imposing specific
numerical conditions on movable log pairs on the Mori fibred space X can rather
imply the existence of the commutative diagram (1.6.2).
It is easy to prove the following criterion.

Proposition 1.6.4. A Mori fibration π : X → Z is birationally superrigid if and
only if κ(X,MX) � 0 for every movable log pair (X,MX) satisfying the relation
KX +MX ∼Q π∗(H), where H is a divisor on the variety Z.
For dim(Z) = 1 the assertion of Proposition 1.6.4 implicitly contains the non-

existence of a so-called super-maximal singularity (see [150]), and for dim(Z) = 2
the geometric meaning of Proposition 1.6.4 is revealed in [162]. For dim(Z)=0 the
assertion of Proposition 1.6.4 coincides with Corollary 1.4.3.
Suppose now that the Mori fibred space X is not birationally superrigid, that is,

there is a Mori fibration π : X → Z but there is no commutative diagram (1.6.3).
Let D be a very ample divisor on Z and let

M = ρ−1(|−nKX + π
∗(nD)|)
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forn�0.We consider a positive rational number µ such thatKX+µM∼Q π∗(H) for
a divisor H on the variety Z. Then it follows from Theorem 1.6.1 that either the
singularities of the movable log pair (X, µM) are not canonical or the divisor H is
not numerically effective.

Remark 1.6.5. One can readily see that 6/µ ∈ N if dim(Z) > 0. If the variety Z is a
point, then it follows from [103] that the variety X belongs to finitely many defor-
mation families, which implies the existence of an absolute constant λ such that
λ/µ ∈ N. A similar result holds under much more general assumptions, for exam-
ple, for all Fano threefolds with canonical singularities (see [12], [116], [13]). The
boundedness of smooth Fano varieties of any fixed dimension was proved in [137]
and [114].
We first consider the case in which the singularities of the movable log pair

(X, µM) are canonical and the divisor H is not numerically effective. In particular,
the variety Z is not a point, and the following two cases are possible:

• dim(Z) = 1, which means that π is a del Pezzo fibration;
• dim(Z) = 2, which means that π is a conic bundle.

Suppose that dim(Z) = 1. In this case rk Pic(X) = 2. Let NE(X) ⊂ R2 be the
closure of the cone of one-dimensional effective cycles on the variety X. Then
the cone NE(X) is two-dimensional and, in particular, has exactly two extremal
rays R1 and R2 of which one, say R1, is generated by a curve contained in the
fibres of the fibration π. On the other hand, it follows from the numerical non-
effectiveness of the divisor H that (KX +µM) ·R2 < 0. The log MMP now implies
that there is a contraction ψ : X → Y such that Y is normal, the morphism ψ is
surjective and has connected fibres, and any curve C ⊂ X is contracted by ψ to a
point if and only if C ∈ R2. The possible cases are

• ψ is birational and contracts a curve C ⊂ X,
• ψ is birational and contracts an irreducible divisor E ⊂ X,
• ψ is a fibration into del Pezzo surfaces,
• ψ is a conic bundle.

Moreover, if ψ is a small contraction, then there is a log flip γ : X ��� X̂ with
respect to the movable log pair (X, µM), and we can apply the above arguments

to the movable log pair (X̂, µγ(M)). Hence, there is a diagram

X

π

����
��

��
��

ξ ����� W

υ

���
��

��
��

�

Z U ,

(1.6.6)

where ξ is a composition of flips, flops, and antiflips, and υ is a divisorial contraction,
a del Pezzo fibration, or a conic bundle. If υ is not birational, then we set X′ =W ,
Z′ = U , and π′ = υ; otherwise we set X′ = U and take Z′ to be a point and
π′ : X′ → Z′ to be a surjection. In this case, π′ is a Mori fibration.
Remark 1.6.7. In the terminology of [45] and [46] or that of Theorem 1.6.14, the
birational diagram (1.6.6) is a Sarkisov link of type IV if υ is a Mori fibration and
a Sarkisov link of type III if υ is birational.
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Suppose now that dim(Z) = 2. As above, we assume that the divisor H is not
numerically effective. This case is similar to the previous one, but the number
of possible birational combinations is greater, because the variety Z is a surface
(rather than a curve) and has its own birational geometry. There is an effective
divisor ∆ on Z for which the rational equivalence H ∼Q KZ + ∆ holds and the
singularities of the log pair (Z,∆) are log terminal (see [107] and [105]). Hence, we
can apply the log MMP to the log pair (Z,∆) constructed, and the relation

KX + µM ∼Q π∗(KZ +∆)

immediately ensures the synchronous applicability of the log MMP both to the log
pair (Z,∆) and to the movable log pair (X, µM). In particular, there is a surjective
map with connected fibres τ : Z → S for which the following cases are possible:

• dim(S) = 2, that is, the morphism τ contracts an irreducible rational curve;
• dim(S) = 1, that is, the morphism τ is a P1-fibration over the curve S;
• dim(S) = 0, that is, the surface Z is a del Pezzo surface with log terminal
singularities and such that rk Pic(Z) = 1.

Here the case dim(S) = 0 is quite similar to the case dim(Z) = 1, because in this
case we have rk Pic(X) = 2. Applying the log MMP, we obtain the commutative
diagram

X

π

����
��

��
��

ξ ����� W

υ

����
��

��
��

Z

τ
���

��
��

��
� U ,

ζ


���������������

S

(1.6.8)

where the map ξ is a birational isomorphism in codimension one, that is, ξ is a
composition of finitely many flops, flips, and antiflips. Moreover, if dim(S) = 2,
then the morphism υ is a divisorial contraction and ζ is a conic bundle. If dim(S)=1,
then υ is either a conic bundle or a del Pezzo fibration, and in the latter case the
map ζ is simply an isomorphism. If dim(S) = 0, then υ is either a birational map
or a Mori fibration. If υ is a Mori fibration, then we set X′ = W , Z′ = U , and
π′ = υ. If υ is birational, then we set X′ = U , Z′ = S, and π′ = ζ. In this case, π′

is a Mori fibration.

Remark 1.6.9. In the terminology of [45] and [46] or that of Theorem 1.6.14, the
birational diagram (1.6.8) is a Sarkisov link of type III if υ is birational and a
Sarkisov link of type IV otherwise.
Thus, the assumption that the singularities of the log pair (X, µM) are canon-

ical and the divisor H is not numerically effective leads to the construction of a
birational transformation of the Mori fibred space X into the Mori fibred space X′.
Let σ : X ���X′ be the birational map thus constructed, letM′ = σ(M), and let µ′
be a rational number for which the relation KX′ +µ

′M′ ∼Q π′∗(H ′) holds for some
divisor H ′ on the variety Z′. Then one of the following three cases holds: there is
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a commutative diagram

X′

π′

		

ρ◦σ−1 �� X

π

		
Z′ α

�� Z ,

(1.6.10)

where ρ ◦ σ−1 and α are isomorphisms, the singularities of the movable log pair
(X′, µ′M′) are not canonical, or the divisor H ′ is not numerically effective.

Remark 1.6.11. We have the inequality µ′ > µ by construction, where µ′ belongs
to a set satisfying the ascending chain condition (see Remark 1.6.5).
Let us now assume that the singularities of the movable log pair (X, µM)

are not canonical. In this case the movable log pair (X, νM) is canonical (but
need not be terminal) for some rational number ν < µ, and the singularities of
(X, µM) are either canonical over a general point of the variety Z or not canonical.
In the former case the log MMP implies the existence of the diagram

X

π

		

σ �������� X′

π′

		
Z

α �������� Z′ ,

where π′ is a Mori fibration, σ and α are birational maps, and σ induces a biregular
isomorphism of the general fibres of the fibrations π and π′. On the other hand,
if the variety Z is a point, then it follows immediately from the log MMP and
from the existence of extremal blow-up for log pairs having canonical singularities
that the following commutative diagram exists:

V
χ

����
��

��
��

ξ ����� W

υ

����
��

��
��

X U ,

(1.6.12)

where χ is a divisorial contraction such that

KV + νχ
−1(M) ∼Q χ∗(KX + νM),

the map ξ is an isomorphism in codimension one, and υ is a divisorial contraction,
a del Pezzo fibration, or a conic bundle.

Remark 1.6.13. In the terminology of [45] and [46] or that in Theorem 1.6.14, the
birational diagram (1.6.12) is a Sarkisov link of type III.
One can readily generalize the arguments used in the above cases to the remain-

ing cases and obtain some more examples of elementary non-biregular birational
transformations of a Mori fibred space X into some other Mori fibred space.
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Here Theorem 1.6.1 either ensures a decomposition of the birational map ρ into
a composition of finitely many elementary birational transformations of this kind
or gives necessary conditions for the existence of another elementary birational
transformation. The only non-trivial question is as follows: Is it possible to obtain
an infinite sequence of elementary birational transformations of this kind? The
answer to this question is certainly negative (see [45]). Thus, the following theorem
holds, whose assertion is the three-dimensional Sarkisov Programme.

Theorem 1.6.14. Let π : X → Z and π : X → Z be Mori fibrations, let dim(X) =
dim(X) = 3, and let there be a birational map ρ : X ��� X. Then the map ρ is a
composition of the form η◦ρn◦· · ·ρ1, where η : X → X is a biregular automorphism
for which there is an isomorphism ω : Z → Z such that the diagram

X

π

		

η �� X

π

		
Z ω

�� Z

is commutative, and ρi+1 : Xi ��� Xi+1 is a birational map, a so-called elementary
link (or Sarkisov link), defined in one of the following ways:

• a link of type I, ρi+1 = ξi+1 ◦ χ−1i , and one has the commutative diagram

Vi
χi

����
��

��
��

ξi+1 �������� Xi+1

πi+1

		

Xi

πi

		
Zi �� τi+1

Zi+1 ,

• a link of type II, ρi+1 = χ̌i+1 ◦ ξi+1 ◦ χ̂−1i , and one has the commutative
diagram

V̂i
χ̂i

����
��

��
��

ξi+1 �������� V̌i+1
χ̌i+1

��














Xi

πi
���

��
��

��
� Xi+1

πi+1

���
���

���

Zi �� Zi+1 ,
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• a link of type III, ρi+1 = χi+1 ◦ ξi+1, and one has the commutative diagram

Xi

πi

		

ξi+1 �������� Vi
χi+1

����
��

��
��

�

Xi+1

πi+1

		
Zi

τi+1 �� Zi+1 ,

• a link of type IV, ρi+1 = ξi+1, and one has the commutative diagram

Xi

πi

		

ξi+1 ��������� Xi+1

πi+1

		
Zi

αi
����

��
��

��
Zi+1 ,

βi�������
���

S

where X0 = X, Xn = X, π0 = π, πn = π, Z0 = Z, Zn = Z, the varieties Vi and Xi
have terminal Q-factorial singularities, πi is a Mori fibration, ξi+1 is a composition
of finitely many flips, flops, and antiflips, the maps χi, χ̂i, and χ̌i are divisorial
contractions of an irreducible divisor, and τi+1, αi, and βi are surjective morphisms
with connected fibres.

Of course, Theorem 1.6.14 holds for algebraic surfaces as well. In the two-
dimensional case, the assertion of Theorem 1.6.14 is much simpler and more specific,
because there are only two types of Mori fibred surfaces, namely, P2 and P(E),
where E is a vector bundle on some smooth curve, the only extremal birational
contractions of surfaces are ordinary contractions of smooth rational curves into
smooth points, and the isomorphisms in codimension two are isomorphisms. Instead
of rewriting the assertion of Theorem 1.6.14 for algebraic surfaces, we shall now
prove the following classical result by using the Sarkisov Programme and following
the arguments in [1].

Theorem 1.6.15. The group Bir(P2) is generated by the elements of the group
Aut(P2) ∼= PGL(3,C) together with an involution τ such that τ(x : y : z) = (yz :
xz : xy), where (x : y : z) are homogeneous coordinates on P2.

Proof. Let σ be a birational automorphism of P2. We recall that a Cremona map
of P2 is a birational map which blows up three points on the plane P2 not belonging
to a single line and contracts the proper transforms of three lines passing through
these points into three points on P2. We show that σ is a composition of Cremona
maps.
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Let τ be a Cremona map. Then there is a commutative diagram

Ŝ
α̂

����
��

��
�� β̂

���
��

��
��

� Š
β̌

����
��

��
��

α̌

���
��

��
��

�

F1

γ̂

����
��
��
��
��
��
��
�

π
���

��
���

� F0

π̂����
���

��
�� F0

π̌ ���
��

��
��

F1

π
����

��
��

�

γ̌

���
��

��
��

��
��

��
��

P1 P1

P2
τ ����������������������������� P2 ,

(1.6.16)

where γ̂ and γ̌ are blow-ups of points, π is the natural projection, π̂ and π̌ are
distinct projections of the surface F0 ∼= P1 × P1, α̂ and α̌ are blow-ups of points
not belonging to the exceptional section of the surface F1, and β̂ and β̌ are con-
tractions of proper transforms of the fibres in which the points were blown up by
the morphisms α̂ and α̌, respectively. The commutative diagram (1.6.16) is a fac-

torization of the map τ into elementary links. The birational maps β̂ ◦ α̂−1 and
α̌ ◦ β̌−1 are elementary transformations of the surface F1 into the surface F0 and of
the ruled surface F0 into the ruled surface F1, respectively, and the construction
of these transformations can readily be generalized to the general situation to define
an elementary transformation of a ruled surface Fk into a ruled surface Fk±1.
The map σ admits the following factorization into elementary links:

Fk0

υ̂

		

ψ1 �������� Fk1
ψ2 �������� · · · ψn−1 �������� Fkn−1

ψn �������� Fkn

υ̌

		
P2

σ ������������������������������� P2 ,

(1.6.17)

where ki � 0 is an integer such that ki+1 = ki ± 1 and k0 = kn = 1, ψki is an
elementary transformation of the ruled surface Fki−1 into the surface Fki , and υ̂
and υ̌ are blow-ups of points.
We call the number max(k1, . . . , kn) � 1 the height of this factorization and say

that this factorization is minimal if ki �= 1 for all i. It follows from the commutative
diagram (1.6.16) that the map σ is a composition of Cremona maps if the height
of the factorization (1.6.17) is 1. We proceed by induction on the height of the
factorization (1.6.17). Suppose that height of (1.6.17) is not less than two. One can
assume that (1.6.17) is minimal, because otherwise one can represent the map σ as a
composition of birational automorphisms for which there is a minimal factorization
whose height does not exceed the height of (1.6.17), and the desired inductive
assertion can be proved for each of the birational automorphisms separately.
It follows from the above assumptions that k1 = 2. Let ξ : F1 ��� F0 be an

elementary transformation undefined at a sufficiently general point of the surface F1.
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In this case the factorization (1.6.17) induces the commutative diagram

F1

υ

����
��

��
��

ξ ����� F0
η ����� F1

υ̃

���
��

��
��

� F1

ῠ

����
��

��
��

ξ−1 ����� F0
φ1 ����� · · · φn ����� F1

ύ

���
��

��
��

�

P2
ν ��������������� P2

χ �������������������� P2,

(1.6.18)
where υ, υ̃, ῠ, and ύ are blow-ups of points, φi and η are elementary transformations
of ruled surfaces, σ = χ ◦ ν, and ν is a Cremona map.
We can assume that the commutative diagram (1.6.18) contains a factoriza-

tion of the birational map χ into elementary links; however, this factorization may
no longer be minimal. Nevertheless, by construction, the height of the factor-
ization (1.6.18) is strictly less than that of the factorization (1.6.17). Thus, the
birational automorphism χ is a composition of finitely many Cremona maps by
the induction hypothesis, and σ = χ ◦ ν, where ν is a Cremona map.
The defining relations for the generators of the group Bir(P2) were found in [67],

and a simpler solution of this problem was obtained in [88]. The generators of
the group Bir(P2) and the relations among them were described in [89] and [97],
respectively, in the case when the field of definition is not algebraically closed.
Nevertheless, there are many open questions related to the two-dimensional
Cremona group. For example, the following conjecture was expressed in [68].

Conjecture 1.6.19. The group Bir(P2) is simple.

We note that the assertion of Theorem 1.6.14 remains valid for surfaces defined
over an arbitrary (not necessarily algebraically closed) perfect field (see [91]).

§ 1.7. Log adjunction and connectedness
For some natural reasons, movable log pairs (see Definition 1.3.1) reflect well

the birational geometry of a given variety (see Theorem 1.3.20), the canonical and
terminal singularities form the most natural class of singularities for these log pairs,
and many important problems in birational geometry can be formulated in a very
simple way in terms of movable log pairs (see Theorem 1.4.1).
On the other hand, one can consider log pairs which have both movable and

fixed components, by analogy with the existence of linear systems having both
movable and fixed parts. Moreover, in principle one can also consider log pairs
with negative coefficients of components of the boundary, and these assumptions
are not only admissible but also necessary for the following reasons:

• even under elementary blow-ups, the log pullback of a movable log pair
(see Definition 1.7.1), which can have both fixed components and negative
coefficients of components of the boundaries, reflects the properties of the
pair on the blown-up variety more exactly than the naturally defined proper
transform;
• the geometric properties of the centres of canonical singularities (see Def-
inition 1.3.8) are not good when regarded outside the birational context,
in contrast to centres of log canonical singularities (see Definition 1.7.2),
whose role in geometry is great (see [106], [113], [111], [168], [154], [63]).
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In the present section we impose no restrictions on the coefficients of the
boundaries, although this is not very convenient and sometimes even excessive.
In particular, boundaries can fail to be effective, unless otherwise stated explicitly;
however, all log canonical divisors are assumed to be Q-Cartier divisors.

Definition 1.7.1. A log pair (V,BV ) is called a log pullback of a log pair (X,BX)
with respect to a birational morphism f : V → X if

BV = f−1(BX)−
n∑
i=1

a(X,BX , Ei)Ei and KV + B
V ∼Q f∗(KX + BX),

where the coefficients a(X,BX , Ei) are in Q and the divisor Ei is f-exceptional.

Definition 1.7.2. A proper irreducible subvariety Y ⊂ X is called a centre of log
canonical singularities of a log pair (X,BX) if there exist a birational morphism
f : W → X and a (not necessarily f-exceptional) divisor E ⊂ W such that E
is contained in the support of the effective part of the divisor �BY 
. The set
of all centres of log canonical singularities of the log pair (X,BX) is denoted by
LCS(X,BX), and the set-theoretic union of the centres of log canonical singularities
of (X,BX) (regarded as a proper subset of the variety X) is called the locus of log
canonical singularities of (X,BX) and is denoted by the symbol LCS(X,BX).

Remark 1.7.3. Let (X,BX) be a log pair, let H be a sufficiently general hyperplane
section of X, and let Z ∈ LCS(X,BX). Then Z ∩H ∈ LCS(H,BX |H).
We consider a log pair (X,BX), where BX =

∑n
i=1 aiBi, ai ∈ Q, and Bi is either

an effective, irreducible, and reduced divisor on the variety X or a linear system
on X not having fixed components. We say that the boundary BX is effective if
ai � 0 for all i. We say that the boundary BX is movable if Bi is a linear system
on X having no fixed components for every subscript i.

Example 1.7.4. Let us consider a smooth point O on a variety X. Suppose that
the point O belongs to the set LCS(X,BX). Let f : V → X be an ordinary blow-up
of the point O and let E be an exceptional divisor of the birational morphism f .
Then either E ∈ LCS(V,BV ) or there is a subvariety Z � E such that Z ∈
LCS(V,BV ), and E ∈ LCS(V,BV ) if and only if multO(BX) � dim(X).
Let f : Y → X be a birational morphism, let the variety Y be smooth, and let the

union of all the divisors f−1(Bi) and all the f-exceptional divisors form a divisor
with simple normal crossings. In this case the birational morphism f is called a log
resolution of the log pair (X,BX), and the relation KY + B

Y ∼Q f∗(KX + BX)
holds for the log pullback (Y,BY ) of the log pair (X,BX).

Definition 1.7.5. The subscheme L(X,BX) associated with the sheaf of ideals

I(X,BX) = f∗(OY (�−BV �))

is called the subscheme of log canonical singularities.

We note that Supp(L(X,BX)) = LCS(X,BX) ⊂ X. The following result is the
Shokurov vanishing theorem (see [168]).
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Theorem 1.7.6. Suppose that the boundary BX is effective and H is a nef and
big divisor on a variety X such that the divisor D = KX + BX +H is a Cartier
divisor. Then Hi(X, I(X,BX)⊗D) = 0 for any i > 0.
Proof. It follows from the Kawamata–Viehweg vanishing theorem that

Rif∗
(
f∗(KX +BX +H) + �−BW �

)
= 0

for any i > 0 (see Theorem 1.2.3 in [106]). It follows from the degeneration of the
corresponding spectral sequence and from the coincidence of the sheaves

R0f∗
(
f∗(KX +BX +H) + �−BW �

)
= I(X,BX)⊗D

that the cohomology groups coincide, that is,

Hi
(
X, I(X,BX) ⊗D

)
= Hi

(
W, f∗(KX + BX +H) + �−BW �

)
for any i � 0. However. the cohomology groups

Hi
(
W, f∗(KX + BX +H) + �−BW �

)
are trivial for i > 0 by the Kawamata–Viehweg vanishing theorem.

We consider the following simple application of Theorem 1.7.6 (see [33]).

Lemma 1.7.7. Let Σ be a finite subset of Pn and let M be a linear system formed
by the hypersurfaces of degree k in Pn that contain the set Σ. Suppose that the
base locus of the linear system M is zero-dimensional. Then the points of the set Σ
impose independent linear conditions on the hypersurfaces in Pn of degree n(k−1).
Proof. Let Λ be the finite subset of Pn which is the base locus of the linear systemM.
Then we have Σ ⊆ Λ. Let us consider general divisors H1, . . . , Hs in the linear
system M for s� 0 and write X = Pn and BX = n

s

∑s
i=1Hi. In this case,

Supp(L(X,BX)) = Λ,

where L(X,BX) stands for the subscheme of log canonical singularities of the log
pair (X,BX).
To prove the desired assertion, it suffices to construct for an arbitrary point

P ∈ Σ a hypersurface in Pn of degree n(k − 1) that passes through all points in
Σ \ P but does not pass through the point P .
Let Σ \ P = {P1, . . . , Pk}, where Pi are points of the variety X = Pn, and let

f : V → X be a blow-up of all points of the set Σ \ P . Then

KV + (BV +
k∑
i=1

(
multPi(BX) − n

)
Ei) + f

∗(H) = f∗(n(k − 1)H)−
k∑
i=1

Ei,

where Ei = f
−1(Pi), BV = f

−1(BX), and H is a hyperplane in P
n. By construc-

tion, we have
multPi (BX) = nmultPi (M) � n,

and the divisor B̂V = BV +
∑k
i=1(multPi (BX)− n)Ei is effective.
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Let P = f−1(P ). Then P ∈ LCS(W,BW ), and the point P is an isolated
centre of log canonical singularities of the log pair (W,BW ), because the birational
morphism f : V → X is an isomorphism in a neighbourhood of the point P . On
the other hand, the map

H0
(
OV

(
f∗(n(k−1)H)−

k∑
i=1

Ei

))
→ H0

(
O
L(V,B̂V )

⊗OV
(
f∗(n(k−1)H)−

k∑
i=1

Ei

))

is surjective by Theorem 1.7.6. However, in a neighbourhood of the point P the

support of the scheme L(V, B̂V ) consists solely of P , which implies that there is a

divisor D ∈ |f∗(n(k− 1)H)−
∑k
i=1 Ei| that does not contain P . The divisor f(D)

is a hypersurface in Pn of degree n(k − 1) and passes through all points of the set
Σ \ P but not through the point P ∈ Σ.
Corollary 1.7.8. Let V be a hypersurface in P4 of degree n such that the sin-
gularities of V are isolated ordinary double points. As is well known [51], V is
Q-factorial if and only if its singular points impose independent linear conditions
on the hypersurfaces in P4 of degree 2n − 5. Suppose that the set Sing(V ) is a
set-theoretic intersection of hypersurfaces in P4 whose degrees are less than n/2.
Then V is Q-factorial.

We consider another elementary application of Theorem 1.7.6 (see [25]).

Lemma 1.7.9. Let V = P1 × P1 and let BV be an effective boundary on V of
bi-degree (a, b), where a, b ∈ Q ∩ [0, 1). Then LCS(V,BV ) = ∅.

Proof. Let BV =
∑k
i=1 aiBi for positive rational numbers ai and for irreducible

reduced curves Bi ⊂ V . Then ai � max(a, b) < 1 for any i, because the intersections
of the boundary BV with the fibres of the two projections on P

1 are equal to a and b,
respectively, which implies that the set LCS(V,BV ) contains no curves.
Suppose that the set LCS(V,BV ) contains a point O ∈ V . Let us consider a

divisor H on V of bi-degree (1 − a, 1 − b). Then H0(OV (KV + BV + H)) = 0.
However, Theorem 1.7.6 implies that the map

H0(OV (KV +BV +H))→ H0(OL(V, BV )(KV +BV +H))

is surjective, which is impossible because

H0(OL(V,BV )(KV + BV +H)) = H
0(OL(V,BV )) �= 0,

a contradiction.

The assertion of Lemma 1.7.9 is a special case of the following result (see [25]).

Theorem 1.7.10. Let X be a smooth hypersurface in Pn of degree k with n � 3,
let the boundary BX be effective, and let BX ∼Q rH for a rational number r > 0,
where H is a hyperplane section of X. Then lct(X,BX) � min(n−1rk ,

1
r
).

We recall that the log-canonical threshold lct(X,BX) of the log pair (X,BX)
is the greatest real number λ such that the singularities of the log pair (X, λBX)
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are log canonical (see [111]). In the notation and assumptions of Theorem 1.7.10,
it follows from [25], [35], [63] that the equality lct(X,BX) = min(

n−1
rk
, 1
r
) holds

if and only if one of the following possible cases is valid: k � n and BX = rS,
where S is a hyperplane section of X which is a cone (see Proposition 1.2.3); n > k
and BX = rS, where S is an arbitrary hyperplane section of X; n = 3 > k and
BX = rS +Σ, where S is a curve and Σ is an effective boundary with �Σ
 = ∅.
The ideas for the proofs of Lemmas 1.7.7 and 1.7.9 can be used to obtain a more

general result. Namely, we take an arbitrary Cartier divisor D on the variety X,
consider the exact sequence of cohomology groups

H0(OX(D))→ H0(OL(X, BX)(D))→ H1(I(X,BX)⊗D),

apply Theorem 1.7.6, and obtain the following two theorems on connectedness
(see [168]).

Theorem 1.7.11. Let the boundary BX be effective and let the divisor −(KX+BX)
be nef and big. Then the set LCS(X,BX ) ⊂ X is connected.
Theorem 1.7.12. Let the boundary BX be effective and let the divisor −(KX+BX)
be nef and big with respect to some morphism g : X → Z with connected fibres.
Then the set LCS(X,BX ) is connected in a neighbourhood of each fibre of the
morphism g.

Similar arguments imply the following result (see [113], Theorem 17.4).

Theorem 1.7.13. Let g : X → Z be a surjective morphism with connected
fibres, let the divisor −(KX + BX) be nef and big with respect to g, and let
codim(g(Bi) ⊂ Z) � 2 if bi < 0. In this case the set LCS(Y,BY ) is connected
in a neighbourhood of each fibre of the morphism g ◦ f : Y → Z.
We have defined centres of canonical singularities and the set of centres of canon-

ical singularities for movable log pairs (see Definition 1.3.8). However, the fact that
the boundary is movable was in fact not used in the definition. The main application
of Theorem 1.7.13 gives the following inductive result.

Theorem 1.7.14. Suppose that the boundary BX is effective. Let Z be an element
of CS(X,BX) contained in the support of an effective and reduced Cartier divisor
H ⊂ X which is not a component of the boundary BX and is smooth at a general
point of the subvariety Z. Then LCS(H,BX |H) �= ∅.
Proof. Let us consider the log pair (X,BX +H). We have

{Z,H} ⊂ LCS(X,BX +H).

Let f : W → X be a log resolution of the log pair (X,BX +H). Then

KW + Ĥ ∼Q f∗(KX +BX +H) +
∑
E �=Ĥ

a(X,BX +H,E)E,

where Ĥ = f−1(H). Applying Theorem 1.7.13 to the log pullback of the log pair

(X,BX + H) on the variety W , we see that Ĥ ∩ E �= ∅ for some f-exceptional
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divisor E on the variety W such that f(E) = Z and a(X,BX , E) � −1. The
equivalence

KĤ ∼ (KW + Ĥ)|Ĥ ∼Q f |
∗
Ĥ
(KH + BX |H) +

∑
E �=Ĥ

a(X,BX +H,E)E|Ĥ

now gives the desired assertion.

The proof of Theorem 1.7.14 implies the following assertions.

Corollary 1.7.15. Let the boundary BX be effective and let the log pair (X,BX)
have log terminal singularities in a punctured neighbourhood of a smooth point
O ∈ X belonging to the set CS(X,BX). Then O ∈ LCS(H,BH), where H is a
reduced effective divisor on X containing the point O, and BH = BX |H .
Corollary 1.7.16. Let the boundary BX be effective, let the log pair (X,BX) have
log terminal singularities in a punctured neighbourhood of an isolated hypersurface
singular point O of the variety X, and let O ∈ LCS(S,BS). Then O belongs to the
set LCS(S,BS), where S = ∩ki=1Hi, BS = BX |S , and Hi is a general hyperplane
section of X that passes through O.

The following result is Theorem 3.1 in [46].

Theorem 1.7.17. Let H be a surface, let O be a smooth point of H, let MH be
an effective movable boundary on H, and let ∆1 and ∆2 be irreducible and reduced
curves on H intersecting normally at the point O. Suppose that

O ∈ LCS(H, (1− a1)∆1 + (1− a2)∆2 +MH)
for some positive rational numbers a1 and a2. Then

multO(M
2
H) �

{
4a1a2 if a1 � 1 or a2 � 1,
4(a1 + a2 − 1) if a1 > 1 and a2 > 1.

Proof. Let D = (1−a1)∆1+(1−a2)∆2+MH . We consider a birational morphism
f : S → H such that the surface S is smooth and

KS + f
−1(D) ∼Q f∗(KH +D) +

k∑
i=1

a(H,D,Ei)Ei,

where Ei is an f-exceptional curve, a(H,D,Ei) is a rational number, the inequality
a(H,D,E1) � −1 holds, and the birational morphism f is a composition of k blow-
ups of smooth points. If k = 1, then the assertion is obvious. Suppose that the
assertion we need has already been proved for all cases with a1 � 1 or a2 � 1. Let
a1 > 1 and a2 > 1. Then

O ∈ LCS(H, (2− a1 − a2)∆2 +MH),
which implies that multO(M

2
H) � 4(a1 + a2 − 1), because the assertion of the

theorem holds for the log pair (H, (2 − a1 − a2)∆2 +MH) by assumption. Thus,
one can assume that a1 � 1. The desired assertion now readily follows by induction
on k.

Theorem 1.7.17 and Corollary 1.5.15 now imply the following result (see [149],
[46], [152], [102]).
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Theorem 1.7.18. Suppose that dim(X) � 3, the boundary BX is effective and
movable, and O is a smooth point on the variety X such that O ∈ CS(X,BX). Then
multO(B

2
X) � 4, and if multO(B2X) = 4, then multO(BX) = 2 and dim(X) = 3.

A natural four-dimensional generalization of Theorem 1.7.18 is the following
assertion, which we informally call the 8n2-inequality.

Theorem 1.7.19. Let Y be a variety of dimension r � 4, letM be a linear system
on Y without fixed components, let S1 and S2 be general divisors in the linear
system M, let P be a smooth point on Y belonging to the set CS(Y, 1

n
M), where

n ∈ N, and let the singularities of the log pair (Y, 1nM) be canonical in a punctured
neighbourhood of the point P . Let π : Ŷ → Y be a blow-up of the point P and let
Π be an exceptional divisor of the morphism π. Then there is a linear subspace
Λ ⊂ Π ∼= Pr−1 of codimension 2 such that the inequality

multP (S1 · S2 ·∆) � 8n2

holds for every effective divisor ∆ on Y such that the following conditions hold :

• the divisor ∆ contains P and is smooth at this point ;
• the linear subspace Λ ⊂ Π ∼= Pr−1 is contained in the divisor π−1(∆);
• ∆ contains no subvarieties of Y of codimension 2 that are contained in the
base locus of the linear system M;

moreover, the equality is strict for r � 5.

Proof. See [28] and [34].

Theorem 1.7.14 implies the following result (see [46], Theorem 3.10).

Theorem 1.7.20. Let BX be an effective boundary, let O be an isolated ordinary
double point on X, let O ∈ CS(X,BX), and let dim(X)�3. Then multO(BX )�1,
and the inequality is strict for dim(X) � 4.

Proof. Let f : W → X be a blow-up of the point O. Then

BW ∼Q f∗(BX)−multO(BX)E,

where BW = f
−1(BX) and E is an exceptional divisor of the birational morphism f .

Suppose that the inequality multO(BX ) < 1 is satisfied. By Corollary 1.7.16, we
can assume that dim(X) = 3. Then the relation

KW + BW ∼Q f∗(KX +BX ) + (1 −multO(BX ))E

implies the existence of a proper subvariety Z ⊂ E which is a centre of canonical
singularities of the log pair (W,BW ). Hence, the set LCS(E,BW |E) is not empty
by Theorem 1.7.14, which contradicts Lemma 1.7.9, because E ∼= P1 × P1.

The assertion of Theorem 1.7.20 can be generalized in several ways.
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Proposition 1.7.21. Let the boundary BX be effective, let dim(X) = 3, and let the
set CS(X,BX) contain a singular point O of a variety X which is locally isomorphic
to the hypersurface

y3 =
3∑
i=1

x2i ⊂ C4 ∼= Spec(C[x1, x2, x3, y])

in a neighbourhood of O. Then multO(BX) � 1
2 .

Proof. Let f : W → X be a blow-up of the variety X at the point O. Then

BW ∼Q f∗(BX)−multO(BX)E,

where BW = f−1(BX) and E is an exceptional divisor of the birational
morphism f . Then the three-dimensional varietyW is smooth, and the exceptional
divisor E is a cone in P3 over a smooth conic. Moreover, the restriction −E|E is
rationally equivalent to a hyperplane section of the cone E ⊂ P3, and the following
relation holds:

KW + BW ∼Q f∗(KX + BX) + (1−multO(BX))E.

Suppose that multO(BX) <
1
2
. Then

CS(W,BW ) ⊂ CS(W,BW + (multO(BX)− 1)E),

because multO(BX) − 1 < 0. On the other hand, the log pair

(W,BW + (multO(BX)− 1)E)

is the log pullback of the log pair (X,BX) and O ∈ CS(X,BX), Therefore, there is a
proper irreducible subvariety Z ⊂ E such that Z ∈ CS(W,BW ), which immediately
implies that LCS(E,BW |E) �= ∅ by Theorem 1.7.14.
Let BE = BW |E . Then the set LCS(E,BE) contains no curves on the quadric

cone E, because otherwise the intersection of the boundary BE with a ruling of
the cone E is greater than 1/2, which is impossible because multO(BX) < 1/2.
Thus, we have the equality dim(Supp(L(E,BE))) = 0.
Let H be a hyperplane section of the cone E ⊂ P3. Then

KE + BE + (1−multO(BX))H ∼Q −H

and H0(OE(−H)) = 0. However, the sequence of cohomology groups

H0(OE(−H))→ H0(OL(E,BE ))→ H1(E, I(E,BE)⊗ OE(−H))

is exact, and H1(E, I(E,BE) ⊗ OE(−H)) = 0 by Theorem 1.7.6. Therefore,
H0(OL(E,BE)) = 0, which is impossible because LCS(E,BE) �= ∅.
Corollary 1.7.6 and Theorem 1.7.20 imply the following result.
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Proposition 1.7.22. Let the boundary BX be effective, let dim(X) � 4, and let O
be a singular point of the variety X which is locally isomorphic to the hypersurface

y3 =

dim(X)∑
i=1

x2i ⊂ Cdim(X)+1 ∼= Spec(C[x1, . . . , xdim(X), y])

in a neighbourhood of the point O, where O ∈ CS(X,BX). Then multO(BX) > 1.

One can also prove the following generalization of Theorem 1.7.20.

Theorem 1.7.23. Let r = dim(X) � 4, let O be an isolated ordinary double point
of the variety X, let O ∈ CS(X, 1nM), and let the log pair (X,

1
nM) be canonical in a

punctured neighbourhood of O, whereM is a linear system without fixed components
and n is a positive integer. Let π : V → X be a blow-up of the point O and let E be
a π-exceptional divisor, which can be identified with a smooth quadric in Pr. Then
there is a linear subspace Λ ⊂ E of codimension 3 in Pr for which11

multO(S1 · S2 ·∆) � 6n2

for every effective divisor ∆ on X such that the following conditions are satisfied :

• ∆ contains the point O;
• O is an ordinary double point on ∆;
• the divisor π−1(∆) contains Λ;
• ∆ contains no subvarieties of X of codimension 2 that are contained in the
base locus of the linear system M;

moreover, the inequality is strict for dim(X) � 5.
In fact, the Lefschetz theorem and the proof of Theorem 1.7.23 imply the fol-

lowing corollary.

Corollary 1.7.24. Under the assumptions and in the notation of Theorem 1.7.23,
suppose that dim(X) � 5. Then multO(S1 · S2) > 6n2.
The idea of the proofs of Theorems 1.7.19 and 1.7.23 is similar to that of the

proof of the following result, which is Corollary 3.5 in [46].

Proposition 1.7.25. Let BX be movable and effective, let dim(X) = 3, let O be a
smooth point on X belonging to CS(X,BX), let multO(BX) < 2, and let f : V → X
be a blow-up of the variety X at the point O. Then there is a line L ⊂ E ∼= P2 in
the set LCS(V,BV + (multO(BX )− 1)E), where BV = f−1(BX) and E = f−1(O).

Proof. The assertion is local with respect toX. Hence, we can assume that X ∼= C3
and that O is the origin in C3. Consider a general hyperplane section H of X that
passes through the point O and set T = f−1(H). Then we have the relation

KV + BV + (multO(BX)− 1)E + T ∼Q f∗(KX + BX +H)

11The multiplicities multO(S1 · S2 · ∆) and multO(S1|∆ · S2|∆) can be formally defined by
means of the numerical relationship between the full and proper transforms of the boundary on
the blow-up of the corresponding singular point.
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and multO(BX) � 1 (see Remark 1.3.9). Moreover, since the section H is general,
it follows immediately from Theorem 1.7.14 that O ∈ LCS(H,BX |H), and

LCS(T,BV |T + (multO(BX) − 1)E|T ) �= ∅,

because multO(BX) < 2 by assumption (see Example 1.7.4). Applying Theo-
rem 1.7.12 to the morphism f , we now see immediately that the set

LCS(T,BV |T + (multO(BX)− 1)E|T )

consists of a single point P ∈ E ∩ T . On the other hand, since the section H was
chosen to be general, it follows that the point P is the intersection of the surface
T with some element of the set LCS(V,BV + (multO(BX) − 1)E). Thus, the set

LCS(T,BV + (multO(BX)− 1)E)

contains some curve L ⊂ E whose intersection with the surface T is exactly the
point P , and hence the curve L is a line in E ∼= P2.
Corollary 1.7.26. Suppose that the boundary BX is movable and effective, the
variety X is three-dimensional, and there is a smooth point O ∈ X such that
multO(BX) � 2 but the log pair (X,BX) is not canonical at O, that is, O ∈
CS(X, µBX) for some rational µ < 1. Let f : V → X be a blow-up of the point O.
Then there is a line L ⊂ E ∼= P2 such that the log pair (V,BV +(multO(BX)−1)E)
is not log canonical at a general point of the line L, where BV = f

−1(BX) and
E = f−1(O).

Using Theorem 1.7.10, one can readily generalize Theorem 1.7.20 to the case of
an ordinary hypersurface singular point of arbitrary multiplicity.

PART 2. THREEFOLDS

§ 2.1. Quartic threefold
Let X ∈ P4 be a hypersurface of degree 4 having at most isolated singularities.

Then X is a three-dimensional Fano variety of degree 4 such that −KX ∼ OP4(1)|X .
The following result was proved in [94].

Theorem 2.1.1. Suppose that X is smooth. Then X is birationally superrigid.

Proof. Suppose thatX is not birationally superrigid (seeDefinitions0.3.3 and0.3.4).
Let us show that this assumption leads to a contradiction.
It follows from the Lefschetz theorem that the group Pic(X) is generated by the

anticanonical divisor −KX . Thus, by Theorem 1.4.1, there is a linear system M
on X without fixed components such that the singularities of the movable log pair
(X, 1

n
M) are not canonical, where n is a positive integer such that M ∼ −nKX .

In particular, the set CS(X, µM) is not empty for some positive rational number
µ < 1

n .
Let P ⊂ X be an irreducible subvariety contained in CS(X, µM), that is, the

movable log pair (X, 1nM) is not canonical at P . Then it follows from Remark 1.3.9
that multP (M) > n, and it follows from Proposition 1.3.12 that P is a point.



Birationally rigid Fano varieties 921

Let S1 and S2 be sufficiently general surfaces in the linear system M. In this
case, by Theorem 1.7.18, we have the inequality multP (S1 · S2) > 4n2. Let H be a
general hyperplane section of X that passes through the point P . Then

4n2 = S1 · S2 ·H � multP (S1 · S2)multP (H) > 4n2,

which is a contradiction.

The following result, which was proved in [146] and [129], is a generalization of
Theorem 2.1.1.

Theorem 2.1.2. Suppose that X is nodal and Q-factorial. Then X is birationally
rigid.

Let us recall that the Q-factoriality of a nodal12 quartic X means that all Weil
divisors on the quartic X are Cartier divisors, which is equivalent to the topological
condition that rk H4(X,Z) = 1 and to the condition that the group Cl(X) is
generated by the class of a hyperplane section ofX. The assertion of Theorem 2.1.2
can simply fail without the Q-factoriality condition. For example, the Burkhardt
quartic

w4 − w(x3 + y3 + z3 + t3) + 3xyzt = 0 ⊂ P4 ∼= Proj(C[x, y, z, t, w])

is nodal and determinantal, which implies that it is rational. A nodal three-
dimensional quartic cannot have more than 45 singular points (see [178]), and there
are nodal quartics with arbitrarily many singular points up to 45. Moreover, it fol-
lows from [100] that the Burkhardt quartic is the only nodal quartic threefold with
exactly 45 singular points (see [174] and [139]). In fact, the Burkhardt quartic is a
unique invariant of degree 4 of the simple group PSp(4,Z3) of order 25920 (see [66]
and [77]), and the singular points of the Burkhardt quartic correspond canonically
to 45 tritangents of a smooth cubic surface, which is related to the fact that the
Weyl group of the simple root system E6 is an extension of the group PSp(4,Z3)
by the group Z2.

Remark 2.1.3. A nodal hypersurface in P4 of degree 5 or higher is non-rational,
the nodal quadrics in P4 are rational, and a nodal cubic hypersurface in P4 is
non-rational if and only if it is smooth (see [41]). Thus, the rationality problem
for nodal quartic threefolds is the only problem on rationality of three-dimensional
nodal hypersurfaces which remains unsolved.
There are non-rational singular quartic threefolds which are not birationally

rigid. For example, the following result was proved in [47].

Theorem 2.1.4. Let X be a sufficiently general quartic given by an equation of
the form

x2 + yz + xf3(y, z, t, w) + g4(y, z, t, w) = 0 ⊂ P4 ∼= Proj(C[x, y, z, t, w]),

where f3 and g4 are homogeneous polynomials of degree 3 and 4, respectively. In
this case the singularities of the quartic threefold X are terminal and Q-factorial,

12Nodality of a hypersurface X means that all the singular points of X are isolated ordinary
double points.
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and rk Pic(X) = 1. The threefold X can be birationally transformed into a complete
intersection V of a quartic and a cubic in P(14, 2, 2) such that rk Pic(V ) = 1 and V
has Q-factorial terminal singularities. Moreover, the varieties X and V are the only
Mori fibred spaces in the birational equivalence class of X. In particular, X is not
birationally rigid ; however, it is non-rational and is birationally isomorphic neither
to a conic bundle nor to a fibration into rational surfaces.

The following result was proved in [31].

Theorem 2.1.5. Let X be a very general quartic threefold containing a two-
dimensional linear subspace in P4. Then X is nodal and non-rational.

Any quartic X satisfying the assumptions of Theorem 2.1.5 can be birationally
transformed by means of antiprojections (see Example 2.1.7) into a fibration into
cubic surfaces and into a complete intersection of two cubics in P(15, 2) that are
Mori fibred spaces.

Conjecture 2.1.6. Let X be a nodal three-dimensional quartic containing a two-
dimensional linear subspace Π ⊂ P4 and such that rk Cl(X) = 2, let η : X ��� V
be an antiprojection, where V stands for a complete intersection of two cubic
hypersurfaces in P(15, 2), and let π : X ��� P1 be the projection from the plane Π.
Suppose that there is a Mori fibration τ : Y → Z and a birational map ρ : X ��� Y .
Then there is a birational automorphism σ of the quartic X such that either ρ = η◦σ
or ρ ◦ τ = π ◦ σ.
Of course, there are nodal quartic threefolds that do not contain planes and are

not Q-factorial.

Example 2.1.7. Let X be a general three-dimensional quartic that passes through
a given smooth quadric surface Q ⊂ P4. Then X can be given by an equation of
the form

a2(x, y, z, t, w)h2(x, y, z, t, w)

= b3(x, y, z, t, w)g1(x, y, z, t, w) ⊂ P4 ∼= Proj(C[x, y, z, t, w]),

where a2, h2, b3, and g1 are homogeneous polynomials of degrees 2, 2, 3, and 1,
respectively, andQ is given by the equations h2 = g1 = 0. Moreover, X is nodal and
has 12 singular points given by the equations h2 = g1 = a2 = b3 = 0. Obviously,
X is not Q-factorial.
After introducing a new variable α = a2/g1, the quartic X can be antiprojected

onto a complete intersection V ⊂ P5 given by the equations

αg1(x, y, z, t, w)− a2(x, y, z, t, w) = αh2(x, y, z, t, w)− b3(x, y, z, t, w) = 0 ⊂ P5,

such that the commutative diagram

Y
ψ

����
��

��
�

φ

��������������������������

X ρ
������������������ V
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holds, where ρ is an antiprojection, the variety V is smooth outside an isolated
ordinary double point P given by the equations x = y = z = t = w = 0,
the morphism φ contracts a surface isomorphic to P1 × P1, and the morphism
ψ contracts the proper transforms of 12 lines on the complete intersection V that
pass through the point P . Similarly, we can introduce a new variable β = h2/g1,
and then the quartic X can be antiprojected to a complete intersection V ′ ⊂ P5
given by the equations

βg1(x, y, z, t, w)− h2(x, y, z, t, w) = βa2(x, y, z, t, w)− b3(x, y, z, t, w) = 0 ⊂ P5.

It is unknown whether or not any quartic threefold X ⊂ P4 satisfying all the
conditions in Example 2.1.7 is rational (see [87], [96], [46]).

Conjecture 2.1.8. In the notation and under the assumptions of Example 2.1.7,
the complete intersections V and V ′ are the only Mori fibred spaces birationally
equivalent to the quartic threefold X ⊂ P4.
Let us prove the following result to make the application of Theorem 2.1.2 effec-

tive (see [31]).

Proposition 2.1.9. Let a quartic X be nodal and let | Sing(X)| � 9. Then X is
Q-factorial if and only if it contains no two-dimensional linear subspaces of P4.

Proof. It follows from [40] and [51] that X is Q-factorial if and only if its singular
points impose independent linear conditions on the cubic hypersurfaces in P4. Sup-
pose that X contains no planes. We show that the singular points of X do impose
independent linear conditions on the cubic hypersurfaces in P4.
Let the quartic X be given by an equation of the form

f(x0, x1, x2, x3, x4) = 0 ⊂ P4 ∼= Proj(C[x0, x1, x2, x3, x4]),

where f is a homogeneous polynomial of degree 4. Consider the linear system

L =

∣∣∣∣
4∑
i=0

λi
∂f

∂xi
= 0

∣∣∣∣ ⊂ |OP4(3)|,
where λi ∈ C. Then the base locus of the linear system L is exactly formed by the
singular points of X. On the other hand, any curve in P4 of degree d intersects a
general surface in L at not more than 3d points. Thus,

• at most three points of the set Sing(X) belong to a line;
• at most six points of the set Sing(X) belong to a conic.

Let Σ be a plane in P4 and let T =Σ ∩X. Then T is a planar curve of degree 4,
and T can be reducible and non-reduced. Nevertheless, one can readily see that

Sing(V ) ∩ Σ ⊂ Sing(T ),

which implies that |Sing(X) ∩ Σ| � 6 if T is non-reduced, because at most three
points of the set Sing(X) can belong to a line and at most six points of Sing(X) can
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belong to a conic. On the other hand, if T is reduced, then |Sing(T )| � 6. Thus,
at most eight singular points of X can belong to a given plane in P4.

Let us consider an arbitrary subset Σ � Sing(X) and a point P ∈ Sing(X) \ Σ.
We must show that there is a cubic hypersurface in P4 that passes through all
points of the set Σ and does not contain the point P . Without loss of generality,
we can assume that | Sing(X)| = |Σ|+ 1 = 9.
Suppose that there is a hyperplane Γ ⊂ P4 containing Sing(X). We claim that

there is a cubic hypersurface in P4 passing through all the points of Σ but not
containing P . To this end, it suffices to prove that there is a cubic surface in Γ
passing through all the points of Σ but not through P .

Let ε � 2 be the maximal number of points of Σ that are contained in a two-
dimensional linear subspace Π ⊂ Γ containing the point P . Then ε � 7. We
set

Σ = {P1, . . . , P8},

where the points P1, . . . , Pε are contained in Π together with P . Then the points P
and P1, . . . , Pε do not belong to a single line. We consider only two cases, namely,
ε = 2 and ε = 7.

Suppose that ε = 2. In this case we single out in Σ three subsets, possibly not
disjoint, such that each of them contains three points of Σ and their union is the
entire set Σ. Then the hyperplanes in Γ generated by each of these subsets cannot
contain P , because ε = 2. Therefore, the union of these three hyperplanes is the
desired cubic surface.

Let ε = 7. In this case both the results of [9] and the elementary properties of
weak del Pezzo surfaces (see [73] and [119]) imply the existence of a cubic curve C
on Π passing through all points of the set Σ ∩ Π but not through P . Hence, the
cone in Γ over C with vertex at the point P8 is a cubic surface in Γ that contains
the set Σ and not the point P .

Thus, one can assume that there is no hyperplane in P4 containing all the singular
points of the quartic X. Let δ � 3 be the maximal number of points in Σ contained
in some hyperplane Ξ ⊂ P4 such that P ∈ Ξ. Then δ � 7. We set Σ = {P1, . . . , P8},
where the points P1, . . . , Pδ are contained in Ξ together with the point P . We
consider only the case δ = 4.

Suppose that δ = 4. Then there are lines L1 and L2 in the hyperplane Ξ such
that each contains a pair of points in Σ∩Ξ and does not pass through P . We may
assume that L1 contains the points P1 and P2 and L2 contains the points P3
and P4. Moreover, at most two points of the set {P5, P6, P7, P8} can belong to a
line that passes through P . Therefore, there are two points in the set Σ \Ξ, say P5
and P6, such that the line passing through them does not contain the point P .
Hence, the desired cubic hypersurface passing through all points of the set Σ
and not passing through P can be obtained as the union of a general hyperplane
passing through the line L1 and the point P7, a general hyperplane passing
through the line L2 and the point P8, and a general hyperplane passing through
the points P5 and P6.

Corollary 2.1.10. Suppose that a quartic threefold X is nodal and | Sing(X)| � 8.
Then the quartic X is Q-factorial.
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Using Lemma 1.7.7, one can generalize Proposition 2.1.9 in the following
non-trivial way (see [35]).

Theorem 2.1.11. Let V be a nodal hypersurface in P4 of degree n such that
| Sing(V )| � (n − 1)2/4. Then V is Q-factorial.

It follows from [51] that, in the notation and under the assumptions of Theo-
rem 2.1.11, a nodal hypersurface in P4 is Q-factorial if and only if its singular points
impose independent linear conditions on hypersurfaces in P4 of degree 2n − 5. It
can be seen from the assertion of Proposition 2.1.9 that the inequality in Theo-
rem 2.1.11 is not sharp; nevertheless, it is sufficiently sharp from the asymptotic
point of view, as can be seen from the following example.

Example 2.1.12. Let V be a nodal hypersurface given by the equation

xgn−1(x, y, z, t, w) + yfn−1(x, y, z, t, w) = 0 ⊂ P4 ∼= Proj(C[x, y, z, t, w]),

where gn−1 and fn−1 are general homogeneous polynomials of degree n − 1. Then
| Sing(V )| = (n − 1)2 and the hypersurface V is not Q-factorial.

As was shown in [39], every smooth surface contained in a nodal hypersurface
V ⊂ P4 of degree n is a Cartier divisor on the hypersurface V if the inequality
| Sing(V )| < (n − 1)2 is satisfied. It is natural to express the following conjecture,
which has been proved only for cubics and quartics (see Proposition 2.1.9 and [64]).

Conjecture 2.1.13. Let V be a nodal hypersurface in P4 of degree n such that the
inequality | Sing(V )| < (n− 1)2 is satisfied. Then V is Q-factorial.

In the conclusion of this section we present an analogue of Theorem 2.2.10 for
smooth three-dimensional quartics (see [23], [26]).

Theorem 2.1.14. Suppose that X is smooth. Let ρ : X ��� P2 be a map for which
the normalization of a general fibre is an elliptic curve. Then ρ = σ ◦ γ, where
γ : X ��� P2 is the projection from a line contained in the quartic X and σ is a
birational automorphism of P2.

We note that a smooth quartic threefold contains a one-dimensional family of
lines (see [42]).
At present, the classification of birational transformations into elliptic fibra-

tions has been considered for many higher-dimensional rationally connected vari-
eties (see [53], [21], [22], [24], [161], [27], [29], [30], [37]).

§ 2.2. Sextic double solid
Let π : X → P3 be a double cover ramified along a surface S ⊂ P3 of

degree 6 such that S has at most isolated ordinary double points. As is known,
S cannot have more than 65 ordinary double points (see [98], [180]), and for
every positive integer m � 65 there is a surface S having m singular points (see
Example 2.2.2, [5], and [15]), the variety X is a terminal Fano variety of degree 2,
−KX ∼ π∗(OP3(1)), and the threefold X is Q-factorial if and only if rk Cl(X) = 1.
The following result holds (see [87], [148], [36]).
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Theorem 2.2.1. Suppose that rk Cl(X) = 1. Then X is birationally superrigid.

Proof. Suppose not. Let us show that this assumption leads to a contradiction.
There is a movable log pair (X,MX) on X with an effective boundary MX such
that the set CS(X,MX) is non-empty and the divisor −(KX +MX) is ample (see
Theorem 1.4.1). In particular, we have MX ∼Q −rKX for some positive rational
number r < 1. Let C ⊂ X be an element of CS(X,MX).
Suppose that C is a smooth point of the variety X. Then multC(M

2
X) � 4 by

Theorem 1.7.18, which implies the inequalities 2 > M2X ·H � 4 for any sufficiently
general divisor H in the complete linear system |π∗(OP3(1))| provided that H con-
tains the point C. This is a contradiction.
Suppose that C is an ordinary double point on X. Then Theorem 1.7.20 implies

the inequality multC(MX) � 1. We consider two sufficiently general divisors H1
and H2 in the linear system |π∗(OP3(1))| that pass through the point C. In this
case,

2 > MX ·H1 ·H2 � 2multC(MX)multC(H2)multC(H2) � 2,
which is a contradiction.
Thus, we have proved that C is an irreducible curve. Let H be a sufficiently

general divisor in the complete linear system |π∗(OP3(1))| and let H contain Z.
Then

2 = H3 > 2r2 =M2X ·H � multC(M2X)H · C � −KX · C,
because multC(M

2
X) � mult2C(MX) � 1. Hence, the equality −KX · C = 1 holds.

Therefore, the curve π(C) is a line, the curve C is smooth and rational, and π|C is
an isomorphism.
Suppose that C is entirely contained in the set of non-singular points of the

variety X. Let f : W → X be a blow-up of C, let E = f−1(C), and let MW =
f−1(MX). Then

MW ∼Q f∗(MX)−multC(MX)E,
where multC(MX) � 1. However, the base locus of the pencil | − KW | consists
of a curve C̃ which is smooth and rational and satisfies the condition π ◦ f(C̃) =
π(C). Moreover, we have C̃ ⊂ E if and only if π(C) ⊂ S. Let H = f∗(−KX).
Then the intersection of the divisor 3H − E with any curve on the variety W ,
except for the curve C̃, is certainly non-negative. Let us show that the divisor
3H − E is numerically effective. Obviously, (3H − E) · C̃ = 0 if the base curve C̃
is not contained in the exceptional divisor E. Therefore, we can assume that C̃ is
contained in E. Consider the normal sheaf NC/X of the curve C on the variety X.
Since the curve C is rational, it follows that

NC/X ∼= OC(a) ⊕OC (b)
for some integers a and b, a � b. It follows from the exact sequence

0→ TC → TX |C → NC/X → 0

that deg(NC/X) = a + b = −KX · C + 2g(C) − 2 = −1. However, C is entirely
contained in the smooth locus of the surface Ŝ = π−1(S) ∼= S. It follows from the
exact sequence

0→ NC/Ŝ → NC/X → NŜ/X |C → 0
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and from the equivalence NC/Ŝ
∼= OC(−4) that b � −4. In particular, a − b � 7.

Let s∞ be the exceptional section of the rationally ruled surface f |E : E → C. Then
the equalities

E3 = −deg(NC/X) = 1
and −KX · C = 1 yield

(3H − E) · s∞ =
7 + b− a
2

� 0,

which implies that 3H −E is numerically effective. In particular, we have

0 � (3H − E) ·M2W = 6r2 − 4mult2C(MX) − 2rmultC(MX) < 0,

because r ∈ Q ∩ (0, 1) and MX ∼Q −rKX . This is a contradiction. Therefore, the
irreducible rational curve C contains a singular point of the variety X.
Suppose that π(C) �⊂ S. Let H be a linear system consisting of surfaces in the

linear system | −KX | that contain the curve C. Then H is a pencil, and its base
locus consists of the curve C and a curve C̃ such that π(C) = π(C̃). Let D be a
general surface in the pencil H. Then the restriction MX |D need not be a movable
boundary, but we have

MX |D = multC(MX)C +multC̃(MX)C̃ + RD,

where RD is a movable boundary on the surface D. The surface D is smooth
outside the singular points Pi of the variety X that belong to the curve C. Since
the divisor D is general, each of the points Pi is an ordinary double point on D.
We have the equalities

C2 = C̃2 = −2 + k
2
,

where k is the number of singular points Pi. However, k � 3, because π(C) is a
line which is not contained in the surface S, and the degree of the surface S ⊂ P3
is equal to six. Thus, C2 = C̃2 < 0, which implies that

(1−multC̃(MX))C̃
2 � (multC(MX)− 1)C · C̃ + RD · C̃ � 0

and, in particular, multC̃(MX) � 1. Let H be a general divisor in | −KX |. Then

2 = H ·K2X > H ·M2X � mult2C(MX)H · C +mult2C̃(MX)H · C̃ � 2,

which is impossible. Thus, the curve π(C) is contained in the surface S.
Let P be a sufficiently general point on the curve C, let L ⊂ P3 be a general line

tangent to the surface S at the point π(P ), and let L̃ = π−1(L). We note that the

curve L̃ is irreducible and singular at the point P . Moreover, L̃ is not contained
in the base locus of any component of the movable boundary MX , because the
point P and the line L were chosen to be sufficiently general. Hence, we have
the inequalities

2 > L̃ ·MX � multP (L̃)multP (MX) � 2multC(MX) � 2,

which is a contradiction.

The variety X can even be rational if X is not Q-factorial.
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Example 2.2.2. Let S be a Barth sextic (see [5])

4(τ2x2 − y2)(τ2y2 − z2)(τ2z2 − x2) = t2(1 + 2τ)(x2 + y2 + z2 − t2)2 ⊂ P3
∼= Proj(C[x, y, z, t]),

where τ = 1+
√
5

2
. ThenX is nodal and has 65 singular points, and one can show that

no nodal sextic in P3 can have more than 65 ordinary double points (see [98], [180]).
Moreover, there is a determinantal nodal quartic Y ⊂ P3 having 42 singular points
and such that the diagram

Y

ρ

		�
�
�
� � �� P4

γ

		�
�
�

X π
�� P3

is commutative (see [56], [139]), where γ is the projection from a singular point of
the quartic Y and ρ is a birational map. In particular, the variety X is rational,
because the determinantal quartics are rational.

It is not hard to construct an example of a variety X which is not Q-factorial
and has 15 singular points (see Example 2.2.6). On the other hand, by analogy
with Proposition 2.1.9, one can prove the following result (see [36]).

Proposition 2.2.3. The variety X is Q-factorial if | Sing(S)| � 14.
Corollary 2.2.4. Suppose that | Sing(X)| � 14. Then X is birationally superrigid,
non-rational, and not birationally isomorphic to a conic bundle.

The assertion of Proposition 2.2.3 can be generalized as follows (see [33]).

Theorem 2.2.5. Let γ : V → P3 be a double cover ramified along a nodal surface
F ⊂ P3 of degree 2r and let | Sing(V )| � (2r − 1)r/3. Then V is Q-factorial.
It follows from [40] that, in the notation and under the assumptions of Theo-

rem 2.2.5, the nodal variety V isQ-factorial if and only if the ordinary double points
of the surface F impose independent linear conditions on the hypersurfaces in P3 of
degree 3r−4. The inequality in Theorem 2.2.5 is not sharp (see Proposition 2.2.3);
nevertheless, it correctly reflects the general picture asymptotically.

Example 2.2.6. Let us consider a hypersurface V ⊂ P(14, r) given by the equation

u2 = g2r(x, y, z, t) + h1(x, y, z, t)f2r−1(x, y, z, t) ⊂ P(14, r) ∼= Proj(C[x, y, z, t, u]),

where gi, hi, and fi are sufficiently general polynomials of degree i. Let γ : V → P3
be the natural projection. Then γ is a double cover ramified over a nodal surface of
degree 2r are such that | Sing(V )| = (2r− 1)r, but the variety V is not Q-factorial.
One can express the following conjecture.

Conjecture 2.2.7. Let γ : V → P3 be a double cover ramified along a nodal surface
of degree 2r and let | Sing(V )| < (2r − 1)r. Then the variety V is Q-factorial.
Along with birational superrigidity, the variety X has other interesting proper-

ties.
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Example 2.2.8. Let O be a singular point of the variety X and let γ : P3 ��� P2
be the projection from the point π(O). Then the general fibre of the map γ ◦ π is
a smooth elliptic curve.

Example 2.2.9. Let L be a line on S such that | Sing(X) ∩ L| = 4. Then for a
sufficiently general point P of the variety X there is a unique hyperplane H ⊂ P3
containing the point π(P ) and the line L. Let C be a curve of degree 5 in the plane
H such that S ∩H = L ∪ C. Then the intersection L ∩ (C \ Sing(X)) consists of
a single point Q, and hence there is a unique line Z ⊂ P3 that passes through the
points Q and π(P ). Thus, we have constructed a rational map ΞL : X ��� Gr(2, 4)
taking any point P of X to the line ΞL(P ) = Z, and the normalization of the
general fibre of the rational map ΞL is an elliptic curve.

The following result holds (see [23], [24], [36]).

Theorem 2.2.10. Suppose that the singularities of a variety X are Q-factorial,
there is a birational map ρ : X ��� Y such that the variety Y is smooth, and there
is a morphism τ : Y → Z whose general fibre is an elliptic curve. Then one of the
following assertions holds:

• for some singular point O on X there exists a commutative diagram

X

π

���������������
ρ �������� Y

τ

		

P3

γ

��








P2
β �������� Z ,

(2.2.11)

where γ is the projection from the point π(O) and β is a birational map;
• the surface S contains a line L ⊂ P3 that passes through exactly 4 singular
points of S, and there exists a commutative diagram

X
ΞL ��������

ρ

���
�

�
�

P2

β

���
�

�
�

Y
τ �� Z ,

(2.2.12)

where β is a birational map and ΞL is the rational map constructed in
Example 2.2.9.

Proof. We consider a very ample divisor Ȟ on Z. Let M be a proper transform of
the linear system |τ∗(Ȟ)| on the variety X. In this case we have M ⊂ | − nKX |
for some n ∈ N, and M is not composed of a pencil. We set MX = 1

nM. Then
CS(X,MX) �= ∅ by Theorem 1.4.4, and it follows from the proof of Theorem 2.2.1
that the set CS(X,MX) cannot contain smooth points of X.
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We assume that the set CS(X,MX) contains a singular point O ∈ X. Suppose
that f : W → X is a blow-up of O, C is a general fibre of the elliptic fibration
φ|−KW | : W → P2, and D is a general surface in the linear system f−1(M). Then

2(n−multO(M)) = C ·D � 0.

However, we have multO(M) � n by Theorem 1.7.20. Hence, the linear system
f−1(M) belongs to the fibres of the elliptic fibration φ|−KW |, which implies the
existence of the commutative diagram (2.2.11).
Therefore, we can assume that the set CS(X,MX) contains no points of the

variety X. Hence, this set contains an irreducible curve C ⊂ X such that
multC(M) � n. Let H be a general divisor in | −KX |. Then

2 = H ·K2X � H ·M2X � multC(M2X)H · C � −KX · C,

which implies the inequality −KX · C � 2.
Let −KX · C = 2. Then Supp(M2X) = C and multC(M2X) = mult

2
C(MX) = 1.

This implies that the equalities

multC(M1 ·M2) = multC(M1) = multC(M2) = n

and the set-theoretic identity Supp(M1∩M2) = C hold for any two distinct surfaces
M1 and M2 in the linear system M. Let P be a sufficiently general point in the
complement X \C and let D be the linear subsystem ofM consisting of the surfaces
passing through P . Then the linear system D has no fixed components, because
the linear system M is not composed of a pencil. Let D1 and D2 be two general
surfaces in D. Then

P ∈ D1 ∩D1 =M1 ∩M2 = C

in the set-theoretic sense, because D1 and D2 belong toM. This is a contradiction.
Thus, we have proved the equality −KX ·C = 1. This means that π(C) is a line

in P3 and the restriction π|C : C → π(C) is an isomorphism. Moreover, it follows
from the above arguments that the set CS(X,MX) contains no subvarieties of X
except for the curve C, and the inequality multC(M

2) < 2n2 holds.
Suppose that π(C) �⊂ S. Let H be the pencil in the linear system |−KX | formed

by the surfaces containing the curve C. Then the base locus of the pencil H consists

of the curve C and a curve C̃ such that π(C) = π(C̃). Let D be a general divisor
in H. Then MX |D is no longer a movable boundary; however,

MX |D = multC(MX)C +multC̃(MX)C̃ + RD,

where RD is a movable boundary on D. By construction,

Sing(D) ∩ C = {P1, . . . , Pk},

where the points Pi are the singular points ofX belonging to the curve C. Moreover,
every point Pi is an ordinary double point onD because of the general choice ofD in
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the linear system H. On the surface D we have the equalities C2 = C̃2 = −2+k/2;
however, k � 3, and hence

(1−multC̃(MX))C̃
2 = (multC(MX)− 1)C · C̃ + RD · C̃ � 0,

which implies that C̃ ∈ CS(X,MX), a contradiction. Hence, the line π(C) is
contained in the surface S ⊂ P3.
Let H be a general hyperplane in P3 containing the line π(C). Then the curve

D = H ∩ S = π(C) ∪Q

is reduced and π(C) �⊂ Supp(Q), where Q is a planar curve of degree 5. Moreover,
the curve D is singular at every singular point Pi of S belonging to the line π(C),
where i = 1, . . . , k. However, the set π(C) ∩Q contains at most 5 points, and

Sing(D) ∩ π(C) = Q ∩ π(C),

which implies that k = | Sing(X) ∩ C| � 5.
Suppose that k � 3. Then it follows from the Bertini theorem that the inter-

section π(C) ∩Q contains at least two distinct points, say O1 and O2, which differ
from the points Pi. In this case the hyperplane H is tangent to the surface S at the

points O1 and O2. We write Õj = π
−1(Oj). Let Lj be a general line in H passing

through the point Oj and let L̃j be the proper transform of Lj on X. Then the

line Lj is tangent to S at the point Oj, the curve L̃j is irreducible and singular at

the point Õj, and on the other hand, −KX · L̃j = 2. Let H̃ = π−1(H) and let M
be a general surface in M. Then

M |H̃ = multC(M)C + R,

where R is an effective divisor on H̃ such that C �⊂ Supp(R), and

2n =M · L̃j � multÕj (L̃j)multC(M) +
∑

P∈(M\C)∩L̃j

multP (M) ·multP (L̃j) � 2n,

which implies that M ∩ L̃j ⊂ C. As the lines L1 and L2 vary in the plane H,
the curves L̃1 and L̃2 generate two distinct pencils on H̃ whose base loci are the

points Õ1 and Õ1, respectively. The latter implies that R = ∅. Thus, the equality

M∩H̃ = C holds in the set-theoretic sense for a general divisor H̃ in |−KX | passing
through C and for any divisor M in the linear system M such that H̃ �⊂ Supp(M).
Let P̃ be a general point in H̃ \C and let M̂ be the linear subsystem ofM consisting
of the surfaces containing the point P̃ . Then M̂ has no fixed components, because

the linear system M is not composed of a pencil. Let M̂ be a general surface in M̂.

Then P̃ ∈ M̂ ∩ H̃ = C, because H̃ �⊂ Supp(M̂). This is a contradiction.
Thus, we have proved that either k = 4 or k = 5. Let g : V → X be a blow-up

of the sheaf of ideals of the curve C and let F be an exceptional divisor of g. Then

−KV ∼Q MV ∼Q g∗(−KX)− F,
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where MV = g
−1(MX), because multC(MX) = 1 (this relation holds since the

variety X is birationally superrigid by Theorem 2.2.1). One can show (see [36]
and [176]) that the following assertions hold:

• the variety V has k singular points of type 12(1, 1, 1), and each of these
points dominates a singular point of X that belongs to the curve C;
• the morphism g|F : F → C has four reducible fibres each consisting of two
smooth rational curves transversally intersecting at a singular point of V
which is an ordinary double point on F ;
• the linear system | −KV | is a pencil and its base locus consists of a smooth
curve C̃ contained in F which is a section of the morphism g|F ;
• the relation C̃ ≡ K2V holds, and the divisor −KV is numerically effective if
and only if −K3V = −2 + k

2 � 0.
Therefore, the divisor −KV is numerically effective. On the other hand, the

image of every element of the set CS(V,MV ) on the variety X must be contained
in the set CS(X,MX), because

KV +MV ∼Q g∗(KX +MX),

which implies that every element of the set CS(V,MV ) is a curve in F dominating
the curve C. Therefore, the existence of such an element implies the inequality
multC(M) � 2n2, which is impossible, as was proved above. Thus, the singularities
of the log pair (V, λMV ) are terminal for some rational number λ > 1. This means
that the linear system | − rKV | is free for r � 0 (see [106], Theorem 3.1.1).
Suppose that k = 4. Then the morphism φ|−rKV | is a fibration into elliptic

curves, and it follows from the equality K2V ·MV = 0 that the linear system g−1(M)
is contained in the fibres of the fibration φ|−rKV |, which readily implies the existence
of the commutative diagram (2.2.12).
Suppose that k = 5. Then there is a birational morphism φ|−rKV | : V → U such

that U is a Fano variety with canonical singularities, −K2U = 1/2, and the relation

KV + λMV ∼Q φ∗|−rKV |(KU + λMU )

holds, where MU = φ|−rKV |(MV ). Thus, the log pair (U, λMU ) is a canonical
model. In particular, the equality κ(U, λMU ) = 3 holds; however,

κ(U, λMU ) = κ

(
Y,
λ

n
|τ∗(Ȟ)|

)
� dim(Z) = 2,

which is a contradiction.

The assertion of Theorem 2.2.10 remains valid over any field of definition F of
characteristic zero. One can show (see [36]) that the assertion of Theorem 2.2.10
holds over any perfect field F with char(F) �∈ {2, 3, 5} and fails for char(F) = 5.
Corollary 2.2.13. Suppose that X is smooth. Then X cannot be birationally
transformed into a fibration into elliptic curves.

Birational transformations of smooth Fano threefolds into elliptic fibrations and
the properties of torsion points of an elliptic curve that is defined over a number
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field (see [130]) were used in [10], [11], [72] to prove the potential density13 of
rational points on Fano threefolds, and the following assertion was proved.

Theorem 2.2.14. The rational points are potentially dense on all smooth Fano
threefolds, except possibly for a double cover of P3 ramified along a sextic curve.

The possible exception in Theorem 2.2.14 is related to the fact that a double
cover of P3 ramified along a smooth sextic curve is the only smooth Fano threefold
for which there is no birational transform to an elliptic fibration. It follows from the
classification of smooth Fano threefolds that a smooth double cover of P3 ramified
along a sextic curve is the only smooth Fano threefold which cannot be transformed
birationally to an elliptic fibration (see Corollary 2.2.13 and [95]). The rational
points are always potentially dense on a geometrically uniruled variety. There is the
well-known weak Lang conjecture stating that the rational points are not potentially
dense on varieties of general type, and this conjecture is proved for subvarieties of
Abelian varieties (see [58] and [59]). On the other hand, the geometry of birationally
superrigid varieties is very similar to that of varieties of general type, which
gives hope that rational points are not potentially dense on some birationally super-
rigid varieties, and this would imply the existence of non-unirational rationally
connected varieties.

§ 2.3. Double cover of a quadric
Let ψ : X → Q be a double cover of a three-dimensional quadric Q ⊂ P4 ramified

along a surface S ⊂ Q cut out on Q by a quartic hypersurface in P4 and such that
the threefold X has at most isolated ordinary double singular points. In this case X
is a Fano variety of degree 4, the relation −KX ∼ ψ∗(OP4(1)|Q) holds, the variety
X is unirational, and the following result is valid (see [87]).

Theorem 2.3.1. Suppose that X is smooth. Then X is birationally rigid.

Proof. Suppose that X is not birationally rigid. For example, suppose for clarity
that there is a birational map ρ : X ��� P3. We claim that this assumption leads to
a contradiction, and we shall then omit the proofs of the remaining possible cases.
Let σ be a birational automorphism of the variety X. Consider the linear sys-

tem M = (ρ ◦ σ)−1(|OP3(1)|). It follows from the Lefschetz theorem that the group
Pic(X) is generated by the anticanonical divisor −KX . Thus, there is a positive
integer n such that M ∼ −nKX . The number n depends on the birational auto-
morphism σ as well. Hence, one can assume that σ is chosen in such a way that n
takes the least possible value.
The singularities of the log pair (X, 1nM) are not canonical (see the proof of

Theorem 1.4.1). Moreover, it follows immediately from the proofs of Theorems 2.1.1
and 2.2.1 that the singularities of the movable log pair (X, 1nM) are not canonical
at a general point of some irreducible curve C ⊂ X such that −KX · C � 3. In
particular, multC(M) > n.
Suppose that −KX · C = 2 and that the curve ψ(C) is a line. Let η be the

composition of the double cover ψ with the projection from the line ψ(C),

13The rational points of a variety V defined over a number field F are said to be potentially

dense if there is a finite extension F ⊂ K of fields such that the set of K-points of the variety V is
Zariski dense on the variety V .
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and let L be a sufficiently general curve on X which is contracted to a point by η.
In this case L is a smooth elliptic curve such that −KX ·L = 2, and the intersection
L∩C consists of two distinct points. Let S be a general surface in the linear system
M. Then L �⊂ S, because the linear system M has no fixed components. On the
other hand, we have

2n = S ·L �
∑

O∈L∩C
multO(S)multO(L) �

∑
O∈L∩C

multC(S) > 2n,

which is a contradiction.
Suppose that −KX · C = 1 and ψ(C) ⊂ S. Then ψ(C) is a line. Let L be

a general curve on X such that −KX · L = 2 and the image ψ(L) is a line on
the quadric Q that is tangent to the surface S at some point of the line ψ(C).
Then it follows from the condition ψ(C) ⊂ S that the curve L is not contained in
the base locus of the linear system M. Let O be the point of intersection of the
curves C and L. Then multO(L) � 2, which immediately contradicts the inequality
multC(M) > n. The same holds if −KX · C = 2 and ψ(C) is a line.
Suppose that −KX · C = 1 and ψ(C) �⊂ S. Then ψ(C) is a line, and there is

a smooth curve Z ⊂ X which differs from the curve C and satisfies the condition
ψ(Z) = ψ(C). Let η be the composition of the double cover ψ with the projection
from the line ψ(C), let π : V → X be the composition of a blow-up of the smooth
curve C with a subsequent blow-up of the proper transform of the smooth curve Z,
let E be an exceptional divisor of π that dominates C, and let G be an exceptional
divisor of π that dominates Z. Then the map

η ◦ π : V ��� P2

is a morphism over a general point of P2, its general fibre is an elliptic curve, and
the surfaces E andG are sections of the rational map η◦π. Let γ be the reflection of
a general fibre of the map η ◦ π in the section G, which can be regarded as a point
on the corresponding elliptic curve. Then the involution γ induces a birational
involution τ = π ◦ γ ◦ π−1 of the variety X. One can readily see that the involution
τ is not biregular. Hence, we have a rational equivalence

τ(M) ∼ −n′KX ,

where n′ is a positive integer. Moreover, arguing as in the proof of Theorem 1.5.1,
we can see that n′ < n, which contradicts the minimality of the number n.
Therefore, we have proved that either −KX · C = 2 or −KX · C = 3 and the

restriction ψ|C is an isomorphism. In particular, the curve C is smooth and
the curve ψ(C) is either an irreducible smooth conic or a smooth rational curve
of degree 3.
Let ξ : W → X be a blow-up of the curve C, let F be an exceptional divisor of

the birational morphism ξ, let B = ξ−1(M), and let d = −KX · C. In this case, as
in the proof of Theorem 2.2.1, one can readily show that the divisor ξ∗(−dKX)−F
is numerically effective. Thus, for any two general surfaces S1 and S2 in the linear
system B we have

0 > (ξ∗(−dKX) − F )(ξ∗(−nKX)−multC(M)F )2 = S1 · S2 · (ξ∗(−dKX)− F ) � 0,
because multC(M) > 0. This is a contradiction.
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For every curve L ⊂ X such that −KX · L = 1 and ψ(L) �⊂ S there is a
birational involution τ of X which is not biregular. In the smooth case we have
a one-dimensional family of curves of this kind, and the corresponding birational
involutions do not admit any relations (see [87]). Let Γ be the subgroup of Bir(X)
generated by these birational involutions. Then the proof of Theorem 2.3.1 implies
the following result.

Theorem 2.3.2. Suppose that X is smooth. Then there is an exact sequence of
groups of the form

1→ Γ→ Bir(X) → Aut(X)→ 1.

Conjecture 2.3.3. Suppose that X is Q-factorial. Then X is birationally rigid.

Conjecture 2.3.3 was proved in [70] under the additional assumption that the
variety X has a single ordinary double point and satisfies some generality assump-
tions. Moreover, the following result was proved in [71].

Theorem 2.3.4. Suppose that Q is a cone, the surface S is smooth and does not
pass through the vertex of Q, and α : X ��� P1 and β : X ��� P1 are rational maps
induced by distinct projections of the base of Q, which is isomorphic to P1 × P1.
Then the general fibres of the rational maps α and β are del Pezzo surfaces of
degree 2, and X is not a Q-factorial variety. Suppose that there is a Mori fibration
τ : Y → Z and a birational map ρ : X ��� Y and that the surface S is sufficiently
general. Then there is a birational automorphism σ of X such that ρ ◦ τ = α ◦ σ or
ρ ◦ τ = β ◦ σ.

Theorem 2.3.1 was generalized in [148] as follows.

Theorem 2.3.5. Let ζ : V → Y be a double cover of a smooth quadric Y ⊂ Pn
ramified over a smooth divisor D ⊂ Y such that n � 5 and D ∼ OPn(2n − 4)|Y .
Then V is a birationally superrigid Fano variety of degree 4.

One can show that the assertion of Theorem 1.7.23 implies the assertion of
Theorem 2.3.5 in the nodal case. A result similar to Theorem 2.2.10 was proved
in [26] for smooth varieties X.

§ 2.4. Intersection of a quadric and a cubic
Let X = Q ∩ V ⊂ P5 be a smooth complete intersection, where Q is a quadric

hypersurface and V is a cubic hypersurface. Then −KX ∼ ψ∗(OP5(1)|X). There-
fore, X is a smooth Fano variety of degree 6, and it follows from the Lefschetz
theorem that the group Pic(X) is generated by the divisor −KX . As is known, X
is unirational (see [87]) and has non-biregular birational automorphisms (see Exam-
ple 1.3.14).

Example 2.4.1. Let L be a line on the variety X and let ψ : X ��� P3 be the
projection from L. Then the rational map ψ is a double cover over a general point
of P3, and this map induces a birational involution τ of X which is clearly not
biregular.

The following result holds (see [87], [96]).
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Theorem 2.4.2. Suppose that the complete intersection X is sufficiently general.
Then X is birationally rigid, and there is an exact sequence of groups

1→ Γ→ Bir(X) → Aut(X)→ 1,

where Γ is the free product of the groups generated by the involutions constructed
in Examples 2.4.1 and 1.3.14.

In the remaining part of this section we sketch the proof of the birational rigidity
of the varietyX. For example, we assume that there is a birational map ρ : X ��� Y
for which there is a morphism π : Y → P2 defining a conic bundle. Let us show
that this assumption leads to a contradiction.
We consider the linear system

M = (ρ ◦ σ)−1(|π∗(OP2(1))|),

where σ is a birational automorphism of X, and we choose a positive integer n such
that M ∼ −nKX ; let σ be such that n takes the least possible value. Then the
singularities of the movable log pair (X, 1nM) are not canonical (see the proof of
Theorem 1.4.1). In particular, the set CS(X, µM) is non-empty for some positive
rational number µ < 1

n .
Suppose thatCS(X, µM) contains a curveZ on the varietyX. Then multZ(M)>n,

which implies that deg(Z) � 5. If the curve Z is a line, then we assume that τ is
the corresponding involution in Example 2.4.1. If Z is a conic such that the plane
containing Z is contained in the quadric Q, then we assume that τ is the involution
constructed in Example 1.3.14. In this case, τ(M) ∼ −n̂KX for a positive integer
n̂ < n, which contradicts the minimality of n. In all remaining cases we arrive at a
contradiction by using the inequality multZ(M) > n as in the proof of Theorem 2.3.1
(see [87]).
Therefore, the set CS(X, µM) contains a point P ∈ X. We use the arguments

of [46]. Let T be the intersection of two hyperplanes in P5 that are tangent to the
quadric Q and the cubic V , respectively, at the point P . Suppose now that
the variety X is sufficiently general in the following sense: the curve T ∩ X is
a curve of degree 6 such that multP (T ∩ X) = 4, the singularity of T ∩ X at P
is analytically equivalent to a cone over four general points in P2, and one of the
following possible cases holds:

• T ∩X is an irreducible curve ∆ of degree 6 such that multP (∆) = 4;
• T ∩X consists of the union of an irreducible curve ∆ of degree 5 and a line
Γ1 that passes through the point P , and multP (∆) = 3;
• T ∩X consists of the union of an irreducible curve ∆ of degree 4 and lines
Γ1 and Γ2 passing through P , and multP (∆) = 2;
• T ∩ X consists of the union of an irreducible smooth rational curve ∆ of
degree 3 and lines Γ1, Γ2, and Γ3 passing through P .

We consider only the case in which the intersection T ∩X consists of the union
of an irreducible smooth rational curve ∆ of degree 3 and lines Γ1, Γ2, Γ3 passing
through the point P . Let ξ : U → X be a blow-up of P , let F be an exceptional
divisor of the birational morphism ξ, and let S be a general hyperplane section of
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the complete intersection X that contains T ∩X. We write S = ξ−1(S), Φ = F |S,
∆ = ξ−1(∆), and Γ = ξ−1(Γ). Then the surface S is smooth and the following
equalities hold on S: 


Φ2 = ∆

2
= Γ

2
i = −2,

∆ · Γi = Φ · Γi = ∆ · Φ = 1,
Γi · Γj = 0 ⇐⇒ i �= j.

Let B be the proper transform of the linear system M on the variety U . Then

B|S −m∆−
3∑
i=1

miΓi = D ∼ εΦ+ δ∆+
3∑
i=1

γiΓi,

where D is a linear system without fixed components, m and mi are non-negative
integers such that m < n and mi < n, ε = 2n − multP (M), δ = n − m, and
γi = n −mi. Therefore, for any two sufficiently general curves D1 and D2 in the
linear system D we have

D1 ·D2 = 2n2
(
εδ − ε2 − δ2 −

3∑
i=1

γ2i + (ε+ δ)
3∑
i=1

γi

)
� 0. (2.4.3)

Suppose that multP (M) > 2n. Then

D1 ·D2 = n2
(
6εδ − γ23 − (γ1 − γ2)2 − (ε+ δ − γ1 − γ2)2 − (ε+ δ − γ3)2

)
< 0,

because ε � 0. Hence, the inequality multP (M) � 2n holds, and it follows from
Corollary 1.7.26 that there is a line Λ ⊂ F ∼= P2 such that the log pair

(
U,
1

n
B+ (1−multP (M)/n)F

)

is not log canonical in Λ and the surface S still intersects Λ at two distinct points.
Hence, the log pair

(
S,
1

n
D+ (1 − δ/n)∆ +

3∑
i=1

(1− γi/n)Γi + (1 −multP (M)/n)Φ
)

is not log canonical at two distinct points O1 and O2 belonging to the curve Φ,
because the choice of the surface S was general. It follows now from Theorem 1.7.17
that

• D1 ·D2 > 8n2εδ if O1 �∈ Γ1 ∪ Γ2 ∪ Γ3 and O2 �∈ Γ1 ∪ Γ2 ∪ Γ3,
• D1 ·D2 > 4n2ε(γi + γj) if O1 ∈ Γi and O2 ∈ Γj, where i �= j,
• D1 ·D2 > 4n2ε(δ + γi) if O1 �∈ Γ1 ∪ Γ2 ∪ Γ3 and O2 ∈ Γi,
• D1 ·D2 > 4n2ε(δ + γi) if O1 ∈ Γi and O2 �∈ Γ1 ∪ Γ2 ∪ Γ3,

and, as one can readily see, this contradicts the inequality (2.4.3).
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§ 2.5. Weighted hypersurfaces
Let X be a quasi-smooth hypersurface in P(1, a1, a2, a3, a4) of degree d such that

−KX ∼Q OP(1, a1, a2, a3, a4)(1),

the inequalities a1 � a2 � a3 � a4 hold, and the hypersurface X has terminal
singularities. Then the quintuple (d, a1, a2, a3, a4) admits the 95 possibilities which
were found in [78] by computer processing. The completeness of the list obtained
in [78] was proved in [99].
Let S be a sufficiently general surface in the linear system | −KX |. Then S is

a quasi-smooth hypersurface in P(a1, a2, a3, a4) of degree d, S has Du Val singu-
larities, and KS ∼ 0. Therefore, S is a K3 surface. Surprisingly, the converse is
also true, that is, every quasi-smooth hypersurface in a weighted projective space
and having type K3 with Du Val singularities can be obtained by the above con-
struction. These surfaces were classified by Reid, but he did not publish this result,
and an independent classification was obtained in [181]. As was proved in [7], the
equality rk Pic(S) = 1 holds if the threefold X is very general. This is a generaliza-
tion of the classical result that the Picard group of a very general hypersurface in
P3 of degree more than 3 is generated by a hyperplane section (see [132]). One can
conjecture that a similar assertion holds for any very general quasi-smooth hyper-
surface in P(α1, α2, α3, α4) of degree δ if δ �

∑4
i=1 αi, but the last conjecture has

been proved only in some special cases (see [172], [50], [101]).
Let n be the ordinal number of X in the notation of the paper [78].

Remark 2.5.1. The hypersurface X is a smooth quartic threefold if n = 1, X is a
double cover of P3 ramified over a smooth sextic if n = 3, and X is singular in the
other cases.
Suppose that X is sufficiently general. As is well known, X is rationally con-

nected (see [170]). On the other hand, the following result was obtained in [49].

Theorem 2.5.2. The variety X is birationally rigid.

The assertion of Theorem 2.5.2 can be regarded as a generalization of Theo-
rems 2.1.1 and 2.2.1. Moreover, the lines of the proof of Theorem 2.5.2 are similar
to those of the proofs of Theorems 2.1.1, 2.2.1, 2.3.1, and 2.4.2, namely, the exclu-
sion of maximal singularities and the untwisting of birational automorphisms are
involved. However, the proof of Theorem 2.5.2 contains many substantial techni-
cal modifications. We do not describe the scheme for proving Theorem 2.5.2, but
to illustrate the methods of [49], we do prove the following natural generalization
(obtained in [37]) of Corollary 2.2.13.

Theorem 2.5.3. A weighted hypersurface X can be birationally transformed into
an elliptic fibration if and only if n /∈ {3, 60, 75, 84, 87, 93}.

If n = 1, then the general fibre of the projection of the smooth quartic X ⊂ P4
from a line in X is an elliptic curve. If n = 2, then the threefold X is birationally
equivalent to a double cover of P3 ramified over a singular sextic surface with 15
ordinary double points (see [49], [36]), which implies that X can be birationally
transformed into a fibration into elliptic curves (see Example 2.2.8).
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Lemma 2.5.4. Suppose that n �∈ {1, 2, 3, 7, 11, 19, 60, 75, 84, 87, 93}. In this case
the normalization of the general fibre of the natural projection X ��� P(1, a1, a2) is
a smooth elliptic curve.

Proof. Let C be the general fibre of the projection X ��� P(1, a1, a2). Then C is
not a rational curve by Theorem 2.5.2. On the other hand, C is a hypersurface
of degree d in P(1, a3, a4) ∼= Proj(C[x, t, w]), where wt(x) = 1, wt(t) = a3, and
wt(w) = a4 and either � da3 � � 3 or �

d
a3
� � 4 and 2a5 � d � 2a5+ a4. Let V be the

subset of P(1, a3, a4) given by the inequality x �= 0. Then V ∼= C2, and the affine
curve V ∩ C is either a cubic curve if � da3 � � 3 or a double cover of C ramified at
no more than four points if � da3 � � 4 and 2a5 � d � 2a5 + a4. Thus, the curve C
is elliptic.

Therefore, if n �∈ {1, 2, 3, 7, 11, 19, 60, 75, 84, 87, 93}, then the variety X is bira-
tionally equivalent to an elliptic fibration having a section.

Lemma 2.5.5. Suppose that n ∈ {7, 11, 19}. Then X can be birationally trans-
formed into a fibration into elliptic curves.

Proof. We consider only the case n = 19, because the other cases are similar. Thus,
let n = 19. In this case d = 12 and the variety X is a hypersurface in P(1, 2, 3, 3, 4)
which can be given by an equation of the form

wf8(x, y, z, t, w)+ zf3(z, t)

+ yf10(x, y, z, t, w) + xf11(x, y, z, t, w) = 0 ⊂ Proj(C[x, y, z, t, w]),

where wt(x) = 1, wt(y) = 2, wt(z) = wt(t) = 3, wt(w) = 4, and fi is a general
quasi-homogeneous polynomial of degree i. Let H and B be the pencils of surfaces
that are cut out on the variety X by the equations

λx2 + µy = 0 and δx3 + γz = 0,

respectively, where (λ : µ) ∈ P1 and (δ : γ) ∈ P1. In this case the pencils H and B
determine a map ρ : X ��� P1 ×P1. Let C be the general fibre of the map ρ. Then
C is a hypersurface of degree 12 in P(1, 3, 4) containing the point (0 : 1 : 0), which
implies that the affine part of C is a cubic curve in C2. However, the curve C is
non-rational by Theorem 2.5.2 and is thus elliptic.

Corollary 2.5.6. The threefold X can be birationally transformed into an elliptic
fibration if n �∈ {3, 60, 75, 84, 87, 93}.

Let us now prove Theorem 2.5.3. Suppose that n ∈ {3, 75, 84, 87, 93} and that
there exist a birational map ρ : X ��� V and a morphism ν : V → P2 for which
V is smooth and the general fibre of ν is an elliptic curve. We claim that these
assumptions lead to a contradiction. Let D = |ν∗(OP2(1))| and M = ρ−1(D).
Then M ∼ −kKX for some positive integer k, and the singularities of the log pair
(X, 1kM) are not terminal by Theorem 1.4.4. In particular, the set CS(X,

1
kM)

is non-empty. On the other hand, the singularities of the log pair (X, 1kM) are
canonical by Corollary 1.4.3, because X is birationally superrigid (see [49]).
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Lemma 2.5.7. The set CS(X, 1kM) contains no smooth points of the variety X.

Proof. Suppose that CS(X, 1
k
M) contains a smooth point P ∈ X. Consider quasi-

homogeneous coordinates (x, y, z, t, w) on P(1, a1, a2, a3, a4) with wt(x) = 1,
wt(y) = a1, wt(z) =a1, wt(t)=a3, and wt(w)=a4 such that P =(ξ0, ξ1, ξ2, ξ3, ξ4).
We set ε = a3 if ξ0 �= 0, ε = a1a3 if ξ0 = 0 and ξ1 �= 0, and

ε = min
{{
LCM(ai, aj)

}
∪
{
ai + aj | ak divides ai + aj

}}
if ξ0 = ξ1 = 0, where the minimum is taken over all triples {i, j, k} = {2, 3, 4}. In
this case −εK3X < 4.
Let λ be a positive integer and let H be the linear subsystem of | − ελKX | that

consists of the surfaces whose multiplicity at the point P is not less than λ. It
follows from Theorem 5.6.2 in [49] that there is a λ such that the point P is an
isolated base point of the linear system H. Thus, for a general surface S in the
linear system H and for general surfaces D1 and D2 in the linear systemM we have

multP (D1 ·D2) �
D1 ·D2 · S
multP (S)

=
−λεK3Xk2
multP (S)

� −εK3Xk2 < 4k2,

which contradicts Theorem 1.7.18.

We can assume that n �= 3 by Corollary 2.2.13.
Lemma 2.5.8. Let C be a curve on X such that C ∩ Sing(X) = ∅. Then C �∈
CS(X, 1kM).

Proof. Let H be a very ample divisor on X. Then H ∼ −λKX for some λ ∈ N and

λk2

60
� −λk2K3X = H · S1 · S2 � mult2C(M)H ·C � λmult2C(M),

where S1 and S2 are general surfaces in M. Thus, multC(M) < k.

The following result was obtained in [104].

Theorem 2.5.9. Let π : U → V be a birational morphism such that V and U
are threefolds with terminal Q-factorial singularities, π contracts exactly one excep-
tional divisor E, and π(E) contains a singular point O of V which is locally iso-
morphic to a terminal quotient singularity of type 1r (1, a, r − a), where a and r
are coprime positive integers with r � 2. Then π is a weighted blow-up of O with
weights (1, a, r− a).
Corollary 2.5.10. Let C be a curve on X such that C ∈ CS(X, 1

k
M). Then every

point in the intersection C ∩ Sing(X) is contained in the set CS(X, 1kM).

Thus, CS(X, 1kM) contains a point P of X which is locally isomorphic to a

terminal quotient singularity of type 1r (1, a, r − a), where a and r are coprime
positive integers such that r � 2. Let π : Y → X be a weighted blow-up of P with
weights (1, a, r− a), let E be an exceptional divisor of the blow-up π, and let B be
the proper transform of the linear system M on the variety Y . Then B ∼Q −kKY
by Theorem 2.5.9.
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Remark 2.5.11. −K3Y < 0 (see Proposition 3.4.6 in [49]).
Let NE(Y ) ⊂ R2 be the closure of the cone of one-dimensional cycles on the

variety Y . Then the class of the cycle −E · E generates one of the extremal rays
of the cone NE(Y ), and the other extremal ray is defined by the following lemma,
which is Corollary 5.4.6 in [49].

Lemma 2.5.12. There are integers b > 0 and c � 0 such that the cycle −KY ·
(−bKY +cE) is numerically equivalent to an effective, irreducible, and reduced curve
Γ on Y which generates an extremal ray of NE(Y ) different from that generated by
the cycle −E ·E.

Let S1 and S2 be distinct surfaces in B. Then S1 ·S2 ∈ NE(Y ), but we have the
numerical equivalence S1 ·S2 ≡ k2K2Y , which implies that the cycle S1 ·S2 generates
an extremal ray of NE(Y ) containing the curve Γ. However, for each effective cycle
C ∈ R+Γ we have

Supp(C) = Supp(S1 · S2),

because S1 · Γ < 0 and S2 · Γ < 0.
Let Q be a sufficiently general point in Y \ Supp(S1 ·S2) and let P be the linear

subsystem of B formed by the divisors passing through the point Q. Then the
linear system P has no fixed components, because by construction the linear system
B does not consist of a pencil. Thus, we can apply the above arguments to P instead
of B and show that the cycle D1 ·D2 generates an extremal ray of NE(Y ) containing
the curve Γ for any two general surfaces D1 and D2 in P. In particular, we have

Supp(D1 ·D2) ⊆ Supp(S1 · S2),

but Q ∈ Supp(D1 ·D2) and Q ∈ Y \ Supp(S1 · S2), a contradiction.
Hence, we have proved Theorem 2.5.3 for n �= 60. For n = 60 the proof is similar

but more technical (for details, see [37]). We note that it is impossible to arrive
at a contradiction in the proof of Theorem 2.5.3 without using the condition that
the linear system M is not formed by a pencil, because any hypersurface X under
consideration can be birationally transformed into a fibration into K3 surfaces
(see [37]).

Conjecture 2.5.13. Suppose that n �∈ {1, 2, 3, 7, 9, 11, 17, 19, 20, 26, 30, 36, 44, 49,
51, 60, 64, 75, 84, 87, 93}. Let ρ : X ��� P2 be a rational map such that the normal-
ization of the general fibre of ρ is an irreducible elliptic curve. Then ρ = φ ◦ ψ,
where ψ : X ��� P(1, a1, a2) is the natural projection and φ : P(1, a1, a2) ��� P2 is a
birational map.

Conjecture 2.5.13 was proved in [161] for n = 5 and in [37] for n ∈ {14, 22, 28, 34,
37, 39, 52, 53, 57, 59, 66, 70, 72, 73, 78, 81, 86, 88, 89, 90, 92, 94, 95}.
Birational involutions τ1, . . . , τk of the variety X such that there is an exact

sequence of groups of the form 1 → Γ → Bir(X) → Aut(X) → 1, where Γ is the
group generated by τ1, . . . , τk, were explicitly constructed in [49] for any possible
value of n. The following result holds (see [37]).
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Theorem 2.5.14. There are no relations among the birational involutions τ1, . . . ,
τk when k �= 3 or n = 20, and if k = 3 and n �= 20, then the only relation among
the involutions τ1, τ2, and τ3 is τ1 ◦ τ2 ◦ τ3 = τ3 ◦ τ2 ◦ τ1.

The possible values of the number k are as follows:

• k = 5 for n = 7;
• k = 3 for n∈{4, 9, 17, 20, 27};
• k = 2 for n∈{5, 6, 12, 13, 15, 23, 25, 30, 31, 33, 36, 38, 40, 41, 42, 44, 58, 61, 68,
76};
• k = 1 for n∈{2, 8, 16, 18, 24, 26, 32, 43, 45, 46, 47, 48, 54, 56, 60, 65, 69, 74, 79};
• k = 0 in the other birationally superrigid cases.

PART 3. HIGHER-DIMENSIONAL VARIETIES

§ 3.1. Hypersurfaces
Let X be a smooth hypersurface in Pn of degree n � 5. Then −KX ∼ OPn(1)|X ,

the group Pic(X) is generated by a hyperplane section of the hypersurface X
(see [14]), and X is a Fano variety of degree n.

Proof of Theorem 0.3.9. The variety X is said to be k-regular if the sequence
of homogeneous polynomials q1(x1, . . . , xn), . . . , qk(x1, . . . , xn) is regular for every
point P on X, where

xn−10 q1(x1, . . . , xn) + x
n−2
0 q2(x1, . . . , xn)

+ · · ·+ x0qn−1(x1, . . . , xn) + qn(x1, . . . , xn) = 0 (∗)

is the equation of the hypersurfaceX inPn ∼= Proj(C[x0, . . . , xn]) and the point P is
given by the equations x1 = · · · = xn = 0. The hypersurface X is never n-regular,
because it contains a line (see [6] or [110], Chap. V, Theorem 4.3). As was proved
in [149], a sufficiently general hypersurface X is (n− 1)-regular.
Suppose now thatX is (n−1)-regular and not birationally superrigid. In this case

Theorem 1.4.1 implies the existence of a linear system M without fixed components
on X such that the singularities of the movable log pair (X, 1

r
M) are not canonical,

where r is a positive integer such that M ∼ −rKX . Moreover, it follows from
Proposition 1.3.12 that the log pair (X, 1rM) is not canonical at some point P of X.
The hypersurface X can be given in Pn ∼= Proj(C[x0, . . . , xn]) by the above

equation (∗) in such a way that P is given by the equations x1 = · · · = xn = 0.
It follows now from the (n− 1)-regularity of X that the sequence of homogeneous
polynomials q1, . . . , qn−1 is a regular sequence. Let Hk be the linear system on X
consisting of the divisors cut out by all possible equations of the form

f0(x1, . . . , xn)
k∑
i=1

qi + f1(x1, . . . , xn)
k−1∑
i=1

qi + · · ·+ fk−1(x1, . . . , xn)q1 = 0,

for k = 1, . . . , n − 1, where fi is a homogeneous polynomial of degree i.
Then the regularity of the sequence q1, . . . , qn−1 implies the inequality
codim(Bs(Hk) ⊂ X) � k − 1. Let Sk be a general divisor in the linear system Hk,
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let D1 and D2 be general divisors in M, and let H be a general hyperplane section
of X containing the point P . We set Z = S4 · . . . · Sn−1 · D1 · D2. Then the
rational equivalence Sk ∼ −kKX and the inequality multP (Sk) � k + 1 hold and
the one-dimensional cycle Z is effective. Therefore, we have

n!

3!
r2 = H · Z � multP (Z) � multP (D1 ·D2)multP (S4) · · ·multP (Sn−1)

� multP (D1 ·D2)
n!

4!
,

which gives multP (D1 ·D2) � 4r2, and this is impossible by Theorem 1.7.18.
Let us now prove the following result (see [144]).

Theorem 3.1.1. If n = 5, then X is birationally superrigid.

Proof. Suppose that a smooth hypersurface X is not birationally superrigid. Then
it follows from Theorem 1.4.1 and Proposition 1.3.12 that there is a linear system
M on X without fixed components and such that the log pair (X, 1rM) is not
canonical at some point P ∈ X, where r is a positive integer such thatM ∼ −rKX .
In particular, we have the inequality multP (M) > r.
Let π : V → X be a blow-up of the point P and let E be an exceptional divisor

of π. Then

KV +
1

r
M̂ ∼Q π∗

(
KX +

1

r
M

)
+

(
3− 1
r
multP (M)

)
E,

where M̂ is the proper transform of the linear system M on V .
Let S1 and S2 be general divisors inM and let H1 and H2 be general hyperplane

sections of the hypersurface X which pass through P . Then

5r2 = S1 · S2 ·H1 ·H2 � multP (S1 · S2) � mult2P (M),

which implies that multP (M) �
√
5r < 3r.

Theorem 1.7.19 implies the existence of a line L ⊂ E ∼= P3 such that

multP (S1 · S2 ·H) > 8r2,

where H is an arbitrary hyperplane section of the hypersurface X satisfying the
following conditions:

• the divisor H contains the point P and is smooth at P ;
• the line L is contained in the divisor π−1(H);
• the divisor H does not contain surfaces in Bs(M).

We consider a linear system D consisting of the hyperplane sections H of the
hypersurface X such that L ⊂ π−1(H). The base locus of the linear system D is
the intersection of the quintic X with the plane Π ⊂ P5 that corresponds to the
line L ⊂ E. In particular, the above conditions are consistent if the plane Π is not
contained in X, and we have

5r2 = S1 · S2 ·H ·H1 � multP (S1 · S2 ·H) > 8r2,
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which is impossible. Hence, the quintic X contains the plane Π. Similar arguments
show that Π is contained in the base locus of the linear system M. We note that
a general quintic in P5 contains no planes (see [118]). One can show [21] that
the hypersurface X is birationally equivalent to a fibration into K3 surfaces if
and only if X contains planes (see Theorem 3.2.4), and if this is the case, then
the corresponding fibrations into K3 surfaces are induced by the projections from
planes contained in X.
Let Y be a sufficiently general hyperplane section of X which passes through the

point P and is such that L ⊂ π−1(Y ). Then Y is a hypersurface in P4 of degree 5,
and by construction the variety Y is smooth at the point P . Moreover, it follows
from Proposition 1.3.12 that Y has isolated singularities (this also follows from the
finiteness of the Gauss map for any smooth hypersurface; see [82]).

Let π : Ŷ → Y be a blow-up of the point P and let E = π−1(P ). Then the
diagram

Ŷ

π

		

� � �� V

π

		
Y

� � �� X

is commutative, and one can identify Ŷ with the divisor π−1(Y ) ⊂ V and E with
E ∩ Ŷ .
We write M = M|Y and note that the linear system M has fixed components,

because the plane Π is contained in the base locus of M. Indeed, we have Π ⊂ Y
by construction, the plane Π is a fixed component of the linear system M, and
this component is unique. Therefore, M = B+ αΠ, where B is a linear system on
the threefold Y , B has no fixed components, and α is the multiplicity of a general
divisor of the linear system M at a general point of the plane Π.

Let B̂ = π−1(B) and Π̂ = π−1(Π). Then L ⊂ Π̂ and

KŶ +
1

r
B̂+

α

r
Π̂ ∼Q π∗

(
KY +

1

r
B+

α

r
Π

)
+

(
2− 1
r
multP (B)−

α

r

)
E.

It follows from the proof of Theorem 1.7.19 that the set

LCS

(
Ŷ ,
1

r
B̂+

α

r
Π̂ +

(
1

r
multP (B)−

α

r
− 2
)
E

)

contains a line L ⊂ E ⊂ E. Therefore, we can apply Theorem 1.7.17 to the log pair(
Ŷ , 1r B̂+

α
r Π̂ + (

1
r multP (B) −

α
r − 2)E

)
at a general point of the curve L, which

immediately implies the strict inequality

multL(B
2) > 4(3r −multP (B)− α)(r − α),

which, in turn, immediately implies the inequality

multP (B
2) � mult2P (B) +multL(B2) > mult2P (B) + 4(3r−multP (B)− α)(r − α)

and the inequality multP (B
2) > (multP (B)− r + α)2 + 8(r − α).
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We now find an upper bound for multP (B
2). Let Z be a sufficiently general

hyperplane section of the quintic Y and let Z contain the point P . Then Z is a
smooth quintic in P3 and, in particular, the inequality (B|Z)2 � multP (B2) holds.
However, (B|Z)2 = 5r2 − 2rα− 3α2. Hence,

5r2 − 2rα− 3α2 > (multP (B)− r + α)2 + 8(r − α),

and it is easy to see that this is a contradiction.

Omitting the last part of the proof of Theorem 3.1.1, we obtain the following
result.

Theorem 3.1.2. Let n ∈ {6, 7, 8}. Then X is birationally superrigid.
The technique of hypertangent linear systems and the 8n2-inequality have been

successfully used to prove the birational superrigidity of a broad class of higher-
dimensional Fano varieties (see [151], [153], [155]–[157], [27], [34], [158]). Neverthe-
less, neither of these approaches can be used to prove the birational superrigidity of
an arbitrary smooth hypersurface in Pn for n � 9. A new approach, found in [154],
to the solution of the last problem is based on the following result (see [154], [63]).

Proposition 3.1.3. Let V be a smooth variety, letM be linear system on V without
fixed components, let D1 and D2 be general divisors in M, let Z = D1 · D2, and
let P be a point of V that belongs to the set LCS(V, 1rM) for some positive integer r.
Suppose that there is a morphism ξ : V → U such that dim(U) = dim(V ) − 1, ξ is
smooth in a neighbourhood of P , and ξ is finite on every irreducible component of
the cycle Z. Then ξ(P ) ∈ LCS(U, 14r2 ξ(Z)).
Proposition 3.1.3 implies the following result (see [154], [63]).

Theorem 3.1.4. Suppose that n � 12. Then X is birationally superrigid.
We note that results in [109] imply the non-rationality of a hypersurface X under

the assumption that it is very general (in the sense of the complement of countably
many Zariski closed sets)† and, in particular, non-singular.

§3.2. Complete intersections
Let X = ∩ki=1Fi ⊂ Pr be a smooth complete intersection such that Fi is a

hypersurface of degree di, where dk � · · · � d1 � 2 and dim(X) = r − k � 4. In
this case the group Pic(X) is generated by a hyperplane section of the variety X
in view of the Lefschetz theorem, and the following equivalence holds:

−KX ∼ OPr
( k∑
i=1

di − r − 1
)∣∣∣∣
X

,

which implies that

• X is not rationally connected if
∑k
i=1 di > r;

• X is a Fano variety if
∑k
i=1 di � r;

• X is not birationally rigid if
∑k
i=1 di < r.

†Russian editor’s note: In more detail, a hypersurface is said to be very general if it corre-
sponds to a point in the complement of countably many closed subvarieties in the space of all
hypersurfaces.
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Conjecture 3.2.1. Suppose that
∑k
i=1 di = r and r−k > 4. Then X is birationally

superrigid.

As was proved in [38], if
∑k
i=1 di = n, dk � 4, there is an index j such that

dj �= 5, and X is very general (in the sense of a complement of countably many
Zariski closed sets), then the variety X is non-rational. The following result was
obtained in [153] by using the technique of hypertangent linear systems (see the
proof of Theorem 0.3.9).

Theorem 3.2.2. Suppose that X is sufficiently general. Then X is birationally

superrigid if
∑k
i=1 di = r > 3k.

On the other hand, Theorem 1.7.19 implies the following result (see [27]).

Theorem 3.2.3. Suppose that r = 6, k = 2, d1 = 2, d2 = 4, and the variety X
contains no two-dimensional linear subspace of P6. Then X is birationally super-
rigid.

Proof. Suppose that X is not birationally superrigid and contains no two-dimen-
sional linear subspace of P6. Then by Theorem 1.4.1, there is a linear system M
on X having no fixed components and such that the singularities of the movable
log pair (X, 1nM) are not canonical for a positive integer n for which the rational
equivalence M ∼ −nKX holds. In particular, the set CS(X, µM) is not empty for
some positive rational number µ < 1

n
.

Let C be an irreducible subvariety of X that is a centre of canonical singularities
of the log pair (X, µM). Then multC(M) > n (see Remark 1.3.9). In particular,
if follows from Proposition 1.3.12 that dim(C) � 1. On the other hand, it follows
from Theorem 1.7.19 that C is a curve. Moreover, Theorem 1.7.18 gives us that
multC(S1 · S2) > 4n2 for sufficiently general divisors S1 and S2 in the linear
system M.
Suppose that C is not a line. Let L be a line in P6 passing through two sufficiently

general points of the curve C. Then L �⊂ X, because otherwise the inequality
multC(M) > n would imply that L ⊂ Bs(M), which is impossible because the
line L sweeps out either a plane in P6 (if the curve C is planar) or a variety
of dimension 3; however, the linear system M has no fixed components, and X
contains no two-dimensional linear subspaces of P6. Thus, we have

8n2 = H1 ·H2 · S1 · S2 � 2multC(M2) > 8n2,

where H1 and H2 are sufficiently general hyperplane sections of X passing through
the intersection L ∩X, and S1 and S2 are general divisors in M. This is a contra-
diction. Thus, the curve C is a line in P6.
Let S be an intersection of two general hyperplane sections of X ⊂ P6 that

pass through the line C. Then S is a smooth surface, the divisor KS is rationally
equivalent to a hyperplane section of S, and K2S = 8. We have the relation

M|S = B+multC(M)C,

where B is a linear system on S without fixed components. Then

(nKS −multC(M)C)2 = 8n2 − 2nmultC(M)− 3mult2C(M) = B2 � 0,
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because KS ·C = 1. However, C2 = −3, and hence multC(M) � 4
3n. Let f : V → X

be a blow-up of the line C, let E = f−1(C), let M̂ = f−1(M), let H be a sufficiently
general hyperplane section of X that passes through the line C, let BX =

1
n
M+H,

and let Ĥ = f−1(H). Then

KV +
1

n
M̂+ Ĥ ∼Q f∗

(
KX +

1

n
M+H

)
+

(
1− 1
n
multC(M)

)
E

and C ∈ LCS(X,BX). Let D be a general hyperplane section of X passing through
some point P ∈ C. Then P ∈ LCS(D,BX |D) and P ∈ CS(D, 1nM|D). By applying
Proposition 1.7.25 directly, we see that the set

LCS

(
V,
1

n
M̂+ Ĥ +

(
1

n
multC(M)− 1

)
E

)

contains a surface S ⊂ E such that the fibre of the morphism f |S : S → C over
every point of the line C is a line in the fibre of f over the point, and this fibre is
isomorphic to P2, because multC(M) � 4

3n. We can now apply Theorem 1.7.17 to

the log pair (V, 1nM̂+ Ĥ + (
1
n multC(M)− 1)E) at a general point of the surface S,

and we get the inequality

multS(M̂
2) > 4(2n2 − nmultC(M)) �

8

3
n2,

because multC(M) � 4
3
n. On the other hand, the equality Ĥ4 = 3 holds,

and Ĥ is a general divisor in the free linear system |Ĥ|. This system induces
a morphism φ|Ĥ| : V → P4 of degree 3 at a general point of the variety V , and
the morphism φ|Ĥ| does not contract any surface to a point, because X contains

no planes. Let H be another general divisor in the linear system |Ĥ|. Then sim-
ple manipulations show that H intersects the curve Ĥ ∩ S at at least two distinct
points, which implies that

16

3
n2 < H · Ĥ · M̂2 = (f∗(H)−E)2 · (f∗(nH) −multC(M)E)2 < 3n2,

because multC(M) > n. This is a contradiction.

A general complete intersection of a quadric and a quartic in P6 contains no
planes (see [118]). On the other hand, if the complete intersection of a quadric
and a quartic in P6 contains a two-dimensional linear subspace, then the birational
geometry of this intersection is more complicated than that in the general case,
because the general fibre of the projection from this linear subspace is a smooth
elliptic curve, and the following result was proved in [27].

Theorem 3.2.4. Suppose that r = 6, k = 2, d1 = 2, and d2 = 4. Then X is
birationally equivalent to an elliptic fibration if and only if X contains a plane.

It would be of interest to construct an example of a smooth deformation of a
birationally superrigid smooth Fano variety into a Fano variety which is not bira-
tionally superrigid. Most probably, this is impossible for hypersurfaces; however,
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despite the above Conjecture 3.2.1, it can happen that there is a smooth complete

intersection X such that
∑k
i=1 di = r, r − k > 4, and X is still not birationally

superrigid. On the other hand, it follows from Theorem 3.2.2 that a sufficiently gen-

eral complete intersection X is most probably birationally superrigid if
∑k
i=1 di = r.

As a pilot step, one can try to show the birational superrigidity of a sufficiently
general complete intersection of four quadrics in P8 or a sufficiently general complete
intersection of two quadrics and a cubic in P7, because there are smooth com-
plete intersections in the corresponding families which are not birationally
superrigid.

§ 3.3. Double spaces
Let π : X → Pn be a double cover ramified along an irreducible reduced hyper-

surface F ⊂ Pn of degree 2n with at most isolated ordinary singular points14 with
multiplicities at most 2(n− 2). Let n � 4. Then

−KX ∼ π∗(OPn)(1),

and the group Cl(X) is generated by the divisor −KX . In particular, X is a Fano
variety with terminalQ-factorial singularities. It follows from [178] that the number
of singular points ofX does not exceed the number of points (a1, . . . , an) ⊂ Zn such
that (n − 1)2 <

∑n
i=1 ai � n2, where ai ∈ (0, 2n). In particular, this implies that

the number of singular points of X does not exceed 1190 and 27237 when n is 4
and 5, respectively. In this section we prove the following result (see [148] and [32]).

Theorem 3.3.1. The variety X is birationally superrigid.

Example 3.3.2. Let n = 2k for k ∈ N and let F be a general hypersurface of
degree 4k containing a linear subspace of dimension k. Then F is nodal and has
(4k − 1)k singular points. Hence, the variety X is birationally superrigid for k � 2
by Theorem 3.3.1.

Example 3.3.3. Let n = 2k + 1 for k ∈ N and let F be a sufficiently general
hypersurface of degree 4k + 2 given by an equation of the form

g2(x0, . . . , x2k+2) =
k∑
i=1

ai(x0, . . . , x2k+2)bi(x0, . . . , x2k+2) ⊂ Pn

∼= Proj(C[x0, . . . , x2k+2]),

where g, ai, and bi are homogeneous polynomials of degree 2k + 1. Then the
hypersurface F is nodal and has (2k+ 1)2k+1 singular points and the hypersurface
X is birationally superrigid for k � 2 by Theorem 3.3.1.
Let us now prove Theorem 3.3.1. Suppose that the variety X is not birationally

superrigid. We show that this assumption leads to a contradiction. There is a
movable log pair (X,MX) on X such that the boundary MX is effective, the set
CS(X,MX) is not empty, and MX ∼Q −rKX for some rational number r < 1 (see
Theorem 1.4.1). Let Z be an element of CS(X,MX).

14An isolated singular point O of a variety V is said to be ordinary if O is a hypersurface
singular point and the projectivization of the tangent cone to V at O is smooth.
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Lemma 3.3.4. The subvariety Z is not a smooth point of X.

Proof. Suppose that Z is a smooth point of X. Then

multZ(M
2
X) > 4

by Theorem 1.7.18. Let H1, . . . , Hn−2 be sufficiently general divisors in the com-
plete linear system |π∗(OPn(1))| that pass through the point Z. Then

2 > M2X ·H1 · · ·Hn−2 � multZ(M2X)multZ(H1) · · ·multZ(Hn−2) > 4,

a contradiction.

The next logical step is to prove that Z cannot be a singular point on the vari-
ety X. To this end, we need two very special results on global log canonical thresh-
olds. A natural place for these results was in 1.7, because they are applications of
Theorem 1.7.6. However, since they have a very narrow domain of application, we
present them here without proofs (see [32]).

Proposition 3.3.5. Let τ : V → Pk be a double cover ramified over a smooth
hypersurface S ⊂ Pk of degree 2d such that 2 � d � k−1 and let BV be an effective
boundary on V such that BV ∼Q τ∗(λH) for some positive rational number λ < 1,
where H is a hyperplane. Then LCS(V,BV ) = ∅.

Proposition 3.3.6. Let BPn be an effective boundary on P
n that is Q-rationally

equivalent to λH for some rational number λ < 1 and some hyperplane H ⊂ Pn,
and let S be a smooth hypersurface in Pn of degree d such that 2(n − 1) � d � 2.
Then LCS(Pn, BPn +

1
2S) = ∅.

Everything is now ready to prove the following result.

Lemma 3.3.7. The subvariety Z is not a singular point of the variety X.

Proof. Suppose that Z ∈ SingX. Then O = π(Z) is a singular point of the hyper-
surface F ⊂ Pn. Two cases are possible, namely, the multiplicity multO(F ) can be
even or odd. We treat these cases separately. The proof uses Proposition 3.3.5 in
the first case and Proposition 3.3.6 in the second case.
We note that the variety X is a hypersurface of the form

y2 = f2n(x0, . . . , xn) ⊂ P(1n+1, n) ∼= Proj(C[x0, . . . , xn, y])

where f2n is a homogeneous polynomial of degree 2n.
Suppose that multO(F ) = 2m � 2 for some m ∈ N. Then m � n − 2, and there

is a weighted blow-up

β : U → P(1n+1, n)

of the point Z with weights (m, 1n) and such that the proper transform V ⊂ U of
the variety X is non-singular in a neighbourhood of the β-exceptional divisor E.
The birational morphism β induces a birational morphism α : V → X with an
exceptional divisor G ⊂ V .
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We note that E|V = G and G is a smooth hypersurface in E ∼= P(1n, m) which
can be given by the equation

z2 = g2m(t1, . . . , tn) ⊂ P(1n, m) ∼= Proj(C[t1, . . . , tn, z]),

where g2m is a homogeneous polynomial of degree 2m.
Let multZ(MX) be a positive rational number such that

MV ∼Q α∗(MX)−multZ(MX)G,

where MV = α
−1(MX). Then

KV +MV ∼Q α∗(KX +MX) + (n− 1−m−multZ(MX))G.

However, the linear system |α∗(−KX) − G| is free and determines a morphism ψ
such that the diagram

V

α

		

ψ �� Pn−1

X π
�� Pn

χ

���������

is commutative, where χ is the projection from the point O. Let C be a general
fibre of ψ. Then

0 �MV · C = 2(1−multZ(MX)) + α∗(KX +MX) ·C < 2(1−multZ(MX)),

because the divisor −(KX +MX) is ample, and hence multZ(MX) < 1.
Ifm = 1, then the inequality multZ(MX) < 1 contradicts Theorem 1.7.20. Thus,

m > 1. But it follows from the inequality n− 1−m > multZ(MX) that there is a
proper subvariety ∆ ⊂ G that is a centre of canonical singularities of the log pair
(V,MV ). Therefore, the set LCS(G,MV |G) is not empty by Theorem 1.7.14, which
contradicts Proposition 3.3.5.
Thus, multO(F ) = 2k + 1 � 3 for k ∈ N such that k � n− 3.
Let α : W → Pn be a blow-up of the point O, let Λ be an exceptional divisor

of the birational morphism α, and let F̃ ⊂ W be the proper transform of the

hypersurface F . Then F̃ is smooth in a neighbourhood of Λ. Let S = F̃ ∩Λ. Then
the variety S is a smooth hypersurface in Λ ∼= Pn−1 of degree 2k + 1.
Let π̃ : X̃ →W be a double cover ramified at the effective divisor

F̃ ∪ Λ ∼ 2(α∗(OPn(n)) − kΛ),

which is smooth outside S. Let S̃ = π̃−1(S). Then the varietyW is smooth outside

the subvariety S̃ ⊂ W , and the singularities of W along S̃ are locally isomorphic
to A1 × Cn−2, that is, the variety W has a two-dimensional ordinary double point
along the subvariety S̃.
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Let Ξ = π̃−1(Λ). Then Ξ ∼= Pn−1, and there is a birational morphism ξ : X̃ → X
contracting the divisor Ξ to the point Z in such a way that the diagram

V

ξ

		

π̃ �� W
α

�����������

X π
�� Pn

is commutative. One can readily see that ξ is the restriction to X of the weighted
blow-up, with weights (2k+1, 2n), of the projective space P(1n+1, n) at the smooth
point Z.
Let multZ(MX) be a positive rational number such that

MX̃ ∼Q ξ
∗(MX) −multZ(MX)Ξ,

where MX̃ = ξ
−1(MX). Then

KX̃ +MX̃ ∼Q ξ
∗(KX +MX) + (2(n− 1− k)−multZ(MX))Ξ,

but the linear system |ξ∗(−KX) − 2Ξ| is free and determines a morphism ω such
that the diagram

V

ξ

		

ω �� Pn−1

X π
�� Pn

χ

���������

is commutative, where χ is the projection from the point O.
Intersecting the boundary MX̃ with a sufficiently general fibre of ω, we imme-

diately obtain the inequality multZ(MX) < 2, which implies that 2(n − 1 − k) >
multZ(MX), and hence there is a centre of canonical singularities

∇ ∈ CS(X̃,MX̃ − (2(n− 1− k)−multZ(MX))Ξ)

such that ∇ ⊂ G. Thus,

∇ ∈ LCS(X̃,MX̃ − (2(n− 1− k)−multZ(MX))Ξ + 2Ξ),

because 2Ξ is a Cartier divisor. However,

LCS(X̃,MX̃ − (2(n− 2− k)−multZ(MX))Ξ) ⊂ LCS(X̃,MX̃ +Ξ),

because 2k + 1 � 2(n− 2). This implies that

LCS(Ξ,DiffΞ(MX̃)) = LCS(Ξ,MX̃ |Ξ +DiffΞ(0)) �= ∅
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by Theorem 7.5 in [111]. In this case we have DiffΞ(0) =
1
2 S̃ (see [113]) and

MX̃ |Ξ ∼Q −multZ(MX)Ξ|Ξ ∼Q
multZ(MX)

2
H,

where H is a hyperplane section of the hypersurface Ξ ∼= Pn−1. Therefore, we
have proved that the set LCS(Ξ,MX̃ |Ξ+

1
2 S̃) is empty, which contradicts Proposi-

tion 3.3.6.

Thus, we have proved that dim(Z) > 0. Moreover, it follows immediately from
the proof of Lemma 3.3.4 that codim(Z ⊂ X) = 2. Let H1, . . . , Hn−2 be general
divisors in the linear system |π∗(OPn(1))|. Then

2 > M2X ·H1 · . . . ·Hn−2 � mult2Z(MX)Z ·H1 · . . . ·Hn−2 � Z ·H1 · . . . ·Hn−2,

which implies that π(Z) is a linear subspace of Pn of dimension n − 2, and the
induced map π|Z : Z → π(Z) is an isomorphism.
Let V = ∩n−3i=1 Hi, C = Z ∩ V , MV = MX |V , τ = π|V , and S = F ∩ π(V ). In

this case,

• the threefold V is smooth;
• the curve C ⊂ V is irreducible;
• the boundary MV is effective and movable;
• the surface S ⊂ P3 is smooth and of degree 2n;
• the morphism τ : V → P3 is a double cover;
• the morphism τ is ramified over the surface S;
• the curve τ(C) is a line in P3;
• the morphism τ |C is am isomorphism;
• the divisor τ∗(OP3(1)) −MV is ample;
• the equality multC(MV ) = multZ(MX) holds.

Suppose that τ(C) �⊂ S. Then there is an irreducible curve C̃ ⊂ V which differs
from the curve C and is such that τ(C) = τ(C̃). Let us take a general divisor
D ∈ |τ∗(OP3(1))| passing through the curve C. Then D is a smooth surface and C
and C̃ are smooth rational curves on D. Let MD =MV |D. Then

MD = multC(MV )C +multC̃(MV )C̃ +∆,

where ∆ is a movable boundary on D. On the other hand, we have the equivalence
MV ∼Q rD for some rational number r < 1. Hence, we have the equivalence

(r −multC̃(MV ))C̃ ∼Q (multC(MV ) − r)C +∆,

and therefore multC̃(MV ) � r, because C̃2 < 0. Suppose now that H is a suffi-
ciently general divisor in the linear system |τ∗(OP3(1))|. Then

2r2 =M2V ·H � mult2C(MV ) + mult2C̃(MV ) � 1 + r
2,

which is impossible by virtue of the inequality r < 1. We have thus proved that
τ(C) ⊂ S.
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Let O be a sufficiently general point on the line τ(C) and let T be a hyperplane
in P3 tangent to S at the point O. Consider a sufficiently general line L ⊂ T passing
through O. Let L̂ = τ−1(L). By construction, the curve L̂ is irreducible and is

singular at the point Ô = τ−1(O). This implies that L̂ ⊂ Supp(MV ), because
otherwise we would have the incompatible inequalities

2 > L̂ ·MV � multÔ(L̂)multC(MV ) � 2.

On the other hand, L̂ sweeps out a divisor on V as the line L varies in the hyper-

plane T , which contradicts the condition L̂ ⊂ Supp(MV ) and the fact that the
boundary MV is movable. This contradiction proves Theorem 3.3.1.

§ 3.4. Triple spaces
Let π : X → P2n be a cyclic triple cover (see [131]) ramified over an irreducible

and reduced hypersurface S ⊂ P2n of degree 3n such that S has isolated ordinary
double points and n � 2. In this case X is a Fano variety with terminal Q-factorial
singularities, and the groups Pic(X) and Cl(X) are generated by the anticanonical
divisor −KX ∼ π∗(OP2n(1)). The following assertion holds (see [29]).
Theorem 3.4.1. The variety X is birationally superrigid.

Let ξ : V → Pk be a cyclic triple cover ramified along a hypersurface of degree 3n
all of whose possible singularities are isolated ordinary double or triple points, and
let k � 3. In this case the variety V is not birationally rigid for k < 2n, because V
contains pencils of varieties of Kodaira dimension −∞. On the other hand, V has
non-negative Kodaira dimension if k > 2n. In particular, Theorem 3.4.1 describes
all birationally superrigid smooth cyclic triple spaces.

Example 3.4.2. Let X be a hypersurface in P(12n+1, n) of degree 3n,

y3 =
2n∑
i=0

x3ni ⊂ P(12n+1, n) ∼= Proj(C[x0, . . . , x2n, y]),

and let n � 2. Then the natural projection π : X → P2n ∼= Proj(C[x0, . . . , x2n]) is a
cyclic triple cover ramified along a smooth hypersurface

∑2n
i=0 x

3n
i = 0. Moreover,

the variety X is birationally superrigid by Theorem 3.4.1, and

Bir(X) = Aut(X) ∼= Z3 ⊕ Aut(
2n∑
i=0

x3ni = 0)
∼= Z3 ⊕ (Z2n3n � S2n+1),

where S2n+1 stands for the corresponding symmetric group (see [165], [117]).

Let us prove Theorem 3.4.1. Suppose that X is not birationally superrigid. We
claim that this assumption leads to a contradiction. There is a movable log pair
(X,MX) such that the boundaryMX is effective, the set CS(X,MX) is non-empty,
and the divisor −(KX + MX) is ample (see Theorem 1.4.1). In particular, the
equivalence MX ∼Q −rKX holds for some rational number 1 > r � 0. Let Z be
an element of the set CS(X,MX) of greatest dimension.
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Lemma 3.4.3. The variety Z is not a smooth point on X.

Proof. Suppose that Z is a smooth point of X. Then multZ(M
2
X) > 4 by

Theorem 1.7.18. Consider general divisors H1, . . . , H2n−2 in the linear system
|π∗(OP2n(1))| that pass through the smooth point Z. Then 3>M2X ·H1 · · ·H2n−2>4,
a contradiction.

Lemma 3.4.4. The variety Z is not a singular point on X.

Proof. Suppose that Z ⊂ X is a singular point on X. Then π(Z) is an ordinary
double point of the hypersurface S ⊂ P2n. Let α : V → X be a blow-up of the
point Z and let G ⊂ V be an α-exceptional divisor. Then V is smooth and G is a
quadric of dimension 2n − 1 having one singular point O ∈ G, that is, the variety
G ⊂ V is a quadric cone with the vertex O ∈ V .
Let MV = α

−1(MX). Then we have the relation

MV ∼Q α∗(MX)−multZ(MX)G,

where multZ(MX) > 1 is a rational number (see Proposition 1.7.22).
Let H = α∗(−KX) and consider the linear system |H − G|. By construction,

the map φ|H−G| coincides with the map γ ◦ π ◦ α, where γ : P2n ��� P2n−1 is the
projection from the point π(Z). The linear system |H − G| is not free: namely,
its base locus is exactly the vertex O of the quadric cone G, the blow-up of the
point O resolves the indeterminacies of the cone, and the proper transform of G is
contracted to a smooth quadric of dimension 2n− 2.
Let C be a general curve contained in the fibres of the map φ|H−G|. Then C is

irreducible and reduced, and the curve π ◦ α(C) is a line passing through the point
π(Z). Moreover, we have

C ·G = 2, C · (H −G) = 1,

and the point O belongs to the curve C. Intersecting the boundary MV with the
curve C, we obtain the inequalities

1 > 3− 2multZ(MX) > MV · C � multO(MV ),

which implies that multZ(MX) � 3
2
and multO(MV ) < 1. The equivalence

KV +MV ∼Q α∗(KX +MX) + (2n− 2−multZ(MX))G

and the inequality multZ(MX) � 3
2 imply the existence of a subvariety Y ⊂ G such

that

Y ∈ CS(V,MV − (2n− 2−multZ(MX))G)

and, in particular, dim(Y ) � 2n− 2, multY (MV ) > 1, and Y ∈ CS(V,MV ).
Let dim(Y ) = 2n− 2. If O ∈ Y , then

1 > multO(MV ) � multY (MV ) > 1,
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which shows that O �∈ Y . Let L be a general ruling of the cone G. Then

3

2
� multZ(MX) =MV · L � multY (MV )L · Y,

where L · Y is treated as the intersection on G. Hence, L · Y = 1, and the variety
Y is a hyperplane section of the quadric G ⊂ P2n. We note that

Y ∈ LCS(V,MV − (2n− 3−multZ(MX))G),

and hence at a general point of the subvariety Y ⊂ V we can apply Theorem 1.7.17
to the log pair (V,MV − (2n− 3−multZ(MX))G). This gives the inequality

multY (M
2
V ) � 4(2n− 2−multZ(MX)) � 2,

because multZ(MX) � 3
2
and n � 2. Let H1, . . . , H2n−2 be general divisors in the

linear system |H −G|. Then

1 > 3− 2mult2Z(MX) > H1 ·H2 · · ·H2n−2 ·M2V � multY (M2V )(H −G)2n−2 · Y � 2,

a contradiction. Thus, we have proved that dim(Y ) < 2n− 2.
The inequality multO(MV ) < 1 implies that O /∈ Y . It follows from Theo-

rem 1.7.18 that multP (M
2
V ) > 4 for any general point P ∈ Z. Let us now consider

the linear subsystem D ⊂ |H −G| formed by the divisors containing the point P .
In this case the base locus of the linear system D consists of the following curves:

• a ruling LP of the quadric cone G passing through P ,
• a (possibly reducible) curve CP such that its image π ◦ α(CP ) is a line
passing through the point π(Z).

Consider 2n − 2 general divisors D1, . . . , D2n−2 in the linear system D and an
effective one-dimensional cycle T = H1 · · ·H2n−3 ·M2V . Then multP (T ) > 4. How-
ever, the divisor H2n−2 can contain components of the cycle T if the curve LP or
one of the components of CP is contained in Supp(T ).
Suppose that the curve CP is irreducible. Let

T = µLP + λCP +Γ,

where µ and λ are non-negative rational numbers and Γ is an effective one-dimen-
sional cycle whose support does not contain the curves LP and CP . Then

multP (Γ) > 4−multP (LP )µ −multP (CP )λ = 4− µ−multP (CP )λ � 4− µ− 3λ

because multP (CP ) � 3, and we have the inequalities

3− 2mult2Z(MX) − µ > Γ ·H2n−2 � multP (Γ) > 4− µ− 3λ

because CP ·H2n−2 = 0, and hence λ > 1. Intersecting the cycle T with a general
divisor in the linear system |α∗(−KX)|, we immediately arrive at a contradiction.
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Suppose now that the curve CP is reducible. Then

CP = C1 + C2 + C3,

where Ci is a non-singular rational curve such that π◦α(CP) is a line, the restriction
π ◦ α|Ci is an isomorphism, −KX · α(Ci) = 1, and Ci �= Cj for i �= j. We write

T = µLP +
3∑
i=1

λiCi + Γ,

where µ and λi are non-negative rational numbers and Γ is an effective one-
dimensional cycle whose support does not contain the curves LP and Ci. Inter-
secting the cycle Γ with the divisor H2n−2, we immediately obtain the inequality∑3
i=1 λi > 1. Intersecting the cycle T with a sufficiently general divisor in the

linear system |α∗(−KX)|, we arrive at a contradiction.

Thus, we have proved that dim(Z) > 0. Moreover, it follows immediately from
the proof of Lemma 3.4.3 that the inequality codim(Z ⊂ X) > 2 is impossible. We
thus have codim(Z ⊂ X) = 2. On the other hand, it follows from the equality
K2nX = 3 and from the inequality multZ(MX) � 1 that K2n−2X · Z � 2.

Lemma 3.4.5. The equality n = 2 holds, that is, dim(X) = 4.

Proof. Suppose that n > 2. We take a sufficiently general divisor V in the free
linear system | −KX |. In this case V is a smooth hypersurface of degree 3n in the
weighted projective space P(12n, n) of dimension 2n− 1 � 5. Hence, the homology
group H4n−6(V,C) is one-dimensional (see [78], Theorem 7.2, and [54], § 4).
We show that the subvariety Y = Z∩V ⊂ V cannot generate the homology group

H4n−6(V,C). Let Y ≡ λD2 in H4n−6(V,C) for some λ ∈ C, where D = −KX |V .
We note that π(Z) �⊂ S by the Lefschetz theorem. Thus, the image π(Z) is either
a linear subspace of dimension 2n− 2 or a quadric of dimension 2n− 2. Moreover,
the subvariety π−1(π(Z)) splits into three irreducible subvarieties conjugate by the
action of the group Z3 on the variety X (this action transposes the fibres of π), and
therefore λ = α

3 , where α = K
2n−2
X · Z. We have the equality

α = Y ·D2n−3 = λ2−nD · Y n−2,

which yields D · Y n−2 = αn−1

3 �∈ Z, a contradiction.

We can now arrive at the desired contradiction in just the same way as in the
proof of Theorem 3.3.1. Therefore, Theorem 3.4.1 is proved. It is natural to try
to generalize the assertion of Theorem 3.4.1 as follows: remove the assumption
that the triple cover is cyclic, assume that the hypersurface S has ordinary isolated
singularities of multiplicity at most 3n − 3 (see [29]), and admit degrees of the
cover π that do not exceed 8.
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§ 3.5. Cyclic covers
Let ψ : X → V ⊂ Pn be a cyclic cover of degree d � 2 ramified along a smooth

divisor R ⊂ V such that the variety V is a hypersurface of degree m. Let n � 5.
In this case the group Pic(V ) is generated by the divisor ψ∗(OPn(1)|V ), and

−KX ∼ ψ∗(OPn(m− n− 1 + (d− 1)k)|V ),

where k is a positive integer such that R ∼ OPn(dk)|V .
Remark 3.5.1. We are interested in finding conditions for X to be a birationally
superrigid Fano variety. Hence, we can assume that m+ (d− 1)k = n.
The birational superrigidity of X follows from Theorem 3.3.1 ifm = 1 and d = 2.

The birational superrigidity of X was proved in Theorem 2.3.5 for m = 2 and
d = 2. Moreover, the following result was proved in [151] and [158] by using the
technique of hypertangent linear systems.

Theorem 3.5.2. Suppose that X is sufficiently general and either d = 2 or n � 6.
Then X is birationally superrigid.

Let us show that Theorem 1.7.19 implies the following result (see [34]).

Theorem 3.5.3. Suppose that d = 2, n � 8, and either m = 3 or m = 4. Then X
is birationally superrigid.

Proof. Suppose that the variety X is not birationally superrigid. Then it follows
from Theorem 1.4.1 that there is a linear system M on X that has no fixed compo-
nents and is such that the singularities of the log pair (X, 1

r
M) are not canonical,

where r is a positive integer such that M ∼ −rKX . The set CS(X, µrM) con-
tains a subvariety Z ⊂ X for some rational number µ < 1. We can assume that
Z is a subvariety of the largest dimension having such a property. In particular,
multZ(S) > r for every divisor S inM, and we have dim(Z) � dim(X)−2 = n−3.
Suppose that Z is a point. Let S1 and S2 be sufficiently general divisors in M,

let f : U → X be a blow-up of the variety X at the point Z, and let E be an
exceptional divisor of the morphism f . Then it follows from Theorem 1.7.19 that
there is a linear subspace Π ⊂ E of codimension 2 such that multZ(S1 ·S2 ·D) > 8r2
for every divisor D ∈ | −KX | with the following properties: D contains the point
Z and is smooth at Z, the proper transform f−1(D) of D contains the subvariety
Π ⊂ U , and D contains no subvarieties of X of codimension 2 that are contained
in the base locus of the linear system M.
Let us consider a linear subsystem H ⊂ |OPn(1)|V | such that

H ∈ H ⇐⇒ Π ⊂ (ψ ◦ f)−1(H).

In this case there is a linear subspace Σ ⊂ Pn of dimension n− 3 such that all the
divisors in the linear system H are cut out on the hypersurface V by hyperplanes
in Pn that contain Σ. In particular, the base locus of the linear system H consists
of the intersection Σ∩ V ; however, the Lefschetz theorem implies that Σ �⊂ V , and
hence dim(Σ ∩ V ) = n− 4.
Let H be a general divisor in H and let D = ψ−1(H) ∈ |−KX |. In this case

D contains the point Z and is smooth at Z and the divisor f−1(D) contains the
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subvariety Π ⊂ U . Suppose that D contains a subvariety Γ ⊂ X of codimension 2
which is contained in the base locus of M. Then

dim(ψ(Γ)) = n− 3.

However, ψ(Γ) ⊂ Σ ∩ V and dim(Σ ∩ V ) = n − 4, a contradiction. Thus, we have
proved that the divisor D contains no subvarieties of X of codimension 2 that are
contained in the base locus of the linear system M. Let H1, H2, . . . , Ht be general
divisors in | −KX | passing through the point Z, where t = dim(X) − 3. Then

8r2 � 2mr2 = H1 · . . . ·Ht · S1 · S2 ·D � multZ(S1 · S2 ·D) > 8r2,

a contradiction. Hence, dim(Z) �= 0.
Suppose that dim(Z) � dim(X) − 5 and that H1, H2, . . . , Ht are general

hyperplane sections of the hypersurface V , where t = dim(Z) > 0. We write

V =
t⋂
i=1

Hi, X = ψ−1(V ), ψ = ψ|X : X → V

and M = M|X . Then V ⊂ Pn−t is a smooth hypersurface, the morphism ψ is a
double cover ramified along a smooth divisor R ∩ V , the linear system M has no
fixed components, and V contains no linear subspaces of Pn−t of dimension n−t−3
by the Lefschetz theorem, because n− t � 6. Let P be a point in Z ∩X. Then P is
a centre of canonical singularities of the log pair CS(X, 1rM). Moreover, the above
arguments lead to a contradiction of Theorem 1.7.19. Hence, dim(Z) � dim(X)−4.
Suppose that dim(Z) = dim(X)−2. Let S1 and S2 be general divisors inM and

let H1, H2, . . . , Hn−3 be general divisors in the linear system | −KX |. Then

2mr2 = H1 · . . . ·Hn−3 · S1 · S2 > r2(−KX)n−3 ·Z,

because multZ(M) > r. Therefore, (−KX)n−3 · Z < 2m, where

(−KX)n−3 ·Z =
{
deg(ψ(Z) ⊂ Pn) if ψ|Z is birational,
2 deg(ψ(Z) ⊂ Pn) otherwise,

and, by the Lefschetz theorem, the number deg(ψ(Z)) must be divisible by a power
ofm. Hence, the morphism ψ|Z is birational and deg(ψ(Z)) = m. This immediately
implies that either the scheme-theoretic intersection ψ(Z) ∩R is singular at every
point or ψ(Z) ⊂ R. Therefore, applying the Lefschetz theorem to the smooth
complete intersection R ⊂ Pn, we immediately arrive at a contradiction. This
proves the inequality dim(Z) � dim(X) − 4 � 3.
Let S be a general divisor in M, let Ŝ = ψ(S ∩R), and let Ẑ = ψ(Z ∩R). Then

Ŝ is a divisor on the complete intersection R ⊂ Pn. However, multẐ(Ŝ) > r and
Ŝ ∼ OPn(r)|R, which contradicts Proposition 1.3.12.
The arguments used in the proof of Theorem 3.5.3 imply the following result.

Theorem 3.5.4. Let d = 3, m = 2, and n � 8. Then X is birationally superrigid.
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