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Log canonical thresholds of smooth Fano threefolds

I. A. Chel’tsov and K.A. Shramov

Abstract. The complex singularity exponent is a local invariant of a holo-
morphic function determined by the integrability of fractional powers of
the function. The log canonical thresholds of effective Q-divisors on nor-
mal algebraic varieties are algebraic counterparts of complex singularity
exponents. For a Fano variety, these invariants have global analogues. In
the former case, it is the so-called α-invariant of Tian; in the latter case,
it is the global log canonical threshold of the Fano variety, which is the
infimum of log canonical thresholds of all effective Q-divisors numerically
equivalent to the anticanonical divisor. An appendix to this paper con-
tains a proof that the global log canonical threshold of a smooth Fano
variety coincides with its α-invariant of Tian. The purpose of the paper
is to compute the global log canonical thresholds of smooth Fano three-
folds (altogether, there are 105 deformation families of such threefolds).
The global log canonical thresholds are computed for every smooth three-
fold in 64 deformation families, and the global log canonical thresholds are
computed for a general threefold in 20 deformation families. Some bounds
for the global log canonical thresholds are computed for 14 deformation
families. Appendix A is due to J.-P. Demailly.
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1. Introduction

The multiplicity of a polynomial ϕ ∈ C[z1, z2, . . . , zn] at the origin O ∈ Cn is the
number

min
{
m ∈ Z>0

∣∣∣ ∂mϕ(z1, z2, . . . , zn)
∂m1z1 ∂m2z2 · · · ∂mnzn

(O) ̸= 0
}
∈ Z>0 ∪ {+∞}.

There is a similar but more subtle invariant c0(ϕ) ∈ Q ∪ {+∞} defined by the
formula

c0(ϕ) = sup{ε∈Q | the function |ϕ|−2ε is integrable in a neighbourhood of O∈Cn},

which is called the local singularity exponent of the polynomial ϕ at the point O.

Example 1.1. Let m1,m2, . . . ,mn be positive integers. Then

min
(

1,
n∑
i=1

1
mi

)
= c0

( n∑
i=1

zmi
i

)
> c0

( n∏
i=1

zmi
i

)
= min

(
1
m1

,
1
m2

, . . . ,
1
mn

)
.

Let Xbe a variety1 with at most log canonical singularities (see [1]), let Z ⊆ X
be a non-empty closed subvariety, and let D be an effective Q-Cartier Q-divisor on
the variety X. Then the number

lctZ(X,D) = sup{λ∈Q | the log pair (X,λD) is log canonical along Z}∈Q∪{+∞}

is called the log canonical threshold of the divisor D along Z. In follows from [1]
that

lctO
(
Cn, (ϕ = 0)

)
= c0(ϕ),

so lctZ(X,D) is a generalization of the quantity c0(ϕ). We have

lct(X,D) = inf{lctP (X,D) | P ∈ X}
= sup{λ ∈ Q | the log pair (X,λD) is log canonical},

where we have set lct(X,D) = lctX(X,D).
Let X be a Fano variety with at most log terminal singularities (see [2]).

Definition 1.2. The global log canonical threshold of the Fano variety X is the
quantity

lct(X) = inf{lct(X,D) | D is an effective Q-divisor on X
such that D ∼Q −KX} > 0.

The number lct(X) is an algebraic counterpart of the so-called α-invariant of
a variety X introduced in [3]. It can easily be seen that

lct(X) = sup{ε ∈ Q | the log pair (X,n−1εD) is log canonical for
each divisor D ∈ |−nKX | for all n ∈ Z>0}.

1All varieties are assumed to be projective and normal and are defined over the field C.
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The group Pic(X) is torsion free, because X is rationally connected (see [4]).
Hence,

lct(X) = sup{λ ∈ Q | the log pair (X,λD) is log canonical
for every effective Q-divisor D ≡ −KX}.

Example 1.3. Let X be a smooth hypersurface in Pn of degree m < n. Then
lct(X) = 1/(n+ 1−m) (see [5]). In particular, lct(Pn) = 1/(n+ 1).

Example 1.4. Let X be a rational homogeneous space such that Pic(X) = Z[D],
where D is an ample divisor. Then lct(X) = 1/r (see [6]), where −KX ∼ rD and
r ∈ Z>0.

In general the number lct(X) depends on small deformations of the variety X.

Example 1.5. Let X be a smooth hypersurface in P(1, 1, 1, 1, 3) of degree 6. Then

lct(X) ∈
{

5
6
,
43
50
,
13
15
,
33
38
,
7
8
,
8
9
,

9
10
,
11
12
,
13
14
,
15
16
,
17
18
,
19
20
,
21
22
,
29
30
, 1

}
(see [7] and [8]). All these value of lct(X) are attained.

Example 1.6. Let X be a smooth hypersurface in Pn of degree n > 2. Then

1 > lct(X) > 1− 1/n

(see [5]). It follows from [7] and [8] that

lct(X) >


1 if n > 6,
22/25 if n = 5,
16/21 if n = 4,
3/4 if n = 3,

whenever X is general. On the other hand, lct(X) = 1− 1/n if X contains a cone
of dimension n− 2.

Example 1.7. Let X be a quasi-smooth hypersurface in P(1, a1, . . . , a4) of degree∑4
i=1 ai such that X has at most terminal singularities; suppose a1 6 a2 6 a3 6 a4.

Then −KX ∼ OP(1,a1,...,a4)(1)|X , and there are 95 possibilities for the quadruple
(a1, a2, a3, a4) (see [9], [10]). If X is general, then

1 > lct(X) >



16/21 if a1 = a2 = a3 = a4 = 1,
7/9 if (a1, a2, a3, a4) = (1, 1, 1, 2),
4/5 if (a1, a2, a3, a4) = (1, 1, 2, 2),
6/7 if (a1, a2, a3, a4) = (1, 1, 2, 3),
1 in all other cases

(see [11], [8], [12]). The global log canonical threshold of the hypersurface

w2 = t3 + z9 + y18 + x18 ⊂ P(1, 1, 2, 6, 9) ∼= Proj(C[x, y, z, t, w])

is equal to 17/18 (see [11]), where wt(x) = wt(y) = 1, wt(z) = 2, wt(t) = 6,
wt(w) = 9.
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Example 1.8. It follows from Lemma 5.1 that lct(P(a0, a1, . . . , an)) = a0

/∑n
i=0 ai,

provided that P(a0, a1, . . . , an) is well formed (see [9]) and a0 6 a1 6 · · · 6 an.

Example 1.9. Let X be a smooth hypersurface in P(1n+1, d) of degree 2d. Then
lct(X) = 1/(n+ 1− d) for 2 6 d 6 n− 1 (see [13], Proposition 20).

Example 1.10. Let X be a smooth del Pezzo surface. It follows from [14] that

lct(X) =



1 if K2
X = 1 and |−KX | contains no cuspidal curves,

5/6 if K2
X = 1 and |−KX | contains a cuspidal curve,

5/6 if K2
X = 2 and |−KX | contains no tacnodal curves,

3/4 if K2
X = 2 and |−KX | contains a tacnodal curve,

3/4 if X is a cubic in P3 without
Eckardt points,

2/3 if X either is a qubic in P3 with an Eckardt point,
or K2

X = 4,
1/2 if X ∼= P1 × P1 or K2

X ∈ {5, 6},
1/3 in all other cases.

It would be interesting to compute the global log canonical thresholds of del
Pezzo surfaces with at most canonical singularities and with Picard rank 1 (see [15]).

Example 1.11. Let X be a singular cubic surface in P3 with at most canonical
singularities. The singularities of X are classified in [16]. It follows from [17] that

lct(X) =



2/3 if Sing(X) = {A1},
1/3 if Sing(X) ⊇ {A4} or Sing(X) = {D4}

or Sing(X) ⊇ {A2,A2},
1/4 if Sing(X) ⊇ {A5} or Sing(X) = {D5},
1/6 if Sing(X) = {E6},
1/2 in all other cases.

It is not yet known whether lct(X) is rational2 (cf. Question 1 in [18]).

Conjecture 1.12. There is an effective Q-divisor D ∼Q −KX on the variety X
such that lct(X) = lct(X,D) ∈ Q.

Let G ⊂ Aut(X) be an arbitrary subgroup.

Definition 1.13. The global G-invariant log canonical threshold of a Fano vari-
ety X is a number (or +∞) defined by the following equality:

lct(X,G) = sup{λ ∈ Q | the log pair (X,n−1εD) has log canonical singularities
for every G-invariant linear subsystem D ⊂ |−nKX |, n ∈ Z>0}.

2It is not even known whether lct(X) is rational if X is a del Pezzo surface with quotient
singularities.
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Remark 1.14. In Definitions 1.2 and 1.13 we only need to assume that |−nKX | ≠ ∅
for some n ≫ 0. This property is shared, for instance, by toric varieties and
weak Fano varieties. However, all the known applications of the numbers lct(X)
and lct(X,G) are connected with the case when −KX is ample and G is compact.

It is shown in Appendix A that when X is smooth and G is compact, the equality
lct(X,G) = αG(X) holds, where αG(X) is Tian’s α-invariant introduced in [3]. We
note that

lct(X,G) = sup{λ ∈ Q | the log pair (X,λD) has log canonical singularities
for every G-invariant effective Q-divisor D ∼Q −KX}

in the case when |G| < +∞. It is clear that 0 6 lct(X) 6 lct(X,G) ∈ R ∪ {+∞}.

Example 1.15. Let X be a smooth del Pezzo surface such that K2
X = 5. Then

we have an isomorphism Aut(X) ∼= S5 (see [19]) and lct(X,S5) = lct(X,A5) = 2
(see [14]).

Example 1.16. Let X be the cubic surface in P3 given by the equation

x3 + y3 + z3 + t3 = 0 ⊂ P3 ∼= Proj(C[x, y, z, t]),

and let G = Aut(X) ∼= Z3
3 o S4. Then lct(X,G) = 4 (see [14]).

The following result was proved in [3], [20], [21] (see Appendix A).

Theorem 1.17. Let X be a Fano variety with at most quotient singularities and
assume that G is compact. Assume that the inequality

lct(X,G) >
dimX

dimX + 1

holds. Then X admits an orbifold Kähler–Einstein metric.

Theorem 1.17 has various applications (see [20] and also Examples 1.6 and 1.7).

Example 1.18. Let X be a Fano variety equal to a blow-up of P3 along a disjoint
union of two lines. Let G be a maximal compact subgroup of Aut(X). Then
lct(X,G) > 1 by [20]. On the other hand, lct(X) = 1/3 by Theorem 1.46.

If a variety with at most quotient singularities admits an orbifold Kähler–Einstein
metric, then its canonical divisor is numerically trivial, or its canonical divisor
is ample, or its anticanonical divisor is ample (a Fano variety). Every variety
with quotient singularities that has a numerically trivial or ample canonical divisor
admits a Kähler–Einstein metric (see [22]–[24]).

There are several known obstructions for a Fano variety X to carry a Kähler–
Einstein metric. For example, if the variety X is smooth, then it does not admit
a Kähler–Einstein metric if even one of the following conditions is fulfilled:

• the group Aut(X) is not reductive (see [25]);
• the tangent bundle of X is not polystable with respect to −KX (see [26]);
• the Futaki character of holomorphic vector fields on X does not identically

vanish (see [27]).
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Example 1.19. The following varieties have no Kähler–Einstein metric: a blow-up
of P2 at one or two distinct points (see [25]); the smooth Fano threefold
P
(
OP2 ⊕ OP2(1)

)
(see [28]); the smooth Fano fourfold P

(
α∗(OP1(1))⊕ β∗(OP2(1))

)
(see [27]), where α : P1 × P2 → P1 and β : P1 × P2 → P2 are projections.

The problem of the existence of Kähler–Einstein metrics on smooth toric Fano
varieties is completely solved. Namely, the following result holds (see [29]–[32]).

Theorem 1.20. If X is a smooth toric Fano variety, then the following conditions
are equivalent :

(a) X admits a Kähler–Einstein metric;
(b) the Futaki character of holomorphic vector fields on X vanishes ;
(c) the barycentre of the reflexive polytope of X is at the origin.

It should be pointed out that Theorem 1.17 gives only a sufficient condition for
the existence of a Kähler–Einstein metric on a Fano variety X.

Example 1.21. Let X be a general cubic surface in P3 with one Eckardt point
(see Definition 3.1). Then lct(X,Aut(X)) = 2/3 (see [14]), while Aut(X) ∼= Z2

(see [19]). However, every smooth del Pezzo surface with reductive automorphism
group admits a Kähler–Einstein metric (see [33]).

Example 1.22. Let X be a general hypersurface in P(15, 3) of degree 6. Then
Aut(X) ∼= Z2 (see [34]) and lct(X,Aut(X)) = 1/2 (see Example 1.9), but X admits
a Kähler–Einstein metric (see [35]).

The numbers lct(X) and lct(X,G) play an important role in birational geometry.

Example 1.23. Suppose that there exists a commutative diagram

V

π

��

ρ //______ V

π̄
��

Z Z ,

in which V and V are varieties with at most terminal and Q-factorial singularities,
Z is a smooth curve, π and π̄ are flat morphisms, and ρ is a birational map that
induces an isomorphism V \ X ∼= V \ X, where X and X are scheme fibres over
a point O ∈ Z of π and π̄, respectively. Suppose that the fibres X and X are
irreducible and reduced, the divisors −KV and −KV are π-ample and π̄-ample,
respectively, the varieties X and X have at most log terminal singularities, and ρ
is not an isomorphism. Then it follows from [36] and [17] that

lct(X) + lct(X ) 6 1, (1.1)

where X and X are Fano varieties by the adjunction formula.

In general the inequality (1.1) is sharp.

Example 1.24. Let π : V → Z be a surjective flat morphism from a smooth three-
fold V to a smooth curve Z such that the divisor −KV is π-ample, letX be a scheme
fibre of the morphism π over a point O ∈ Z such that X is a smooth cubic surface
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in P3 containing lines L1, L2, and L3 intersecting at one point P ∈ V . Then it
follows from [37] that there exists a commutative diagram

U
α

}}{{
{{

{{
{

ψ //______ U
β

""E
EE

EE
EE

V

π ""D
DD

DD
DD

ρ //_____________ V

π̄||yy
yy

yy
y

Z Z

such that α is a blow-up of P , the map ψ is an antiflip in the proper transforms of
the curves L1, L2, L3, and β is a contraction of the proper transform of the fibre X.
Then the birational map ρ is not an isomorphism, the threefold V has terminal
and Q-factorial singularities, the divisor −KV is a Cartier π̄-ample divisor, the
map ρ induces an isomorphism V \X ∼= V \X, where X is a scheme fibre of π̄ over
the point O. In this case X is a cubic surface with one singular point of type D4,
and therefore lct(X) = 2/3 and lct(X ) = 1/3 (see Examples 1.10 and 1.11).

Global log canonical thresholds can be used to prove that some higher-
dimensional Fano varieties are non-rational.

Definition 1.25. A Fano variety X is said to be birationally superrigid if the
following conditions hold:

(i) rk Pic(X) = 1;
(ii) X has terminal Q-factorial singularities;
(iii) there is no rational dominant map ρ : X 99K Y with rationally connected

fibres such that 0 ̸= dimY < dimX;
(iv) there is no birational map ρ : X 99K Y onto a variety Y with terminal

Q-factorial singularities such that rk Pic(Y ) = 1;
(v) the groups Bir(X) and Aut(X) coincide.

The following result is known as the Noether–Fano inequality (see [38]).

Theorem 1.26. A variety X is birationally superrigid if and only if rk Pic(X) = 1,
X has terminal Q-factorial singularities, and for every linear system M on X
without fixed components the log pair (X,M ) has canonical singularities, where
KX + λM ≡ 0.

Proof. Because one part of the required result is well known (see [38]), we prove
only the other part. Suppose that X is birationally superrigid, but there is a linear
system M on X such that M has no fixed components but the singularities of the
log pair (X,λM ) are not canonical, where KX + λM ∼Q 0.

Let π : V → X be a birational morphism such that the variety V is smooth and
the proper transform of M on the variety V has no base points. Let B be the
proper transform of the linear system M on the variety V . Then

KV + λB ∼Q π∗(KX + λM ) +
r∑
i=1

aiEi ∼Q

r∑
i=1

aiEi,

where Ei is an exceptional divisor of π and ai ∈ Q.
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It follows from [39] that there is a commutative diagram

V
ρ

}}{
{

{
{

π

!!D
DD

DD
DD

U ϕ
// X

such that ρ is a birational map, the morphism ϕ is birational, the divisor

KU + λρ(B) ∼Q ϕ∗(KX + λM ) +
r∑
i=1

aiρ(Ei) ∼Q

r∑
i=1

aiρ(Ei)

is ϕ-nef, the variety U is Q-factorial, and the log pair, (U, λρ(B)) has terminal
singularities.

Note that ϕ is not an isomorphism: it follows from [40], § 1.1 that

ai > 0 =⇒ dim
(
ρ(Ei)

)
6 dimX − 2,

and because the singularities of (X,λM ) are not canonical by assumption, it follows
from the construction of the map ρ that there exists k ∈ {1, . . . , r} such that ak < 0
and the subvariety ρ(Ek) is a divisor on U .

We see that the divisor KU + λρ(B) is not pseudo-effective. Then it follows
from [39] that there is a diagram

U

ϕ

��

ψ //______ Y

τ
��

X Z

such that ψ is a birational map, the morphism τ is a Mori fibred space (see [41]),
and the divisor −

(
KY + λ(ψ ◦ ρ)(B)

)
is τ -ample.

The variety Y has terminal Q-factorial singularities and rk Pic(Y/Z) = 1. Then
the map ψ ◦ ρ ◦ π−1 is not an isomorphism, because KX + λM ∼Q 0, but a general
fibre of the morphism τ is rationally connected (see [4]), which contradicts the
assumption that X is birationally superrigid. The proof is complete.

Birationally superrigid Fano varieties are non-rational (see [38]). In particular,
dim(X) ̸= 2 if the variety X is birationally superrigid (cf. [42]).

Example 1.27. A general hypersurface in Pn of degree n > 4 or in P(1n+1, n) of
degree 2n > 6 is birationally superrigid (see [43], [7]).

The following result is proved in [7].

Theorem 1.28. Let X1, . . . , Xr be birationally superrigid Fano varieties such that
lct(Xi) > 1, i = 1, . . . , r. Then

(a) the variety X1 × · · · ×Xr is non-rational and

Bir(X1 × · · · ×Xr) = Aut(X1 × · · · ×Xr),
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(b) for every rational dominant map ρ : X1× · · · ×Xr 99K Y whose general fibre
is rationally connected there is a commutative diagram

X1 × · · · ×Xr

π

��

ρ

++WWWWWWWWWWWWW

Xi1 × · · · ×Xik ξ
//____________ Y

for some subset {i1, . . . , ik} ⊆ {1, . . . , r}, where ξ is a birational map and π is
the projection.

Examples 1.6 and 1.27 show that varieties satisfying all the hypotheses of The-
orem 1.28 exist. We can construct explicit examples of them.

Example 1.29. Let X be the hypersurface given by

w2 = x6 + y6 + z6 + t6 + x2y2zt ⊂ P(1, 1, 1, 1, 3) ∼= Proj(C[x, y, z, t, w]),

where wt(x) = wt(y) = wt(z) = wt(t) = 1 and wt(w) = 3. Then X is smooth and
birationally superrigid (see [44]); it follows from [8] that lct(X) = 1.

Suppose in addition that the subgroup G ⊂ Aut(X) is finite.

Definition 1.30. A Fano variety X is G-birationally superrigid if
• the G-invariant subgroup of the group Cl(X) is isomorphic to Z;
• X has terminal singularities;
• there is no dominant G-equivariant rational map ρ : X 99K Y with rationally

connected fibres such that 0 ̸= dimY < dimX;
• there is no G-equivariant non-biregular birational map ρ : X 99K Y onto

a variety Y with terminal singularities such that the G-invariant subgroup
of the group Cl(Y ) is isomorphic to Z.

Arguing as in the proof of Theorem 1.26, we obtain the following result.

Theorem 1.31. The variety X is G-birationally superrigid if and only if the
G-invariant subgroup of the group Cl(X) is isomorphic to Z, X has terminal
singularities, and for every G-invariant linear system M on X without fixed
components the log pair (X,λM ) is canonical, where KX + λM ∼Q 0.

The proof of Theorem 1.28 implies the following result (see [14]).

Theorem 1.32. Let Xi be a Fano variety and let Gi ⊂ Aut(Xi) be a finite subgroup
such that Xi is Gi-birationally superrigid and the inequality lct(Xi, Gi) > 1 holds
for i = 1, . . . , r. Then

(a) no G1 × · · · ×Gr-equivariant birational map ρ : X1 × · · · ×Xr 99K Pn exists ;
(b) every G1 × · · · ×Gr-equivariant birational automorphism of X1 × · · · ×Xr

is biregular;
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(c) a G1 × · · · ×Gr-equivariant rational dominant map ρ : X1 × · · · ×Xr 99K Y
whose general fibre is rationally connected has a commutative diagram

X1 × · · · ×Xr

π

��

ρ

++WWWWWWWWWWWWW

Xi1 × · · · ×Xik ξ
//____________ Y ,

where ξ is a birational map, π is the natural projection, and {i1, . . . , ik}⊆{1, . . . , r}.

Varieties satisfying all hypotheses of Theorem 1.32 do exist (see Example 1.16).

Example 1.33. The simple group A6 is a group of automorphisms of the sextic

10x3y3 + 9zx5 + 9zy5 + 27z6 = 45x2y2z2 + 135xyz4 ⊂ P2 ∼= Proj(C[x, y, z]),

which induces an embedding A6 ⊂ Aut(P2). Then P2 is A6-birationally superrigid
and lct(P2,A6) = 2 (see [14]). Hence there exists by Theorem 1.32 an induced
embedding A6 × A6

∼= Ω ⊂ Bir(P4) such that Ω is not conjugate to any subgroup
of Aut(P4).

We now consider Fano varieties whose birational geometry is close to that of
birationally superrigid Fano varieties.

Definition 1.34. A variety X is birationally rigid if
• the equality rkPic(X) = 1 holds;
• X has Q-factorial and terminal singularities;
• there is no rational map ρ : X 99K Y with rationally connected fibres such

that 0 ̸= dimY < dimX;
• there is no birational map ρ : X 99K Y onto a variety Y ̸∼= X with terminal

Q-factorial singularities such that rk Pic(Y ) = 1.

Arguing as in the proof of Theorem 1.26, we obtain the following result.

Theorem 1.35. The variety X is birationally rigid if and only if rk Pic(X) = 1, X
has terminal Q-factorial singularities, and for any non-empty linear system M on
X without fixed components there is a ξ ∈ Bir(X) such that the log pair (X,λξ(M ))
has canonical singularities, where KX + λξ(M ) ≡ 0.

Birationally rigid Fano varieties are non-rational (see [38]).

Definition 1.36. Suppose that X is birationally rigid. A subset Γ ⊂ Bir(X)
untwists all maximal singularities if for every linear system M on X without
fixed components there is a birational automorphism ξ ∈ Γ such that the log pair
(X,λξ(M )) has canonical singularities, where λ is a rational number such that
KX + λξ(M ) ≡ 0.

If X is birationally rigid and there is a subset Γ ⊂ Bir(X) that untwists all
maximal singularities, then Bir(X) = ⟨Γ,Aut(X)⟩.

Definition 1.37. A variety X is universally birationally rigid if for any variety U
the variety X ⊗ Spec(C(U)) is birationally rigid over the field C(U) of rational
functions of the variety U .
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Definition 1.34 also makes sense for Fano varieties over an arbitrary perfect field
(see [42], [19]).

Example 1.38. Let X be a threefold such that there is a finite morphism π : X →
Q ⊂ P3, where Q is a smooth quadric threefold and π is a double cover branched in
a smooth surface S ⊂ Q of degree 8. There exists a one-parameter family of curves

C = {C ⊂ X | C is a smooth curve such that −KX · C = 1},

and for every curve C ∈ C there is a commutative diagram

X

ψC

���
�
�

π // Q

ϕC

���
�
�

P2 P2 ,

where ϕC is the projection from the line π(C). The general fibre of the map ψC
is a smooth elliptic curve. The rational map ψC induces an elliptic fibration with
a section which induces a birational involution τC . It is known that

ψC ∈ Aut(X) ⇐⇒ C ⊂ S

and if X is sufficiently general, then S contains no curves in C . It follows from [44]
that there exists an exact sequence of groups

1 → Γ → Bir(X) → Aut(X) → 1,

where Γ is a free product of subgroups generated by birational non-biregular invo-
lutions τC , C ∈ C . Hence X is universally birationally rigid.

Birationally superrigid Fano manifolds are universally birationally rigid.

Definition 1.39. Suppose that X is universally birationally rigid. A subset Γ ⊂
Bir(X) universally untwists all maximal singularities if for every variety U the
induced subset

Γ ⊂ Bir(X) ⊆ Bir
(
X ⊗ Spec(C(U))

)
untwists all maximal singularities on X ⊗ Spec(C(U)).

It is easy to see that any subset of Aut(X) universally untwists all maximal
singularities if the Fano variety X is birationally superrigid.

Remark 1.40. Let X be a birationally rigid Fano variety. Let Γ ⊆ Bir(X) be an
arbitrary subset and assume that dimX ̸= 1. Then it follows from [45] that the
following conditions are equivalent:

• Γ universally untwists all maximal singularities;
• Γ untwists all maximal singularities, and Bir(X) is countable.

Example 1.41. In the assumptions of Example 1.7 suppose that X is general.
Then

• the hypersurface X is universally birationally rigid (see [46]),
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• there are involutions τ1, . . . , τk ∈ Bir(X) such that the sequence of groups

1 → ⟨τ1, . . . , τk⟩ → Bir(X) → Aut(X) → 1

is exact (see [46], [47]), where ⟨τ1, . . . , τk⟩ is the subgroup generated by
τ1, . . . , τk,

• ⟨τ1, . . . , τk⟩ universally untwists all maximal singularities (see [46]).
All relations between the involutions τ1, . . . , τk are found in [47].

Let X1, . . . , Xr be Fano varieties that have at most Q-factorial and terminal
singularities such that

rk Pic(X1) = · · · = rkPic(Xr) = 1,

let

πi : X1×· · ·×Xi−1×Xi×Xi+1×· · ·×Xr → X1×· · ·×Xi−1×X̂i×Xi+1×· · ·×Xr

be the natural projection, and let Xi be the scheme general fibre of πi; Xi is defined
over C(X1 × · · · ×Xi−1 × X̂i ×Xi+1 × · · · ×Xr).

Remark 1.42. There are natural embeddings of groups

r∏
i=1

Bir(Xi) ⊆ ⟨Bir(X1), . . . ,Bir(Xr)⟩ ⊆ Bir(X1 × · · · ×Xr).

The following generalization of Theorem 1.28 was proved in [11].

Theorem 1.43. Suppose that X1, . . . , Xr are universally birationally rigid and that
lct(Xi) > 1, i = 1, . . . , r. Then

(a) the variety X1 × · · · ×Xr is non-rational and

Bir(X1 × · · · ×Xr) = ⟨Bir(X1), . . . ,Bir(Xr),Aut(X1 × · · · ×Xr)⟩,

(b) for every rational dominant map ρ : X1×· · ·×Xr 99K Y whose general fibre is
rationally connected there exist a subset {i1, . . . , ik} ⊆ {1, . . . , r} and a commutative
diagram

X1 × · · · ×Xr

π

��

σ //______ X1 × · · · ×Xr

ρ

))R
RRRRRRR

Xi1 × · · · ×Xik ξ
//__________________ Y ,

where π is the natural projection and ξ and σ are birational maps.

Corollary 1.44. Suppose that there are subgroups Γi ⊆ Bir(Xi) that universally
untwist all maximal singularities, and assume that lct(Xi) > 1 for all i = 1, . . . , r.
Then

Bir(X1 × · · · ×Xr) =
〈 r∏
i=1

Γi,Aut(X1 × · · · ×Xr)
〉
.
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In particular, the following example is obtained using Examples 1.7 and 1.41.

Example 1.45 (cf. Example 1.41). Let X be a general hypersurface of degree 20
in P(1, 1, 4, 5, 10). Then the sequence of groups

1 →
m∏
i=1

(Z2 ∗ Z2) → Bir
(
X × · · · ×X︸ ︷︷ ︸
m factors

)
→ Sm → 1

is exact, where Sm is the permutation group and Z2 ∗ Z2 is the infinite dihedral
group.

Now let X be a smooth Fano threefold (see [2]). Then X lies in one of 105
deformation families (see [48]–[52]). Let

(X)ג ∈ {1.1, 1.2, . . . , 1.17, 2.1, . . . , 2.36, 3.1, . . . , 3.31, 4.1, . . . , 4.13, 5.1, . . . , , 5.8}

be the number of the deformation type of the threefold X in the notation of Table 1
(see Appendix B). The main aim of this paper is to prove the following result.

Theorem 1.46. The following assertions hold :
(a) lct(X) = 1/5 if (X)ג ∈ {2.36, 3.29};
(b) lct(X) = 1/4 if (X)ג ∈ {1.17, 2.28, 2.30, 2.33, 2.35, 3.23, 3.26, 3.30, 4.12};
(c) lct(X) = 1/3 if (X)ג ∈ {1.16, 2.29, 2.31, 2.34, 3.9, 3.18, 3.19, 3.20, 3.21, 3.22,

3.24, 3.25, 3.28, 3.31, 4.4, 4.8, 4.9, 4.10, 4.11, 5.1, 5.2};
(d) lct(X) = 3/7 if (X)ג = 4.5;
(e) lct(X) = 1/2 if (X)ג ∈ {1.11, 1.12, 1.13, 1.14, 1.15, 2.1, 2.3, 2.18, 2.25, 2.27,

2.32, 3.4, 3.10, 3.11, 3.12, 3.14, 3.15, 3.16, 3.17, 3.24, 3.27, 4.1, 4.2, 4.3, 4.6, 4.7, 5.3, 5.4,
5.5, 5.6, 5.7, 5.8};

(f) if X is a general threefold in its deformation family, then
• lct(X) = 1/3 if (X)ג = 2.23,
• lct(X) = 1/2 if (X)ג ∈ {2.5, 2.8, 2.10, 2.11, 2.14, 2.15, 2.19, 2.24, 2.26, 3.2, 3.5,

3.6, 3.7, 3.8, 4.13},
• lct(X) = 2/3 if (X)ג = 3.3,
• lct(X) = 3/4 if (X)ג ∈ {2.4, 3.1},
• lct(X) = 1 if (X)ג = 1.1.

The generality condition in Theorem 1.46 cannot be dropped in the general case.

Example 1.47. Let (X)ג = 4.13. (We note that this deformation class was left
out by mistake in [50] but was later discovered in [51].) Then there is a birational
morphism α : X → P1×P1×P1 that contracts a smooth irreducible surface E ⊂ X to
a curve C such that C ·F1 = C ·F2 = 1 and C ·F3 = 3, where F1

∼= F2
∼= F3

∼= P1×P1

are fibres of the three different natural projections P1 × P1 × P1 → P1. Then
lct(X) = 1/2 by Theorem 1.46 if X is general. We note that there is a unique
surface G ∈ |F1 + F2| such that C ⊂ G. Then −KX ∼ 2G + E + F 3, where
F 3 ⊂ X ⊃ G are the proper transforms of F3 and G, respectively. Furthermore,
lct(X) 6 1/2, but lct(X) 6 lct(X, 2G + E + F 3) 6 4/9 < 1/2 in the case when
|F3 ∩ C| = 1.
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We organize this paper in the following way. In §§ 2–4 we consider auxiliary
results used in the proof of Theorem 1.46. In § 5 we compute the global log canoni-
cal thresholds of toric Fano varieties. In § 6 we prove Theorem 1.46 for smooth Fano
threefolds of index 2, that is, for (X)ג ∈ {1.11, 1.12, 1.13, 1.14, 1.15, 2.32, 2.35, 3.27}.
In § 7 we prove Theorem 1.46 in the case rk Pic(X) = 2. In § 8 we prove The-
orem 1.46 in the case rkPic(X) = 3. In § 9 we prove Theorem 1.46 in the case
rk Pic(X) > 4. In § 10 we find upper bounds for lct(X) in the case

(X)ג ∈ {1.8, 1.9, 1.10, 2.2, 2.7, 2.9, 2.12, 2.13, 2.16, 2.17, 2.20, 2.21, 2.22, 3.13}.

In Appendix A, written by J.-P.Demailly, the relation between global log canonical
thresholds of smooth Fano varieties and the α-invariants of smooth Fano varieties
introduced in [3] for the study of the existence of Kähler–Einstein metrics is estab-
lished. In Appendix B we present Table 1, containing a list of all smooth Fano
threefolds together with the known values and bounds for their global log canonical
thresholds.

We use the standard notation D1 ∼ D2 (respectively, D1 ∼Q D2) for linearly
equivalent (respectively, Q-linearly equivalent) divisors (respectively, Q-divisors).
If a divisor (a Q-divisor) D is linearly equivalent to a line bundle L (respectively,
Q-linearly equivalent to a divisor linearly equivalent to a line bundle L ), then we
write D ∼ L (respectively, D ∼Q L ). We note that Q-linear equivalence coincides
with numerical equivalence in the case of log terminal Fano varieties. The projec-
tivization PY (E ) of a vector bundle E on a variety Y is the variety of hyperplanes
in the fibres of E . The symbol Fn denotes the Hirzebruch surface P(OP1 ⊕OP1(n)).
We always refer to a smooth Fano threefold X using the number (X)ג of the cor-
responding deformation family introduced in Table 1.

We are very grateful to J.-P. Demailly for writing Appendix A, and to
C. Boyer, A. Iliev, P. Jahnke, A.-S. Kaloghiros, A. G. Kuznetsov, J. Park, and
Yu.G. Prokhorov for useful discussions. We would like to express our gratitude to
IHES (Bures-sur-Yvette, France) and MPIM (Bonn, Germany) for hospitality.

2. Preliminaries

Let X be a variety with log terminal singularities. Consider a divisor
BX =

∑r
i=1 aiBi, where Bi is a prime Weil divisor on the variety X and ai is

a non-negative rational number. Suppose that BX is a Q-Cartier divisor such
that Bi ̸= Bj for i ̸= j. Let π : X → X be a birational morphism such that X is
smooth. We set BX =

∑r
i=1 aiBi, where Bi is the proper transform of Bi on the

variety X. Then

KV +BX ≡ π∗(KX +BX) +
n∑
i=1

ciEi,

where ci ∈ Q and Ei is an exceptional divisor of the morphism π. Suppose addi-
tionally that

( ⋃r
i=1Bi

)
∪

( ⋃n
i=1Ei

)
is a divisor with simple normal crossings. We

set BX = BX −
∑n
i=1 ciEi.

Definition 2.1. The singularities of a log pair (X,BX) are log canonical (respec-
tively, log terminal) if
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• ai 6 1 (respectively, ai < 1) for all i = 1, . . . , r,
• cj > −1 (respectively, cj > −1) for all j = 1, . . . , n.

It is known that Definition 2.1 does not depend on the choice of the morphism
π : X → X. Let

LCS(X,BX) =
( ⋃
ai>1

Bi

)
∪

( ⋃
ci6−1

π(Ei)
)

( X;

then LCS(X,BX) is called the locus of log canonical singularities of the log pair
(X,BX).

Definition 2.2. A proper irreducible subvariety Y ( X is called a centre of log
canonical singularities of a log pair (X,BX) if

• either the inequality ai > 1 holds and Y = Bi,
• or the inequality ci 6 −1 holds and Y = π(Ei) for some choice of the

birational morphism π : X → X.

Let LCS(X,BX) be the set of all centres of log canonical singularities of (X,BX).
Then

Y ∈ LCS(X,BX) =⇒ Y ⊆ LCS(X,BX)

and LCS(X,BX) = ∅ ⇐⇒ LCS(X,BX) = ∅ ⇐⇒ the log pair (X,BX) is log
terminal.

Remark 2.3. Let H be a linear system onX that has no base points, letH be a suf-
ficiently general divisor in the linear system H , and let Y ( X be an irreducible
subvariety. We set Y |H =

∑m
i=1 Zi, where Zi ⊂ H is an irreducible subvariety.

Then it follows from Definition 2.2 (cf. Theorem 2.19) that

Y ∈ LCS(X,BX) ⇐⇒ {Z1, . . . , Zm} ⊆ LCS
(
H,BX |H

)
.

Example 2.4. Let α : V → X be a blow-up of a smooth point O ∈ X. Then
BV ≡ α∗(BX) − multO(BX)E, where multO(BX) ∈ Q, and E is the exceptional
divisor of the blow-up α. In this case multO(BX) > 1 if the log pair (X,BX) is not
log canonical at the point O. Let

BV = BV +
(
multO(BX)− dim(X) + 1

)
E

and suppose that multO(BX) > dim(X)− 1. Then O ∈ LCS(X,BX) if and only if
• either E ∈ LCS(V,BV ), that is, multO(BX) > dim(X),
• or there exists a subvariety Z ( E such that Z ∈ LCS(V,BV ).

The locus LCS(X,BX) can be equipped with a scheme structure (see [20], [40]).
Let

I (X,BX) = π∗

( n∑
i=1

⌈ci⌉Ei −
r∑
i=1

⌊ai⌋Bi
)
,

and let L (X,BX) be the subscheme corresponding to the ideal sheaf I (X,BX).

Definition 2.5. For the log pair (X,BX) we call L (X,BX) the subscheme of
log canonical singularities of (X,BX) and we call the ideal sheaf I (X,BX) the
multiplier ideal sheaf of (X,BX).
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It follows immediately from the construction of the subscheme L (X,BX) that

Supp
(
L (X,BX)

)
= LCS(X,BX) ⊂ X.

The following result is the Nadel–Shokurov vanishing theorem (see [40] and [53],
Theorem 9.4.8).

Theorem 2.6. Let H be a nef and big Q-divisor on X such that KX+BX+H ≡ D
for some Cartier divisor D on the variety X . Then for every i > 1,

Hi
(
X,I (X,BX)⊗D

)
= 0.

For each Cartier divisor D on X we consider the exact sequence of sheaves

0 → I (X,BX)⊗D → OX(D) → OL (X,BX)(D) → 0

and the corresponding exact sequence of cohomology groups

H0
(
OX(D)

)
→ H0

(
OL (X,BX)(D)

)
→ H1

(
I (X,BX)⊗D

)
.

Theorem 2.7. Suppose that −(KX + BX) is nef and big. Then LCS(X,BX) is
connected.

Proof. We set D = 0. Then it follows from Theorem 2.6 that the sequence

C = H0(OX) → H0(OL (X,BX)) → H1
(
I (X,BX)

)
= 0

is exact if −(KX +BX) is nef and big. Thus, the locus

LCS(X,BX) = Supp
(
L (X,BX)

)
is connected if the divisor −(KX +BX) is nef and big.

We consider a few elementary applications of Theorem 2.7 (cf. Example 1.10).

Lemma 2.8. Suppose that LCS(X,BX) ̸= ∅, where X ∼= Pn and BX ∼Q −λKX

for some rational number λ with 0 < λ < n/(n+ 1). Then dim(LCS(X,BX)) > 1,
and the subscheme L (X,BX) does not contain isolated zero-dimensional compo-
nents.

Proof. Let O ∈ X be a point such that LCS(X,λBX) = O ∪ Σ, where Σ ⊂ X is
a (possibly empty) subset such that O /∈ Σ.

LetH be a general line inX ∼= P2. Then the locus LCS(X,λBX+H) = O∪H∪Σ
is disconnected. However, the divisor −(KX+λBX+H) is ample, which contradicts
Theorem 2.7.

Lemma 2.9. Suppose that LCS(X,BX) ̸= ∅, where X ∼= P3 and BX ∼Q −λKX

for some rational number 0 < λ < 1/2. Then LCS(X,BX) contains a surface.

Proof. Suppose that LCS(X,BX) contains no surfaces. Let S be a general plane
in P3. Then the locus LCS(P3, BX + S) is connected by Theorem 2.7. Hence
(S,BX |S) is not log terminal by Remark 2.3. On the other hand, the locus
LCS(S,BX |S) consists of finitely many points, which is impossible by Lemma 2.8.
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Lemma 2.10. Suppose that LCS(X,BX) ̸= ∅, where X is a smooth quadric
threefold in P4 and BX ∼Q −λKX for some rational number 0 < λ < 1/2. Then
LCS(X,BX) contains a surface.

Proof. Let L ⊂ X be a general line, let P1 ∈ L ∋ P2 be two general points, let H1

and H2 be the hyperplane sections of X ⊂ P4 that are tangent to X at the points
P1 and P2, respectively. Then

LCS
(
X,λBX +

3
4

(H1 +H2)
)

= LCS(X,λBX) ∪ L

is disconnected, which is impossible by Theorem 2.7.

Remark 2.11. One can prove Lemmas 2.9, 2.10 (and 2.28) using another method.
Suppose that BX ∼Q −λKX for some λ ∈ Q such that 0 < λ < 1/2, where X is P3,
or P1 × P2, or a smooth quadric threefold. Also, suppose that the set LCS(X,BX)
contains no surfaces. Then LCS(X,BX) ⊆ Σ, where Σ ⊂ X is a (possibly reducible)
curve. For a general automorphism ϕ ∈ Aut(X) we have ϕ(Σ) ∩ Σ = ∅, which
implies that LCS(X,ϕ(BX)) ∩ LCS(X,BX) = ∅. We can show that if ϕ is suffi-
ciently general, then

LCS
(
X,ϕ(BX) +BX

)
= LCS

(
X,ϕ(BX)

)
∪ LCS(X,BX).

This contradicts Theorem 2.7 since λ < 1/2.

Lemma 2.12. Suppose that LCS(X,BX) ̸= ∅, where X is a blow-up of P3 in one
point and BX ∼Q −λKX for some rational number 0 < λ < 1/2. Then LCS(X,BX)
contains a surface.

Proof. Suppose that the set LCS(X,BX) contains no surfaces. Let α : X → P3

be the blow-up of a point and let E be the exceptional divisor of α. In the case
when LCS(X,λBX) ̸⊆ E we can apply Lemma 2.9 to the pair (P3, α(BX)) to get
a contradiction. Hence we can assume that LCS(X,BX) ⊆ E.

Let H ⊂ P3 be a general hyperplane and let H1 ⊂ P3 ⊃ H2 be general hyper-
planes passing through α(E). We denote by H, H1, and H2 the proper transforms
of the hyperplanes H, H1 and H2 on X, respectively. Then

LCS
(
X,BX +

1
2

(H1 +H2 + 2H )
)

is disconnected, which is impossible by Theorem 2.7.

Lemma 2.13. Let X be a cone in P4 over a smooth quadric surface and suppose
that BX ∼Q −λKX for some rational number 0<λ< 1/3. Then LCS(X,BX) = ∅.

Proof. Suppose that LCS(X,BX) ̸= ∅. Let S be a general hyperplane section of the
coneX ⊂ P4. Then LCS

(
S,BX |S

)
= ∅, because S ∼= P1×P1 and lct(P1×P1) = 1/2

(see Example 1.10). Thus, |LCS(X,BX)| < +∞ by Remark 2.3. Then the locus
LCS(X,BX + S) is disconnected, which contradicts Theorem 2.7.
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The following result is a consequence of Theorem 2.6 (see [20], Theorem 4.1).

Lemma 2.14. If −(KX +BX) is nef and big and dim(LCS(X,BX)) = 1, then
(a) the locus LCS(X,BX) is a connected union of smooth rational curves,
(b) every two irreducible components of the locus LCS(X,BX) meet at at most

one point,
(c) every pair of intersecting irreducible components of the locus LCS(X,BX)

meet transversally,
(d) no three irreducible components of the locus LCS(X,BX) meet at one point,
(e) the locus LCS(X,BX) contains no cycles of smooth rational curves.

Proof. Arguing as in the proof of Theorem 2.7, we see that LCS(X,BX) is a con-
nected tree of smooth rational curves with simple normal crossings.

Lemma 2.15 [43]. Let X be a smooth hypersurface in Pm and BX ∼Q OPm(1)|X .
Let S ( X be an irreducible subvariety with dim(S) > k. Then multS(BX) 6 1.

We consider now a simple application of Theorem 2.7 and Lemma 2.15.

Lemma 2.16. Let X be a cubic hypersurface in P4 with at most isolated singu-
larities. Suppose that BX ∼Q −KX , but there exists a positive rational number
λ < 1/2 such that LCS(X,λBX) ̸= ∅. Then LCS(X,λBX) = L, where L is a line
in X ⊂ P4 such that L ∩ Sing(X) ̸= ∅.

Proof. Let S be a general hyperplane section of X. Then

S ∪ LCS(X,λBX) ⊆ LCS(X,λBX + S),

hence dim(LCS(X,λBX)) > 1 by Theorem 2.7. Therefore, LCS(S, λBX |S) ̸= ∅
by Remark 2.3. On the other hand, LCS(S, λBX |S) consists of finitely many
points by Lemma 2.15. By Theorem 2.7 there is a unique point O ∈ S such
that LCS(S, λBX |S) = O. It now follows by Remark 2.3 that there is a line L ⊂ X
such that LCS(X,λBX) = L.

Arguing as in the proof of Lemma 2.15, we see that L ∩ Sing(X) ̸= ∅.

The proof of the following result is similar to that of Lemma 2.16.

Lemma 2.17. Suppose there is a double cover τ : X → P3 branched over an irre-
ducible reduced quartic surface R ⊂ P3 that has at most ordinary double points.
Assume that the equivalence BX ∼Q −λKX holds but LCS(X,BX) ̸= ∅, where
λ < 1/2. Then Sing(X) ̸= ∅ and LCS(X,BX) = L, where L is an irreducible
curve on X such that −KX · L = 2 and L ∩ Sing(X) ̸= ∅.

Proof. We observe that −KX ∼ 2H, where H is a Cartier divisor on X such that
H ∼ τ∗(OP3(1)). The variety X is a Fano threefold and H3 = 2. In particular, the
set LCS(X,BX + H) must be connected by Theorem 2.7. Thus, there is a curve
C ∈ LCS(X,BX), which implies that multC(BX) > 1/λ > 2.

Let S be a general surface in |H|. We set BS = BX |S . Then −λKS ∼Q BS ,
but the log pair (S,BS) is not log canonical at every point of the intersection
S ∩ LCS(X,BX).
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The surface H is a smooth hypersurface in P(1, 1, 1, 2) of degree 4.
Let P be any point in S ∩ LCS(X,BX). Then there is a birational morphism

ρ : S → S such that S is a cubic surface in P3 and ρ is an isomorphism in
a neighbourhood of P . In particular, the pair (S, ρ(BS)) is not log terminal at
the point ρ(P ). Thus, we have LCS(S, ρ(BS)) ̸= ∅, but

1
λ
ρ(BS) ∼Q −KS ∼ OP3(1)|

S
,

which implies by Lemma 2.15 and Theorem 2.7 that LCS(S, ρ(BS)) consists of one
point. Then

P = S ∩ C = S ∩ LCS(X,BX)

if the point P is sufficiently general. Therefore, LCS(X,BX) = C, the curve C is
irreducible, and −KX · C = 2. In particular, τ(C) ⊂ P3 is a line.

We suppose that C ∩ Sing(X) = ∅ and derive a contradiction.
Suppose that τ(C) ⊂ R. We take a general point O ∈ C. Let τ(O) ∈ Π ⊂ P3

be a plane tangent to R at the point τ(O). Arguing as in the proof of Lemma 2.15
(see [43]), we see that R|Π is reduced along τ(C), because τ(C)∩Sing(R) = ∅. We
fix a general line Γ ⊂ Π ⊂ P3 such that τ(O) ∈ Γ. Let Γ ⊂ X be an irreducible
curve such that τ( Γ ) = Γ. Then Γ ̸⊆ Supp(BX), because Γ sweeps out a dense
subset of P3 as we vary the point O ∈ C and the line Γ ⊂ Π. Note that either
H · Γ = 1 or H · Γ = 2. In the second case multO( Γ ) = 2. Hence

H · Γ > 2λH · Γ = Γ ·BX > multO( Γ )multC(BV ) > H · Γ,

which is a contradiction. Thus, τ(C) ̸⊂ R.
There is an irreducible reduced curve C ⊂ X such that τ(C ) = τ(C) ⊂ P3

but C ̸= C. Let Y be a general surface in |H| that passes through the curves C
and C. Then Y is smooth because C ∩ Sing(X) = ∅, and it is easy to see that
C · C = C · C = −2 on the surface Y .

Obviously, Y ̸⊂ Supp(BX). We set BY = BX |Y . Then

BY = multC(BX)C + multC(BX)C + ∆,

where ∆ is an effective Q-divisor on the surface Y such that

C ̸⊂ Supp(∆) ̸⊃ C.

On the other hand, BY ∼Q 2λ(C + C), which implies in particular that(
2λ−multC(BX)

)
C · C =

(
multC(BX)− 2λ

)
C · C + ∆ · C

>
(
multC(BX)− 2λ

)
C · C > 0,

because ∆ ·C > 0 and C ·C > 0. Then multC(BX) > 2λ because C ·C < 0. Thus,

−∆ ∼Q
(
multC(BX)− 2λ

)
C +

(
multC(BX)− 2λ

)
C,

which is impossible, because multC(BX) > 2λ and Y is projective.
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One can generalize Theorem 2.7 in the following way (see [40], Lemma 5.7).

Theorem 2.18. Let ψ : X → Z be a morphism. Then LCS
(
X,BX

)
is connected

in a neighbourhood of each fibre of the morphism ψ ◦ π: X → Z in the case when
(a) ψ is surjective and has connected fibres,
(b) the divisor −(KX +BX) is nef and big with respect to ψ.

Let us consider one important application of Theorem 2.18 (see [41], Theo-
rem 5.50).

Theorem 2.19. Suppose that B1 is a Cartier divisor, a1 = 1, and B1 has at most
log terminal singularities. Then the following assertions are equivalent :

(a) the log pair (X,BX) is log canonical in a neighbourhood of the divisor B1;
(b) the singularities of the log pair

(
B1,

∑r
i=2 aiBi|B1

)
are log canonical.

The simplest application of Theorem 2.19 is the following non-obvious result
(see [41], Corollary 5.57).

Lemma 2.20. Suppose that dim(X) = 2 and a1 6 1. Then
( ∑r

i=2 aiBi
)
B1 > 1

whenever (X,BX) is not log canonical at some point O ∈ B1 such that O /∈
Sing(X) ∪ Sing(B1).

Proof. Suppose that (X,BX) is not log canonical at a point O ∈ B1. By Theo-
rem 2.19 we have ( r∑

i=2

aiBi

)
·B1 > multO

( r∑
i=2

aiBi|B1

)
> 1

if O /∈ Sing(X) ∪ Sing(B1) because
(
X,B1 +

∑r
i=2 aiBi

)
is not log canonical at O.

Let us consider another application of Theorem 2.19 (cf. Lemma 2.29).

Lemma 2.21. Let X be a Fano variety with log terminal singularities. Then
lct(P1 ×X) = min(1/2, lct(X)).

Proof. The inequalities 1/2 > lct(V × U) 6 lct(X) are evident. We suppose that
lct(P1 ×X) < min(1/2, lct(X)) and show that this leads to a contradiction.

There is an effective Q-divisor D ∼Q −KP1×X such that the log pair (P1×X,λD)
is not log canonical at some point P ∈ P1 ×X, where λ < min(1/2, lct(X)).

Let F be a fibre of the projection P1 × X → P1 such that P ∈ F . Then
D = µF + Ω, where Ω is an effective Q-divisor on P1 ×X such that F ̸⊂ Supp(Ω).

Let L be a general fibre of the natural projection P1 ×X → X. Then

2 = D · L = µ+ Ω · L > µ,

which implies that the log pair (P1 × X,F + λΩ) is also not log canonical at P .
Then

(
F, λΩ|F

)
is not log canonical at P by Theorem 2.19, but Ω|F ∼Q −KF ,

which is impossible because X ∼= F and λ < lct(X).

Let P be a point in X. We consider an effective divisor

∆ =
r∑
i=1

εiBi ∼Q BX ,
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where εi is a non-negative rational number. Suppose that ∆ is a Q-Cartier divisor,
the equivalence ∆ ∼Q BX holds, and the log pair (X,∆) is log canonical at the
point P ∈ X.

Remark 2.22. Suppose that (X,BX) is not log canonical at the point P ∈ X. Let
α = min{ai/εi | εi ̸= 0}, where α is well defined because some of the numbers
ε1, . . . , εr are non-zero. Then α < 1, the log pair(

X,

r∑
i=1

ai − αεi
1− α

Bi

)
is not log canonical at the point P ∈ X, the equivalence

r∑
i=1

ai − αεi
1− α

Bi ∼Q BX ∼Q ∆,

holds, but at least one irreducible component of the divisor Supp(∆) does not lie in

Supp
( r∑
i=1

ai − αεi
1− α

Bi

)
.

The assertion of Remark 2.22 is obvious but nevertheless very useful.

Lemma 2.23. Suppose that X ∼= C1 × C2, where C1 and C2 are smooth curves,
and suppose that BX ∼Q λE + µF , where E ∼= C1 and F ∼= C2 are curves on the
surface X such that E · E = F · F = 0 and E · F = 1, and where λ and µ are
non-negative rational numbers. Then

(a) the pair (X,BX) is log terminal if λ < 1 and µ < 1,
(b) the pair (X,BX) is log canonical if λ 6 1 and µ 6 1.

Proof. It suffices to prove (a). Suppose that λ, µ < 1, but (X,BX) is not log
terminal at some point P ∈ X. Then multP (BX) > 1 and by Remark 2.22 we may
assume that E ̸⊂ Supp(BX) or F ̸⊂ Supp(BX). On the other hand, E · BX = µ
and F ·BX = λ, which leads at once to a contradiction because multP (BX) > 1.

Let [BX ] be the class of Q-rational equivalence of the divisor BX . Let

lct(X, [BX ]) = inf{lct(X,D) | D is an effective Q-divisor
such that D ∼Q BX} > 0

and put lct(X, [BX ]) = +∞ if BX = 0. We note that BX is an effective divisor.

Remark 2.24. The equality lct(X, [−KX ]) = lct(X) holds (see Definition 1.2).

Arguing as in the proof of Lemma 2.21, we obtain the following result.

Lemma 2.25. Let ϕ : X → Z be a surjective morphism with connected fibres
such that dimZ = 1. Let F be a fibre of ϕ that has log terminal singulari-
ties. Then either lctF (X,BX) > lct

(
F,

[
BX |F

])
, or there is a rational number

0 < ε < lct
(
F,

[
BX |F

])
such that F ⊆ LCS(X, εBX).
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Proof. Suppose that lctF (X,BX) < lct
(
F,

[
BX |F

])
. Then there is a rational num-

ber ε < lct
(
F,

[
BX |F

])
such that the log pair (X, εBX) is not log canonical at some

point P ∈ F . Let BX = µF + Ω, where Ω is an effective Q-divisor on X such that
F ̸⊂ Supp(Ω).

We may assume that εµ 6 1. Then the log pair (X,F + εΩ) is not log canonical
at P , and

(
F, εΩ|F

)
is also not log canonical at P by Theorem 2.19. However,

Ω|F ∼Q BX |F , which is a contradiction.

We now present a simple application of Lemma 2.25.

Lemma 2.26. Let Q ⊂ P4 be a cone over a smooth quadric surface and let
α : X → Q be a blow-up along a smooth conic C ⊂ Q\Sing(Q). Then lct(X) = 1/3.

Proof. Let H be a general hyperplane section of Q ⊂ P4 that contains C, and let
H be the proper transform of the surface H on the threefold X. Then −KX ∼
3H + 2E, where E is the exceptional divisor of α. In particular, the inequality
lct(X) 6 1/3 holds.

We suppose that lct(X) < 1/3. Then there exists an effective Q-divisor
D ∼Q −KX such that the log pair (X,λD) is not log canonical for some positive
rational number λ < 1/3. There is a commutative diagram

X
α

}}||
||

||
| β

""E
EE

EE
EE

Q
ψ

//_______ P1 ,

where β is the morphism given by the linear system |H| and ψ is the projection
from the two-dimensional linear subspace containing the conic C.

Suppose that LCS(X,λD) contains a surface M ⊂ X. Then D = µM+Ω, where
µ > 1/λ and Ω is an effective Q-divisor such that M ̸⊂ Supp(Ω).

Let F be a general fibre of β. Then F ∼= P1 × P1 and D|F ∼Q −KF , which
immediately implies that M is a fibre of β, but α(D) ∼Q −KQ ∼ 3α(M), which is
impossible because µ > 1/λ > 3. Thus, the set LCS(X,λD) contains no surfaces.

There is a fibre S of β such that S ̸= S ∩ LCS(X,λD) ̸= ∅, which implies that
S is singular by Lemma 2.25, because lct(P1 × P1) = 1/2.

Thus, the surface S is an irreducible quadric cone in P3. Then LCS(X,λD) ⊆ S
by Theorem 2.7. Because

(
X,S + 2

3E
)

has log canonical singularities and the
equivalence 3S + 2E ∼Q D holds, we may assume that either S ̸⊂ Supp(D) or
E ̸⊂ Supp(D) by Remark 2.22.

Let Γ = E ∩ S. The curve Γ is an irreducible conic. Then LCS(X,λD) ⊆ Γ
by Lemma 2.13. Intersecting D with a general ruling of the cone S ⊂ P3

and intersecting D with a general fibre of the projection E → C, we see that
Γ ̸⊆ LCS(X,λD), which implies that LCS(X,λD) consists of a single point O ∈ Γ
by Theorem 2.7.

Let R be a general surface in |α∗(H)|. Then

LCS
(
X,λD +

1
2

(H + 2R)
)

= R ∪O,

which is impossible by Theorem 2.7, since −KX ∼ H + 2R ∼Q D and λ < 1/3.
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The following generalization of Lemma 2.25 follows from [54], Proposition 5.19
(cf. [6]).

Theorem 2.27. Let ϕ : X → Z be a surjective flat morphism with connected
fibres such that Z has rational singularities and all the scheme fibres of ϕ have
at most canonical Gorenstein singularities. Let F be a scheme fibre of ϕ. Then
either lctF (X,BX) > lct

(
F,

[
BX |F

])
or there is a positive rational number ε <

lct
(
F,

[
BX |F

])
such that F ⊆ LCS(X, εBX).

Let us consider an elementary application of Theorem 2.27.

Lemma 2.28. Suppose that LCS(X,BX) ̸= ∅, where X ∼= P1 × P2 and BX ∼Q
−λKX for some rational number 0 < λ < 1/2. Then LCS(X,BX) contains a sur-
face.

Proof. Suppose that LCS(X,BX) contains no surfaces. By Theorems 2.7 and 2.27
we have LCS(X,BX) = F , where F is a fibre of the natural projection π2 : X → P2.
Let S be a general surface in |π∗1(OP2(1))|, and let M1 and M2 be general fibres of
the natural projection π1 : X → P1. Then the locus

LCS
(
X,λD +

1
2

(M1 +M2 + 3S)
)

= F ∪ S

is disconnected, which is impossible by Theorem 2.7.

Lemma 2.29. Let V and U be Fano varieties with at most canonical Gorenstein
singularities. Then lct(V × U) = min(lct(V ), lct(U)).

Proof. The inequalities lct(V ) > lct(V ×U) 6 lct(U) are obvious. We suppose that
lct(V × U) < min(lct(V ), lct(U)) and show that this leads to a contradiction.

There is an effective Q-divisor D ∼Q −KV×U such that the log pair (V ×U, λD)
is not log canonical at some point P ∈ V × U , where λ < min(lct(V ), lct(U)).

Let us identify V with a fibre of the projection V × U → U that contains the
point P . The inequalities

lct(V ) > λ > lctV (V × U,D) > lct
(
V, [D|V ]

)
= lct

(
V, [−KV ]

)
= lct(V )

are inconsistent, so it follows from Theorem 2.27 that the log pair (V × U, λD) is
not log canonical at every point of V ⊂ V × U .

Let us identify U with a general fibre of the projection V × U → V . Then
D|U ∼Q −KU , and (U, λD|U ) is not log canonical at the point U ∩V by Remark 2.3
(applied dimV times). This contradicts the inequality λ < lct(U).

We believe that the assertion of Lemma 2.29 holds also for log terminal Fano
varieties (cf. Lemma 2.21).

3. Cubic surfaces

Let X be a cubic surface in P3 that has at most one ordinary double point.

Definition 3.1. A point O ∈ X is said to be Eckardt point if O /∈ Sing(X) and
O = L1 ∩ L2 ∩ L3, where L1, L2, L3 are different lines on the surface X ⊂ P3.
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General cubic surfaces have no Eckardt points. It follows from Examples 1.10
and 1.11 that

lct(X) =

{
3/4 when X has no Eckardt points and Sing(X) = ∅,
2/3 when X has an Eckardt point or Sing(X) ̸= ∅.

Let D be an effective Q-divisor on X such that D ∼Q −KX , and let ω ∈ Q>0

be such that ω < 3/4. In this section we prove the following result (cf. [5], [14]).

Theorem 3.2. Suppose that (X,ωD) is not log canonical. Then LCS(X,ωD) = O,
where O ∈ X is either a singular point or an Eckardt point.

Suppose that (X,ωD) is not log canonical. Let P be a point in LCS(X,ωD),
and suppose that P is neither a singular point nor an Eckardt point of X.

Lemma 3.3. LCS(X,ωD) = P .

Proof. Suppose that LCS(X,ωD) ̸= P . Then by Theorem 2.7 there is a curve
C ⊂ X such that P ∈ C ⊆ LCS(X,ωD). Hence there is an effective Q-divisor Ω
on X such that C ̸⊂ Supp(Ω) and D = µC+Ω, where µ > 1/ω. Let H be a general
hyperplane section of X. Then

3 = H ·D = µH · C +H · Ω > µdegC,

which implies that either degC = 1 or degC = 2.
Suppose that degC = 1. Let Z be a general conic on X such that −KX ∼ C+Z.

Then

2 = Z ·D = µZ · C + Z · Ω > µZ · C =

{
2µ if C ∩ Sing(X) = ∅,
3µ/2 if C ∩ Sing(X) ̸= ∅,

which implies that µ 6 4/3. But µ > 1/ω > 4/3, a contradiction.
We see that degC = 2. Let L be a line on X such that −KX ∼ C + L. Then

D = µC + λL+ Υ, where Υ is an effective Q-divisor such that C ̸⊂ Supp(Υ) ̸⊃ L.
We have

1 = L ·D = µL · C + λL · L+ L ·Υ > µL · C + λL · L

=

{
2µ− λ if C ∩ Sing(X) = ∅,
3µ/2− λ/2 if C ∩ Sing(X) ̸= ∅,

which implies that µ 6 7/6 < 4/3 because λ 6 4/3 (see the case degC = 1). But
µ > 4/3, a contradiction.

Let π : U → X be a blow-up of P and let E be the π-exceptional curve. Then
D ∼Q π∗(D) + multP (D)E, where multP (D) > 1/ω and D is the proper transform
of D on the surface U . The log pair

(
U, ωD + (ωmultP (D) − 1)E

)
is not log

canonical at some point Q ∈ E. Then either multP (D) > 2/ω, or

multQ(D ) + multP (D) > 2/ω > 8/3, (3.1)

because the divisor ωD + (ωmultP (D)− 1)E is effective.
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Let T be the unique hyperplane section of X that is singular at P . We may
assume by Remark 2.22 that Supp(T ) ̸⊆ Supp(D), because (X,ωT ) is log canonical.
The curve T is reduced. Thus, the following cases are possible: T is an irreducible
and reduced cubic curve; T is the union of a line and an irreducible conic; T consists
of three different lines.

We note that multP (T ) = 2 since P is not an Eckardt point. In the rest of the
section we shall exclude these cases one by one.

Lemma 3.4. The curve T is reducible.

Proof. Suppose that T is an irreducible cubic curve. Then there is a commutative
diagram

U
π

}}||
||

||
| ψ

""E
EE

EE
EE

X ρ
//_______ P2 ,

where ψ is a double cover branched over a quartic curve and ρ is the projection
from P .

Let T be the proper transform of T on U . Suppose that Q ∈ T . Then

3− 2 multP (D) = T ·D > multQ(T ) multQ(D )

> multQ(T )
(
8/3−multP (D)

)
> 8/3−multP (D),

which implies that multP (D) 6 1/3. This inequality is absurd; thus, Q /∈ T .
Let τ ∈ Aut(U) be the natural involution3 induced by the double cover ψ. It

follows from [42] that

τ∗
(
π∗(−KX)

)
∼ π∗(−2KX)− 3E

and τ(T ) = E. We set Q̆ = π ◦ τ(Q). Then Q̆ ̸= P , because Q /∈ T .
Let H be the hyperplane section of X that is singular at Q̆. Then T ̸= H,

because P ̸= Q̆ and T is smooth away from P . Hence P /∈ H, because otherwise

3 = H · T > multP (H) multP (T ) + multQ̆(H) multQ̆(T ) > 4.

Let H be the proper transform of H on the surface U . We set R = τ(H )
and R = π(R ). Then R ∼ π∗(−2KX) − 3E, and the curve R must be singular at
the point Q.

Suppose that R irreducible. Taking into account all possible singularities of R,
we see that

(
X, 3

8R
)

is log canonical. Thus, by Remark 2.22 we may assume that
R ̸⊆ Supp(D). Then

6− 3 multP (D) = R ·D > multQ(R ) multQ(D ) > 2
(
8/3−multP (D)

)
,

3The involution τ induces an involution in Bir(X) which is called the Geiser involution.
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which implies that multP (D) < 2/3. However, this is absurd since multP (D) > 4/3.
Thus, the curve R must be reducible.

The curves R and H are reducible, so there is a line L ⊂ X such that P /∈ L ∋ Q̆.
Let L be the proper transform of L on U . We set Z = τ(L ). Then L · E = 0

and L · T = L · π∗(−KX) = 1, which implies that Z ·E = 1 and Z · π∗(−KX) = 2.
We have Q ∈ Z. Then

2−multP (D) = Z ·D > multQ(D ) > 8/3−multP (D) > 2−multP (D)

in the case when Z ̸⊆ Supp(D ). Hence Z ⊆ Supp(D ).
We put Z = π(Z ). Then Z is an irreducible conic such that P ∈ Z and −KX ∼

L + Z, which means that L ∪ Z is cut out by the plane in P3 passing through Z.
We set D = εZ + Υ, where Υ is an effective Q-divisor such that Z ̸⊂ Supp(Υ).

We may assume that L ̸⊆ Supp(Υ) (see Remark 2.22). Then

1 = L ·D = εZ · L+ L ·Υ > εZ · L =

{
2ε if Z ∩ Sing(X) = ∅,
3ε/2 if Z ∩ Sing(X) ̸= ∅,

which implies that ε 6 2/3.
Let Υ be the proper transform of Υ on the surface U . Then the log pair(

U, εωZ + ωΥ + (ωmultP (D)− 1)E
)

is not log canonical at Q ∈ Z. Hence

ωΥ · Z +
(
ωmultP (D)− 1

)
=

(
ωΥ +

(
ωmultP (D)− 1

)
E

)
· Z > 1

by Lemma 2.20, because ε 6 2/3. In particular, we see that

8/3−multP (D) < Z ·Υ = 2−multP (D)− εZ · Z

=

{
2−multP (D) + ε if Z ∩ Sing(X) = ∅,
2−multP (D) + ε/2 if Z ∩ Sing(X) ̸= ∅,

which implies that ε > 2/3. But we have already shown that ε 6 2/3. This
contradiction completes the proof of Lemma 3.4.

Therefore, there is a line L1 ⊂ X such that P ∈ L1. We set D = m1L1 + Ω,
where Ω is an effective Q-divisor such that L1 ̸⊂∈ Supp(Ω). Then

4/3 < 1/ω < Ω · L1 = 1−m1L1 · L1 =

{
1 +m1 if L1 ∩ Sing(X) = ∅,
1 +m1/2 if L1 ∩ Sing(X) ̸= ∅.

Corollary 3.5. The following inequality holds :

m1 >

{
1/3 if L1 ∩ Sing(X) = ∅,
2/3 if L1 ∩ Sing(X) ̸= ∅.

Remark 3.6. Suppose that X is singular and put O = Sing(X). It follows from [16]
that O = Γ1∩Γ2∩Γ3∩Γ4∩Γ5∩Γ6, where Γ1, . . . ,Γ6 are different lines on the surface
X ⊂ P3. Moreover, −2KX ∼

∑6
i=1 Γi. Suppose that L1 = Γ1. Let Π2, . . . ,Π6 ⊂ P3
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be planes such that L1 ⊂ Πi ⊃ Γi and let Λ2, . . . ,Λ6 be lines on the surface X such
that

L1 ∪ Γi ∪ Λi = Πi ∩X ⊂ X ⊂ P3,

which implies that −KX ∼ L1 + Γi + Λi. Then

−5KX ∼ 4L1 +
6∑
i=2

Λi +
(
L1 +

6∑
i=2

Γi

)
∼ 4L1 +

6∑
i=2

Λi − 2KX ,

which implies that −3KX ∼ 4L1 +
∑6
i=2 Λi. On the other hand, the log pair(

X,L1 +
∑6
i=2 Λi
3

)
is log canonical at the point P . Thus, in completing the proof of Theorem 3.2 we
may assume by Remark 2.22 that

Supp
( 6∑
i=2

Λi

)
̸⊆ Supp(D),

because L1 ⊆ Supp(D). Then there is a line Λk such that

1 = D · Λk = (m1L1 + Ω) · Λk = m1 + Ω · Λk > m1,

since O /∈ Λk. For the completion of the proof of Theorem 3.2 we may assume that
m1 6 1 if L1 ∩ Sing(X) ̸= ∅.

Arguing as in the proof of Lemma 2.15, we readily see that m1 6 1 if L1 ∩
Sing(X) = ∅.

Lemma 3.7. There is a line L2 ⊂ X such that L1 ̸= L2 and P ∈ L2.

Proof. Suppose there is no line L2 ⊂ X such that L1 ̸= L2 and P ∈ L2. Then
T = L1 + C, where C is an irreducible conic on X such that P ∈ C.

By Remark 2.22 we may assume that C ̸⊆ Supp(Ω), since m1 ̸= 0.
Let L1 and C be the proper transforms of L1 and C on the surface U , respectively.

Then

D ∼Q m1L1 + Ω ∼Q π∗(m1L1 + Ω)−
(
m1 + multP (Ω)

)
E ∼Q π∗(D)−multP (D)E,

where Ω is the proper transform of the divisor Ω on the surface U . We have

0 6 C · Ω = 2−multP (D) +m1C · L < 2/3−m1C · L1

=

{
2/3−m1 if L1 ∩ Sing(X) = ∅,
2/3−m1/2 if L1 ∩ Sing(X) ̸= ∅,

which implies that m1 < 2/3 if L1 ∩ Sing(X) = ∅. It follows from the inequal-
ity (3.1) that

multQ( Ω ) > 8/3−multP (Ω)−m1

(
1 + multQ(L1)

)
.
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Suppose that Q ∈ L1. Then by Lemma 2.20

8/3 < L1 ·
(
Ω+

(
multP (Ω) +m1

)
E

)
= 1−m1L1 · L1

=

{
1 + 2m1 if L1 ∩ Sing(X) = ∅,
1 + 3m1/2 if L1 ∩ Sing(X) ̸= ∅,

which is impossible, because m1 6 1 if L1 ∩ Sing(X) ̸= ∅ (see Remark 3.6).
We see that Q /∈ L1. Suppose that Q ∈ C. Then

2−multP (Ω)−m1 −m1C · L1 = C · Ω > 8/3−multP (Ω)−m1,

which is impossible, because m1C · L1 > 0. Hence, we see that Q /∈ C.
There is a commutative diagram

U

π

��

ζ // W

ψ
��

X ρ
//______ P2 ,

where ζ is the birational morphism contracting the curve L1, the morphism ψ is
a double cover branched over a plane quartic curve, and the rational map ρ is the
linear projection from the point P ∈ X.

Let τ be the birational involution of U induced by ψ. Then
• τ is biregular ⇐⇒ L1 ∩ Sing(X) = ∅,
• if L1 ∩ Sing(X) ̸= ∅, then τ acts biregularly on U \ L1,
• it follows from the construction of τ that τ(E) = C,
• if L1 ∩ Sing(X) = ∅, then

τ∗(L1) ∼ L1, τ∗(E) ∼ C, τ∗
(
π∗(−KX)

)
∼ π∗(−2KX)− 3E − L1.

Let H be a hyperplane section of the cubic surface X such that H is singular at
π ◦ τ(Q) ∈ C. Then P /∈ H because C is smooth. Let H be the proper transform
of H on the surface U . Then L1 ̸⊆ Supp(H ) ̸⊇ C.

We put R = τ(H ) and R = π(R ). Then R is singular at the point Q, and

R ∼ π∗(−2KX)− 3E − L1,

because R does not pass through a singular point of the surface X for Sing(X) ̸= ∅.
Suppose that R is irreducible. Then R + L1 ∼ −2KX , but the log pair(

X, 3
8 (R + L1)

)
is log canonical. Thus (see Remark 2.22), we may assume that

R ̸⊆ Supp(D). Then

5− 2
(
m1 + multP (Ω)

)
+m1(1 + L1 · L1)

= R · Ω > 2 multQ( Ω ) > 2
(
8/3−m1 −multP (Ω)

)
,

which implies that m1 < 0, a contradiction. We have shown that R must be
reducible.
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It follows immediately from the reducibility of R that there is a line L ⊂ X
such that P /∈ L and π ◦ τ(Q) ∈ L. Then L ∩ L1 = ∅, because π ◦ τ(Q) ∈ C
and (C + L1) · L = T · L = 1. Thus, there is a unique conic Z ⊂ X such that
−KX ∼ L + Z and P ∈ Z. Then Z is irreducible and P = Z ∩ L1, because
(L+ Z) · L1 = 1.

Let L and Z be the proper transforms of the curves L and Z on U , respectively.
Then

L · C = Z · E = 1, L1 · Z = L · E = L · L1 = 0,

Z · Z = 1− L · Z, L · Z =

{
2 if L ∩ Sing(X) = ∅,
3/2 if L ∩ Sing(X) ̸= ∅.

By construction τ(Z ) = L. Then Q ∈ Z. Suppose that Z ̸⊆ Supp(Ω ). Then

2−m1 −multP (Ω) = Z · Ω > 8/3−m1 −multP (Ω),

which is a contradiction. Thus, Z ⊆ Supp(Ω ). The log pair (X,ω(L + Z)) is
log canonical at the point P . Hence we may assume that L ̸⊆ Supp(Ω ) (see
Remark 2.22). We put D = εZ +m1L1 + Υ, where Υ is an effective Q-divisor such
that Z ̸⊂ Supp(Υ) ̸⊃ L1. Then

1 = L ·D = εL · Z +m1L · L1 + L ·Υ = εL · Z + L ·Υ > εL · Z

=

{
2ε if L ∩ Sing(X) = ∅,
3ε/2 if L ∩ Sing(X) ̸= ∅,

which implies that ε 6 2/3. However, Z ∩ L1 = ∅. Hence it follows from
Lemma 2.20 that

2−multP (D)− εZ · Z = Z ·Υ > 8/3−multP (D),

where Υ is a proper transform of Υ on the surface U . We conclude that ε > 2/3;
however, ε 6 2/3. This contradiction completes the proof of Lemma 3.7.

We see therefore that T = L1 + L2 + L3, where L3 is a line such that P /∈ L3.
We put D = m1L1 + m2L2 + ∆, where ∆ is an effective Q-divisor such that
L1 ̸⊆ Supp(∆) ̸⊇ L2.

We point out that m1 > 1/3 and m2 > 1/3 by Corollary 3.5. Hence we may
assume by Remark 2.22 that L3 ̸⊆ Supp(∆). If L1 or L2 contains a singular point
of X, then we may assume without loss of generality that it lies in L1. Then
L3 ·L2 = 1 and L3 ·L1 = 1/2 if L1 ∩ Sing(X) ̸= ∅. Similarly, we see that L3 ·L2 =
L3 · L1 = 1 in the case L1 ∩ Sing(X) = ∅. Then 1−m1L1 · L3 −m2 = L3 ·∆ > 0.

Let L1 and L3 be the proper transforms of L1 and L2 on U , respectively. Then

m1L1 +m2L2 + ∆ ∼Q π∗(m1L1 +m2L2 + ∆)−
(
m1 +m2 + multP (∆)

)
E,

where ∆ is the proper transform of ∆ on U . The inequality (3.1) implies that

multQ( ∆ ) > 8/3−multP (∆)−m1

(
1 + multQ(L1)

)
−m1

(
1 + multQ(L2)

)
. (3.2)
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Lemma 3.8. The curve L2 does not contain the point Q.

Proof. Suppose that Q ∈ L2. Then

1−multP (∆)−m1 +m2 = L2 ·∆ > 8/3−multP (∆)−m1 −m2

by Lemma 2.20. Hence m2 > 5/6. On the other hand, it follows from Lemma 2.20
that

1−m2 −m1L1 · L1 = ∆ · L1 > 4/3−m2.

However, L1 ·L1 = −1 if L1∩Sing(X) = ∅ and L1 ·L1 = −1/2 if L1∩Sing(X) ̸= ∅.
Then

m1 >

{
1/3 if L1 ∩ Sing(X) = ∅,
2/3 if L1 ∩ Sing(X) ̸= ∅,

by Corollary 3.5, which is impossible because m2 > 5/6 and 1 > m1L1 · L3 +m2.

Lemma 3.9. The curve L1 does not contain the point Q.

Proof. Suppose that Q ∈ L1. Arguing as in the proof of Lemma 3.8, we see that
L1 ∩ Sing(X) ̸= ∅, which implies that L1 · L1 = −1/2. Then m1 > 10/9, because

1 + 3m1/2 = L2 ·
(
∆ +

(
multP (∆)−m1 −m2

)
E

)
> 8/3

by Lemma 2.20. On the other hand, m1 6 1 by Remark 3.6. This contradiction
completes the proof.

We see therefore that L1 ̸∋ Q /∈ L2. There is a commutative diagram

U

π

��

ζ // W

ψ
��

X ρ
//______ P2 ,

where ζ is a birational morphism contracting the curves L1 and L2, the morphism
ψ is a double cover branched over a plane quartic curve, and ρ is the projection
from the point P .

Let τ be the birational involution of U induced by ψ. Then
• τ is biregular ⇐⇒ L1 ∩ Sing(X) = ∅,
• τ acts biregularly on U \ L1 if L1 ∩ Sing(X) ̸= ∅,
• the construction of τ shows that τ(L2) = L2,
• if L1 ∩ Sing(X) = ∅, then τ(L1) = L1 and

τ∗
(
π∗(−KX)

)
∼ π∗(−2KX)− 3E − L1 − L2.
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Let L3 be the proper transform of L3 on the surface U . Then τ(E) = L3 and

L1 ∪ L2 ̸∋ π ◦ τ(Q) ∈ L3.

Lemma 3.10. The line L3 is the only line on X that passes through the point
π ◦ τ(Q).

Proof. Suppose there is a line L ⊂ X such that L ̸= L3 and π ◦ τ(Q) ∈ L. Then
L ∩ L1 = L ∩ L2 = ∅, because π ◦ τ(Q) ∈ L3 and (L1 + L2 + L3) · L = 1. Thus,
there is a unique conic Z ⊂ X such that −KX ∼ L + Z and P ∈ Z. Then Z is
irreducible, since P /∈ L and P is not an Eckardt point.

Let L and Z be the proper transforms of L and Z on U , respectively. Then

L · L3 = Z · E = 1, Z · Z = 1− L · Z, L · Z =

{
2 if L ∩ Sing(X) = ∅,
3/2 if L ∩ Sing(X) ̸= ∅,

and L1 ·Z = L2 ·Z = L ·E = L ·L1 = L ·L2 = 0. By the construction of τ we have
τ(Z ) = L. Then Q ∈ Z, which implies that Z ⊆ Supp(∆ ), because

2−multP (∆)−m1 −m2 = Z · Ω > 8/3−multP (∆)−m1 −m2

in the case when Z ̸⊆ Supp(∆ ). On the other hand, the log pair (X,ω(L + Z))
is log canonical at the point P . Hence by Remark 2.22 we may assume that
L ̸⊆ Supp(∆ ). Let D = εZ +m1L1 +m2L2 + Υ, where Υ is an effective Q-divisor
such that Z ̸⊆ Supp(Υ). Then

1 = L ·D = εL · Z +m1L · L1 + L ·Υ = εL · Z + L ·Υ > εL · Z

=

{
2ε if L ∩ Sing(X) = ∅,
3ε/2 if L ∩ Sing(X) ̸= ∅,

which implies that ε 6 2/3. On the other hand, Z ∩L1 = ∅. Hence it follows from
Lemma 2.20 that

2−multP (D)− εZ · Z = Z ·Υ > 8/3−multP (D),

where Υ is the proper transform of Υ on U . We deduce that ε > 2/3, but we have
already shown that ε 6 2/3: a contradiction which completes the proof.

Therefore, there is a unique irreducible conic C ⊂ X such that −KX ∼ L3 + C
and π ◦ τ(Q) ∈ C. Then C + L3 is a hyperplane section of X which is singular at
π◦τ(Q). Let C be the proper transform of C on U . We set Z = τ(C ) and Z = π(Z ).

Lemma 3.11. L1 ∩ Sing(X) ̸= ∅.

Proof. Suppose that L1 ∩ Sing(X) = ∅. Then C ∩ L1 = C ∩ L2 = ∅, because
(L1 + L2 + L3) · C = L3 · C = 2. One can easily check that Z ∼ π∗(−2KX) −
4E − L1 − L2, and Z is singular at P . Then −2KX ∼ Z + L1 + L2, but the log
pair

(
U, 1

2 (Z + L1 + L2)
)

is log canonical at P . Thus (see Remark 2.22), we may
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assume that Z ̸⊆ Supp(D). By construction, Q ∈ Z and Z ·E = 2. Then it follows
from the inequality (3.1) that

4− 2 multP (D) = Z ·D > multQ(D ) > 8/3−multP (D),

which implies that multP (D) < 4/3. However, this is impossible since multP (D) >
4/3. The proof is complete.

Thus, L1 ∩ L3 = Sing(X) ̸= ∅. Then L1 ∩ L2 ∈ C, which implies that

Z ∼ π∗(−2KX)− 4E − 2L1 − L2,

and Z is a smooth rational cubic. Then −2KX ∼ Z + 2L1 + L2, but the log pair(
U, 1

2 (Z+2L1+L2)
)

is log canonical at P . Thus, we may assume that Z ̸⊆ Supp(D)
by Remark 2.22. We have Q ∈ Z and Z · E = L1 = 1. Then it follows from the
inequality (3.1) that

3−multP (∆)− 2m1 −m2 = Z ·∆ > multQ( ∆ ) > 8/3−multP (∆)−m1 −m2,

which implies that m1 < 1/3. On the other hand, m1 > 2/3 by Corollary 3.5. This
contradiction completes the proof of Theorem 3.2.

4. Del Pezzo surfaces

Let X be a del Pezzo surface that has at most canonical singularities, let O
be a point of X, and let BX be an effective Q-divisor on X. Suppose that O is
a smooth or an ordinary double point of X and that X is smooth away from O ∈ X.

Lemma 4.1. Let Sing(X) = O and K2
X = 2, and suppose that BX ∼Q −µKX ,

where 0 < µ < 2/3. Then LCS(X,µBX) = ∅.

Proof. Suppose that LCS(X,µBX) ̸= ∅. Then there is a curve L with P1 ∼= L ⊂ X
such that LCS(X,µBX) ̸⊆ L, the equality L ·L = −1 holds, and L∩ Sing(X) = ∅.
Therefore, there is a birational morphism π : X → S that contracts the curve L.
Then LCS(S, µπ(BX)) ̸= ∅ due to the choice of the curve L ⊂ X. On the other
hand, −KS ∼Q π(BX), and S is a cubic surface in P3 that has at most one ordinary
double point, which is impossible (see Examples 1.11 and 1.10).

Lemma 4.2. Suppose that Sing(X) = ∅, K2
X = 5, and BX ∼Q −µKX , where

µ ∈ Q is such that 0 < µ < 2/3. Assume that LCS(X,BX) ̸= ∅. Then either the
set LCS(X,BX) contains a curve, or there exist a curve L with P1 ∼= L ⊂ X and
a point P ∈ L such that L · L = −1 and LCS(X,BX) = P .

Proof. Suppose that LCS(X,BX) contains no curves. Then it follows from The-
orem 2.7 that LCS(X,BX) = P for some point P ∈ X. We may assume that P
does not lie on any curve L with P1 ∼= L ⊂ X such that L · L = −1. Then there
is a birational morphism ϕ : X → P2 that is an isomorphism in a neighbourhood
of the point P . We note that ϕ(P ) ∈ LCS(P2, ϕ(BX)), the set LCS(P2, ϕ(BX))
contains no curves, and ϕ(BX) ∼Q −µKP2 . Since µ < 2/3, the latter is impossible
by Lemma 2.8, .



Log canonical thresholds 891

Example 4.3. Suppose that O = Sing(X) and K2
X = 5. Let α : V → X be

a blow-up of O and let E be the exceptional divisor of α. Then there is a birational
morphism ω : V → P2 such that the morphism ω contracts the curves E1, E2, E3,
E4, and the curve ω(E) is a line in P2 that contains ω(E1), ω(E2), and ω(E3), but
ω(E) ̸∋ ω(E4).

Let Z be a line in P2 such that ω(E1) ∈ Z ∋ ω(E4). Then

2E + Z + 2E1 + E2 + E3 ∼ −KV ,

where Z is the proper transform of Z on V . One has

lct
(
X,α(Z ) + 2α(E1) + α(E2) + α(E3)

)
= 1/2,

which implies that lct(X) 6 1/2. Suppose that −KX ∼Q 2BX , but (X,BX) is not
log canonical. Then

KV +BV +mE ∼Q α∗(KX +BX)

for some m > 0, where BV is the proper transform of BX on the surface V .
Then the log pair (V,BV + mE) is not log canonical at some point P ∈ V .
There is a birational morphism π : V → U such that π is an isomorphism in
a neighbourhood of P ∈ X and U is a smooth del Pezzo surface with K2

U = 6.
This implies that

(
U, π(BV ) +mπ(E)

)
is not log canonical at π(P ). On the other

hand, π(BV ) +mπ(E) ∼Q −(1/2)KU , which is impossible because lct(U) = 1/2
(see Example 1.10). Thus, lct(X) = 1/2.

Example 4.4. Suppose that K2
X = 4. Arguing as in Example 4.3, we see that

lct(X) =

{
1/2 if O = Sing(X),
2/3 if Sing(X) = ∅.

Suppose that BX ∼Q −KX but the log pair (X,λBX) is not log canonical at some
point P ∈ X \O. There is a commutative diagram

V
α

}}{{
{{

{{
{ β

!!C
CC

CC
CC

X
ψ

//_______ U ,

where U is a cubic surface in P3 that has canonical singularities, the morphism α
is a blow-up of the point P , the morphism β is birational, and ψ is the projection
from the point P ∈ X. Then

KV + λBV +
(
λmultP (BX)− 1

)
E ∼Q α∗(KX + λBX),

where E is the exceptional divisor of α and BV is the proper transform of BX on V .
We note that (

V, λBV + (λmultP (BX)− 1)E
)
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is not log canonical at some point Q ∈ E, and multP (BX) > 1/λ. Then the log
pair (

V, λBV + (λmultP (BX)− λ)E
)

is also not log canonical at the point Q ∈ E, but

BV +
(
multP (BX)− 1

)
E ∼Q −KV + α∗(KX +BX) ∼Q −KV .

Suppose that P is not contained in any line on the surface X. Then
• the morphism β : V → U is an isomorphism,
• is cubic surface is smooth away from ψ(O),
• the point ψ(O) is an ordinary double point of the surface U ,

which implies that λ > 2/3 (see Example 1.11).
Let λ = 3/4. Then ψ(Q) ∈ U ⊂ P3 must be an Eckardt point of the surface

U by Theorem 3.2 (see Definition 3.1). On the other hand, β(E) ⊂ U is
a line, so X contains two irreducible conics C1 ̸= C2 such that P = C1 ∩ C2 and
C1 + C2 ∼ −KX .

Lemma 4.5. Suppose that O = Sing(X), K2
X = 6, and there is a diagram

V
α

}}||
||

||
| β

!!C
CC

CC
CC

X P2 ,

where β is a blow-up of three points P1, P2, P3 ∈ P2 lying on a line L ⊂ P2, and
α is a birational morphism contracting an irreducible curve L to the point O such
that β(L ) = L. Then LCS(X,λBX) = O in the case when LCS(X,λBX) ̸= ∅,
BX ∼Q −KX , and λ < 1/2.

Proof. Suppose that ∅ ̸= LCS(X,λBX) ̸= O but BX ∼Q −KX . Let M be
a general line in P2 and let M be its proper transform on V . Then −KX ∼ 2α(M )
and O ∈ α(M ). Thus, the set LCS(X,λBX) contains a curve, because otherwise
the locus LCS(X,λBX + α(M )) would be disconnected, which is impossible by
Theorem 2.7.

Let C be an irreducible curve on X such that C ⊆ LCS(X,λBX). Then BX =
εC + Ω, where ε > 2 and Ω is an effective Q-divisor such that C ̸⊂ Supp(Ω).

Let Γi be a proper transform on X of a sufficiently general line in P2 that passes
through Pi. Then O /∈ Γ1∪Γ2∪Γ3 and −KX ·Γ1 = −KX ·Γ2 = −KX ·Γ3 = 2. On
the other hand, −KX ∼Q Γ1 +Γ2 +Γ3, which implies that there is an m ∈ {1, 2, 3}
such that C · Γm ̸= 0. Then

2 = BX · Γm = (εC + Ω) · Γm > εC · Γm > ε > 2,

because Γm ̸⊂ Supp(BX). This contradiction completes the proof.

Remark 4.6. Suppose that O = Sing(X) and K2
X = 6. Let α : V → X be a blow-up

of the point O ∈ X, and let E be the exceptional divisor of α. Then

KV +BV +mE ∼Q α∗(KX +BX)
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for some m > 0, where BV is the proper transform of BX on V . We note that
lct(X) 6 1/3. Suppose that lct(X) < 1/3, that is, there exists an effective Q-divisor
BX ∼Q −KX such that the log pair

(
X, 1

3BX
)

is not log canonical. Then the
log pair

(
V, 1

3 (BV + mE)
)

is not log canonical at some point P ∈ V . There is
a birational morphism π : V → U such that either U ∼= F1 or U ∼= P1 × P1,
and the birational morphism π is an isomorphism in a neighbourhood of P ∈ X.
Then the log pair

(
U, 1

3 (π(BV )+mπ(E))
)

is not log canonical at the point π(P ). On
the other hand, −KU ∼Q π(BV )+mπ(E), which immediately yields a contradiction
to Example 1.10. Hence lct(X) = 1/3.

Lemma 4.7. Suppose that X ∼= P(1, 1, 2) and BX ∼Q −KX , but there is a point
P ∈ X such that O ̸= P ∈ LCS(X,λBX) for some non-negative rational λ < 1/2.
Let L be the unique curve in the linear system |OP(1,1,2)(1)| such that P ∈ L. Then
L ⊆ LCS(X,λBX).

Proof. Suppose there is a curve Γ ∈ LCS(X,λBX) such that P ∈ Γ ̸= L. Then
BX = µΓ + Ω, where µ > 2 and Ω is an effective Q-divisor such that Γ ̸⊂ Supp(Ω).
Hence µΓ + Ω ∼Q 4L and Γ ∼ mL, where m ∈ Z>0. On the other hand, we have
P ∈ Γ ̸= L, and therefore m > 2, which yields a contradiction.

Suppose that L ̸⊆ LCS(X,λBX). Then it follows from Theorem 2.7 that
LCS(X,λBX) = P , because we have proved that LCS(X,λBX) contains no curves
passing through P .

Let C be a general curve in the linear system |OP(1,1,2)(1)|. Then LCS(X,
λBX + C) = P ∪ C, which is impossible by Theorem 2.7.

Lemma 4.8. Suppose that X ∼= F1. Then there are 0 6 µ ∈ Q ∋ λ > 0 such that
BX ∼Q µC+λL, where C and L are irreducible curves on X such that C ·C = −1,
C · L = 1, and L · L = 0. Suppose that µ < 1 and λ < 1. Then LCS(X,BX) = ∅.

Proof. Obviously, the set LCS(X,BX) contains no curves, because L and C gen-
erate the cone of effective divisors of the surface X. Suppose that LCS(X,BX)
contains a point O ∈ X. Then

KX +BX +
(
(1− µ)C + (2− λ)L

)
∼Q −(L+ C),

because −KX ∼Q 2C + 3L. On the other hand, it follows from Theorem 2.6 that
the map

0 = H0
(
OX(−L− C)

)
→ H0(OL (X,BX)) ̸= 0

is surjective, because the divisor (1− µ)C + (2− λ)L is ample: a contradiction.

Lemma 4.9. Suppose that Sing(X) = ∅ and K2
X = 7. Then

L1 · L1 = L2 · L2 = L3 · L3 = −1, L1 · L2 = L2 · L3 = 1, L1 · L3 = 0,

where L1, L2, L3 are exceptional curves on X . Suppose that LCS(X,BX) ̸= ∅ but
BX ∼Q −µKX , where µ < 1/2. Then LCS(X,BX) = L2.

Proof. Let P be a point in LCS(X,BX). Then P ∈ L2, because lct(P1×P1) = 1/2
and there is a birational morphism X → P1 × P1 that contracts only the curve L2.
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Suppose that LCS(X,BX) ̸= L2. Then LCS(X,BX) = P by Theorem 2.7.
We may assume that P /∈ L3. Then there is a birational morphism ϕ : X → P2

that contracts the curves L1 and L3. Let C1 and C3 be the proper transforms on
X of sufficiently general lines in P2 that pass through the points ϕ(L1) and ϕ(L3),
respectively. Then −KX ∼ C1 + 2C3 + L3 but C1 ̸∋ P /∈ C3. We see that

C3 ∪ P ⊆ LCS
(
X,λD +

1
2

(C1 + 2C3 + L3)
)
⊆ C3 ∪ P ∪ L3,

which is impossible by Theorem 2.7, because P /∈ L3.

Lemma 4.10. Suppose that O = Sing(X), K2
X = 7, and BX ∼Q C+(4/3)L, where

L ∼= P1 ∼= C are curves on the surface X such that L · L = −1/2, C ·C = −1, and
C ·L = 1, but the log pair (X,BX) is not log canonical at some point P ∈ C . Then
P ∈ L.

Proof. Let S be a quadratic cone in P3. Then S ∼= P(1, 1, 2) and there is a birational
morphism ϕ : X → S ⊂ P3 that contracts the curve C to a smooth point Q ∈ S.
Then Q ∈ ϕ(L) ∈ |OP(1,1,2)(1)|.

Suppose that P /∈ L. Then it follows from Remark 2.22 that to complete the
proof we may assume that either C ̸⊂ Supp(BX) or L ̸⊂ Supp(BX), because
the log pair (X,C + (4/3)L) is log canonical at the point P ∈ X. Suppose that
C ̸⊂ Supp(BX). Then 1/3 = BXC > multP (BX) > 1, which is impossible.
Therefore, C ⊂ Supp(BX). Hence we may assume that L ̸⊂ Supp(BX).

We put BX = εC+Ω, where Ω is an effective Q-divisor such that C ̸⊂ Supp(Ω).
Then 1/3 = BX · L = ε+ Ω · L > ε, which implies that ε 6 1/3. Then 1 < Ω ·C =
1/3 + ε 6 2/3 by Lemma 2.20, a contradiction. The proof is complete.

5. Toric varieties

The aim of his section is to prove Lemma 5.1 (cf. [30], [55]).
Let N = Zn be a lattice of rank n and M = Hom(N,Z) the dual lattice. Let

MR = M ⊗Z R and NR = N ⊗Z R. Let X be a toric variety defined by a complete
fan Σ ⊂ NR; let ∆1 = {v1, . . . , vm} be the set of generators of one-dimensional
cones of the fan Σ. We put

∆ = {w ∈M | ⟨w, vi⟩ > −1 for all i = 1, . . . ,m}.

Let T = (C∗)n ⊂ Aut(X), let N be the normalizer of T in Aut(X) and
W = N /T .

Lemma 5.1. Let G ⊂ W be a subgroup. Suppose that X is Q-factorial. Then

lct(X,G) =
1

1 + max{⟨w, v⟩ | w ∈ ∆G, v ∈ ∆1}
,

where ∆G is the set of points in ∆ that are fixed by the group G.

Proof. We put µ = 1 + max{⟨w, v⟩ | w ∈ ∆G, v ∈ ∆1}. Then µ ∈ Q is the largest
number such that −KX ∼Q µR + H, where R is a T o G-invariant effective Weil
divisor and H is an effective Q-divisor. Hence lct(X,G) 6 1/µ.

Suppose that lct(X,G) < 1/µ. Then there is a G-invariant effective Q-divisor
D ∼Q −KX such that the log pair (X,λD) is not log canonical for some λ < 1/µ.
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There exists a family {Dt | t ∈ C} of G-invariant effective Q-divisors such that
• Dt ∼Q D for every t ∈ C,
• D1 = D,
• for every t ̸= 0 there is a ϕt ∈ Aut(X) such that Dt = ϕt(D) ∼= D,
• the divisor D0 is T -invariant,

which implies that (X,λD0) is not log canonical (see [21]).
On the other hand, the divisor D0 does not have components with multiplicity

greater than µ, which implies that (X,λD0) is log canonical (see [56]). This is
a contradiction.

Corollary 5.2. Let X = P
(
OPn ⊕ OPn(−a1) ⊕ · · · ⊕ OPn(−ak)

)
, where ai > 0 for

i = 1, . . . , k. Then

lct(X) =
1

1 + max
{
k, n+

∑k
i=1 ai

} .
Proof. We note that X is a toric variety and ∆1 consists of the following vectors:

( k︷ ︸︸ ︷
1, 0, . . . , 0,

n︷ ︸︸ ︷
0, 0, . . . , 0

)
, . . . , (0, . . . , 0, 1, 0, 0, . . . , 0),

(−1, . . . ,−1, 0, 0, . . . , 0),
(0, 0, . . . , 0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 0, . . . , 0, 1),

(−a1, . . . ,−ak,−1, . . . ,−1),

which implies the required assertion by Lemma 5.1.

Applying Corollary 5.2, we obtain the following result.

Corollary 5.3. In the notation of § 1 one has lct(X) = 1/4 if (X)ג ∈ {2.33, 2.35},
and one has lct(X) = 1/5 if (X)ג = 2.36.

Straightforward calculations using Lemma 5.1 yield the following result.

Corollary 5.4. In the notation of § 1,

lct(X) =


1/3 if (X)ג ∈ {3.25, 3.31, 4.9, 4.11, 5.2},
1/4 if (X)ג ∈ {3.26, 3.30, 4.12},
1/5 if (X)ג = 3.29.

Remark 5.5. Suppose that the toric varietyX is symmetric, that is, ∆W = {0} (see,
for instance, [30]). Then it follows from Lemma 5.1 that the global log canonical
threshold lct(X,W ) is equal to 1. We note that this equality was proved in [30]
and [55] under the additional assumption that X is smooth.

6. Del Pezzo threefolds

Throughout this section we use the assumptions and the notation from § 1. Sup-
pose that −KX ∼ 2H, where H is a Cartier divisor that is indivisible in Pic(X).
The aim of this section is to prove the following result.

Theorem 6.1. The equality lct(X) = 1/2 holds unless (X)ג = 2.35, when
lct(X) = 1/4.
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It follows from Theorems 3.1.14 and 3.3.1 in [2] that (X)ג ∈ {1.11, . . . , 1.15, 2.32,
2.35, 3.27}. By [5] and [13] (see also Lemma 2.17) one has lct(X) = 1/2 if (X)ג ∈
{1.12, 1.13}. It follows from Lemma 2.29 that lct(X) = 1/2 when (X)ג = 3.27.
Lemma 5.1 implies that lct(X) = 1/4 if (X)ג = 2.35.

The remaining cases are: (X)ג ∈ {1.11, 1.14, 1.15, 2.32}, and the inequality
lct(X) 6 1/2 is obvious here, because the linear system |H| is non-empty.

Lemma 6.2. If (X)ג = 2.32, then lct(X) = 1/2.

Proof. We may suppose that lct(X) < 1/2. Then there is an effective Q-divisor
D ∼Q H such that the log pair (X,λD) is not log canonical for some λ < 1.

The threefold X is a divisor on P2×P2 of bidegree (1, 1). There are two natural
P1-bundles π1 : X → P2 and π2 : X → P2; applying Theorem 2.27 to them, we
immediately obtain a contradiction.

Remark 6.3. Suppose that Pic(X) = Z[H] and there exists an effective Q-divisor
D ∼Q H such that the log pair (X,λD) is not log canonical for some λ < 1. We
put D = εS + Ω ∼Q H, where S is an (irreducible) surface and Ω is an effective
Q-divisor such that Supp(Ω) ̸⊃ S. Then ε 6 1 because Pic(X) = Z[H], which
implies that the set LCS(X,λD) contains no surfaces. Moreover, for any choice
of H ∈ |H| the locus LCS(X,λD + H) is connected by Theorem 2.7. Let H be
a general surface in the linear system |H|. Since LCS(X,λD + H) is connected,
it follows that LCS(X,λD +H) has no isolated zero-dimensional components out-
side the base locus of |H|. Furthermore, |H| has no base points except in the case
(X)ג = 1.11, when the base locus of |H| consists of a single point O. We note that
in the last case O /∈ LCS(X,λD), since X is covered by the curves of anticanon-
ical degree 2 passing through O. Hence the locus LCS(X,λD) never has isolated
zero-dimensional components; in particular, it contains an (irreducible) curve C.
We put D|H = D. Then −KH ∼Q D, but (H,λD ) is not log canonical at every
point of the intersection H ∩ C. The locus LCS(H,λD ) is connected by Theo-
rem 2.7. But the scheme L (H,λD ) is zero dimensional, so H · C = |H ∩ C| = 1
and the locus LCS(X,λD) contains no curves besides C.

Lemma 6.4. If (X)ג = 1.14, then lct(X) = 1/2.

Proof. We may suppose that lct(X) < 1/2. Then there is an effective Q-divisor
D ∼Q H such that the log pair (X,λD) is not log canonical for some λ < 1.

The linear system |H| induces an embedding X ⊂ P5 such that X is a complete
intersection of two quadrics. Then LCS(X,λD) consists of a single line C ⊂ X by
Remark 6.3.

It follows from Proposition 3.4.1 in [2] that there is a commutative diagram

V
α

}}||
||

||
| β

!!C
CC

CC
CC

X
ψ

//_______ P3 ,

where ψ is the projection from C, the morphism α is a blow-up of the line C, and
β is a blow-up of a smooth curve Z ⊂ P3 of degree 5 and genus 2.
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Let S be the exceptional divisor of β and let L be a fibre of the morphism β
over a general point of the curve Z. We put S = α(S) and L = α(L). Then
S ∼ 2H, the curve L is a line, and multC(S ) = 3. Here the log pair (X, (1/2)S )
is log canonical, so we may assume (see Remark 2.22) that Supp(D) ̸⊃ S. Then
1 = L ·D > multC(D) > 1, a contradiction.

Remark 6.5. Let V ⊂ P5 be a complete intersection of two quadric hypersurfaces
that has isolated singularities, and let BV be an effective Q-divisor on V such that
BV ∼Q −KV and LCS(V, µBV ) ̸= ∅, where µ < 1/2. Arguing as in the proof
of Lemma 6.4, we see that LCS(V, µBV ) ⊆ L, where L ⊂ V is a line such that
L ∩ Sing(V ) ̸= ∅.

Lemma 6.6. If (X)ג = 1.15, then lct(X) = 1/2.

Proof. This is analogous to the proof of Lemma 6.4.

Lemma 6.7. If (X)ג = 1.11, then lct(X) = 1/2.

Proof. We may suppose that lct(X) < 1/2. Then there is an effective Q-divisor
D ∼Q H such that the log pair (X,λD) is not log canonical for some λ < 1.

Recall that the threefold X can be given by an equation

w2 = t3 + t2f2(x, y, z) + tf4(x, y, z) + f6(x, y, z) ⊂ P(1, 1, 1, 2, 3)
∼= Proj(C[x, y, z, t, w]),

where wt(x) = wt(y) = wt(z) = 1, wt(t) = 2, wt(w) = 3, and fi is a polynomial
of degree i.

By Remark 6.3 the locus LCS(X,λD) consists of a single curve C ⊂ X such that
H · C = 1.

Let ψ : X 99K P2 be the natural projection. Then ψ is not defined at the point O
cut out by x = y = z = 0. The curve C does not contain the point O, because
otherwise

1 = Γ ·D > multO(D) multO(Γ) > multC(D) > 1/λ > 1,

where Γ is a general fibre of the projection ψ. Thus, we see that ψ(C) ⊂ P2 is
a line.

Let S be the (unique) surface in |H| such that C ⊂ S. Let L be a general fibre of
the rational map ψ that intersects the curve C. Then L ⊂ Supp(D) since otherwise
1 = D · L > multC(D) > 1/λ > 1.

We may assume that D = S by Remark 2.22. Then S has a cuspidal singularity
along C. We may assume that the surface S is cut out on X by the equation x = 0,
and the curve C is given by the equations w = t = x = 0. Then S is given by

w2 = t3 + t2f2(0, y, z) + tf4(0, y, z) ⊂ P(1, 1, 2, 3) ∼= Proj(C[y, z, t, w]),

and f6(x, y, z) = xf5(x, y, z), where f5(x, y, z) is a homogeneous polynomial of
degree 5.
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Since the surface S is singular along C, it follows that f4(x, y, z) = xf3(x, y, z),
where f3(x, y, z) is a homogeneous polynomial of degree 3. Then every point of the
set

x = f5(x, y, z) = t = w = 0 ⊂ P(1, 1, 1, 2, 3)

must be singular on X, which is a contradiction because X is smooth.

The proof of Theorem 6.1 is complete.

7. Threefolds with Picard number ρ = 2

We use the assumptions and notation introduced in § 1.

Lemma 7.1. If (X)ג = 2.1 or 2.3, then lct(X) = 1/2.

Proof. There is a birational morphism α : X → V that contracts a surface E ⊂ X
to a smooth elliptic curve C ⊂ V , where V is one of the following Fano three-
folds: a smooth hypersurface in P(1, 1, 1, 2, 3) of degree 6; a smooth hypersurface
in P(1, 1, 1, 1, 2) of degree 4.

The curve C lies in a surface H ⊂ V such that Pic(V ) = Z[H] and −KX ∼ 2H.
Then C is a complete intersection of two surfaces in |H|, and −KX ∼ 2H + E,
where E is the exceptional divisor of the birational morphism α, and H is the
proper transform of the surface H on the threefold X. In particular, the inequality
lct(X) 6 1/2 holds.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2. Then
LCS(X,λD) ⊆ E since lct(V ) = 1/2 by Theorem 6.1 and α(D) ∼Q 2H ∼ −KV .

We put k = H · C. Then k = H3 ∈ {1, 2}. We note that

NC/V
∼= OC

(
H|C

)
⊕ OC

(
H|C

)
,

which implies that E ∼= C × P1. Let Z ∼= C and L ∼= P1 be curves on E such that
Z · Z = L · L = 0 and Z · L = 1. Then α∗(H)|E ∼ kL, and since

−2Z ∼ KE ∼ (KX + E)|E ∼
(
2E − 2α∗(H)

)∣∣
E
∼ −2kL+ 2E|E ,

we see that E|E ∼ −Z + kL. We put D = µE + Ω, where Ω is an effective
Q-divisor on X such that E ̸⊂ Supp(Ω). The pair (X,E + λΩ) is not log canonical
in a neighbourhood of E. Hence the pair (E, λΩ|E) is also not log canonical by
Theorem 2.19. But

Ω|E ∼Q (−KX − µE)|E ∼Q
(
2α∗(H)− (1 + µ)E

)∣∣
E
∼Q (1 + µ)Z + k(1− µ)L,

and 0 6 λk(1− µ) 6 1, which contradicts Lemma 2.23.

Lemma 7.2. If (X)ג = 2.4 and X is general, then lct(X) = 3/4.

Proof. There is a commutative diagram

X
α

}}{{
{{

{{
{ β

!!D
DD

DD
DD

P3
ψ

//_______ P1 ,
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where ψ is a rational map, α is a blow-up of a smooth curve C ⊂ P3 such that
C = H1 ·H2 for some H1, H2 ∈ |OP3(3)|, and β is a fibration into cubic surfaces.

Let P be the pencil in |OP3(3)| generated by H1 and H2. Then ψ is given by P.
We assume that X satisfies the following generality conditions: every surface in

P has at most one ordinary double point; the curve C contains no Eckardt points4

(see Definition 3.1) of any surface in P.
Let E be the exceptional divisor of the blow-up α. Then

4
3
H1 +

1
3
E ∼Q

4
3
H2 +

1
3
E ∼Q −KX ,

where Hi is the proper transform of Hi on the threefold X. In particular, we see
that lct(X) 6 3/4.

Suppose that lct(X) < 3/4. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 3/4.
Suppose that the set LCS(X,λD) contains an (irreducible) surface S ⊂ X.

Then D = εS + ∆, where ε > 1/λ and ∆ is an effective Q-divisor such that
S ̸⊂ Supp(∆). By Remark 2.3, in this case the log pair

(
H1, D|H1

)
is not log

canonical if S ∩H1 ̸= ∅. But D|
H1

∼Q −KH1
. We can choose H1 to be a smooth

cubic surface in P3. Thus, it follows from Theorem 3.2 that S ∩H1 = ∅, which
implies that S ∼ H1. Thus, α(S) is a surface in P. Then εα(S)+α(∆) ∼Q OP3(4),
which is impossible because ε > 1/λ > 4/3.

Let F be a fibre of β such that F ∩LCS(X,λD) ̸= ∅. We set D = µF +Ω, where
Ω is an effective Q-divisor such that F ̸⊂ Supp(Ω). Then the log pair

(
F, λΩ|F

)
is

not log canonical by Theorem 2.19, because λµ < 1. It follows from Theorem 3.2
that LCS

(
F, λΩ|F

)
= O, where O is either an Eckardt point of the surface F or

a singular point of F . By Theorem 2.7

LCS(X,λD) = LCS(X,λµF + λΩD) = O,

because it follows from Theorem 2.19 that (X,F + λΩD) is not log canonical at O
but is log canonical in a punctured neighbourhood of O. But O /∈ E by our
generality assumptions. Hence

α(O) ⊂ LCS
(
P3, λα(D)

)
⊆ α(O) ∪ C,

where α(O) /∈ C. On the other hand, λ < 3/4, which contradicts Lemma 2.8.

Lemma 7.3. If (X)ג ∈ {2.5, 2.10, 2.14} and X is general, then lct(X) = 1/2.

Proof. There is a commutative diagram

X
α

}}||
||

||
| β

!!D
DD

DD
DD

V
ψ

//_______ P1 ,

4We note that C also does not contain singular points of surfaces in P, since C is a complete
intersection of two surfaces in P.
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where V is a smooth Fano threefold such that −KV ∼ 2H for some H ∈ Pic(V ) and
V)ג ) ∈ {1.13, 1.14, 1.15}, the morphism α is a blow-up of a smooth curve C ⊂ V
such that C = H1 · H2 for some H1, H2 ∈ |H| with H1 ̸= H2, the morphism β is
a del Pezzo fibration, and ψ is the projection from C.

Let E be the exceptional divisor of the blow-up α. Then 2H1 +E ∼ 2H2 +E ∼
−KX , where Hi is the proper transform of Hi on the threefold X. In particular,
lct(X) 6 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2. Then
LCS(X,λD) ⊆ E, because α(D) ∼Q −KV and lct(V ) = 1/2 by Theorem 6.1.

We assume that the threefoldX satisfies the following generality condition: every
fibre of the fibration β has at most one singular point, which is an ordinary double
point.

Let F be a fibre of β such that F ∩ LCS(X,λD) ̸= ∅. We put D = µF + Ω,
where Ω is an effective Q-divisor on X such that F ̸⊂ Supp(Ω). Then

α(D) = µα(F ) + α(Ω) ∼Q 2α(F ) ∼Q −KV ,

which implies that µ 6 2. We note that the pair
(
F, λΩ|F

)
is not log canonical

by Theorem 2.19. However, Ω|F ∼Q −KF , which implies that lct(F ) 6 λ < 1/2.
On the other hand, F has at most one ordinary double point and K2

F = H3 6 5,
which implies that lct(F ) > 1/2 (see Examples 1.10, 1.11, 4.3, and 4.4), which is
a contradiction.

Lemma 7.4. If (X)ג = 2.8 and X is general, then lct(X) = 1/2.

Proof. Let O ∈ P3 and let α : V7 → P3 be a blow-up of the point O. Then V7
∼=

P(OP2 ⊕ OP2(1)) and there is a P1-bundle π : V7 → P2. Let E be the exceptional
divisor of the birational morphism α. Then E is a section of π.

There is a quartic surface R ⊂ P3 such that Sing(R) = O, the point O is an
isolated double point of the surface R, and there is a commutative diagram

X
η

||yy
yy

yy
y

β

zz
ϕ

��

V2

ω !!C
CC

CC
CC

V7

α

}}{{
{{

{{
{

π

!!C
CC

CC
CC

P3
ψ //_______ P2 ,

where ω is a double cover branched in R, the morphism η is a double cover branched
in the proper transform of R, β is a birational morphism that contracts a surface
E with η(E ) = E to the singular point of V2, ω(Sing(V2)) = O, the map ψ is the
projection from the point O, and ϕ is a conic bundle.

We assume that X satisfies the following generality condition: the point O is an
ordinary double point of the surface R. Then E ∼= P1 × P1.

LetH be the proper transform onX of the general plane in P3 passing through O.
Then −KX ∼ 2H + E, which implies that lct(X) 6 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2.
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It follows from Lemma 2.17 that LCS(X,D) ∩E ̸= ∅. Put D = µE + Ω, where
Ω is an effective Q-divisor on X such that E ̸⊂ Supp(Ω). Then

2 = D · Γ = (µE + Ω) · Γ = 2µ+ Ω · Γ > 2µ,

where Γ is a general fibre of the bundle ϕ. Hence the log pair
(
E, λΩ|

E

)
is not log

canonical by Theorem 2.19, because LCS(X,D) ∩ E ̸= ∅. Furthermore, Ω|
E
∼Q

−((1 + µ)/2)KE , which is impossible by Lemma 2.23.

Lemma 7.5. If (X)ג = 2.11 and X is general, then lct(X) = 1/2.

Proof. Let V be a cubic hypersurface in P4. Then there is a commutative diagram

X
α

}}{{
{{

{{
{ β

""D
DD

DD
DD

V
ψ

//_______ P2

such that α contracts a surface E ⊂ X to a line L ⊂ V , the map ψ is a projection
from the line L, and the morphism β is a conic bundle.

We assume that X satisfies the following generality condition: the normal bundle
NL/V to the line L on the variety V is isomorphic to OL ⊕ OL.

Let H be a hyperplane section of V such that L ⊂ H. Then −KX ∼ 2H + E,
where H ⊂ X is the proper transform of the surface H. In particular, lct(X) 6 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2. Then
LCS(X,λD) ⊆ E since lct(V ) = 1/2 and α(D) ∼Q −KV . We note that E ∼= P1×P1

by the generality condition.
Let F ⊂ E be a fibre of the induced projection E → L, and let Z ⊂ E be a section

of this projection such that Z ·Z = 0. Then α∗(H)|E ∼ F and E|E ∼ −Z, because

−2Z − 2F ∼ KE ∼ (KX + E)|E ∼ 2
(
E − α∗(H)

)∣∣
E
∼ −2F + 2E|E .

We put D = µE + Ω, where Ω is an effective Q-divisor on X and E ̸⊂ Supp(Ω).
Then

2 = D · Γ = µE · Γ + Ω · Γ > µE · Γ = 2µ,

where Γ is a general fibre of the conic bundle β. Thus, we see that µ 6 1. The log
pair

(
E, λΩ|E

)
is not log canonical by Theorem 2.19. But

Ω|E ∼Q (−KX − µE)|E ∼Q (1 + µ)Z + 2F,

which contradicts Lemma 2.23, because µ 6 1 and λ < 1/2.

Lemma 7.6. If (X)ג = 2.15 and X is general, then lct(X) = 1/2.

Proof. There is a birational morphism α : X → P3 that contracts a surface E ⊂ X
to a smooth curve C ⊂ P3 that is the complete intersection of an (irreducible but
possibly singular) quadric Q ⊂ P3 and a cubic F ⊂ P3.

We assume that X satisfies the following generality condition: the quadric Q is
smooth.
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Let Q be the proper transform of Q on the threefold X. Then there is a
commutative diagram

X
α

}}zz
zz

zz
z β

!!C
CC

CC
CC

P3 V ,
γ

oo_ _ _ _ _ _ _

where V is a cubic in P4 that has one ordinary double point P ∈ V , the morphism β
contracts the surface Q to the point P , and γ is the projection from the point P .

Let E be the exceptional divisor of the birational morphism α. Then −KX ∼
2Q+E and β(E) ⊂ V is a surface containing all the lines on V that pass through P .
In particular, lct(X) 6 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2.
It follows from Lemma 2.16 that either LCS(X,λD) ⊆ Q, or the set LCS(X,λD)

contains a fibre of the natural projection E → C. We have LCS(X,λD) ∩ Q ̸= ∅
in both cases.

We have Q ∼= P1 × P1. Put D = µQ + Ω, where Ω is an effective Q-divisor
on X such that Q ̸⊂ Supp(Ω). Then α(D) ∼Q µQ + α(Ω) ∼Q −KP3 , which
gives µ 6 2. The log pair

(
Q,λΩ|

Q

)
is not log canonical by Theorem 2.19. But

Ω|
Q
∼Q −((1 + µ)/2)KQ, which implies by Lemma 2.23 that µ > 1.

By Remark 2.22 we may assume that E ̸⊂ Supp(D). Then

1 = D · F = µQ · F + Ω · F = µ+ Ω · F > µ,

where F is a general fibre of the natural projection E → C. But µ > 1, which is
a contradiction.

Lemma 7.7. If (X)ג = 2.18, then lct(X) = 1/2.

Proof. There is a smooth divisor B ⊂ P1 × P2 of bidegree (2, 2) such that the
diagram

X

π

��

ϕ1

vvnnnnnnnnnnnnnnn
ϕ2

((PPPPPPPPPPPPPPP

P1 P1 × P2
π1

oo
π2

// P2

is commutative, where π is a double cover branched in B, the morphisms π1 and
π2 are the natural projections, ϕ1 is a quadric fibration, and ϕ2 is a conic bundle.

Let H1 be a general fibre of π1, and let H2 be a general surface in |π∗2(OP2(1))|.
Then B ∼ 2H1 + 2H2.

Let H1 be a general fibre of ϕ1, and let H2 be a general surface in the linear
system |ϕ∗2(OP2(1))|. Then −KX ∼ H1 + 2H2, which implies that lct(X) 6 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some positive rational number
λ < 1/2.

Applying Lemma 2.25 to the fibration ϕ1, we see that LCS(X,λD) ⊆ Q, where Q
is a singular fibre of ϕ1. Moreover, applying Theorem 2.27 to the fibration ϕ2, we
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see that LCS(X,λD) ⊆ Q∩R, where R ⊂ X is an irreducible surface swept out by
singular fibres of ϕ2. In particular, the set LCS(X,λD) contains no surfaces.

Suppose that LCS(X,λD) is zero-dimensional. Then

LCS
(
X,λD +

1
2

(H1 + 2H2)
)

= LCS(X,λD) ∪H2,

which is impossible by Theorem 2.7.
We see that the set LCS(X,λD) contains a curve Γ ⊂ Q ∩R. Let D = µQ+ Ω,

where Ω is an effective Q-divisor such that Q ̸⊂ Supp(Ω). Then the log pair
(Q,λΩ|Q) is also not log canonical along Γ by Theorem 2.19. But Ω|Q ∼Q −KQ,
which implies (see Lemma 4.7) that Γ is a ruling of the cone Q ⊂ P3. Then
ϕ2(Γ) ⊂ P2 is a line and ϕ2(Γ) ⊆ ϕ2(R). But ϕ2(R) ⊂ P2 is a curve of degree 4.
Thus, we see that ϕ2(R) = ϕ2(Γ) ∪ Z, where Z ⊂ P2 is a reduced cubic curve.
Then ϕ2 induces a double cover of ϕ2(Γ) \ (ϕ2(Γ) ∩ Z) that must be unramified
(see [57]). But the curve ϕ2(R) has at most ordinary double points (see [57]),
therefore |ϕ2(Γ) ∩ Z| = 3, which is impossible because ϕ2(Γ) ∼= P1.

Lemma 7.8. If (X)ג = 2.19 and X is general, then lct(X) = 1/2.

Proof. It follows from Proposition 3.4.1 in [2] that there is a commutative diagram

X
α

}}||
||

||
| β

!!D
DD

DD
DD

V
ψ

//_______ P3 ,

where V is a complete intersection of two quadric fourfolds in P5, the morphism
α is a blow-up of a line L ⊂ V , the morphism β is a blow-up of a smooth curve
C ⊂ P3 of degree 5 and genus 2, and the map ψ is a projection from the line L.

Let E and R be the exceptional divisors of α and β, respectively. Then the
surface β(E) ⊂ P3 is an irreducible quadric and the surface α(R) ⊂ V is swept out
by lines in V that intersect the line L.

We assume that X satisfies the following generality condition: the surface β(E)
is smooth.

Let H be a hyperplane section of V ⊂ P5 such that L ⊂ H. Then 2H + E ∼
R + 2E ∼ −KX , where H is the proper transform of H on the threefold X. In
particular, lct(X) 6 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2. We note
that LCS(X,λD) ⊆ E ∼= P1 × P1, because α(D) ∼Q −KV and lct(V ) = 1/2 by
Theorem 6.1.

Let F be a fibre of the projection E → L and let Z be a section of this projection
such that Z · Z = 0. Then α∗(H)|E ∼ F and E|E ∼ −Z, because

−2Z − 2F ∼ KE ∼ (KX + E)|E ∼ 2
(
E − α∗(H)

)∣∣
E
∼ 2E|E − 2F.

By Remark 2.22 we may assume that either E ̸⊂ Supp(D) or R ̸⊂ Supp(D),
because the log pair (X,λ(R+ 2E)) is log canonical and −KX ∼ R+ 2E. We put
D = µE + Ω, where Ω is an effective Q-divisor on X such that E ̸⊂ Supp(Ω).
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Suppose that µ 6 1. Then (X,E + λΩ) is not log canonical, which implies that(
E, λΩ|E

)
is also not log canonical by Theorem 2.19. But

Ω|E ∼Q (−KX − µE)|E ∼Q (1 + µ)Z + 2F,

which contradicts Lemma 2.23, because µ 6 1 and λ < 1/2.
Thus, µ > 1. Hence we may assume that R ̸⊂ Supp(D).
Let Γ be a general fibre of the projection R→ C. Then Γ ̸⊂ Supp(D) and

1 = −KX · Γ = µE · Γ + Ω · Γ = µ+ Ω · Γ > µ,

a contradiction.

Lemma 7.9. If (X)ג = 2.23 and X is general, then lct(X) = 1/3.

Proof. There is a birational morphism α : X → Q with Q ⊂ P4 a smooth quadric
threefold that contracts a surface E ⊂ X to a smooth curve C ⊂ Q that is a com-
plete intersection of a hyperplane section H ⊂ Q and a divisor F ∈ |OQ(2)|.

We assume that X satisfies the following generality condition: the quadric sur-
face H is smooth.

Let H be a proper transform of H on X. Then there is a commutative diagram

X
α

}}{{
{{

{{
{ β

!!C
CC

CC
CC

Q V ,
γ

oo_ _ _ _ _ _ _

where V is a complete intersection of two quadrics in P5 such that V has one
ordinary double point P ∈ V , the morphism β contracts H to the point P , and γ
is a projection from P .

Let E be the exceptional divisor of α. Then −KX ∼ 3H + 2E and β(E) ⊂ V
is a surface containing all the lines in V that pass through P . In particular,
lct(X) 6 1/3.

Suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/3.
It follows from Remark 6.5 that either LCS(X,λD) ⊆ H or the set LCS(X,λD)

contains a fibre of the natural projection E → C. In both cases LCS(X,λD) ∩
H ̸= ∅.

We have H ∼= P1 × P1. Let D = µH + Ω, where Ω is an effective Q-divisor
on X such that H ̸⊂ Supp(Ω). Then α(D) ∼Q µH + α(Ω) ∼Q −KQ, which
gives µ 6 3. The log pair (H,λΩ|

H
) is not log canonical by Theorem 2.19. But

Ω|
H
∼Q −((1+µ)/2)KH , which implies that µ > 1 by Lemma 2.23. By Remark 2.22

we may assume that E ̸⊂ Supp(D), because the log pair (X,λ(3H + 2E)) is log
canonical. Let F be a general fibre of the natural projection E → C. Then

1 = D · F = µH · F + Ω · F = µ+ Ω · F > µ,

which is a contradiction because µ > 1.

Lemma 7.10. If (X)ג = 2.24 and X is general, then lct(X) = 1/2.
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Proof. The threefold X is a divisor on P2×P2 of bidegree (1, 2). Let Hi be a surface
in |π∗i (OP2(1))|, where πi : X → P2 is the projection of X onto the ith factor of
P2 × P2, i ∈ {1, 2}. Then −KX ∼ 2H1 + H2, which implies that lct(X) 6 1/2.
We note that π1 is a conic bundle and π2 is a P1-bundle. Let ∆ ⊂ P2 be the
degeneration curve of the conic bundle π1. Then ∆ is a cubic curve.

We suppose that X satisfies the following generality condition: the curve ∆ is
irreducible.

Assume that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2.
Suppose that the set LCS(X,λD) contains a surface S ⊂ X. We set D = µS+Ω,

where Ω is an effective Q-divisor such that S ̸⊂ Supp(Ω) and µ > 1/λ. Let Fi be
a general fibre of πi, i ∈ {1, 2}. Then

2 = D · Fi = µS · Fi + Ω · Fi > µS · Fi,

but either S · F1 > 1 or S · F2 > 1. Thus, we see that µ 6 2, a contradiction.
By Theorem 2.27 and Theorem 2.7 there is a fibre Γ2 of the P1-bundle π2 such

that LCS(X,λD) = Γ2, because the set LCS(X,λD) contains no surfaces.
Applying Theorem 2.27 to the conic bundle π1, we see that π1(Γ2) ⊂ ∆, which is

impossible, because ∆ ⊂ P2 is an irreducible cubic curve and π1(Γ2) ⊂ P2 is a line.

Lemma 7.11. If (X)ג = 2.25, then lct(X) = 1/2.

Proof. We recall that X is a blow-up α : X → P3 along a normal elliptic curve C
of degree 4.

Let Q ⊂ P3 be a general quadric containing C and Q ⊂ X the proper transform
of Q. Then −KX ∼ 2Q+E, where E is the exceptional divisor of α. In particular,
lct(X) 6 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2.
We note that the linear system |Q | defines a quadric fibration ϕ: X → P1

with irreducible fibres. Moreover, by Theorem 2.27 the log pair (X,λD) is log
canonical along every non-singular fibre Q̃ of the fibration ϕ since lct(Q̃) = 1/2
(see Example 1.10).

The locus LCS(X,λD) does not contain any fibre of ϕ, because α(D) ∼Q 2Q
and every fibre of ϕ is irreducible. Therefore, dim(LCS(X,λD)) 6 1.

Let Z ∈ LCS(X,λD). Then there is a singular fibre Q1 of ϕ such that Z ⊂ Q1.
Note that ϕ has 4 singular fibres and each of them is the proper transform of
a quadric cone in P3 with vertex outside C.

Let Q2 be a singular fibre of ϕ different from Q1; let H be the proper transform
of a general plane in P3 that is tangent to the cone α(Q2) ⊂ P3 along one of its
rulings L ⊂ α(Q2); and let R be the proper transform of a sufficiently general plane
in P3. We put

∆ = λD +
1
2
(
(1 + ε)Q2 + (2− ε)H + 3εR

)
for some positive rational number ε < 1− 2λ. Then
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∆ ∼Q −
(
λ+

1
2

(1 + ε)
)
KX ∼Q −

1 + ε+ 2λ
2

KX ,

which implies that −(KX + ∆) is ample.
Let L be the proper transform on X of the line L. Then

Z ∪ L ⊂ LCS(X,∆) ⊂ Q1 ∪Q2,

which is impossible by Theorem 2.7, because −(KX + ∆) is ample.

Lemma 7.12. If (X)ג = 2.26 and X is general, then lct(X) = 1/2.

Proof. Let V be a smooth Fano threefold such that −KV ∼ 2H and Pic(V ) = Z[H],
where H is a Cartier divisor such that H3 = 5 (that is, V)ג ) = 1.15). Then the
linear system |H| induces an embedding X ⊂ P6.

It follows from Proposition 3.4.1 in [2] that there is a line L ⊂ V ⊂ P6 such that
there is a commutative diagram

X
α

}}{{
{{

{{
{ β

!!C
CC

CC
CC

V
ψ

//_______ Q ,

where Q is a smooth quadric in P4, the morphism α is a blow-up of the line L ⊂ V ,
the morphism β is a blow-up of a twisted cubic curve C with P1 ∼= C ⊂ Q, and ψ
is the projection from the line L.

Let S be the exceptional divisor of the morphism β. We set S = α(S). Then
S ∼ H and S is singular along the line L. Let E be the exceptional divisor of
the blow-up α. Then β(E) ∼ OP4(1)|Q, which implies that β(E) is an irreducible
quadric surface.

Suppose that X satisfies the following generality condition: the surface β(E) is
smooth.

We note that −KX ∼ 2S + 3E. Moreover, the log pair
(
X, (1/3)(2S + 3E)

)
is

log canonical but not log terminal. Thus, lct(X) 6 1/3.
Suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/3. Then
LCS(X,λD) ⊆ E, because α(D) ∼Q −KV and lct(V ) = 1/2 by Theorem 6.1.

We note that E ∼= P1 × P1 by our generality condition. Let F be a fibre of the
projection E → L, and let Z be a section of this projection such that Z · Z = 0.
Then α∗(H)|E ∼ F and E|E ∼ −Z, because

−2Z − 2F ∼ KE ∼ (KX + E)|E ∼ 2
(
E − α∗(H)

)∣∣
E
∼ 2E|E − 2F.

By Remark 2.22 we may assume that either E ̸⊂ Supp(D) or S ̸⊂ Supp(D). We
put D = µE + Ω, where Ω is an effective Q-divisor on X such that E ̸⊂ Supp(Ω).

Suppose that µ 6 2. Then (X,E + λΩ) is not log canonical, which implies that(
E, λΩ|E

)
is also not log canonical by Theorem 2.19. But

Ω|E ∼Q (−KX − µE)|E ∼Q (1 + µ)Z + 2F,

which contradicts Lemma 2.23, because µ 6 2 and λ < 1/3.
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Thus µ > 2, so we may assume that S ̸⊂ Supp(D).
Let Γ be a general fibre of the projection S → C. Then Γ ̸⊂ Supp(D) and

1 = −KX · Γ = µE · Γ + Ω · Γ = µ+ Ω · Γ > µ,

which is a contradiction.

Lemma 7.13. If (X)ג = 2.27, then lct(X) = 1/2.

Proof. There is a birational morphism α : X → P3 contracting a surface E to
a twisted cubic curve C ⊂ P3, and X ∼= P(E ), where E is a stable rank-2 vector
bundle on P2 with c1(E ) = 0 and c2(E ) = 2 such that the sequence

0 → OP2(−1)⊕ OP2(−1) → OP2 ⊕ OP2 ⊕ OP2 ⊕ OP2 → E ⊗ OP2(1) → 0

is exact (see [58], Application 1). Let Q ⊂ P3 be a general quadric containing C,
and let Q ⊂ X be the proper transform of Q. Then −KX ∼ 2Q + E, where E is
the exceptional divisor of α. Hence lct(X) 6 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2.
Assume that the set LCS(X,λD) contains a surface S ⊂ X. We putD = µF+Ω,

where µ > 1/λ, and Ω is an effective Q-divisor such that F ̸⊂ Supp(Ω).
Let ϕ : X → P2 be the natural P1-bundle. Then

2 = D · Γ = µF · Γ + Ω · Γ = µF · Γ + Ω · F > µF · Γ,

where Γ is a general fibre of ϕ. Thus, F is swept out by the fibres of ϕ. Then
α(F ) ∼ OP3(d), where d > 2. However, α(D) ∼Q µα(F ) + α(Ω) ∼Q OP3(4), which
is a contradiction.

We see that the locus LCS(X,λD) contains no surfaces. Applying Theorem 2.27
to (X,λD) and ϕ, we see that L ⊆ LCS(X,λD), where L is a fibre of ϕ. Then α(L)
is a secant line of the twisted cubic C ⊂ P3. One has

α(L) ⊆ LCS
(
P3, λα(D)

)
⊆ α

(
LCS(X,λD)

)
∪ C,

which is impossible by Lemma 2.9.

Lemma 7.14. If (X)ג = 2.28, then lct(X) = 1/4.

Proof. We recall that there exists a blow-up α : X → P3 along a plane cubic curve
C ⊂ P3, and one has −KX ∼ 4G + 3E, where E is the exceptional divisor of α
and G is the proper transform of the plane in P3 which contains the curve C. In
particular, lct(X) 6 1/4.

Suppose that lct(X) < 1/4. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/4. Therefore,
LCS(X,λD) ⊆ E since lct(P4) = 1/4. Computing the intersections with the proper
transform of a general line in P3 intersecting the curve C, we get that LCS(X,λD)
does not contain the divisor E. Moreover, every curve Γ ∈ LCS(X,λD) must be
a fibre of the natural projection ψ : E → C by Lemma 2.14. Therefore, we see
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from Theorem 2.7 that either the locus LCS(X,λD) consists of a single point or it
consists of a single fibre of the projection ψ.

Let R be a sufficiently general cone in P3 over the curve C and H a sufficiently
general plane in P3 which passes through the point Sing(R). Then

LCS
(
X,λD +

3
4

(R+H )
)

= LCS(X,λD) ∪ Sing(R ),

where R and H are the proper transforms of R and H on the threefold X. Then
the divisor

−
(
KX + λD +

3
4

(R+H )
)
∼Q

(
λ− 1

4

)
KX

is ample, which contradicts Theorem 2.7.

Lemma 7.15. If (X)ג = 2.29, then lct(X) = 1/3.

Proof. We recall that there is a blow-up α : X → Q of a smooth quadric hypersur-
face Q along a conic C ⊂ Q.

Let H be a general hyperplane section of Q ⊂ P4 that contains C, and let H be
the proper transform of the surface H on the threefold X. Then −KX ∼ 3H +2E,
where E is the exceptional divisor of α. In particular, lct(X) 6 1/3.

Suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/3. And then
LCS(X,λD) ⊆ E since lct(Q) = 1/3 (see Example 1.3) and α(D) ∼Q −KQ.

The linear system |H| has no base points and defines a morphism β : X → P1,
whose general fibre is a smooth quadric surface. Then the log pair (X,λD) is log
canonical along the smooth fibres of β by Theorem 2.27 (see Example 1.10).

It follows from Theorem 2.7 that there is a singular fibre S ∼ H of the mor-
phism β such that LCS(X,λD) ⊆ E ∩ S and α(S) ⊂ P3 is a quadric cone. We
put Γ = E ∩ S. Then Γ is an irreducible conic, the log pair

(
X,S + (2/3)E

)
has log canonical singularities, and 3S + 2E ∼Q D. Therefore, it follows from
Remark 2.22 that to complete the proof we may assume that either S ̸⊂ Supp(D)
or E ̸⊂ Supp(D).

Intersecting the divisor D with the proper transform of a general ruling of the
cone α(S) ⊂ P3 and with a general fibre of the projection E → C, we see that
Γ ̸⊆ LCS(X,λD), which implies that LCS(X,λD) consists of a single point O ∈ Γ
by Theorem 2.7.

Let R be a general (not passing through O) surface in |α∗(H)|. Then

LCS
(
X,λD +

1
2

(H + 2R)
)

= R ∪O,

which is impossible by Theorem 2.7 since −KX ∼ H + 2R ∼Q D and λ < 1/3.

Lemma 7.16. If (X)ג = 2.30, then lct(X) = 1/4.
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Proof. There is a commutative diagram

X
α

}}zz
zz

zz
z β

""E
EE

EE
EE

P3 Q ,
γ

oo_ _ _ _ _ _ _

where Q is a smooth quadric threefold in P4, the morphism α is a blow-up of
a smooth conic C ⊂ P3, the morphism β is a blow-up of a point, and γ is a projection
from a point.

Let G be the proper transform on X of the unique plane in P3 containing the
conic C. Then the surface G is contracted by the morphism β, and −KX ∼ 4G+3E,
where E is the exceptional divisor of the blow-up α. Thus, lct(X) 6 1/4.

Suppose that lct(X) < 1/4. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/4. Then
LCS(X,λD) ⊆ E ∩G, because lct(P4) = 1/4 and lct(Q) = 1/3.

By Remark 2.22 we may assume that either G ̸⊂ Supp(X) or E ̸⊂ Supp(X).
Intersecting D with lines in G ∼= P2 and with fibres of the projection E → C,

we see that LCS(X,λD) ( E ∩ G, which implies that there is a point O ∈ E ∩ G
such that LCS(X,λD) = O by Theorem 2.7.

Let R be a general surface in |α∗(H)| and F a general surface in |α∗(2H)− E|.
Then

LCS
(
X,λD +

1
2

(F + 2R)
)

= R ∪O,

which is impossible by Theorem 2.7 since −KX ∼ F + 2R ∼Q D and λ < 1/4.

Lemma 7.17. If (X)ג = 2.31, then lct(X) = 1/3.

Proof. There is a blow-up α : X → Q of a smooth quadric Q along a line L ⊂ Q.
Let H be a sufficiently general hyperplane section of the quadric Q ⊂ P4 that

passes through the line L, and let H be a proper transform of the surface H on X.
Then −KX ∼ 3H + 2E, where E is the exceptional divisor of α. In particular,
lct(X) 6 1/3.

Suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/3. Then
LCS(X,λD) ⊆ E since lct(Q) = 1/3 and α(D) ∼Q −KQ.

The linear system |H| defines a P1-bundle ϕ : X → P2 such that the induced mor-
phism E ∼= F1 → P2 contracts an irreducible curve Z ⊂ E. Then LCS(X,λD) = Z
by Theorem 2.27. We put D = µE + Ω, where Ω is an effective Q-divisor on X
such that E ̸⊂ Supp(Ω). Then

2 = D · F = µE · F + Ω · F = µ+ Ω · F > µ,

where F is a general fibre of ϕ. Note that the log pair (X,E+λΩ) is not log canonical
because λ < 1/3. Then

(
E, λΩ|E

)
is also not log canonical by Theorem 2.19.

Let C be a fibre of the natural projection E → L. Then Ω|E ∼Q 3C + (1 + µ)Z,
which implies that

(
E, λΩ|E

)
is log canonical by Lemma 4.8, and this is a contra-

diction.
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8. Fano threefolds with ρ = 3

In this section we use the assumptions and notation introduced in § 1.

Lemma 8.1. If (X)ג = 3.1 and X is general, then lct(X) = 3/4.

Proof. There is a double cover ω : X → P1 × P1 × P1 branched over a divisor of
tridegree (2, 2, 2). The projection P1 × P1 × P1 → P1 onto the ith factor induces
a morphism πi : X → P1, whose fibres are del Pezzo surfaces of degree 4.

Let R1 be a singular fibre of the fibration π1, let Q be a singular point of
R1, and let R2 and R3 be fibres of π2 and π3 such that R2 ∋ Q ∈ R3. Then
multQ(R1 +R2 +R3) = 4, which implies that the log pair (X, (3/4)(R1 +R2 +R3))
is not log terminal at Q. We have −KX ∼ R1 +R2 +R3, therefore lct(X) 6 3/4.

Suppose that lct(X) < 3/4. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical at some point P ∈ X for some
λ < 3/4.

Let Si be the fibre of πi such that P ∈ Si. Since X is general, we may assume
(after a possible renumbering) that

• the surface S1 is smooth at the point P ,
• the singularities of S1 consist of at most an ordinary double point (or S1 is

smooth).
• for every smooth curve L ⊂ S1 such that −KS1 · L = 1 we have P /∈ L,
• for any smooth curves C1 ⊂ S1 ⊃ C2 such that −KS1 · C1 = −KS1 · C2 = 2

and C1 + C2 ∼ −KS1 we have P ̸= C1 ∩ C2.
The surface S1 is a del Pezzo surface of degree 4. We have D = µS1 + Ω, where

Ω is an effective Q-divisor on X such that S1 ̸⊂ Supp(Ω).
Let ϕ : X → P1×P1 be the conic bundle induced by the linear system |S2 +S3|,

and let Γ be a general fibre of ϕ. Then

2 = D · Γ = µS1 · Γ + Ω · Γ = 2µ+ Ω · Γ > 2µ,

which implies that µ 6 1. Then (X,S1 + λΩ) is not log canonical at P . Hence
(S1, λΩ|S1

) is not log canonical at P by Theorem 2.19. But Ω|S1
∼Q −KSk

, which
is impossible (cf. Example 4.4).

Lemma 8.2. If (X)ג = 3.2 and X is general, then lct(X) = 1/2.

Proof. We recall that X is a primitive Fano threefold (see [52], Definition 1.3). Let

U = P
(
OP1×P1 ⊕ OP1×P1(−1,−1)⊕ OP1×P1(−1,−1)

)
,

let π : U → P1 × P1 be the natural projection, and let L be the tautological line
bundle on U . Then X ∈ |2L+ π∗(OP1×P1(2, 3))|.

Let us show that lct(X) 6 1/2. Let E1 and E2 be divisors on X such that π(E1)
and π(E2) are divisors on P1 × P1 of bidegree (1, 0) and (0, 1), respectively. Then
−KX ∼ L|X + 2E1 + E2, which implies that lct(X) 6 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical at some point P ∈ X for some
λ < 1/2.
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It follows from [59] (Proposition 3.8) that there is a commutative diagram

U1

ψ1

��

γ1 // V U2

ψ2

��

γ2oo

X

ω
��

ϕ1

uulllllllllllllll
ϕ2

))RRRRRRRRRRRRRRR

α

OO

β1

iiSSSSSSSSSSSSSSS β2

55kkkkkkkkkkkkkkk

P1 P1 × P1
π1

oo
π2

// P1 ,

where V is a Fano threefold with one ordinary double point O ∈ V such that
Pic(V ) = Z[−KV ] and −K3

V = 16, the morphism α contracts a unique surface
S with P1 × P1 ∼= S ⊂ X and S ∼ L|X to the point O ∈ V , the morphism βi
contracts S to a smooth rational curve, the morphism γi contracts the curve βi(S)
to the point O ∈ V so that the rational map γ2 ◦ γ−1

1 : U1 99K U2 is a flop in
β1(S) ∼= P1, the morphism ψ2 is a quadric fibration, and the morphisms ψ1, ϕ1,
and ϕ2 are fibrations whose fibres are del Pezzo surfaces of degrees 4, 3, and 6,
respectively. The morphisms π1 and π2 are the natural projections, and ω = π|X .
We note that Cl(V ) = Z[α(E1)]⊕Z[α(E2)] and ω is a conic bundle. The curve β1(S)
is a section of ψ1, and β2(S) is a 2-section of ψ2.

We assume that the threefold X satisfies the following generality condition: any
singular fibre of the fibration ϕ2 has at most A1 singularities.

Applying Lemma 2.25 to the fibration ϕ1, we see that LCS(X,λD) ⊆ S1, where
S1 is a singular fibre of ϕ1, because the global log canonical threshold of a smooth
del Pezzo surface of degree 6 is equal to 1/2 (see Example 1.10).

Applying Lemma 2.25 to ϕ2, we obtain a contradiction to Example 1.11.

Lemma 8.3. If (X)ג = 3.3 and X is general, then lct(X) = 2/3.

Proof. The threefoldX is a divisor on P1×P1×P2 of tridegree (1, 1, 2). In particular,
−KX ∼ π∗1(OP1(1))+π∗2(OP1(1))+ϕ∗(OP2(1)), where π1 : X → P1 and π2 : X → P1

are fibrations by del Pezzo surfaces of degree 4 induced by the projections of the
variety P1×P1×P2 onto the first and the second factor, respectively, and ϕ : X → P2

is the conic bundle induced by the projection P1 × P1 × P2 → P2.
Let α2 : X → P1 × P2 be a birational morphism induced by the linear system

|π∗2(OP1(1)) + ϕ∗(OP2(1))|, and let Hi ∈ |π∗i (OP1(1))| and R ∈ |ϕ∗(OP2(1))| be
general surfaces. Then H1 ∼ H2 + 2R−E2, where E2 is the exceptional divisor of
the birational morphism α2. Hence

−KX ∼ H1 +H2 +R ∼Q
3
2
H1 +

1
2
H2 +

1
2
E2,

which implies that lct(X) 6 2/3.
Suppose that lct(X) < 2/3. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical at some point P ∈ X for some
λ < 2/3.

Let Si be a fibre of πi such that P ∈ Si. Since X is general, we may assume
(after a possible renumbering) that

• the surface S1 is smooth at the point P ,
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• the singularities of S1 consist of at most one ordinary double point (or S1 is
smooth),

• for every smooth curve L ⊂ S1 such that −KS1 · L = 1 we have P /∈ L if
Sing(S1) ̸= ∅.

We put D = µS1 +Ω, where Ω is an effective Q-divisor such that S1 ̸⊂ Supp(Ω).
Then

(
H2, λµS1|H2

+ λΩ|H2

)
is not log canonical because lct(H2) = 2/3. Hence

µ 6 1/λ, and the log pair
(
S1, λΩ|S1

)
is not log canonical at the point P by

Theorem 2.19. But Ω|S1
∼Q −KS1 , which is impossible (see Example 4.4).

Lemma 8.4. If (X)ג = 3.4, then lct(X) = 1/2.

Proof. Let O be a point in P2. Then there is a commutative diagram

X

α

��
η1

��

η2

00

ϕ

''
V

ω
��

γ1

vvmmmmmmmmmmmmmmm
γ2

((QQQQQQQQQQQQQQQ F1

β
��

υ
// P1

P1 P1 × P2
π1

oo
π2

// P2

such that πi and υ are the natural projections, ω is a double cover branched over
a divisor B ⊂ P1×P2 of bidegree (2, 2), the morphism γ1 is a fibration into quadrics,
γ2 and η2 are conic bundles, β is a blow-up of the point O, the morphism α is
a blow-up of the smooth curve that is the fibre of γ2 over O, the morphism η1
is a fibration into del Pezzo surfaces of degree 6, and ϕ is a fibration into del Pezzo
surfaces of degree 4.

Let H be a general fibre of η1 and let S be a general fibre of ϕ. Then −KX ∼
H + 2S + E, where E is the exceptional divisor of α. In particular, lct(X) 6 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2. Then
LCS(X,λD) ⊆ E, because α(D) ∼Q −KV and lct(V ) = 1/2 by Lemma 7.7.

Let Γ be a fibre of η2 such that Γ∩LCS(X,λD) ̸= ∅. Then Γ ⊆ LCS(X,λD) ⊆ E
by Theorem 2.27. Hence

(
H,λD|H

)
is not log canonical at points in H ∩ Γ. But

D|H ∼Q −KH and lct(H) = 1/2, because H is a del Pezzo surface of degree 6,
which is a contradiction.

Lemma 8.5. If (X)ג = 3.5 and X is general, then lct(X) = 1/2.

Proof. There is a birational morphism α : X → P1 × P2 that contracts a surface
E ⊂ X to a curve C ⊂ P1 × P2 of bidegree (5, 2). Let π1 : P1 × P2 → P1 and
π2 : P1 × P2 → P2 be the natural projections. There is a divisor Q ∈ |π∗2(OP1(2))|
such that C ⊂ Q. Let H1 be a general fibre of π1 and let H2 be a surface in the
linear system |π∗2(OP1(1))|. We have −KX ∼ 2H1 +H2 +Q, where H1, H2, Q ⊂ X
are the proper transforms of H1, H2, Q, respectively. In particular, lct(X) 6 1/2.

We suppose that X satisfies the following generality condition: every fibre F of
π1 ◦ α is singular at at most one ordinary double point.

Assume that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2.
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Let S ⊂ X be an irreducible surface. We put D = µS+Ω, where Ω is an effective
Q-divisor such that S does not lie in Supp(Ω). Then

(
H1, (1/2)(µS+ Ω)|

H1

)
is log

canonical (see Example 1.10). Thus, either µ 6 2 or S is a fibre of π1 ◦ α.
Let Γ ∼= P1 be a general fibre of the conic bundle π2 ◦ α. Then

2 = D · Γ = µS · Γ + Ω · Γ > µS · Γ,

which implies that µ 6 2 in the case when S is a fibre of π1 ◦ α.
We see that the set LCS(X,λD) contains no surfaces. Applying Lemma 2.25

now to π1 ◦ α, we obtain a contradiction to Example 4.4.

Lemma 8.6. If (X)ג = 3.6 and X is general, then lct(X) = 1/2.

Proof. Let ε : V → P3 be a blow-up of a line L ⊂ P3. Then

V ∼= P(OP1 ⊕ OP1 ⊕ OP1(1))

and there is a natural P2-bundle η : V → P1. There is a smooth elliptic curve
C ⊂ P3 of degree 4 such that L ∩ C = ∅ and there is a commutative diagram

Y

ε
��

X
γoo

β
��

ϕ // P1

P3 V ,
δ

oo
η

77ooooooooooooo

where δ is a blow-up of C, β is a blow-up of the proper transform of the line L,
γ is a blow-up of the proper transform of the curve C, and ϕ is a fibration into
del Pezzo surfaces of degree 5.

We suppose that X satisfies the following generality condition: every fibre F of
ϕ has at most one singular point which is an ordinary double point of F .

Let E and G be the exceptional surfaces of β and γ, respectively; let H ⊂ P3 be
a general plane that passes through L, and let Q ⊂ P3 be a quadric surface that
passes through C. Then −KX ∼ 2H + Q + E, where H ⊂ X ⊃ Q are the proper
transforms of H and Q, respectively. In particular, lct(X) 6 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2.
It follows from Lemma 7.11 that lct(V ) = 1/2. Therefore, LCS(X,λD) ⊆ G.

Note that every fibre of ϕ is a del Pezzo surface of degree 5 which has at most one
ordinary double point. Thus, applying Lemma 2.25 to ϕ, we obtain a contradiction
to Example 4.3.

Lemma 8.7. If (X)ג = 3.7 and X is general, then lct(X) = 1/2.
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Proof. Let W be a divisor on P2×P2 of bidegree (1, 1). Then −KW ∼ 2H, where H
is a Cartier divisor on W . There is a commutative diagram

X
β

yysss
sss

sss

α

��

γ

%%KK
KKK

KKK
K ED

BC

ω

oo

P1 × P2

ϕ

��

P1 × P2

ψ
��

P2 W

ρ
���
�
�

ξoo ζ // P2

P1 ,

where ϕ and ψ are the natural projections, α is a blow-up of a smooth curve C ⊂W
such that

C = H1 ∩H2,

where H1 ̸= H2 are surfaces in |H|, the map ρ is induced by the pencil generated
by H1 and H2, ω is a del Pezzo fibration of degree 6, the morphisms ζ and ξ are
P1-bundles, while β and γ contract surfaces M1 ⊂ X ⊃M2 such that ϕ ◦β(M1) =
ξ(C) and ψ ◦ γ(M2) = ζ(C).

We note that lct(X) 6 1/2 because −KX ∼ 2H1 + E, where H1 ⊂ X is the
proper transform of H1 and E is the exceptional surface of α.

We suppose that X satisfies the following generality condition: all singular fibres
of the fibration ω satisfy the hypotheses of Lemma 4.5.

Assume that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2. Then
LCS(X,λD) ⊆ E, because lct(W ) = 1/2 by Theorem 6.1. Using Lemma 2.25, we
see that LCS(X,λD) ⊆ E ∩ F , where F is a singular fibre of ω. Recall that F is
a del Pezzo surface of degree 6. We put D = µF + Ω, where Ω is an effective
Q-divisor such that F ̸⊂ Supp(Ω). Then Ω|F ∼Q −KF and the surface F is smooth
along the curve E ∩ F . But the log pair

(
F, λΩ|F

)
is not log canonical at some

point P ∈ E ∩ F by Theorem 2.19, and this is impossible by Lemma 4.5.

Remark 8.8. Let us use the notation and the assumptions of Lemma 8.7. Then we
have

LCS(X,λD) ⊆ E ∩ F,

where F is a singular fibre of the fibration ω. Applying Theorem 2.27 to ϕ and ψ and
using Lemma 2.28, we see that LCS(X,λD) ⊆ E∩F ∩M1∩M2. Regardless of how
singular F is, if the threefold X is sufficiently general, then E ∩F ∩M1 ∩M2 = ∅,
which implies that an alternative generality condition can be used in Lemma 8.7.

Lemma 8.9. If (X)ג = 3.8 and X is general, then lct(X) = 1/2.

Proof. Let π1 : F1 × P2 → F1 and π2 : F1 × P2 → P2 be the natural projections.
Then X ∈ |(α ◦ π1)∗(OP2(1)) ⊗ π∗2(OP2(2))|, where α : F1 → P2 is a blow-up of
a point. Let H be a surface in |π∗2(OP2(1))|. Then −KX ∼ E + 2L + H, where
E ⊂ X ⊃ L are irreducible surfaces such that π1(E) ⊂ F1 is the exceptional curve
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of α and π1(L) ⊂ F1 is a fibre of the natural projection F1 → P2. In particular,
lct(X) 6 1/2.

The projection π1 induces a fibration ϕ : X → P1 into del Pezzo surfaces of
degree 5.

We suppose that X satisfies the following generality condition: every fibre F
of ϕ has at most one singular point which is an ordinary double point of F .

Assume that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2.
Applying Lemma 2.25 to the morphism ϕ we obtain a contradiction to Exam-

ple 4.3.

Lemma 8.10. If (X)ג = 3.9, then lct(X) = 1/3.

Proof. Let Oi be a singular point of Vi ∼= P(1, 1, 1, 2), i = 1, 2. Let S1 with O1 /∈
S1 ∈ |OP(1,1,1,2)(2)| be a smooth surface and let C1 ⊂ S1

∼= P2 be a smooth quartic
curve. Then there is a commutative diagram

X
β1

vvmmmmmmmmmmmmm
β2

((QQQQQQQQQQQQQ

U1

α1
��

γ1

��

U2

α2
��

γ2

��

V1

ψ1 ((P
PPPPPP V2

ψ2vvn n n n n n n

P2 ,

where ψi is the natural projection, αi is a (weighted) blow-up of the point Oi with
weights (1, 1, 1), the morphism γi is a P1-bundle, and βi is a birational morphism
that contracts a surface P1 × C1

∼= Gi ⊂ X to a smooth curve C1
∼= Ci ⊂ Ui.

Let Ei ⊂ X be the proper transform of the exceptional divisor of αi. Then the
divisors

S1 = α1 ◦ β1(E2) ⊂ V1
∼= P(1, 1, 1, 2) ∼= V2 ⊃ α2 ◦ β2(E1)

are surfaces in |OP(1,1,1,2)(2)| that contain the curves C1 and C2, respectively. On
the other hand,

α1 ◦ β1(G2) ⊂ V1
∼= P(1, 1, 1, 2) ∼= V2 ⊃ α2 ◦ β2(G1)

are surfaces in |OP(1,1,1,2)(4)| that contain O1 ∪ C1 and O2 ∪ C2, respectively.
Let H ⊂ X be the proper transform of a general surface in |OP(1,1,1,2)(1)|. Then

−KX ∼ 3H + E2 + E1, which yields lct(X) 6 1/3.
Suppose that lct(X) < 1/3. Then there is an effective Q-divisor

D ∼Q −KX ∼Q
5
2

(G1 +G2)− 5(E1 + E2)

such that the log pair (X,λD) is not log canonical for some λ < 1/3. We put
D = µ1E1 + µ2E2 + Ω, where Ω is an effective Q-divisor on X such that E1 ̸⊆
Supp(Ω) ̸⊇ E2.
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Let Γ be a general fibre of the conic bundle γ1 ◦ β1. Then

2 = Γ ·D = Γ · (µ1E1 + µ2E2 + Ω) = µ1 + µ2 + Γ · Ω > µ1 + µ2,

and we may assume without loss of generality that µ1 6 µ2. Then µ1 6 1.
Suppose that there is a surface S ∈ LCS(X,λD). Then S ̸= E1 and S ̸= G1,

because α2 ◦ β2(G1) ∈ |OP(1,1,1,2)(4)| and α2 ◦ β2(D) ∈ |OP(1,1,1,2)(5)|. Hence
S ∩ E1 ̸= ∅. But

−1
3
KE1 ∼Q D|E1

= −2µ1

3
KE1 + Ω|E1

and E1
∼= P2, which is impossible by Theorem 2.19, because λ < 1/3 = lct(P2).

We see that the set LCS(X,λD) contains no surfaces. Let P ∈ LCS(X,λD) be
a point. Suppose that P /∈ G1. Let Z be the fibre of γ1 containing β1(P ). Then
Z ⊆ LCS(U1, λβ1(D)) by Theorem 2.27. We put E1 = β1(E1). Then we have
Z ∩ E1 ∈ LCS

(
E1, λΩ|

E1

)
by Theorem 2.19, which is impossible by Lemma 2.8,

because µ1 6 1. Hence LCS(X,λD) ( G1.
Suppose that LCS(X,λD) ⊆ G1 ∩G2. Then |LCS(X,λD)| = 1 by Lemma 2.14

and Theorem 2.7. We have

LCS(X,λD)∪H ⊆ LCS
(
X,λD+

1
3

(E2 +E2)+H

)
⊂ LCS(X,λD)∪H ∪E1∪E1,

which contradicts Theorem 2.7, because H is a general surface in |(β1◦γ1)∗(OP2(1))|
and

λD +
1
3

(E2 + E2) +H ∼Q

(
λ− 1

3

)
KX .

Thus, we see that G1 ) LCS(X,λD) ̸⊆ G1 ∩G2. Then

∅ ̸= LCS
(
U2, λβ2(D)

)
( β2(G1),

and it follows from Theorems 2.7 and 2.27 that there is a fibre L of γ2 such that
LCS(U2, λβ2(D)) = L.

Let B be a general surface in |α∗2(OP(1,1,1,2)(2))|. Then β2(D)|B ∼Q OP2(5) and
B ∼= P2. But LCS

(
B, λβ2(D)|B

)
= L ∩ B and |L ∩ B| = 1, which is impossible by

Lemma 2.8.

Lemma 8.11. If (X)ג = 3.10, then lct(X) = 1/2.

Proof. Let Q ⊂ P4 be a smooth quadric hypersurface. Let C1 ⊂ Q ⊃ C2 be disjoint
(irreducible) conics. Then there is a commutative diagram

X

β2

~~||
||

||
||

||
||

β1

  B
BB

BB
BB

BB
BB

B

ϕ1

vvmmmmmmmmmmmmmmmmmmmmmm

ϕ2

((QQQQQQQQQQQQQQQQQQQQQQ

P1 Y1 α1
//

ψ1

oo Q Y2α2
oo

ψ2

// P1 ,

where αi is a blow-up along the conic Ci, the morphism βi is a blow-up along
the proper transform of the conic Ci, the morphism ψi is a fibration into quadric
surfaces, and ϕi is a del Pezzo fibration of degree 6.
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Let Ei be the exceptional divisor of βi, and let Hi be a sufficiently general
hyperplane section of the quadric Q that passes through the conic Ci. Then −KX ∼
H1 + 2H2 + E2, where Hi ⊂ X is the proper transform of the divisor Hi. In
particular, lct(X) 6 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2.
Using Example 1.10 and Lemma 2.25, we see that LCS(X,λD) ⊆ S1∩S2, where

Si is a singular fibre of ϕi. Hence the set LCS(X,λD) contains no surfaces.
It follows from Theorem 2.7 that either LCS(X,λD) is a point in E1 ∪ E2 or

LCS(X,λD) ∩
(
X \ (E1 ∪ E2)

)
̸= ∅,

which implies that we may assume that LCS(X,λD) is a point E1 by Lemma 2.10.
Since β2 is an isomorphism on X \ E2, we see that

P ∈ LCS
(
Y1, λβ2(D)

)
⊂ P ∪ β2(E2)

for some point P ∈ E1. Then LCS(Y1, λβ2(D)) = P by Theorem 2.7, because
P /∈ β2(E2).

Let H be a general hyperplane section of the quadric Q. Then −KY1 ∼ H̃1 +
2H̃ ∼Q β2(D), where H̃ ⊂ Y1 ⊃ H̃1 are the proper transforms of H and H1,
respectively, and we have

LCS
(
Y1, λβ2(D) +

1
2

(H̃1 + 2H̃)
)

= P ∪ H̃,

which is impossible by Theorem 2.7 because λ < 1/2.

Lemma 8.12. If (X)ג = 3.11, then lct(X) = 1/2.

Proof. Let O ∈ P3 be a point, let δ : V7 → P3 be a blow-up of the point O, and
let E be the exceptional divisor of δ. Then V7

∼= P(OP2⊕OP2(1)), there is a natural
P1-bundle η : V7 → P2, and E is a section of η. There is a normal elliptic curve C
with O ∈ C ⊂ P3 of degree 4 such that the diagram

U

ω

��

γ // P3 V7
δoo

η
��

X

α

iiRRRRRRRRRRRRRRR β

44iiiiiiiiiiiiiiiiiii

υ

%%KKKKKKKK
ϕ

||yy
yy

yy
y P2

P1 P1 × P2
π1

oo π2

AA

is commutative, where π1 and π2 are the natural projections, the morphism γ
contracts a surface

C × P1 ∼= G ⊂ U

to the curve C, the morphism α is a blow-up of the fibre of the morphism γ over
the point O ∈ P3, the morphism β is a blow-up of the proper transform of C,
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the morphism ω is a fibration into quadric surfaces, ϕ is a fibration into del Pezzo
surfaces of degree 7, and υ contracts a surface

C × P1 ∼= F ⊂ X

to an elliptic curve Z ⊂ P1 × P2 such that −KP1×P2 · Z = 13 and Z ∼= C.
LetH1 be a general fibre of ϕ, and letH2 be a general surface in |(η◦β)∗(OP2(1))|.

Then −KX ∼ H1 + 2H2, which implies that lct(X) 6 1/2.
Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2. Note that
LCS(X,λD) ⊆ E, where E is the exceptional divisor of α because lct(U) = 1/2 by
Lemma 7.11.

Let Γ ∼= P2 be a general fibre of π2 ◦ υ. Then

2 = −KX · Γ = D · Γ = 2E · Γ,

which implies that E ̸⊂ LCS(X,λD). Applying Lemma 2.25 to the log pair
(V7, λβ(D)), we have LCS(X,λD) ⊆ E ∩ G. Applying Lemma 2.28 to the log
pair (P1×P2, λυ(D)), we see that LCS(X,λD) = E∩F ∩G, where |E∩F ∩G| = 1.
Hence

LCS(X,λD +H2) = LCS(X,λD) ∪H2

and H2 ∩ LCS(X,λD) = ∅. But the divisor

−(KX + λD +H2) =
(
λ− 1

2

)
KX +

1
2
H1

is ample, which is impossible by Theorem 2.7.

Lemma 8.13. If (X)ג = 3.12, then lct(X) = 1/2.

Proof. Let ε : V → P3 be a blow-up of a line L ⊂ P3. There is a natural P2-bundle
η : V → P1 and there is a twisted cubic C ⊂ P3 disjoint from L such that the
diagram

P1 P1 × P2

π2

))SSSSSSSSSSSS
π1oo

X

βvvlllllllllllll

γ &&MMMMMMMMM

ϕ

hhQQQQQQQQQQQQ ω

88rrrrrrrr
P2

V

ε ((RRRRRRRRRRRR

η

OO

Y

αxxqqqqqqqqq

ψ

55kkkkkkkkkkkkkkk

P3

is commutative, where α and β are blow-ups of C and its proper transform, respec-
tively, γ is a blow-up of the proper transform of L, the morphism ψ is a P1-bundle,
the morphism ω is a contraction to a curve of a surface F ⊂ X such that α ◦ γ(F )
contains C∪L and consists of secant lines of C ⊂ P3 that intersect L; the morphism
ϕ is a fibration into del Pezzo surfaces of degree 6, and the morphisms π1 and π2

are the natural projections.
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Let E and G be the exceptional divisors of β and γ, respectively, let Q ⊂ P3 be
a general quadric surface passing through C, and let H ⊂ P3 be a general plane
passing through L. Then −KX ∼ Q+ 2H +G, where Q ⊂ X ⊃ H are the proper
transforms of Q ⊂ P3 ⊃ H, respectively. In particular, lct(X) 6 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2. Note that
LCS(X,λD) ⊂ G since lct(Y ) = 1/2 by Lemma 7.13. Applying Theorem 2.27 to ϕ,
we see that LCS(X,λD) ⊂ G ∩ Sϕ, where Sϕ is a singular fibre of the fibration ϕ
(see Example 1.10). Then LCS(X,λD) ⊂ G ∩ Sϕ ∩ F by Theorem 2.27 applied to
the log pair (P1 × P2, λω(D)) and the P1-bundle π2.

Let Z1
∼= P1 be a section of the natural projection P1 × P1 ∼= G→ L ∼= P1 such

that Z1 · Z1 = 0, and let Z2 be a fibre of this projection. Then F |G ∼ Z1 + 3Z2

and Sϕ|G ∼ Z1. The curve F ∩G is irreducible. Thus, |G ∩ F ∩ Sϕ| < +∞, which
implies by Theorem 2.7 that the set LCS(X,λD) consists of a single point P ∈ G.

The log pair (V, λβ(D)) is not log canonical. Since β is an isomorphism on X \E,
we have

β(P ) ∈ LCS
(
V, λβ(D)

)
⊆ β(P ) ∪ β(E),

which implies by Theorem 2.7 that LCS(V, λβ(D)) = β(P ). Let H ⊂ P3 be a gen-
eral plane. Then

LCS
(
V, λβ(D) +

1
2

(H̃1 + 3H̃)
)

= β(P ) ∪ H̃,

where H̃ ⊂ V ⊃ H̃1 are the proper transforms of H ⊂ P3 ⊃ H1, respectively,
and we have −KV ∼ H̃1 + 3H̃ ∼Q β(D), which contradicts Theorem 2.7 because
λ < 1/2.

Lemma 8.14. If (X)ג = 3.14, then lct(X) = 1/2.

Proof. Let P ∈ P3 be a point and let α : V7 → P3 be a blow-up of P . Then there is
a natural P1-bundle π : V7 → P2.

Let ζ : Z → P(1, 1, 1, 2) be a blow-up of the singular point of P(1, 1, 1, 2). Then
Z ∼= P(OP2 ⊕ OP2(2)) and there is a natural P1-bundle ϕ : Z → P2.

There is a plane Π ⊂ P3 and a smooth cubic curve C ⊂ Π such that P /∈ Π and
there is a commutative diagram (see [28], Example 3.6)

X
γ

wwnnnnnnnnnnn
β

((PPPPPPPPPPP
ω // Z

ϕ

��
ζ

��>
>>

>>
>>

>>
>>

>>
>>

>>
>>

>>
>

Y

ε ''OOOOOOOOOOO

η

����
��
��
��
��
��

V7
α

wwnnnnnnnnnnn
π

##G
GGGGG

P3
ξ

//_________ P2

U
� � // P(1, 1, 1, 1, 2)

υ
//______________

ν

OO�
�

P(1, 1, 1, 2) .
ψ

iiT T T T T T T

Here we use the following notation: the morphism ε is a blow-up of the curve C; the
threefold U is a cubic hypersurface in P(1, 1, 1, 1, 2); the rational map ξ is a projec-
tion from the point P ; the morphism γ is a blow-up of the point dominating P ; the
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morphism β is a blow-up of the proper transform of the curve C; the morphism η
contracts the proper transform of Π to the point Sing(U), the morphism ω con-
tracts to a curve a surface R ⊂ X such that β ◦ α(R) is a cone over C with vertex
at P ; the rational maps ψ and ν are the natural projections; the rational map υ is
a linear projection from a point.

Let E and G be the exceptional divisors of γ and β, respectively, and let H ⊂ X
be the proper transform of a general plane in P3 passing through the point P . Then
−KX ∼ Π + 3H +G, where Π ⊂ X is the proper transform of the plane Π. Thus,
lct(X) 6 1/3.

Suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some positive rational number
λ < 1/3.

Let L ⊂ X be the proper transform of the general line in P3 that intersects C.
Then

D · L = Π · L+ 3H · L+G · L = 3H · L = 3,

which implies that LCS(X,λD) contains no surfaces with the possible exception of
Π and E.

Let Γ be a general fibre of π ◦ β. Then

D · Γ = Π · Γ + 3H · Γ +G · Γ = Π · Γ +G · Γ = 2,

which implies that LCS(X,λD) does not contain Π or E. Thus, by Lemma 2.9 we
obtain LCS(X,λD) ( E ∪G.

Suppose that LCS(X,λD) ⊆ E. Then ∅ ̸= LCS(V7, λβ(D)) ⊆ β(E), which
contradicts Theorem 2.27, because β(E) is a section of π. Hence LCS(X,λD) ( G.

Applying Theorem 2.27 to (Z, λω(D)) and ϕ and applying Theorem 2.7 to
(X,λD), we see that LCS(X,λD) ⊆ F , where F is a fibre of the natural pro-
jection G → β(G). Hence ∅ ̸= LCS(Y, λγ(D)) ⊆ γ(F ), where γ(F ) is the fibre of
the blow-up ε over a point of the curve C.

Let S ⊂ P3 be a general cone over the curve C and let O ∈ C be an inflection
point such that ε ◦ γ(F ) ̸= O. Let L ⊂ S be the line passing through the point O,
and let H ⊂ P3 be the plane tangent to the cone S along the line L. Since O is
an inflection point of C, it follows that multL(S ·H) = 3. Let S̆, H̆, and L̆ be the
proper transforms of S, H, and L on the threefold Y . Then

LCS
(
Y, λγ(D) +

2
3

(S̆ + H̆)
)

= LCS
(
Y, λγ(D)

)
∪ L̆

due to the generality in the choice of S. But −KY ∼ S̆ + H̆, which is impossible
be Theorem 2.7.

Lemma 8.15. If (X)ג = 3.15, then lct(X) = 1/2.

Proof. Let Q ⊂ P4 be a smooth quadric hypersurface, let C ⊂ Q be a smooth
conic, and let ε : V → Q be a blow-up of the conic C ⊂ Q. Then there is a natural
morphism η : V → P1 induced by the projection Q 99K P1 from the two-dimensional
linear subspace of P4 that contains C. Then a general fibre of η is a smooth quadric
surface in P3.
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Take a line L ⊂ Q such that L ∩ C = ∅. Then there is a commutative diagram

P1 P1 × P2

π2

))SSSSSSSSSSSS
π1oo

X

βvvmmmmmmmmmmmmm

γ &&MMMMMMMMM

ϕ

hhQQQQQQQQQQQQ ω

99rrrrrrrr
P2

V

ε
((QQQQQQQQQQQQQ

η

OO

Y

αxxrrrrrrrrr

ψ

55kkkkkkkkkkkkkkk

Q ,

where α and β are blow-ups of the line L ⊂ Q and its proper transform, respec-
tively, γ is a blow-up of the proper transform of the conic C, the morphism ψ is
a P1-bundle, ω is a birational contraction to a curve of a surface F ⊂ X such that
C ∪ L ⊂ α ◦ γ(F ) ⊂ Q, α ◦ γ(F ) consists of all the lines in Q ⊂ P4 that intersect L
and C, the morphism ϕ is a fibration into del Pezzo surfaces of degree 7, and the
morphisms π1 and π2 are the natural projections.

Let E1 and E2 be the exceptional surfaces of β and γ, respectively, let H1, H2 ⊂
Q be general hyperplane sections that pass through L and C, respectively. We have
−KX ∼ H1 + 2H2 + E2 ∼ H2 + 2H1 + E1, where H1 ⊂ X ⊃ H2 are the proper
transforms of H1 ⊂ Q ⊃ H2, respectively. In particular, lct(X) 6 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2.
Let S ⊂ X be an irreducible surface. We put D = µS+Ω, where Ω is an effective

Q-divisor such that S ̸⊂ Supp(Ω). Then

LCS
(
H2,

1
2

(µS + Ω)|
H2

)
⊂ E1 ∩H2

by Lemma 4.9. Thus, if µ 6 2 then either S = E1 or S is a fibre of ϕ.
Let Γ ∼= P1 be a general fibre of the conic bundle ψ ◦ γ. Then

2 = D · Γ = µS · Γ + Ω · Γ > µS · Γ,

which implies that µ 6 2 in the case when either S = E1 or S is a fibre of ϕ.
Therefore, we see that LCS(X,λD) does not contain surfaces.
Application of Theorem 2.27 to the log pair (Y, λγ(D)) and ψ gives us that

LCS(X,λD) ( E2 ∪ L, where P1 ∼= L ⊂ X is a curve such that γ(L ) is a fibre of
the conic bundle ψ.

Suppose that L ̸⊂ E1 and L ⊂ LCS(X,λD). Then

α ◦ γ(L ) ⊆ LCS
(
Q,λα ◦ γ(D)

)
⊆ α ◦ γ(L ) ∪ C ∪ L,

which is impossible by Lemma 2.10. Hence by Theorem 2.7 either LCS(X,λD) (E2

or LCS(X,λD) ⊆ L and L ⊂ E1.
We may assume that L ⊂ E1. Note that E1

∼= F1. Hence L · L = −1 on the
surface E1.
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Applying Lemma 2.28 to the log pair (P1 × P2, λω(D)), we see that

LCS(X,λD) ⊂ F,

because ω(D) ∼Q −KP1×P2 and λ < 1/2. Applying Lemma 2.25 to the log pair
(V, λβ(D)) and the fibration η, we see that LCS(X,λD) ( E1 ∪ Sϕ, where Sϕ is
a singular fibre of ϕ, because lct(P1 × P1) = 1/2 (see Example 1.10).

We have F ∩ L = ∅ and |F ∩ Sϕ ∩ E2| < +∞. Thus, there is a point P ∈ E2

such that LCS(X,λD) = P ∈ E2 by Theorem 2.7, and we have β(E1)∩ β(P ) = ∅.
Thus, it follows from Theorem 2.7 that LCS(V, λβ(D)) = β(P ).

Let H̃1 ⊂ V ⊃ H̃2 be the proper transforms of the divisors H1 ⊂ Q ⊃ H2,
respectively. Then −KV ∼ H̃2 + 2H̃1 ∼Q β(D). It follows from the generality
of H1 and H2 that

LCS
(
V, λβ(D) +

1
2

(H̃2 + 2H̃1)
)

= β(P ) ∪ H̃1,

which is impossible by Theorem 2.7 because λ < 1/2.

Lemma 8.16. If (X)ג = 3.16, then lct(X) = 1/2.

Proof. Let P1 ∼= C ⊂ P3 be a twisted cubic curve and let O ∈ C be a point. There
is a commutative diagram

P(E) U

ω

��

γ // P3 V7
δoo

η

��

P
(
OP2 ⊕OP2(1)

)
X

α

hhQQQQQQQQQQQQQQQ β

55lllllllllllllll

υ

##F
FF

FF
FF P2

P2 W ,
π1

oo
π2

CC

where E is a stable rank-2 vector bundle on P2 (see the proof of Lemma 7.13).
Here we use the following notation: the morphism δ is a blow-up of the point O;
the morphism γ contracts a surface G ⊂ U to the curve C ⊂ P3; the morphism α
contracts a surface E ∼= F1 to the fibre of γ over the point O ∈ P3; the morphism β is
a blow-up of the proper transform of the curve C; the variety W is a smooth divisor
of bidegree (1, 1) on P2×P2; the morphisms π1 and π2 are the natural projections;
the morphisms ω and η are natural P1-bundles; the morphism υ contracts a surface
F ⊂ X to a curve Z with P1 ∼= Z ⊂W such that ω ◦α(E) = π1(Z) and η ◦ β(G) =
π2(Z).

We take general divisors H1 ∈ |(ω ◦ α)∗(OP2(1))| and H2 ∈ |(η ◦ β)∗(OP2(1))|.
Then −KX ∼ H1 + 2H2, which implies that lct(X) 6 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2. Note that
LCS(X,λD) ⊆ E ∩ F , because lct(U) = 1/2 by Lemma 7.11 and lct(W ) = 1/2 by
Theorem 6.1.
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Applying Lemma 2.12 to the log pair (V7, λβ(D)) we see that LCS(X,λD) =
E ∩ F ∩G, where |E ∩ F ∩G| = 1. Thus,

LCS(X,λD +H2) = LCS(X,λD) ∪H2,

where H2 ∩ LCS(X,λD) = ∅. But the divisor

−(KX + λD +H2) ∼Q

(
λ− 1

2

)
KX +

1
2
H1

is ample, which is impossible by Theorem 2.7.

Lemma 8.17. If (X)ג = 3.17, then lct(X) = 1/2.

Proof. The threefold X is a divisor on P1 × P1 × P2 of tridegree (1, 1, 1). We take
general surfaces H1 ∈ |π∗1(OP1(1))|, H2 ∈ |π∗2(OP1(1))|, H3 ∈ |π∗3(OP2(1))|, where
πi is the projection of X onto the ith factor of P1 × P1 × P2. Then −KX ∼
H1 +H2 + 2H3, which implies that lct(X) 6 1/2. There is a commutative diagram

P1 P1 × P1
υ1oo υ2 // P1

X

ζ

OO

α1

uujjjjjjjjjjjjjj

π1

jjTTTTTTTTTTTTTTTTT

π3
��

α2

))TTTTTTTTTTTTTT

π2

44jjjjjjjjjjjjjjjjj

P1 × P2
ω1

//

η1

OO

P2 P1 × P2 ,ω2
oo

η2

OO

where ωi, ηi, and υi are the natural projections, ζ is a P1-bundle, and αi is a bira-
tional morphism contracting a surface Ei ⊂ X to a smooth curve Ci ⊂ P1 × P2

such that ω1(C1) = ω2(C2) is an (irreducible) conic.
Note that E2 ∼ H1 +H3 −H2 and E1 ∼ H2 +H3 −H1.
Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2.
Suppose that the set LCS(X,λD) contains an (irreducible) surface S ⊂ X.

We put D = µS + Ω, where µ > 1/λ and Ω is an effective Q-divisor such that
S ̸⊂ Supp(Ω). Then

2 = D · Γ = µS · Γ + Ω · Γ > µS · Γ,

where Γ ∼= P1 is a general fibre of ζ. Hence S ·Γ = 0, which implies thatE2 ̸= S ̸= E1.
We also have

2 = D ·∆ = µS ·∆ + Ω ·∆ > µS ·∆,
where ∆ ∼= P1 is a general fibre of the conic bundle π2. Hence S ·∆ = 0, which
immediately implies that S ∈ |π∗3(OP2(m))| for some m ∈ Z>0, because E2 ̸=
S ̸= E1 and S is an irreducible surface. In particular, 0 = S · Γ = m ̸= 0, which is
a contradiction. Hence the set LCS(X,λD) contains no surfaces.

Applying Theorem 2.27 to ζ and using Theorem 2.7, we have LCS(X,λD) = F ,
where F is a fibre of the P1-bundle ζ. Applying Theorem 2.27 to the conic bundle π3,
we see that every fibre of π3 that intersects F must be reducible. This means that

π3(F ) ⊂ ω1(C1) = ω2(C2),
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which is impossible, because π3(F ) is a line and ω1(C1) = ω2(C2) is an irreducible
conic.

Lemma 8.18. If (X)ג = 3.18, then lct(X) = 1/3.

Proof. Let Q ⊂ P4 be a smooth quartic hypersurface, C ⊂ Q an irreducible conic,
and O ∈ C a point. Then there is a commutative diagram

Y η

))

τ

##

X

γ

��

σ

hhQQQQQQQQQQQQQ β // V

α
��

ω // P1

U

υ
��

ζ
// Q

ψwwn n n n n n

ϕ

66nnnnnn

P3 ,ξ

FF

Z \ _ a d g j n r
v

{
�

�
	

�

where ζ is a blow-up of the point O, the morphisms α and γ are blow-ups of the
conic C and its proper transform, respectively, β is a blow-up of the fibre of α
over the point O, the map ψ is the projection from O, the map ϕ is induced by
the projection from the two-dimensional linear subspace of P4 containing the conic
C, the morphism τ is a blow-up of the line ψ(C), the morphism υ is a blow-up
of an irreducible conic Z ⊂ P3 such that ψ(C) ∩ Z ̸= ∅ and Z and ψ(C) are not
coplanar, the morphism σ is a blow-up of the proper transform of Z, the map ξ is
a projection from ψ(C), the morphism η is a P1-bundle, and ω is a fibration into
quadric surfaces.

Let H be a general fibre of ω ◦ β. Then H is a del Pezzo surface such that
K2
H

= 7 and −KX ∼ 3H + 2E + G, where G and E are the exceptional divisors
of β and γ, respectively. In particular, lct(X) 6 1/3.

Suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/3. Note that
LCS(X,λD) ⊆ G, since lct(V ) = 1/3 by Lemma 7.15 and β(D) ∼Q −KV .

Applying Lemma 2.25 to the del Pezzo fibration ω ◦ β and using Theorem 2.7,
we see that there is a unique singular fibre S of the fibration ω ◦ β such that
LCS(X,λD) ⊆ G ∩ S, because lct(H ) = 1/3 (see Example 1.10).

Let P ∈ G ∩ S be an arbitrary point in the locus LCS(X,λD). We put
D = µS + Ω, where Ω is an effective Q-divisor such that S ̸⊂ Supp(Ω). Then
P ∈ LCS(S, λΩ|S) by Theorem 2.19.

We can identify the surface β(S) with a quadric cone in P3. Note that G ∩ S
is an exceptional curve on S, that is, there exists a unique ruling of the cone β(S)
intersecting the curve β(G). Let L ⊂ S be the proper transform of this ruling.
Then L ∩G ̸= ∅ (moreover, |L ∩G| = 1), while L ∩ E = ∅. Hence P = L ∩G by
Lemma 4.10. In particular, LCS(X,λD) = P . Hence

H ∪ P ⊆ LCS
(
X,λD +H +

2
3
E

)
⊆ H ∪ P ∪ E,
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because H is a sufficiently general fibre of the fibration ω ◦ β. Therefore, the locus
LCS

(
X,λD +H + 2

3E
)

must be disconnected, because P /∈ H and P /∈ E. But

−
(
KX + λD +H +

2
3
E

)
∼Q H +

2
3

(E +G) +
(
λ− 1

3

)
KX

is an ample divisor, which is impossible by Theorem 2.7.

The proof of Lemma 8.18 implies the following corollary.

Corollary 8.19. If (X)ג = 4.4 or 5.1, then lct(X) = 1/3.

Lemma 8.20. If (X)ג = 3.19, then lct(X) = 1/3.

Proof. Let Q ⊂ P4 be a smooth quadric and let L ⊂ P4 be a line such that
L ∩ Q = P1 ∪ P2, where P1 and P2 are different points. Let η : Q 99K P2 be the
projection from L. There exists a commutative diagram

X

β2

����
��

��
��

��
�

β1

��7
77

77
77

77
77

γ1

||xxxxxxxxxxxxxxxxxxxxxxxxx

γ2

""F
FFFFFFFFFFFFFFFFFFFFFFFF

U1

δ1
��

α1 // Q

η

���
�
�
�
�
�

ξ1||y
y

y
y

ξ2 ""E
E

E
E U2

δ2
��

α2oo

P
(
OP2 ⊕OP2(1)

) π2 //

ω2
**UUUUUUUUUUUUUUUU P3

ζ2

""E
E

E
E P3

ζ1

||y
y

y
y

P
(
OP2 ⊕OP2(1)

)π1oo

ω1
ttiiiiiiiiiiiiiiii

P2 ,

where αi is a blow-up of the point Pi, the morphism βi contracts a surface P2 ∼=
Ei ⊂ X to the point dominating Pi ∈ Q, the map ξi is the projection from Pi, the
map ζi is the projection from the image of Pi, the morphism δi is a contraction of
a surface F2

∼= Gi ⊂ Ui to a conic Ci ⊂ P3, the morphism πi is a blow-up of the
image of Pi, the morphism γi contracts the proper transform of Gi to the proper
transform of Ci, and ωi is the natural projection.

The map γ1 ◦ γ−1
2 is an elementary transformation of a conic bundle (see [57])

and δ1 ◦β2(E1) ⊂ P3 ⊃ δ2 ◦β1(E2) are the planes containing the conics C1 and C2,
respectively.

Let H be a general hyperplane section of Q such that P1 ∈ H ∋ P2. Then
−KX ∼ 3H +E1 +E2, where H is the proper transform of H on the threefold X.
In particular, lct(X) 6 1/3.

Suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/3. Then
LCS(X,λD) ⊆ E1 ∪ E2 because lct(Q) = 1/3. By Theorem 2.7 we may assume
that, LCS(X,λD) ⊆ E1.
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Let G2 ⊂ X be the proper transform of G2. Then G2 ∩ E1 = ∅, because
α2(G2) ⊂ Q is a quadric cone with vertex at the point P2, and the line L does not
lie in Q. Hence

∅ ̸= LCS
(
P
(
OP2 ⊕ OP2(1)

)
, λγ2(D)

)
⊆ γ2(E1),

where γ2(E1) is a section of ω1. Applying Theorem 2.27 to ω1 we obtain a contra-
diction.

Lemma 8.21. If (X)ג = 3.20, then lct(X) = 1/3.

Proof. Let Q ⊂ P4 be a smooth quadric threefold and let W be a smooth divisor
of bidegree (1, 1) on P2 × P2. Let L1 ⊂ Q ⊃ L2 be disjoint lines. Then there exists
a commutative diagram

W

υ1

yyssssssssssssssssssssssssssssss

υ2

%%KKKKKKKKKKKKKKKKKKKKKKKKKKKKKK

X
β2

{{vvv
vvv

v β1

##H
HHH

HHH

ω

OO

V1
π1

ttiiiiiiiiiiiiiiiiii

α1 ##F
FF

FF
FF

V2

α2{{xx
xx

xx
x π2

**UUUUUUUUUUUUUUUUUU

P2 Q
ψ2

//_____________
ψ1

oo_ _ _ _ _ _ _ _ _ _ _ _ _ P2 ,

where αi and βi are blow-ups of the lines Li and their proper transforms, respec-
tively, ω is a blow-up of a smooth curve C ⊂ W of bidegree (1, 1), the morphisms
υi and πi are natural P1-bundles, and the map ψi is a linear projection from the
line Li.

Let H be the exceptional divisor of ω and let Ei be the exceptional divisor of βi.
Then −KX ∼ 3H + 2E1 + 2E2, because α2 ◦ β1(H ) ⊂ Q is a hyperplane section
that contains L1 and L2. In particular, lct(X) 6 1/3.

Suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/3. Then
LCS(X,λD) ⊆ E1 ∩ E2 ∩H = ∅, because lct(V1) = lct(V2) = 1/3 by Lemma 7.17
and lct(W ) = 1/2 by Theorem 6.1, which gives a contradiction.

Lemma 8.22. If (X)ג = 3.21, then lct(X) = 1/3.

Proof. Let π1 : P1 × P2 → P1 and π2 : P1 × P2 → P2 be the natural projections.
There is a morphism α : X → P1 × P2 contracting a surface E to a curve C such
that π∗1(OP1(1)) · C = 2 and π∗2(OP2(1)) · C = 1.

The curve π2(C) ⊂ P2 is a line. Therefore, there is a unique surface H2 ∈
|π∗2(OP2(1))| such that C ⊂ H2. Let H1 be a fibre of the P2-bundle π1. Then
−KX ∼ 2H1 +3H2 +2E, where Hi ⊂ X is the proper transform of the surface Hi.
In particular lct(X) 6 1/3.

Suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/3. Note
that LCS(X,λD) ⊆ E, because lct(P1 × P2) = 1/3 by Lemma 2.21. There is
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a commutative diagram

V

U1

δ1

55kkkkkkkkkkkkkkk

ω1
��

X

γ

OO

α
��

β1oo β2 // U2

ω2
��

δ2

iiSSSSSSSSSSSSSSS

P1 P1 × P2
π1oo π2 // P2 ,

where V is a Fano threefold of index 2 with one ordinary double point O ∈ V
such that −K3

V = 40, the birational morphism βi is a contraction of the surface
H2

∼= P1 × P1 to a smooth rational curve, δi contracts the curve βi(H2) to the
point O ∈ V so that the rational map δ2 ◦ δ−1

1 : U1 99K U2 is a standard flop in
β1(H2) ∼= P1, the morphism ω1 is a fibration whose general fibre is P1 × P1, the
morphism ω2 is a P1-bundle, and γ contracts the surface γ(H2) to O ∈ V .

The variety V is a section of Gr(2, 5) ⊂ P9 by a linear subspace of codimension 3.
We have −KV ∼ 2(γ(H1) + γ(E)), and the divisor γ(H1) + γ(E) is very ample.
There is a commutative diagram

X

α

��

γ // V
� �

ζ
// P6

ξ

���
�
�

P1 × P2 � �

η
// P5

such that the embedding ζ is given by the linear system |γ(H1) + γ(E)|, the map
ξ is the projection from the point O, and the embedding η is given by the linear
system |H1 +H2|.

It follows from Theorem 3.6 in [60] (see also [59], Theorem 3.13) that U2
∼= P(E ),

where E is a stable rank-2 vector bundle on P2 such that the sequence

0 → OP2 → E ⊗ OP2(1) → I ⊗ OP2(1) → 0

is exact, where I is the ideal sheaf of two general points in P2. We have c1(E ) = −1
and c2(E ) = 2. It follows from Theorem 3.5 in [60] that

U1 ⊂ P
(
OP1 ⊕ OP1(1)⊕ OP1(1)⊕ OP1(1)

)
and U1 ∈ |2T − F |, where T is the tautological line bundle on P

(
OP1 ⊕ OP1(1) ⊕

OP1(1) ⊕ OP1(1)
)

and F is the fibre of the projection P
(
OP1 ⊕ OP1(1) ⊕ OP1(1) ⊕

OP1(1)
)
→ P1.

Note that because H1 · C = 2, either H1 is a smooth del Pezzo surface with
K2
H1

= 7, or |H1 ∩ C| = 1. Applying Lemma 2.25 to the morphism ω1 ◦ β1 and

the surface H1, we see that either |H1 ∩C| = 1 or H1 ∩ LCS(X,λD) = ∅, because
lct(H1) = 1/3 if H1 is smooth. So there is a fibre L of the projection E → C
such that LCS(X,λD) ⊆ L by Theorem 2.7. We putC = H2 ∩ E and P = L ∩ C.
Applying Theorem 2.27 to ω2 and (U2, λβ2(D)), we see from Theorem 2.7 that
either LCS(X,λD) = P or LCS(X,λD) = L.
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Suppose that LCS(X,λD) = L. Then

LCS
(
V, λγ(D)

)
= γ(L),

where γ(L) ⊂ V ⊂ P6 is a line, because −KV · γ(L) = 2 and −KV ∼Q γ(D). We
have Sing(V ) = O ∈ γ(L).

Let S ⊂ V be a general hyperplane section of V ⊂ P6 such that γ(L) ⊂ S. Then
the surface S is a del Pezzo surface such that K2

S = 5, O is an ordinary double point
of the surface S, S is smooth away from O ∈ γ(L), the equivalence KS ∼ OP6(1)|S
holds, and hence S contains finitely many lines which intersect the line γ(L).

Let H ⊂ V be a general hyperplane section of V ⊂ P6. We put Q = γ(L) ∩H.
Then LCS(H,λγ(D)|H) = Q by Remark 2.3, which contradicts Lemma 4.2 because
λ < 1/3.

Thus, LCS(X,λD) = P ∈ C. Let F1 be a general fibre of π1. Then

F1 ∩ C = P1 ∪ P2 ̸∋ α(P ),

where P1 and P2 are different points. We have P1 ∪P2 ⊂ H2 ∩F1 because C ⊂ H2.
Let Z be a general line in F1

∼= P2 containing P1. Then there is a surface F2 ∈
|π∗2(OP2(1))| such that Z ⊂ F2. Let F 1 ⊂ X ⊃ F 2 be the proper transforms of F1

and F2, respectively. Then P /∈ F 1 ∪ F 2.
Let Z ⊂ X be the proper transform of the curve Z. Then −KX · Z = 2 and

Z ⊂ F 1 ∩F 2, but Z ∩H2 = ∅. Thus, the curve γ(Z ) is a line on V ⊂ P6 such that
Sing(V ) = O /∈ γ(Z ).

Let T be a general hyperplane section of the threefold V ⊂ P6 such that
γ(Z ) ⊂ T . Then

T ∼ 2H2 +H1 + E ∼ 2H2 + F 1 + E ∼ 2F 2 + F 1 − E,

where T is the proper transform of the surface T on the threefold X. Thus,

F 1 + F 2 + T ∼ 3F 2 + 2F 1 − E ∼ 2H2 + 2H1 + 2E ∼ −KX ,

and applying Theorem 2.7, we see that the locus

P ∪ Z = LCS
(
X,λD +

2
3

(F 1 + F 2 + T )
)

must be connected. But P /∈ Z, a contradiction.

Lemma 8.23. If (X)ג = 3.22, then lct(X) = 1/3.

Proof. Let π1 : P1 × P2 → P1 and π2 : P1 × P2 → P2 be the natural projections.
There is a morphism α : X → P1×P2 contracting a surface E to the curve C lying
in a fibre H1 of π1 such that the curve π2(C) is a conic in P2.

We have E ∼= F2. Let H2 be a general surface in |π∗2(OP2(1))|. We have the
equivalence −KX ∼ 2H1 + 3H2 + E, where Hi ⊂ X is the proper transform of
the surface Hi. Hence lct(X) 6 1/3.

Suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/3. Note that
LCS(X,λD) ⊆ E, since lct(P1 × P2) = 1/3 by Lemma 2.21.



Log canonical thresholds 929

Let Q be the unique surface in |π∗2(OP2(2))| containing C and let Q ⊂ X be the
proper transform of Q. Then Q ∩H1 = ∅ and there is a commutative diagram

X

α

��

β // P
(
OP2 ⊕OP2(2)

)
ϕ

��

γ

**TTTTTTTTTTTTTTT

P1 × P2
π2 // P2 P(1, 1, 1, 2)

ψ
oo_ _ _ _ _ _ _ _ _

such that β is a contraction of Q to a curve, γ is a contraction of β(H1) to a point,
the morphism ϕ is a natural P1-bundle, and the map ψ is the natural projection.
We have

γ ◦ β(D) ∼Q
5γ ◦ β(E)

2
∼Q −KP(1,1,1,2) ∼Q OP(1,1,1,2)(5),

which implies that E ̸⊆ LCS(X,λD) because λ < 1/3.
Applying Theorem 2.27 to ϕ, we see that there is a fibre F of the projection

E → C such that LCS(X,λD) ⊆ (E ∩ Q ) ∪ F , including the possibility that
LCS(X,λD) ⊂ E ∩Q.

Suppose that LCS(X,λD) ⊂ E ∩ Q. Let M ⊂ P1 × P2 be a general surface
in |H1 +H2| and let M ⊂ X be the proper transform of the surface M . Then
M ∩ H1 = L, where L is a line on H1

∼= P2. Let R be the unique surface in
|π∗2(OP2(1))| containing α(L) and let R be the proper transform of R on the
threefold X. Then

LCS(X,λD)∪L ⊆ LCS
(
X,λD+

2
3

(M +H1 +R+H2)
)
⊆ LCS(X,λD)∪L∪H1,

but L ∩ E ∩Q = Q ∩H1 = ∅ and −KX ∼ M +H1 + R +H2, which contradicts
Theorem 2.7.

Therefore, F ⊆ LCS(X,λD). We put F̆ = γ ◦ β(F ) and D̆ = γ ◦ β(D). Then

F̆ ⊆ LCS
(
P(1, 1, 1, 2), λD̆

)
⊆ C̆ ∪ F̆ ,

where C̆ = γ ◦ β(Q) ⊂ P(1, 1, 1, 2) is a curve such that ψ(C̆) = π2(C).
Let S be a general surface in |OP(1,1,1,2)(2)|. Then S ∼= P2 and

F̆ ∩ S ⊆ LCS
(
S, λD̆|S

)
⊆ (C̆ ∪ F̆ ) ∩ S;

but 3D|S ∼Q −5KS , which is impossible by Lemma 2.8.

Lemma 8.24. If (X)ג = 3.23, then lct(X) = 1/4.

Proof. Let O ∈ P3 be a point, let C ⊂ P3 be a conic such that O ∈ C; let Π ⊂ P3

be the unique plane containing C, and let Q ⊂ P4 be a smooth quadric threefold.
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Then the diagram

X

δ

wwpppppppppppppppppppppp
ϕ
�� η

&&NNNNNNNNNNNNNNNNNNNNN

U
ω

{{www
ww

ww υ

##G
GG

GG
GG

V7

α

''PPPPPPPPPPPPPPPPPPPPP
π // P2 Q

ζ
oo_ _ _ _ _ _ _

ξ

���
�

�
�

�
Y

β

wwooooooooooooooooooooo
γoo

P3

ψ

[[8
8

8
8

8

is commutative, where we use the following notation: the morphism α is a blow-up
of the point O with exceptional divisor E; the morphism π is the natural
P1-bundle; the morphisms β and δ are blow-ups of C and its proper transform,
respectively; the morphism γ contracts the proper transform of the plane Π to
a point; the morphism ϕ contracts the proper transform of the plane Π to a curve;
the morphism η contracts the proper transform of E to a curve L ⊂ Y such that
γ(Π) ∈ γ(L) ⊂ Q ⊂ P4 and γ(L) is a line in P4; the morphism ω is a natural
P1-bundle; the morphism υ is a blow-up of the line γ(L); the maps ψ, ξ, and ζ are
projections from O, γ(Π), and γ(L), respectively. Note that E is a section of π.

Let Π ⊂ X be a proper transform of the plane Π ⊂ P3. Then lct(X) 6 1/4,
because −KX ∼ 4Π + 2E + 3G, where E and G are the exceptional surfaces of η
and δ, respectively.

Suppose that lct(X) < 1/4. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/4. We note that

∅ ̸= LCS(X,λD) ⊆ E ∩Π ∩G,

because lct(V7) = 1/4 by Theorem 6.1, lct(Y ) = 1/4 by Lemma 7.16, and lct(U) =
1/3 by Lemma 7.17.

Let R ⊂ P3 be a general cone over C with vertex P ∈ P3, let H1 ⊂ P3 be
a general plane passing through O and P , and let H2 ⊂ P3 be a general plane
passing through P . Then

R ∼ (α ◦ δ)∗(R)− E −G, H1 ∼ (α ◦ δ)∗(H1)− E, H2 ∼ (α ◦ δ)∗(H2),

whereR, H1, andH2 are the proper transforms of R, H1, and H2 on the threefold
X, respectively. We have −KX ∼ Q+H1 +H2, but it follows from the generality
of R, H1, and H2 that the locus

LCS
(
X,λD +

3
4

(Q+H1 +H2)
)

= LCS(X,λD) ∪ P

is disconnected, which is impossible by Lemma 2.7.

Lemma 8.25. If (X)ג = 3.24, then lct(X) = 1/3.
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Proof. Let W be a divisor of bidegree (1, 1) on P2 × P2. There is a commutative
diagram

X
ζ

xxppppppppppppp

π

��

α // W

ω1

��
P1 F1

ξ
oo γ // P2 ,

where ω1 is a natural P1-bundle, the morphism α contracts a surface E ∼= P1 × P1

to a fibre L of ω1, γ is a blow-up of the point ω1(L), the morphism ξ is a P1-bundle,
and ζ is an F1-bundle.

Let ω2 : X → P2 be a natural P1-bundle distinct from ω1. Then there is a surface
G ∈ |ω∗2(OP2(1))| such that L ⊂ G, because ω2(L) is a line in P2. Let G ⊂ X be the
proper transform of G. Then −KX ∼ 2F + 2G + 3E, where E is the exceptional
divisor of α and F is a fibre of ζ. We see that lct(X) 6 1/3.

Suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/3. Note that
LCS(X,λD) ⊆ E since lct(W ) = 1/2 by Theorem 6.1. We may assume that
F ∩ LCS(X,λD) ̸= ∅. Then

F1
∼= F ⊆ LCS(X,λD) ⊆ E ∼= P1 × P1

by Lemma 2.25 because lct(F ) = 1/3 (see Example 1.10), and this is a contradiction.

9. Fano threefolds with ρ > 4

Throughout this section we use the assumptions and notation introduced in § 1.

Lemma 9.1. If (X)ג = 4.1, then lct(X) = 1/2.

Proof. The threefold X is a divisor on P1 × P1 × P1 × P1 of multidegree (1, 1, 1, 1).
Let [(x1 : y1), (x2 : y2), (x3 : y3), (x4 : y4)] be coordinates on P1 × P1 × P1 × P1.
ThenX is given by an equation F (x1, y1, x2, y2, x3, y3, x4, y4) = 0, where F is a form
of multidegree (1, 1, 1, 1). Let π1 : X → P1 × P1 × P1 be the projection given by

[(x1 : y1), (x2 : y2), (x3 : y3), (x4 : y4)] 7→ [(x2 : y2), (x3 : y3), (x4 : y4)]∈P1×P1×P1,

and let π2, π3, and π4 : X → P1 × P1 × P1 be projections defined in a similar way.
We put

F = x1G(x2, y2, x3, y3, x4, y4) + y1H(x2, y2, x3, y3, x4, y4),

where G(x2, y2, x3, y3, x4, y4) andH(x2, y2, x3, y3, x4, y4) are multilinear forms inde-
pendent of x1 and y1. Then π1 is a blow-up of the curve C1 ⊂ P1 × P1 × P1 given
by the equations

G(x2, y2, x3, y3, x4, y4) = H(x2, y2, x3, y3, x4, y4) = 0,

which also define a surface E1 ⊂ P1 × P1 × P1 × P1 which is contracted by π1.
The equations x1 = H(x2, y2, x3, y3, x4, y4) = 0 define a divisor H1 ⊂ X such that
−KX ∼ 2H1 + E1, which implies that lct(X) 6 1/2.
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Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2.
Let E2, E3, and E4 be surfaces in X analogous to E1. Then

∅ ̸= LCS(X,λD) ⊆ E1 ∩ E2 ∩ E3 ∩ E4,

because lct(P1 × P1 × P1) = 1/2 by Lemma 2.21. But Ei ⊂ P1 × P1 × P1 × P1 is
given by the equations

∂F (x1, y1, x2, y2, x3, y3, x4, y4)
∂xi

=
∂F (x1, y1, x2, y2, x3, y3, x4, y4)

∂yi
= 0;

which implies that the intersection E1 ∩ E2 ∩ E3 ∩ E4 is given by the equations

∂F

∂x1
=
∂F

∂y1
=
∂F

∂x2
=
∂F

∂y2
=
∂F

∂x3
=
∂F

∂y3
=
∂F

∂x4
=
∂F

∂y4
= 0.

Hence E1 ∩ E2 ∩ E3 ∩ E4 = Sing(X) = ∅ and LCS(X,λD) = ∅.

Lemma 9.2. If (X)ג = 4.2, then lct(X) = 1/2.

Proof. LetQ1 ⊂ P4 ⊃ Q2 be quadric cones with verticesO1 ∈ P4 ∋ O2, respectively.
Let O1 /∈ S1 ⊂ Q1 ⊂ P4 be a hyperplane section of Q1. Then there exists a smooth
elliptic curve C1 ⊂ |−KS1 | such that the diagram

X
β1

uujjjjjjjjjjjjjjj
β2

))TTTTTTTTTTTTTTT ζ2

��

ζ1





U1

α1
��

γ1

��

η1

}}{{
{{

{{
{{

{{
{{

{{
{

U2

α2
��

γ2

��

η2

!!D
DD

DD
DD

DD
DD

DD
DD

Q1

ψ1 ))SSSSSS Q2

ψ2uuk k k k k k

P1 P1 × P1
π1

oo
π2

// P1

is commutative, where π1 ̸= π2 are the natural projections, the map ψi is the
projection from Oi ∈ Qi ⊂ P4, the morphism αi is a blow-up of the vertex Oi
of Qi, the morphism βi contracts a surface

P1 × C1
∼= Gi ⊂ X

to a curve C1
∼= Ci ⊂ Ui, the morphism ηi is an F1-bundle, γi is a P1-bundle, and

ζi is a fibration into del Pezzo surfaces of degree 6 which has 4 singular fibres.
Let Ei ⊂ X be the proper transform of the exceptional divisor of αi. Then

S1 = α1 ◦ β1(E2) ⊂ Q1 ⊂ P4 ⊃ Q2 ⊃ α2 ◦ β2(E1)

are hyperplane sections of Q1 and Q2 containing C1 and C2, respectively. It is also
easy to see that α1 ◦β1(G2) and α2 ◦β2(G1) are the cones in P4 over the curves C1

and C2, respectively.
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Let H⊂X be the proper transform of a hyperplane section of Q1 ⊂ P4 which
contains O1. Then −KX ∼ 2H + E2 + E1, which yields lct(X) 6 1/2.

Suppose that lct(X) < 1/2. Then there is an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2. We put
D = µ1E1 + µ2E2 + Ω, where Ω is an effective Q-divisor on X such that E1 ̸⊆
Supp(Ω) ̸⊇ E2.

Let Γ be a general fibre of the conic bundle γ1 ◦ β1. Then

2 = Γ ·D = Γ · (µ1E1 + µ2E2 + Ω) = µ1 + µ2 + Γ · Ω > µ1 + µ2,

and we may assume without loss of generality that µ1 6 µ2. Then µ1 6 1.
Suppose that there is a surface S ∈ LCS(X,λD). Then S ̸= E1. Moreover,

S ̸= G1, because α2 ◦ β2(G1) is a quadric surface and λ < 1/2. Hence S ∩E1 ̸= ∅.
But −(1/2)KE1 ∼Q D|E1

and E1
∼= P1 × P1, which is impossible by Theorem 2.19

and Lemma 2.23. We see that the set LCS(X,λD) contains no surfaces.
Let P ∈ LCS(X,λD). Suppose that P /∈ G1. Let Z be a fibre of γ1 such

that β1(P ) ∈ Z. Then Z ⊆ LCS(U1, λβ1(D)) by Theorem 2.27. We put E1 =
β1(E1). Then Z ∩ E1 ∈ LCS

(
E1, λΩ|

E1

)
by Theorem 2.19, which is impossible by

Lemma 2.23, because µ1 6 1.
Thus, P ∈ G1. Let F1 ⊂ X ⊃ F2 be fibres of ζ1 and ζ2 passing through the

point P . Then either F1 or F2 is smooth, because α1(P ) ∈ C1. But lct(Fi) = 1/2
if Fi is smooth (see Example 1.10), which contradicts Lemma 2.25.

Lemma 9.3. If (X)ג = 4.3, then lct(X) = 1/2.

Proof. Let F1
∼= F2

∼= F3
∼= P1 × P1 be fibres of the three different projections

P1 × P1 × P1 → P1. There is a contraction α : X → P1 × P1 × P1 of a surface
E ⊂ X to a curve C ⊂ P1 × P1 × P1 such that C · F1 = C · F2 = 1 and C · F3 = 2.
There is a smooth surface G ∈ |F1 + F2| containing C. In particular, −KX ∼
2G+E+F 3, where F 3 and G are the proper transforms of F3 and G, respectively.
Hence lct(X) 6 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2. We note that
LCS(X,λD) ⊆ E, because lct(P1 × P1 × P1) = 1/2 and α(D) ∼Q −KP1×P1×P1 .

Let H ∈ |3F1 + F3| be a smooth surface such that C = G ∩ H, and let H be
the proper transform of H on the threefold X. Then H ∩ G = ∅ and there is
a commutative diagram

U

ϕ

��

X

α

��

γoo β // V

π

��
P1 × P1 P1 × P1 × P1

ζoo ξ // P1 × P1

such that β and γ are contractions of the surfaces G and H to smooth curves, the
morphisms π and ϕ are P1-bundles, ζ and ξ are the projections given by the linear
systems |F1 + F2| and |F1 + F3|, respectively.

It follows from H ∩ G = ∅ that either (V, λβ(D)) or (U, λγ(D)) is not log
canonical.
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Applying Theorem 2.27 to (V, λβ(D)) or (U, λγ(D)) (and the fibrations π or ϕ,
respectively) and using Theorem 2.7, we see that LCS(X,λD) = Γ, where Γ is
a fibre of the natural projection E → C.

We may assume that α(Γ) ∈ F3. Let F 3 ⊂ X be the proper transform of the
surface F3. We put D = µF 3 +Ω, where Ω is an effective Q-divisor on X such that
F 3 ̸⊂ Supp(Ω). Then

µF3 + α(Ω) ∼Q 2(F1 + F2 + F3),

which yields µ 6 2. Hence the log pair (F 3, λΩ|
F 3

) is not log canonical along the

curve Γ ⊂ F 3 by Theorem 2.19. But Ω|
F 3
∼Q −KF 3

and F 3 is a del Pezzo surface

such that K2
F 3

= 6, and either F 3 is smooth and |C ∩ F3| = 2, or F 3 has one
ordinary double point and |C ∩ F3| = 1.

We have lct(F 3) 6 λ. Then F 3 is singular by Example 1.10. It follows from
Lemma 4.5 that LCS

(
F 3, λΩ|

F 3

)
= Sing(F 3), but the log pair

(
F 3, λΩ|

F 3

)
is not

log canonical along the whole of Γ ⊂ F 3, which is a contradiction.

Lemma 9.4. If (X)ג = 4.5, then lct(X) = 3/7.

Proof. Let Q ⊂ P4 be a quadric cone and let V ⊂ P6 be a section of Gr(2, 5) ⊂ P9

by a linear subspace of dimension 6 such that V has one ordinary double point.
Then the diagram

X

µ

||
||

||
||

||
||

||
||

|

��

γ

��

η

%%LLLLLLLL
θ // Y

ι //
τ

%%LLLLLLLL Q

ξ
���
�

V

ϕ

$$

�
�

}
z

x
v

t r p n
j f c _ \ X W U S R P O M

L
J

P1 × F1
ξ

&&LLLLLLLL

ν

��

σ // P1 × P1

υ2
��

ED

BC@A
υ1

OO

F1

ζ

��

χ // P1

U1

δ1

OO

ω1 //

U

β

aa

α

%%LLLLLLLL
β1oo β2 // U2

ω2

&&LLLLLLLLL

LLLLLLLLLL

δ2

BBBBBBBB

oo

P1 P1 × P2
π1oo π2 // P2

ψ

OO�
�
�
�
�

is commutative (cf. [61], Lemma 2.6), where we use the following notation:
• the morphisms πi, υi, ξ, and χ are the natural projections;
• the morphism α contracts a surface F3

∼= E ⊂ U to a curve C such that

π∗1
(
OP1(1)

)
· C = 2, π∗2

(
OP2(1)

)
· C = 1;

• the morphism β contracts a surface P1×P1 ∼= H2 ⊂ U to the singular point
of V ;
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• the morphism βi contracts the surface H2 to a smooth rational curve;
• the morphism δi contracts the curve βi(H2) to the singular point of V so

that the map δ2◦δ−1
1 : U1 99K U2 is a standard flop in the curve β1(H2) ∼= P1;

• the morphism ω1 is a fibration with general fibre P1 × P1;
• the morphisms ω2, π2, ξ, σ, and τ are P1-bundles;
• the morphism ζ is a blow-up of a point O ∈ P2 such that O /∈ π2(C);
• the map ψ is a linear projection from the point O ∈ P2;
• the morphism ν contracts a surface G ∼= P1 × P1 to a curve L such that
π2(L) = O;

• the morphism γ contracts a surface Ğ to a curve L such that α(L ) = L ⊂
P1×P2 and the curve β(L ) is a line in V ⊂ P6 such that β(L )∩Sing(V ) = ∅;

• η contracts to a curve a surface Ĕ such that ν ◦ η(Ĕ) = C ⊂ P1 × P2;
• the morphism θ contracts to a curve a surface R̆ ̸= Ĕ such that τ ◦ θ(R̆) =
σ ◦ η(Ĕ);

• the morphism µ is a fibration into del Pezzo surfaces of degree 6;
• the morphism ι contracts the surface θ(H̆2) to the singular point of the

quadric Q;
• the map ϕ is the linear projection from the line β(L ) ⊂ V ⊂ P6.

The curve π2(C) ⊂ P2 is a line. Hence α(H2) ∈ |π∗2(OP2(1))| and C ⊂ α(H2).
The morphism π1 induces a double cover C → P1 branched in two points Q1 ∈

C ∋ Q2. Let Ti be the unique surface in |π∗1(OP1(1))| passing through Qi. Let
T i ⊂ U be the proper transform of Ti. Then the surface T i

• has one ordinary double point,
• is tangent to the surface E along the curve E ∩ T i,
• is a del Pezzo surface such that K2

T i
= 7.

Let Zi ⊂ P2 be the unique line passing through the points O and π2 ◦ α(Qi).
Then there is a unique surface Ri ∈ |(π2 ◦ α)∗(OP2(1))| such that Zi ⊂ π2 ◦ α(Ri).
We have L ⊂ Ri and −KU ∼ 2H2 +Ri + 2T i + E.

Let Γi be the fibre of the projection E → C over the point Qi. Then Γi = E∩T i
and

Γi ⊂ LCS
(
U,

3
7

(2H2 +Ri + 2T i + E)
)
.

Let R̆i and T̆i be the proper transforms of Ri and T i on the threefold X, respec-
tively. Then −KX ∼ 2H̆2 + R̆i + 2T̆i + Ĕ, because L ⊂ Ri. Let Γ̆i ⊂ X be the
proper transform of the curve Γi. Then the log pair(

X,
3
7

(2H̆2 + R̆i + 2T̆i + Ĕ)
)

is log canonical but not log terminal. Thus, lct(X) 6 3/7.
Suppose that lct(X) < 3/7. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 3/7.
The surfaces T̆1 and T̆2 are the only singular fibres of the fibration µ : X → P1.

Then
T̆i ̸⊆ LCS(X,λD) ( T̆1 ∪ T̆2

by Lemma 2.25, because D · Z = T̆1 = 2, where Z is a general fibre of π2 ◦ α ◦ γ.
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By Theorem 2.7 we may assume that LCS(X,λD) ⊆ T̆1.
Applying Theorem 2.27 to the log pair (P1 × F1, λη(D)), we see that

LCS(X,λD) ̸= T̆1 ∩ Ğ,

because G = η(Ğ) is a section of the P1-bundle σ.
Applying Theorem 2.27 to the log pair (P1 × P2, λα ◦ γ(D)), we see that

∅ ̸= LCS(X,λD) ⊆ T̆1 ∩ Ĕ = Γ̆1

by Theorem 2.7, because Ğ ∩ Ĕ = ∅ and T1 is a section of π2.
Applying Theorem 2.27 to the log pairs (Y, λθ(D)) and (U2, λβ2 ◦ γ(D)) (and

the fibrations τ and ω2, respectively), we see that LCS(X,λD) = Γ̆1 because
R̆ ∩ H̆2 = ∅. Let D = γ(D). Then LCS(U, λD ) = Γ1. We put D = εH2 + Ω,
where Ω is an effective Q-divisor such that H2 ̸⊆ Supp(Ω). Then

Ω|
H2

∼Q −
(1 + ε)

2
KH2

and the log pair
(
H2, λΩ|

H2

)
is not log canonical by Theorem 2.19. The latter

implies that
3
7

1 + ε

2
> λ

1 + ε

2
>

1
2

by Lemma 2.23, so that ε > 4/3.
We may assume (see Remark 2.22) that either E ̸⊆ Supp(D ) or T 1 ̸⊆ Supp(D ).
Suppose that E ̸⊆ Supp(D ). Let Z be a general fibre of the projection E → C.

Then
1 = −KU · Z = D · Z = ε+ Ω · Z > ε,

which is a contradiction because ε > 4/3. Thus, T 1 ̸⊆ Supp(D ).
Let ∆ ⊂ T 1 be the proper transform of a general line in T1

∼= P2 passing
through Q1. Then

2 = −KU ·∆ = D ·∆ > multΓ1(D ) >
1
λ
>

7
3
,

because ∆ ̸⊂ Supp(D ) and ∆ ∩ Γ1 ̸= ∅. This contradiction completes the proof.

Lemma 9.5. If (X)ג = 4.6, then lct(X) = 1/2.

Proof. There is a birational morphism α : X → P3 that blows up three disjoint lines
L1, L2, and L3.

Let Hi be the proper transform on X of a general plane in P3 containing Li.
Then

−KX ∼ 2H1 + E1 +H2 +H3 ∼ 2H2 + E2 +H1 +H3 ∼ 2H3 + E3 +H1 +H2,

where Ei is the exceptional divisor of α such that α(Ei) = Li. In particular,
lct(X) 6 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2.
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The surface Hi is a smooth del Pezzo surface such that K2
Hi

= 7, the linear
system |Hi| has no base points and induces a morphism ϕi : X → P1 whose fibres
are isomorphic to Hi.

Suppose that |LCS(X,λD)| < +∞. We may assume that LCS(X,λD) ̸⊆ E1.
Then the set

LCS
(
X,λD +H1 +

1
2
E1

)
is disconnected, which is impossible by Theorem 2.7, becauseH2+H3+(λ−1/2)KX

is ample.
We may assume that H1 ∩ LCS(X,λD) ̸= ∅. Then

∅ ̸= H1 ∩ LCS(X,λD) ⊆ LCS
(
H1, λD|H1

)
by Remark 2.3. We put C2 = E2|H1

and C3 = E3|H1
. Then C2 ·C2 = C3 ·C3 = −1

and there is a unique curve C with P1 ∼= C ⊂ H1 such that C · C2 = C · C3 = 1
and C · C = −1. Note that LCS

(
H1, λD|H1

)
= C by Lemma 4.9.

There is a unique smooth quadric Q ⊂ P3 that contains L1, L2, and L3. Note
that Q ∩H1 = C, where Q ⊂ X is the proper transform of the quadric Q.

There is a birational morphism σ : X → P1×P1×P1 contracting Q to a curve of
tridegree (1, 1, 1). SinceQ∩H1 = C, it follows (see Remark 2.3) that LCS(X,λD) ⊃
Q, and hence LCS(X,λD) = Q because lct(P1×P1×P1) = 1/2. We putD = µQ+Ω,
where µ > 1/λ > 2 and Ω is an effective Q-divisor such that Q ̸⊂ Supp(Ω). Then
α(D) = µQ+ α

(
Ω

)
, which is impossible because α(D) ∼Q 2Q ∼ −KP3 and µ > 2.

Lemma 9.6. If (X)ג = 4.7, then lct(X) = 1/2.

Proof. There is a blow-up morphism α : X → W such that the variety W is
a smooth divisor of bidegree (1, 1) in P2 × P2, the morphism α contracts two (irre-
ducible) surfaces E1 ̸= E2 to two disjoint curves L1 and L2, and the curves Li are
fibres of one natural P1-bundle W → P2.

There is a surface H ⊂ W such that −KX ∼ 2H and L1 ⊂ H ⊃ L2. We have
−KX ∼ 2H +E1 +E2, where H is the proper transform of H on the threefold X.
Then lct(X) 6 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2. Note that
LCS(X,λD) ⊆ E1 ∪ E2 since lct(W ) = 1/2 by Theorem 6.1.

We may assume that LCS(X,λD) ∩ E1 ̸= ∅. Let β : X → Y be a contrac-
tion of E2. Then LCS(Y, λβ(D)) ̸= ∅ and β(D) ∼Q −KY , which contradicts
Lemma 8.25.

Lemma 9.7. If (X)ג = 4.8, then lct(X) = 1/3.

Proof. There is a blow-up α : X → P1 × P1 × P1 of a curve C ⊂ P1 × P1 × P1

such that C ⊂ F1 and C · F2 = C · F3 = 1, where Fi is a fibre of the projection
P1 × P1 × P1 onto the ith factor. There is a surface G ∈ |F2 + F3| containing the
curve C. Let E be the exceptional divisor of α. Then −KX ∼ 2F 1 + 2G + 3E,
where F 1 and G are the proper transforms of F1 and G, respectively. In particular,
lct(X) 6 1/3.
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Suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/3. Note that
LCS(X,λD) ⊆ E, because lct(P1 × P1 × P1) = 1/2 and α(D) ∼Q −KP1×P1×P1 .

Let Q be a quadric cone in P4. Then there is a commutative diagram

X
α

rreeeeeeeeeeeeeeeeeeeeeeee

β
��

γ

++VVVVVVVVVVVVVVVVVVVV

P1 × P1 × P1

ϕ **VVVVVVVVVVVVV V
π

yyrrrrrrrr
δ

((QQQQQQQQQQQQ U

ξ||xxx
xx

xx

P1 × P1 Q ,
ψ

oo_ _ _ _ _ _ _ _ _ _

where we use the following notation: V is a variety with V)ג ) = 3.31; the morphism
β is a contraction of the surface G to a curve; the morphism γ is a contraction of
F 1

∼= P1 × P1 to an ordinary double point; the morphism δ is a blow-up of the
vertex of the quadric cone Q ⊂ P4; the morphism ξ is a blow-up of a smooth conic
in Q; the map ψ is the projection from the vertex of the cone Q; the morphism ϕ
is induced by |F2 + F3|, that is, is the projection of P1 × P1 × P1 onto the product
of the last two factors; the morphism π is a natural P1-bundle.

It follows from Corollary 5.4 that lct(V ) = 1/3. On the other hand, lct(U) = 1/3
by Lemma 2.26. Hence LCS(X,λD) ⊆ E ∩G ∩ F 1 = ∅, a contradiction.

The following result is implied by Corollaries 5.4 and 8.19, Lemma 2.29, and
Example 1.10.

Corollary 9.8. Suppose that ρ > 5. Then lct(X) = 1/3 if (X)ג ∈ {5.1, 5.2}, and
lct(X) = 1/2 otherwise.

Lemma 9.9. If (X)ג = 4.13 and X is general, then lct(X) = 1/2.

Proof. Let F1
∼= F2

∼= F3
∼= P1 × P1 be fibres of the three different projections

P1×P1×P1 → P1. There is a contraction α : X → P1×P1×P1 of a surface E ⊂ X
to a curve C ⊂ P1 × P1 × P1 such that C · F1 = C · F2 = 1 and C · F3 = 3. Then
there is a smooth surface G ∈ |F1 + F2| containing C. In particular, we see that
−KX ∼ 2G+E+2F 3, where F 3 and G are the proper transforms of the divisors F3

and G, respectively. Hence lct(X) 6 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ∼Q −KX

such that the log pair (X,λD) is not log canonical for some λ < 1/2. Then
LCS(X,λD) ⊆ E ∼= F4, because lct(P1×P1×P1) = 1/2 and α(D) ∼Q −KP1×P1×P1 .

There are smooth surfaces H1 ∈ |3F1 + F3| and H2 ∈ |3F2 + F3| such that
C = G · H1 = G · H2 and H1

∼= H2
∼= P1 × P1. Let Hi be the proper transform

of Hi on the threefold X. Then H1 ∩G = H2 ∩G = ∅.
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There is a commutative diagram

U1

ϕ1

��3
33

33
33

33
33

33
33

33
X

α
��

γ1oo

βtthhhhhhhhhhhhhhhhhhh
γ2 // U2

ϕ2

����
��

��
��

��
��

��
��

�

V

π

((

P1 × P1 × P1

ζ

��

ξ2

$$H
HHHHHHHHHHHHH

ξ1nnnnnnnnn

xxqqqqqqq

P1 × P1 P1 × P1 P1 × P1

such that β and γi are contractions of the surfaces G and Hi to smooth curves, the
morphisms π and ϕi are P1-bundles, and the morphisms ζ and ξi are the projections
given by the linear systems |F1 + F2| and |Fi + F3|, respectively.

It follows from H1 ∩ G = ∅ that either (V, λβ(D)) or (U1, λγ1(D)) is not log
canonical.

Applying Theorem 2.27 to (V, λβ(D)) or (U1, λγ1(D)) (and the fibration π or
ϕ1, respectively) and using Theorem 2.7, we see that LCS(X,λD) = Γ, where Γ is
a fibre of the natural projection E → C.

We may assume that α(Γ) ∈ F3. We put D = µF 3 + Ω, where Ω is an effective
Q-divisor on X such that F 3 ̸⊂ Supp(Ω). Then µF3 + α(Ω) ∼Q 2(F1 + F2 + F3),
which yields µ 6 2. The log pair

(
F 3, λΩ|

F 3

)
is not log canonical along Γ ⊂ F 3 by

Theorem 2.19. We have Ω|
F 3

∼Q −KF 3
and F 3 is a del Pezzo surface such that

K2
F 3

= 5. Note that F 3 can be singular. Namely, we have

Sing(F 3) = ∅ ⇐⇒ |C ∩ F3| = F3 · C = 3,

and Sing(F 3) ⊂ Γ. The following cases are possible:
• the surface F 3 is smooth and |C ∩ F3| = 3;
• the surface F 3 has one ordinary double point and |C ∩ F3| = 2;
• the surface F 3 has a singular point of type A2 and |C ∩ F3| = 1.

We have lct(F 3) 6 λ < 1/2. Thus, it follows from Examples 1.10 and 4.3 that
|C ∩ F3| = 1, which is impossible if the threefold X is sufficiently general.

10. Upper bounds

We use the assumptions and the notation introduced in § 1. The main aim of
this section is to find upper bounds for the global log canonical thresholds of the
varieties X in several cases not covered by Theorem 1.46.

Lemma 10.1. If (X)ג = 1.8, then lct(X) 6 6/7.

Proof. The linear system |−KX | does not have base points and induces an embed-
ding X ⊂ P10, and the threefold X contains a line L ⊂ X (see [62]).
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It follows from Theorem 4.3.3 in [2] that there is a commutative diagram

U

α

��

ρ //______ W

β
��

X
ψ

//______ P3 ,

where α is a blow-up of the line L, the map ρ is a composition of flops, the morphism
β is a blow-up of a smooth curve of degree 7 and genus 3, and ψ is a double
projection from the line L.

Let S ⊂ X be the proper transform of the exceptional surface of β. Then
multL(S) = 7 and S ∼ −3KX , which implies that lct(X) 6 6/7.

Lemma 10.2. If (X)ג = 1.9, then lct(X) 6 4/5.

Proof. The linear system |−KX | does not have base points and induces an embed-
ding X ⊂ P11, and the threefold X contains a line L ⊂ X (see [62]).

It follows from Theorem 4.3.3 in [2] that there is a commutative diagram

U

α

��

ρ //______ W

β
��

X
ψ

//______ Q ,

where Q ⊂ P4 is a smooth quadric threefold, α is a blow-up of the line L, the map
ρ is a composition of flops, the morphism β is a blow-up along a smooth curve of
degree 7 and genus 2, and ψ is a double projection from the line L.

Let S ⊂ X be the proper transform of the exceptional surface of β. Then
multL(S) = 5 and S ∼ −2KX , which implies that lct(X) 6 4/5.

Lemma 10.3. If (X)ג = 1.10, then lct(X) 6 2/3.

Proof. The linear system |−KX | does not have base points and induces an embed-
ding X ⊂ P13, and the threefold X contains a line L ⊂ X (see [62]).

It follows from Theorem 4.3.3 in [2] that the diagram

U

α

��

ρ //______ W

β
��

X
ψ

//______ V5

is commutative, where V5 is a smooth section of Gr(2, 5) ⊂ P9 by a linear subspace of
dimension 6, the morphism α is a blow-up of the line L, the map ρ is a composition
of flops, the morphism β is a normal rational curve of degree 5, and ψ is a double
projection from L.

Let S ⊂ X be the proper transform of the exceptional surface of β. Then
multL(S) = 3 and S ∼ −KX , which implies that lct(X) 6 2/3.

Lemma 10.4. If (X)ג = 2.2, then lct(X) 6 13/14.
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Proof. There is a smooth divisor B ⊂ P1 × P2 of bidegree (2, 4) such that the
diagram

X

π

��

ϕ1

vvnnnnnnnnnnnnnnn
ϕ2

((PPPPPPPPPPPPPPP

P1 P1 × P2
π1

oo
π2

// P2

is commutative, where π is a double cover branched along B, the morphisms π1 and
π2 are the natural projections, ϕ1 is a fibration into del Pezzo surfaces of degree 2,
and ϕ2 is a conic bundle.

Let H1 be a general fibre of ϕ1. We put H1 = π(H1). Then the intersection

C = H1 ∩B ⊂ H1
∼= P2

is a smooth quartic curve 4.
There is a point P ∈ C such that multP (C · L) > 3, where L ⊂ H1

∼= P2 is the
line tangent to C at P .

The curve π2(L) is a line. Thus, there is a unique surface H2 ∈ |ϕ∗2(OP2(1))|
such that ϕ2(H2) = π2(L). Hence −KX ∼ H1 +H2.

Let us show that lct(X,H1 +H2) 6 13/14. We put H2 = π(H2). Then

LCS
(
X,

13
14

(H1 +H2)
)
̸= ∅ ⇐⇒ LCS

(
P1 × P2,

1
2
B +

13
14

(H1 +H2)
)
̸= ∅

by [1], Proposition 3.16. Let α : V → P1 × P2 be a blow-up of the curve C. Then

KV +
1
2
B̃ +

13
14

(H̃1 + H̃2) +
3
7
E ∼Q α∗

(
KP1×P2 +

1
2
B +

13
14

(H1 +H2)
)
,

where B̃, H̃1, H̃2 ⊂ V are the proper transforms of B, H1, H2, respectively. But
the log pair (V, (13/14)H̃2 + (3/7)E) is not log terminal along the fibre Γ of the
morphism α such that α(Γ) = P , because

multΓ(H̃2 · E) = multP (C ·H2) > multP (C · L) > 3

due to the generality of the fibre H1. We see that

Γ ⊆ LCS
(
V,

13
14
H̃2 +

3
7
E

)
⊆ LCS

(
V,

1
2
B̃ +

13
14

(H̃1 + H̃2) +
3
7
E

)
,

which implies that lct(X,H1 +H2) 6 13/14. Hence lct(X) 6 13/14.

Remark 10.5. It follows from Lemmas 2.25 and 4.1 that lct(X) > 2/3 if (X)ג = 2.2
and the threefold X satisfies the following generality condition: any fibre of ϕ1

satisfies the hypotheses of Lemma 4.1.

Lemma 10.6. If (X)ג = 2.7, then lct(X) 6 2/3.
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Proof. There is a commutative diagram

X
α

}}||
||

||
| β

!!D
DD

DD
DD

Q
ψ

//_______ P1 ,

where Q ⊂ P4 is a smooth quadric threefold, α is a blow-up of a smooth curve that
is the complete intersection of two divisors S1, S2 ∈

∣∣OP4(2)|Q
∣∣, the morphism β is

a fibration into del Pezzo surfaces of degree 4, and ψ is the rational map induced
by the pencil generated by the surfaces S1 and S2. Then lct(X) 6 2/3 because
−KX ∼Q (3/2)S1+(1/2)E, where S1 ⊂ X is the proper transform of the surface S1

and E is the exceptional divisor of α.

Lemma 10.7. If (X)ג = 2.9, then lct(X) 6 3/4.

Proof. There is a commutative diagram

X
α

}}{{
{{

{{
{ β

!!D
DD

DD
DD

P3
ψ

//_______ P2 ,

where α is a blow-up of a smooth curve C ⊂ P3 of degree 7 and genus 5 that is
an intersection of cubic surfaces in P3, the morphism β is a conic bundle, and ψ
is a rational map given by the linear system of cubics containing C. We have
−KX ∼Q (4/3)S+(1/3)E, where S ∈ |β∗(OP2(1))| and E is the exceptional divisor
of α. Hence lct(X) 6 3/4.

Lemma 10.8. If (X)ג = 2.12, then lct(X) 6 3/4.

Proof. There is a commutative diagram

X
α

}}{{
{{

{{
{ β

!!D
DD

DD
DD

P3
ψ

//_______ P3 ,

where α and β are blow-ups of smooth curves C ⊂ P3 and Z ⊂ P3 of degree 6
and genus 3 that are intersections of cubic surfaces in P3, and ψ is a birational
map given by the linear system of cubic surfaces containing C. Then −KX ∼Q
(4/3)S + (1/3)E, where S ∈ |β∗(OP3(1))| and E is the exceptional divisor of α.
Consequently, lct(X) 6 3/4.

Lemma 10.9. If (X)ג = 2.13, then lct(X) 6 2/3.

Proof. There is a commutative diagram

X
α

}}||
||

||
| β

!!D
DD

DD
DD

Q
ψ

//_______ P2 ,
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whereQ ⊂ P4 is a smooth quadric threefold, α is a blow-up of a smooth curve C ⊂ Q
of degree 6 and genus 2, the morphism β is a conic bundle, and ψ is the rational
map given by the linear system of surfaces in

∣∣OP4(2)|Q
∣∣ containing the curve C. We

have −KX ∼Q (3/2)S + (1/2)E, where S ∈ |β∗(OP2(1))| and E is the exceptional
divisor of α. Hence lct(X) 6 2/3.

Lemma 10.10. If (X)ג = 2.16, then lct(X) 6 1/2.

Proof. There is a commutative diagram

X
α

}}{{
{{

{{
{ β

!!D
DD

DD
DD

V4
ψ

//_______ P2 ,

where V4 ⊂ P5 is the smooth complete intersection of two quadric hypersurfaces,
α is a blow-up of an irreducible conic C ⊂ V4, the morphism β is a conic bun-
dle, and ψ is a rational map given by the linear system of surfaces in

∣∣OP5(1)|V4

∣∣
containing C. We have −KX ∼ 2S + E, where S ∈ |β∗(OP2(1))|, and E is the
exceptional divisor of α. Hence lct(X) 6 1/2.

Lemma 10.11. If (X)ג = 2.17, then lct(X) 6 2/3.

Proof. There is a commutative diagram

X
α

}}||
||

||
| β

!!D
DD

DD
DD

Q
ψ

//_______ P3 ,

where Q ⊂ P4 is a smooth quadric threefold, the morphisms α and β are blow-ups
of smooth elliptic curves C ⊂ Q and Z ⊂ P3 of degree 5, respectively, and the
map ψ is given by the linear system of surfaces in

∣∣OP4(2)|Q
∣∣ that contain C. We

have −KX ∼Q (3/2)S + (1/2)E, where S ∈ |β∗(OP3(1))| and E is the exceptional
divisor of α. Hence lct(X) 6 2/3.

Lemma 10.12. If (X)ג = 2.20, then lct(X) 6 1/2.

Proof. There is a commutative diagram

X
α

}}{{
{{

{{
{ β

!!D
DD

DD
DD

V5
ψ

//_______ P2 ,

where V5 ⊂ P6 is a smooth intersection of Gr(2, 5) ⊂ P9 with a linear subspace
of dimension 6, the morphism α is a blow-up of a twisted cubic P1 ∼= C ⊂ V5,
the morphism β is a conic bundle, and the map ψ is given by the linear system of
surfaces in

∣∣OP6(1)|V5

∣∣ that contain the curve C. We have −KX ∼ 2S + E, where
S ∈ |β∗(OP2(1))| and E is the exceptional divisor of α. We see that lct(X) 6 1/2.
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Lemma 10.13. If (X)ג = 2.21, then lct(X) 6 2/3.

Proof. There is a commutative diagram

X
α

}}{{
{{

{{
{ β

!!C
CC

CC
CC

Q
ψ

//_______ Q ,

where Q ⊂ P4 is a smooth quadric threefold, α and β are blow-ups of smooth
rational curves C ⊂ Q and Z ⊂ Q of degree 4, and ψ is the birational map
given by the linear system of surfaces in

∣∣OP4(2)|Q
∣∣ that contain C. We have

−KX ∼Q (3/2)S + (1/2)E, where S ∈
∣∣β∗(OP4(1))|Q

∣∣ and E is the exceptional
divisor of α. Hence lct(X) 6 2/3.

Lemma 10.14. If (X)ג = 2.22, then lct(X) 6 1/2.

Proof. There is a commutative diagram

X
α

}}{{
{{

{{
{ β

!!D
DD

DD
DD

V5
ψ

//_______ P3 ,

where V5 ⊂ P6 is a smooth intersection of Gr(2, 5) ⊂ P9 with a linear subspace
of dimension 6, the morphisms α and β are blow-ups of the conic C ⊂ V5 and
a rational (not linearly normal) quartic Z ⊂ P3, respectively, and ψ is given by the
linear system of surfaces in

∣∣OP6(1)|V5

∣∣ that contain C. We have −KX ∼ 2S + E,
where S ∈ |β∗(OP3(1))| and E is the exceptional divisor of α. Then lct(X) 6 1/2.

Lemma 10.15. If (X)ג = 3.13, then lct(X) 6 1/2.

Proof. There is a commutative diagram

P2

W2

β2

��

α2
44hhhhhhhhhhhhhhh

W3

β3
jjVVVVVVVVVVVVVVV

α3

��
X

ϕ1

OO

ϕ2 ++VVVVVVVVVVVVVVV

ϕ3sshhhhhhhhhhhhhhh

π1

��

π2

kkVVVVVVVVVVVVVVV π3

33hhhhhhhhhhhhhhh

P2 P2

W1

α1

jjVVVVVVVVVVVVVVV β1

44hhhhhhhhhhhhhhh

such that Wi ⊂ P2 × P2 is a divisor of bidegree (1, 1), the morphisms αi and βi are
P1-bundles, πi is a blow-up of a smooth curve Ci ⊂Wi of bidegree (2, 2) such that
αi(Ci) and βi(Ci) are irreducible conics in P2, and ϕi is a conic bundle. Let Ei be
the exceptional divisor of πi. Then

−KX ∼ 2H1 + E1 ∼ 2H2 + E2 ∼ 2H3 + E3 ∼ E1 + E2 + E3,

where Hi ∈ |ϕ∗i (OP2(1))|. Hence lct(X) 6 1/2.
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Remark 10.16. We shall use the notation in the proof of Lemma 10.15 and assume
that lct(X) < 1/2. Then there is an effective Q-divisor D ∼Q −KX such that the
log pair (X,λD) is not log canonical for some λ < 1/2. Since lct(Wi) = 1/2 by
Theorem 6.1, it follows that

∅ ̸= LCS(X,λD) ⊂ E1 ∩ E2 ∩ E3.

In particular, by Theorem 2.7 the locus LCS(X,λD) consists of a single point P ;
note that P is the intersection P = F1 ∩ F2 ∩ F3 of three curves Fi such that
F2 ∪ F3 (respectively, F1 ∪ F3, F1 ∪ F2) is a reducible fibre of the conic bundle ϕ1

(respectively, ϕ2, ϕ3).

Appendix A.
J.-P. Demailly. On Tian’s invariant and log canonical thresholds

The goal of this appendix is to relate log canonical thresholds with the α-invariant
introduced by Tian [3] for the study of the existence of Kähler–Einstein metrics.
The approximation technique of closed positive (1, 1)-currents introduced in [63] is
used to show that the α-invariant of a smooth Fano variety actually coincides with
the log canonical threshold.

Algebraic geometers have been aware of this fact since [21] appeared, and several
papers have used it implicitly in recent years (see, for instance, [64] and [65]).
However, it turns out that the required result is stated only in a local analytic form
in [21], in a language which may not be easily recognizable by algebraically minded
people. Therefore, we will repair here the lack of a proper reference by stating
and proving the existence of Kähler–Einstein metrics on Fano varieties and Fano
orbifolds.

Usually only the case of the anticanonical line bundle L = −KX is considered
in these applications. Here we will consider more generally the case of an arbitrary
line bundle L (or Q-line bundle L) on a complex manifold X, with some additional
restrictions which will be stated later.

Assume that L is equipped with a singular Hermitian metric h (see, for
instance, [66]). Locally, L admits trivializations θ : L|U ≃ U × C and on U the
metric h is given by a weight function ϕ such that

∥ξ∥2h = |ξ|2e−2ϕ(z) for all z ∈ U, ξ ∈ Lz,

where ξ ∈ Lz is identified with a complex number. We are interested in the case
where ϕ is (at the very least) a locally integrable function for the Lebesgue measure,
since it is then possible to compute the curvature form

ΘL,h =
i

π
∂∂ϕ

in the sense of distributions. We have ΘL,h > 0 as a (1, 1)-current if and only if the
weights ϕ are plurisubharmonic functions. In the sequel we will be interested only
in that case.

Let us first introduce the concept of complex singularity exponent for singular
Hermitian metrics, following, for example, [67]–[69] and [21].
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Definition A.1. If K is a compact subset of X, we define the complex singularity
exponent cK(h) of the metric h, written locally as h = e−2ϕ, to be the supremum of
all positive numbers c such that hc = e−2cϕ is integrable in a neighbourhood of every
point z0 ∈ K, with respect to the Lebesgue measure in holomorphic coordinates
centred at z0.

Now, we introduce a generalized version of Tian’s invariant α, as defined in [3]
(see also [70]).

Definition A.2. Assume that X is a compact manifold and that L is a pseudo-
effective line distribution, that is, L admits a singular Hermitian metric h0 with
ΘL,h0 > 0. If K is a compact subset of X, we put

αK(L) = inf
{h,ΘL,h>0}

cK(h),

where h runs over all singular Hermitian metrics on L such that ΘL,h > 0.

In algebraic geometry it is more usual to look instead at linear systems defined
by a family of linearly independent sections σ0, σ1, . . . , σN ∈ H0(X,L⊗m). We
denote by Σ the vector subspace generated by these sections and by

|Σ| := P (Σ) ⊂ |mL| := P
(
H0(X,L⊗m)

)
the corresponding linear system (not necessarily complete). Such an (N + 1)-tuple
σ = (σj)06j6N of sections defines a singular Hermitian metric h on L by putting
in any trivialization

∥ξ∥2h =
|ξ|2( ∑

j |σj(z)|2
)1/m

=
|ξ|2

|σ(z)|2/m
for ξ ∈ Lz;

hence h(z) = |σ(z)|−2/m with

ϕ(z) =
1
m

log |σ(z)| = 1
2m

log
∑
j

|σj(z)|2.

as the associated weight function. Therefore, we are interested in the number
cK(|σ|−2/m). In the case of a single section σ0 (corresponding to a linear sys-
tem containing a single divisor) this is the same as the log canonical threshold
lctK

(
X,m−1D

)
, where D is a divisor corresponding to σ0. We will also use the

formal notation lctK
(
X,m−1|Σ|

)
in the case of a higher-dimensional linear system

|Σ| ⊂ |mL|.
Now, recall that the line bundle L is said to be big if the Kodaira–Iitaka dimen-

sion κ(L) equals n = dimC(X). The main result of this appendix is the following
theorem.

Theorem A.3. Let L be a big bundle on a compact complex manifold X . Then
for every compact set K in X we have

αK(L) = inf
{h,ΘL,h>0}

cK(h) = inf
m∈Z>0

inf
D∈|mL|

lctK

(
X,

1
m
D

)
.
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Observe that the inequality

inf
m∈Z>0

inf
D∈|mL|

lctK

(
X,

1
m
D

)
> inf
{h,ΘL,h>0}

cK(h),

is trivial since any divisor D ∈ |mL| gives rise to a singular Hermitian metric h.
The converse inequality will follow from the approximation technique of [63] and
some elementary analysis. The proof is parallel to the proof of Theorem 4.2 in [21],
although the language used there was somewhat different. In any case, we use again
the crucial concept of multiplier ideal sheaves: if h is a singular Hermitian metric
with local plurisubharmonic weight ϕ, the multiplier ideal sheaf I (h) ⊂ OX (also
denoted by I (ϕ)) is the ideal sheaf defined by

I (h)z =
{
f ∈ OX,z | there exists a neighbourhood V ∋ z

such that
∫
V

|f(x)|2e−2ϕ(x) dλ(x) < +∞
}
,

where λ is the Lebesgue measure. By Nadel (see [20]), this is a coherent analytic
sheaf on X. Theorem A.3 has a more precise version which can be stated as follows.

Theorem A.4. Let L be a line bundle on a compact complex manifold X possessing
a singular Hermitian metric h with ΘL,h > εω for some ε > 0 and some smooth
positive-definite Hermitian (1, 1)-form ω on X . For every real number m > 0,
consider the space Hm = H0(X,L⊗m⊗I (hm)) of holomorphic sections σ of L⊗m

on X such that ∫
X

∥σ∥2hm dVω =
∫
X

|σ|2e−2mϕ dVω < +∞,

where dVω = (m!)−1ωm is the Hermitian volume form. Then for m ≫ 1, Hm is
a non-zero finite-dimensional Hilbert space, and one can consider the closed positive
(1, 1)-current

Tm =
i

2π
∂∂

(
1

2m
log

∑
k

|gm,k|2
)

=
i

2π
∂∂

(
1

2m
log

∑
k

∥gm,k∥2h
)

+ ΘL,h,

where (gm,k)16k6N(m) is an orthonormal basis of Hm. The following statements
hold.

(i) For every trivialization L|U ≃ U × C on a coordinate open set U of X and
every compact set K ⊂ U there are constants C1, C2 > 0 independent of m and ϕ
such that

ϕ(z)− C1

m
6 ψm(z) :=

1
2m

log
∑
k

|gm,k(z)|2 6 sup
|x−z|<r

ϕ(x) +
1
m

log
C2

rn

for every z ∈ K and r 6 (1/2) d(K, ∂U). In particular, ψm converges to ϕ pointwise
and in the L1

loc-topology on Ω as m→ +∞; hence Tm converges weakly to T = ΘL,h.
(ii) The Lelong numbers ν(T, z) = ν(ϕ, z) and ν(Tm, z) = ν(ψm, z) are related by

ν(T, z)− n/m 6 ν(Tm, z) 6 ν(T, z) for every z ∈ X.
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(iii) For every compact set K ⊂ X the complex singularity exponents of the
metrics given locally by h = e−2ϕ and hm = e−2ψm satisfy

cK(h)−1 −m−1 6 cK(hm)−1 6 cK(h)−1.

Proof. The major part of the proof is a small variation of the arguments already
explained in [63] (see also [21], Theorem 4.2). We give them here in detail for the
convenience of the reader.

(i) We note that
∑
|gm,k(z)|2 is the square of the norm of the evaluation linear

form σ 7→ σ(z) on Hm, hence

ψm(z) = sup
σ∈B(1)

1
m

log |σ(z)|,

where B(1) is the unit ball of Hm. For r 6 (1/2) d(K, ∂Ω) the mean value inequality
applied to the plurisubharmonic function |σ|2 implies that

|σ(z)|2 6
1

πnr2n/n!

∫
|x−z|<r

|σ(x)|2 dλ(x)

6
1

πnr2n/n!
exp

(
2m sup

|x−z|<r
ϕ(x)

) ∫
Ω

|σ|2e−2mϕ dλ.

If we take the supremum over all σ ∈ B(1), then we get that

ψm(z) 6 sup
|x−z|<r

ϕ(x) +
1

2m
log

1
πnr2n/n!

,

and the right-hand inequality in (i) is proved. Conversely, the Ohsawa–Takegoshi
extension theorem [71], [72] applied to the 0-dimensional subvariety {z} ⊂ U shows
that for any a ∈ C there is a holomorphic function f on U such that f(z) = a and∫

U

|f |2e−2mϕ dλ 6 C3|a|2e−2mϕ(z),

where C3 depends only on n and diam(U). Now if a remains in a compact set
K ⊂ U , we can use a cut-off function θ with support in U and equal to 1 in a neigh-
bourhood of a, and solve the ∂-equation in the L2 space associated with the weight
2mϕ+2(n+1) log |z−a|, that is, the singular Hermitian metric h(z)m|z−a|−2(n+1)

on L⊗m. For this, we apply the standard Andreotti–Vesentini–Hörmander L2 esti-
mates (see, for instance, [73] for the required version). This is possible for m > m0

thanks to the hypothesis that ΘL,h > εω > 0 even if X is non-Kähler (X is in any
event a Moishezon variety from our assumptions). The bound m0 depends only
on ε and the geometry of a finite covering of X by compact sets Kj ⊂ Uj , where
the Uj are coordinate balls (say); it is independent of the point a and even of the
metric h. It follows that g(a) = 0, and therefore σ = θf−g is a holomorphic section
of L⊗m such that∫

X

∥σ∥2hm dVω =
∫
X

|σ|2e−2mϕ dVω 6 C4

∫
U

|f |2e−2mϕ dVω 6 C5|a|2e−2mϕ(z),
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in particular, σ ∈ Hm = H0(X,L⊗m⊗I (hm)). We fix a such that the right-hand
side of the latter inequality is 1. This gives the inequality

ψm(z) >
1
m

log |a| = ϕ(z)− logC5

2m
,

which is the left-hand part of statement (i).
(ii) The first inequality in (i) implies that ν(ψm, z) 6 ν(ϕ, z). In the opposite

direction, we find that

sup
|x−z|<r

ψm(x) 6 sup
|x−z|<2r

ϕ(x) +
1
m

log
C2

rn
.

We divide by log r < 0 and take the limit as r tends to 0. The quotient by log r
of the supremum of a plurisubharmonic function over B(x, r) tends to the Lelong
number at x. Thus we obtain

ν(ψm, x) > ν(ϕ, x)− n

m
.

(iii) Again, the first inequality in (i) immediately yields hm 6 C6h, hence
cK(hm) > cK(h). Since we have c⋃

Kj
(h) = minj cKj (h), for the converse inequal-

ity we can assume without loss of generality that K is contained in a trivializing
open patch U of L. Let us take c < cK(ψm). Then by definition, if V ⊂ X is
a sufficiently small open neighbourhood of K, then the Hölder inequality for the
conjugate exponents p = 1+mc−1 and q = 1+m−1c implies, thanks to the equality
1
p = c

mq , that∫
V

e−2(m/p)ϕ dVω =
∫
V

( ∑
16k6N(m)

|gm,k|2e−2mϕ

)1/p

×
( ∑

16k6N(m)

|gm,k|2
)−c/(mq)

dVω

6

( ∫
X

∑
16k6N(m)

|gm,k|2e−2mϕ dVω

)1/p

×
( ∫

V

( ∑
16k6N(m)

|gm,k|2
)−c/m

dVω

)1/q

= N(m)1/p
( ∫

V

( ∑
16k6N(m)

|gm,k|2
)−c/m

dVω

)1/q

< +∞.

From this we infer cK(h) > m/p, that is, cK(h)−1 6 p/m = 1/m + c−1. Since
c < cK(ψm) was arbitrary, we get that cK(h)−1 6 1/m + cK(hm)−1, and the
inequalities of (iii) are proved.

Proof of Theorem A.3. Given a big line bundle L on X, there exists a modification
µ : X̃ → X of X such that X̃ is projective and

µ∗(L) ∼ A+ E,
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where A is an ample divisor and E an effective divisor with rational coefficients.
By pushing forward by µ a smooth metric hA with positive curvature on A, we get
a singular Hermitian metric h1 on L such that

ΘL,h1 > µ∗ΘA,hA
> εω

on X. Then for any δ > 0 and any singular Hermitian metric h on L with ΘL,h > 0,
the interpolated metric hδ = hδ1h

1−δ satisfies ΘL,hδ
> δεω. Since h1 is bounded

away from 0, it follows that cK(h) > (1 − δ)cK(hδ) by monotonicity. By Theo-
rem A.4 (iii) applied to hδ we infer that

cK(hδ) = lim
m→+∞

cK(hδ,m),

and we also have

cK(hδ,m) > lctK

(
1
m
Dδ,m

)
for any divisor Dδ,m associated with a section σ ∈ H0

(
X,L⊗m⊗I (hmδ )

)
, since the

metric hδ,m is given by

hδ,m =
( ∑

k

|gm,k|2
)−1/m

for an orthonormal basis of such sections. This clearly implies that

cK(h) > lim inf
δ→0

lim inf
m→+∞

lctK

(
1
m
Dδ,m

)
> inf
m∈Z>0

inf
D∈|mL|

lctK

(
1
m
D

)
,

and Theorem A.3 is proved.

In the applications, it is frequent to have a finite or compact group G of auto-
morphisms of X and to look at G-invariant objects, namely, G-equivariant metrics
on G-equivariant line bundles L; in the case of a reductive algebraic group G we
simply consider a compact real form GR instead of G itself.

One then gets an α invariant αG,K(L) by looking only at G-equivariant metrics
in Definition A.2. All constructions made are then G-equivariant, in particular,
Hm ⊂ |mL| is a G-invariant linear system. For every G-invariant compact set K
in X, we thus infer that

αG,K(L) = inf
{h is G-equvariant, ΘL,h>0}

cK(h)

= inf
m∈Z>0

inf
|Σ|⊂|mL|,ΣG=Σ

lctK

(
1
m
|Σ|

)
. (A.1)

When G is a finite group, one can pick for large enough m a G-invariant divisor
Dδ,m associated with a G-invariant section σ, possibly after multiplying m by the
order of G. One then gets the slightly simpler equality

αG,K(L) = inf
m∈Z>0

inf
D∈|mL|G

lctK

(
1
m
D

)
. (A.2)

In a similar manner, one can work on an orbifold X rather than on a non-singular
variety. The L2 techniques work in this setting with almost no change (L2 estimates
are essentially insensitive to singularities, since one can just use an orbifold metric
on the open set of regular points).
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Appendix B. The big table

This appendix contains the list of non-singular Fano threefolds. We follow
the notation and the numbering of [2], [50], and [51]. We also assume the
following conventions. The symbol Vi denotes a smooth Fano threefold such
that −KX ∼ 2H and Pic(Vi) = Z[H], where H is a Cartier divisor on Vi and
H3 = 8i ∈ {8, 16, . . . , 40}. The symbol W denotes a (smooth) divisor of bidegree
(1, 1) on P2×P2 (or, which is the same, the variety P(TP2)). The symbol V7 denotes
a blow-up of P3 at a point (or, which is the same, the variety P(OP2⊕OP2(1))). The
symbol Q denotes a smooth quadric threefold. The symbol Si denotes a smooth
del Pezzo surface such that K2

Si
= i ∈ {1, . . . , 8}, where S8 ̸∼= P1 × P1.

The fourth column of Table 1 contains the values of the global log canonical
thresholds of the corresponding Fano varieties. The symbol ⋆ near a number means
that lct(X) is calculated for a general X with given deformation type. If we know
only an upper bound lct(X) 6 α, then we write 6 α instead of the exact value
of lct(X), and the symbol ‘?’ means that we do not know any reasonable upper
bound (apart from the trivial lct(X) 6 1).

Table 1: Smooth Fano threefolds

(X)ג −K3
X Brief description lct(X)

1.1 2 a hypersurface of degree 6 in P(1, 1, 1, 1, 3) 1⋆

1.2 4 a hypersurface of degree 4 in P4 or a double cover of a quadric
in P4 branched over a surface of degree 8

?

1.3 6 a complete intersection of a quadric and a cubic in P5 ?

1.4 8 a complete intersection of three quadrics in P6 ?

1.5 10 a section of Gr(2, 5) ⊂ P9 by a quadric and a linear subspace
of dimension 7

?

1.6 12 a section of the Hermitian symmetric space M = G/P ⊂ P15

of type DIII by a linear subspace of dimension 8
?

1.7 14 a section of Gr(2, 6) ⊂ P14 by a linear subspace of codimen-
sion 5

?

1.8 16 a section of the Hermitian symmetric space M = G/P ⊂ P19

of type CI by a linear subspace of dimension 10
6 6/7

1.9 18 a section of the 5-dimensional rational homogeneous contact
manifold G2/P ⊂ P13 by a linear subspace of dimension 11

6 4/5

1.10 22 the zero locus of three sections of the rank-3 vector bundle∧2 Q, where Q is the universal quotient bundle on Gr(7, 3)
6 2/3

1.11 8 V1, that is, a hypersurface of degree 6 in P(1, 1, 1, 2, 3) 1/2

1.12 16 V2, that is, a hypersurface of degree 4 in P(1, 1, 1, 1, 2) 1/2

1.13 24 V3, that is, a hypersurface of degree 3 in P4 1/2

1.14 32 V4, that is, a complete intersection of two quadrics in P5 1/2

1.15 40 V5, that is, a section of Gr(2, 5) ⊂ P9 by a linear subspace of
codimension 3

1/2

1.16 54 Q, that is, a hypersurface of degree 2 in P4 1/3

1.17 64 P3 1/4
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2.1 4 a blow-up of the Fano threefold V1 along an elliptic curve
that is an intersection of two divisors from

∣∣− 1
2

KV1

∣∣ 1/2

2.2 6 a double cover of P1 × P2 whose branch locus is a divisor of
bidegree (2, 4)

6 13/14

2.3 8 the blow-up of the Fano threefold V2 along an elliptic curve
that is an intersection of two divisors from

∣∣− 1
2

KV2

∣∣ 1/2

2.4 10 the blow-up of P3 along an intersection of two cubics 3/4⋆

2.5 12 the blow-up of V3 ⊂ P4 along a plane cubic 1/2⋆

2.6 12 a divisor on P2 × P2 of bidegree (2, 2) or a double cover of
W whose branch locus is a surface in |−KW |

?

2.7 14 the blow-up of Q along the intersection of two divisors from
|OQ(2)|

6 2/3

2.8 14 a double cover of V7 whose branch locus is a surface in |−KV7 | 1/2⋆

2.9 16 the blow-up of P3 along a curve of degree 7 and genus 5
which is an intersection of cubics

6 3/4

2.10 16 the blow-up of V4 ⊂ P5 along an elliptic curve which is an
intersection of two hyperplane sections

1/2⋆

2.11 18 the blow-up of V3 along a line 1/2⋆

2.12 20 the blow-up of P3 along a curve of degree 6 and genus 3
which is an intersection of cubics

6 3/4

2.13 20 the blow-up of Q ⊂ P4 along a curve of degree 6 and genus
2

6 2/3

2.14 20 the blow-up of V5 ⊂ P6 along an elliptic curve which is an
intersection of two hyperplane sections

1/2⋆

2.15 22 the blow-up of P3 along the intersection of a quadric and a
cubic section

1/2⋆

2.16 22 the blow-up of V4 ⊂ P5 along a conic 6 1/2

2.17 24 the blow-up of Q ⊂ P4 along a normal elliptic curve of
degree 5

6 2/3

2.18 24 a double cover of P1 × P2 whose branch locus is a divisor of
bidegree (2, 2)

1/2

2.19 26 the blow-up of V4 ⊂ P5 along a line 1/2⋆

2.20 26 the blow-up of V5 ⊂ P6 along a twisted cubic 6 1/2

2.21 28 the blow-up of Q ⊂ P4 along a normal rational quartic 6 2/3

2.22 30 the blow-up of V5 ⊂ P6 along a conic 6 1/2

2.23 30 the blow-up of Q ⊂ P4 along a curve of degree 4 that
is an intersection of a surface in

∣∣OP4(1)|Q
∣∣ and a surface

in
∣∣OP4(2)|Q

∣∣
1/3⋆

2.24 30 a divisor on P2 × P2 of bidegree (1, 2) 1/2⋆

2.25 32 the blow-up of P3 along an elliptic curve which is an inter-
section of two quadrics

1/2

2.26 34 the blow-up of V5 ⊂ P6 along a line 1/2⋆

2.27 38 the blow-up of P3 along a twisted cubic 1/2

2.28 40 the blow-up of P3 along a plane cubic 1/4



Log canonical thresholds 953

2.29 40 the blow-up of Q ⊂ P4 along a conic 1/3

2.30 46 the blow-up of P3 along a conic 1/4

2.31 46 the blow-up of Q ⊂ P4 along a line 1/3

2.32 48 W , that is, a divisor on P2 × P2 of bidegree (1, 1) 1/2

2.33 54 the blow-up of P3 along a line 1/4

2.34 54 P1 × P2 1/3

2.35 56 V7
∼= P(OP2 ⊕ OP2(1)) 1/4

2.36 62 P(OP2 ⊕ OP2(2)) 1/5

3.1 12 a double cover of P1×P1×P1 branched in a divisor of tride-
gree (2, 2, 2)

3/4⋆

3.2 14 a divisor in the P2-bundle P(OP1×P1 ⊕ OP1×P1(−1,−1) ⊕
OP1×P1(−1,−1)) such that X ∈ |L⊗2⊗OP1×P1(2, 3)|, where L
is the tautological line bundle

1/2⋆

3.3 18 a divisor on P1 × P1 × P2 of tridegree (1, 1, 2) 2/3⋆

3.4 18 the blow-up of the Fano threefold Y with Y)ג ) = 2.18 along
a smooth fibre of the composition Y → P1 × P2 → P2 of the
double cover and the projection

1/2

3.5 20 the blow-up of P1×P2 along a curve C of bidegree (5, 2) such
that the composition C ↪→ P1 × P2 → P2 is an embedding

1/2⋆

3.6 22 the blow-up of P3 along a disjoint union of a line and a
normal elliptic curve of degree 4

1/2⋆

3.7 24 the blow-up of the threefold W along an elliptic curve that
is an intersection of two divisors from |− 1

2
KW |

1/2⋆

3.8 24 a divisor in |(α◦π1)
∗(OP2(1))⊗π∗2(OP2(2))|, where π1 : F1×

P2 → F1 and π2 : F1×P2 → P2 are projections and α : F1 →
P2 is a blow-up of a point

1/2⋆

3.9 26 the blow-up of a cone W4 ⊂ P6 over the Veronese surface
R4 ⊂ P5 with centre in the disjoint union of the vertex and
a quartic in R4

∼= P2

1/3

3.10 26 the blow-up of Q ⊂ P4 along a disjoint union of two conics 1/2

3.11 28 the blow-up of the threefold V7 along an elliptic curve that
is an intersection of two divisors from |− 1

2
KV7 |

1/2

3.12 28 the blow-up of P3 along a disjoint union of a line and
a twisted cubic

1/2

3.13 30 the blow-up of W ⊂ P2 × P2 along a curve C of bidegree
(2, 2) such that π1(C) ⊂ P2 and π2(C) ⊂ P2 are irreducible
conics, where π1 : W → P2 and π2 : W → P2 are the natural
projections 6 1/2

3.14 32 the blow-up of P3 along a disjoint union of a plane cubic
curve lying in a plane Π ⊂ P3 and a point outside Π

1/2

3.15 32 the blow-up of Q ⊂ P4 along a disjoint union of a line and
a conic

1/2

3.16 34 the blow-up of V7 along a proper transform via the blow-up
α : V7 → P3 of a twisted cubic passing through the centre of
the blow-up α

1/2
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3.17 36 a divisor on P1 × P1 × P2 of tridegree (1, 1, 1) 1/2

3.18 36 the blow-up of P3 along a disjoint union of a line and a conic 1/3

3.19 38 the blow-up of Q ⊂ P4 at two non-collinear points 1/3

3.20 38 the blow-up of Q ⊂ P4 along a disjoint union of two lines 1/3

3.21 38 the blow-up of P1 × P2 along a curve of bidegree (2, 1) 1/3

3.22 40 the blow-up of P1×P2 along a conic in a fibre of the projec-
tion P1 × P2 → P1

1/3

3.23 42 the blow-up of V7 along a proper transform via the blow-up
α : V7 → P3 of an irreducible conic passing through the centre
of the blow-up α

1/4

3.24 42 W ×P2 F1,where W → P2 is a P1-bundle and F1 → P2 is
a blow-up of a point

1/3

3.25 44 the blow-up of P3 along a disjoint union of two lines 1/3

3.26 46 the blow-up of P3 along a disjoint union of a point and a line 1/4

3.27 48 P1 × P1 × P1 1/2

3.28 48 P1 × F1 1/3

3.29 50 the blow-up of the Fano threefold V7 along a line in E ∼= P2,
where E is the exceptional divisor of the blow-up V7 → P3

1/5

3.30 50 the blow-up of V7 along the proper transform via the blow-up
α : V7 → P3 of a line passing through the centre of the
blow-up α

1/4

3.31 52 the blow-up of a cone over a smooth quadric in P3 at the
vertex

1/3

4.1 24 a divisor on P1 × P1 × P1 × P1 of multidegree (1, 1, 1, 1) 1/2

4.2 28 the blow-up of the cone over a smooth quadric S ⊂ P3 along
a disjoint union of the vertex and an elliptic curve in S

1/2

4.3 30 the blow-up of P1×P1×P1 along a curve of tridegree (1, 1, 2) 1/2

4.4 32 the blow-up of the smooth Fano threefold Y with Y)ג ) = 3.19
along the proper transform of a conic on the quadric Q ⊂ P4

that passes through both centres of the blow-up Y → Q

1/3

4.5 32 the blow-up of P1 × P2 along a disjoint union of two irre-
ducible curves of bidegree (2, 1) and (1, 0)

3/7

4.6 34 the blow-up of P3 along a disjoint union of three lines 1/2

4.7 36 the blow-up of W ⊂ P2 × P2 along a disjoint union of two
curves of bidegrees (0, 1) and (1, 0)

1/2

4.8 38 the blow-up of P1×P1×P1 along a curve of tridegree (0, 1, 1) 1/3

4.9 40 the blow-up of the smooth Fano threefold Y with Y)ג ) = 3.25
along a curve contracted by the blow-up Y → P3

1/3

4.10 42 P1 × S7 1/3

4.11 44 the blow-up of P1×F1 along a curve C ∼= P1 such that C lies
in a fibre F ∼= F1 of the projection P1×F1 → P1 and C ·C =
−1 on F

1/3

4.12 46 the blow-up of the smooth Fano threefold Y with Y)ג ) = 2.33
along two curves that are contracted by the blow-up Y → P3

1/4
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4.13 26 the blow-up of P1×P1×P1 along a curve of tridegree (1, 1, 3) 1/2⋆

5.1 28 the blow-up of the smooth Fano threefold Y with Y)ג ) = 2.29
along three curves contracted by the blow-up Y → Q

1/3

5.2 36 the blow-up of the smooth Fano threefold Y with Y)ג ) =
3.25 along two curves C1 ̸= C2 contracted by the blow-up
ϕ : Y → P3 and lying in the same exceptional divisor of the
blow-up ϕ

1/3

5.3 36 P1 × S6 1/2

5.4 30 P1 × S5 1/2

5.5 24 P1 × S4 1/2

5.6 18 P1 × S3 1/2

5.7 12 P1 × S2 1/2

5.8 6 P1 × S1 1/2
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