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Log canonical thresholds of smooth Fano threefolds

I. A. Chel’tsov and K. A. Shramov

Abstract. The complex singularity exponent is a local invariant of a holo-
morphic function determined by the integrability of fractional powers of
the function. The log canonical thresholds of effective Q-divisors on nor-
mal algebraic varieties are algebraic counterparts of complex singularity
exponents. For a Fano variety, these invariants have global analogues. In
the former case, it is the so-called a-invariant of Tian; in the latter case,
it is the global log canonical threshold of the Fano variety, which is the
infimum of log canonical thresholds of all effective Q-divisors numerically
equivalent to the anticanonical divisor. An appendix to this paper con-
tains a proof that the global log canonical threshold of a smooth Fano
variety coincides with its a-invariant of Tian. The purpose of the paper
is to compute the global log canonical thresholds of smooth Fano three-
folds (altogether, there are 105 deformation families of such threefolds).
The global log canonical thresholds are computed for every smooth three-
fold in 64 deformation families, and the global log canonical thresholds are
computed for a general threefold in 20 deformation families. Some bounds
for the global log canonical thresholds are computed for 14 deformation
families. Appendix A is due to J.-P. Demailly.
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1. Introduction
The multiplicity of a polynomial ¢ € Cl[zq, 22, . .., 2,] at the origin O € C™ is the

number

am@(zla 22y .y Zn)
aml 21 87712 R amn Zn

min{m € Zxo ’ (0) #£ 0} € Zxo U {+o0}.

There is a similar but more subtle invariant cy(¢) € QU {+oo} defined by the
formula

co(p) = sup{e € Q| the function || *is integrable in a neighbourhood of O € C"},

which is called the local singularity exponent of the polynomial ¢ at the point O.

Example 1.1. Let mi,mo, ..., m, be positive integers. Then
n n n
) 1 m; m; ) 1 1 1
mln(l,z;mi>:co<z;zi )260<1_Ilzi ):mln(ml,mZ,...,mn)
1= 1= 1=

Let Xbe a variety! with at most log canonical singularities (see [1]), let Z C X
be a non-empty closed subvariety, and let D be an effective Q-Cartier Q-divisor on
the variety X. Then the number

letz (X, D) = sup{A € Q| the log pair (X, AD) is log canonical along Z} € QU{+oc0}

is called the log canonical threshold of the divisor D along Z. In follows from [1]
that

leto (C™, (¢ = 0)) = co(#),
so letz (X, D) is a generalization of the quantity co(p). We have
let(X, D) = inf{lctp(X, D) | P € X}
= sup{\ € Q| the log pair (X, AD) is log canonical},
where we have set lct(X, D) = letx (X, D).

Let X be a Fano variety with at most log terminal singularities (see [2]).
Definition 1.2. The global log canonical threshold of the Fano variety X is the
quantity

let(X) = inf{lct(X, D) | D is an effective Q-divisor on X
such that D ~g —Kx} > 0.

The number lct(X) is an algebraic counterpart of the so-called a-invariant of

a variety X introduced in [3]. It can easily be seen that
lct(X) = sup{e € Q| the log pair (X,n D) is log canonical for
each divisor D € |-nKx| for all n € Z}.

LAll varieties are assumed to be projective and normal and are defined over the field C.
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The group Pic(X) is torsion free, because X is rationally connected (see [4]).
Hence,

let(X) = sup{\ € Q| the log pair (X, AD) is log canonical
for every effective Q-divisor D = —Kx }.

Example 1.3. Let X be a smooth hypersurface in P" of degree m < n. Then
let(X) =1/(n+1—m) (see [5]). In particular, lct(P™) = 1/(n + 1).

Example 1.4. Let X be a rational homogeneous space such that Pic(X) = Z[D],
where D is an ample divisor. Then let(X) = 1/r (see [6]), where —Kx ~ rD and
re Z>0.

In general the number lct(X) depends on small deformations of the variety X.
Example 1.5. Let X be a smooth hypersurface in P(1,1, 1,1, 3) of degree 6. Then

43 1 11 13 15 17 19 21 2
1ct(X)E{53333789357991}

6'507157387879710712714716718720 7227 30"
(see [7] and [8]). All these value of lct(X) are attained.
Example 1.6. Let X be a smooth hypersurface in P™ of degree n > 2. Then
12let(X)>1-1/n

(see [5]). It follows from [7] and [8] that

1 if n > 6,
22/25 ifn=
let(x) > { 22/% ifn=5,
16/21 if n =4,
3/4 ifn=3,

whenever X is general. On the other hand, lct(X) =1 — 1/n if X contains a cone
of dimension n — 2.

Example 1.7. Let X be a quasi-smooth hypersurface in P(1,a4,...,a4) of degree
Z?zl a; such that X has at most terminal singularities; suppose a1 < as < ag < aq.
Then —Kx ~ Op@,q,,....a0)(1)| x, and there are 95 possibilities for the quadruple
(a1, az2,as3,a4) (see [9], [10]). If X is general, then

16/21 ifa; =as =a3 =a4 =1,
7/9 if (a1,a9,as3,a4) = (1,1,1,2),

1>1et(X)><4/5 if (a1,a2,as,a4) = (1,1,2,2),
6/7 if (a1,a9,as,a4) = (1,1,2,3),
1 in all other cases

(see [11], [8], [12]). The global log canonical threshold of the hypersurface

w? =13+ 2% + ¢y 421 C P(1,1,2,6,9) = Proj(Clz, y, 2, t, w])

is equal to 17/18 (see [11]), where wt(z) = wt(y) = 1, wt(z) = 2, wt(t) = 6,

wt(w) = 9.
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Example 1.8. Tt follows from Lemma 5.1 that lct(P(ag, a1, ..., an)) = ao/z?zo a;,
provided that P(ag, a1, ..., a,) is well formed (see [9]) and ag < a1 < -+ < ay,.

Example 1.9. Let X be a smooth hypersurface in P(1"*1,d) of degree 2d. Then
let(X)=1/(n+1—d) for 2 < d <n—1 (see [13], Proposition 20).

Example 1.10. Let X be a smooth del Pezzo surface. It follows from [14] that

1 if K% =1 and |- K| contains no cuspidal curves,
5/6 if K% =1 and |—Kx]| contains a cuspidal curve,
5/6 if K% =2 and |—Kx/| contains no tacnodal curves,
3/4 if K% =2 and |-Kx]| contains a tacnodal curve,
3/4 if X is a cubic in P3 without
Eckardt points,
2/3 if X either is a qubic in P? with an Eckardt point,
or K% =4,
1/2 if X 2P x P! or K% € {5,6},
1/3 in all other cases.

let(X) =

It would be interesting to compute the global log canonical thresholds of del
Pezzo surfaces with at most canonical singularities and with Picard rank 1 (see [15]).

Example 1.11. Let X be a singular cubic surface in P® with at most canonical
singularities. The singularities of X are classified in [16]. It follows from [17] that

2/3 if Sing(X) = {A1},

1/3 if Sing(X) 2 {A4} or Sing(X) = {D4}
or Sing(X) 2 {As, As},

1/4 if Sing(X) D {As} or Sing(X) = {Ds},

1/6 if Sing(X) = {E¢},

1/2 in all other cases.

let(X) =

It is not yet known whether let(X) is rational? (cf. Question 1 in [18]).

Conjecture 1.12. There is an effective Q-divisor D ~g —Kx on the variety X
such that 1ct(X) = let(X, D) € Q.

Let G C Aut(X) be an arbitrary subgroup.

Definition 1.13. The global G-invariant log canonical threshold of a Fano vari-
ety X is a number (or +00) defined by the following equality:

lct(X, G) = sup{\ € Q| the log pair (X,n 'e2) has log canonical singularities
for every G-invariant linear subsystem 2 C |-nKx|, n € Zsg}.

2Tt is not even known whether lct(X) is rational if X is a del Pezzo surface with quotient
singularities.
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Remark 1.14. In Definitions 1.2 and 1.13 we only need to assume that |[—nKx| # &
for some n > 0. This property is shared, for instance, by toric varieties and
weak Fano varieties. However, all the known applications of the numbers lct(X)
and lct(X, G) are connected with the case when —Kx is ample and G is compact.

It is shown in Appendix A that when X is smooth and G is compact, the equality
let (X, G) = ag(X) holds, where ag(X) is Tian’s a-invariant introduced in [3]. We
note that

let(X, G) = sup{A € Q| the log pair (X, AD) has log canonical singularities
for every G-invariant effective Q-divisor D ~g —Kx }

in the case when |G| < +o0. It is clear that 0 < let(X) < let(X, G) € RU {400}.

Example 1.15. Let X be a smooth del Pezzo surface such that K2 = 5. Then
we have an isomorphism Aut(X) = S5 (see [19]) and lct(X,S5) = let(X, As) = 2
(see [14]).

Example 1.16. Let X be the cubic surface in P? given by the equation
23+ + 2% 13 =0 C PP = Proj(Clz, y, 2, 1),

and let G = Aut(X) 22 Z3 x S;. Then lct(X, G) = 4 (see [14]).
The following result was proved in [3], [20], [21] (see Appendix A).

Theorem 1.17. Let X be a Fano variety with at most quotient singularities and
assume that G is compact. Assume that the inequality

dim X

(X, 6) > v 1

holds. Then X admits an orbifold Kdhler—FEinstein metric.
Theorem 1.17 has various applications (see [20] and also Examples 1.6 and 1.7).

Example 1.18. Let X be a Fano variety equal to a blow-up of P? along a disjoint
union of two lines. Let G be a maximal compact subgroup of Aut(X). Then
let(X,G) > 1 by [20]. On the other hand, lct(X) = 1/3 by Theorem 1.46.

If a variety with at most quotient singularities admits an orbifold Kahler—Einstein
metric, then its canonical divisor is numerically trivial, or its canonical divisor
is ample, or its anticanonical divisor is ample (a Fano variety). Every variety
with quotient singularities that has a numerically trivial or ample canonical divisor
admits a Kéhler—Einstein metric (see [22]-[24]).

There are several known obstructions for a Fano variety X to carry a Kdhler—
Finstein metric. For example, if the variety X is smooth, then it does not admit
a Kéahler—FEinstein metric if even one of the following conditions is fulfilled:

e the group Aut(X) is not reductive (see [25]);

e the tangent bundle of X is not polystable with respect to —Kx (see [26]);

e the Futaki character of holomorphic vector fields on X does not identically
vanish (see [27]).
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Example 1.19. The following varieties have no Kéahler—Einstein metric: a blow-up
of P2 at one or two distinct points (see [25]); the smooth Fano threefold
P(Op2 ® Op2(1)) (see [28]); the smooth Fano fourfold P(a* (Fp1 (1)) ® 5*(Op2(1)))
(see [27]), where a: P! x P2 — P! and 3: P! x P? — P? are projections.

The problem of the existence of Kdhler—Einstein metrics on smooth toric Fano
varieties is completely solved. Namely, the following result holds (see [29]-[32]).

Theorem 1.20. If X is a smooth toric Fano variety, then the following conditions
are equivalent:

(a) X admits a Kdhler—FEinstein metric;

(b) the Futaki character of holomorphic vector fields on X wvanishes;

(¢c) the barycentre of the reflexive polytope of X is at the origin.

It should be pointed out that Theorem 1.17 gives only a sufficient condition for
the existence of a Kéhler—Einstein metric on a Fano variety X.

Example 1.21. Let X be a general cubic surface in P3 with one Eckardt point
(see Definition 3.1). Then lct(X, Aut(X)) = 2/3 (see [14]), while Aut(X) = Z,
(see [19]). However, every smooth del Pezzo surface with reductive automorphism
group admits a Kéhler-Einstein metric (see [33]).

Example 1.22. Let X be a general hypersurface in P(1°,3) of degree 6. Then
Aut(X) 2 Zs (see [34]) and let (X, Aut(X)) = 1/2 (see Example 1.9), but X admits
a Kéhler-Einstein metric (see [35]).

The numbers lct(X) and let(X, G) play an important role in birational geometry.

Example 1.23. Suppose that there exists a commutative diagram

V---"—->7
Z Z,

in which V and V are varieties with at most terminal and Q-factorial singularities,
Z is a smooth curve, m and 7 are flat morphisms, and p is a birational map that
induces an isomorphism V \ X = V \ X, where X and X are scheme fibres over
a point O € Z of m and 7, respectively. Suppose that the fibres X and X are
irreducible and reduced, the divisors —Ky and —Kj; are m-ample and 7-ample,
respectively, the varieties X and X have at most log terminal singularities, and p
is not an isomorphism. Then it follows from [36] and [17] that

let(X) +1et(X) < 1, (1.1)

where X and X are Fano varieties by the adjunction formula.
In general the inequality (1.1) is sharp.

Example 1.24. Let m: V — Z be a surjective flat morphism from a smooth three-
fold V' to a smooth curve Z such that the divisor — Ky, is m-ample, let X be a scheme
fibre of the morphism 7 over a point O € Z such that X is a smooth cubic surface
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in P3 containing lines L;, Lo, and L3 intersecting at one point P € V. Then it
follows from [37] that there exists a commutative diagram

v---"-- -0
i ~
Vo—mm o m oo - 7
A 7z

such that « is a blow-up of P, the map 1 is an antiflip in the proper transforms of
the curves L1, Lo, L3, and (3 is a contraction of the proper transform of the fibre X.
Then the birational map p is not an isomorphism, the threefold V has terminal
and Q-factorial singularities, the divisor —Kj; is a Cartier 7T-ample divisor, the
map p induces an isomorphism V' \ X 2 V' \ X, where X is a scheme fibre of 7 over
the point O. In this case X is a cubic surface with one singular point of type Dy,
and therefore lct(X) = 2/3 and lct(X ) = 1/3 (see Examples 1.10 and 1.11).

Global log canonical thresholds can be used to prove that some higher-
dimensional Fano varieties are non-rational.

Definition 1.25. A Fano variety X is said to be birationally superrigid if the
following conditions hold:
(i) rkPic(X) =1;
(ii) X has terminal Q-factorial singularities;
(iii) there is no rational dominant map p: X --» Y with rationally connected
fibres such that 0 # dimY < dim X;
(iv) there is no birational map p: X --» Y onto a variety Y with terminal
Q-factorial singularities such that rk Pic(Y) = 1;
(v) the groups Bir(X) and Aut(X) coincide.

The following result is known as the Noether—Fano inequality (see [38]).

Theorem 1.26. A variety X is birationally superrigid if and only if rk Pic(X) = 1,
X has terminal Q-factorial singularities, and for every linear system # on X
without fized components the log pair (X, .#) has canonical singularities, where
Kx + 4 =0.

Proof. Because one part of the required result is well known (see [38]), we prove
only the other part. Suppose that X is birationally superrigid, but there is a linear
system .# on X such that .# has no fixed components but the singularities of the
log pair (X, \#) are not canonical, where Ky + A\ ~q 0.

Let m: V — X be a birational morphism such that the variety V' is smooth and
the proper transform of .# on the variety V has no base points. Let % be the
proper transform of the linear system .# on the variety V. Then

r r
Ky +\# ~Q 7T*(KX —l—)\,/f) +ZaiEi ~Q ZaiEi,

i=1 i=1

where F; is an exceptional divisor of m and a; € Q.
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It follows from [39] that there is a commutative diagram

such that p is a birational map, the morphism ¢ is birational, the divisor

Ku +M(B) ~q 9" (Kx + M)+ aip(Ei) ~q Y aip(E;)
=1

i=1

is @-nef, the variety U is Q-factorial, and the log pair, (U, A\p(#)) has terminal
singularities.
Note that ¢ is not an isomorphism: it follows from [40], § 1.1 that

a; >0 = dim(p(E;)) <dim X — 2,

and because the singularities of (X, \.#') are not canonical by assumption, it follows
from the construction of the map p that there exists k € {1,...,r} such that ar < 0
and the subvariety p(E}) is a divisor on U.

We see that the divisor Ky + Ap(£) is not pseudo-effective. Then it follows
from [39] that there is a diagram

U---"-- -y
‘| .
X Z

such that ¢ is a birational map, the morphism 7 is a Mori fibred space (see [41]),
and the divisor —(Ky + A(¢ 0 p)(#)) is T-ample.

The variety Y has terminal Q-factorial singularities and rk Pic(Y/Z) = 1. Then
the map ¢ o por~! is not an isomorphism, because K x + A\.# ~g 0, but a general
fibre of the morphism 7 is rationally connected (see [4]), which contradicts the
assumption that X is birationally superrigid. The proof is complete.

Birationally superrigid Fano varieties are non-rational (see [38]). In particular,
dim(X) # 2 if the variety X is birationally superrigid (cf. [42]).

Example 1.27. A general hypersurface in P" of degree n > 4 or in P(1""%,n) of
degree 2n > 6 is birationally superrigid (see [43], [7]).

The following result is proved in [7].

Theorem 1.28. Let Xq,..., X, be birationally superrigid Fano varieties such that
let(X;) =1, i=1,...,r. Then
(a) the variety X1 x -+ x X, is non-rational and

Bir(X; x -+- x X;.) = Aut(X;y x -+ x X,.),
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(b) for every rational dominant map p: Xq X --- x X,. ==+ Y whose general fibre
is rationally connected there is a commutative diagram

Xy x---x X,
l \\\\\p
71' -~ -
Xilx-~-><Xik————57777::§Y
for some subset {i1,... i} C {1,...,r}, where & is a birational map and w is

the projection.

Examples 1.6 and 1.27 show that varieties satisfying all the hypotheses of The-
orem 1.28 exist. We can construct explicit examples of them.

Example 1.29. Let X be the hypersurface given by
w? =28 498 + 20 45 + 2?y?2t C P(1,1,1,1,3) = Proj(Clz, y, 2, t, w]),

where wt(z) = wt(y) = wt(z) = wt(t) = 1 and wt(w) = 3. Then X is smooth and
birationally superrigid (see [44]); it follows from [8] that lct(X) = 1.

Suppose in addition that the subgroup G C Aut(X) is finite.

Definition 1.30. A Fano variety X is G-birationally superrigid if
e the G-invariant subgroup of the group Cl(X) is isomorphic to Z;
e X has terminal singularities;
e there is no dominant G-equivariant rational map p: X --» Y with rationally
connected fibres such that 0 # dimY < dim X;

e there is no G-equivariant non-biregular birational map p: X --» Y onto
a variety Y with terminal singularities such that the G-invariant subgroup
of the group C1(Y) is isomorphic to Z.

Arguing as in the proof of Theorem 1.26, we obtain the following result.

Theorem 1.31. The variety X is G-birationally superrigid if and only if the
G-invariant subgroup of the group CU(X) is isomorphic to Z, X has terminal
singularities, and for every G-invariant linear system .4 on X without fixed
components the log pair (X, \A) is canonical, where Kx + A\A ~q 0.

The proof of Theorem 1.28 implies the following result (see [14]).

Theorem 1.32. Let X; be a Fano variety and let G; C Aut(X;) be a finite subgroup
such that X; is G;-birationally superrigid and the inequality lct(X;, G;) > 1 holds
fori=1,...,r. Then
(a) no Gy X - -+ x Gr-equivariant birational map p: X1 X -+ x X, ==+ P™ exists;
(b) every Gy x - -+ x Gy-equivariant birational automorphism of Xy x -+ x X,.
is bireqular;
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(¢) a G1 X -+ X Gr-equivariant rational dominant map p: X1 X -+ x X, --» Y
whose general fibre is rationally connected has a commutative diagram

X1 X x X,
i T T~
7T —~ —
Xilx---xXik—————g————::iY,
where € is a birational map, m is the natural projection, and {iy, ..., it} C{1,...,r}.

Varieties satisfying all hypotheses of Theorem 1.32 do exist (see Example 1.16).

Example 1.33. The simple group Ag is a group of automorphisms of the sextic
102393 4 922° + 929° + 272° = 4522222 + 1352y2* C P? = Proj(Clz, y, 2]),

which induces an embedding Ag C Aut(P?). Then P? is Ag-birationally superrigid
and lct(P?, Ag) = 2 (see [14]). Hence there exists by Theorem 1.32 an induced
embedding Ag x Ag = Q C Bir(P*) such that Q is not conjugate to any subgroup
of Aut(P4).

We now consider Fano varieties whose birational geometry is close to that of
birationally superrigid Fano varieties.

Definition 1.34. A variety X is birationally rigid if
e the equality rk Pic(X) = 1 holds;
e X has Q-factorial and terminal singularities;
e there is no rational map p: X --» Y with rationally connected fibres such
that 0 # dimY < dim X;
e there is no birational map p: X --» Y onto a variety ¥ 22 X with terminal
Q-factorial singularities such that rk Pic(Y) = 1.

Arguing as in the proof of Theorem 1.26, we obtain the following result.

Theorem 1.35. The variety X is birationally rigid if and only if tk Pic(X) =1, X
has terminal Q-factorial singularities, and for any non-empty linear system # on
X without fized components there is a & € Bir(X) such that the log pair (X, \(A))
has canonical singularities, where Kx + X(.#4) = 0.

Birationally rigid Fano varieties are non-rational (see [38]).

Definition 1.36. Suppose that X is birationally rigid. A subset I' C Bir(X)
untwists all maximal singularities if for every linear system .#Z on X without
fixed components there is a birational automorphism £ € I' such that the log pair
(X, \e(A)) has canonical singularities, where A is a rational number such that

Kx + X(A) = 0.
If X is birationally rigid and there is a subset I' C Bir(X) that untwists all
maximal singularities, then Bir(X) = (', Aut(X)).

Definition 1.37. A variety X is universally birationally rigid if for any variety U
the variety X ® Spec(C(U)) is birationally rigid over the field C(U) of rational
functions of the variety U.
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Definition 1.34 also makes sense for Fano varieties over an arbitrary perfect field
(see [42], [19]).

Example 1.38. Let X be a threefold such that there is a finite morphism 7: X —
Q C IP3, where @ is a smooth quadric threefold and 7 is a double cover branched in
a smooth surface S C @ of degree 8. There exists a one-parameter family of curves

¢ ={C C X | C is a smooth curve such that —Kx - C =1},

and for every curve C € ¥ there is a commutative diagram

X u Q
| |
Vel (el
\ \
P2 P?,

where ¢ is the projection from the line 7(C'). The general fibre of the map 1
is a smooth elliptic curve. The rational map 1) induces an elliptic fibration with
a section which induces a birational involution 7. It is known that

Yo € Aut(X) <= CcCS

and if X is sufficiently general, then S contains no curves in €. It follows from [44]
that there exists an exact sequence of groups

1—-T — Bir(X) — Aut(X) — 1,

where T is a free product of subgroups generated by birational non-biregular invo-
lutions 7, C' € €. Hence X is universally birationally rigid.

Birationally superrigid Fano manifolds are universally birationally rigid.

Definition 1.39. Suppose that X is universally birationally rigid. A subset I' C
Bir(X) universally untwists all maximal singularities if for every variety U the
induced subset

I' C Bir(X) C Bir(X ® Spec(C(U)))

untwists all maximal singularities on X @ Spec(C(U)).

It is easy to see that any subset of Aut(X) universally untwists all maximal
singularities if the Fano variety X is birationally superrigid.

Remark 1.40. Let X be a birationally rigid Fano variety. Let I' C Bir(X) be an
arbitrary subset and assume that dim X # 1. Then it follows from [45] that the
following conditions are equivalent:

e [ universally untwists all maximal singularities;

e ' untwists all maximal singularities, and Bir(X) is countable.

Example 1.41. In the assumptions of Example 1.7 suppose that X is general.
Then
e the hypersurface X is universally birationally rigid (see [46]),
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e there are involutions 7, ..., 7 € Bir(X) such that the sequence of groups
1 —(11,...,7%) — Bir(X) — Aut(X) — 1

is exact (see [46], [47]), where (7y,...,7;) is the subgroup generated by

Tlyeeos Tk,
e (7y,...,T) universally untwists all maximal singularities (see [46]).
All relations between the involutions 71, ..., 7 are found in [47].
Let Xi,...,X, be Fano varieties that have at most QQ-factorial and terminal

singularities such that
rk Pic(X;) = -+ = rk Pic(X,) =1,
let
T X1><~~><X2-_1><Xi><Xi+1><~~-><X7,HX1><~~~><X1-_1><5(\Z-><X1-+1><~~~><Xr

be the natural projection, and let 27 be the scheme general fibre of m;; 27 is defined
OVEI‘(C(Xl Xoee XXZ',1 XXZ' XXiJrl Xowee XXT).

Remark 1.42. There are natural embeddings of groups
[IBir(X:) € (Bix(21),...,Bir(2;)) € Bir(Xy x - x X,.).
i=1

The following generalization of Theorem 1.28 was proved in [11].

Theorem 1.43. Suppose that X1, ..., X, are universally birationally rigid and that
let(X;) > 1, i=1,...,7. Then
(a) the variety X1 x -+ x X, is non-rational and

Bir(X; x -+ x X,.) = (Bir(21),...,Bir(2,), Aut(X; x --- x X)),

(b) for every rational dominant map p: X1 x---x X, ==+ Y whose general fibre is

rationally connected there exist a subset {i1,..., i} C{1,...,r} and a commutative
diagram
XyxoooxX,——-"——>X; x--x X,
l Sop
T ~
Xi1X'~'XXik————————§ ————————— :Y,

where w is the natural projection and £ and o are birational maps.

Corollary 1.44. Suppose that there are subgroups I'; C Bir(X;) that universally
untwist all mazimal singularities, and assume that lct(X;) > 1 for alli =1,...,r.
Then

Bir(X; x --- x X,) = <HF1-,Aut(X1 X oo X XT)>.

i=1
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In particular, the following example is obtained using Examples 1.7 and 1.41.

Example 1.45 (cf. Example 1.41). Let X be a general hypersurface of degree 20
in P(1,1,4,5,10). Then the sequence of groups

1— Zo*xZo) — Bir( X x---xX)—S§5,, —1
—_——
1=1 m factors

is exact, where S, is the permutation group and Z, % Zo is the infinite dihedral
group.

Now let X be a smooth Fano threefold (see [2]). Then X lies in one of 105
deformation families (see [48]-[52]). Let

IX)e{1.1,12,...,1.17,2.1,...,2.36,3.1,...,3.31,4.1,...,4.13,5.1,...,,5.8}

be the number of the deformation type of the threefold X in the notation of Table 1
(see Appendix B). The main aim of this paper is to prove the following result.

Theorem 1.46. The following assertions hold:

(a) let(X) = 1/5 if I(X) € {2.36,3.29};

(b) let(X) = 1/4 4f I(X) € {1.17,2.28,2.30,2.33,2.35, 3.23, 3.26, 3.30,4.12};

(c) let(X) = 1/3 if I(X) € {1.16,2.29,2.31,2.34,3.9,3.18,3.19, 3.20, 3.21, 3.22,
3.24,3.25,3.28,3.31,4.4,4.8,4.9,4.10,4.11,5.1,5.2};

(d) let(X) =3/7 if I(X) = 4.5;

(e) let(X) = 1/2 4f I(X) € {1.11,1.12,1.13,1.14,1.15,2.1, 2.3, 2.18,2.25, 2.27,
2.32,3.4,3.10,3.11,3.12,3.14,3.15,3.16,3.17,3.24,3.27,4.1,4.2,4.3,4.6,4.7,5.3, 5.4,
5.5,5.6,5.7,5.8};

(f) if X is a general threefold in its deformation family, then

o lct(X) =1/3 if I(X) = 2.23,
o let(X) =1/2 4 I(X) € {2.5,2.8,2.10,2.11,2.14, 2.15,2.19, 2.24, 2.26, 3.2, 3.5,
3.6,3.7,3.8,4.13},
o let(X) =2/3 if I(X) = 3.3,
o let(X) =3/4 if I(X) € {2.4,3.1},
o let(X) =14 3(X)=1.1.

The generality condition in Theorem 1.46 cannot be dropped in the general case.

Example 1.47. Let J(X) = 4.13. (We note that this deformation class was left
out by mistake in [50] but was later discovered in [51].) Then there is a birational
morphism a: X — P'xP!xP! that contracts a smooth irreducible surface £ C X to
a curve C such that C-F, = C-Fy = 1 and C-F3 = 3, where F} = F, = F3 = Pl x P!
are fibres of the three different natural projections P! x P! x P! — P!, Then
let(X) = 1/2 by Theorem 1.46 if X is general. We note that there is a unique
surface G € |Fy + F| such that C C G. Then —Kx ~ 2G + E + F3, where
F3 C X D G are the proper transforms of F3 and G, respectively. Furthermore,
let(X) < 1/2, but let(X) < let(X,2G + E + F3) < 4/9 < 1/2 in the case when
IF;nC = 1.



872 I. A. Chel’tsov and K. A. Shramov

We organize this paper in the following way. In §§2-4 we consider auxiliary
results used in the proof of Theorem 1.46. In §5 we compute the global log canoni-
cal thresholds of toric Fano varieties. In § 6 we prove Theorem 1.46 for smooth Fano
threefolds of index 2, that is, for J(X) € {1.11,1.12,1.13,1.14, 1.15,2.32, 2.35, 3.27}.
In §7 we prove Theorem 1.46 in the case rkPic(X) = 2. In §8 we prove The-
orem 1.46 in the case rkPic(X) = 3. In §9 we prove Theorem 1.46 in the case
rk Pic(X) > 4. In § 10 we find upper bounds for lct(X) in the case

1(X) €{1.8,1.9,1.10,2.2,2.7,2.9,2.12,2.13,2.16,2.17, 2.20, 2.21, 2.22, 3.13}.

In Appendix A, written by J.-P. Demailly, the relation between global log canonical
thresholds of smooth Fano varieties and the a-invariants of smooth Fano varieties
introduced in [3] for the study of the existence of Kdhler—Einstein metrics is estab-
lished. In Appendix B we present Table 1, containing a list of all smooth Fano
threefolds together with the known values and bounds for their global log canonical
thresholds.

We use the standard notation Dy ~ Ds (respectively, D; ~g Ds) for linearly
equivalent (respectively, Q-linearly equivalent) divisors (respectively, Q-divisors).
If a divisor (a Q-divisor) D is linearly equivalent to a line bundle . (respectively,
Q@-linearly equivalent to a divisor linearly equivalent to a line bundle .£), then we
write D ~ 2 (respectively, D ~g .Z’). We note that Q-linear equivalence coincides
with numerical equivalence in the case of log terminal Fano varieties. The projec-
tivization Py (&) of a vector bundle & on a variety Y is the variety of hyperplanes
in the fibres of &. The symbol F,, denotes the Hirzebruch surface P(&p1 @ Op1(n)).
We always refer to a smooth Fano threefold X using the number J(X) of the cor-
responding deformation family introduced in Table 1.

We are very grateful to J.-P. Demailly for writing Appendix A, and to
C. Boyer, A. Iliev, P. Jahnke, A.-S. Kaloghiros, A.G. Kuznetsov, J. Park, and
Yu. G. Prokhorov for useful discussions. We would like to express our gratitude to
THES (Bures-sur-Yvette, France) and MPIM (Bonn, Germany) for hospitality.

2. Preliminaries

Let X be a variety with log terminal singularities. Consider a divisor
Bx = 22:1 a;B;, where B; is a prime Weil divisor on the variety X and a; is
a non-negative rational number. Suppose that Bx is a Q-Cartier divisor such
that B; # B; for i # j. Let m: X — X be a birational morphism such that X is
smooth. We set By = Z;l a;B;, where B; is the proper transform of B; on the
variety X. Then

Ky +Bg=7"(Kx +Bx)+ Y _ c;E;,
i=1
where ¢; € Q and F; is an exceptional divisor of the morphism 7. Suppose addi-
tionally that ({J;_, B;) U (U;_; E;) is a divisor with simple normal crossings. We
set BX = Bf — Z?:l CzEz
Definition 2.1. The singularities of a log pair (X, By ) are log canonical (respec-
tively, log terminal) if
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e a; < 1 (respectively, a; < 1) foralli=1,...,r,
o ¢; > —1 (respectively, ¢; > —1) forall j =1,...,n.

It is known that Definition 2.1 does not depend on the choice of the morphism
m: X — X. Let

LCS(X,Bx) = ( U Bi> U ( U W(Ei)) C X;

a; >1 c;<—1

then LCS(X, Bx) is called the locus of log canonical singularities of the log pair
(X, Bx).

Definition 2.2. A proper irreducible subvariety Y C X is called a centre of log
canonical singularities of a log pair (X, Bx) if
e cither the inequality a; > 1 holds and Y = B;,
e or the inequality ¢; < —1 holds and Y = 7 (FE;) for some choice of the
birational morphism m: X — X.

Let LCS(X, Bx) be the set of all centres of log canonical singularities of (X, Bx).
Then
Y e LCS(X,Bx) = Y C LCS(X, Bx)
and LCS(X,Bx) = @ <= LCS(X,Bx) =@ <= the log pair (X, Bx) is log
terminal.

Remark 2.3. Let 2 be a linear system on X that has no base points, let H be a suf-
ficiently general divisor in the linear system .77, and let Y C X be an irreducible
subvariety. We set Y|, = > 1" Z;, where Z; C H is an irreducible subvariety.
Then it follows from Definition 2.2 (cf. Theorem 2.19) that

Y € LCS(X, Bx) <= {Z1,...,Zm} C LCS(H, Bx|y).

Example 2.4. Let a: V — X be a blow-up of a smooth point O € X. Then
By = a*(Bx) — multo(Bx)E, where multo(Bx) € Q, and E is the exceptional
divisor of the blow-up «a. In this case multo(Bx) > 1 if the log pair (X, Bx) is not
log canonical at the point O. Let

BY = By + (multo(Bx) — dim(X) + 1)E

and suppose that multo(By) > dim(X) — 1. Then O € LCS(X, Bx) if and only if
e cither £ € LCS(V, BY), that is, multo(Bx) > dim(X),
e or there exists a subvariety Z C E such that Z € LCS(V, BY).

The locus LCS(X, Bx) can be equipped with a scheme structure (see [20], [40]).

Let (X, By) = W*(i[CJEi - g[ad Bi>,

and let .Z(X, Bx) be the subscheme corresponding to the ideal sheaf .# (X, Bx).

Definition 2.5. For the log pair (X, Bx) we call Z(X, Bx) the subscheme of
log canonical singularities of (X, Bx) and we call the ideal sheaf .#(X, By) the
multiplier ideal sheaf of (X, Bx).
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It follows immediately from the construction of the subscheme .Z(X, Bx) that
Supp(Z (X, Bx)) = LCS(X, Bx) C X.

The following result is the Nadel-Shokurov vanishing theorem (see [40] and [53],
Theorem 9.4.8).

Theorem 2.6. Let H be a nef and big Q-divisor on X such that Kx+Bx+H = D
for some Cartier divisor D on the variety X. Then for everyi > 1,

H'(X,(X,Bx)®D) = 0.
For each Cartier divisor D on X we consider the exact sequence of sheaves
0— I(X,Bx)®D — Ox(D) = Og(x py)(D) = 0
and the corresponding exact sequence of cohomology groups
HO(0x(D)) — H(04(x.5)(D)) — H'(# (X, Bx) @ D).
Theorem 2.7. Suppose that —(Kx + Bx) is nef and big. Then LCS(X, Bx) is

connected.

Proof. We set D = 0. Then it follows from Theorem 2.6 that the sequence
C=H"(0x) — H(Oyx,5y) — H (F(X,Bx)) =0
is exact if —(Kx + Bx) is nef and big. Thus, the locus
LCS(X, Bx) = Supp(Z(X, Bx))

is connected if the divisor —(Kx + Bx) is nef and big.
We consider a few elementary applications of Theorem 2.7 (cf. Example 1.10).

Lemma 2.8. Suppose that LCS(X, Bx) # @, where X = P" and Bx ~g —AKx
for some rational number X with 0 < XA < n/(n+1). Then dim(LCS(X, Bx)) > 1,
and the subscheme £ (X, Bx) does not contain isolated zero-dimensional compo-
nents.

Proof. Let O € X be a point such that LCS(X,ABx) = O UX, where ¥ C X is
a (possibly empty) subset such that O ¢ 3.

Let H be a general line in X = P2, Then the locus LCS(X,\Bx+H) = OUHUY
is disconnected. However, the divisor —(K x +ABx + H) is ample, which contradicts
Theorem 2.7.

Lemma 2.9. Suppose that LCS(X, Bx) # @, where X = P3 and Bx ~g —AKx
for some rational number 0 < A < 1/2. Then LCS(X, Bx) contains a surface.

Proof. Suppose that LCS(X, Bx) contains no surfaces. Let S be a general plane
in P3. Then the locus LCS(P3, Bx + S) is connected by Theorem 2.7. Hence
(S,Bx|g) is not log terminal by Remark 2.3. On the other hand, the locus
LCS(S, Bx|g) consists of finitely many points, which is impossible by Lemma 2.8.
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Lemma 2.10. Suppose that LCS(X, Bx) # &, where X is a smooth quadric
threefold in P* and Bx ~g —AKx for some rational number 0 < A\ < 1/2. Then
LCS(X, Bx) contains a surface.

Proof. Let L C X be a general line, let Py € L 5 P, be two general points, let Hy
and Ho be the hyperplane sections of X C P* that are tangent to X at the points
P, and P, respectively. Then

LCS (X, ABx + Z (Hy + H2)> = LCS(X,\By)UL

is disconnected, which is impossible by Theorem 2.7.

Remark 2.11. One can prove Lemmas 2.9, 2.10 (and 2.28) using another method.
Suppose that Bx ~gp —AKx for some A € Q such that 0 < A < 1/2, where X is P3,
or P! x P2, or a smooth quadric threefold. Also, suppose that the set LCS(X, Bx)
contains no surfaces. Then LCS(X, Bx) C X, where ¥ C X is a (possibly reducible)
curve. For a general automorphism ¢ € Aut(X) we have ¢(X) N X = &, which
implies that LCS(X, p(Bx)) N LCS(X, Bx) = @. We can show that if ¢ is suffi-
ciently general, then

LCS(X, ¢(Bx) + Bx) = LCS(X, ¢(Bx)) ULCS(X, Bx).

This contradicts Theorem 2.7 since A < 1/2.

Lemma 2.12. Suppose that LCS(X, Bx) # @, where X is a blow-up of P? in one
point and Bx ~qg —AKx for some rational number 0 < X\ < 1/2. Then LCS(X, Bx)
contains a surface.

Proof. Suppose that the set LCS(X, By) contains no surfaces. Let a: X — P3
be the blow-up of a point and let E be the exceptional divisor of «. In the case
when LCS(X,A\Bx) € E we can apply Lemma 2.9 to the pair (P3, a(Bx)) to get
a contradiction. Hence we can assume that LCS(X, Bx) C E.

Let H C P3 be a general hyperplane and let H; C P2 O Hy be general hyper-
planes passing through a(E). We denote by H, H,, and Hy the proper transforms
of the hyperplanes H, H; and Hs on X, respectively. Then

1 _ _
LCS(X,BX + 5 (Hy o+ H +2H)>

is disconnected, which is impossible by Theorem 2.7.

Lemma 2.13. Let X be a cone in P* over a smooth quadric surface and suppose
that Bx ~g —AKx for some rational number 0 <A <1/3. Then LCS(X, Bx) = @.

Proof. Suppose that LCS(X, Bx) # @. Let S be a general hyperplane section of the
cone X C P%. Then LCS(S, Bx|g) = @, because S = P! xP! and lct(P! xP') = 1/2
(see Example 1.10). Thus, |LCS(X, Bx)| < 400 by Remark 2.3. Then the locus
LCS(X, Bx + S) is disconnected, which contradicts Theorem 2.7.
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The following result is a consequence of Theorem 2.6 (see [20], Theorem 4.1).

Lemma 2.14. If —(Kx + Bx) is nef and big and dim(LCS(X, Bx)) = 1, then
(a) the locus LCS(X, Bx) is a connected union of smooth rational curves,
(b) every two irreducible components of the locus LCS(X, Bx) meet at at most
one point,
(¢) every pair of intersecting irreducible components of the locus LCS(X, Bx)
meet transversally,
(d) no three irreducible components of the locus LCS(X, Bx ) meet at one point,
(e) the locus LCS(X, Bx) contains no cycles of smooth rational curves.

Proof. Arguing as in the proof of Theorem 2.7, we see that LCS(X, Bx) is a con-
nected tree of smooth rational curves with simple normal crossings.

Lemma 2.15 [43]. Let X be a smooth hypersurface in P™ and Bx ~qg Opm (1) .
Let S C X be an irreducible subvariety with dim(S) > k. Then multg(Bx) < 1.

We consider now a simple application of Theorem 2.7 and Lemma 2.15.

Lemma 2.16. Let X be a cubic hypersurface in P* with at most isolated singu-
larities. Suppose that Bx ~qg —Kx, but there exists a positive rational number
A < 1/2 such that LCS(X,ABx) # @. Then LCS(X,ABx) = L, where L is a line
in X C P* such that L N Sing(X) # @.

Proof. Let S be a general hyperplane section of X. Then
SULCS(X,ABx) C LCS(X,ABx + 5),

hence dim(LCS(X,ABx)) > 1 by Theorem 2.7. Therefore, LCS(S,A\Bx|g) # @
by Remark 2.3. On the other hand, LCS(S,ABx|g) consists of finitely many
points by Lemma 2.15. By Theorem 2.7 there is a unique point O € S such
that LCS(S, A\Bx|g) = O. It now follows by Remark 2.3 that there is a line L C X
such that LCS(X,ABx) = L.

Arguing as in the proof of Lemma 2.15, we see that L N Sing(X) # &.

The proof of the following result is similar to that of Lemma 2.16.

Lemma 2.17. Suppose there is a double cover 7: X — P32 branched over an irre-
ducible reduced quartic surface R C P? that has at most ordinary double points.
Assume that the equivalence Bx ~q —AKx holds but LCS(X, Bx) # @, where
A < 1/2. Then Sing(X) # @ and LCS(X, Bx) = L, where L is an irreducible
curve on X such that —Kx - L =2 and L N Sing(X) # @.

Proof. We observe that —Kx ~ 2H, where H is a Cartier divisor on X such that
H ~ 7*(0ps(1)). The variety X is a Fano threefold and H® = 2. In particular, the
set LCS(X, Bx + H) must be connected by Theorem 2.7. Thus, there is a curve
C € LCS(X, Bx), which implies that mult,(Bx) > 1/A > 2.

Let S be a general surface in |H|. We set Bg = Bx|g. Then —AKg ~q Bs,
but the log pair (S, Bg) is not log canonical at every point of the intersection
SNLCS(X, Bx).
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The surface H is a smooth hypersurface in P(1,1,1,2) of degree 4.

Let P be any point in S N LCS(X, Bx). Then there is a birational morphism
p: S — S such that S is a cubic surface in P? and p is an isomorphism in
a neighbourhood of P. In particular, the pair (S, p(Bg)) is not log terminal at

the point p(P). Thus, we have LCS(S, p(Bs)) # @, but

1
2\ p(Bs) ~g —Kg~ ﬁP3<1)|§a

which implies by Lemma 2.15 and Theorem 2.7 that LCS(S, p(Bs)) consists of one
point. Then
P=5SnC=5NnLCS(X,Bx)

if the point P is sufficiently general. Therefore, LCS(X, Bx) = C, the curve C is
irreducible, and —Ky - C = 2. In particular, 7(C) C P? is a line.

We suppose that C' N Sing(X) = & and derive a contradiction.

Suppose that 7(C) C R. We take a general point O € C. Let 7(0) € II C P?
be a plane tangent to R at the point 7(0). Arguing as in the proof of Lemma 2.15
(see [43]), we see that R|q is reduced along 7(C'), because 7(C') N Sing(R) = @. We
fix a general line I' C II C P2 such that 7(0O) € . Let I' € X be an irreducible
curve such that 7(T') = I'. Then T' € Supp(Bx), because I' sweeps out a dense
subset of P? as we vary the point O € C and the line I' C II. Note that either

H-T'=1or H-T' =2. In the second case multo(I') = 2. Hence
H-T>2\H -T=T-Bx >multo(T)mult(By) > H - T,

which is a contradiction. Thus, 7(C) ¢ R.

There is an irreducible reduced curve C C X such that 7(C') = 7(C) C P3
but C # C. Let Y be a general surface in |H| that passes through the curves C
and C. Then Y is smooth because C' N Sing(X) = &, and it is easy to see that
C-C=C-C=—2on the surface Y.

Obviously, Y ¢ Supp(Bx). We set By = Bx|y. Then

By = mult5(Bx)C + mult(Bx)C + A,
where A is an effective Q-divisor on the surface Y such that
C ¢ Supp(A) 7 C.
On the other hand, By ~g 2\(C + C), which implies in particular that

(2X — mult(Bx))C - C = (multz(Bx) —20)C-C+ A - C
> (multz(Bx) —20)C-C >0,

because A-C >0 and C-C > 0. Then mults(Bx) = 2\ because C'- C' < 0. Thus,
—A ~g (multz(Bx) — 2X)C + (multy(Bx) — 2X)C,

which is impossible, because mult~(Bx) > 2X and Y is projective.
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One can generalize Theorem 2.7 in the following way (see [40], Lemma 5.7).

Theorem 2.18. Let ¢: X — Z be a morphism. Then LCS ()?, BX) is connected
in a neighbourhood of each fibre of the morphism vy on: X — Z in the case when
(a) v is surjective and has connected fibres,
(b) the divisor —(Kx + Bx) is nef and big with respect to 1.

Let us consider one important application of Theorem 2.18 (see [41], Theo-
rem 5.50).

Theorem 2.19. Suppose that By is a Cartier divisor, a; = 1, and By has at most
log terminal singularities. Then the following assertions are equivalent:
(a) the log pair (X, Bx) is log canonical in a neighbourhood of the divisor By;
(b) the singularities of the log pair (Bl, S aiBi|Bl) are log canonical.

The simplest application of Theorem 2.19 is the following non-obvious result
(see [41], Corollary 5.57).

Lemma 2.20. Suppose that dim(X) = 2 and a; < 1. Then (2;2 aiBi)Bl > 1
whenever (X, Bx) is not log canonical at some point O € By such that O ¢
Sing(X') U Sing(By).

Proof. Suppose that (X, Bx) is not log canonical at a point O € B;. By Theo-
rem 2.19 we have

(Z%‘Bz) By > multo(ZaiBi|Bl> >1
i—2

i=2
if O ¢ Sing(X) U Sing(B1) because (X, By + Y., a;B;) is not log canonical at O.
Let us consider another application of Theorem 2.19 (cf. Lemma 2.29).

Lemma 2.21. Let X be a Fano wvariety with log terminal singularities. Then
let(P* x X) = min(1/2,1ct(X)).
Proof. The inequalities 1/2 > let(V x U) < let(X) are evident. We suppose that
let(P* x X) < min(1/2,1ct(X)) and show that this leads to a contradiction.

There is an effective Q-divisor D ~q —Kp1  x such that the log pair (P* x X, AD)
is not log canonical at some point P € P! x X, where A < min(1/2,lct(X)).

Let F be a fibre of the projection P x X — P! such that P € F. Then
D = puF + Q, where € is an effective Q-divisor on P! x X such that F' ¢ Supp(€Q).

Let L be a general fibre of the natural projection P! x X — X. Then

2=D -L=p+Q-L=>pu,

which implies that the log pair (P! x X, F + AQ) is also not log canonical at P.
Then (F, )\Q|F) is not log canonical at P by Theorem 2.19, but Q| ~g —Kp,
which is impossible because X = F and A < let(X).

Let P be a point in X. We consider an effective divisor

A= zr:é‘iBi ~Q Bx,

i=1
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where ¢; is a non-negative rational number. Suppose that A is a Q-Cartier divisor,
the equivalence A ~g Bx holds, and the log pair (X, A) is log canonical at the
point P € X.

Remark 2.22. Suppose that (X, Bx) is not log canonical at the point P € X. Let
a = min{a;/e; | &; # 0}, where « is well defined because some of the numbers
€1, .., are non-zero. Then o < 1, the log pair

T

a; — QEg;

(x4 )
i=1

is not log canonical at the point P € X, the equivalence

T

a; — QEg;

——— B, ~g Bx ~q A
; 1_ o i ~YQ PX ~Q &~y

holds, but at least one irreducible component of the divisor Supp(A) does not lie in

" a; — QE;
swp( 32555, ).

i=1
The assertion of Remark 2.22 is obvious but nevertheless very useful.

Lemma 2.23. Suppose that X = Cy x Cy, where C1 and Cy are smooth curves,
and suppose that Bx ~g AE + pF, where E = Cy and F = Cy are curves on the
surface X such that E-F = F -F =0 and E-F = 1, and where A\ and u are
non-negative rational numbers. Then

(a) the pair (X, Bx) is log terminal if A < 1 and p < 1,

(b) the pair (X, Bx) is log canonical if A < 1 and p < 1.

Proof. It suffices to prove (a). Suppose that A, < 1, but (X, Bx) is not log
terminal at some point P € X. Then multp(Bx) > 1 and by Remark 2.22 we may
assume that E ¢ Supp(Bx) or F' ¢ Supp(Bx). On the other hand, F - Bx =
and F - Bx = A\, which leads at once to a contradiction because multp(Bx) > 1.

Let [Bx] be the class of Q-rational equivalence of the divisor Bx. Let
let(X, [Bx]) = inf{lct(X, D) | D is an effective Q-divisor
such that D ~g Bx} >0
and put let(X, [Bx]) = 400 if By = 0. We note that Bx is an effective divisor.
Remark 2.24. The equality let(X, [-Kx]) = lct(X) holds (see Definition 1.2).
Arguing as in the proof of Lemma 2.21, we obtain the following result.

Lemma 2.25. Let p: X — Z be a surjective morphism with connected fibres
such that dimZ = 1. Let F be a fibre of ¢ that has log terminal singulari-
ties. Then either lctp(X, Bx) > lct(F, [BX|F]), or there is a rational number
0 <e <lct(F, [Bx|g]|) such that F C LCS(X,eBx).
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Proof. Suppose that letp (X, Bx) < lct (F, [BX|F]) Then there is a rational num-
ber € < lct (F, [BX |F]) such that the log pair (X, eBy) is not log canonical at some
point P € F. Let Bx = puF + (), where (2 is an effective Q-divisor on X such that
E' ¢ Supp(€2).

We may assume that ep < 1. Then the log pair (X, F'+ €2) is not log canonical
at P, and (F7 EQ|F) is also not log canonical at P by Theorem 2.19. However,
Q| ~g Bx|p, which is a contradiction.

We now present a simple application of Lemma 2.25.

Lemma 2.26. Let Q C P* be a cone over a smooth quadric surface and let
a: X — Q be a blow-up along a smooth conic C C Q\Sing(Q). Then lct(X) =1/3.

Proof. Let H be a general hyperplane section of ) C P* that contains C, and let
H be the proper transform of the surface H on the threefold X. Then —Kx ~
3H + 2E, where E is the exceptional divisor of .. In particular, the inequality
let(X) < 1/3 holds.

We suppose that lct(X) < 1/3.  Then there exists an effective Q-divisor
D ~g —Kx such that the log pair (X,AD) is not log canonical for some positive
rational number A < 1/3. There is a commutative diagram

where (3 is the morphism given by the linear system |H| and ¢ is the projection
from the two-dimensional linear subspace containing the conic C.

Suppose that LCS(X, AD) contains a surface M C X. Then D = uM +€, where
= 1/X and Q is an effective Q-divisor such that M ¢ Supp(Q).

Let F be a general fibre of 3. Then F = P! x P! and D|p ~g —Kp, which
immediately implies that M is a fibre of 3, but (D) ~g —K¢ ~ 3a(M), which is
impossible because pr > 1/X > 3. Thus, the set LCS(X, AD) contains no surfaces.

There is a fibre S of 8 such that S # S NLCS(X,AD) # @, which implies that
S is singular by Lemma 2.25, because lct(Pt x P1) = 1/2.

Thus, the surface S is an irreducible quadric cone in P3. Then LCS(X,AD) C S
by Theorem 2.7. Because (X .S+ %E) has log canonical singularities and the
equivalence 35 4+ 2E ~g D holds, we may assume that either S ¢ Supp(D) or
E ¢ Supp(D) by Remark 2.22.

Let ' = ENS. The curve T is an irreducible conic. Then LCS(X,AD) C T
by Lemma 2.13. Intersecting D with a general ruling of the cone S C P3
and intersecting D with a general fibre of the projection £ — C, we see that
I'  LCS(X, AD), which implies that LCS(X, AD) consists of a single point O € T’
by Theorem 2.7.

Let R be a general surface in |o*(H)|. Then

1
LCS<X7)\D+2(H+2R)) =RUO,

which is impossible by Theorem 2.7, since —Kx ~ H + 2R ~g D and A\ < 1/3.
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The following generalization of Lemma 2.25 follows from [54], Proposition 5.19
(ct. [6]).
Theorem 2.27. Let ¢: X — Z be a surjective flat morphism with connected
fibres such that Z has rational singularities and all the scheme fibres of ¢ have
at most canonical Gorenstein singularities. Let F be a scheme fibre of . Then
either lctp (X, Bx) > lct(F, [BX|FD or there is a positive rational number ¢ <
lct(F, [BX\F]) such that F C LCS(X,eBx).

Let us consider an elementary application of Theorem 2.27.

Lemma 2.28. Suppose that LCS(X, Bx) # @, where X = P! x P? and Bx ~q
—AKx for some rational number 0 < A < 1/2. Then LCS(X, Bx) contains a sur-
face.

Proof. Suppose that LCS(X, Bx ) contains no surfaces. By Theorems 2.7 and 2.27
we have LCS(X, Bx) = F, where F is a fibre of the natural projection 7y : X — P2
Let S be a general surface in |7} (Op2(1))|, and let My and My be general fibres of
the natural projection 7 : X — P!. Then the locus

LCS(X,)\D+;(M1+M2+3S)> =FUS

is disconnected, which is impossible by Theorem 2.7.

Lemma 2.29. Let V and U be Fano varieties with at most canonical Gorenstein
singularities. Then let(V x U) = min(let(V'), let(U)).

Proof. The inequalities lct(V') > let(V x U) < let(U) are obvious. We suppose that
let(V x U) < min(let(V),let(U)) and show that this leads to a contradiction.
There is an effective Q-divisor D ~g — Ky xy such that the log pair (V x U, AD)
is not log canonical at some point P € V x U, where A < min(let(V),lct(U)).
Let us identify V' with a fibre of the projection V' x U — U that contains the
point P. The inequalities

let(V) > A > lety (V x U, D) = 1et(V, [D]y/]) = let(V, [-Kv]) = let(V)

are inconsistent, so it follows from Theorem 2.27 that the log pair (V' x U, AD) is
not log canonical at every point of VC V x U.

Let us identify U with a general fibre of the projection V. x U — V. Then
D\, ~qo —Ky, and (U, AD|y) is not log canonical at the point UNV by Remark 2.3
(applied dim V' times). This contradicts the inequality A < let(U).

We believe that the assertion of Lemma 2.29 holds also for log terminal Fano
varieties (cf. Lemma 2.21).

3. Cubic surfaces

Let X be a cubic surface in P? that has at most one ordinary double point.

Definition 3.1. A point O € X is said to be Eckardt point if O ¢ Sing(X) and
O = LN LyN Lz, where Ly, Lo, L3 are different lines on the surface X C P3.
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General cubic surfaces have no Eckardt points. It follows from Examples 1.10
and 1.11 that

let(X) = 3/4 when X has no Eckardt points and Sing(X) = &,
c
2/3 when X has an Eckardt point or Sing(X) # @.

Let D be an effective Q-divisor on X such that D ~g —Kx, and let w € Qs
be such that w < 3/4. In this section we prove the following result (cf. [5], [14]).

Theorem 3.2. Suppose that (X, wD) is not log canonical. Then LCS(X,wD) = O,
where O € X is either a singular point or an Eckardt point.

Suppose that (X,wD) is not log canonical. Let P be a point in LCS(X,wD),
and suppose that P is neither a singular point nor an Eckardt point of X.

Lemma 3.3. LCS(X,wD) = P.

Proof. Suppose that LCS(X,wD) # P. Then by Theorem 2.7 there is a curve
C' C X such that P € ¢ C LCS(X,wD). Hence there is an effective Q-divisor €
on X such that C' ¢ Supp(f2) and D = pC'+ €2, where > 1/w. Let H be a general
hyperplane section of X. Then

3=H - D=pH -C+H- Q2> pdegC,

which implies that either degC' =1 or deg C' = 2.
Suppose that deg C' = 1. Let Z be a general conic on X such that —Kx ~ C+Z.
Then

2u if C'N Sing(X)

3u/2 if CNSing(X) # @

2=7-D=puZ-C+7Z-Q>pz-C= {

which implies that p < 4/3. But p > 1/w > 4/3, a contradiction.

We see that deg C' = 2. Let L be a line on X such that —Kx ~ C + L. Then
D =puC+ XL+ 7Y, where Y is an effective Q-divisor such that C' ¢ Supp(Y) 2 L.
We have

1=L-D=pL-C+NL-L+L-T>uL-C+AL-L
) 2p=A if C' N Sing(X) = @,
©3p/2 - N\/2 if CNSing(X) # 2,
which implies that pu < 7/6 < 4/3 because X < 4/3 (see the case degC' = 1). But
> 4/3, a contradiction.

Let m: U — X be a blow-up of P and let E be the m-exceptional curve. Then
D ~q 7*(D) +multp(D)E, where multp(D) > 1/w and D is the proper transform
of D on the surface U. The log pair (U,wD + (wmultp(D) — 1)E) is not log
canonical at some point () € E. Then either multp(D) > 2/w, or

multg (D) + multp(D) > 2/w > 8/3, (3.1)

because the divisor wD + (wmultp(D) — 1)E is effective.
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Let T be the unique hyperplane section of X that is singular at P. We may
assume by Remark 2.22 that Supp(7") € Supp(D), because (X, wT) is log canonical.
The curve T is reduced. Thus, the following cases are possible: T is an irreducible
and reduced cubic curve; T is the union of a line and an irreducible conic; T consists
of three different lines.

We note that multp(7T) = 2 since P is not an Eckardt point. In the rest of the
section we shall exclude these cases one by one.

Lemma 3.4. The curve T is reducible.

Proof. Suppose that T is an irreducible cubic curve. Then there is a commutative

diagram
/ X

e ~Pp2?

where 1 is a double cover branched over a quartic curve and p is the projection
from P.
Let T be the proper transform of 7" on U. Suppose that @ € T. Then

3—2multp(D) =T D > multg(T)multg(D)
> multg(7T ) (8/3 — multp(D)) > 8/3 — multp(D),

which implies that multp(D) < 1/3. This inequality is absurd; thus, Q ¢ T.
Let 7 € Aut(U) be the natural involution® induced by the double cover . It
follows from [42] that

(7" (=Kx)) ~ 7*(—2Kx) — 3E

and 7(T) = E. We set Q = 70 7(Q). Then Q # P, because Q ¢ T.
Let H be the hyperplane section of X that is singular at Q. Then T' #+ H,
because P # ) and T is smooth away from P. Hence P ¢ H, because otherwise

3=H T > multp(H)multp(T) + mults(H) mult5(T) > 4.

Let H be the proper transform of H on the surface U. We set R = 7(H )
and R = 7(R). Then R ~ 7*(—2Kx) — 3E, and the curve R must be singular at
the point Q.

Suppose that R irreducible. Taking into account all possible singularities of R,

we see that (X , %R) is log canonical. Thus, by Remark 2.22 we may assume that
R ¢ Supp(D). Then

6 — 3multp(D) = R- D > multg(R) multg(D) > 2(8/3 — multp(D)),

3The involution 7 induces an involution in Bir(X) which is called the Geiser involution.
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which implies that multp(D) < 2/3. However, this is absurd since mult p(D) > 4/3.
Thus, the curve R must be reducible.
The curves R and H are reducible, so there is a line L, C X such that P ¢ L 3 Q.
Let L be the proper transform of L on U. We set Z = 7(L). Then L- E =0
and L-T = L-7*(—Kx) = 1, which implies that Z-F =1and Z - m*(—Kx) = 2.
We have Q € Z. Then

2—multp(D) =Z-D >multg(D) > 8/3 — multp(D) > 2 — multp(D)

in the case when Z ¢ Supp(D ). Hence Z C Supp(D ).

We put Z = m(Z). Then Z is an irreducible conic such that P € Z and —Ky ~
L + Z, which means that L U Z is cut out by the plane in P? passing through Z.
We set D =eZ + T, where T is an effective Q-divisor such that Z ¢ Supp(Y).

We may assume that L  Supp(T) (see Remark 2.22). Then

2e if Z N Sing(X)

=L D=cZ-L+L-Y>ecZ L= -
R : {35/2 it Z N Sing(X) #

9,
9,

which implies that e < 2/3.
Let T be the proper transform of T on the surface U. Then the log pair
(U,ewZ + wY + (wmultp(D) — 1)E) is not log canonical at Q € Z. Hence

wY - Z+ (wmultp(D) —1) = (wT + (wmultp(D) —1)E) - Z > 1
by Lemma 2.20, because ¢ < 2/3. In particular, we see that

8/3 —multp(D) < Z-T=2—-multp(D)—eZ -Z

2 —multp(D) 4+ ¢ if Z N Sing(X) =
(D) +¢/2 if Z N Sing(X) #

2 — multp

which implies that ¢ > 2/3. But we have already shown that ¢ < 2/3. This
contradiction completes the proof of Lemma 3.4.

Therefore, there is a line Ly C X such that P € L;. We set D = myL; + €,
where ) is an effective Q-divisor such that L; Z€ Supp(€2). Then

=9
4/3<1/w<Q-Ly=1—mL Ly = ’
/ Jw 1 miba - L {1+m1/2 if L1 N Sing(X) # @.

Corollary 3.5. The following inequality holds:

1/3 if L1 NSing(X) = o,
m
"7 \2/3 if L1 N Sing(X) £ 2.
Remark 3.6. Suppose that X is singular and put O = Sing(X). It follows from [16]
that O = T'1NIeNI'sNIyNI'sNTg, where I'y, ..., I'g are different lines on the surface
X C P3. Moreover, —2K x ~ 2?21 I';. Suppose that L1 =T';. Let I,,..., Il C P3
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be planes such that L; C IT; D I'; and let Ao, ..., Ag be lines on the surface X such
that
LU, UA, =ILNX C X C P,

which implies that —Kx ~ Ly +T; + A;. Then

6 6 6
~5Kx ~ALi+ Y A+ (L1+ZF¢) ~ 4L+ ) A - 2Kx,

=2 =2 =2

which implies that —3Kx ~ 4L + 2?22 A;. On the other hand, the log pair

6
D oA
(X, Ly + LF; )

is log canonical at the point P. Thus, in completing the proof of Theorem 3.2 we
may assume by Remark 2.22 that

Supp(ZA> ¢ Supp(D),

because L; € Supp(D). Then there is a line Ay such that
1:D'Ak:(m1L1+Q)-Ak:m1—|—Q-Ak>m1,
since O ¢ Aj. For the completion of the proof of Theorem 3.2 we may assume that

Arguing as in the proof of Lemma 2.15, we readily see that m; < 1 if L1 N
Sing(X) = @.

Lemma 3.7. There is a line Ly C X such that L1 # Lo and P € Ls.

Proof. Suppose there is no line Ly C X such that L; # Ly and P € Ly. Then
T =Ly + C, where C' is an irreducible conic on X such that P € C.

By Remark 2.22 we may assume that C' Z Supp(€2), since my # 0.

Let L; and C be the proper transforms of L; and C on the surface U, respectively.
Then

D ~g miLy +Q ~g 7 (m1 Ly 4+ Q) — (mq +multp(Q)) E ~g 7*(D) — multp(D)E,
where € is the proper transform of the divisor Q on the surface U. We have
0<C-Q=2—multp(D)+mC-L<2/3—mC-L;

_)2/3-m if L1 N Sing(X) = @,
©12/3=my/2 if Ly NSing(X) # @,

which implies that my < 2/3 if Ly N Sing(X) = @. It follows from the inequal-
ity (3.1) that

multg( Q) > 8/3 — multp(Q) — my (1 + multg(Ly)).
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Suppose that @ € L;. Then by Lemma 2.20

8/3 < El . (ﬁ—l—(multp(Q) +m1)E) =1- mlfl . El
~[142m if L N Sing(X) = 2,
|14 3my/2 if Ly NSing(X) # @,
which is impossible, because m; < 1 if Ly N Sing(X) # @ (see Remark 3.6).
We see that Q ¢ Ly. Suppose that @ € C. Then

2 —multp(Q) —m; —miC - L1 =C-Q > 8/3 — multp(Q) —my,

which is impossible, because m;C - L; > 0. Hence, we see that Q ¢ C.
There is a commutative diagram

¢

U——W

Wl o

where ( is the birational morphism contracting the curve L;, the morphism %) is
a double cover branched over a plane quartic curve, and the rational map p is the
linear projection from the point P € X.
Let 7 be the birational involution of U induced by . Then
T is biregular <= L; N Sing(X) = &,
if L1 N Sing(X) # @, then 7 acts biregularly on U \ L1,
it follows from the construction of 7 that 7(E) = C,
if L1 N Sing(X) = @, then

T*(Ll)NLl, T*(E)NC, T*(TF*(—K)()>NTF*(—QK)()—?)E—El.

Let H be a hyperplane section of the cubic surface X such that H is singular at
mo7(Q) € C. Then P ¢ H because C is smooth. Let H be the proper transform
of H on the surface U. Then L;  Supp(H) 2 C.

We put R =7(H ) and R = 7(R). Then R is singular at the point @, and

RNTF*(—2K)() —3E—E1,

because R does not pass through a singular point of the surface X for Sing(X) # @.

Suppose that R is irreducible. Then R + L; ~ —2Kx, but the log pair
(X,2(R+ Ly)) is log canonical. Thus (see Remark 2.22), we may assume that
R ¢ Supp(D). Then

5 — 2(m1 —|—multp(Q)) +m1(1 +E1 . El)
=R-Q>2multg(Q) > 2(8/3 — my — multp(2)),

which implies that m; < 0, a contradiction. We have shown that R must be
reducible.
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It follows immediately from the reducibility of R that there is a line L C X
such that P ¢ L and mo7(Q) € L. Then L N L; = @&, because m o 7(Q) € C
and (C'+ Ly)-L =T -L = 1. Thus, there is a unique conic Z C X such that
—Kx ~ L+ Z and P € Z. Then Z is irreducible and P = Z N Ly, because
(L+Z2)- Ly =1.

Let L and Z be the proper transforms of the curves L and Z on U, respectively.
Then

Z-E=1, L,-Z=L-E=L-L, =0,
o {2 if N Sing(X) = @,

L-C

1-L-Z

N
I

7.
3/2 if LN Sing(X) # @.

By construction 7(Z ) = L. Then Q € Z. Suppose that Z Z Supp(). Then
2—m; —multp(Q) =7-Q>8/3 —my — multp(),

which is a contradiction. Thus, Z C Supp(Q). The log pair (X,w(L + Z)) is
log canonical at the point P. Hence we may assume that L ¢ Supp(Q) (see
Remark 2.22). We put D =e¢Z +myL; + T, where T is an effective Q-divisor such
that Z ¢ Supp(Y) 2 L1. Then

1=L-D=¢eL-Z+mL-I1n+L-Y=¢eL-Z+L-Y>2cL-Z

2 it L N Sing(X) = o,
©3¢/2 if LN Sing(X) # @,

which implies that ¢ < 2/3. However, Z N L; = @. Hence it follows from
Lemma 2.20 that

2—multp(D)—¢eZ-Z=27-T >8/3 —multp(D),

where T is a proper transform of T on the surface U. We conclude that ¢ > 2/3;
however, ¢ < 2/3. This contradiction completes the proof of Lemma 3.7.

We see therefore that T'= L; + Lo 4+ L3, where L3 is a line such that P ¢ Ls.
We put D = mqiLy + maoLo + A, where A is an effective Q-divisor such that
Ly € Supp(A) 2 Ls.

We point out that m; > 1/3 and ms > 1/3 by Corollary 3.5. Hence we may
assume by Remark 2.22 that Ls € Supp(A). If Ly or Lo contains a singular point
of X, then we may assume without loss of generality that it lies in L;. Then
Ly -Ly=1and L3-Ly =1/2if L1 NSing(X) # &. Similarly, we see that L3 - Ly =
L3 - Ly =1in the case Ly NSing(X) =¢&. Then 1 —myLy - Ly —mgo = L3-A > 0.

Let L; and L3 be the proper transforms of L; and Ly on U, respectively. Then

mlfl + mgfzz +A ~Q 7T*(m1L1 + moLo + A) — (ml + mo + multp(A))E,
where A is the proper transform of A on U. The inequality (3.1) implies that

multg(A) > 8/3 — multp(A) — my (1 + multg (L)) — mq (1 + multg(Ls)). (3.2)
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Lemma 3.8. The curve Lo does not contain the point Q.

Proof. Suppose that Q € Ly. Then
1-— multp(A) —mi + mg = ZQ A > 8/3 — multp(A) — M1 — Mo

by Lemma 2.20. Hence ms > 5/6. On the other hand, it follows from Lemma 2.20
that

1—mo—mqLy-L1=A 14 >4/3—m2.
However, Ly-L; = —1if L1 NSing(X) = g and Ly-L; = —1/2if L1 NSing(X) # 2.
Then

1/3 if L1 N Sing(X) = @,
m
"7 )2/3 if Ly N Sing(X) # 2,
by Corollary 3.5, which is impossible because ms > 5/6 and 1 > myLq - Lg + ma.

Lemma 3.9. The curve Ly does not contain the point Q.

Proof. Suppose that Q € L;. Arguing as in the proof of Lemma 3.8, we see that
L; N Sing(X) # @, which implies that L; - L1 = —1/2. Then m; > 10/9, because

1 +3m1/2 = EQ . (Z—l— (multp(A) —m —mg)E) > 8/3

by Lemma 2.20. On the other hand, m; < 1 by Remark 3.6. This contradiction
completes the proof.

We see therefore that Ly # Q ¢ L. There is a commutative diagram

U w
W\L l/zp
X———~- ~ P2

where ¢ is a birational morphism contracting the curves L; and Lo, the morphism
1 is a double cover branched over a plane quartic curve, and p is the projection
from the point P.

Let 7 be the birational involution of U induced by 1. Then

e 7 is biregular <= L; N Sing(X) = &,

7 acts biregularly on U \ L; if L; N Sing(X) # @,
the construction of 7 shows that 7(Lg) = Lo,
if Ly N Sing(X) = @, then 7(Ly) = L; and

T (7T*(—Kx)) ~ 7T*(—2Kx) —3F — El — EQ.



Log canonical thresholds 889

Let L3 be the proper transform of Lz on the surface U. Then 7(E) = Lz and
L1 ULy ?TI'OT(Q) € Ls.

Lemma 3.10. The line Ly is the only line on X that passes through the point
To7(Q).

Proof. Suppose there is a line L C X such that L # L3 and 7w o 7(Q) € L. Then
LNLy=LNLy =g, because mo7(Q) € L3 and (L1 + Ly + L3) - L = 1. Thus,
there is a unique conic Z C X such that —Kx ~ L+ Z and P € Z. Then Z is
irreducible, since P ¢ L and P is not an Eckardt point.

Let L and Z be the proper transforms of L and Z on U, respectively. Then

L Z 7.7 7 7.7 2 if L NSing(X) =9
L-Ly=7Z-F=1, Z-Z=1-L-Z, . :{ if L N Sing(X) ;

3/2 if LN Sing(X) # @,

angfl -Z: Ly - Z = I:/~E:E~El =L L f(). Byth(iconstruction of 7 we have
7(Z) = L. Then Q € Z, which implies that Z C Supp(A ), because

2 —multp(A) —my —me =Z-Q>8/3 —multp(A) — my — mo

in the case when Z ¢ Supp(A). On the other hand, the log pair (X,w(L + Z))
is log canonical at the point P. Hence by Remark 2.22 we may assume that
L & Supp(A). Let D =¢Z +myLy +maLy + Y, where T is an effective Q-divisor
such that Z Z Supp(Y). Then

1=L-D=¢L-Z+miL-I1+L-Y=¢eL-Z+L-Y>clL-Z
)2 if LN Sing(X) = @,
©13¢/2 if LN Sing(X) # @,

which implies that € < 2/3. On the other hand, ZN L; = @. Hence it follows from
Lemma 2.20 that

2—multp(D)—eZ-Z=27-T >8/3—multp(D),

where T is the proper transform of T on U. We deduce that ¢ > 2/3, but we have
already shown that e < 2/3: a contradiction which completes the proof.

Therefore, there is a unique irreducible conic C' C X such that —Kx ~ Ls + C
and 7o 7(Q) € C. Then C + L3 is a hyperplane section of X which is singular at
wo7(Q). Let C be the proper transform of C on U. Weset Z = 7(C') and Z = n(Z).

Lemma 3.11. L; N Sing(X) # @.

Proof. Suppose that Ly N Sing(X) = @. Then C N L; = C N Ly = &, because
(Ly + Ly + L3) - C = L3 - C = 2. One can easily check that Z ~ n*(-2Kx) —
4F — Ly — Lo, and Z is singular at P. Then —2Kx ~ Z + L; + Lo, but the log
pair (U, 2(Z + L1 + L»)) is log canonical at P. Thus (see Remark 2.22), we may



890 I. A. Chel’tsov and K. A. Shramov

assume that Z ¢ Supp(D). By construction, @ € Z and Z - E = 2. Then it follows
from the inequality (3.1) that

4 —2multp(D)=Z-D > multg(D) > 8/3 — multp(D),

which implies that multp(D) < 4/3. However, this is impossible since multp(D) >
4/3. The proof is complete.

Thus, Ly N Lg = Sing(X) # &. Then Ly N Ly € C, which implies that
Z ~ W*(—ZKX) —4F — 2Z1 — EQ,

and Z is a smooth rational cubic. Then —2Kx ~ Z + 2L; + Lo, but the log pair
(U, %(Z—I—QLl +L2)) is log canonical at P. Thus, we may assume that Z ¢ Supp(D)
by Remark 2.22. We have Q € Z and Z - E = L; = 1. Then it follows from the
inequality (3.1) that

3—multp(A) —2my —me =7 - A > multg(A) > 8/3 — multp(A) — my — mo,

which implies that m; < 1/3. On the other hand, m; > 2/3 by Corollary 3.5. This
contradiction completes the proof of Theorem 3.2.

4. Del Pezzo surfaces

Let X be a del Pezzo surface that has at most canonical singularities, let O
be a point of X, and let Bx be an effective Q-divisor on X. Suppose that O is
a smooth or an ordinary double point of X and that X is smooth away from O € X.

Lemma 4.1. Let Sing(X) = O and K% = 2, and suppose that Bx ~g —uKx,
where 0 < u < 2/3. Then LCS(X, uBx) = @.

Proof. Suppose that LCS(X, uBx) # &. Then there is a curve L with P! 2 [, ¢ X
such that LCS(X, uBx) € L, the equality L-L = —1 holds, and L N Sing(X) = @.
Therefore, there is a birational morphism 7: X — S that contracts the curve L.
Then LCS(S, um(Bx)) # @ due to the choice of the curve L C X. On the other
hand, —Kg ~qg m(Bx), and S is a cubic surface in P? that has at most one ordinary
double point, which is impossible (see Examples 1.11 and 1.10).

Lemma 4.2. Suppose that Sing(X) = @, K% = 5, and Bx ~g —uKx, where
w € Q is such that 0 < p < 2/3. Assume that LCS(X, Bx) # @. Then either the
set LCS(X, Bx) contains a curve, or there exist a curve L with P! = L C X and
a point P € L such that L - L = —1 and LCS(X, Bx) = P.

Proof. Suppose that LCS(X, Bx) contains no curves. Then it follows from The-
orem 2.7 that LCS(X, Bx) = P for some point P € X. We may assume that P
does not lie on any curve L with P* = L € X such that L - L = —1. Then there
is a birational morphism ¢: X — P2 that is an isomorphism in a neighbourhood
of the point P. We note that ¢(P) € LCS(P?, ¢(Bx)), the set LCS(PP?, p(Bx))
contains no curves, and ¢(Bx) ~g —pKp2. Since p < 2/3, the latter is impossible
by Lemma 2.8, .
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Example 4.3. Suppose that O = Sing(X) and K% = 5. Let a: V — X be
a blow-up of O and let E be the exceptional divisor of cv. Then there is a birational
morphism w: V' — P? such that the morphism w contracts the curves E, Fy, Es,
E4, and the curve w(FE) is a line in P? that contains w(E1), w(Es), and w(FE3), but
UJ(E) ﬁ w(E4).

Let Z be a line in P? such that w(FE;) € Z > w(E,). Then

2F 4+ Z +2E, + Ey + E3 ~ — Ky,
where Z is the proper transform of Z on V. One has
let (X, a(Z) + 2a(Eq) + a(E2) 4+ a(E3)) = 1/2,

which implies that let(X) < 1/2. Suppose that —Kx ~g 2Bx, but (X, Bx) is not
log canonical. Then

KV —‘y—Bv +mE ~Q Oé*(KX +Bx)

for some m > 0, where By is the proper transform of Bx on the surface V.
Then the log pair (V,By + mkE) is not log canonical at some point P € V.
There is a birational morphism 7: V — U such that 7 is an isomorphism in
a neighbourhood of P € X and U is a smooth del Pezzo surface with K?] = 6.
This implies that (U, 7(By) + mm(E)) is not log canonical at w(P). On the other
hand, 7(By) + mn(E) ~g —(1/2)Ky, which is impossible because lct(U) = 1/2
(see Example 1.10). Thus, let(X) = 1/2.

Example 4.4. Suppose that K2 = 4. Arguing as in Example 4.3, we see that

let(X) — 1/2 if O = Sing(X),
~12/3 if Sing(X) = 2.

Suppose that Bx ~g —Kx but the log pair (X, ABx) is not log canonical at some
point P € X \ O. There is a commutative diagram

where U is a cubic surface in P that has canonical singularities, the morphism o
is a blow-up of the point P, the morphism [ is birational, and ) is the projection
from the point P € X. Then

Kyv + ABy + ()\multp(BX) — 1)E ~Q o*(Kx + ABx),

where E is the exceptional divisor of o and By is the proper transform of By on V.
We note that

(V,ABy + (Amultp(Bx) — 1)E)
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is not log canonical at some point @ € E, and multp(Bx) > 1/A. Then the log
pair
(V, ABy + ()\ Hlultp(Bx) — )\)E)

is also not log canonical at the point @ € E, but
By + (multp(BX) — 1)E ~qg —Kv + Oz*(KX + BX) ~q —Kvy.

Suppose that P is not contained in any line on the surface X. Then

e the morphism (: V' — U is an isomorphism,

e is cubic surface is smooth away from (0),

e the point ¢(O) is an ordinary double point of the surface U,
which implies that A > 2/3 (see Example 1.11).

Let A = 3/4. Then ¢(Q) € U C P3 must be an Eckardt point of the surface

U by Theorem 3.2 (see Definition 3.1). On the other hand, G(E) C U is
a line, so X contains two irreducible conics Cy # Co such that P = C; N Cy and
Ci+Cy~—Kx.

Lemma 4.5. Suppose that O = Sing(X), K% = 6, and there is a diagram

1%
/ V*
X p2

where 3 is a blow-up of three points Py, Py, Py € P? lying on a line L C P2, and
« is a birational morphism contracting an irreducible curve L to the point O such
that B(L) = L. Then LCS(X,\Bx) = O in the case when LCS(X,\Bx) # @,
Bx ~Q —Kx, and X < ]./2

Proof. Suppose that @ # LCS(X,ABx) # O but Bx ~g —Kx. Let M be
a general line in P? and let M be its proper transform on V. Then —Kx ~ 2a(M )

and O € a(M ). Thus, the set LCS(X, ABx) contains a curve, because otherwise
the locus LCS(X,ABx + «(M )) would be disconnected, which is impossible by
Theorem 2.7.

Let C be an irreducible curve on X such that ¢ C LCS(X,ABx). Then Bx =
eC' + Q, where € > 2 and 2 is an effective Q-divisor such that C' ¢ Supp(Q).

Let I'; be a proper transform on X of a sufficiently general line in P? that passes
through R Then O ¢ Fl UFQUFS and 7KX'F1 = 7KX'F2 = 7KX 'Fg =2. On
the other hand, —Kx ~q I'1 + 'y +T's, which implies that there is an m € {1, 2, 3}
such that C - T'), # 0. Then

2=Bx -1, =(C+Q) T, 2eC-T,,, 2e>2,

because I';,, ¢ Supp(Byx). This contradiction completes the proof.

Remark 4.6. Suppose that O = Sing(X) and K% = 6. Let a: V — X be a blow-up
of the point O € X, and let E be the exceptional divisor of . Then

Ky + By +mE ~q o*(Kx + Bx)
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for some m > 0, where By is the proper transform of Bx on V. We note that
let(X) < 1/3. Suppose that let(X) < 1/3, that is, there exists an effective Q-divisor
Bx ~g —Kx such that the log pair (X, %BX) is not log canonical. Then the
log pair (V,1(By + mkE)) is not log canonical at some point P € V. There is
a birational morphism 7: V — U such that either U =2 F; or U = P' x P!,
and the birational morphism 7 is an isomorphism in a neighbourhood of P € X.
Then the log pair (U, §((By)+mn(E))) is not log canonical at the point (P). On
the other hand, — Ky ~qg 7(By)+mm(E), which immediately yields a contradiction
to Example 1.10. Hence let(X) = 1/3.

Lemma 4.7. Suppose that X = P(1,1,2) and Bx ~qg —Kx, but there is a point
P € X such that O # P € LCS(X,ABx) for some non-negative rational A < 1/2.

Let L be the unique curve in the linear system |Op 1,2)(1)| such that P € L. Then
L C LOS(X, ABy).

Proof. Suppose there is a curve I' € LCS(X, ABx) such that P € T' # L. Then
Bx = ul'+ €, where p > 2 and € is an effective Q-divisor such that T' ¢ Supp(2).
Hence pul’ + Q2 ~g 4L and I' ~ mL, where m € Z~. On the other hand, we have
P €T # L, and therefore m > 2, which yields a contradiction.

Suppose that L ¢ LCS(X,ABx). Then it follows from Theorem 2.7 that
LCS(X,ABx) = P, because we have proved that LCS(X, ABx) contains no curves
passing through P.

Let C be a general curve in the linear system [Op(;;2)(1)]. Then LCS(X,
ABx + C) = P UC, which is impossible by Theorem 2.7.

Lemma 4.8. Suppose that X =2 Fy. Then there are 0 < p € Q 5 X > 0 such that
Bx ~g pC+ AL, where C and L are irreducible curves on X such that C-C = —1,
C-L=1,andL-L=0. Suppose that n <1 and A < 1. Then LCS(X, Bx) = &.

Proof. Obviously, the set LCS(X, Bx) contains no curves, because L and C gen-
erate the cone of effective divisors of the surface X. Suppose that LCS(X, Bx)
contains a point O € X. Then

Kx+Bx+ (1—p)C+(2—-ANL) ~g —(L+0C),

because —Kx ~g 2C' 4+ 3L. On the other hand, it follows from Theorem 2.6 that
the map

0=H(Ox(~L—C)) = H(Og(x,By)) #0
is surjective, because the divisor (1 — u)C' + (2 — X)L is ample: a contradiction.

Lemma 4.9. Suppose that Sing(X) = @ and K% = 7. Then
Ly Ly=1ILy-Lo=Ly-Ly=—1, Li-Ly=Ly-Ly=1 L -Ly=0,

where Ly, Lo, Ly are exceptional curves on X. Suppose that LCS(X, Bx) # & but
Bx ~g —puKx, where p < 1/2. Then LCS(X, Bx) = Ls.

Proof. Let P be a point in LCS(X, Bx). Then P € Lg, because lct(Pt x P1) = 1/2
and there is a birational morphism X — P! x P! that contracts only the curve Lo.
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Suppose that LCS(X, Bx) # Ly. Then LCS(X, Bx) = P by Theorem 2.7.

We may assume that P ¢ Lz. Then there is a birational morphism ¢: X — P?
that contracts the curves L; and Ls. Let C7 and C3 be the proper transforms on
X of sufficiently general lines in P? that pass through the points ¢(L;) and ¢(L3),
respectively. Then —Kx ~ C; +2C5 + L3 but Cy # P ¢ C3. We see that

1
C3UPCLCS(X,)\D+2(01+203+L3)> CC3UPU Lg,

which is impossible by Theorem 2.7, because P ¢ Ls.

Lemma 4.10. Suppose that O = Sing(X), K% =7, and Bx ~g C+(4/3)L, where
L =P = C are curves on the surface X such that L-L = —1/2, C'-C = —1, and
C-L =1, but the log pair (X, Bx) is not log canonical at some point P € C. Then
PelL.

Proof. Let S be a quadratic cone in P2, Then S = P(1,1,2) and there is a birational
morphism p: X — S C P3 that contracts the curve C to a smooth point Q € S.
Then @ € ¢(L) € |Opq1,1,2)(1)]-

Suppose that P ¢ L. Then it follows from Remark 2.22 that to complete the
proof we may assume that either C' ¢ Supp(Byx) or L ¢ Supp(Bx), because
the log pair (X,C + (4/3)L) is log canonical at the point P € X. Suppose that
C ¢ Supp(Bx). Then 1/3 = BxC > multp(Bx) > 1, which is impossible.
Therefore, C' C Supp(Byx). Hence we may assume that L ¢ Supp(Byx).

We put Bx = eC + €, where § is an effective Q-divisor such that C' ¢ Supp(€2).
Then 1/3=Bx -L=ec+Q-L > ¢, which implies that ¢ < 1/3. Then 1 < Q-C =
1/3 + ¢ < 2/3 by Lemma 2.20, a contradiction. The proof is complete.

5. Toric varieties

The aim of his section is to prove Lemma 5.1 (cf. [30], [55]).

Let N = Z™ be a lattice of rank n and M = Hom(N,Z) the dual lattice. Let
Mg = M ®7 R and Ng = N ®z R. Let X be a toric variety defined by a complete
fan ¥ C Ng; let Ay = {v1,...,v,} be the set of generators of one-dimensional
cones of the fan ¥. We put

A={we M| {w,v)>—-1foralli=1,...,m}.
Let T = (C*)" C Aut(X), let A4 be the normalizer of T in Aut(X) and
W =N|T.
Lemma 5.1. Let G C W be a subgroup. Suppose that X is Q-factorial. Then

1

let(X, G) = 14 max{(w,v) |w € A, ve A}’

where AC is the set of points in A that are fized by the group G.

Proof. We put = 1+ max{(w,v) | w € A9, v € A;}. Then u € Q is the largest
number such that —Kx ~g uR + H, where R is a T' x G-invariant effective Weil
divisor and H is an effective Q-divisor. Hence lct(X,G) < 1/p.

Suppose that lct(X,G) < 1/u. Then there is a G-invariant effective Q-divisor
D ~g —Kx such that the log pair (X, AD) is not log canonical for some A\ < 1/p.
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There exists a family {D; | t € C} of G-invariant effective Q-divisors such that
e D, ~qg D for every t € C,
L] D1 = .D,
e for every t # 0 there is a ¢, € Aut(X) such that D, = ¢ (D) = D,
e the divisor Dy is T-invariant,
which implies that (X, ADy) is not log canonical (see [21]).
On the other hand, the divisor Dy does not have components with multiplicity
greater than g, which implies that (X, ADg) is log canonical (see [56]). This is
a contradiction.

Corollary 5.2. Let X = P(ﬁpn @ Opn(—a1)® - @ ﬁ’pn(—ak)), where a; > 0 for
i=1,...,k. Then

1
let(X) = .
(%) 1+max{k,n+2f:1ai}

Proof. We note that X is a toric variety and A; consists of the following vectors:

P SR
(1,0,...,0,0,0,...,0),...,(0,...,0,1,0,0,...,0),
(-1,...,-1,0,0,...,0),
(0,0,...,0,1,0,...,0),...,(0,0,...,0,0,...,0,1),
(—ay,...,—ag,—1,...,—1),

which implies the required assertion by Lemma 5.1.
Applying Corollary 5.2, we obtain the following result.

Corollary 5.3. In the notation of §1 one has let(X) = 1/4 if I(X) € {2.33,2.35},
and one has let(X) = 1/5 if 3(X) = 2.36.

Straightforward calculations using Lemma 5.1 yield the following result.

Corollary 5.4. In the notation of §1,

1/3 if I(X) € {3.25,3.31,4.9,4.11,5.2},
let(X) = { 1/4 if I(X) € {3.26,3.30,4.12},
1/5 if J(X) = 3.29.

Remark 5.5. Suppose that the toric variety X is symmetric, that is, A” = {0} (see,
for instance, [30]). Then it follows from Lemma 5.1 that the global log canonical
threshold lct(X, #) is equal to 1. We note that this equality was proved in [30]
and [55] under the additional assumption that X is smooth.

6. Del Pezzo threefolds

Throughout this section we use the assumptions and the notation from § 1. Sup-
pose that —Kx ~ 2H, where H is a Cartier divisor that is indivisible in Pic(X).
The aim of this section is to prove the following result.

Theorem 6.1. The equality lct(X) = 1/2 holds unless I(X) = 2.35, when
let(X) = 1/4.
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It follows from Theorems 3.1.14 and 3.3.1 in [2] that J(X) € {1.11,...,1.15,2.32,
2.35,3.27}. By [5] and [13] (see also Lemma 2.17) one has let(X) = 1/2 if 3(X) €
{1.12,1.13}. Tt follows from Lemma 2.29 that let(X) = 1/2 when 3(X) = 3.27.
Lemma 5.1 implies that let(X) = 1/4 if 3(X) = 2.35.

The remaining cases are: J(X) € {1.11,1.14,1.15,2.32}, and the inequality
let(X) < 1/2 is obvious here, because the linear system |H| is non-empty.

Lemma 6.2. If1(X) = 2.32, then lct(X) = 1/2.

Proof. We may suppose that let(X) < 1/2. Then there is an effective Q-divisor
D ~q H such that the log pair (X, AD) is not log canonical for some A < 1.

The threefold X is a divisor on P? x P2 of bidegree (1, 1). There are two natural
P'-bundles 71: X — P2 and mo: X — P?; applying Theorem 2.27 to them, we
immediately obtain a contradiction.

Remark 6.3. Suppose that Pic(X) = Z[H]| and there exists an effective Q-divisor
D ~qg H such that the log pair (X, D) is not log canonical for some A < 1. We
put D = &S+ Q ~g H, where S is an (irreducible) surface and €2 is an effective
Q-divisor such that Supp(2) 7 S. Then € < 1 because Pic(X) = Z[H], which
implies that the set LCS(X, AD) contains no surfaces. Moreover, for any choice
of H € |H| the locus LCS(X,\D + H) is connected by Theorem 2.7. Let H be
a general surface in the linear system |H|. Since LCS(X,\D + H) is connected,
it follows that LCS(X, AD + H) has no isolated zero-dimensional components out-
side the base locus of |H|. Furthermore, |H| has no base points except in the case
J(X) = 1.11, when the base locus of |H| consists of a single point O. We note that
in the last case O ¢ LCS(X,AD), since X is covered by the curves of anticanon-
ical degree 2 passing through O. Hence the locus LCS(X, AD) never has isolated
zero-dimensional components; in particular, it contains an (irreducible) curve C.
We put D|; = D. Then —Kpy ~g D, but (H,\D) is not log canonical at every
point of the intersection H N C. The locus LCS(H,AD) is connected by Theo-
rem 2.7. But the scheme Z(H,\D) is zero dimensional, so H - C = |[HNC| =1
and the locus LCS(X, AD) contains no curves besides C.

Lemma 6.4. If J(X) = 1.14, then lct(X) = 1/2.

Proof. We may suppose that let(X) < 1/2. Then there is an effective Q-divisor
D ~q H such that the log pair (X, AD) is not log canonical for some A < 1.

The linear system |H| induces an embedding X C P? such that X is a complete
intersection of two quadrics. Then LCS(X, AD) consists of a single line C C X by
Remark 6.3.

It follows from Proposition 3.4.1 in [2] that there is a commutative diagram

where 1 is the projection from C', the morphism « is a blow-up of the line C', and
3 is a blow-up of a smooth curve Z C P? of degree 5 and genus 2.
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Let S be the exceptional divisor of § and let L be a fibre of the morphism (3
over a general point of the curve Z. We put S = «(S) and L = «(L). Then
S ~ 2H, the curve L is a line, and mult,(S) = 3. Here the log pair (X, (1/2)S)
is log canonical, so we may assume (see Remark 2.22) that Supp(D) 7 S. Then

1=L-D > mult-(D) > 1, a contradiction.

Remark 6.5. Let V C P° be a complete intersection of two quadric hypersurfaces
that has isolated singularities, and let By be an effective Q-divisor on V such that
By ~g —Ky and LCS(V,uBy) # @, where p < 1/2. Arguing as in the proof
of Lemma 6.4, we see that LCS(V, uBy) C L, where L C V is a line such that
LN Sing(V) # @.

Lemma 6.6. If J(X) = 1.15, then lct(X) = 1/2.
Proof. This is analogous to the proof of Lemma 6.4.
Lemma 6.7. If1(X) = 1.11, then lct(X) = 1/2.

Proof. We may suppose that lct(X) < 1/2. Then there is an effective Q-divisor
D ~q H such that the log pair (X, AD) is not log canonical for some A < 1.
Recall that the threefold X can be given by an equation

w? =3 + 2 fo(x,y, 2) + tfalz,y, 2) + folx,y, 2) C P(1,1,1,2,3)
g PrOj(C[l.7 y’ Z7t’ w])’

where wt(z) = wt(y) = wt(z) = 1, wt(t) = 2, wt(w) = 3, and f; is a polynomial
of degree 1.

By Remark 6.3 the locus LCS(X, AD) consists of a single curve C' C X such that
H-C=1.

Let 1: X --» P2 be the natural projection. Then 9 is not defined at the point O
cut out by z = y = z = 0. The curve C does not contain the point O, because
otherwise

1=T"D > multo(D) multo(T") > mult-(D) > 1/X > 1,

where T' is a general fibre of the projection . Thus, we see that ¥(C) C P? is
a line.

Let S be the (unique) surface in |H| such that C' C S. Let L be a general fibre of
the rational map ¢ that intersects the curve C. Then L C Supp(D) since otherwise
1=D-L>multc(D)>1/A> 1.

We may assume that D = S by Remark 2.22. Then S has a cuspidal singularity
along C'. We may assume that the surface S is cut out on X by the equation x = 0,
and the curve C is given by the equations w =t =2 = 0. Then S is given by

w? =2+ 12 f2(0,y,2) + £2(0,y,2) C P(1,1,2,3) = Proj(Cly, 2, ¢, w]),

and f¢(z,y,2) = xfs(x,y,z), where f5(x,y,z) is a homogeneous polynomial of
degree 5.
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Since the surface S is singular along C, it follows that f4(z,y,2) = xf3(z, vy, 2),
where f3(z,y, z) is a homogeneous polynomial of degree 3. Then every point of the
set

z=fs5(x,y,2) =t=w=0CP(1,1,1,2,3)

must be singular on X, which is a contradiction because X is smooth.

The proof of Theorem 6.1 is complete.

7. Threefolds with Picard number p = 2

We use the assumptions and notation introduced in § 1.
Lemma 7.1. If J(X) = 2.1 or 2.3, then lct(X) = 1/2.

Proof. There is a birational morphism «: X — V that contracts a surface £ C X
to a smooth elliptic curve C' C V, where V is one of the following Fano three-
folds: a smooth hypersurface in P(1,1,1,2,3) of degree 6; a smooth hypersurface
in P(1,1,1,1,2) of degree 4.

The curve C' lies in a surface H C V such that Pic(V) = Z[H] and —Kx ~ 2H.
Then C is a complete intersection of two surfaces in |H|, and —Kx ~ 2H + E,
where F is the exceptional divisor of the birational morphism «, and H is the
proper transform of the surface H on the threefold X. In particular, the inequality
let(X) < 1/2 holds.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X,AD) is not log canonical for some A < 1/2. Then
LCS(X,AD) C E since let(V) = 1/2 by Theorem 6.1 and (D) ~g 2H ~ —Ky.

We put k = H - C. Then k = H? € {1,2}. We note that

Neyy =2 0c(H|e) @ Oc(H|p),

which implies that F =2 C x P!. Let Z = C and L = P! be curves on E such that
Z-Z=L-L=0and Z-L=1. Then o*(H)|p ~ kL, and since

27 ~ K ~ (Kx + E)|p ~ (2E — 2a*(H))| , ~ —2kL + 2E|,

P

we see that Elp ~ —Z + kL. We put D = pE + Q, where Q is an effective
Q-divisor on X such that E ¢ Supp(Q2). The pair (X, F+ Q) is not log canonical
in a neighbourhood of E. Hence the pair (E,\Q|) is also not log canonical by
Theorem 2.19. But

Qlp ~q (—Kx — pE)|g ~q (20°(H) — 1+ p)E) |, ~o 1+ p)Z + k(1 — p)L,
and 0 < A\k(1 — p) < 1, which contradicts Lemma 2.23.
Lemma 7.2. If1(X) = 2.4 and X is general, then lct(X) = 3/4.

Proof. There is a commutative diagram

7N

PP--—— - ~P!,
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where 1) is a rational map, « is a blow-up of a smooth curve C C P? such that
C = H, - H, for some Hy, Hy € |Ops(3)], and 3 is a fibration into cubic surfaces.
Let & be the pencil in |Ops (3)| generated by Hy and Hy. Then v is given by Z2.
We assume that X satisfies the following generality conditions: every surface in
2 has at most one ordinary double point; the curve C' contains no Eckardt points*
(see Definition 3.1) of any surface in Z.
Let E be the exceptional divisor of the blow-up a. Then

4 1 4 1
-H - FE~o-H —F~g —-K
3 1+3 Q3 2+3 Q X5

where H; is the proper transform of H; on the threefold X. In particular, we see
that let(X) < 3/4.

Suppose that lct(X) < 3/4. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A < 3/4.

Suppose that the set LCS(X, AD) contains an (irreducible) surface S C X.
Then D = &S + A, where ¢ > 1/X and A is an effective Q-divisor such that
S ¢ Supp(A). By Remark 2.3, in this case the log pair (Hl,D|H1) is not log
canonical if SN H, #+ @. But D|ﬁ1 ~Q fKﬁl. We can choose H; to be a smooth

cubic surface in P3. Thus, it follows from Theorem 3.2 that SN H; = @, which
implies that S ~ H;. Thus, a(S) is a surface in &. Then ea(S)+a(A) ~g Ops(4),
which is impossible because € > 1/\ > 4/3.

Let F be a fibre of 3 such that FNLCS(X,\D) # @. We set D = pF +), where
Q is an effective Q-divisor such that F' ¢ Supp(Q2). Then the log pair (F, )\Q|F) is
not log canonical by Theorem 2.19, because Ay < 1. It follows from Theorem 3.2
that LCS(F, )\Q|F) = O, where O is either an Eckardt point of the surface F' or
a singular point of F'. By Theorem 2.7

LCS(X,AD) = LCS(X, AuF + \QD) = O,

because it follows from Theorem 2.19 that (X, F + AQD) is not log canonical at O
but is log canonical in a punctured neighbourhood of O. But O ¢ E by our
generality assumptions. Hence

a(0) C LCS(P?, Aa(D)) € a(O)UC,

where a(O) ¢ C. On the other hand, A < 3/4, which contradicts Lemma 2.8.
Lemma 7.3. If1(X) € {2.5,2.10,2.14} and X is general, then lct(X) = 1/2.

Proof. There is a commutative diagram

SN

Vo————- ~Pp!,

4We note that C also does not contain singular points of surfaces in &, since C' is a complete
intersection of two surfaces in &2.
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where V' is a smooth Fano threefold such that — Ky ~ 2H for some H € Pic(V) and
J(V) € {1.13,1.14,1.15}, the morphism « is a blow-up of a smooth curve C C V
such that C = Hy - Hy for some Hy, Hy € |H| with Hy # Hs, the morphism [ is
a del Pezzo fibration, and % is the projection from C.

Let E be the exceptional divisor of the blow-up «. Then 2H| + E ~ 2Ho + E ~
—Kx, where H; is the proper transform of H; on the threefold X. In particular,
let(X) < 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X,AD) is not log canonical for some A < 1/2. Then
LCS(X,AD) C E, because (D) ~g —Ky and lct(V) = 1/2 by Theorem 6.1.

We assume that the threefold X satisfies the following generality condition: every
fibre of the fibration § has at most one singular point, which is an ordinary double
point.

Let F' be a fibre of § such that F' N LCS(X,A\D) # @. We put D = puF +
where ) is an effective Q-divisor on X such that F' ¢ Supp(§2). Then

a(D) = pa(F) + a(Q) ~g 2a(F) ~g —Kv,

which implies that ¢ < 2. We note that the pair (F, AQ| F) is not log canonical
by Theorem 2.19. However, €| ~g —Kp, which implies that lct(F) < A < 1/2.
On the other hand, F has at most one ordinary double point and K% = H3 < 5,
which implies that lct(F) > 1/2 (see Examples 1.10, 1.11, 4.3, and 4.4), which is
a contradiction.

Lemma 7.4. If J(X) = 2.8 and X is general, then lct(X) = 1/2.

Proof. Let O € P? and let a: Vz — P2 be a blow-up of the point O. Then V; =
P(Op> ® Op2(1)) and there is a P'-bundle w: V7 — P2, Let E be the exceptional
divisor of the birational morphism «. Then F is a section of 7.

There is a quartic surface R C P? such that Sing(R) = O, the point O is an
isolated double point of the surface R, and there is a commutative diagram

NN

,,,,,, >P2

9

where w is a double cover branched in R, the morphism 7 is a double cover branched
in the proper transform of R, § is a birational morphism that contracts a surface
E with n(E) = E to the singular point of Va2, w(Sing(V3)) = O, the map 1 is the
projection from the point O, and ¢ is a conic bundle.

We assume that X satisfies the following generality condition: the point O is an
ordinary double point of the surface R. Then E = P! x P!

Let H be the proper transform on X of the general plane in P? passing through O.
Then —Kx ~ 2H + E, which implies that lct(X) < 1/2.

Suppose that let(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A < 1/2.
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It follows from Lemma 2.17 that LCS(X, D) N E # @. Put D = uE + Q, where
Q) is an effective Q-divisor on X such that E ¢ Supp(£2). Then

2=D-T=uE+Q)-T=2u+Q-T >2pu,

where I' is a general fibre of the bundle ¢. Hence the log pair (E, >‘Q|E) is not log

canonical by Theorem 2.19, because LCS(X, D) N E # @. Furthermore, Q5 ~o
—((1 4 p)/2)K 5, which is impossible by Lemma 2.23.

Lemma 7.5. If J(X) = 2.11 and X is general, then lct(X) = 1/2.

Proof. Let V be a cubic hypersurface in P*. Then there is a commutative diagram

such that o contracts a surface £ C X to a line L C V, the map v is a projection
from the line L, and the morphism [ is a conic bundle.

We assume that X satisfies the following generality condition: the normal bundle
A7v to the line L on the variety V' is isomorphic to & & 0.

Let H be a hyperplane section of V such that L ¢ H. Then —Kx ~ 2H + E,
where H C X is the proper transform of the surface H. In particular, let(X) < 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X,\D) is not log canonical for some A < 1/2. Then
LCS(X,AD) C Esince let(V) = 1/2 and (D) ~g —Ky. We note that E = P! x P!
by the generality condition.

Let I C E be a fibre of the induced projection £ — L, and let Z C E be a section
of this projection such that Z-Z = 0. Then o*(H)|g ~ F and E|, ~ —Z, because

27 —2F ~ K ~ (Kx + E)|p ~ 2(E — «*(H))| . ~ —2F + 2E| .

P

We put D = puFE + 2, where Q is an effective Q-divisor on X and E ¢ Supp(€2).
Then
2=D - I'=pE -T+Q-T' > puE T =2pu,

where I' is a general fibre of the conic bundle 5. Thus, we see that u < 1. The log
pair (E7 )\Q|E) is not log canonical by Theorem 2.19. But
Qg ~q (—Kx = pE)|g ~q (1 + p)Z + 2F,
which contradicts Lemma 2.23, because p < 1 and A < 1/2.
Lemma 7.6. If J(X) = 2.15 and X is general, then lct(X) = 1/2.

Proof. There is a birational morphism a: X — P? that contracts a surface £ C X
to a smooth curve C' C P? that is the complete intersection of an (irreducible but
possibly singular) quadric @ C P? and a cubic F' C P3.

We assume that X satisfies the following generality condition: the quadric @ is
smooth.
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Let Q be the proper transform of () on the threefold X. Then there is a
commutative diagram

where V is a cubic in P* that has one ordinary double point P € V, the morphism /3
contracts the surface @ to the point P, and + is the projection from the point P.

Let E be the exceptional divisor of the birational morphism «. Then —Kx ~
2Q+FE and B(F) C V is a surface containing all the lines on V that pass through P.
In particular, let(X) < 1/2.

Suppose that let(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A < 1/2.

It follows from Lemma 2.16 that either LCS(X, AD) C Q, or the set LCS(X, AD)
contains a fibre of the natural projection E — C. We have LCS(X,A\D)NQ # @
in both cases.

We have Q = P! x PL. Put D = u@ + Q, where Q is an effective Q-divisor
on X such that Q@ ¢ Supp(Q2). Then a(D) ~g pQ + a(Q) ~g —Kps, which
gives u < 2. The log pair (Q, )\Q\Q) is not log canonical by Theorem 2.19. But
Ql@ ~q —((1 + p)/2)Kg, which implies by Lemma 2.23 that p > 1.

By Remark 2.22 we may assume that £ ¢ Supp(D). Then

1=D-F=uQ -F+Q - F=pu+Q-F>p,

where F' is a general fibre of the natural projection £ — C. But pu > 1, which is
a contradiction.

Lemma 7.7. If J(X) = 2.18, then lct(X) = 1/2.
Proof. There is a smooth divisor B C P' x P? of bidegree (2,2) such that the

diagram
/ﬂl x\

P! D — P! x P2 — P2

is commutative, where 7 is a double cover branched in B, the morphisms 7 and
o are the natural projections, ¢ is a quadric fibration, and s is a conic bundle.

Let H; be a general fibre of 71, and let Hy be a general surface in |75 (Op2(1))].
Then B ~ 2H1 + 2H2

Let H, be a general fibre of ¢, and let Hy be a general surface in the linear
system |3 (Op2(1))|. Then —Kx ~ H; + 2H5, which implies that let(X) < 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some positive rational number
A< 1/2.

Applying Lemma 2.25 to the fibration ¢1, we see that LCS(X, AD) C @, where Q
is a singular fibre of ¢;. Moreover, applying Theorem 2.27 to the fibration o, we
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see that LCS(X,AD) C QN R, where R C X is an irreducible surface swept out by
singular fibres of 5. In particular, the set LCS(X, AD) contains no surfaces.
Suppose that LCS(X, AD) is zero-dimensional. Then

1 _
LCS (X, AD + 5 (Hy + 2H2)) = LCS(X, AD) U Hs,

which is impossible by Theorem 2.7.

We see that the set LCS(X, AD) contains a curve I' C QN R. Let D = u@ + Q,
where Q is an effective Q-divisor such that @ ¢ Supp(f2). Then the log pair
(Q,A2|g) is also not log canonical along I' by Theorem 2.19. But Q[ ~¢ —Kjq,
which implies (see Lemma 4.7) that I' is a ruling of the cone @ C P2. Then
©2(T) C P? is a line and p5(T") C pa(R). But ¢2(R) C P? is a curve of degree 4.
Thus, we see that pa(R) = ¢2(T') U Z, where Z C P? is a reduced cubic curve.
Then ¢2 induces a double cover of ¢o(T") \ (v2(I') N Z) that must be unramified
(see [57]). But the curve yo(R) has at most ordinary double points (see [57]),
therefore |p2(I') N Z| = 3, which is impossible because ¢2(T") = PL.

Lemma 7.8. If J(X) = 2.19 and X is general, then lct(X) = 1/2.

Proof. Tt follows from Proposition 3.4.1 in [2] that there is a commutative diagram

S X

Vo----- - P,

where V is a complete intersection of two quadric fourfolds in P°, the morphism
« is a blow-up of a line L C V, the morphism 3 is a blow-up of a smooth curve
C C P? of degree 5 and genus 2, and the map 1) is a projection from the line L.

Let £ and R be the exceptional divisors of o and [, respectively. Then the
surface B(E) C P? is an irreducible quadric and the surface a(R) C V is swept out
by lines in V' that intersect the line L.

We assume that X satisfies the following generality condition: the surface 3(E)
is smooth.

Let H be a hyperplane section of V' C P® such that L C¢ H. Then 2H + E ~
R+ 2E ~ —Kx, where H is the proper transform of H on the threefold X. In
particular, let(X) < 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X,AD) is not log canonical for some A < 1/2. We note
that LCS(X,AD) C E = P! x P!, because a(D) ~g —Ky and let(V) = 1/2 by
Theorem 6.1.

Let F be a fibre of the projection F — L and let Z be a section of this projection
such that Z - Z = 0. Then o*(H)|g ~ F and E|j ~ —Z, because

~27 —2F ~ Kg ~ (Kx + E)|p ~ 2(E — o (H))| , ~ 2E|5 — 2F.

|
By Remark 2.22 we may assume that either £ ¢ Supp(D) or R ¢ Supp(D),

because the log pair (X, A\(R + 2F)) is log canonical and —Kx ~ R+ 2E. We put
D = uE + Q, where Q is an effective Q-divisor on X such that E ¢ Supp(Q).



904 I. A. Chel’tsov and K. A. Shramov

Suppose that g < 1. Then (X, E 4+ Q) is not log canonical, which implies that
(E, /\Q|E) is also not log canonical by Theorem 2.19. But

Qg ~o (~Kx — pE)|p ~q (1 + 1) Z + 2F,

which contradicts Lemma 2.23, because p < 1 and A < 1/2.
Thus, p > 1. Hence we may assume that R ¢ Supp(D).
Let T be a general fibre of the projection R — C'. Then I' ¢ Supp(D) and

l=-Ky T=pE-T+Q-T=p+Q-T>yp,

a contradiction.
Lemma 7.9. If 1(X) = 2.23 and X is general, then lct(X) = 1/3.

Proof. There is a birational morphism a: X — @ with Q C P* a smooth quadric
threefold that contracts a surface £ C X to a smooth curve C' C @ that is a com-
plete intersection of a hyperplane section H C () and a divisor F' € |0g(2)].

We assume that X satisfies the following generality condition: the quadric sur-
face H is smooth.

Let H be a proper transform of H on X. Then there is a commutative diagram

X
o N
Q<-—--—-V,

where V is a complete intersection of two quadrics in P® such that V has one
ordinary double point P € V, the morphism 3 contracts H to the point P, and ~y
is a projection from P.

Let E be the exceptional divisor of a. Then —Kx ~ 3H +2F and 3(E) C V
is a surface containing all the lines in V' that pass through P. In particular,
let(X) < 1/3.

Suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A < 1/3.

It follows from Remark 6.5 that either LCS(X,A\D) C H or the set LCS(X, AD)
contains a fibre of the natural projection £ — C. In both cases LCS(X,AD) N
H+o.

We have H = P! x P!, Let D = pH + Q, where € is an effective Q-divisor
on X such that H ¢ Supp(Q). Then a(D) ~g pH + a(Q) ~g —Kg, which
gives < 3. The log pair (H, AQ| ) is not log canonical by Theorem 2.19. But
Q|7 ~q —((1+n)/2)K g, which implies that y > 1 by Lemma 2.23. By Remark 2.22

we may assume that E ¢ Supp(D), because the log pair (X, \(3H + 2F)) is log
canonical. Let F' be a general fibre of the natural projection £ — C. Then

1=D - F=pH -F+Q-F=pu+Q -F>yp,

which is a contradiction because p > 1.

Lemma 7.10. If3(X) = 2.24 and X is general, then lct(X) = 1/2.
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Proof. The threefold X is a divisor on P? x P? of bidegree (1,2). Let H; be a surface
in |7} (Op2(1))|, where m;: X — P? is the projection of X onto the ith factor of
P2 x P2, i € {1,2}. Then —Kx ~ 2H; + H,, which implies that lct(X) < 1/2.
We note that m; is a conic bundle and 79 is a P'-bundle. Let A C P? be the
degeneration curve of the conic bundle 71. Then A is a cubic curve.

We suppose that X satisfies the following generality condition: the curve A is
irreducible.

Assume that let(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A < 1/2.

Suppose that the set LCS(X, AD) contains a surface S C X. Weset D = uS+9Q,
where ) is an effective Q-divisor such that S ¢ Supp(2) and p > 1/A. Let F; be
a general fibre of m;, i € {1,2}. Then

2=D -F,=uS -F,+Q-F, > uS-F,

but either S - F} > 1 or S Fy > 1. Thus, we see that u < 2, a contradiction.
By Theorem 2.27 and Theorem 2.7 there is a fibre I'y of the P'-bundle 75 such
that LCS(X, AD) = I'y, because the set LCS(X, AD) contains no surfaces.
Applying Theorem 2.27 to the conic bundle 71, we see that m1(T'2) C A, which is
impossible, because A C P? is an irreducible cubic curve and 71 (I'y) C P? is a line.

Lemma 7.11. If 3(X) = 2.25, then lct(X) = 1/2.

Proof. We recall that X is a blow-up a: X — P3 along a normal elliptic curve C
of degree 4.

Let Q C P3 be a general quadric containing C' and QQ C X the proper transform
of Q. Then —Kx ~ 2Q + E, where E is the exceptional divisor of a.. In particular,
let(X) < 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some \ < 1/2.

We note that the linear system |Q| defines a quadric fibration ¢: X — P!
with irreducible fibres. Moreover, by Theorem 2.27 the log pair (X,AD) is log
canonical along every non-singular fibre @ of the fibration ¢ since let(@Q) = 1/2
(see Example 1.10).

The locus LCS(X, AD) does not contain any fibre of ¢, because a(D) ~q 2Q
and every fibre of ¢ is irreducible. Therefore, dim(LCS(X, AD)) < 1

Let Z € LCS(X, AD). Then there is a singular fibre @ of ¢ such that Z C Q.
Note that ¢ has 4 singular fibres and each of them is the proper transform of
a quadric cone in P3 with vertex outside C.

Let @, be a singular fibre of ¢ different from @Q,; let H be the proper transform
of a general plane in P? that is tangent to the cone a(Q,) C P? along one of its

rulings L C a(Q,); and let R be the proper transform of a sufficiently general plane
in P3. We put

A =)\D+ %((1+s)@2+ (2—¢)H + 3¢R)

for some positive rational number € < 1 — 2\. Then
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1+e+2X

1
ANQ—()\+2(1—|—€)>K)(NQ— 5 Kx,
which implies that —(Kx + A) is ample.

Let L be the proper transform on X of the line L. Then
ZUL CLCS(X,A) C Q, UQ,,
which is impossible by Theorem 2.7, because —(Kx + A) is ample.
Lemma 7.12. IfJ(X) = 2.26 and X is general, then lct(X) = 1/2.

Proof. Let V be a smooth Fano threefold such that —Ky ~ 2H and Pic(V) = Z[H],
where H is a Cartier divisor such that H3 = 5 (that is, J(V) = 1.15). Then the
linear system |H| induces an embedding X C IPS.

It follows from Proposition 3.4.1 in [2] that there is a line L C V' C P° such that
there is a commutative diagram

where @Q is a smooth quadric in P*, the morphism « is a blow-up of the line L C V,
the morphism 3 is a blow-up of a twisted cubic curve C' with P! = C' C @, and 1
is the projection from the line L.

Let S be the exceptional divisor of the morphism 3. We set S = «(S). Then
S ~ H and S is singular along the line L. Let E be the exceptional divisor of
the blow-up a. Then B(E) ~ Ops(1)|y, which implies that () is an irreducible
quadric surface.

Suppose that X satisfies the following generality condition: the surface S(F) is
smooth.

We note that —Kx ~ 25 + 3E. Moreover, the log pair (X, (1/3)(2S + 3E)) is
log canonical but not log terminal. Thus, let(X) < 1/3.

Suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X,AD) is not log canonical for some A < 1/3. Then
LCS(X,AD) C E, because a(D) ~g —Ky and lct(V) = 1/2 by Theorem 6.1.

We note that E =2 P! x P! by our generality condition. Let F be a fibre of the
projection £ — L, and let Z be a section of this projection such that Z - Z = 0.
Then o*(H)|p ~ F and E|; ~ —Z, because

—2Z —2F ~ Kg ~ (Kx + E)|p ~ 2(E — o (H))|, ~ 2E|, — 2F.

P

By Remark 2.22 we may assume that either E ¢ Supp(D) or S ¢ Supp(D). We
put D = puE + Q, where  is an effective Q-divisor on X such that E ¢ Supp().

Suppose that © < 2. Then (X, E 4+ Q) is not log canonical, which implies that
(E, )\Q|E) is also not log canonical by Theorem 2.19. But

Qg ~o (—Kx — pE)|p ~q (1 + u)Z + 2F,

which contradicts Lemma 2.23, because u < 2 and A < 1/3.
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Thus p > 2, so we may assume that S ¢ Supp(D).
Let T be a general fibre of the projection S — C. Then I ¢ Supp(D) and

l=-Ky T=pE-T+Q T=p+Q-T>p,

which is a contradiction.
Lemma 7.13. If 3(X) = 2.27, then lct(X) = 1/2.

Proof. There is a birational morphism «: X — P? contracting a surface F to
a twisted cubic curve C' C P3, and X = P(&), where & is a stable rank-2 vector
bundle on P? with ¢;(&) = 0 and cz(&) = 2 such that the sequence

0— ﬁp2(—1) D ﬁ]%(—l) — ﬁ]pz D ﬁ]% &) ﬁ]p2 D ﬁpz —-E® ﬁpz(l) — 0

is exact (see [58], Application 1). Let @Q C P? be a general quadric containing C,
and let Q@ C X be the proper transform of Q. Then —Kx ~ 2Q + E, where E is
the exceptional divisor of a.. Hence let(X) < 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A < 1/2.

Assume that the set LCS(X, AD) contains a surface S C X. We put D = pF'+,
where 4 > 1/, and Q is an effective Q-divisor such that F' ¢ Supp(9Q).

Let ¢: X — P? be the natural P'-bundle. Then

2=D-T=pF T+Q - T'=pF -T+Q-F>uF T,

where T' is a general fibre of ¢. Thus, F is swept out by the fibres of ¢. Then
a(F) ~ Ops(d), where d > 2. However, (D) ~qg pa(F) + () ~g Op:(4), which
is a contradiction.

We see that the locus LCS(X, AD) contains no surfaces. Applying Theorem 2.27
to (X, AD) and ¢, we see that L C LCS(X, AD), where L is a fibre of ¢. Then a(L)
is a secant line of the twisted cubic C' C P3. One has

a(L) C LCS(P?, Aa(D)) € a(LCS(X,AD)) UC,

which is impossible by Lemma 2.9.
Lemma 7.14. If J(X) = 2.28, then lct(X) = 1/4.

Proof. We recall that there exists a blow-up a: X — P?3 along a plane cubic curve
C C P3, and one has —Kx ~ 4G + 3E, where E is the exceptional divisor of «
and G is the proper transform of the plane in P? which contains the curve C. In
particular, let(X) < 1/4.

Suppose that lct(X) < 1/4. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A < 1/4. Therefore,
LCS(X,AD) C E since Ict(P*) = 1/4. Computing the intersections with the proper
transform of a general line in P? intersecting the curve C, we get that LCS(X, AD)
does not contain the divisor E. Moreover, every curve I' € LCS(X, AD) must be
a fibre of the natural projection ¢: E — C by Lemma 2.14. Therefore, we see
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from Theorem 2.7 that either the locus LCS(X, AD) consists of a single point or it
consists of a single fibre of the projection .

Let R be a sufficiently general cone in P? over the curve C' and H a sufficiently
general plane in P? which passes through the point Sing(R). Then

LCS <X, AD + 3 (R+ H)) = LCS(X, AD) U Sing(R),

S

where R and H are the proper transforms of R and H on the threefold X. Then
the divisor
3 - — 1
—<Kx+)\D+4(R+H)> ~Q ()\— 4)KX

is ample, which contradicts Theorem 2.7.
Lemma 7.15. If J(X) = 2.29, then lct(X) = 1/3.

Proof. We recall that there is a blow-up a: X — @ of a smooth quadric hypersur-
face @ along a conic C' C Q.

Let H be a general hyperplane section of @ C P* that contains C, and let H be
the proper transform of the surface H on the threefold X. Then —Kx ~ 3H + 2E,
where E is the exceptional divisor of . In particular, let(X) < 1/3.

Suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A < 1/3. And then
LCS(X,AD) C E since lct(Q) = 1/3 (see Example 1.3) and a(D) ~qg —Kg.

The linear system |H| has no base points and defines a morphism 3: X — P!,
whose general fibre is a smooth quadric surface. Then the log pair (X, AD) is log
canonical along the smooth fibres of 8 by Theorem 2.27 (see Example 1.10).

It follows from Theorem 2.7 that there is a singular fibre S ~ H of the mor-
phism 8 such that LCS(X,AD) € EN S and a(S) C P? is a quadric cone. We
put I' = ENS. Then T is an irreducible conic, the log pair (X, S + (2/3)E)
has log canonical singularities, and 35 + 2E ~g D. Therefore, it follows from
Remark 2.22 that to complete the proof we may assume that either S ¢ Supp(D)
or E ¢ Supp(D).

Intersecting the divisor D with the proper transform of a general ruling of the
cone a(S) C P3 and with a general fibre of the projection E — C, we see that
I  LCS(X,AD), which implies that LCS(X, AD) consists of a single point O € T’
by Theorem 2.7.

Let R be a general (not passing through O) surface in |o*(H)|. Then

1 —
LCS<X,)\D+2(H+2R)) =RUO,

which is impossible by Theorem 2.7 since —Kx ~ H + 2R ~g D and A < 1/3.

Lemma 7.16. If 3(X) = 2.30, then lct(X) = 1/4.
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Proof. There is a commutative diagram

where @ is a smooth quadric threefold in P*, the morphism « is a blow-up of
a smooth conic C' C P?, the morphism f3 is a blow-up of a point, and + is a projection
from a point.

Let G be the proper transform on X of the unique plane in P? containing the
conic C. Then the surface G is contracted by the morphism 3, and —Kx ~ 4G+3F,
where F is the exceptional divisor of the blow-up a. Thus, lct(X) < 1/4.

Suppose that lct(X) < 1/4. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X,AD) is not log canonical for some A < 1/4. Then
LCS(X,AD) C ENG, because lct(P4) = 1/4 and lct(Q) = 1/3.

By Remark 2.22 we may assume that either G ¢ Supp(X) or E ¢ Supp(X).

Intersecting D with lines in G = P? and with fibres of the projection E — C,
we see that LCS(X,AD) € E N G, which implies that there is a point O € ENG
such that LCS(X, AD) = O by Theorem 2.7.

Let R be a general surface in |o*(H)| and F a general surface in |a*(2H) — E|.
Then

LCS(X,)\D+;(F+2R)> =RUO,

which is impossible by Theorem 2.7 since —Kx ~ F + 2R ~g D and A < 1/4.
Lemma 7.17. If J(X) = 2.31, then lct(X) = 1/3.

Proof. There is a blow-up a: X — @ of a smooth quadric @) along a line L C Q.

Let H be a sufficiently general hyperplane section of the quadric Q C P* that
passes through the line I, and let H be a proper transform of the surface H on X.
Then —Kx ~ 3H + 2E, where E is the exceptional divisor of .. In particular,
let(X) < 1/3.

Suppose that let(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X,AD) is not log canonical for some A < 1/3. Then
LCS(X,AD) C E since lct(Q) = 1/3 and a(D) ~g —Kg.

The linear system | H | defines a P*-bundle ¢: X — P? such that the induced mor-
phism F 2 F; — P? contracts an irreducible curve Z C E. Then LCS(X,\D) = Z
by Theorem 2.27. We put D = uFE + ), where () is an effective Q-divisor on X
such that £ ¢ Supp(€2). Then

2=D - F=pE-F+Q-F=p+Q-F >y,

where F is a general fibre of ¢. Note that the log pair (X, E4AQ2) is not log canonical
because A < 1/3. Then (E, )\Q|E) is also not log canonical by Theorem 2.19.

Let C be a fibre of the natural projection E — L. Then Q|5 ~g 3C + (1 + u)Z,
which implies that (E , AQ E) is log canonical by Lemma 4.8, and this is a contra-
diction.
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8. Fano threefolds with p = 3

In this section we use the assumptions and notation introduced in § 1.
Lemma 8.1. If1(X) = 3.1 and X is general, then let(X) = 3/4.

Proof. There is a double cover w: X — P! x P! x P! branched over a divisor of
tridegree (2,2,2). The projection P! x P! x P! — P! onto the ith factor induces
a morphism 7;: X — P!, whose fibres are del Pezzo surfaces of degree 4.

Let R; be a singular fibre of the fibration 71, let @ be a singular point of
Ry, and let Ry and R3 be fibres of my and w3 such that R > @Q € Rz. Then
multg(R1 + Re + R3) = 4, which implies that the log pair (X, (3/4)(R1+ R2+ R3))
is not log terminal at Q. We have —Kx ~ R; + Ro + R3, therefore lct(X) < 3/4.

Suppose that lct(X) < 3/4. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical at some point P € X for some
A< 3/4.

Let S; be the fibre of m; such that P € S;. Since X is general, we may assume
(after a possible renumbering) that

e the surface S7 is smooth at the point P,

e the singularities of Sy consist of at most an ordinary double point (or S is
smooth).

e for every smooth curve L C S such that —Kg, - L =1 we have P ¢ L,

e for any smooth curves C; C S; D Cy such that —Kg, - C; = —Kg, - Cy =2
and C; + Cy ~ —Kg, we have P # C1 N Cs.

The surface S7 is a del Pezzo surface of degree 4. We have D = .57 + €2, where
2 is an effective Q-divisor on X such that S; ¢ Supp(€2).

Let ¢: X — P! x P! be the conic bundle induced by the linear system |Sy + S3|,
and let I' be a general fibre of ¢. Then

2=D - T=upS T+Q-T=2u+Q-T>2,

which implies that 4 < 1. Then (X, S7 + AQ) is not log canonical at P. Hence
(S1,A2|g,) is not log canonical at P by Theorem 2.19. But Q[g ~q —Ks,, which
is impossible (cf. Example 4.4).

Lemma 8.2. IfJ(X) = 3.2 and X is general, then lct(X) = 1/2.

Proof. We recall that X is a primitive Fano threefold (see [52], Definition 1.3). Let
U =P(Oprxpr @ Oprypr (—1,—1) ® Oprypr (—1,-1)),

let 7: U — P! x P! be the natural projection, and let L be the tautological line
bundle on U. Then X € |2L + 7% (Op1 «p1 (2, 3))].

Let us show that let(X) < 1/2. Let Ey and Es be divisors on X such that m(E)
and 7(FEsy) are divisors on P! x P! of bidegree (1,0) and (0, 1), respectively. Then
—Kx ~ L|y + 2E; + E,, which implies that let(X) < 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical at some point P € X for some
A< 1/2.
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It follows from [59] (Proposition 3.8) that there is a commutative diagram
71 72

1 X P2

/wi\

122 plypl— pl
P - P xP p— P,

U1 U2

where V' is a Fano threefold with one ordinary double point O € V such that
Pic(V) = Z[-Ky| and —K3{, = 16, the morphism « contracts a unique surface
S with P! x P! 2 § C X and S ~ L|y to the point O € V, the morphism f3;
contracts S to a smooth rational curve, the morphism ~; contracts the curve (3;(S)
to the point O € V so that the rational map -y o fyflz U, --» Us is a flop in
B1(S) = P!, the morphism v is a quadric fibration, and the morphisms 1y, ¢1,
and o are fibrations whose fibres are del Pezzo surfaces of degrees 4, 3, and 6,
respectively. The morphisms m; and 7y are the natural projections, and w = 7| .
We note that CI(V') = Z[a(E1)|®Z[a(E2)] and w is a conic bundle. The curve 51 (S)
is a section of 11, and [2(.9) is a 2-section of 1.

We assume that the threefold X satisfies the following generality condition: any
singular fibre of the fibration 5 has at most A; singularities.

Applying Lemma 2.25 to the fibration ¢7, we see that LCS(X,A\D) C Sy, where
S1 is a singular fibre of ¢1, because the global log canonical threshold of a smooth
del Pezzo surface of degree 6 is equal to 1/2 (see Example 1.10).

Applying Lemma 2.25 to o, we obtain a contradiction to Example 1.11.

Lemma 8.3. If1(X) = 3.3 and X is general, then lct(X) = 2/3.

Proof. The threefold X is a divisor on P! x P! xP? of tridegree (1, 1,2). In particular,
—Kx ~ 7 (Op1 (1)) +75(Op1 (1)) +* (Op2(1)), where 71 : X — Pt and mp: X — P!
are fibrations by del Pezzo surfaces of degree 4 induced by the projections of the
variety P! x P! x P2 onto the first and the second factor, respectively, and ¢: X — P?
is the conic bundle induced by the projection P* x P! x P2 — P2

Let ap: X — P! x P2 be a birational morphism induced by the linear system
|75 (Op1 (1)) + ¢*(Op2(1))], and let H; € |7 (0pi(1))] and R € |¢o*(Op2(1))| be
general surfaces. Then H; ~ Hy + 2R — E5, where Es is the exceptional divisor of
the birational morphism «s. Hence

—Kx ~ H; +H2+RNQ §H1+%H2+%E27
which implies that let(X) < 2/3.

Suppose that lct(X) < 2/3. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical at some point P € X for some
A< 2/3.

Let S; be a fibre of m; such that P € S;. Since X is general, we may assume
(after a possible renumbering) that

e the surface S; is smooth at the point P,
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e the singularities of Sy consist of at most one ordinary double point (or Sy is
smooth),

e for every smooth curve L C S such that —Kg, - L = 1 we have P ¢ L if
Sing(S1) # 2.

We put D = pS7 4 €, where € is an effective Q-divisor such that S; ¢ Supp(2).
Then (Ha, AuSt| g, + AQ|p,) is not log canonical because lct(Hz) = 2/3. Hence
uw < 1/\ and the log pair (Sl,)\Q|51) is not log canonical at the point P by
Theorem 2.19. But Q|5 ~qg —Ks,, which is impossible (see Example 4.4).

Lemma 8.4. If 1(X) = 3.4, then lct(X) = 1/2.

Proof. Let O be a point in P2. Then there is a commutative diagram

Fi ————P

Pl<~——F—P' x P2 ——(——P?
such that 7; and v are the natural projections, w is a double cover branched over
a divisor B C P! xP? of bidegree (2, 2), the morphism =, is a fibration into quadrics,
~vo and 7y are conic bundles, [ is a blow-up of the point O, the morphism « is
a blow-up of the smooth curve that is the fibre of 9 over O, the morphism 7
is a fibration into del Pezzo surfaces of degree 6, and ¢ is a fibration into del Pezzo
surfaces of degree 4.

Let H be a general fibre of n; and let S be a general fibre of ¢. Then —Kx ~
H +2S + E, where E is the exceptional divisor of a.. In particular, let(X) < 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X,AD) is not log canonical for some A < 1/2. Then
LCS(X,AD) C E, because (D) ~g —Ky and lct(V) = 1/2 by Lemma 7.7.

Let T be a fibre of 72 such that TNLCS(X, AD) # @. ThenT' C LCS(X,\D) C E
by Theorem 2.27. Hence (H, )\D|H) is not log canonical at points in H NI". But
D|; ~g —Kpg and lct(H) = 1/2, because H is a del Pezzo surface of degree 6,
which is a contradiction.

Lemma 8.5. If J(X) = 3.5 and X is general, then lct(X) = 1/2.

Proof. There is a birational morphism a: X — P! x P? that contracts a surface
E C X to a curve C C P! x P2 of bidegree (5,2). Let m: P! x P2 — P! and
7o: Pt x P2 — P? be the natural projections. There is a divisor Q € |73 (0p1(2))]
such that C C Q. Let H; be a general fibre of m; and let Hy be a surface in the
linear system |73 (0p1(1))|. We have —Kx ~ 2H + Ho + Q, where Hq, Ho,Q C X
are the proper transforms of Hy, Hs, Q, respectively. In particular, let(X) < 1/2.

We suppose that X satisfies the following generality condition: every fibre I’ of
m1 o v is singular at at most one ordinary double point.

Assume that let(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A < 1/2.
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Let S C X be an irreducible surface. We put D = pS+€2, where € is an effective
Q-divisor such that S does not lie in Supp(€2). Then (H1, (1/2)(uS + Q)\Hl) is log

canonical (see Example 1.10). Thus, either ;1 < 2 or S is a fibre of 7 o a.
Let I' =2 P! be a general fibre of the conic bundle 73 o . Then

2=D-T'=pS-T'+Q-T>pS T,
which implies that p < 2 in the case when S is a fibre of m o a.

We see that the set LCS(X,AD) contains no surfaces. Applying Lemma 2.25
now to 7w o &, we obtain a contradiction to Example 4.4.

Lemma 8.6. If J(X) = 3.6 and X is general, then lct(X) = 1/2.
Proof. Let e: V — P2 be a blow-up of a line L C P3. Then
V2P(Op @ Opr @ Opi(1))

and there is a natural P?-bundle n: V' — P'. There is a smooth elliptic curve
C C P3 of degree 4 such that L N C = @ and there is a commutative diagram

Y i X ‘ p!
P? 5 vV

where ¢ is a blow-up of C,  is a blow-up of the proper transform of the line L,
v is a blow-up of the proper transform of the curve C, and ¢ is a fibration into
del Pezzo surfaces of degree 5.

We suppose that X satisfies the following generality condition: every fibre F' of
© has at most one singular point which is an ordinary double point of F'.

Let E and G be the exceptional surfaces of 3 and 7, respectively; let H C P? be
a general plane that passes through L, and let () C Pibe a quadric surface that
passes through C. Then —Kx ~ 2H 4+ @ + E, where H C X D @ are the proper
transforms of H and @, respectively. In particular, let(X) < 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some \ < 1/2.

It follows from Lemma 7.11 that let(V) = 1/2. Therefore, LCS(X,AD) C G.
Note that every fibre of ¢ is a del Pezzo surface of degree 5 which has at most one

ordinary double point. Thus, applying Lemma 2.25 to ¢, we obtain a contradiction
to Example 4.3.

Lemma 8.7. IfJ(X) = 3.7 and X is general, then lct(X) = 1/2.
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Proof. Let W be a divisor on P? x P2 of bidegree (1,1). Then — Ky, ~ 2H, where H
is a Cartier divisor on W. There is a commutative diagram

X
P! x P2 o P! x P2
‘P\L l/lb w
P2~ W — > P2
|
ol

)

where ¢ and v are the natural projections, « is a blow-up of a smooth curve C' C W
such that
C=H NH,,

where Hy # Hs are surfaces in |H|, the map p is induced by the pencil generated
by H; and Hs, w is a del Pezzo fibration of degree 6, the morphisms  and £ are
P!-bundles, while 3 and + contract surfaces M C X D My such that po (M) =
£(C) and 1 o ~(3) = ¢(C). B B

We note that let(X) < 1/2 because —Kx ~ 2H, + E, where H; C X is the
proper transform of H; and F is the exceptional surface of a.

We suppose that X satisfies the following generality condition: all singular fibres
of the fibration w satisfy the hypotheses of Lemma 4.5.

Assume that let(X) < 1/2. Then there exists an effective Q-divisor D ~qg —Kx
such that the log pair (X,AD) is not log canonical for some A < 1/2. Then
LCS(X,AD) C E, because let(W) = 1/2 by Theorem 6.1. Using Lemma 2.25, we
see that LCS(X,A\D) C ENF, where F is a singular fibre of w. Recall that F is
a del Pezzo surface of degree 6. We put D = puF + Q, where  is an effective
Q-divisor such that F' ¢ Supp(2). Then 2|, ~g —Kp and the surface F' is smooth
along the curve £ N F. But the log pair (F, )\Q|F) is not log canonical at some
point P € ENF by Theorem 2.19, and this is impossible by Lemma 4.5.

Remark 8.8. Let us use the notation and the assumptions of Lemma 8.7. Then we
have
LCS(X,AD) C ENF,

where F' is a singular fibre of the fibration w. Applying Theorem 2.27 to ¢ and v and
using Lemma 2.28, we see that LCS(X,AD) C ENFNM;NMj,. Regardless of how
singular F is, if the threefold X is sufficiently general, then ENF N M, N My = @,
which implies that an alternative generality condition can be used in Lemma 8.7.

Lemma 8.9. If1(X) = 3.8 and X is general, then let(X) = 1/2.
Proof. Let m: F1 x P2 — Z; and my: % x P2 — P2 be the natural projections.
Then X € |(aom)*(Op2(1)) ® 75(Op2(2))], where a: F; — P? is a blow-up of

a point. Let H be a surface in |75(0p2(1))]. Then —Kx ~ E + 2L + H, where
E C X D L are irreducible surfaces such that 71 (E) C F; is the exceptional curve
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of a and (L) C Fy is a fibre of the natural projection F; — P2, In particular,
let(X) < 1/2.

The projection 7 induces a fibration ¢: X — P! into del Pezzo surfaces of
degree 5.

We suppose that X satisfies the following generality condition: every fibre F
of ¢ has at most one singular point which is an ordinary double point of F'.

Assume that lct(X) < 1/2. Then there exists an effective Q-divisor D ~qg —Kx
such that the log pair (X, AD) is not log canonical for some A < 1/2.

Applying Lemma 2.25 to the morphism ¢ we obtain a contradiction to Exam-
ple 4.3.

Lemma 8.10. If3(X) = 3.9, then lct(X) = 1/3.

Proof. Let O; be a singular point of V; 2 P(1,1,1,2), i = 1,2. Let S; with O; ¢
S1 € |Op(1,1,1,2)(2)] be a smooth surface and let C; C S1 = P2 be a smooth quartic
curve. Then there is a commutative diagram

/\
\ /

\// W

where 1; is the natural projection, «; is a (weighted) blow-up of the point O; with
weights (1,1,1), the morphism ~; is a P-bundle, and ; is a birational morphism
that contracts a surface P! x C; 2 G; C X to a smooth curve C; = C; C U;.

Let E; C X be the proper transform of the exceptional divisor of a;. Then the
divisors

)

Si=aio0f1(Fz) C Vi =P(1,1,1,2) = V3 D azo B2(Er)

are surfaces in |Op(1,1,1,2)(2)| that contain the curves C; and Cy, respectively. On
the other hand,

ajofBi(Ga) C Vi =P(1,1,1,2) = Vo D ag 0 fa(Gh)

are surfaces in [Op(1,1,1,2)(4)| that contain Oy U Cy and Oz U Cy, respectively.

Let H C X be the proper transform of a general surface in |Op(1,1,1,2)(1)]. Then
—Kx ~ 3H + E; + Eq, which yields let(X) < 1/3.

Suppose that lct(X) < 1/3. Then there is an effective Q-divisor

D~y —Kx ~q = (G1 + G2) —5(Ey + E»)

such that the log pair (X,AD) is not log canonical for some A < 1/3. We put
D = 1By + psEs + Q, where Q is an effective Q-divisor on X such that Fy &
Supp(Q2) 2 Es.
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Let T' be a general fibre of the conic bundle ; o 3;. Then
2=T-D=T" (B +p2B+Q) =1 +p2+T-Q > p1 + po,

and we may assume without loss of generality that p; < po. Then py < 1.
Suppose that there is a surface S € LCS(X,\D). Then S # F; and S # Gy,
because Qg O ﬂQ(Gl) € ‘ﬁp(1,1,172)(4)| and Qg O ﬂQ(D) S |ﬁ]p(1)171,2)(5)‘. Hence
SN E1 7é . But
2
3
and E; = P?, which is impossible by Theorem 2.19, because A < 1/3 = lct(P?).
We see that the set LCS(X, AD) contains no surfaces. Let P € LCS(X, D) be
a point. Suppose that P ¢ G1. Let Z be the fibre of v; containing (81 (P). Then
Z C LCS(Uy,AB1(D)) by Theorem 2.27. We put E; = 31(F;). Then we have
ZNE, € LCS(El,)\mEl) by Theorem 2.19, which is impossible by Lemma 2.8,
because p1 < 1. Hence LCS(X,A\D) C G;.
Suppose that LCS(X,A\D) C G; N Gy. Then |LCS(X,AD)| =1 by Lemma 2.14
and Theorem 2.7. We have

1
-3 Kg, ~q D|g, = —— Kg, + Qg

LCS(X,AD)UH C LCS(X, AD+% (E2+E2)+H> C LCS(X,\D)UHUE; UE;,

which contradicts Theorem 2.7, because H is a general surface in | (81 071)*(p2(1))]
and

1 — 1
/\D+§(E2+E2)+HNQ <)\3)KX

Thus, we see that G; 2 LCS(X, AD) € G1 N G4. Then

@ # LCS(U2, \32(D)) € B2(G1),

and it follows from Theorems 2.7 and 2.27 that there is a fibre L of v such that
LCS(Uz, \G2(D)) = L.

Let B be a general surface in |a3(0p1,1,1,2)(2))]. Then B2(D)|g ~q Op2(5) and
B = P?. But LCS(B, AB2(D)|z) = LN B and |L N B| = 1, which is impossible by
Lemma 2.8.

Lemma 8.11. If3(X) = 3.10, then lct(X) = 1/2.

Proof. Let Q C P* be a smooth quadric hypersurface. Let C; C Q D Cy be disjoint
(irreducible) conics. Then there is a commutative diagram

1
P P1 Yl 1

1
Q<7 Y2— —P,
where «; is a blow-up along the conic C;, the morphism J; is a blow-up along
the proper transform of the conic C;, the morphism ; is a fibration into quadric
surfaces, and ¢; is a del Pezzo fibration of degree 6.
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Let E; be the exceptional divisor of 3;, and let H; be a sufficiently general
hyperplane section of the quadric @) that passes through the conic C;. Then —Kx ~
H, +2H, + E5, where H; C X is the proper transform of the divisor H;. In
particular, let(X) < 1/2.

Suppose that let(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A < 1/2.

Using Example 1.10 and Lemma 2.25, we see that LCS(X, AD) C S; NSy, where
S; is a singular fibre of ¢;. Hence the set LCS(X, A\D) contains no surfaces.

It follows from Theorem 2.7 that either LCS(X, AD) is a point in Ey U E; or

LCS(X,AD) N (X \ (Ey U Ey)) # @,

which implies that we may assume that LCS(X, AD) is a point F; by Lemma 2.10.
Since (9 is an isomorphism on X \ Fs, we see that

Pe LCS(Yl,)\ﬁQ(D)) c PU ﬁQ(EQ)

for some point P € Ey. Then LCS(Y1,AG2(D)) = P by Theorem 2.7, because
P ¢ Ba(Es).

Let H be a general hyperplane section of the quadric (). Then —Ky, ~ H1 +
2H ~q B2(D), where H C Yy D Hy are the proper transforms of H and Hi,
respectively, and we have

LCS (Yh AB2(D) + % (H, + 2?1)) — PUH,

which is impossible by Theorem 2.7 because A < 1/2.
Lemma 8.12. If3(X) = 3.11, then lct(X) = 1/2.

Proof. Let O € P? be a point, let : V7 — P23 be a blow-up of the point O, and
let E be the exceptional divisor of 6. Then V7 & P(0p2 @ Op2(1)), there is a natural
Pl-bundle : V7 — P2, and E is a section of 1. There is a normal elliptic curve C
with O € C' C P? of degree 4 such that the diagram

N

[P’1<—IE”1 x P2

is commutative, where m; and my are the natural projections, the morphism -~y
contracts a surface
CxPl=2GcU

to the curve C, the morphism « is a blow-up of the fibre of the morphism ~ over
the point O € P3, the morphism 3 is a blow-up of the proper transform of C,
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the morphism w is a fibration into quadric surfaces, ¢ is a fibration into del Pezzo
surfaces of degree 7, and v contracts a surface

CxP'2FcX

to an elliptic curve Z C P! x P2 such that —Kpiyp2 - Z =13 and Z = C.

Let H; be a general fibre of ¢, and let Hy be a general surface in |(no3)*(Op2(1))].
Then —Kx ~ Hjy + 2H,, which implies that let(X) < 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A < 1/2. Note that
LCS(X,AD) C E, where E is the exceptional divisor of a because lct(U) = 1/2 by
Lemma 7.11.

Let T =2 P2 be a general fibre of 5 o v. Then

2=-Ky-T=D-T'=2E-T,

which implies that £ ¢ LCS(X,AD). Applying Lemma 2.25 to the log pair
(Vz,AB(D)), we have LCS(X,\D) C ENG. Applying Lemma 2.28 to the log
pair (P! x P2, \v(D)), we see that LCS(X,AD) = ENFNG, where | ENFNG| = 1.
Hence

LCS(X,AD + Hy) = LCS(X,AD) U Hy

and Hy NLCS(X,\D) = &. But the divisor

1
4Kx+AD+Hg=(A—2>KX+2H1

is ample, which is impossible by Theorem 2.7.
Lemma 8.13. If1(X) = 3.12, then lct(X) = 1/2.

Proof. Let e: V — P2 be a blow-up of a line L C P3. There is a natural P2-bundle
n: V — P! and there is a twisted cubic C C P? disjoint from L such that the
diagram

P! x P2

/

Pl

av
VA

PB

is commutative, where av and 3 are blow-ups of C' and its proper transform, respec-
tively, v is a blow-up of the proper transform of L, the morphism 1 is a P!-bundle,
the morphism w is a contraction to a curve of a surface F' C X such that oo y(F)
contains C'UL and consists of secant lines of C' C P? that intersect L; the morphism
@ is a fibration into del Pezzo surfaces of degree 6, and the morphisms 71 and 75
are the natural projections.



Log canonical thresholds 919

Let E and G be the exceptional divisors of 3 and 7, respectively, let Q C P3 be
a general quadric surface passing through C, and let H C P? be a general plane
passing through L. Then —Kx ~ Q + 2H + G, where Q C X D H are the proper
transforms of @ C P? D H, respectively. In particular, let(X) < 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A\ < 1/2. Note that
LCS(X,AD) C G since let(Y') = 1/2 by Lemma 7.13. Applying Theorem 2.27 to ¢,
we see that LCS(X,AD) C G NS, where S, is a singular fibre of the fibration ¢
(see Example 1.10). Then LCS(X,A\D) C G NS, N F by Theorem 2.27 applied to
the log pair (P! x P2, \w(D)) and the P'-bundle 7.

Let Z; =2 P! be a section of the natural projection P! x P! 2 G — L = P! such
that Z, - Z; = 0, and let Z; be a fibre of this projection. Then F|, ~ Z1 + 32,
and S,|g5 ~ Z1. The curve F NG is irreducible. Thus, |G N F NS, | < 400, which
implies by Theorem 2.7 that the set LCS(X, AD) consists of a single point P € G.

The log pair (V, A3(D)) is not log canonical. Since (3 is an isomorphism on X \ E,
we have

B(P) € LCS(V,AB(D)) € B(P) U B(E),

which implies by Theorem 2.7 that LCS(V, A\3(D)) = B(P). Let H C P be a gen-
eral plane. Then

LCS (V, A3(D) + % (H, + 3ﬁ)) =3(P)UH,

where H C V O H; are the proper transforms of H C P3 O Hj, respectively,
and we have —Ky ~ Hy 4+ 3H ~g B(D), which contradicts Theorem 2.7 because
A< 1/2.

Lemma 8.14. If1(X) = 3.14, then lct(X) = 1/2.

Proof. Let P € P? be a point and let a: V7 — P3 be a blow-up of P. Then there is
a natural P'-bundle 7: V5 — P2,

Let ¢: Z — P(1,1,1,2) be a blow-up of the singular point of P(1,1,1,2). Then
Z =2 P(Op2 ® Op2(2)) and there is a natural P-bundle ¢: Z — P2

There is a plane IT C P2 and a smooth cubic curve C' C II such that P ¢ IT and
there is a commutative diagram (see [28], Example 3.6)

P <
ve——P(1,1,1,1,2) - - - = = = = — — — — — — >P(1,1,1,2) .
Here we use the following notation: the morphism ¢ is a blow-up of the curve C'; the
threefold U is a cubic hypersurface in P(1,1,1, 1,2); the rational map & is a projec-
tion from the point P; the morphism + is a blow-up of the point dominating P; the
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morphism [ is a blow-up of the proper transform of the curve C'; the morphism 7
contracts the proper transform of II to the point Sing(U), the morphism w con-
tracts to a curve a surface R C X such that 8o «(R) is a cone over C' with vertex
at P; the rational maps 1 and v are the natural projections; the rational map v is
a linear projection from a point.

Let E and G be the exceptional divisors of v and 3, respectively, and let H C X
be the proper transform of a general plane in P? passing through the point P. Then
—Kx ~ 11+ 3H + G, where IT C X is the proper transform of the plane II. Thus,
let(X) < 1/3.

Suppose that let(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some positive rational number
A< 1/3.

Let L C X be the proper transform of the general line in P? that intersects C.
Then

D-L=1-L+3H-L+G-L=3H -L=3,

which implies that LCS(X, AD) contains no surfaces with the possible exception of
II and E.
Let T be a general fibre of w o 3. Then

D T=1-T+3H-T+G-T=1-T+G-T=2,

which implies that LCS(X, AD) does not contain IT or E. Thus, by Lemma 2.9 we
obtain LCS(X,\D) C EUG.

Suppose that LCS(X,AD) C E. Then @ # LCS(Vz, \G(D)) C B(E), which
contradicts Theorem 2.27, because S(E) is a section of 7. Hence LCS(X,A\D) C G.

Applying Theorem 2.27 to (Z, \w(D)) and ¢ and applying Theorem 2.7 to
(X,AD), we see that LCS(X,AD) C F, where F is a fibre of the natural pro-
jection G — B(G). Hence @ # LCS(Y, My(D)) C v(F), where v(F) is the fibre of
the blow-up & over a point of the curve C.

Let S C P2 be a general cone over the curve C' and let O € C be an inflection
point such that € o y(F) # O. Let L C S be the line passing through the point O,
and let H C P? be the plane tangent to the cone S along the line L. Since O is
an inflection point of C, it follows that multy (S - H) = 3. Let S, H, and L be the
proper transforms of S, H, and L on the threefold Y. Then

LCS (y (D) + 2 (8 + ﬁ)) — LOS(Y, M(D)) UL

due to the generality in the choice of S. But —Ky ~ S + H, which is impossible
be Theorem 2.7.

Lemma 8.15. If J(X) = 3.15, then lct(X) = 1/2.

Proof. Let Q C P* be a smooth quadric hypersurface, let C C @Q be a smooth
conic, and let £: V' — @ be a blow-up of the conic C' C @). Then there is a natural
morphism n: V' — P! induced by the projection @ --+ P! from the two-dimensional
linear subspace of P* that contains C. Then a general fibre of 7 is a smooth quadric
surface in P3.
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Take a line L C @ such that L N C' = @. Then there is a commutative diagram

= P! x P2
x /
\ /

where a and 3 are blow-ups of the line L C ) and its proper transform, respec-
tively, v is a blow-up of the proper transform of the conic C, the morphism 1 is
a P!-bundle, w is a birational contraction to a curve of a surface F' C X such that
CUL C aovy(F) CQ, aovy(F) consists of all the lines in Q C P* that intersect L
and C, the morphism ¢ is a fibration into del Pezzo surfaces of degree 7, and the
morphisms 7, and 7o are the natural projections.

Let E; and Es be the exceptional surfaces of 5 and -y, respectively, let Hy, Hy C
@ be general hyperplane sections that pass through L and C| respectively. We have
—Kx ~H, +2Hy+ Ey ~ Hy +2H, + E,, where H; C X D H4 are the proper
transforms of Hy C QQ D Ha, respectively. In particular, let(X) < 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A < 1/2.

Let S C X be an irreducible surface. We put D = uS'+€2, where €2 is an effective
Q-divisor such that S ¢ Supp(§2). Then

1 _
LCS H2,§(MS+Q)|F2 Cc EFiNH,y

by Lemma 4.9. Thus, if 4 < 2 then either S = F; or S is a fibre of ¢.

Let T' 22 P! be a general fibre of the conic bundle ) o v. Then

2=D-T'=pS-T'+Q-T>psS T,

which implies that p© < 2 in the case when either S = F; or S is a fibre of .

Therefore, we see that LCS(X, AD) does not contain surfaces.

Application of Theorem 2.27 to the log pair (Y, \y(D)) and 1 gives us that
LCS(X,AD) € Ey U L, where P! 2 L C X is a curve such that (L) is a fibre of
the conic bundle .

Suppose that L ¢ F; and L C LCS(X,AD). Then

aoy(L) CLCS(Q,Aaoy(D)) Caoy(L)UCUL,

which is impossible by Lemma 2.10. Hence by Theorem 2.7 either LCS(X, AD) C Es
or LCS(X,AD) C L and L C E.

We may assume that L C E;. Note that E; 2 F,. Hence L - L = —1 on the
surface F.
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Applying Lemma 2.28 to the log pair (P! x P2, \w(D)), we see that
LCS(X,AD) C F,

because w(D) ~g —Kpiyp2 and A < 1/2. Applying Lemma 2.25 to the log pair
(V,AB(D)) and the fibration 7, we see that LCS(X,A\D) C E; U S,, where S, is
a singular fibre of ¢, because lct(P! x P') = 1/2 (see Example 1.10).

We have FNL =@ and |[F NS, N Ey| < +oo. Thus, there is a point P € E»
such that LCS(X,AD) = P € Ey by Theorem 2.7, and we have 3(E;) N 3(P) = @.
Thus, it follows from Theorem 2.7 that LCS(V, A\3(D)) = B(P).

Let HL C V O Hy be the proper transforms of the divisors H; C Q D Ho,
respectively. Then —Ky ~ Hy + 2H; ~qg (D). It follows from the generality
of H; and Hs that

1 ~ ~ -
LCS <V7 AB(D) + 3 (Hy + 2H1)> = [(P)U Hy,
which is impossible by Theorem 2.7 because A < 1/2.

Lemma 8.16. If 3(X) = 3.16, then lct(X) = 1/2.

Proof. Let P! = C' C P? be a twisted cubic curve and let O € C be a point. There
is a commutative diagram

PE)=—=U - P3 d Vi ==P(Op © Op2(1))
ln
\ /
w X \ P2
e N, A

where & is a stable rank-2 vector bundle on P? (see the proof of Lemma 7.13).
Here we use the following notation: the morphism ¢ is a blow-up of the point O;
the morphism v contracts a surface G C U to the curve C C P3; the morphism «
contracts a surface E = F; to the fibre of v over the point O € P?; the morphism £ is
a blow-up of the proper transform of the curve C'; the variety W is a smooth divisor
of bidegree (1,1) on P2 x P?; the morphisms 7; and 75 are the natural projections;
the morphisms w and 7 are natural P'-bundles; the morphism v contracts a surface
F C X to acurve Z with P! 2 Z C W such that woa(FE) = 71(Z) and no B(G) =
7T2(Z).

We take general divisors Hy € |(w o a)*(Opz(1))| and Hy € |(n o B)*(Op2(1))].
Then —Kx ~ Hj + 2H,, which implies that let(X) < 1/2.

Suppose that let(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A < 1/2. Note that
LCS(X,AD) C EN F, because lct(U) = 1/2 by Lemma 7.11 and lct(W) = 1/2 by
Theorem 6.1.
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Applying Lemma 2.12 to the log pair (V7, AB(D)) we see that LCS(X,AD) =
ENFNG, where [ENFNG|=1. Thus,

LCS(X,AD + Hy) = LCS(X,AD) U Ho,
where Hy NLCS(X,A\D) = @. But the divisor

1 1
—(Kx +AD + Hz) ~q (A— 2)KX + §H1

is ample, which is impossible by Theorem 2.7.
Lemma 8.17. If 3(X) = 3.17, then lct(X) = 1/2.

Proof. The threefold X is a divisor on P! x P! x P? of tridegree (1,1,1). We take
general surfaces Hy € |77 (Op1(1))|, Hy € |m5(0p1(1))], Hs € |m5(0p2(1))|, where
7; is the projection of X onto the ith factor of P! x P! x P2. Then —Kx ~
H, + Hy + 2H3, which implies that lct(X) < 1/2. There is a commutative diagram

U1 v2
Plxpl —m > pl

P! x P2 P2

w1

Pl

P! x P? |

w2

where w;, n;, and v; are the natural projections, ¢ is a P'-bundle, and «; is a bira-
tional morphism contracting a surface F; C X to a smooth curve C; C P! x P?
such that wy(C1) = we(Cy) is an (irreducible) conic.

Note that EQ ~ Hl —+ H3 — H2 and E1 ~ H2 + H3 — Hl.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A < 1/2.

Suppose that the set LCS(X,AD) contains an (irreducible) surface S C X.
We put D = uS + Q, where p > 1/X and  is an effective Q-divisor such that
S ¢ Supp(2). Then

2=D -T=upS-T+Q-T>pS-T,

where I = P! is a general fibre of (. Hence S-I" = 0, which implies that By # S # E;.
We also have
2=D - A=uS-A+Q-A>uS-A,

where A = P! is a general fibre of the conic bundle 7. Hence S - A = 0, which
immediately implies that S € |75 (0p2(m))| for some m € Zs, because Ey #
S # E;7 and S is an irreducible surface. In particular, 0 =S -T' = m # 0, which is
a contradiction. Hence the set LCS(X, AD) contains no surfaces.

Applying Theorem 2.27 to ¢ and using Theorem 2.7, we have LCS(X,AD) = F,
where Fis a fibre of the P'-bundle ¢. Applying Theorem 2.27 to the conic bundle 73,
we see that every fibre of 73 that intersects F' must be reducible. This means that

m3(F) C wy(Ch) = wa(Cy),
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which is impossible, because w3(F) is a line and w(C7) = wy(Cs) is an irreducible
conic.

Lemma 8.18. If1(X) = 3.18, then lct(X) = 1/3.

Proof. Let Q C P* be a smooth quartic hypersurface, C C @ an irreducible conic,
and O € C a point. Then there is a commutative diagram

YW

X Vv > pl
// %
gl o« gy
T ~
U——F=0 L,
- s
U\L /1// e
- p -
PR —
P3 _ - ¢

T — )

where ¢ is a blow-up of the point O, the morphisms « and  are blow-ups of the
conic C' and its proper transform, respectively, 0 is a blow-up of the fibre of «
over the point O, the map ¢ is the projection from O, the map ¢ is induced by
the projection from the two-dimensional linear subspace of P* containing the conic
C, the morphism 7 is a blow-up of the line ¥(C), the morphism v is a blow-up
of an irreducible conic Z C P3 such that ¥»(C) N Z # @ and Z and ¢(C) are not
coplanar, the morphism o is a blow-up of the proper transform of Z, the map ¢ is
a projection from 1(C), the morphism 7 is a P'-bundle, and w is a fibration into
quadric surfaces.

Let H be a general fibre of w o 8. Then H is a del Pezzo surface such that
KQH =7and —Kx ~ 3H + 2E + G, where G and E are the exceptional divisors
of B and ~, respectively. In particular, let(X) < 1/3.

Suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A\ < 1/3. Note that
LCS(X,AD) C G, since lct(V) = 1/3 by Lemma 7.15 and B(D) ~g —Ky.

Applying Lemma 2.25 to the del Pezzo fibration w o 8 and using Theorem 2.7,
we see that there is a unique singular fibre S of the fibration w o § such that
LCS(X,\D) C GN S, because lct(H ) = 1/3 (see Example 1.10).

Let P € GNS be an arbitrary point in the locus LCS(X,AD). We put
D = puS + Q, where Q is an effective Q-divisor such that S ¢ Supp(€2). Then
P € LCS(S, AQ|g) by Theorem 2.19.

We can identify the surface 3(S) with a quadric cone in P3. Note that GN S
is an exceptional curve on S, that is, there exists a unique ruling of the cone 3(5)
intersecting the curve 3(G). Let L C S be the proper transform of this ruling.
Then LN G # @ (moreover, |[LNG|=1), while LN E = &. Hence P=LNG by
Lemma 4.10. In particular, LCS(X,AD) = P. Hence

_ _ 2 _
HngLCS(X,)\D—i-H—i—gE) CHUPUE,
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because H is a sufficiently general fibre of the fibration w o 3. Therefore, the locus
LCS(X,AD + H + 2E) must be disconnected, because P ¢ H and P ¢ E. But

) 1

is an ample divisor, which is impossible by Theorem 2.7.
The proof of Lemma 8.18 implies the following corollary.

Corollary 8.19. If1(X) = 4.4 or 5.1, then lct(X) = 1/3.

Lemma 8.20. If3(X) = 3.19, then lct(X) = 1/3.

Proof. Let Q@ C P* be a smooth quadric and let L C P* be a line such that
LNQ = P, UP,, where P; and P, are different points. Let n: @Q --» P2 be the
projection from L. There exists a commutative diagram

~

where «; is a blow-up of the point P;, the morphism §; contracts a surface P? =
E; C X to the point dominating P; € ), the map &; is the projection from P;, the
map (; is the projection from the image of P;, the morphism §; is a contraction of
a surface Fo = G; C U; to a conic C; C P3, the morphism 7; is a blow-up of the
image of P;, the morphism ~; contracts the proper transform of G; to the proper
transform of C;, and w; is the natural projection.

The map v; 075 " is an elementary transformation of a conic bundle (see [57])
and 81 0 Bo(E1) C P? D §y 0 B1(E») are the planes containing the conics C; and Cs,
respectively.

Let H be a general hyperplane section of @ such that P, € H 5 P,. Then
—Kx ~ 3H + E| + E5, where H is the proper transform of H on the threefold X.
In particular, let(X) < 1/3.

Suppose that let(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X,AD) is not log canonical for some A < 1/3. Then
LCS(X,AD) C E; U Ey because let(Q) = 1/3. By Theorem 2.7 we may assume
that, LCS(X,AD) C E.
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Let Go C X be the proper transform of Gs. Then G» N E; = @, because
as(G2) C Q is a quadric cone with vertex at the point P, and the line L does not
lie in @. Hence

@ # LCS(P(Op2 @ Op2(1)), M2(D)) C 72(En),

where v2(E7) is a section of wy. Applying Theorem 2.27 to w; we obtain a contra-
diction.

Lemma 8.21. If J(X) = 3.20, then lct(X) = 1/3.

Proof. Let Q C P* be a smooth quadric threefold and let W be a smooth divisor
of bidegree (1,1) on P? x P2. Let L; C Q D Lo be disjoint lines. Then there exists
a commutative diagram

where «; and 3; are blow-ups of the lines L; and their proper transforms, respec-
tively, w is a blow-up of a smooth curve C C W of bidegree (1, 1), the morphisms
v; and 7; are natural P'-bundles, and the map ; is a linear projection from the
line Ll

Let H be the exceptional divisor of w and let F; be the exceptional divisor of ;.
Then —Kx ~ 3H + 2E; + 2E5, because ap o 31(H ) C Q is a hyperplane section
that contains L; and Lo. In particular, let(X) < 1/3.

Suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X,AD) is not log canonical for some A < 1/3. Then
LCS(X,A\D) C Ey N EyN H = @, because let(Vy) = let(Vz) = 1/3 by Lemma 7.17
and let(W) = 1/2 by Theorem 6.1, which gives a contradiction.

Lemma 8.22. IfJ(X) = 3.21, then lct(X) = 1/3.

Proof. Let m: Pt x P2 — P! and my: P! x P2 — P2 be the natural projections.
There is a morphism a: X — P! x P2 contracting a surface E to a curve C such
that 75 (0p1(1)) - C =2 and 75 (Op=2(1)) - C = 1.

The curve mo(C') C P2 is a line. Therefore, there is a unique surface Hy €
|75 (Op2(1))| such that C C H,. Let Hp be a fibre of the P2-bundle m;. Then
—Kx ~2H,+3H,+2E, where H; C X is the proper transform of the surface H;.
In particular let(X) < 1/3.

Suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X,AD) is not log canonical for some A < 1/3. Note
that LCS(X,AD) C E, because lct(P! x P?) = 1/3 by Lemma 2.21. There is
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a commutative diagram

Vv
51 62
I+
U, B1 ¥ B2 U,
wll/ al/ \LWQ
[P)l épl ><]P727r2—>]P)2 ;

where V is a Fano threefold of index 2 with one ordinary double point O € V
such that —K3, = 40, the birational morphism f3; is a contraction of the surface
Hy = P! x P! to a smooth rational curve, §; contracts the curve ﬁi(ﬁg) to the
point O € V so that the rational map d5 o 6;1: Uy --» Us is a standard flop in
B1(Hjy) = P!, the morphism w; is a fibration whose general fibre is P* x P!, the
morphism wy is a P!-bundle, and ~ contracts the surface y(H2) to O € V.

The variety V is a section of Gr(2,5) C P? by a linear subspace of codimension 3.
We have —Ky ~ 2(y(H;) + v(E)), and the divisor v(H1) + v(E) is very ample.
There is a commutative diagram

X Ve c P6
|
ozi | €
\
Pl x p2C P>

n

such that the embedding ¢ is given by the linear system |y(H1) + v(E)|, the map
¢ is the projection from the point O, and the embedding 7 is given by the linear
system |Hy + Ha|.

It follows from Theorem 3.6 in [60] (see also [59], Theorem 3.13) that Uy = P(&),
where & is a stable rank-2 vector bundle on P? such that the sequence

0—>ﬁ[p>2 —>g®ﬁp2(l)—>/®ﬁp2(1)—>0

is exact, where .# is the ideal sheaf of two general points in P2. We have ¢; (&) = —1
and co(&) = 2. It follows from Theorem 3.5 in [60] that

Ui C P(ﬁpl D ﬁ]pl(l) D ﬁpl(l) D ﬁ]pl(l))

and Uy € |21 — F|, where T is the tautological line bundle on P(0p: & Op1 (1) @
Opi(1) ® Op:(1)) and F is the fibre of the projection P(Op1 & Op1(1) ® Opr (1) @
Op (1)) — PL.

Note that because H; - C = 2, either H; is a smooth del Pezzo surface with
K%1 =7, 0r |[HLNC| = 1. Applying Lemma 2.25 to the morphism w; o 5, and
the surface Hy, we see that either |[H; N C| =1 or H; NLCS(X, AD) = @, because
Ict(Hy) = 1/3 if Hy is smooth. So there is a fibre L of the projection E — C
such that LCS(X,AD) C L by Theorem 2.7. We putC = HyNE and P=LNC.
Applying Theorem 2.27 to wy and (Us, A32(D)), we see from Theorem 2.7 that
either LCS(X, AD) = P or LCS(X,AD) = L.
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Suppose that LCS(X,\D) = L. Then
LCS(V, (D)) = ~(L),

where v(L) C V C PS is a line, because —Ky - y(L) = 2 and —Ky ~g v(D). We
have Sing(V') = O € v(L).

Let S C V be a general hyperplane section of V' C PS such that y(L) C S. Then
the surface S is a del Pezzo surface such that K2 = 5, O is an ordinary double point
of the surface S, S is smooth away from O € (L), the equivalence Kg ~ Ops(1)|g
holds, and hence S contains finitely many lines which intersect the line v(L).

Let H C V be a general hyperplane section of V' C P%. We put Q = (L) N H.
Then LCS(H, My (D)) = @ by Remark 2.3, which contradicts Lemma 4.2 because
A< 1/3.

Thus, LCS(X,AD) = P € C. Let Fy be a general fibre of ;. Then

FlﬂC’:Plngaéa(P),

where P, and P are different points. We have P, U P, C Ho N F} because C C Ho.
Let Z be a general line in F; = P? containing P;. Then there is a surface F» €
|75 (Op2(1))| such that Z C Fy. Let F; C X D F5 be the proper transforms of F}
and Fy, respectively. Then P ¢ F; U Fy.

Let Z C X be the proper transform of the curve Z. Then —Kx - Z = 2 and
Z C F1NFq, but ZNHy = @. Thus, the curve y(Z ) is a line on V C P% such that
Sing(V) = O ¢ (Z).

Let T be a general hyperplane section of the threefold V C P% such that

v(Z) C T. Then
T~2Hy+H +E~2Hy+F, +E~2Fy+F, — E,
where T is the proper transform of the surface T on the threefold X. Thus,
Fi+Fy+T~3Fy+2F —E~2Hy+2H, +2E ~ —Kyx,

and applying Theorem 2.7, we see that the locus
_ 2 . _  _
PUZ—LCS(X,)\D+ 3(F1+F2+T))

must be connected. But P ¢ Z, a contradiction.
Lemma 8.23. If 1(X) = 3.22, then lct(X) = 1/3.

Proof. Let m1: P! x P2 — P! and my: P! x P? — P2 be the natural projections.
There is a morphism a: X — P! x P? contracting a surface E to the curve C lying
in a fibre H; of m; such that the curve 7 (C) is a conic in P2

We have E = Fy. Let Hy be a general surface in |75 (0pz2(1))]. We have the
equivalence —Kx ~ 2H| + 3H, + E, where H; C X is the proper transform of
the surface H;. Hence lct(X) < 1/3.

Suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A\ < 1/3. Note that
LCS(X,AD) C E, since lct(P! x P?) = 1/3 by Lemma 2.21.
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Let @ be the unique surface in |75 (0p2(2))| containing C' and let Q@ C X be the
proper transform of . Then Q) N H; = & and there is a commutative diagram

X P(O]}n @ Opz (2))

ai lw \

P! x P2

such that 3 is a contraction of @ to a curve, ~ is a contraction of S(H1) to a point,
the morphism ¢ is a natural P!-bundle, and the map % is the natural projection.
We have

5y 0 B(E)

7o B(D) ~q 5

~q —Kp(1,1,1,2) ~Q Op(1,1,1,2)(5),
which implies that E Z LCS(X, AD) because A < 1/3.

Applying Theorem 2.27 to ¢, we see that there is a fibre F' of the projection
E — C such that LCS(X,AD) C (EN Q) U F, including the possibility that
LCS(X,A\D) C ENQ.

Suppose that LCS(X,A\D) C ENQ. Let M C P! x P? be a general surface
in |H; + Hs| and let M C X be the proper transform of the surface M. Then
MNH, = L, where L is a line on H; = P?. Let R be the unique surface in

|75 (Op2(1))| containing «(L) and let R be the proper transform of R on the
threefold X. Then

2 _ _
LCS(X,AD)UL C LCS (X, AD + 2 (M + H, +R+H2)> C LCS(X,AD)ULUH;,

but LNENQ=QNH, =@ and —Kx ~ M + H, + R+ H,, which contradicts
Theorem 2.7.
Therefore, F C LCS(X,AD). We put F' =~ o 3(F) and D =~ o (D). Then

FCLCS(P(1,1,1,2),AD) C CUF,

where C' = v 0 6(Q) € P(1,1,1,2) is a curve such that 1(C) = my(C).
Let S be a general surface in |Op(q,1,1,2)(2)]. Then S = P? and

FNS CLCS(S,\D|g) € (CUF)NS;

but 3D|g ~g —5Kg, which is impossible by Lemma 2.8.
Lemma 8.24. If J(X) = 3.23, then lct(X) = 1/4.

Proof. Let O € P? be a point, let C C P3 be a conic such that O € C; let I C P?
be the unique plane containing C, and let Q C P* be a smooth quadric threefold.
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Then the diagram

is commutative, where we use the following notation: the morphism « is a blow-up
of the point O with exceptional divisor F; the morphism 7 is the natural
P'-bundle; the morphisms  and & are blow-ups of C' and its proper transform,
respectively; the morphism v contracts the proper transform of the plane II to
a point; the morphism ¢ contracts the proper transform of the plane II to a curve;
the morphism 7 contracts the proper transform of E to a curve L C Y such that
y(M) € (L) € Q C P* and (L) is a line in P*; the morphism w is a natural
P!-bundle; the morphism v is a blow-up of the line v(L); the maps 1, £, and ¢ are
projections from O, v(II), and (L), respectively. Note that E is a section of 7.

Let IT C X be a proper transform of the plane II C P3. Then lct(X) < 1/4,
because —Kx ~ 411 4+ 2E + 3G, where E and G are the exceptional surfaces of 1
and §, respectively.

Suppose that lct(X) < 1/4. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A < 1/4. We note that

@ #LCS(X,AD) C ENTING,

because let(V7) = 1/4 by Theorem 6.1, let(Y) = 1/4 by Lemma 7.16, and lct(U) =
1/3 by Lemma 7.17.

Let R C P3 be a general cone over C' with vertex P € P2, let H; C P? be
a general plane passing through O and P, and let H, C P2 be a general plane
passing through P. Then

R~ (a0d)*(R) - E -G, Hy ~ (a0 d)*(Hy) - E, Hy ~ (a0 8)*(Hy),

where R, H1, and Hy are the proper transforms of R, Hy, and Hy on the threefold
X, respectively. We have —Kx ~ Q + Hy + Ho, but it follows from the generality
of R, Hy, and H, that the locus

LCS (X, AD + Z (Q+H; + H2)> = LCS(X,A\D)UP

is disconnected, which is impossible by Lemma 2.7.

Lemma 8.25. If3(X) = 3.24, then lct(X) = 1/3.
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Proof. Let W be a divisor of bidegree (1,1) on P? x P2. There is a commutative
diagram

X w
U wi
P! Fy ! P2

where w; is a natural P'-bundle, the morphism « contracts a surface E = P! x P!
to a fibre L of wy, 7 is a blow-up of the point w (L), the morphism ¢ is a P*-bundle,
and ( is an Fi-bundle.

Let wy: X — P2 be a natural P!-bundle distinct from w;. Then there is a surface
G € |w3(Op2(1))] such that L C G, because wo(L) is a line in P2, Let G C X be the
proper transform of G. Then —Kx ~ 2F + 2G + 3E, where E is the exceptional
divisor of a and F' is a fibre of (. We see that lct(X) < 1/3.

Suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A\ < 1/3. Note that
LCS(X,AD) C E since let(W) = 1/2 by Theorem 6.1. We may assume that
FNLCS(X,\D) # @. Then

F, = F CLCS(X,\D) C E =P x P!

by Lemma 2.25 because lct(F') = 1/3 (see Example 1.10), and this is a contradiction.

9. Fano threefolds with p > 4

Throughout this section we use the assumptions and notation introduced in § 1.
Lemma 9.1. If1(X) = 4.1, then let(X) = 1/2.
Proof. The threefold X is a divisor on P! x P* x P! x P! of multidegree (1,1,1,1).

Let [(z1 : y1), (z2 : y2), (z3 : y3), (x4 : y4)] be coordinates on P* x P! x P! x P
Then X is given by an equation F'(z1,y1, T2, Y2, T3, Y3, T4, Ys) = 0, where F'is a form

of multidegree (1,1,1,1). Let 7r;: X — P! x P! x P! be the projection given by

[(z1: 1), (22 1 y2), (w3 2 ys), (24 ya)] = [(w2 1 y2), (w3 2 y3), (x4 : ya)] € P' X P X P!,

and let 7y, 3, and m,: X — P! x P! x P! be projections defined in a similar way.
We put

F = 2,G (%2, y2, 73, Y3, T4, Y1) + y1 H (22, Y2, 73, Y3, T4, Ya),
where G(z2, y2, T3, ys, T4, ys) and H(xa,y2, T3, Y3, T4, y4) are multilinear forms inde-

pendent of x; and ;. Then 7 is a blow-up of the curve C; C P! x P! x P! given
by the equations

G(x2,y2, 23, Y3, Ta,Ys) = H(x2,Y2, %3, Y3, Ta,ya) = 0,

which also define a surface E; C P' x P! x P! x P! which is contracted by =;.
The equations 1 = H(x2,y2, T3, Y3, T4,y4) = 0 define a divisor H; C X such that
—Kx ~ 2H, + E;, which implies that let(X) < 1/2.
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Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some \ < 1/2.
Let F», F3, and E, be surfaces in X analogous to Fi. Then

@ #£LCS(X,AD) C EyNEyN EsN By,

because let(Pt x Pt x P') = 1/2 by Lemma 2.21. But E; C P! x P! x P! x P! is
given by the equations
OF (z1,y1,22,Y2, 23, Y3, T4, ya) _ OF(21,y1,%2,Y2, ¥3,Y3, T4, Ya)

= = 0'
ox; 31/1 '

which implies that the intersection Fq N Es N E3 N Ey is given by the equations
OF _OF _OF _OF _OF _OF _OF _OF _
Ory Odyy  Oxg Oys Oxg Jys Oxy Oy

Hence Fy N E> N E3N Ey = Sing(X) = & and LCS(X,AD) = @

Lemma 9.2. If J(X) = 4.2, then let(X) = 1/2.

Proof. Let @, C P* O Q2 be quadric cones with vertices O; € P* 5 Oy, respectively.
Let O; ¢ S1 C Q1 C P* be a hyperplane section of Q1. Then there exists a smooth
elliptic curve C; C |—Kg, | such that the diagram

X :
- / ﬂ2 CZ
Uy

[N N

P! x P!
is commutative, where m # w9 are the natural projections, the map 1); is the
projection from O; € Q; C P*, the morphism «; is a blow-up of the vertex O;
of @);, the morphism f; contracts a surface

XCl G;CcX

to a curve C; = C; C U;, the morphism 7; is an Fy-bundle, v; is a P!-bundle, and
(; is a fibration into del Pezzo surfaces of degree 6 which has 4 singular fibres.
Let F; C X be the proper transform of the exceptional divisor of o;. Then

Si=a1001(Ey) CQ1 C P'o Q2 D ag 0 fB2(Er)

are hyperplane sections of Q1 and Q)2 containing C7 and Cs, respectively. It is also
easy to see that a; o 31(G2) and s o 32(G1) are the cones in P* over the curves C;
and Cy, respectively.
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Let HCX be the proper transform of a hyperplane section of Q; C P* which
contains O1. Then —Kx ~ 2H + E; + Ey, which yields let(X) < 1/2.

Suppose that let(X) < 1/2. Then there is an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A < 1/2. We put
D = 1 Fy 4 poFEs + Q, where Q is an effective Q-divisor on X such that Fy &
Supp(Q2) 2 Es.

Let T be a general fibre of the conic bundle ; o 8;. Then

2=T-D=T-(mFE1+p2Es+Q) = p1 + po +T - Q= pi1 + o,

and we may assume without loss of generality that p; < ps. Then uy < 1.

Suppose that there is a surface S € LCS(X,AD). Then S # E;. Moreover,
S # G4, because as o f2(G1) is a quadric surface and A < 1/2. Hence SN Ey # .
But —(1/2)Kg, ~q D|p, and Ey = P' x P!, which is impossible by Theorem 2.19
and Lemma 2.23. We see that the set LCS(X, AD) contains no surfaces.

Let P € LCS(X,AD). Suppose that P ¢ G;. Let Z be a fibre of v; such
that 81(P) € Z. Then Z C LCS(Uy, A\B1(D)) by Theorem 2.27. We put E; =
B1(Ey). Then ZN E; € LCS (El, /\Q|E1) by Theorem 2.19, which is impossible by
Lemma 2.23, because 1 < 1.

Thus, P € G1. Let F; C X D F5 be fibres of (; and (,; passing through the
point P. Then either Fy or Fy is smooth, because ay(P) € Cy. But let(F;) = 1/2
if F; is smooth (see Example 1.10), which contradicts Lemma 2.25.

Lemma 9.3. If 1(X) = 4.3, then let(X) = 1/2.

Proof. Let F} = Fy = F3 =2 P! x P! be fibres of the three different projections
P! x P! x P! — P!. There is a contraction a: X — P! x P! x P! of a surface
EcXtoacurve C CP! x P! x P! suchthat C- Fy, =C - Fy=1and C - F3 = 2.
There is a smooth surface G € |F; + Fy| containing C. In particular, —Kx ~
2G + E + F3, where F3 and G are the proper transforms of F3 and G, respectively.
Hence let(X) < 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A < 1/2. We note that
LCS(X,AD) C E, because let(P! x P! x P') = 1/2 and a(D) ~g —Kp1 xp1 xp1-

Let H € |3F; + F3| be a smooth surface such that C = G N H, and let H be
the proper transform of H on the threefold X. Then H NG = @ and there is
a commutative diagram

U X V

| | |-

Pl xPl<———P! x P! x P! ———— P! x P!

such that 3 and ~ are contractions of the surfaces G and H to smooth curves, the
morphisms 7 and ¢ are P!'-bundles, ¢ and ¢ are the projections given by the linear
systems |F} + Fy| and |Fy + F3|, respectively.

It follows from H N G = @ that either (V,\3(D)) or (U, \y(D)) is not log

canonical.
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Applying Theorem 2.27 to (V, A\3(D)) or (U, \y(D)) (and the fibrations 7 or ¢,
respectively) and using Theorem 2.7, we see that LCS(X,AD) = T', where T is
a fibre of the natural projection £ — C.

We may assume that o(T') € F3. Let F'3 C X be the proper transform of the
surface F3. We put D = uF3 +Q, where € is an effective Q-divisor on X such that
F3 ¢ Supp(Q). Then

/LFg + CM(Q) ~Q 2(F1 + F2 + Fg),

which yields p < 2. Hence the log pair (F3, )‘Q‘Fg) is not log canonical along the

curve I' C F'3 by Theorem 2.19. But Q|F ~Q *KFS and F's is a del Pezzo surface
— 3 —

such that KI273 = 6, and either F'3 is smooth and |C' N F3| = 2, or F3 has one

ordinary double point and |C'N F3| = 1.
We have lct(F3) < A\. Then F is singular by Example 1.10. It follows from
Lemma 4.5 that LCS(Fg, /\Q|F3) = Sing(F3), but the log pair (Fg, )\Q\Fa) is not

log canonical along the whole of I' C F3, which is a contradiction.
Lemma 9.4. If J(X) = 4.5, then let(X) = 3/7.

Proof. Let Q C P* be a quadric cone and let V' C PS be a section of Gr(2,5) C P?
by a linear subspace of dimension 6 such that V' has one ordinary double point.
Then the diagram

£
7 . ~ N
.7 X : Y Q
s/ n T I
/ . \ . \ v§
Vv Pl X Fl Pl X ]P)l ﬁ
w \ vy X \Lv2
P X
51 ]Fl —_— IPI
A
5 B ) v \ ¢
Ui : U = U,y (K
X K l
|
>\ P! = P! x P2 = P2

U1

is commutative (cf. [61], Lemma 2.6), where we use the following notation:
e the morphisms m;, v;, &, and x are the natural projections;
e the morphism « contracts a surface Fg = E C U to a curve C such that

Wf(ﬁ[pl(l)) -C = 2, ﬂ';(ﬁﬂm(l)) -C = 1,

e the morphism 3 contracts a surface P' x P! =2 H, C U to the singular point
of V;
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e the morphism 3; contracts the surface Hs to a smooth rational curve;
the morphism §&; contracts the curve 3;(Hs) to the singular point of V so
that the map o 05f1: Uy --» Uy is a standard flop in the curve 3, (Hy) = P!;
the morphism w; is a fibration with general fibre P! x P!;
the morphisms wy, 7o, &, o, and 7 are P'-bundles;
the morphism ¢ is a blow-up of a point O € P? such that O ¢ m3(C);
the map 9 is a linear projection from the point O € P?;
the morphism v contracts a surface G = P! x P! to a curve L such that
T2 (L) = O, . _ .
e the morphism ~y contracts a surface G to a curve L such that a(L) =L C
P! x P2 and the curve (L) is a line in V' C P® such that 3(L )NSing(V) = &;
1 contracts to a curve a surface F such that v o n(E) C C P! x P
e the morphlsm 0 contracts to a curve a surface R # E such that 7o 0( R) =
e the morphism g is a fibration into del Pezzo surfaces of degree 6;
e the morphism ¢ contracts the surface G(ﬁg) to the singular point of the
quadric Q;
e the map ¢ is the linear projection from the line B(L) C V C PS.
The curve m2(C) C P? is a line. Hence a(Hz) € |73(0p2(1))| and C C a(Hz).
The morphism 7; induces a double cover C' — P! branched in two points Q1 €
C' > Q2. Let T; be the unique surface in |7} (Op1(1))| passing through Q;. Let
T; C U be the proper transform of T;. Then the surface T);
e has one ordinary double point,
e is tangent to the surface £ along the curve ENT;,
e is a del Pezzo surface such that K% =T.

Let Z; C P? be the unique line passing through the points O and 73 o a/(Q;).
Then there is a unique surface R; € |(m3 0 a)*(Op2(1))| such that Z; C 3 0 a(R).
We have L C R; and — Ky ~2Hy + R, +2T; + E.

Let I'; be the fibre of the projection E — C over the point Q;. Then I'; = ENT;
and

I'; c LCS (U, % (2Hy + R; + 2T; + E)).

Let R; and T} be the proper transforms of R; and Tl on the threefold X, respec-
tively. Then —Kx ~ 2Hy 4+ R; + 2T; + FE, because L C R;. Let I'; C X be the
proper transform of the curve I';. Then the log pair

3 o o o o
(Xa - (2Hy + R; + 2T; + E))

is log canonical but not log terminal. Thus, let(X) < 3/7.
Suppose that lct(X) < 3/7. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A < 3/7.
The surfaces T} and Tb are the only singular fibres of the fibration p: X — P!,
Then
T; Z LCS(X,AD) C Ty U T

by Lemma 2.25, because D - Z = Ty = 2, where Z is a general fibre of m 0o v 0 7y.
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By Theorem 2.7 we may assume that LCS(X,\D) C 7.
Applying Theorem 2.27 to the log pair (P! x Fy, An(D)), we see that

LCS(X,AD) # Ty NG,

because G = n((G) is a section of the P'-bundle o.
Applying Theorem 2.27 to the log pair (P* x P2, Ao o (D)), we see that

@ #LCS(X,\D)CTyNE =T,

by Theorem 2.7, because GNE = and T} is a section of .

Applying Theorem 2.27 to the log pairs (Y, \0(D)) and (U, AG2 o y(D)) (and
the fibrations 7 and ws, respectively), we see that LCS(X,AD) = I'; because
RNHy =@. Let D =~(D). Then LCS(U,AD) =T,. We put D = eH, + Q,
where (2 is an effective Q-divisor such that Ho  Supp(f2). Then

(1+¢)
Q|H2 ~Q — 9 Kﬁz

and the log pair (H2, AQ| 172) is not log canonical by Theorem 2.19. The latter

implies that
31+¢ - )\1 +e - 1
7T 2 2 2
by Lemma 2.23, so that ¢ > 4/3.
We may assume (see Remark 2.22) that either E ¢ Supp(D ) or Ty € Supp(D ).
Suppose that E Z Supp(D ). Let Z be a general fibre of the projection E — C.

Then

l=-Ky-Z=D -Z=c+0-Z>¢,

which is a contradiction because e > 4/3. Thus, T € Supp(D ).
Let A C T; be the proper transform of a general line in Ty = P? passing
through Q. Then
2:7KU-Z:5~ZZIHUMF1(E)Z >

7

> =
Wl

because A ¢ Supp(D ) and ANT; # @. This contradiction completes the proof.
Lemma 9.5. If 1(X) = 4.6, then let(X) = 1/2.

Proof. There is a birational morphism a: X — P2 that blows up three disjoint lines
L17 LQ, and L3.

Let H; be the proper transform on X of a general plane in P? containing L;.
Then

—Kx ~2Hy + FEy+ Hy+ Hs ~2Hy + Ey + Hy + H3 ~ 2H3 + F5 + Hy + Ho,

where E; is the exceptional divisor of « such that «(E;) = L;. In particular,
let(X) < 1/2.

Suppose that let(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A < 1/2.



Log canonical thresholds 937

The surface H; is a smooth del Pezzo surface such that Kj, 2 = 7, the linear
system |H;| has no base points and induces a morphism ¢;: X — ]P’1 whose fibres
are isomorphic to H;.

Suppose that |LCS(X,AD)| < +oco. We may assume that LCS(X,\D) € E;.
Then the set

1
LCS<X7>\D+H1 + 2E1>

is disconnected, which is impossible by Theorem 2.7, because Hy+ Hsz+(A—1/2) K
is ample.
We may assume that Hy NLCS(X,AD) # @. Then

@ # Hy NLCS(X,AD) C LCS(Hy, AD)|y,)

by Remark 2.3. We put Cy = Es|y, and C3 = E3|y . Then Cy-Cy = C3-C3 = —
and there is a unique curve C' with P! 2 C € H; such that C-Co = C -C3 =1
and C'- C' = —1. Note that LCS(Hy,AD|y,) = C by Lemma 4.9.

There is a unique smooth quadric Q C P3 that contains Li, Lo, and Ls. Note
that Q N H; = C, where Q C X is the proper transform of the quadric Q.

There is a birational morphism o: X — P! x P! x P! contracting Q to a curve of
tridegree (1,1,1). Since QNH; = C, it follows (see Remark 2.3) that LCS(X, AD) D
@, and hence LCS(X, AD) = @Q because lct(P! x P! xP!) = 1/2. Weput D = uQ+%,
where p > 1/A > 2 and Q is an effective Q-divisor such that @ ¢ Supp(Q2). Then
a(D) = pQ + «(Q), which is impossible because (D) ~g 2Q ~ —Kps and p > 2.

Lemma 9.6. If J(X) = 4.7, then let(X) = 1/2.

Proof. There is a blow-up morphism «a: X — W such that the variety W is
a smooth divisor of bidegree (1,1) in P? x P?, the morphism « contracts two (irre-
ducible) surfaces Fy # E» to two disjoint curves L; and Lo, and the curves L; are
fibres of one natural P'-bundle W — P2

There is a surface H C W such that —Kx ~ 2H and L1 C H D Ly. We have
—Kx ~2H + E; + E5, where H is the proper transform of H on the threefold X.
Then lct(X) < 1/2.

Suppose that lct(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X,AD) is not log canonical for some A < 1/2. Note that
LCS(X,AD) C E; U Esy since lct(W) = 1/2 by Theorem 6.1.

We may assume that LCS(X,AD) N E; # @. Let §: X — Y be a contrac-
tion of Ey. Then LCS(Y,\3(D)) # @ and (D) ~g —Ky, which contradicts
Lemma 8.25.

Lemma 9.7. If1(X) = 4.8, then let(X) = 1/3.

Proof. There is a blow-up a: X — P! x P! x P! of a curve C C P! x P! x P!
such that C' C F} and C - Fy, = C' - F5 = 1, where Fj is a fibre of the projection
P! x P! x P! onto the ith factor. There is a surface G € |Fy + F3| containing the
curve C. Let E be the exceptional divisor of &. Then —Kx ~ 2F; + 2G + 3E,
where '} and G are the proper transforms of F; and G, respectively. In particular,
let(X) < 1/3.
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Suppose that lct(X) < 1/3. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X, AD) is not log canonical for some A < 1/3. Note that
LCS(X,AD) C E, because let(P* x P! x P1) = 1/2 and a(D) ~g —Kp1 xp1 xp1 -

Let @ be a quadric cone in P*. Then there is a commutative diagram

where we use the following notation: V is a variety with 3(V') = 3.31; the morphism
3 is a contraction of the surface G to a curve; the morphism + is a contraction of
F; = P! x P! to an ordinary double point; the morphism ¢ is a blow-up of the
vertex of the quadric cone @ C P4; the morphism ¢ is a blow-up of a smooth conic
in @; the map v is the projection from the vertex of the cone @); the morphism ¢
is induced by |Fy + F3|, that is, is the projection of P! x P! x P! onto the product
of the last two factors; the morphism 7 is a natural P'-bundle.

It follows from Corollary 5.4 that lct(V) = 1/3. On the other hand, lct(U) = 1/3
by Lemma 2.26. Hence LCS(X,AD) C ENG N F; = @, a contradiction.

The following result is implied by Corollaries 5.4 and 8.19, Lemma 2.29, and
Example 1.10.

Corollary 9.8. Suppose that p > 5. Then let(X) = 1/3 if I(X) € {5.1,5.2}, and
let(X) = 1/2 otherwise.

Lemma 9.9. If1(X) = 4.13 and X is general, then lct(X) = 1/2.

Proof. Let F} = Fy, = F3 = P! x P! be fibres of the three different projections
P! x P! x P! — PL. There is a contraction oc: X — P! x P! x P! of a surface £ C X
to a curve C C P! x P! x P! such that C- F; =C - F, =1 and C - F3 = 3. Then
there is a smooth surface G € |Fy 4+ F5| containing C. In particular, we see that
—Kx ~ 2G4+ E+2F5, where F3 and G are the proper transforms of the divisors F
and G, respectively. Hence lct(X) < 1/2.

Suppose that let(X) < 1/2. Then there exists an effective Q-divisor D ~g —Kx
such that the log pair (X,AD) is not log canonical for some A < 1/2. Then
LCS(X,AD) C E = Fy, because let (P! x P! xP!) = 1/2 and a(D) ~g —Kp1 xpixpr-

There are smooth surfaces H; € |3F; + F3| and Hs € |3F; + F3| such that
C =G -H =G-Hyand H = Hy = P' x P'. Let H; be the proper transform
of H; on the threefold X. Then H, NG = Hy;NG = 2.
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There is a commutative diagram

X U,

Q

P! x P! x P!

2
\ \ 52
L x Pt

P! x P! P! x P!

such that ( and ~; are contractions of the surfaces G and H; to smooth curves, the
morphisms 7 and ¢; are P'-bundles, and the morphisms ¢ and &; are the projections
given by the linear systems |F} + F5| and |F; + F3|, respectively.

It follows from H, NG = @ that either (V,\3(D)) or (U1, My1(D)) is not log
canonical.

Applying Theorem 2.27 to (V,A\3(D)) or (U, Ay1(D)) (and the fibration 7 or
o1, respectively) and using Theorem 2.7, we see that LCS(X, AD) =T, where T is
a fibre of the natural projection £ — C.

We may assume that a(I') € F3. We put D = puF3 + Q, where  is an effective
Q-divisor on X such that F3 ¢ Supp(f2). Then pF3 + a(Q) ~q 2(F1 + F2 + F3),
which yields p < 2. The log pair (Fg, >‘Q|F3) is not log canonical along I' C F's by
Theorem 2.19. We have Q|F3 ~q —KF, and F3 is a del Pezzo surface such that

K%S = 5. Note that F3 can be singular. Namely, we have

Sing(ﬁg):g < |OﬂF3‘:F3'C:3,

and Sing(F3) C I'. The following cases are possible:
e the surface F3 is smooth and |C N F3| = 3;
e the surface F'3 has one ordinary double point and |C' N F3| = 2;
e the surface F'3 has a singular point of type Ay and |C' N F3| = 1.

We have lct(F3) < A < 1/2. Thus, it follows from Examples 1.10 and 4.3 that
|C' N F3] = 1, which is impossible if the threefold X is sufficiently general.

10. Upper bounds

We use the assumptions and the notation introduced in §1. The main aim of
this section is to find upper bounds for the global log canonical thresholds of the
varieties X in several cases not covered by Theorem 1.46.

Lemma 10.1. If3(X) = 1.8, then lct(X) < 6/7.

Proof. The linear system |—K x| does not have base points and induces an embed-
ding X C P! and the threefold X contains a line L C X (see [62]).
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It follows from Theorem 4.3.3 in [2] that there is a commutative diagram

v---"-- =W
ozl/ l/ﬁ
X— =y P,

where « is a blow-up of the line L, the map p is a composition of flops, the morphism
[ is a blow-up of a smooth curve of degree 7 and genus 3, and ¢ is a double
projection from the line L.

Let S C X be the proper transform of the exceptional surface of 8. Then
multy,(S) =7 and S ~ —3Kx, which implies that lct(X) < 6/7.

Lemma 10.2. If3(X) = 1.9, then lct(X) < 4/5.

Proof. The linear system |—K x| does not have base points and induces an embed-
ding X C P!, and the threefold X contains a line L C X (see [62]).
It follows from Theorem 4.3.3 in [2] that there is a commutative diagram

v---"-- =W
al \Lﬂ
X----->Q,

where Q C P* is a smooth quadric threefold, « is a blow-up of the line L, the map
p is a composition of flops, the morphism [ is a blow-up along a smooth curve of
degree 7 and genus 2, and v is a double projection from the line L.

Let S C X be the proper transform of the exceptional surface of 5. Then
multz(S) =5 and S ~ —2Kx, which implies that lct(X) < 4/5.

Lemma 10.3. If 3(X) = 1.10, then lct(X) < 2/3.

Proof. The linear system |—K x| does not have base points and induces an embed-
ding X C P'3, and the threefold X contains a line L C X (see [62]).
It follows from Theorem 4.3.3 in [2] that the diagram

v---"-- -
X----- - V5

is commutative, where Vs is a smooth section of Gr(2,5) C P? by a linear subspace of
dimension 6, the morphism « is a blow-up of the line L, the map p is a composition
of flops, the morphism f is a normal rational curve of degree 5, and 1 is a double
projection from L.

Let S C X be the proper transform of the exceptional surface of 3. Then
multy,(S) =3 and S ~ —Kx, which implies that let(X) < 2/3.

Lemma 10.4. If 3(X) = 2.2, then lct(X) < 13/14.
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Proof. There is a smooth divisor B C P! x P? of bidegree (2,4) such that the

diagram
/Trl \

Pl <——F P! x P? — P
is commutative, where 7 is a double cover branched along B, the morphisms 7 and
o are the natural projections, ¢ is a fibration into del Pezzo surfaces of degree 2,
and (5 is a conic bundle.
Let Hj be a general fibre of ;. We put H; = 7(H;). Then the intersection

CzﬁlﬂBCngIPQ

is a smooth quartic curve 4.

There is a point P € C such that multp(C - L) > 3, where L C H; = P? is the
line tangent to C' at P.

The curve mo(L) is a line. Thus, there is a unique surface Hs € |p5(Op2(1))]
such that po(Hs) = mo(L). Hence —Kx ~ Hy + Hs.

Let us show that let(X, Hy + Ho) < 13/14. We put Ho = 7(Hz). Then

1 1 13 -
L(CS(X,lz(Hl +H2)> # O = LCS(]Pl x P2, §B+1—2(H1 +H2)> £ O

by [1], Proposition 3.16. Let a: V — P! x P? be a blow-up of the curve C. Then

1~ 13 =~ ~ 3 N 1 13 — —
KV+§B+E(H1+H2)+?E~QOZ <Kplxpz+2B+14(H1+H2)>,

where E, f[l,ffg C V are the proper transforms of B, H,, H,, respectively. But
the log pair (V,(13/14)Hs + (3/7)E) is not log terminal along the fibre T' of the
morphism « such that «(I') = P, because

multp(ﬁg -E) =multp(C - Hy) > multp(C - L) >3
due to the generality of the fibre H;. We see that
13 ~ 3 1~ 13 =~ ~ 3
I'CcL — H. —-F | CL -B+ —(H,+ H -F
- CS(V714 2+7 )_ CS(V,2 +14( 1+ 2)—!—7 ),
which implies that let(X, Hy + Hy) < 13/14. Hence lct(X) < 13/14.

Remark 10.5. It follows from Lemmas 2.25 and 4.1 that let(X) > 2/3 if I(X) = 2.2
and the threefold X satisfies the following generality condition: any fibre of ¢
satisfies the hypotheses of Lemma 4.1.

Lemma 10.6. If3(X) = 2.7, then lct(X) < 2/3.
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Proof. There is a commutative diagram

SN

Q ______ >IP)17

where @ C P* is a smooth quadric threefold, « is a blow-up of a smooth curve that
is the complete intersection of two divisors Si, S5 € |ﬁ]p4(2)| Q|’ the morphism (3 is
a fibration into del Pezzo surfaces of degree 4, and 1 is the rational map induced
by the pencil generated by the surfaces S; and Si. Then let(X) < 2/3 because
—Kx ~g (3/2)S1+(1/2)E, where S1 C X is the proper transform of the surface S
and FE is the exceptional divisor of a.

Lemma 10.7. If1(X) = 2.9, then lct(X) < 3/4.

Proof. There is a commutative diagram

7N
IP’3***;**>P2,
where o is a blow-up of a smooth curve C' C P? of degree 7 and genus 5 that is
an intersection of cubic surfaces in P, the morphism 3 is a conic bundle, and
is a rational map given by the linear system of cubics containing C. We have
—Kx ~q (4/3)S+(1/3)E, where S € |3*(0p=(1))| and FE is the exceptional divisor
of a. Hence lct(X) < 3/4.

Lemma 10.8. If 3(X) = 2.12, then lct(X) < 3/4.

Proof. There is a commutative diagram

7N
PB———E——>P3,
where o and 3 are blow-ups of smooth curves C C P3 and Z C P3 of degree 6
and genus 3 that are intersections of cubic surfaces in P3, and 1 is a birational
map given by the linear system of cubic surfaces containing C. Then —Kx ~q
(4/3)S + (1/3)E, where S € |0*(0ps(1))]| and E is the exceptional divisor of «.
Consequently, lct(X) < 3/4.

Lemma 10.9. If 3(X) = 2.13, then lct(X) < 2/3.

Proof. There is a commutative diagram
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where Q C P* is a smooth quadric threefold, « is a blow-up of a smooth curve C' C Q
of degree 6 and genus 2, the morphism ( is a conic bundle, and v is the rational
map given by the linear system of surfaces in ’ﬁ]}mk (2) |Q| containing the curve C'. We
have —Kx ~q (3/2)S + (1/2)E, where S € |5*(0p2(1))| and E is the exceptional
divisor of . Hence lct(X) < 2/3.

Lemma 10.10. If J(X) = 2.16, then lct(X) < 1/2.

Proof. There is a commutative diagram

7 N

V4 —————— > P2

where V; C P? is the smooth complete intersection of two quadric hypersurfaces,
« is a blow-up of an irreducible conic C' C Vj, the morphism [ is a conic bun-
dle, and v is a rational map given by the linear system of surfaces in ‘ﬁp5(1)|v4‘
containing C. We have —Kx ~ 25 + E, where S € |5*(0p2(1))], and E is the
exceptional divisor of or. Hence let(X) < 1/2.

Lemma 10.11. If J(X) = 2.17, then lct(X) < 2/3.

Proof. There is a commutative diagram

7N

Q------ -

where Q C P* is a smooth quadric threefold, the morphisms o and 3 are blow-ups
of smooth elliptic curves C C Q and Z C P3 of degree 5, respectively, and the
map 1) is given by the linear system of surfaces in |ﬁp4(2)|Q| that contain C. We
have —Kx ~g (3/2)S + (1/2)E, where S € |3*(0ps(1))| and E is the exceptional
divisor of a. Hence let(X) < 2/3.

Lemma 10.12. If IJ(X) = 2.20, then lct(X) < 1/2.

Proof. There is a commutative diagram

7 N

Vi - -5 - - ~ P2

where V5 C PS is a smooth intersection of Gr(2,5) C PY with a linear subspace
of dimension 6, the morphism « is a blow-up of a twisted cubic P* = C C Vj,
the morphism £ is a conic bundle, and the map v is given by the linear system of
surfaces in |ﬁp6(1)|vs| that contain the curve C. We have —Kx ~ 25 + E, where
S € |8*(Op=(1))| and E is the exceptional divisor of a. We see that let(X) < 1/2.
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Lemma 10.13. IfJ(X) = 2.21, then lct(X) < 2/3.

Proof. There is a commutative diagram

where Q C P* is a smooth quadric threefold, o and 3 are blow-ups of smooth
rational curves C' C @ and Z C @ of degree 4, and 1 is the birational map
given by the linear system of surfaces in |ﬁp4(2)|Q| that contain C. We have
—Kx ~q (3/2)S + (1/2)E, where S € |6*(ﬁp4(1))‘Q‘ and F is the exceptional
divisor of a. Hence lct(X) < 2/3.

Lemma 10.14. If J(X) = 2.22, then lct(X) < 1/2.

Proof. There is a commutative diagram

where V5 C PY is a smooth intersection of Gr(2,5) C P? with a linear subspace
of dimension 6, the morphisms a and 3 are blow-ups of the conic C' C V5 and
a rational (not linearly normal) quartic Z C P3, respectively, and 1 is given by the
linear system of surfaces in |ﬁpa(1)|v5’ that contain C. We have —Kx ~ 25 + E,
where S € |3*(0ps(1))| and E is the exceptional divisor of a. Then let(X) < 1/2.

Lemma 10.15. If (X)) = 3.13, then let(X) < 1/2.

Proof. There is a commutative diagram

2
e e
Wo ¥1 W3
52J X Qs
P2 < ﬂx P2

x

1

such that W; C P? x P? is a divisor of bidegree (1, 1), the morphisms «; and 3; are
P!-bundles, 7; is a blow-up of a smooth curve C; C W; of bidegree (2,2) such that
a;(C;) and B3;(C;) are irreducible conics in P2, and ¢; is a conic bundle. Let E; be
the exceptional divisor of m;. Then

Ky ~2H, + By ~ 2Hy + Ey ~ 2Hs + Es ~ Ey + By + Es,
where H; € |¢}(Op2(1))|. Hence let(X) < 1/2.
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Remark 10.16. We shall use the notation in the proof of Lemma 10.15 and assume
that let(X) < 1/2. Then there is an effective Q-divisor D ~g —Kx such that the
log pair (X, AD) is not log canonical for some A\ < 1/2. Since let(W;) = 1/2 by
Theorem 6.1, it follows that

%] # LCS(X, )\D) C E1NE>yN Es.

In particular, by Theorem 2.7 the locus LCS(X, AD) consists of a single point P;
note that P is the intersection P = Fy N Fy N F3 of three curves F; such that
F» U F3 (respectively, Fy U F3, Fy U Fy) is a reducible fibre of the conic bundle ¢

(respectively, va, p3).

Appendix A.
J.-P. Demailly. On Tian’s invariant and log canonical thresholds

The goal of this appendix is to relate log canonical thresholds with the a-invariant
introduced by Tian [3] for the study of the existence of Kahler—Einstein metrics.
The approximation technique of closed positive (1, 1)-currents introduced in [63] is
used to show that the a-invariant of a smooth Fano variety actually coincides with
the log canonical threshold.

Algebraic geometers have been aware of this fact since [21] appeared, and several
papers have used it implicitly in recent years (see, for instance, [64] and [65]).
However, it turns out that the required result is stated only in a local analytic form
in [21], in a language which may not be easily recognizable by algebraically minded
people. Therefore, we will repair here the lack of a proper reference by stating
and proving the existence of Kahler—Einstein metrics on Fano varieties and Fano
orbifolds.

Usually only the case of the anticanonical line bundle L. = —Kx is considered
in these applications. Here we will consider more generally the case of an arbitrary
line bundle L (or Q-line bundle L) on a complex manifold X, with some additional
restrictions which will be stated later.

Assume that L is equipped with a singular Hermitian metric h (see, for
instance, [66]). Locally, L admits trivializations 6: L|;; ~ U x C and on U the
metric h is given by a weight function ¢ such that

I1€]|7 = |€]2e72¢) for all z € U, € € L.,

where ¢ € L, is identified with a complex number. We are interested in the case
where ¢ is (at the very least) a locally integrable function for the Lebesgue measure,
since it is then possible to compute the curvature form

G)L,h = 1 8590
™

in the sense of distributions. We have ©r, , > 0 as a (1, 1)-current if and only if the
weights ¢ are plurisubharmonic functions. In the sequel we will be interested only
in that case.

Let us first introduce the concept of complex singularity exponent for singular
Hermitian metrics, following, for example, [67]-[69] and [21].
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Definition A.1. If K is a compact subset of X, we define the complex singularity
exponent cg (h) of the metric h, written locally as h = e~2%, to be the supremum of
all positive numbers c such that h¢ = e~2°¥ is integrable in a neighbourhood of every
point zy € K, with respect to the Lebesgue measure in holomorphic coordinates
centred at zg.

Now, we introduce a generalized version of Tian’s invariant «, as defined in [3]

(see also [70]).

Definition A.2. Assume that X is a compact manifold and that L is a pseudo-
effective line distribution, that is, L admits a singular Hermitian metric hy with
Opr.h, = 0. If K is a compact subset of X, we put

L)= inf h
ax(l) =, dof_, cx(h)

where h runs over all singular Hermitian metrics on L such that ©r, 5, > 0.

In algebraic geometry it is more usual to look instead at linear systems defined
by a family of linearly independent sections og,01,...,0n € H(X,L®™). We
denote by X the vector subspace generated by these sections and by

2| = P(2) C |mL| = P(H°(X,L®™))

the corresponding linear system (not necessarily complete). Such an (N + 1)-tuple
o = (0j)ogj<n of sections defines a singular Hermitian metric h on L by putting
in any trivialization
€17 _ o le?
1/m 2/m
(3, lo;2)) ™ o)l

€l = for £ € L.;

hence h(z) = |o(2)|~%/™ with
p(z) = = log |o(2) 710gz |oj (2

as the associated weight function. Therefore, we are interested in the number
cx(|lo|72/™). In the case of a single section oy (corresponding to a linear sys-
tem containing a single divisor) this is the same as the log canonical threshold
let g (X , mle), where D is a divisor corresponding to oyg. We will also use the
formal notation lct x (X, m~*|%[) in the case of a higher-dimensional linear system
|X| C |mL].

Now, recall that the line bundle L is said to be big if the Kodaira—Iitaka dimen-
sion k(L) equals n = dimg(X). The main result of this appendix is the following
theorem.

Theorem A.3. Let L be a big bundle on a compact compler manifold X. Then
for every compact set K in X we have

1
ag(L)= inf cxg(h)= inf inf lctg (X, D).
{h,©r r=0} meZso De|mL| m
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Observe that the inequality

1
inf inf letg (X, D> > inf ¢k (h),
meZ=o DE|mL| m {h,©1,,=>0}

is trivial since any divisor D € |mL]| gives rise to a singular Hermitian metric h.
The converse inequality will follow from the approximation technique of [63] and
some elementary analysis. The proof is parallel to the proof of Theorem 4.2 in [21],
although the language used there was somewhat different. In any case, we use again
the crucial concept of multiplier ideal sheaves: if h is a singular Hermitian metric
with local plurisubharmonic weight ¢, the multiplier ideal sheaf . (h) C Ox (also
denoted by Z(¢)) is the ideal sheaf defined by

F(h), = {f € Ox,, | there exists a neighbourhood V' 5 2z

such that / |f (z)[2e 2@ dA(z) < —I—oo},
%

where ) is the Lebesgue measure. By Nadel (see [20]), this is a coherent analytic
sheaf on X. Theorem A.3 has a more precise version which can be stated as follows.

Theorem A.4. Let L be a line bundle on a compact complex manifold X possessing
a singular Hermitian metric h with O p > ew for some € > 0 and some smooth
positive-definite Hermitian (1,1)-form w on X. For every real number m > 0,
consider the space 3, = H°(X,L®™ ® #(h™)) of holomorphic sections o of L™
on X such that

/ lo|2.. dV, :/ (0[26=2m% 4V, < +o0,
X X

where dV,, = (m!)~1w™ is the Hermitian volume form. Then for m > 1, J,, is
a non-zero finite-dimensional Hilbert space, and one can consider the closed positive
(1,1)-current

_ gl L 2) _ L a5( 2
Tn = or aa(zm log%]gm”“' ) ~or aa<2m

where (gm.k)1<k<N(m) 5 an orthonormal basis of H;,. The following statements
hold.

(i) For every trivialization L|; ~ U x C on a coordinate open set U of X and
every compact set K C U there are constants C1,Cy > 0 independent of m and ¢
such that

2) + @L,h7

C
w(Z)—*l\wm -—fIOgZIka < sup o(x) + Elog—

|z—z|<r

forevery z € K andr < (1/2)d(K,0U). In particular, 1, converges to ¢ pointwise
and in the Li, -topology on © as m — +o00; hence T,, converges weakly to T = O, p.
(ii) The Lelong numbers v(T, z) = v(p, 2) and v(T,, z2) = v(¢m, z) are related by

v(T,z) —n/m < v(Ty,z) <v(T,z) for every z € X.
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(iii) For every compact set K C X the complex singularity exponents of the
metrics given locally by h = e™2% and h,, = e~ 2¥™ satisfy

e (M)t —=m™ e (hp) ™t <ex(h)h

Proof. The major part of the proof is a small variation of the arguments already
explained in [63] (see also [21], Theorem 4.2). We give them here in detail for the
convenience of the reader.

(i) We note that Y |gm.k(2)|? is the square of the norm of the evaluation linear
form o +— o(z) on .7, hence

Ym(z) = sup llog|o'(z)|,

c€B(1) M

where B(1) is the unit ball of 77;,. For r < (1/2) d(K, 992) the mean value inequality
applied to the plurisubharmonic function |o|? implies that

1 / 9
S S o (2)]” dA(z)
7Tn7a2n/n! |z—z|<r

exp(2m  sup go(x))/|a|2e*2m“’d)\.
Q

~
2
mhr n/nl lr—z|<r

o (2)[?

If we take the supremum over all ¢ € B(1), then we get that

1

log ———
s w2 nl’

Um(2) < sup p(x) +

|x—z|<r 2m
and the right-hand inequality in (i) is proved. Conversely, the Ohsawa—Takegoshi
extension theorem [71], [72] applied to the O-dimensional subvariety {z} C U shows
that for any a € C there is a holomorphic function f on U such that f(z) = a and

/ |f|2672m<p d\ < C3|a‘2672m<p(z),
U

where C3 depends only on n and diam(U). Now if a remains in a compact set
K C U, we can use a cut-off function § with support in U and equal to 1 in a neigh-
bourhood of a, and solve the d-equation in the L? space associated with the weight
2mp+2(n+1)log |z —al, that is, the singular Hermitian metric h(z)™|z —a|~2("+1)
on L®™, For this, we apply the standard Andreotti—Vesentini-Hoérmander L? esti-
mates (see, for instance, [73] for the required version). This is possible for m > my
thanks to the hypothesis that ©r 5 > ew > 0 even if X is non-Kéhler (X is in any
event a Moishezon variety from our assumptions). The bound mg depends only
on € and the geometry of a finite covering of X by compact sets K; C U;, where
the U; are coordinate balls (say); it is independent of the point a and even of the
metric h. It follows that g(a) = 0, and therefore 0 = 6 f — g is a holomorphic section
of L®™ such that

/ o]l dVL, :/ lo[fe™m dV,, < 04/ |[f[Pe2m¢ dV,, < Cs|al?e=2me(),
X X U
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in particular, o € 7, = H°(X, L®™ @ .#(h™)). We fix a such that the right-hand
side of the latter inequality is 1. This gives the inequality

log C5
2m

)

Ym(z) > - logla] = o(2) -

which is the left-hand part of statement (i).
(ii) The first inequality in (i) implies that v(¢.,,2) < v(p,z). In the opposite
direction, we find that

1 C
Sup U(z) < sup p(x) + - log 2
|lx—z|<r |lx—z|<2r m r
We divide by logr < 0 and take the limit as r tends to 0. The quotient by logr
of the supremum of a plurisubharmonic function over B(z,r) tends to the Lelong
number at x. Thus we obtain
n

V(‘/’max) 2”(90755)_*'

m

(iii) Again, the first inequality in (i) immediately yields h,, < Cgh, hence
¢k (hm) = ck (h). Since we have c|j g, (h) = min; cg; (h), for the converse inequal-
ity we can assume without loss of generality that K is contained in a trivializing
open patch U of L. Let us take ¢ < ¢x(%,). Then by definition, if V' C X is
a sufficiently small open neighbourhood of K, then the Holder inequality for the
conjugate exponents p = 1+mc~! and ¢ = 1+m !¢ implies, thanks to the equality
L — ¢ “that

P mq’
1/p
/62(m/P)<Pde:/< Z |gm,k|2€2m@>
\4 VN 1<k<N(m)
x( 3

—c/(mq)
gm,k|2) de
1<k<N(m)
(L.

1/p
|gm,k |26_2m¢ de)

1<k<N (m)
—c/m 1/q
(LT ) )
VN 1<k<N(m)
—c/m 1/q
:N(m)l/p(/< Z |gm7k|2> de> < +o0.
VN 1<k<N(m)

From this we infer cx(h) = m/p, that is, cx(h)™! < p/m = 1/m + ¢!, Since
¢ < ck () was arbitrary, we get that cx(h)™' < 1/m + cx(hy,) ™!, and the
inequalities of (iii) are proved.

Proof of Theorem A.3. Given a big line bundle L on X, there exists a modification
p: X — X of X such that X is projective and

p (L)~ A+ E,
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where A is an ample divisor and E an effective divisor with rational coefficients.
By pushing forward by p a smooth metric h4 with positive curvature on A, we get
a singular Hermitian metric A; on L such that

OrLhy = POan, = cw

on X. Then for any 6 > 0 and any singular Hermitian metric » on L with ©p, ; > 0,
the interpolated metric hs = h‘lshl_‘S satisfies ©r, ; = dew. Since hy is bounded
away from 0, it follows that cx(h) > (1 — 0)ck (hs) by monotonicity. By Theo-
rem A.4 (iii) applied to hs we infer that

CK(h(;) = ml_ig_loo CK(hé,m)a

and we also have )
ci (hsm) = letg (D5,m>
m

for any divisor Ds ,,, associated with a section o € H*(X, L®™ @ . (h}")), since the

metric A, is given by
-1
— 2 m
hts,m - Z |gm,k:|
k

for an orthonormal basis of such sections. This clearly implies that

\

1 1
¢k (h) = liminf liminf lct gk (D(;m) > inf inf letg (D),
5—0 m——+oo m ' me&Zso De|mL]| m

and Theorem A.3 is proved.

In the applications, it is frequent to have a finite or compact group G of auto-
morphisms of X and to look at G-invariant objects, namely, G-equivariant metrics
on G-equivariant line bundles L; in the case of a reductive algebraic group G we
simply consider a compact real form G® instead of G itself.

One then gets an « invariant ag (L) by looking only at G-equivariant metrics
in Definition A.2. All constructions made are then G-equivariant, in particular,
Hon C |mL| is a G-invariant linear system. For every G-invariant compact set K
in X, we thus infer that

L) = inf h
aG’K( ) {h is G-equvzg"liant, @L,h>0}CK( )

1

= inf inf let g ( |E|> (A1)
meZso |S|C|lmL|,XC=% m

When G is a finite group, one can pick for large enough m a G-invariant divisor

Ds , associated with a G-invariant section o, possibly after multiplying m by the

order of G. One then gets the slightly simpler equality

1
@ L)= inf inf letg | —D |. A2

G’K( ) m€Zso DE|mL|C K(m ) ( )
In a similar manner, one can work on an orbifold X rather than on a non-singular
variety. The L? techniques work in this setting with almost no change (L? estimates
are essentially insensitive to singularities, since one can just use an orbifold metric
on the open set of regular points).
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Appendix B. The big table

This appendix contains the list of non-singular Fano threefolds. We follow
the notation and the numbering of [2], [50], and [51]. We also assume the
following conventions. The symbol V; denotes a smooth Fano threefold such
that —Kx ~ 2H and Pic(V;) = Z[H], where H is a Cartier divisor on V; and
H? = 8i € {8,16,...,40}. The symbol W denotes a (smooth) divisor of bidegree
(1,1) on P2 x P2 (or, which is the same, the variety P(Tpz)). The symbol V7 denotes
a blow-up of P3 at a point (or, which is the same, the variety P(0pz @ Op2(1))). The
symbol @) denotes a smooth quadric threefold. The symbol S; denotes a smooth
del Pezzo surface such that Kgi =i {l,...,8}, where Sg % P! x PL.

The fourth column of Table 1 contains the values of the global log canonical
thresholds of the corresponding Fano varieties. The symbol * near a number means
that let(X) is calculated for a general X with given deformation type. If we know
only an upper bound lct(X) < «, then we write < « instead of the exact value
of let(X), and the symbol ‘?” means that we do not know any reasonable upper
bound (apart from the trivial let(X) < 1).

Table 1: Smooth Fano threefolds

IX) | -K% Brief description let(X)
1.1 2 a hypersurface of degree 6 in P(1,1,1,1,3) 1x
1.2 4 a hypersurface of degree 4 in P* or a double cover of a quadric ?
in P* branched over a surface of degree 8

1.3 6 a complete intersection of a quadric and a cubic in P® ?

1.4 8 a complete intersection of three quadrics in P° ?

1.5 10 a section of Gr(2,5) C P? by a quadric and a linear subspace ?
of dimension 7

1.6 12 a section of the Hermitian symmetric space M = G/P C P*® ?
of type DIII by a linear subspace of dimension 8

1.7 14 a section of Gr(2,6) C P** by a linear subspace of codimen- ?
sion 5

1.8 16 | asection of the Hermitian symmetric space M = G/P Cc P*¥ | < 6/7
of type CI by a linear subspace of dimension 10

1.9 18 a section of the 5-dimensional rational homogeneous contact <4/5
manifold G2/P C P'® by a linear subspace of dimension 11
1.10 22 the zero locus of three sections of the rank-3 vector bundle | < 2/3
A? 2, where 2 is the universal quotient bundle on Gr(7,3)

1.11 8 Vi, that is, a hypersurface of degree 6 in P(1,1,1,2,3) 1/2
1.12 16 Va, that is, a hypersurface of degree 4 in P(1,1,1,1,2) 1/2
1.13 24 V3, that is, a hypersurface of degree 3 in P* 1/2
1.14 32 Vi, that is, a complete intersection of two quadrics in P° 1/2

1.15 40 Vs, that is, a section of Gr(2,5) C PY by a linear subspace of 1/2
codimension 3

1.16 54 Q, that is, a hypersurface of degree 2 in P* 1/3
117 | 64 | P3 1/4
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2.1 4 a blow-up of the Fano threefold Vi along an elliptic curve 1/2
that is an intersection of two divisors from |—% Kvl‘

2.2 6 a double cover of P! x P? whose branch locus is a divisor of | < 13/14
bidegree (2,4)

2.3 8 the blow-up of the Fano threefold V2 along an elliptic curve 1/2
that is an intersection of two divisors from |3 K, |

2.4 10 the blow-up of P® along an intersection of two cubics 3/4%

2.5 12 the blow-up of Vs C P* along a plane cubic 1/2x

2.6 12 | a divisor on P? x P? of bidegree (2,2) or a double cover of ?
W whose branch locus is a surface in |—Kyw|

2.7 14 the blow-up of @ along the intersection of two divisors from <2/3
100 (2)|

2.8 14 | adouble cover of V7 whose branch locus is a surface in |— Ky | 1/2x

2.9 16 the blow-up of P? along a curve of degree 7 and genus 5 < 3/4
which is an intersection of cubics

2.10 16 the blow-up of V4 C P° along an elliptic curve which is an 1/2«
intersection of two hyperplane sections

2.11 18 | the blow-up of V3 along a line 1/2x

2.12 20 the blow-up of P? along a curve of degree 6 and genus 3 < 3/4
which is an intersection of cubics

2.13 20 the blow-up of @ C P* along a curve of degree 6 and genus <2/3
2

2.14 20 the blow-up of Vs C P° along an elliptic curve which is an 1/2x
intersection of two hyperplane sections

2.15 22 the blow-up of P* along the intersection of a quadric and a 1/2%
cubic section

2.16 22 the blow-up of V4 C P® along a conic <1/2

2.17 24 the blow-up of @ C P* along a normal elliptic curve of | < 2/3
degree 5

2.18 24 a double cover of P! x P? whose branch locus is a divisor of 1/2
bidegree (2,2)

2.19 26 the blow-up of V4 C P? along a line 1/2x

2.20 26 the blow-up of Vs C P® along a twisted cubic <1/2

2.21 28 the blow-up of Q@ C P* along a normal rational quartic <2/3

2.22 30 the blow-up of V5 C P° along a conic <1/2

2.23 30 the blow-up of @ C P* along a curve of degree 4 that 1/3%
is an intersection of a surface in ’ﬁﬂ»4(1)|Q} and a surface
in |Opa (2)|o]

2.24 30 | a divisor on P? x P? of bidegree (1,2) 1/2x

2.25 32 the blow-up of P along an elliptic curve which is an inter- 1/2
section of two quadrics

2.26 34 | the blow-up of V5 C P® along a line 1/2x

2.27 38 the blow-up of P? along a twisted cubic 1/2

2.28 40 the blow-up of P? along a plane cubic 1/4
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2.29 40 the blow-up of @ C P* along a conic 1/3
2.30 46 the blow-up of P> along a conic 1/4
2.31 46 the blow-up of Q@ C P* along a line 1/3
2.32 48 W, that is, a divisor on P? x P? of bidegree (1, 1) 1/2
2.33 54 the blow-up of P? along a line 1/4
234 | 54 | P'xP? 1/3
235 | 56 | Vi X P(Ope ® Op(1)) 1/4
236 | 62 | P(Gp ® Op2(2)) 1/5
3.1 12 a double cover of P* x P! x P' branched in a divisor of tride- 3/4%
gree (2,2,2)
3.2 14 | a divisor in the P*-bundle P(Op1,p1 & Opryp (—1,—1) & | 1/2%
Op1 w1 (=1, —1)) such that X € |L®2®@0p1 yp1(2,3)|, where L
is the tautological line bundle
3.3 18 | a divisor on P* x P! x P? of tridegree (1, 1,2) 2/3%
34 18 | the blow-up of the Fano threefold Y with J(Y') = 2.18 along 1/2
a smooth fibre of the composition Y — P! x P? — P? of the
double cover and the projection
3.5 20 the blow-up of P! x P? along a curve C of bidegree (5,2) such 1/2x
that the composition C' — P! x P? — P? is an embedding
3.6 22 the blow-up of P® along a disjoint union of a line and a 1/2x
normal elliptic curve of degree 4
3.7 24 the blow-up of the threefold W along an elliptic curve that 1/2%
is an intersection of two divisors from |—3 K|
3.8 24 | adivisor in [(aom1)* (Op2(1)) @75 (Op2(2))|, where 71 : F1 X 1/2x
P? — %, and m2: .F) xP? — P? are projections and o: .F; —
P? is a blow-up of a point
3.9 26 the blow-up of a cone Wy C PS over the Veronese surface 1/3
R4 C P® with centre in the disjoint union of the vertex and
a quartic in Ry = P?
3.10 26 the blow-up of Q@ C P* along a disjoint union of two conics 1/2
3.11 28 the blow-up of the threefold V7 along an elliptic curve that 1/2
is an intersection of two divisors from |—1 K|
3.12 28 the blow-up of P? along a disjoint union of a line and 1/2
a twisted cubic
3.13 30 the blow-up of W C P? x P? along a curve C of bidegree
(2,2) such that 7 (C) C P? and 72(C) C P? are irreducible
conics, where 71 : W — P? and 72: W — P? are the natural
projections < 1/2
3.14 32 the blow-up of P? along a disjoint union of a plane cubic 1/2
curve lying in a plane TT C P? and a point outside TT
3.15 32 the blow-up of Q C P* along a disjoint union of a line and 1/2
a conic
3.16 34 the blow-up of V7 along a proper transform via the blow-up 1/2
a: Vi — P of a twisted cubic passing through the centre of
the blow-up «
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3.17 36 | a divisor on P! x P* x P? of tridegree (1,1,1) 1/2

3.18 36 the blow-up of P? along a disjoint union of a line and a conic 1/3

3.19 38 the blow-up of @ C P* at two non-collinear points 1/3

3.20 38 the blow-up of Q@ C P* along a disjoint union of two lines 1/3

3.21 38 | the blow-up of P* x P? along a curve of bidegree (2,1) 1/3

3.22 40 the blow-up of P* x P? along a conic in a fibre of the projec- 1/3
tion P! x P? — P!

3.23 42 the blow-up of V7 along a proper transform via the blow-up 1/4
a: Vy — IP? of an irreducible conic passing through the centre
of the blow-up «

3.24 | 42 | W xp2 Fi,where W — P? is a P'-bundle and F; — P? is 1/3
a blow-up of a point

3.25 44 the blow-up of P* along a disjoint union of two lines 1/3

3.26 46 the blow-up of P? along a disjoint union of a point and a line 1/4

3.27 | 48 | P! x P! x P! 1/2

3.28 | 48 | P'x T, 1/3

3.29 50 the blow-up of the Fano threefold V7 along a line in E = P?, 1/5
where E is the exceptional divisor of the blow-up Vy — P?

3.30 50 the blow-up of V7 along the proper transform via the blow-up 1/4
a: Vs — P2 of a line passing through the centre of the
blow-up «

3.31 52 the blow-up of a cone over a smooth quadric in P? at the 1/3
vertex

4.1 24 a divisor on P* x P* x P' x P! of multidegree (1,1,1,1) 1/2

4.2 28 the blow-up of the cone over a smooth quadric S C P® along 1/2
a disjoint union of the vertex and an elliptic curve in S

4.3 30 the blow-up of P! x P* x P! along a curve of tridegree (1,1, 2) 1/2

4.4 32 | the blow-up of the smooth Fano threefold Y with 3(Y) = 3.19 1/3
along the proper transform of a conic on the quadric Q C P*
that passes through both centres of the blow-up ¥ — @

4.5 32 | the blow-up of P* x P? along a disjoint union of two irre- 3/7
ducible curves of bidegree (2, 1) and (1,0)

4.6 34 the blow-up of P? along a disjoint union of three lines 1/2

4.7 36 the blow-up of W C P? x P? along a disjoint union of two 1/2
curves of bidegrees (0,1) and (1,0)

4.8 38 | the blow-up of P* x P* x P! along a curve of tridegree (0,1, 1) 1/3

4.9 40 | the blow-up of the smooth Fano threefold Y with 3(Y") = 3.25 1/3
along a curve contracted by the blow-up Y — P3

410 | 42 | P'xS; 1/3

4.11 44 the blow-up of P! x T, along a curve C' & P! such that C lies 1/3
in a fibre F' = [Fy of the projection P'xF;, - P'and C-C =
—lon F

4.12 46 | the blow-up of the smooth Fano threefold Y with 3(Y) = 2.33 1/4
along two curves that are contracted by the blow-up ¥ — P?
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4.13 26 | the blow-up of P! x P! x P* along a curve of tridegree (1,1, 3) 1/2x

5.1 28 | the blow-up of the smooth Fano threefold Y with J(Y') = 2.29 1/3
along three curves contracted by the blow-up ¥ — @
5.2 36 | the blow-up of the smooth Fano threefold Y with 1(Y) = 1/3
3.25 along two curves C1 # Cs contracted by the blow-up
©: Y — P? and lying in the same exceptional divisor of the

blow-up ¢
5.3 36 | P! x Sg 1/2
5.4 30 | P'x Ss 1/2
5.5 24 | P x Sy 1/2
5.6 18 | P! xS 1/2
5.7 12 | P xS, 1/2
5.8 6 | P'xS 1/2

Bibliography

[1] J. Kolldr, “Singularities of pairs”, Algebraic geometry (Santa Cruz, 1995), Proc. Sympos.
Pure Math., vol. 62, Amer. Math. Soc., Providence, RI 1997, pp. 221-287.

[2] V. Iskovskikh and Yu. Prokhorov, “Fano varieties”, Algebraic geometry, vol. V,
Encyclopaedia Math. Sci., vol. 47, Springer, Berlin 1999, pp. 1-245.

(3] G. Tian, “On Kihler-Einstein metrics on certain Kahler manifolds with ¢i (M) > 07,
Invent. Math. 89 (1987), 225-246.

[4] Q. Zhang, “Rational connectedness of log Q-Fano varieties”, J. Reine Angew. Math. 590
(2006), 131-142.

[5] 1. A. Yenbuos, “Jlor-kaHoHUYeCKHe MOPOrW Ha THIleproBepxHocTax”’, Mamem. c6.

192:8 (2001), 155-172; English transl., I. A. Chel’tsov, “Log canonical thresholds on
hypersurfaces”, Sb. Math. 192:8 (2001), 1241-1257.

[6] Jun-Muk Hwang, “Log canonical thresholds of divisors on Fano manifolds of Picard
rank 1”7, Compos. Math. 143:1 (2007), 89-94.

[7] A.B. Ilyxnmkos, “BupanuonanpHas reoMeTpust IpsIMBIX nponssenenuit Pano”, Hse. PAH.
Cep. mamem. 69:6 (2005), 153-186; English transl., A. V. Pukhlikov, “Birational geometry
of Fano direct products”, Izv. Math. 69:6 (2005), 1225-1255.

[8] I. Cheltsov, J. Park, and J. Won, Log canonical thresholds of certain Fano hypersurfaces,
arXiv: 0706.0751v1, 2007.

[9] A.R. Iano-Fletcher, “Working with weighted complete intersections”, Exzplicit birational
geometry of 3-folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ.
Press, Cambridge 2000, pp. 101-173.

[10] J.M. Johnson and J. Kolldr, “Fano hypersurfaces in weighted projective 4-spaces”,
Ezperiment. Math. 10:1 (2001), 151-158.

[11] I. Cheltsov, “Fano varieties with many selfmaps”’, Adv. Math. 217:1 (2008), 97-124.

[12] T. A. Yenbnos, “DKcTpeMasibHBIE METPHKH Ha AByX MHOroobpasusx Pano”’, Mamem.
6. (to appear). [I. A. Cheltsov, “Extremal metrics on two Fano varieties”, Mat. Sb. (to
appear).|

[13] U.A. Yenbuos, “/Isoitable npocrpancTsa ¢ ocobennocramu’, Mamem. c6. 199:2 (2008),
131-148; English transl., I. A. Cheltsov, “Double spaces with isolated singularities”, Sb.
Math. 199:2 (2008), 291-306.

[14] I. Cheltsov, “Log canonical thresholds of del Pezzo surfaces”, Geom. Funct. Anal. (to
appear).

[15] M. Furushima, “Singular del Pezzo surfaces and analytic compactifications of 3-dimensional
complex affine space C3”, Nagoya Math. J. 104 (1986), 1-28.


http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0905.14002
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0905.14002
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0912.14013
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0912.14013
http://dx.doi.org/10.1007/BF01389077
http://dx.doi.org/10.1007/BF01389077
http://dx.doi.org/10.1515/CRELLE.2006.006
http://dx.doi.org/10.1515/CRELLE.2006.006
http://mi.mathnet.ru/eng/sm591
http://mi.mathnet.ru/eng/sm591
http://dx.doi.org/10.1070/SM2001v192n08ABEH000591
http://dx.doi.org/10.1070/SM2001v192n08ABEH000591
http://dx.doi.org/10.1112/S0010437X06002454
http://dx.doi.org/10.1112/S0010437X06002454
http://mi.mathnet.ru/eng/im671
http://mi.mathnet.ru/eng/im671
http://dx.doi.org/10.1070/IM2005v069n06ABEH002300
http://dx.doi.org/10.1070/IM2005v069n06ABEH002300
http://arxiv.org/abs/0706.0751
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0960.14027
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0960.14027
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0960.14027
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0972.14034
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0972.14034
http://dx.doi.org/10.1016/j.aim.2007.06.010
http://mi.mathnet.ru/eng/sm4519
http://mi.mathnet.ru/eng/sm4519
http://mi.mathnet.ru/eng/sm3844
http://mi.mathnet.ru/eng/sm3844
http://dx.doi.org/10.1070/SM2008v199n02ABEH003920
http://dx.doi.org/10.1070/SM2008v199n02ABEH003920
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0612.14037
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0612.14037

956
[16]

(17]
18]

[19]
[20]

[21]

22]
23]

[24]

[23]
[26]
[27]
[28]
[29]
130]
[31]
[32]
[33]
[34]
[35]
136]
1371

(38]

[39]

[40]

[41]

I. A. Chel’tsov and K. A. Shramov

J.W. Bruce and C.T.C. Wall, “On the classification of cubic surfaces”, J. London Math.
Soc. (2) 19:2 (1979), 245-256.

I. Cheltsov, On singular cubic surfaces, arXiv: 0706.2666, 2007.

G. Tian, “On a set of polarized Kéahler metrics on algebraic manifolds”, J. Differential
Geom. 32:1 (1990), 99-130.

I. Dolgachev and V. Iskovskikh, Finite subgroups of the plane Cremona group, arXiv:
math/0610595v3, 2006.

A.M. Nadel, “Multiplier ideal sheaves and Kéahler—Einstein metrics of positive scalar
curvature”, Ann. of Math. (2) 132:3 (1990), 549-596.

J.-P. Demailly and J. Kolldr, “Semi-continuity of complex singularity exponents and
Kihler-Einstein metrics on Fano orbifolds”, Ann. Sci. Ecole Norm. Sup. (4) 34:4 (2001),
525-556.

T. Aubin, “Equations du type Monge—Ampere sur les variétés kihlériennes compactes”,
Bull. Sci. Math. (2) 102:1 (1978), 63-95.

S.T. Yau, “On the Ricci curvature of a compact Kéahler manifold and the complex
Monge-Ampere equation. I”, Comm. Pure Appl. Math. 31:3 (1978), 339-411.

S.T. Yau, “Review on Kaéhler—Einstein metrics in algebraic geometry”, Proceedings of the
Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf.
Proc., vol. 9, Bar-Ilan Univ., Ramat Gan 1996, pp. 433-443.

Y. Matsushima, “Sur la structure du groupe d’homéomorphismes analytiques d’une
certaine variété kéhlérienne”, Nagoya Math. J. 11 (1957), 145-150.

M. Liibke, “Stability of Einstein—Hermitian vector bundles”, Manuscripta Math. 42:2—3
(1983), 245-257.

A. Futaki, “An obstruction to the existence of Einstein—K&hler metrics”, Invent. Math.
73:3 (1983), 437-443.

A. Steffens, “On the stability of the tangent bundle of Fano manifolds”, Math. Ann. 304:4
(1996), 635-643.

T. Mabuchi, “Einstein—Kahler forms, Futaki invariants and convex geometry on toric Fano
varieties”, Osaka J. Math. 24 (1987), 705-737.

V. Batyrev and E. Selivanova, “Einstein—K&hler metrics on symmetric toric Fano
manifolds”, J. Reine Angew. Math. 512 (1999), 225-236.

Xu-Jia Wang and Xiaohua Zhu, “Ké&hler—Ricci solitons on toric manifolds with positive
first Chern class”, Adv. Math. 188:1 (2004), 87-103.

B. Nill, “Complete toric varieties with reductive automorphism group”, Math. Z. 252:4
(2006), 767-786.

G. Tian, “On Calabi’s conjecture for complex surfaces with positive first Chern class”,
Invent. Math. 101:1 (1990), 101-172.

H. Matsumura and P. Monsky, “On the automorphisms of hypersurfaces”, J. Math. Kyoto
Univ. 3 (1964), 347-361.

C. Arezzo, A. Ghigi, and G. Pirola, “Symmetries, quotients and Kahler—Einstein metrics”,
J. Reine Angew. Math. 591 (2006), 177-200.

J. Park, “Birational maps of del Pezzo fibrations”, J. Reine Angew. Math. 538 (2001),
213-221.

A. Corti, “Del Pezzo surfaces over Dedekind schemes”, Ann. of Math. (2) 144:3 (1996),
641-683.

. A. Yenbuos, “Buparnponanbro »xkecrkue MHOroobpasust Pauno”, YMH 60:5 (2005),
71-160; English transl., I. A. Chel’tsov, “Birationally rigid Fano varieties”, Russian Math.
Surveys 60:5 (2005), 875-965.

C. Birkar, P. Cascini, C. Hacon, and J. McKernan, Ezistence of minimal models for
varieties of log general type, arXiv: math/0610203, 2006.

B. B. Illokypos, “Tpexmepnsie nornepecrpoiikn’, Hss. PAH. Cep. mamem. 56:1 (1992),
105—203; English transl., V. V. Shokurov, “3-fold log flips”, Russian Acad. Sci. Izv. Math.
40:1 (1993), 875-965.

J. Kollar and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in
Math., vol. 134, Cambridge Univ. Press, Cambridge 1998.


http://dx.doi.org/10.1112/jlms/s2-19.2.245
http://dx.doi.org/10.1112/jlms/s2-19.2.245
http://arXiv.org/abs/0706.2666
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0706.53036
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0706.53036
http://arxiv.org/abs/math/0610595v3
http://arxiv.org/abs/math/0610595v3
http://dx.doi.org/10.2307/1971429
http://dx.doi.org/10.2307/1971429
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0994.32021
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0994.32021
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0994.32021
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0374.53022
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0374.53022
http://dx.doi.org/10.1002/cpa.3160310304
http://dx.doi.org/10.1002/cpa.3160310304
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0855.32014
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0855.32014
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0855.32014
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0091.34803
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0091.34803
http://dx.doi.org/10.1007/BF01169586
http://dx.doi.org/10.1007/BF01169586
http://dx.doi.org/10.1007/BF01388438
http://dx.doi.org/10.1007/BF01388438
http://dx.doi.org/10.1007/BF01446311
http://dx.doi.org/10.1007/BF01446311
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0661.53032
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0661.53032
http://dx.doi.org/10.1515/crll.1999.054
http://dx.doi.org/10.1515/crll.1999.054
http://dx.doi.org/10.1016/j.aim.2003.09.009
http://dx.doi.org/10.1016/j.aim.2003.09.009
http://dx.doi.org/10.1007/s00209-005-0880-z
http://dx.doi.org/10.1007/s00209-005-0880-z
http://dx.doi.org/10.1007/BF01231499
http://dx.doi.org/10.1007/BF01231499
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0141.37401
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0141.37401
http://dx.doi.org/10.1515/CRELLE.2006.018
http://dx.doi.org/10.1515/CRELLE.2006.018
http://dx.doi.org/10.1515/crll.2001.066
http://dx.doi.org/10.1515/crll.2001.066
http://dx.doi.org/10.2307/2118567
http://dx.doi.org/10.2307/2118567
http://mi.mathnet.ru/eng/rm1643
http://mi.mathnet.ru/eng/rm1643
http://dx.doi.org/10.1070/RM2005v060n05ABEH003736
http://dx.doi.org/10.1070/RM2005v060n05ABEH003736
http://arXiv.org/abs/math/0610203
http://mi.mathnet.ru/eng/im960
http://mi.mathnet.ru/eng/im960
http://dx.doi.org/10.1070/IM1993v040n01ABEH001862
http://dx.doi.org/10.1070/IM1993v040n01ABEH001862
http://dx.doi.org/10.2277/0521632773
http://dx.doi.org/10.2277/0521632773

[42]

[43]

[44]

[45]
[46]
[47]

[48]

[49]

[50]
[51]

(52]

153
[54]
[53]
[56]

[57]

(58]
[59]
[60]
[61]
[62]
[63]
[64]

(65]

Log canonical thresholds 957

1O. 1. Manwun, “PanuoHajbible TOBEPXHOCTU HAJL COBEpIIeHHbIMU nojsmu. 117, Mamem. c6.
72(114):2 (1967), 161-192; English transl., Yu.I. Manin, “Rational surfaces over perfect
fields. 117, Math. USSR Sb. 1:2 (1967), 141-169.

A.V. Pukhlikov, “Birational automorphisms of Fano hypersurfaces”’, Invent. Math. 134:2
(1998), 401-426.

B. A. Uckosckux, “Bupannonanbabie aBTOMOP(U3MBI TPEXMEPHBIX aIredpanvecKux
MHoroobpaszuit”, torn Hayku u rexuuku. CoppeM. npobs. marem., 12, BUHUTH,
M. 1979, 159-236; English transl., V. A. Iskovskikh, “Birational automorphisms of

three-dimensional algebraic varieties”, J. Math. Sci. (N.Y.) 13:6 (1980), 815-868.

J. Kollar, “Birational rigidity of Fano varieties and field extensions”, Tp. MAH, 264,
2009 (to appear). [J. Kollar, Tr. Mat. Inst. Steklova, vol. 264, 2009 (to appear).]

A. Corti, A. Pukhlikov, and M. Reid, “Fano 3-fold hypersurfaces”’, London Math. Soc.
Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge 2000, pp. 175-258.

I. Cheltsov and J. Park, “Weighted Fano threefold hypersurfaces”, J. Reine Angew. Math.
600 (2006), 81-116.

B. A. Uckosckux, “Tpexmepubie muoroobpasus ®auno. 17, Uze. AH CCCP. Cep. mamenm.
41:3 (1977), 516-562; English transl., V. A. Iskovskikh, “Fano 3-folds. I, Math. USSR-Izv.
11:3 (1977), 485-527.

B. A. Hckogsckux, “Tpexmepubie Maorooopasus ®@ano. 117, Wsze. AH CCCP. Cep. mamem.
42:3 (1978), 504-549; English transl., V. A. Iskovskikh, “Fano 3-folds. II”, Math.
USSR-Izv. 12:3 (1978), 469-506.

S. Mori and S. Mukai, “Classification of Fano 3-folds with Ba > 2", Manuscripta Math.
36:2 (1981), 147-162.

S. Mori and S. Mukai, “Erratum: ‘Classification of Fano 3-folds with By > 2’7,
Manuscripta Math. 110:3 (2003), 407.

S. Mori and S. Mukai, “On Fano 3-folds with By > 27, Algebraic varieties and analytic
varieties (Tokyo, 1981), Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam 1983,
pp. 101-129.

R. Lazarsfeld, Positivity in algebraic geometry. 11. Positivity for vector bundles, and
multiplier ideals, Ergeb. Math. Grenzgeb. (3), vol. 49, Springer-Verlag, Berlin 2004.

E. Viehweg, Quasi-projective moduli for polarized manifolds, Ergeb. Math. Grenzgeb. (3),
vol. 30, Springer-Verlag, Berlin 1995.

J. Song, “The a-invariant on toric Fano threefolds”, Amer. J. Math. 127:6 (2005),
1247-1259.

W. Fulton, “Introduction to toric varieties”, The 1989 William H. Roever lectures in
geometry, Ann. of Math. Stud., vol. 131, Princeton Univ. Press, Princeton, NJ 1993.
B.T. Capxkucos, “Buparuonanbubie aBToMopdu3Mbl pacciaoennii kouuk’, Mse. AH
CCCP. Cep. mamem. 44:4 (1980), 918-945; English transl., V. G. Sarkisov, “Birational
automorphisms of conic bundles”, Math. USSR-Izv. 17:1 (1981), 177-202.

M. Szurek and J. Wisniewski, “Fano bundles of rank 2 on surfaces”, Algebraic geometry
(Berlin, 1988), Compos. Math. 76:1-2 (1990), 295-305.

P. Jahnke, T. Peternell, and 1. Radloff, Threefolds with big and nef anticanonical
bundles. I, arXiv: 0710.2763, 2007.

P. Jahnke and T. Peternell, Almost del Pezzo manifolds, arXiv: math/0612516, 2006.
M. Furushima, “Singular Fano compactifications of C3. I”, Math. Z. 248:4 (2004), 709-723.

B. B. lllokypos, “CymecrBoBanue npsmoii na muoroobpasuu Pano”, Uze. AH CCCP.
Cep. mamem. 43:4 (1979), 922-964; English transl., V. V. Shokurov, “The existence of
a straight line on Fano 3-folds”, Math. USSR-Izv. 15:1 (1980), 173-209.

J.-P. Demailly, “Regularization of closed positive currents and intersection theory”,

J. Algebraic Geom. 1:3 (1992), 361-409.

J. Johnson and J. Kollar, “Kéhler-Einstein metrics on log del Pezzo surfaces in weighted
projective 3-spaces”, Ann. Inst. Fourier (Grenoble) 51:1 (2001), 69-79.

C. Boyer, K. Galicki, and J. Kolldr, “Einstein metrics on spheres”, Ann. of Math. (2) 162:1
(2005), 557-580.


http://mi.mathnet.ru/eng/sm4080
http://mi.mathnet.ru/eng/sm4080
http://dx.doi.org/10.1070/SM1967v001n02ABEH001972
http://dx.doi.org/10.1070/SM1967v001n02ABEH001972
http://dx.doi.org/10.1007/s002220050269
http://dx.doi.org/10.1007/s002220050269
http://mi.mathnet.ru/eng/intd35
http://mi.mathnet.ru/eng/intd35
http://mi.mathnet.ru/eng/intd35
http://dx.doi.org/10.1007/BF01084564
http://dx.doi.org/10.1007/BF01084564
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0960.14020
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0960.14020
http://dx.doi.org/10.1515/CRELLE.2006.087
http://dx.doi.org/10.1515/CRELLE.2006.087
http://mi.mathnet.ru/eng/im1823
http://mi.mathnet.ru/eng/im1823
http://dx.doi.org/10.1070/IM1977v011n03ABEH001733
http://dx.doi.org/10.1070/IM1977v011n03ABEH001733
http://mi.mathnet.ru/eng/im1778
http://mi.mathnet.ru/eng/im1778
http://dx.doi.org/10.1070/IM1978v012n03ABEH001994
http://dx.doi.org/10.1070/IM1978v012n03ABEH001994
http://dx.doi.org/10.1007/BF01170131
http://dx.doi.org/10.1007/BF01170131
http://dx.doi.org/10.1007/s00229-002-0336-2
http://dx.doi.org/10.1007/s00229-002-0336-2
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0537.14026
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0537.14026
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0537.14026
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1093.14500
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1093.14500
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0844.14004
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0844.14004
http://dx.doi.org/10.1353/ajm.2005.0043
http://dx.doi.org/10.1353/ajm.2005.0043
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0813.14039
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0813.14039
http://mi.mathnet.ru/eng/im1862
http://mi.mathnet.ru/eng/im1862
http://dx.doi.org/10.1070/IM1981v017n01ABEH001326
http://dx.doi.org/10.1070/IM1981v017n01ABEH001326
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0719.14028
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0719.14028
http://arxiv.org/abs/0710.2763
http://arXiv.org/abs/math/0612516
http://dx.doi.org/10.1007/s00209-004-0677-5
http://mi.mathnet.ru/eng/im1741
http://mi.mathnet.ru/eng/im1741
http://dx.doi.org/10.1070/IM1980v015n01ABEH001195
http://dx.doi.org/10.1070/IM1980v015n01ABEH001195
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0777.32016
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0777.32016
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0974.14023
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0974.14023
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1093.53044
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 1093.53044

958

[66]

(67]

(68]

[69]

[70]

[71]
[72]

[73]

I. A. Chel’tsov and K. A. Shramov

J.-P. Demailly, “Singular Hermitian metrics on positive line bundles”, Complez algebraic
varieties (Bayreuth, 1990), Lecture Notes in Math., vol. 1507, Springer, Berlin 1992,
pp. 87-104.

A. H. Bapuenko, “KoMIeKcHBIN TOKa3aTeIb OCOOEHHOCTH HE MEHSIETCS BIIOJIb CTpaTa [ =
const”, Qynry. anasus u ezo npua. 16:1 (1982), 1-12; English transl., A. N. Varchenko,
“The complex exponent of a singularity does not change along strata . = const”, Funct.
Anal. Appl. 16:1 (1982), 1-9.

A.H. Bapuenko, “O noJiyHENpepbIBHOCTH KOMILJIEKCHOIO TIOKa3aTessi ocobeHHocTn” , OyHKy,.
anasus u e2o npua. 17:4 (1983), 77-78; English transl., A.N. Varchenko, “Semicontinuity
of the complex singularity index”, Funct. Anal. Appl. 17:4 (1983), 307-309.

B.1. Aproaspa, C. M. I'yceiin-Bane, A. H. Bapuenko, Ocobennocmu dugpgepenyupyemoir
omobpastcernuti. I1. Monodpomus u acumnmomuxu unmeezparos, Hayka, M. 1984; English
transl, V.I. Arnol’d, S. M. Gusejn-Zade, and A.N. Varchenko, Singularities of differentiable
maps. vol. II. Monodromy and asymptotics of integrals, Monogr. Math., vol. 83, Birkh&user,
Boston 1988.

Y. T. Siu, “The existence of Kdhler—Einstein metrics on manifolds with positive
anticanonical line bundle and a suitable finite symmetry group”, Ann. of Math. (2)

127:3 (1988), 585—627.

T. Ohsawa and K. Takegoshi, “On the extension of L? holomorphic functions”, Math. Z.
195:2 (1987), 197-204.

T. Ohsawa, “On the extension of L? holomorphic functions. II”, Publ. Res. Inst. Math. Sci.
24:2 (1988), 265-275.

J.-P. Demailly, “Estimations L? pour lopérateur d d’un fibré vectoriel holomorphe

semi-positif au-dessus d’une variété kihlérienne complete”, Ann. Sci. Ecole Norm. Sup. (4)
15:3 (1982), 457-511.

I. A. Chel’tsov Received 26/JUL/08
Steklov Mathematical Institute, Translated by THE AUTHORS
Russian Academy of Sciences
E-mail: cheltsov@yahoo.com

K. A. Shramov

Steklov Mathematical Institute,
Russian Academy of Sciences
E-mail: shramov@mccme . ru


http://dx.doi.org/10.1007/BFb0094512
http://dx.doi.org/10.1007/BFb0094512
http://dx.doi.org/10.1007/BFb0094512
http://mi.mathnet.ru/eng/faa1590
http://mi.mathnet.ru/eng/faa1590
http://dx.doi.org/10.1007/BF01081801
http://dx.doi.org/10.1007/BF01081801
http://dx.doi.org/10.1007/BF01081801
http://mi.mathnet.ru/eng/faa1581
http://mi.mathnet.ru/eng/faa1581
http://dx.doi.org/10.1007/BF01076724
http://dx.doi.org/10.1007/BF01076724
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0545.58001
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0545.58001
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0659.58002
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0659.58002
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0659.58002
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0659.58002
http://dx.doi.org/10.2307/2007006
http://dx.doi.org/10.2307/2007006
http://dx.doi.org/10.2307/2007006
http://dx.doi.org/10.1007/BF01166457
http://dx.doi.org/10.1007/BF01166457
http://dx.doi.org/10.2977/prims/1195175200
http://dx.doi.org/10.2977/prims/1195175200
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0507.32021
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0507.32021
http://www.zentralblatt-math.org/zmath/search/?an=Zbl 0507.32021
mailto:cheltsov@yahoo.com
mailto:shramov@mccme.ru

	Contents
	1 Introduction
	2 Preliminaries
	3 Cubic surfaces
	4 Del Pezzo surfaces
	5 Toric varieties
	6 Del Pezzo threefolds
	7 Threefolds with Picard number $\rho=2$
	8 Fano threefolds with $\rho=3$
	9 Fano threefolds with $\rho\ge 4$
	10 Upper bounds
	Appendix A J.-P. Demailly. On Tian's invariant and log canonical thresholds
	Appendix B The big table
	Bibliography

