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UNSTABLE POLARIZED DEL PEZZO SURFACES

IVAN CHELTSOV AND JESUS MARTINEZ-GARCIA

Abstract. We provide new examples of K-unstable polarized smooth del
Pezzo surfaces using a flopped version first used by Cheltsov and Rubinstein
of the test configurations introduced by Ross and Thomas. As an application,
we provide new obstructions for the existence of constant scalar curvature
Kähler metrics on polarized smooth del Pezzo surfaces.

All varieties are assumed to be algebraic, projective, and defined over C.

1. Introduction

K-stability is an algebraic notion of polarized varieties which has been of great
importance in the study of the existence of canonical metrics on complex varieties.
This is mainly because of the following.

Conjecture 1.1 (Yau, Tian, and Donaldson). Let X be a smooth variety, and let
L be an ample line bundle on it. Then X admits a constant scalar curvature Kähler
(cscK) metric in c1(L) if and only if the pair (X,L) is K-polystable.

It is known in different degrees of generality that K-polystability is a necessary
condition for the existence of a cscK metric, with the most general result due to
Berman, Darvas, and Lu [4] following work of Darvas and Rubinstein [9]. For
smooth Fano varieties polarized by anticanonical line bundles, Conjecture 1.1 was
recently proved by Chen, Donaldson, and Sun in [8].

In spite of the above (conjectural) characterizations, deciding whether a given
polarized variety is K-stable is a problem of considerable difficulty. In this paper,
we study this problem for del Pezzo surfaces polarized by ample Q-divisors. Using
Q-divisors does not affect the original problem since K-stability is preserved when
we scale the polarization positively.

Let S be a smooth del Pezzo surface, and let L be an ample Q-divisor on it.
Recall that S is toric if and only if K2

S � 6. In this case, the problem we plan to
consider is completely solved. In the nontoric case, few results in this direction are
known. For instance, if S is not toric, then it admits a Kähler–Einstein metric by
Tian’s theorem [25] so that (S,−KS) is K-stable. Moreover, a result of LeBrun and
Simanca [16] implies that the same holds for every divisor L that is close enough
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to −KS . On the other hand, many K-unstable pairs (S,L) have been constructed
by Ross and Thomas in [22, 23].

In the prequel to this article [5], we gave a simple condition on L that guarantees
that (S,L) is K-stable. The goal of this article is to obtain new simple conditions
on L that guarantee that (S,L) is K-unstable. In addition, our technique recovers
all previous obstructions to K-stability on polarized del Pezzo surfaces (S,L) found
in the literature.

To present our results, it is convenient to split ample Q-divisors on S into three
major types: P2-type, F1-type, and (P1 × P1)-type. To be precise, up to a positive
scaling of L, one always has

L ∼Q −KS + bB +
r∑

i=1

aiFi,

where F1, . . . , Fr are disjoint (−1)-curves, B is a smooth rational curve such that
B2 = 0, and b, a1, . . . , ar are some nonnegative rational numbers such that 1 > ar �
· · · � a1 � 0. Moreover, if b �= 0, then the curve B is disjoint from the (−1)-curves
F1, . . . , Fr. Since the (−1)-curves are disjoint, their contraction gives a birational

morphism φ : S → Ŝ. We say that L is of P2-type, F1-type, or (P1 × P1)-type in

the case in which Ŝ = P2, Ŝ = F1, or Ŝ = P1 × P1, respectively. In particular, if L
is of P2-type, then r = 9 − K2

S . Similarly, if L is F1-type or (P1 × P1)-type, then
r = 8−K2

S . It is easy to see that every ample Q-divisor on S is of one of these three
types. To make the types mutually exclusive, we also require b > 0 and a1 > 0 in
the F1-case, and we ask that b > 0 or a1 > 0 in the (P1 × P1)-case.

We believe that our newly introduced language may shed new light on this
problem. The indication of this can be seen from the K-polystability criterion in
the case K2

S = 6. Translating it into our language, we recover a result originally
due to Donaldson and Wang–Zhou.

Theorem 1.2 ([11,28]). Suppose that K2
S = 6. Then (S,L) is K-polystable, and it

accepts a cscK metric in c1(L) if and only if either L is of P2-type and a1 = a2 = a3
or L is of (P1 × P1)-type and a1 = a2.

The above result was originally proven using properties of toric geometry. In
Example 4.5, we used our technique of flop slope test configurations, which have a
nontoric nature, to prove K-instability.

In particular, if K2
S = 6 and L is of F1-type, then (S,L) is always K-unstable.

By the aforementioned result of LeBrun and Simanca [16], this is no longer true in
the nontoric case. Nevertheless, in this case, we prove a somewhat similar result.

Theorem 1.3. Suppose that K2
S � 5, that the divisor L is of F1-type or (P1×P1)-

type, and that

a21 + 6−K2
S <

r∑
i=2

a2i .

Then (S,L) is K-unstable for b � 0, and S does not accept a cscK metric in c1(L).

In their seminal works [22,23], Ross and Thomas introduced the notion of slope
stability as an obstruction to K-stability. In particular, [22, Example 5.30] implies
the following.

Theorem 1.4. Suppose that K2
S � 6. If L is of P2-type and a2 � a1, then (S,L)

is K-unstable and S does not accept a cscK metric in c1(L). Similarly, if L is of
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UNSTABLE POLARIZED DEL PEZZO SURFACES 7257

F1-type and a1 � 0, then (S,L) is K-unstable and S does not accept a metric in
c1(L).

In [7], Cheltsov and Rubinstein considered a modification of Ross and Thomas
construction using flops. In this article, we adapt their method to obtain several
criteria for K-instability of the pair (S,L). In particular, we prove that (S,L) is
K-unstable for every ample Q-divisor L in the case in which K2

S = 7, and we give
a short proof of the “only if” part of Theorem 1.2. Moreover, we improve on the
Ross–Thomas result by obtaining the following.

Theorem 1.5. Suppose that K2
S � 5. If L is of P2-type and a4 � a3 > a1, then

(S,L) is K-unstable and S does not accept a metric in c1(L). Similarly, if L is of
P1 × P1-type and a3 � a2 > a1, then (S,L) is K-unstable and S does not accept a
metric in c1(L). Finally, if L is of F1-type and a3 � a2, then (S,L) is K-unstable
and S does not accept a metric in c1(L).

We use the same approach to prove the following quantitative result.

Theorem 1.6. Suppose that K2
S � 5. If L is of P2-type and

(1.1) a2 − a1 �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.8717 if K2
S = 1,

0.8469 if K2
S = 2,

0.8099 if K2
S = 3,

0.7488 if K2
S = 4,

0.6248 if K2
S = 5,

then (S,L) is K-unstable and S does not accept a metric in c1(L). Similarly, if L
is of P2-type and

(1.2) a3 − a1 �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.9347 if K2
S = 1,

0.9206 if K2
S = 2,

0.8985 if K2
S = 3,

0.8595 if K2
S = 4,

0.6798 if K2
S = 5,

then (S,L) is K-unstable and S does not accept a metric in c1(L). Likewise, if L
is of (P1 × P1)-type and

(1.3) a2 − a1 �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.9305 if K2
S = 1,

0.9150 if K2
S = 2,

0.8911 if K2
S = 3,

0.8480 if K2
S = 4,

0.7452 if K2
S = 5,

then (S,L) is K-unstable and S does not accept a metric in c1(L). Finally, (S,L)
is K-unstable and S does not accept a metric in c1(L) if L is of F1-type and

(1.4) a2 − a1 �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.9347 if K2
S = 1,

0.9206 if K2
S = 2,

0.8985 if K2
S = 3,

0.8595 if K2
S = 4,

0.7701 if K2
S = 5.
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Observe that only the differences a3 − a1 and a2 − a1 are considered in Theo-
rem 1.6. There is a good reason for this. For example, if L is of P2-type, K2

S � 5,
and a1 = a2 = a3, then S admits a cscK metric in c1(L) for 1 > a4 � a3 so that
(S,L) is K-stable. Similarly, if L is of (P1 × P1)-type, K2

S � 5, and a1 = a2, then
(S,L) is K-stable for 1 > a3 � a2. This follows from the lifting results of Arezzo,
Pacard, Rollin, and Singer (see [1–3,20]). A related nonexhaustive list of lifting re-
sults for cscK metrics in non–del Pezzo situations includes LeBrun and Singer [17],
Kim and Pontecorvo [14], and Kim, LeBrun, and Pontecorvo [12].

At this point, it is probably a good idea to have some critical commentary on
our results, reflecting on our contribution to the problem and the relation of our
work to that of the aforementioned authors. Ideally, a complete solution to the
problem of the existence of cscK on a del Pezzo surface S would consist of having
some parametrization of the ample cone Amp(S) so that one could tell, for each
ample line bundle L ∈ Amp(S), whether or not a cscK metric exists in c1(L). This
viewpoint is informed by the case of toric del Pezzo surfaces (i.e., when K2

S � 6),
where the problem is completely solved (see Theorems 1.2 and 1.4). Aside from the
toric case, the aforementioned existence results [1–3,20] are qualititative and follow
the following lifting strategy: it is assumed that a cscK metric ωS,L is known to
exist in c1(L), where L is an ample line bundle of a del Pezzo surface S. Another
del Pezzo surface S′ is obtained as the blowup π : S′ → S of S, and the metric
ωS,L is lifted to a cscK metric ωS′,L′ ∈ c1(L

′), where L′ is an ample line bundle of
S′. However, it does not seem to be possible to say much about where L′ lies with
respect to π∗(L), even assuming that a parametrization of Amp(S′) is available.
In [5], we gave existence results where, if desired, coordinates for L in Amp(S)
would be easy to obtain. In this article, we have taken a complementary approach,
providing results on nonexistence of cscK metrics in c1(L) for L ∈ Amp(S).

The first task we undertake is to give an effective parametrization of the ample
cone Amp(S). Then we construct test configurations that obstruct the K-stability
of (S,L) for L in a precise region of Amp(S), described using the parametrization.
The test configurations constructed generalize slope test configurations introduced
by Ross and Thomas [22, 23] and Panov and Ross [21] using deformations to the
normal cone by performing flops on the slope test configurations. Ross–Thomas’s
test configurations are limiting, in the sense that they do not detect K-instability
for many ample line bundles, even in the toric case—for instance, in the setting
in Theorem 1.2. The approach we follow was first pioneered by the first author
and Rubinstein in [7] in a very special case, where L ∼ −KS − (1 − β)C for C as
a curve and β as a small parameter. Their motivation was studying asymptotical
K-stability of asymptotically log Fano pairs (S,C). We generalize their work to any
polarization L. Once it has been established that a pair (S,L) is not K-semistable,
one can use the fact that K-stability is an obstruction to the existence of cscK
metrics [4, 9] to determine that there is no cscK metric in c1(L).

While a complete characterization of the ample cone according to K-stability is
the main motivation for this article and [5], it is probably an unattainable goal. This
is due to two reasons: first, the ample cone becomes very complicated when K2

S is
small, and detecting obstructions to K-stability using our method eventually boils
down to describing the negative locus of many polynomials of degree 4 in 9 −K2

S

variables. As a result, a simple description of such loci is not expected. The second
complication has to do with the intrinsic limitations of the method. As happened
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with the slope test configurations of Ross and Thomas, it is expected that some
polarizations are not obstructed by our flop slope test configurations. While we
have not found any method in the literature which obstructs a polarization that we
fail to obstruct, this is no reason to believe that better methods will be developed
in the future to obstruct polarizations that we are unable to tackle. Nevertheless,
our article recovers all currently known obstructions to the existence of cscK met-
rics on polarized del Pezzo surfaces, including Theorem 1.2 and Ross–Thomas’s
obstructions, and provides many new ones (see Theorems 1.3, 1.5, and 1.6).

Let us outline the structure of this article. In sections 2 and 3, we recall the
K-stability setting, including the flopped version of slope stability. In section 4,
we study ample divisors on del Pezzo surfaces, giving coordinates to elements of
the ample cone, and prove Theorem 1.5. In section 5, we prove technical results
on ample divisors on del Pezzo surfaces. In section 6, we prove Theorems 1.3
and 1.6. The proof of Theorem 1.6 relies on symbolic computations presented in
the appendix.

2. What is K-polystability?

Let X be an n-dimensional smooth projective variety, and let L be an ample line
bundle on it. In this section, we will remind the reader of the notion of K-stability
of the pair (X,L), which was originally defined by Tian in [26]. A more refined,
algebro-geometric definition was introduced by Donaldson in [10], which eventually
led to Conjecture 1.1.

First, we need to define the notion of a test configuration. We will always assume
that the total space of the test configuration is normal (see [18] for an explanation).

Definition 2.1. A test configuration of (X,L) consists of

• a normal variety U with a Gm-action,
• a flat Gm-equivariant map pU : U → A1, where Gm acts on A1 naturally,
and

• a Gm-equivariant pU -ample line bundle LU → U such that there exists a
positive integer r, called an exponent, and a Gm-equivariant isomorphism

(2.1)
(
U \ p−1

U (0),LU

∣∣∣
U\p−1

U (0)

)
∼=

(
X ×

(
A1 \ {0}

)
, p∗1(L

⊗r)
)
,

with the natural action of the group Gm on A1 \ {0} and the trivial action
on X, where p1 : X × (A1 \ {0}) → X is the projection to the first factor.

We also say that (U ,LU , pU) is a product test configuration if U ∼= X × A1 and
LU = p∗1(L

⊗r). A product test configuration is trivial if Gm acts trivially on the
left factor of X × A1.

Given an arbitrary test configuration (U ,LU , pU ) of the pair (X,L) with exponent
r, one can naturally compactify it by gluing (U ,LU) with (X × (P1 \ {0}), p∗1(L⊗r))
as follows. In the Gm-equivariant isomorphism (2.1), each t ∈ Gm acts on its
right-hand side by

t ◦
(
{p} × {a}, s

)
=

(
{p} × {ta}, s

)
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for any p ∈ X, a ∈ A1, and s ∈ (LU )p. So, we can define the gluing map using the
diagram (

U ,LU
) (

X × P1 \ {0}, p∗1(L⊗r)
)

(
U \ p−1

U (0),LU

∣∣∣
U\p−1

U (0)

)
φ ��

��

��

(
X ×

(
A1 \ {0}

)
, p∗1(L

⊗r)
)
,

��

��

where the map φ is given by

φ :
(
p, a, s

)
�−→

(
{a−1 ◦ p} × {a}, a−1 ◦ s

)
,

whereGm acts by multiplication only on the factor P1\{0} of (X×P1\{0}, p∗1(L⊗r)).
Using this gluing map, we obtain a triple (X ,L, p) consisting of

• a normal projective variety X with a Gm-action,
• a flat Gm-equivariant map p : X → P1 such that p−1

U (t) ∼= X for every
t ∈ P1 \ {0}, and

• a Gm-equivariant p-ample line bundle L → X such that

L
∣∣∣
p−1(t)

∼= L⊗r

for every t ∈ P1 \ {0}, where we identify p−1
U (t) with X.

For further details and examples, see [18, section 8.1].

Remark 2.2. In [18], the triple (X ,L, p) is called ∞-trivial compactification of the
test configuration (U ,LU , pU ). Since we will always work with compactified test
configurations in this article, we will simply call the triple (X ,L, p) a test config-
uration of the pair (X,L). Moreover, if the original test configuration (U ,LU , pU )
is trivial, then we say that the test configuration (X ,L, p) is trivial. In this case,
X ∼= X × P1 and L = p∗1(L

⊗r). Similarly, if (U ,LU , pU ) is a product test configu-
ration, then we say that (X ,L, p) is a product test configuration. In this case, we
have p−1(0) ∼= X so that p is an isotrivial fibration.

Using the compactified test configuration (X ,L, p), Li and Xu gave an intersec-
tion formula for the Donaldson–Futaki invariant of the original test configuration.
This formula first appeared in work of Odaka [19] and Wang [27], cf. [18, Proposi-
tion 6] for a new proof. We will use this formula as a definition of the Donaldson–
Futaki invariant. The slope of the pair (X,L) is

ν(L) =
−KX · Ln−1

Ln
.

The (normalized) Donaldson–Futaki invariant of the (compactified) test configura-
tion (X ,L, p) with exponent r is the number

(2.2) DF
(
X ,L, p

)
=

1

rn

(
n

n+ 1

1

r
ν(L)Ln+1 + Ln ·

(
KX − p∗

(
KP1

)))
,

where n is the dimension of the variety X. Observe that the number DF(X ,L, p)
does not change if we replace L with L + p∗(D) for any line bundle D on P1.
Moreover, if the test configuration (X ,L, p) is trivial, then the formula (2.2) gives
DF(X ,L, p) = 0.
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Definition 2.3. The pair (X,L) is said to be K-polystable if DF(X ,L, p) � 0 for
every nontrivial test configuration (X ,L, p), and DF(X ,L, p) = 0 only if (X ,L, p)
is a product test configuration. Similarly, the pair (X,L) is said to be K-stable
if DF

(
X ,L, p

)
> 0 for every nontrivial test configuration (X ,L, p). Finally, if

DF(X ,L, p) � 0 for every test configuration (X ,L, p), then (X,L) is said to be
K-semistable.

If the pair (X,L) is not K-semistable, then DF(X ,L, p) < 0 for some test config-
uration (X ,L, p) of the pair (X,L). In this case, we say that (X,L) is K-unstable,
and (X ,L, p) is a destabilizing test configuration.

Remark 2.4. The K-polystability of the pair (X,L) implies its K-semistability.
Similarly, the K-stability of the pair (X,L) implies its K-polystability. Moreover,
if the group Aut(X,L) is finite, then all product test configurations of the pair
(X,L) are trivial, so (X,L) is K-stable if and only if it is K-polystable.

The pair (X,L) is K-polystable (resp., K-stable or K-semistable) if and only
if the pair (X,L⊗k) is K-polystable (resp., K-stable or K-semistable) for some
positive integer k. Thus, we can adapt both Definition 2.1 and Definition 2.3 to the
case in which L is an ample Q-divisor on the variety X. This gives us notions of K-
polystability, K-stability, K-semistability, and K-instability for varieties polarized
by ample Q-divisors. Similarly, we can assume that L in the test configuration
(X ,L, p) is a p-ample Q-divisor on X . Because of this, we can assume that r = 1
in the formula (2.2) for the Donaldson–Futaki invariant.

3. Slope stability and Atiyah flops

Let S be a smooth projective surface, and let L be an ample Q-divisor on the
surface S. In this section, we will compute the Donaldson–Futaki invariant of some
explicit test configurations of the pair (S,L). One of them is a very special case of
a much more general construction studied by Ross and Thomas in [22,23]. Namely,
fix a smooth irreducible curve Z in the surface S. By a slight abuse of notation,
let us identify the curve Z with the curve Z × {0} in the product S × P1. Let
πZ : X → S × P1 be the blowup of the curve Z. Denote the exceptional divisor of
πZ by EZ , let p = pP1 ◦ πZ , and let

Lλ =
(
pS ◦ πZ

)∗
(L)− λEZ ,

where λ is a positive rational number. Denote by σ(S,L, Z) the Seshadri constant
of the pair (S,L) along Z. Recall that σ(S,L, Z) is usually very easy to compute
since

σ(S,L, Z) = sup
{
μ ∈ Q>0

∣∣∣ the divisor L− μZ is nef
}
.

By [23, Proposition 4.1], if λ < σ(S,L, Z), then Lλ is p-ample (see also [7, Lemma
2.2]) so that (X ,Lλ, p) is a (compactified) test configuration of the pair (S,L).
This test configuration is often called a slope test configuration centered at Z. If
DF(X ,Lλ, p) < 0 for some λ < σ(S,L, Z), then (S,L) is said to be slope unstable.
This implies, in particular, that (S,L) is K-unstable.
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One good thing about the test configuration (X ,Lλ, p) is that its Donaldson–
Futaki invariant is very easy to compute. Namely, let g(Z) be the genus of the
curve Z, and let

(3.1) DF(λ) =
2

3
ν(L)

(
λ3Z2 − 3λ2L · Z

)
+ λ2

(
2− 2g(Z)

)
+ 2λL · Z.

Recall from section 2 that ν(L) = −KS ·L
L2 is the slope of the pair (S,L).

Lemma 3.1 ([22, 23]). If λ < σ(S,L, Z), then DF(X ,Lλ, p) = DF(λ).

Proof. Since −E3
Z is the degree of the normal bundle of Z in S × P1, we get

L3
λ = 3λ2

(
(pP1 ◦ πZ)

∗(L)) · E2
Z − λ3E3

Z = −3λ2L · Z + λ3Z2.

Moreover, we have

L2
λ ·

(
KX − p∗

(
KP1

))
=

(
(pP1 ◦ πZ)

∗(KS

)
+ EZ

)
·
(
(pX ◦ πZ)

∗(L)− λEZ

)2

= −2λ (pX ◦ πZ)
∗
(L) · E2

Z

+ λ2 (pP1 ◦ πZ)
∗
(KS) · E2

Z + λ2E3
Z

= 2λL · Z − λ2KS · Z − λ2Z2.

Now the result follows from substituting into (2.2) the above identities. �

If λ < σ(S,L, Z) and Z2 � 0, then DF(X ,Lλ, p) � 0 by [21, Theorem 1.3].
Thus, if we want (X ,Lλ, p) to be a destabilizing test configuration, then Z2 must
be negative. In particular, if S is a del Pezzo surface, then Z must be a (−1)-curve.
In this case, we have finitely many choices for the curve Z.

Example 3.2 ([22, Example 5.27]). Suppose that S ∼= F1 and that Z is the (−1)-
curve. Then DF(X ,Lλ, p) < 0 for some λ < σ(S,L, Z). Indeed, denote by f
the fiber of the natural projection F1 → P1. Up to positive scaling, either L ∼Q

−KS + aZ for some nonnegative rational number a < 1 or L ∼Q −KS + bf for
some positive rational number b. In the former case, we have ν(L) = 8+a

8+2a−a2 and

σ(S,L, Z) = 2 + a so that Lemma 3.1 implies that DF(X ,Lλ, p) < 0 for some
λ < 2 + a because

lim
λ→1+a

DF(λ) = lim
λ→1+a

2

3
· 8 + a

8 + 2a− a2
(
−3λ2(1− a)− λ3

)
+ 2λ2 + 2λ(1− a)

=
4

3
· a

3 + 3a2 − 4

4− a
< 0

for all a ∈ [0, 1). Similarly, in the latter case, we have ν(L) = 4+b
4+2b and σ(S,L, e) =

2 so that

lim
λ→2

DF(λ) = lim
λ→2

2

3
· 4 + b

4 + 2b

(
−3λ2(1 + b)− λ3

)
+ 2λ2 + 2λ(1 + b) = −8

3

1 + b

2 + b
< 0,

which implies that DF(X ,Lλ, p) < 0 for some λ < 2.

The leading term of the cubic polynomial DF(λ) defined in (3.1) is 2
3ν(L)Z

2.

Thus, if Z2 < 0 and S is del Pezzo surface, then DF(λ) < 0 for λ � 0. Unfortu-
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nately, in this case, DF(λ) is usually positive for λ < σ(S,L, Z), simply because
the Seshadri constant σ(S,L, Z) is often too small. In particular, this happens
in the case in which S is a blowup of P2 in two distinct points and L = −KS

(see [21, Example 7.6]). On the other hand, if S is a blowup of P2 in two distinct
points, then the group Aut0(S,L) is not reductive for every ample divisor L, which
implies that (S,L) does not admit a cscK metric by Matsushima’s obstruction. In
particular, by Donaldson’s resolution of Conjecture 1.1 for toric surfaces, (S,L) is
not equivariantly K-polystable, and, in particular, (S,L) is not K-polystable.

Recall that the pseudo-effective cone is the closure of the cone of effective divisors.
There is another famous threshold that one can relate to the triple (S,L, Z), which
is commonly known as the pseudo-effective threshold. It can be defined as

(3.2) τ (S,L, Z) = sup
{
μ ∈ Q>0

∣∣∣ the divisor L− μZ is pseudo effective
}
.

Since nef divisors are pseudo effective, we always have σ(S,L, Z) � τ (S,L, Z), and
the inequality is strict in many interesting cases. In [7], Cheltsov and Rubinstein
introduced a birational modification to the slope test configuration in order to
increase the value of λ up to the pseudo-effective threshold. Let us briefly describe
their construction.

Suppose that there exists a birational morphism π : S → S such that the surface
S is smooth, and that π is a blowup of k > 0 distinct points O1, . . . , Ok in the
surface S. Moreover, we assume that the image of the curve Z in the surface S
is a smooth curve that contains all of these points. Let Z = π(Z), and denote
by C1, . . . , Ck the π-exceptional curves that are mapped to the points O1, . . . , Ok,
respectively. For every point Oi ∈ S, let Γi be the curve Oi × P1 in the product
S × P1. Then there exists a commutative diagram

S × P1

pS

��

πΓ �� S × P1

qS
��

S π
�� S,

where qS is a natural projection, and πΓ is the blowup of the the curves Γ1, . . . ,Γk.
Let us expand this commutative diagram by adding the threefold X , the blowup πZ ,
and a few other birational maps. Namely, recall that we identified Z with the curve
Z×{0} in the product S×P1. Similarly, let us identify the curve Z with the curve
Z×{0} in the product S×P1 so that Z is a proper transform of the curve Z via the
blowup πΓ. Thus, the threefold X is obtained from S×P1 by blowing up the curves
Γ1, . . . ,Γk, with a consecutive blowup of the proper transform of the curve Z. If
we change the order of blowups here (first blow up the curve Z, then blow up the
proper transform of the curves Γ1, . . . ,Γk), we obtain another (smooth) threefold,
which differs from X by exactly r simple flops. To be precise, let πZ : X → S × P1

be the blowup of S × P1 along the curve Z, and denote by Γ1, . . . ,Γk the proper

transforms on X of the curves Γ1, . . . ,Γk, respectively. Let πΓ : X̂ → X be the
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blowup of the curves Γ1, . . . ,Γk. Then there exists a commutative diagram

(3.3) X̂
πΓ

��

q

��

X

p

��

πZ

��

ρ

�������������� X
πZ

��
S × P1

pS

��p
P1

��

πΓ �� S × P1

qS
��

q
P1

		

S π
�� S

P1 P1.

Here ρ is a composition of flops, qP1 is the natural projection, and q = qP1 ◦πZ ◦πΓ.
Let us describe the curves flopped by ρ. To do this, identify the surface S with

the fiber of pP1 over the point 0 ∈ P1, and denote by S0 its proper transform on the
threefold X . Then S0

∼= S, and the union S0 ∪ EZ is the fiber of p over the point
0 ∈ P1. Denote the proper transforms of the curves C1, . . . , Ck ⊂ S on the threefold
X by C1, . . . , Ck, respectively. Then the curves C1, . . . , Ck are contained in S0. These
are the curves flopped by ρ. Observe that each Ci is a smooth rational curve that
is contained in S0, and its normal bundle in X is isomorphic to OP1(−1)⊕OP1(−1)
(see [7, Lemma 4.1]). Thus, the map ρ is a composition of r simple flops, commonly
known as Atiyah flops.

Remark 3.3. Let us identify the surface S with the fiber of qP1 over the point

0 ∈ P1, and denote its proper transforms on the threefolds X and X̂ by S0 and

Ŝ0, respectively. Then S0
∼= Ŝ0

∼= S, and ρ maps S0 onto Ŝ0, Moreover, the map ρ

induces a birational morphism S0 → Ŝ0 that contracts the curves C1, . . . , Cr, which
is just the morphism π : S → S since S0

∼= S and Ŝ0
∼= S. Let EZ be the πZ-

exceptional surface. Then ρ−1 flops the proper transforms in X̂ of the fibers of the
projection EZ → Z over the points O1 × {0}, . . . , Ok × {0}.

Let L̂λ = ρ∗(Lλ). When is L̂λ q-ample? To answer this question, let L = π∗(L).
Then L is an ampleQ-divisor on the surface S. Observe that σ(S,L, Z) � σ(S,L, Z)
and that

L ∼Q π∗(L)− k∑
i=1

(L · Ci)Ci.

Then σ(S,L, Z) � L · Ci since (L− λZ) · Ci = L · Ci − λ. Furthermore, we have

L− λZ ∼Q π∗(L− λZ
)
+

k∑
i=1

(λ− L · Ci)Ci

being pseudo effective if L · Ci < λ < σ(S,L, Z) for every i. Thus, if L · Ci <
σ(S,L, Z) for every i, then σ(S,L, Z) < σ(S,L, Z) � τ (S,L, Z).
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Lemma 3.4 ([7, Lemma 4.7]). If L · Ci < λ < σ(S,L, Z) for every i, then L̂λ is
q-ample.

Hence, if L·Ci < λ < σ(S,L, Z) for every i, then (X̂ , L̂λ, q) is a test configuration
of the pair (S,L). Its Donaldson–Futaki invariant is also easy to compute. Namely,
let

D̂F(λ) = DF(λ) +
2

3
ν(L)

(
k∑

i=1

(
λ− L · Ci

)3)

=
2

3
ν(L)

(
λ3Z2 − 3λ2L · Z +

k∑
i=1

(
λ− L · Ci

)3)
+ λ2

(
2− 2g(Z)

)
+ 2λL · Z,

(3.4)

where DF(λ) is the rational function defined in (3.1).

Theorem 3.5. If L ·Ci < λ < σ(S,L, Z) for every i, then DF(X̂ , L̂λ, q) = D̂F(λ).

Proof. By [7, Lemma A.3], we have

ρ∗(H1) · ρ∗(H2) · ρ∗(H3) = H1 ·H2 ·H3 −
k∑

i=1

(
H1 · Ci

)(
H2 · Ci

)(
H3 · Ci

)
for any three Q-divisors H1, H2, H3 on the threefold X . Therefore, we have(

L̂λ

)3
=

(
Lλ

)3 − k∑
i=1

(
Lλ · Ci

)3
.

Similarly, as Ci are floppable curves contained in a fiber of p, then KX · Ci = 0 =
p∗(KP1) · Ci, and we have(

L̂λ

)2 · (K
̂X − q∗

(
KP1

))
=

(
Lλ

)2 · (KX − p∗
(
KP1

))
.

Since Lλ · Ci = L · Ci − λ, the assertion follows from (2.2) and Lemma 3.1. �

Corollary 3.6. Suppose that L·Ci < σ(S,L, Z) for every i, and that D̂F(σ(S,L, Z))
< 0. Then there is a positive rational number λ such that L · Ci < λ < σ(S,L, Z)

for every i, and that DF(X̂ , L̂λ, q) < 0. In particular, the pair (S,L) is K-unstable.

In this article, we will apply this corollary to polarized smooth del Pezzo surfaces.
Which curve Z should we choose in this case? Should it be a (−1)-curve? If the
answer is positive, then which (−1)-curve should we choose? Once the curve Z is
chosen, how should we choose the contraction π : S → S? Is it uniquely determined
by the curve Z? We will answer all of these questions in the remaining part of this
article. But first, let us show how to apply Corollary 3.6 in the simplest case.

Example 3.7 (cf. [7, 6.1]). As in Example 3.2, suppose that S ∼= F1. Let Z be a
fiber of the natural projection F1 → P1, let C1 be the (−1)-curve, and let π : S → S
be the contraction of C1 so that k = 1, S ∼= P2, and Z is a line. Up to positive
scaling, either L ∼Q −KS+aC1 for some nonnegative rational number a<1 or L ∼Q

−KS+bZ for some positive rational number b. In the former case, we have ν(L)=
8+a

8+2a−a2 and σ(S,L, Z)=3 so that (3.4) gives D̂F(σ(S,L, Z)) = 2
3 · a3+3a2−4

4−a < 0.

Similarly, in the latter case, we have ν(L) = 4+b
4+2b and σ(S,L, Z) = 3 + b so that
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D̂F(σ(S,L, Z)) = − 4
3 · 1+b

2+b < 0. Thus, in both cases, the pair (S,L) is K-unstable
by Corollary 3.6.

Let us conclude this section by one observation inspired by [22, Corollary 5.29].
To do this, fix a point P ∈ S that is not contained in the curves Z,C1, . . . , Ck.
Let g : S′ → S be the blowup of the point P , and let G be the exceptional curve
of the blowup g. Denote by Z ′, C ′

1, . . . , C
′
k the proper transforms of the curves

Z,C1, . . . , Ck on the surface S′, respectively. Let P = π(P ). Then P �∈ Z, and
there exists a commutative diagram

S′ g ��

π′

��

S

π

��
S
′

g
�� S,

where π′ is a contraction of the curves C ′
1, . . . , C

′
k, and g is the blowup of the point

P . Note that the g-exceptional curve is the proper transform of the curve G on the

surface S
′
. Denote this curve by G. Merging this commutative diagram together

with the large commutative diagram (3.3), we obtain the even larger commutative
diagram

X ′

p′





ρ′

���
�
�

πZ′ �� S′ × P1 h ��

πΓ′

��

pS′

���
��

��
��

��
S × P1

πΓ

��

pS

����
��
��
��
�

XπZ



ρ
���
�
�

p

��

X̂ ′

q′

��

π
Γ′ ���

��
��

��
� S′ g ��

π′

��

S

π

��

X̂

q

��

πΓ����
��
��
��

X ′

π
Z′ ���

��
��

��
� S

′
g

�� S X

πZ����
��
��
��
�

S
′ × P1

q′
P1��		

		
		
		
	 h

��

q
S′

����������
S × P1

q
P1 ���

��
��

��
��

qS

��










P1 P1.

Here h is the blowup of the curve P × P1, h is the blowup of the curve P × P1,
and the maps πZ′ , πZ

′ , πΓ′ , πΓ
′ , ρ′, q′

P1 , qS′ , pS′ , p′, and q′ are defined similarly
as the maps πZ , πZ , πΓ, πΓ, ρ, qP1 , qS , pS , p, and q, respectively. To get their
detailed description, one just has to add “′” to every geometrical object involved
in the definition of the maps πZ , πZ , πΓ, πΓ, ρ, qP1 , qS , p, and q, We leave this to
the reader.

To polarize the surface S′, choose a positive rational number ε, and let L′ =
g∗(L)− εG. Then L′ is ample provided that the number ε is small enough. Let us
assume that this is the case. Let EZ′ be the exceptional divisor of πZ′ , and let L′

λ =
(pS′ ◦ πZ′)∗(L′)− λEZ′ , where λ is a positive rational number. If λ < σ(S′, L′, Z ′),
then the divisor L′

λ is p′-ample by [23, Proposition 4.1] so that (X ′,L′
λ, p

′) is a slope
test configuration of the pair (S′, L′). In this case, its Donaldson–Futaki invariant
is given by Lemma 3.1. Namely, we have

DF
(
X ′,L′

λ, p
′) = 2

3
ν(L′)

(
λ3Z2 − 3λ2L · Z

)
+ λ2

(
2− 2g(Z)

)
+ 2λL · Z.
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Here we used the fact that the point P is not contained in the curve Z. This
assumption also implies that

lim
ε→0+

σ
(
S′, L′, Z ′) = σ(S,L, Z).

Moreover, we have ν(L) = −KS ·L
L·L and ν(L′) = −KS′ ·L′

L′·L′ = −KS ·L−ε
L2−ε2 . This gives the

following.

Corollary 3.8 ([22, Corollary 5.29]). Suppose that λ < σ(S,L, Z) and that DF
(
X ,

Lλ, p) < 0. Then λ < σ(S′, L′, Z ′) and DF(X ′,L′
λ, p

′) < 0 for sufficiently small
ε > 0.

Note that this corollary together with Example 3.2 implies Theorem 1.4. A sim-
ilar corollary exists for the flopped version of the slope test configuration described

in section 3. To present it here, let L̂′
λ = ρ′∗(L′

λ) and L
′
= π′

∗(L
′). Then L

′
is

ample. Since L · Ci = L′ · C ′
i for every curve Ci, we have

L′ ∼Q g∗(L)− εG ∼Q (π′)∗
(
L
′)− k∑

i=1

(L · Ci)C
′
i.

By Lemma 3.4, if L · Ci < λ < σ(S,L, Z) for every i, then L̂λ is q-ample so that

(X̂ , L̂λ, q) is a test configuration of the pair (S,L). Similarly, if L · Ci < λ <

σ(S
′
, L

′
, Z

′
) for every i, then L̂′

λ is q′-ample so that (X̂ ′, L̂′
λ, q

′) is a test configura-

tion of the pair (S′, L′). In this case, its Donaldson–Futaki invariant D̂F(X̂ ′, L̂′
λ, q

′)
is given by the formula

2

3
ν(L′)

(
λ3Z2 − 3λ2L ·Z

)
+ λ2

(
2− 2g(Z)

)
+ 2λL ·Z +

2

3
ν(L′)

(
k∑

i=1

(
λ−L ·Ci

)3)
by Theorem 3.5. As above, we have

lim
ε→0+

σ
(
S
′
, L

′
, Z

′)
= σ

(
S,L, Z

)
.

This gives the following corollary.

Corollary 3.9. Suppose that L · Ci < λ < σ(S,L, Z) for every i, and that

D̂F(X̂ , L̂λ, q) < 0. Then L·Ci < λ < σ
(
S
′
, L

′
, Z

′)
for every i, and D̂F(X̂ ′, L̂′

λ, q
′) <

0 for sufficiently small ε.

We will use this corollary to prove Theorem 1.5.

4. Ample divisors on del Pezzo surfaces

In this section, we describe basic facts about smooth del Pezzo surfaces. The
simplest examples of such surfaces are P2, P1×P1, and the first Hirzebruch surface
F1. To work with them, we fix notations that we will use throughout the remaining
part of this article. Namely, we denote by � the class of a line in P2. For P1 × P1,
we denote by f1 and f2 the fibers of the two distinct projections P1 × P1 → P1.
Similarly, for the surface F1, we denote by e the unique (−1)-curve in F1, and we
denote by f the class of a fiber of the natural morphism F1 → P1.

Remark 4.1. Note that the divisor af1 + bf2 on P1 ×P1 is nef (resp., ample) if and
only if a � 0 and b � 0 (resp., a > 0 and b > 0). The classes f1 and f1 also generate
the Mori cone NE(P1 × P1). Similarly, a divisor ae+ bf on F1 is nef (resp., ample)
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if and only if b � a � 0 (resp., b > a > 0). The classes e and f generate the Mori
cone NE(F1).

Now let S be a smooth del Pezzo surface such that K2
S � 7 so that S �∼= P2,

S �∼= P1 × P1, and S �∼= F1. Then the Mori cone NE(S) is a polyhedral cone that
is generated by all (−1)-curves on the surface S, i.e., smooth rational curves with
self-intersection −1. Recall that there is a finite number of (−1)-curves on any
del Pezzo surface. The description of these curves is well known. Nevertheless, we
decided to partially present it here because we will need this description later.

First, we choose a birational morphism γ : S → P2 that contracts 9 − K2
S � 2

disjoint (−1)-curves. Such a morphism always exists since we assume that K2
S � 7.

However, it is never unique for K2
S � 6. We let r = 9 − K2

S and denote the γ-
exceptional curves by E1, . . . , Er. Let Lij be the proper transform of the line in P2

that contains the points γ(Ei) and γ(Ej), where 1 � i < j � r. Then

Lij ∼ γ∗(l)− Ei − Ej ,

and each Lij is a (−1)-curve. In fact, if r � 4, then these are all (−1)-curves on S
aside from the curves E1, . . . , Er. If r � 5, let Ci1i2i3i4i5 be the proper transform
of the conic in P2 that contains γ(Ei1), γ(Ei2), γ(Ei3), γ(Ei4), and γ(Ei5) for
1 � i1 < i2 < i3 < i4 < i5 � r. Then each Ci1i2i3i4i5 is also a (−1)-curve and

Ci1i2i3i4i5 ∼ γ∗(2l)− Ei1 − Ei2 − Ei3 − Ei4 − Ei5 .

If r = 5 or r = 6, then Ci, Lij , Ei describe all of the (−1)-curves in S. If r = 7, then
we denote by Zi the proper transform of the cubic in P2 that contains the points
γ(E1), γ(E2), γ(E3), γ(E4), γ(E5), γ(E6), γ(E7), and Zi is singular at the point
γ(Ei). In this case, each Zi is a (−1)-curve, and

Zi ∼ γ∗(3l)− (
E1 − E2 − E3 − E4 − E5 − E6 − E6 − E7

)
− Ei.

We have described all of the (−1)-curves on S in the case in which K2
S � 2. If

K2
S = 1, then S contains many more (−1)-curves. For example, the class

γ∗(3l)− (
E1 − E2 − E3 − E4 − E5 − E6 − E6 − E7 − E8

)
− Ei + Ej

contains a unique (−1)-curve for every i �= j, which we denote by Zij . This curve
is the proper transform of the cubic in P2 that contains all points γ(E1), γ(E2),
γ(E3), γ(E4), γ(E5), γ(E6), γ(E7), γ(E8) except for γ(Ej), which is singular at
the point γ(Ei). There is also a unique (−1)-curve defined in each of the following
classes:

γ∗(4l)−
8∑

l=1

El − Ei − Ej − Ek, 1 � i < j < k � 8,

γ∗(5l)−
8∑

l=1
l �=i,j

El −
8∑

l=1

El, 1 � i < j � 8,

γ∗(6l)−Ei − 2

8∑
l=1

El, 1 � i � 8,

completing the description of all (−1)-curves when K2
S = 1.
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Let L be an ample Q-divisor on the surface S. Then L · C > 0 for every (−1)-
curve C on the surface S. In fact, the latter condition is equivalent to the ampleness
of the divisor L. Moreover, we have

(4.1) L ∼Q γ∗(εl)− r∑
i=1

εiEi

for some positive rational numbers ε, ε1, . . . , εr. Unfortunately, this Q-rational
equivalence is not canonical since the contraction γ is not unique for K2

S � 6.
There is a better way to work with ample divisors on S. To present it, we let

μL = inf
{
λ ∈ Q>0

∣∣∣ KS + λL ∈ NE(S)
}
.

Then μL is a positive rational number, known as the Fujita invariant of (S,L).
Let ΔL be the smallest face of the Mori cone NE(X) that contains KS + μLL. If
ΔL = 0, then μLL ∼Q −KS . If dim(ΔL) �= 0, then KX +μLL is a nonzero effective
divisor. Applying the minimal model program, we obtain a morphism φ : S → Y
where Y is smooth and such that φ contracts all curves contained in ΔL; i.e., φ is
the contraction of the face ΔL. Then either

• φ is a birational morphism that contracts dim(ΔL) � r disjoint (−1)-curves
or

• dim(ΔL) = r, Y ∼= P1 and the general fiber of φ is P1—i.e., φ is a conic
bundle.

It seems quite natural to split ample divisors in Amp(S) according to the type of
contraction φ. However, we prefer to use a slightly different splitting into types that
is based on the contraction of one of the largest faces of the Mori cone NE(S) that
contains KX + μLL. The contraction of a face of maximum dimension guarantees
that the image of φ will not contain any (−1)-curve (in fact, the image of φ may
not even be a surface, but P1, giving φ the structure of a conic bundle). Namely,
observe that if φ is birational and Y ∼= P1 × P1, then

(4.2) μLL ∼Q −KS +
r−1∑
i=1

aiFi,

where F1, . . . , Fr−1 are disjoint (−1)-curves contracted by φ, and each ai is a posi-
tive rational number such that ai < 1. Similarly, if φ is birational and Y �∼= P1×P1,
then there exists a (possibly nonunique) birational morphism ψ : Y → P2 such that
the composition ψ ◦ φ is a contraction of r disjoint (−1)-curves F1, . . . , Fr, which
generate a maximal face of the Mori cone NE(X) that contains KS + μLL. In this
case, we have

(4.3) μLL ∼Q −KS +

r∑
i=1

aiFi,

where each ai is a nonnegative rational number such that ai < 1. Observe that
Fi ∈ ΔL if and only if ai > 0, and, a priori, the contraction ψ ◦ φ does not need to
coincide with γ. Note that, in both cases, we have a very simple formula for the
slope ν(L) of the pair (S,L). Namely, we have

ν(L) =
−KS · L

L2
= μL

d+
∑r

i=1 ai
d+ 2

∑r
i=1 ai −

∑r
i=1 a

2
i

.
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If φ is a conic bundle, then Y ∼= P1, and ΔL is a maximal face of the Mori
cone NE(X) that contains KX + μLL. Note that the morphism φ has exactly
r − 1 = 8 − K2

S reducible fibers, each of them consisting of two (−1)-curves, and
the face ΔL is generated by these (−1)-curves. Then we have

(4.4) μLL ∼Q −KS + bB +

r−1∑
i=1

aiFi,

where B is a general fiber of φ, and F1, . . . , Fr−1 are disjoint (−1)-curves contained
in the singular fibers of φ, each ai is a nonnegative rational number such that ai < 1,
and b is a positive rational number. Then

ν(L) =
−KS · L

L2
= μL

d+ 2b+
∑r−1

i=1 ai

d+ 4b+ 2
∑r−1

i=1 ai −
∑r−1

i=1 a2i
.

In addition, there exists a commutative diagram

(4.5) S

ψ

����
��
��
�� φ

���
��

��
��

�

Ŝ ω
�� P1,

where ψ is a birational morphism that contracts the curves F1, . . . , Fr−1, and ω is a

natural projection. Then either Ŝ ∼= F1 or Ŝ ∼= P1×P1. Observe that the morphism
ψ in (4.5) is uniquely determined by L only if every ai in (4.4) is positive. Thus,
if at least one of the numbers a1, . . . , ar−1 in (4.4) is not positive, then we may

assume that Ŝ = P1 × P1.

Definition 4.2. We say that

• the divisor L is of P2-type if φ is birational and Y �∼= P1 × P1;

• the divisor L is of (P1×P1)-type if either φ is a conic bundle and Ŝ ∼= P1×P1

or φ is birational and Y ∼= P1 × P1;

• the divisor L is of F1-type if φ is a conic bundle, Ŝ ∼= F1, and every ai
in (4.4) is positive.

We will always assume that 0 � a1 � · · · � ar < 1 if L is of P2-type. Similarly,
if L is of (P1 × P1)-type or of F1-type, then we will assume that 0 � a1 � · · · �
ar−1 < 1.

Remark 4.3. Suppose that L is of (P1 ×P1)-type. Then we can combine numerical
equivalences (4.2) and (4.4) together by allowing b to be zero in (4.4). Thus, if
b = 0 in (4.4), then f is birational and Y ∼= P1 × P1 so that every ai in (4.4) is
positive.

If K2
S = 7, then r = 2, and γ is uniquely determined. Thus, if L is of P2-type,

then we may assume that F1 = E1 and F2 = E2. Similarly, if L is F1-type, then we
may assume that F1 = E1. If L is of (P1 × P1)-type, then F1 = L12. In this case,
we may assume that B ∼ L12 + E1 ∼ γ∗(l)− E2.

If K2
S � 6, we can choose the contraction γ : S → P2 according to the type of

the divisor L. Namely, if L is of P2-type, then we can assume that γ = ψ ◦ φ, and
that Ei = Fi for every i. Similarly, if L is of either F1-type or (P1 × P1)-type, then
we can assume that

B ∼ L1r + E1 ∼ γ∗(�)− Er
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so that B is a proper transform of a general line in P2 passing through the point
γ(Er). Similarly, if L is of F1-type, then we can assume that Fi = Ei for every i
such that r−1 � i � 1 so that γ is a composition of ψ with the birational morphism
F1 → P2, which contracts the curve ψ(Er). If L is of (P1 × P1)-type and r = 3,
then we can assume that F1 = E1 and F2 = L2r. Finally, if L is of (P1 × P1)-type
and r � 4, then we can assume that F1 = E1, F2 = L2r, and that Fi = Ei for every
i such that r − 1 � i � 3.

Let us illustrate the introduced language by two examples that show how to apply
Corollary 3.6 to the pair (S,L) in the case in which S is toric (cf. Examples 3.2
and 3.7).

Example 4.4. Suppose that K2
S = 7. Let Z = L12, C1 = E1, C2 = E2, S = P2,

and let π : S → S be the contraction of the curves C1 and C2 and Z ∼ l. Then
we can use the notations and assumptions of section 3. We claim that there is
a positive rational number λ such that L · C1 < λ, L · C2 < λ, λ < σ(S,L, Z)

and DF(X̂ , L̂λ, q) < 0, which implies, in particular, that (S,L) is K-unstable. By
Corollary 3.6, it is enough to show that L · C2 < σ(S,L, Z), L · C1 < σ(S,L, Z),

and D̂F(σ(S,L, Z)) < 0. To do this, we may assume that μL = 1. Using (3.4), we
see that

D̂F(λ) = ν(L)
(
− 3λ2L · Z − λ3 + (λ− L · C1)

3 + (λ− L · C2)
3
)
+ 2λ2 + 2λL · Z.

If L is of P2-type, then L ·Z = 1+a1+a2, L ·C1 = 1−a1, L ·C2 = 1−a2, L ∼Q 3�,

which implies that σ(S,L, Z) = 3 > L · C1 � L · C2 so that

D̂F
(
σ(S,L, Z)

)
=

2

3

(1 + a1 + a2)(a
3
1 + 3a21 − 6a1a2 + 6a1 + a32 + 6a2 + 3a22 − 14)

7 + 2(a1 + a2)− a21 − a22
< 0

because

a31 + 3a21 − 6a1a2 + 6a1 + a32 + 6a2 + 3a22 − 14

= −(a2 − a1)
3 − 3(1− a2)(a2 − a1)

2 − 3(a2 − a1)(1− a2)
2

− 6(a2 − a1)(1− a2 + a1)

− 2(1− a2)
3 − 3(a2 − a1)a2 − 3(1− a2)(a1 + a2 + 4)

� −2(1− a2)
3 < 0.

If L is of F1-type, then L · Z = 1 + a1, L · C1 = 1 − a1, L · C2 = 1 + b, and
L ∼Q (3 + b)�, which implies that σ(S,L, Z) = 3 + b > L · C2 > L · C1 so that

D̂F(σ(S,L, Z)) =
2

3

1 + a1
7 + 4b+ 2a1 − a21

+
2

3

1 + a1
7 + 4b+ 2a1 − a21

(3a21 − 3)b2 +
2

3

1 + a1
7 + 4b+ 2a1 − a21

·
(
(−16− 6a1 + 12a21 + 2a31)b− 8a1 + a41 + 9a21 + 4a31 − 14

)
< 0.

Finally, if L is of (P1×P1)-type, then L·Z = 1−a1, L·C1 = 1+a1, L·C2 = 1+a1+b,
and L ∼Q (3+ b+a1)�, which implies that σ(S,L, Z) = 3+a1+ b > L ·C2 � L ·C1
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and

D̂F
(
σ(S,L, Z)

)
=

2

3

(a1 − 1)(2a31 + 4a21b+ 3a1b
2 + 10a21 + 16a1b+ 3b2 + 22a1 + 16b+ 14)

7 + 4b+ 2a1 − a21

so that D̂F(σ(S,L, Z)) < 0.

Example 4.5. Suppose that K2
S = 6. Then it follows from [28] (see also [16,

Example 3.2]) that (S,L) is K-polystable if and only if ε1 = ε2 = ε3 or ε =
ε1 + ε2 + ε3 in (4.1). Thus, if L is of P2-type, then (S,L) is K-polystable if and
only if a1 = a2 = a3 because

εi = L · Ei =
1− ai
μL

and ε = L · γ∗(l) = 3
μL

in this case. Similarly, if L is of F1-type, then ε1 = 1−a1

μL
,

ε2 = 1−a2

μL
, and ε3 = 1+b

μL
, and ε = 3+b

μL
, which implies that (S,L) is notK-polystable

because a1 > 0, a2 > 0, and b > 0 in this case. Finally, if L is of (P1×P1)-type, then
ε1 = 1−a1

μL
, ε2 = 1+a2

μL
, ε3 = 1+a2+b

μL
, and ε = 3+a2+b

μL
so that (S,L) is K-polystable

if and only if a1 = a2. Thus, we see that (S,L) is K-polystable if and only if
either L is of P2-type and a1 = a2 = a3 or L is of (P1 × P1)-type and a1 = a2. In
fact, if none of these conditions is satisfied, then (S,L) can be destabilized by the
flopped version of the slope test configuration described in section 3. To show this,
let Z be one of the (−1)-curves on the surface S, let C1 and C2 be two disjoint
(−1)-curves that intersect Z, and let π : S → S be the contraction of the curves C1

and C2. Then S ∼= F1 and Z ∼ f + e. Let us use the notations and assumptions of
section 3. As in Example 4.4, it is enough to show that we can choose Z such that

L · C1 < σ(S,L, Z), L · C2 < σ(S,L, Z), and D̂F(σ(S,L, Z)) < 0. To do this, we
may assume that μL = 1. If L is of P2-type, then we let Z = L12, C1 = E1, and
C2 = E2 so that L · Z = 1 + a1 + a2, L · C1 = 1− a1, L · C2 = 1 − a2, Z ∼ f + e,
and L ∼Q (2 + a3)e+ 3f , which implies that

σ(S,L, Z) = 2 + a3 > L · C2 � L · C1,

and it follows from (3.4) that

D̂F
(
σ(S,L, Z)

)
=

2(a1 + a2 + a3)h1(a1, a2, a3)

3(6 + 2(a1 + a2 + a3)− a21 − a22 − a23)
,

where h1(a1, a2, a3) = a31 + a32 − 2a33 + 3a21 − 6a1a2 + 3a1a3 + 3a22 + 3a2a3 − 6a23 +
3a1 + 3a2 − 6a3. If a1 < a3, then

h1(a1, a2, a3) = −3a21(a2 − a1)− 6a21(a3 − a2)

− 3a1(a2 − a1)
2 − 12a1(a2 − a1)(a3 − a2)

− 6a1(a3 − a2)
2 − (a2 − a1)

3 − 6(a2 − a1)
2(a3 − a2)− 6(a2 − a1)(a3 − a2)

2

− 2(a3 − a2)
3 − 3a1(a2 − a1)− 6a1(a3 − a2)− 9(a2 − a1)(a3 − a2)

− 6(a3 − a2)
2 − 3(a2 − a1)− 6(a3 − a2) � 3(a2 − a1)− 6(a3 − a2) < 0

so that D̂F(σ(S,L, Z)) < 0 in this case. Similarly, if L is of F1-type, we let Z = L13,
C1 = E1, and C2 = E3 so that L · Z = 1 + a1, L · C1 = 1 − a1, L · C2 = 1 + b,
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Z ∼ e + f , and L ∼Q (2 + b + a2)e + (3 + b)f , which implies that σ(S,L, Z) =
2 + b+ a2 > L · C2 > L · C1 so that

D̂F
(
σ(S,L, Z)

)
=

2(a1 + a2)h2(a1, a2, b)

3(6 + 4b+ 2(a1 + a2)− a21 − a22)
,

where h2(a1, a2, b) is the polynomial

3(a1−a2)b
2+(2a21+a1a2−4a22+9(a1−a2)−3)b+a31−2a32+3a21+3a1a2−6a22+3a1−6a2.

Since a1 � a2, it follows that h(a1, a2, b) < 0 unless b = a1 = a2 = 0, and we

conclude that D̂F(σ(S,L, Z)) < 0 in this case as well. Finally, if L is of (P1 × P1)-
type, let Z = E1, let C1 = L13, and let C2 = L12 so that L·Z = 1−a1, L·C1 = 1+a1,
L ·C2 = 1+ b+ a1, Z ∼ f + e, and L ∼Q (2 + b+ a1 + a2)e+ (3+ b+ a1)f so that

σ(S,L, Z) = 2 + b+ a1 + a2 > L · C2 � L · C1,

which implies that

D̂F
(
σ(S,L, Z)

)
=

2(a1 − a2)h3(a1, a2, b)

3(6 + 4b+ 2(a1 + a2)− a21 − a22)
,

where h3(a1, a2, b) is the polynomial

2a31 + 4a21 + 4a21b+ 4a21a2 + 7a1a2b+ 3a1b
2 + 2a32 + 4a22b+ 3a2b

2

+ 6a21 + 4a22a1 + 12a1a2 + 9a1b+ 6a22 + 9a2b+ 6a1 + 6a2 + 3b.

This shows that D̂F(σ(S,L, Z)) < 0 provided that a1 �= a2.

Proof of Theorem 1.5. The assertion follows from Example 4.5, Corollary 3.9, and
the fact that S is a del Pezzo surface. �

In the remaining part of this article, we will apply Corollary 3.6 to the pair (S,L)
in the case in which S is not toric. To do this in a concise way, we need to prove
several very explicit technical results about polarized del Pezzo surfaces. We will
do this in the next section.

5. Seshadri constants and pseudo-effective thresholds

Let us use all assumptions and notations of section 4. Suppose, in addition, that
K2

S � 5 so that S is not toric. In this case, the group Aut(S) is known to be finite,
and the pair (S,−KS) is K-stable by Tian’s theorem [25].

Let Z be a (−1)-curve in the del Pezzo surface S, and let μ be a positive rational
number. In this section, we study numerical properties of the divisor L−μZ. Since
this problem depends on the scaling of L in an obvious way, we will assume, for
simplicity, that that the Fujita invariant of the pair (S,L) equals 1, i.e., μL = 1.

The first threshold that controls the numerical properties of the divisor L− μZ
is the Seshadri constant σ(S,L, Z). In our case, it can be computed as follows:

(5.1) σ(S,L, Z) = min

{
L · C
Z · C

∣∣∣∣∣ C is a (−1)-curve on S such that C ∩ Z �= ∅
}
.

Using this formula, one can easily compute σ(S,L, Z). The second threshold one
can relate to the triple (S,L, Z) is the pseudo-effective threshold τ (S,L, Z) defined
in (3.2). Observe that σ(S,L, Z) � τ (S,L, Z).
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Remark 5.1. If S ∼= P1 × P1 or S ∼= P2, then τ (S,L, Z) = σ(S,L, Z). Similarly, if

S ∼= F1 and σ(S,L, Z) = L·f
Z·f , then σ(S,L, Z) = τ (S,L, Z).

For the simple reason of applying the results of section 3 to the pair (S,L), we
are mostly interested in the case when σ(S,L, Z) < μ < τ (S,L, Z). Because of this,
we will always assume that

σ(S,L, Z) � μ � τ (S,L, Z).

Then L−μZ is a pseudo-effective divisor. Moreover, it is not nef if μ > σ(S,L, Z).
Taking its Zariski decomposition (see [15, Theorem I:2.3.19]), we see that there
exists a birational morphism π : S → S that contracts k � 0 disjoint (−1)-curves
C1, . . . , Ck such that

(5.2) L− μZ ∼Q π∗(L− μZ
)
+

k∑
i=1

ciCi,

where L = π∗(L) and Z = π(Z), where the divisor L − μZ is nef, and where
c1, . . . , ck are some positive rational numbers. Then S is a smooth del Pezzo surface,

K2
S
= K2

S + k, and Z
2
= −1 + k. Note that k = 0 if and only if the divisor L− μZ

is nef. In this case, the morphism π is an isomorphism. If k � 1, from (5.1), we see
that

σ
(
S,L, Z

)
� μ >

L · Ci

Z · Ci
� σ(S,L, Z)

for every i. Without loss of generality, we may assume that L·Ci

Z·Ci
� L·Cj

Z·Cj
for i < j.

Remark 5.2. Let C1, . . . , Cm be disjoint (−1)-curves on S such that Ci · Z = 1 for

every i. Let η : S → S̃ be the contraction of the curves C1, . . . , Cm, let L̃ = η∗(L),

and let Z̃ = η(Z). Then Z̃ is smooth and

(5.3) L− σ(S̃, L̃, Z̃)Z ∼Q η∗(L̃− σ(S̃, L̃, Z̃)Z̃) +

m∑
i=1

(
σ(S̃, L̃, Z̃)− L · Ci

)
Ci.

Suppose that σ(S̃, L̃, Z̃) � L · Ci for every i, and suppose also that σ(S̃, L̃, Z̃) =

τ (S̃, L̃, Z̃). Then τ (S,L, Z) = σ(S̃, L̃, Z̃). Moreover, if we also have σ(S̃, L̃, Z̃) >
L · Ci for every i, then (5.3) is the Zariski decomposition of L − τ (S,L, Z)Z. In
this case, we may assume that η = π because the Zariski decomposition is unique
by [15, Theorem I:2.3.19].

In section 6, we will apply Corollary 3.6 to the pair (S,L) using the curve Z, the
contraction π : S → S, and a positive rational number λ such that 0 � λ < μ. To
do this, we need the curve Z to be smooth. This is always the case when K2

S � 3
because then any two (−1)-curves intersect at most at one point. However, this is
an additional condition in the case K2

S � 2. Recall that we assume that K2
S � 5.

Lemma 5.3. Suppose that L is of P2-type, that Z = E1, that μ = τ (S,L, Z), and
that

(5.4) a3 �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2
3 if K2

S = 1,
3
5 if K2

S = 2,
1
2 if K2

S = 3,
1
3 if K2

S = 4,

0 if K2
S = 5.
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Then k = r−1, we may assume that C1 = L12, C2 = L13, C3 = L14, . . . , Ck = L1r,
and

σ(S,L, Z) = L · L12 = 1 + a1 + a2 � L · L13 = 1 + a1 + a3 � · · ·
� L · L1r = 1 + a1 + ar < 2 + a1 = σ

(
S,L, Z

)
= τ (S,L, Z).

If K2
S is even, then S = F1. If K2

S is odd, then S = P1 × P1. The curve Z is
smooth.

Proof. Let η : S → S̃ be the contraction of L12, . . . , L1r, let L̃ = η∗(L), and let

Z̃ = η(Z). Then Z̃2 = r − 2, and the curve Z̃ is smooth. Moreover, either S̃ ∼= F1

or S̃ ∼= P1 × P1. In the former case, we have η(Ei) ∼ f for every i � 2. Similarly,
in the latter case, we may assume that η(Ei) ∼ f2 for every i � 2.

Suppose that K2
S is even. Then there is a (−1)-curve E ⊂ S disjoint from the

curves L12, . . . , L1r, which implies that S̃ ∼= F1 and η(E) ∼ e. Indeed, if K2
S = 4,

then E = C12345. Similarly, if K2
S = 2, then E = Z1. Moreover, Z̃ · f = 1, from

which we can deduce that Z̃ ∼ e+ r−1
2 f , which in turn implies that

L̃ ∼Q (2 + a1)e+
(
3 +

r − 1

2
a1 +

r∑
i=2

ai

)
f.

Using Remark 5.1 and inequality (5.4), we conclude that

τ
(
S̃, L̃, Z̃

)
= σ

(
S̃, L̃, Z̃

)
= min

{
3 + r−1

2 a1 + a2 + · · ·+ ar
r−1
2

, 2 + a1

}
= 2 + a1.

Suppose now that K2
S is odd. We claim that the surface S contains an irreducible

curve C such that η(C) · η(E2) = 1 and η(C) · η(C) = 0. Indeed, if K2
S = 1, then

C = Z1,8. Similarly, if K2
S = 3, then C = C12345. Finally, if K

2
S = 5, then C = L23.

Thus, we see that S̃ ∼= P1 × P1. Then Z̃ ∼ f1 +
r−2
2 f2, which implies

L̃ ∼Q (2 + a1)f1 +
(
2 +

r − 2

2
a1 +

r∑
i=2

ai

)
f2.

Using Remark 5.1 and (5.4), we deduce that

τ
(
S̃, L̃, Z̃

)
= σ

(
S̃, L̃, Z̃

)
= min

{
2 + r−2

2 a1 + a2 + · · ·+ ar
r−2
2

, 2 + a1

}
= 2 + a1.

Hence, we see that τ (S̃, L̃, Z̃) = σ(S̃, L̃, Z̃) = 2 + a1 in all cases. On the other
hand, we have

(5.5) L− (2 + a1)Z ∼Q η∗
(
L̃− (2 + a1)Z̃

)
+

r∑
i=2

(1− ai)L1i.

Using Remark 5.2, we see that μ = τ (S,L, Z) = σ(S̃, L̃, Z̃) = 2 + a1, and (5.5) is
the Zariski decomposition of the divisor L − μZ. Since the Zariski decomposition

is unique by [15, Theorem I:2.3.19], we may assume that η = π and S̃ = S so that
k = r−1. Hence, we may also assume that C1 = L12, C2 = L13, C3 = L14, . . . , Ck =
L1r. Note that (5.5) and (5.1) imply that σ(S,L, Z) = 1 + a1 + a2. �
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Lemma 5.4. Suppose that L is of F1-type, that Z = E1, that μ = τ (S,L, Z), and
that

(5.6) a3 � 5−K2
S

6−K2
S

.

Then

σ(S,L, Z) = L · L1r = 1 + a1 � L · L1i = 1 + b+ a1 + ai

< 2 + a1 + b = σ
(
S,L, Z

)
= τ (S,L, Z)

for every i such that 2 � i < r. One has k = r − 1, C1 = L1r, and Ci = L1i for
r > i � 2. If K2

S is even, then S = F1. If K2
S is odd, then S = P1 × P1. The curve

Z is smooth.

Proof. Observe first that 2 + a1 + b > L · L1i for every i � 2 because

L ∼Q −KS +
r−1∑
i=1

aiEi + b(L1r + E1).

Let η : S → S̃ be the contraction of the curves L12, . . . , L1r, let L̃ = η∗(L), and

let Z̃ = η(Z). Then Z̃ is smooth and Z̃2 = r − 2. Moreover, either S̃ = F1 or

S̃ = P1 × P1. Furthermore, if K2
S = 9 − r is even, then Z̃2 is odd so that S̃ = F1.

Arguing as in the proof of Lemma 5.3, we see that S̃ = P1 × P1 if K2
S is odd. Let

Ẽi = η(Ei). Then

Ẽi · Ẽj =

⎧⎪⎨⎪⎩
0 if i � 2 and j � 2,

1 if j > i = 1 or i > j = 1,

r − 2 if i = j = 1.

Therefore, if S̃ = F1, then Z̃ = Ẽ1 ∼ e+ r−1
2 f , and Ẽi ∼ f for every i � 2. In this

case, we have η∗(B) ∼ Z̃ so that

L̃ ∼ (2 + b+ a1)e+
(
3 +

r − 1

2
b+

r − 1

2
a1 + a2 + · · ·+ ar−1

)
f,

which implies

τ
(
S̃, L̃, Z̃

)
= σ

(
S̃, L̃, Z̃

)
= min

{
2 + b+ a1,

2 + r−2
2 b+ r−2

2 a1 + a2 + · · ·+ ar−1

r−2
2

}
= 2 + b+ a1

because of (5.6) and Remark 5.1. Similarly, if S̃ = P1 × P1, then we may assume

that Ẽi ∼ f2 for every i � 2 so that Ẽ1 ∼ f1 +
r−2
2 f2. In this case, we have

L̃ ∼ (2 + b+ a1)f1 +
(
2 +

r − 1

2
b+

r − 2

2
a1 + a2 + · · ·+ ar−2

)
f2,

which implies that τ (S̃, L̃, Z̃) = σ(S̃, L̃, Z̃) = 2 + b + a1 because of (5.6) and
Remark 5.1. On the other hand, we have

(5.7) L− (2 + b+ a1)Z ∼Q η∗
(
L̃− (2 + b+ a1)Z̃

)
+

r∑
i=1

(2 + b+ a1 − L · L1i)L1i.

Using Remark 5.2, we see that τ (S,L, Z) = 2 + b + a1, and (5.7) is the Zariski
decomposition of the divisor L−μZ. Since the Zariski decomposition is unique, we
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may assume that η = π and S̃ = S so that k = r − 1, C1 = L1r, and Ci = L1i for
for every i such that 2 � i < r. Thus, to complete the proof of the lemma, we have
to show that σ(S,L, Z) = 1 + a1. This follows easily from (5.7) and (5.1). �

Lemma 5.5. Suppose that K2
S = 5, that L is of (P1 × P1)-type, that Z = E1, and

that μ = τ (S,L, Z). Then

σ(S,L, Z) = L · L14 = 1 + a1 � L · L12 = 1 + b+ a1

� L · L13 = 1 + b+ a1 + a2 + a3 < 2 + b+ a1 + a2

= σ
(
S,L, Z

)
= τ (S,L, Z).

Moreover, one has k = 3, S = P1 × P1, C1 = L14, C2 = L12, C3 = L13.

Proof. Recall that

L ∼Q −KS + a1E1 + a2L24 + a3E3 + b(L13 + E1),

and the only (−1)-curves on the surface S that intersect Z are the curves L12, L13,
and L14. Intersecting L with these curves, we see that σ(S,L, Z) = L ·L14 = 1+a1
by (5.1).

Let η : S → S̃ be the contraction of the curves L12, L13, and L14. Then S̃ ∼=
P1 × P1. Let Z̃ = η(Z), let L̃24 = η(L24), and let Ẽ3 = η(E3). Then L̃24 · Ẽ3 = 1

and L̃2
24 = Ẽ2

3 = 0. Thus, we may assume that L̃24 ∼ f1 and Ẽ3 ∼ f2. Since

Z̃2 = 2, we have Z̃ ∼ f1 + f2.

Let L̃ = η∗(L). Since η∗(B) ∼ Z̃, we have

L̃ ∼Q −K
˜S + (b+ a1)Z̃ + a2L̃24 + a3Ẽ3 ∼Q (2+ b+ a1 + a2)f1 + (2+ b+ a1 + a3)f2

so that σ(S̃, L̃, Z̃) = τ (S̃, L̃, Z̃) = 2 + b+ a1 + a2. Moreover, we have

L− (2 + b+ a1 + a2)Z ∼Q η∗
(
L̃− (2 + b+ a1 + a2)Z̃

)
+ (2 + b+ a1 + a2 − L · L14)L14 + (2 + b+ a1 + a2 − L · L12)L12

+ (2 + b+ a1 + a2 − L · L13)L13.

(5.8)

Using Remark 5.2, we see that τ (S,L, Z) = 2+ b+ a1 + a2, and (5.8) is the Zariski
decomposition of the divisor L − μZ so that k = 3. Thus, we may assume that

η = π, S̃ = S, and also that C1 = L14, C2 = L12, and C3 = L13. �

Lemma 5.6. Suppose that K2
S = 4, that L is of (P1 × P1)-type, that Z = E1, and

that μ = τ (S,L, Z). Then

σ(S,L, Z) = L · L15 = 1 + a1 � L · L12 = 1 + b+ a1

� L · L13 = 1 + b+ a1 + a2 + a3 � L · L14 = 1 + b+ a1 + a2 + a4

< min

{
3

2
+ b+ a1 +

a2 + a3 + a4
2

, 2 + b+ a1 + a2

}
= σ

(
S,L, Z

)
= τ (S,L, Z).

Moreover, one has k � 4, C1 = L15, C2 = L12, C3 = L13, C4 = L14, and

(a) either k = 4, S = F1, a3 + a4 � 1 + a2, and τ (S,L, Z) = 2+ b+ a1 + a2 or
(b) k = 5, C5 = C12345, S = P2, a3 + a4 < 1 + a2, and

L · C12345 = 1 + b+ a1 + a3 + a4 < τ (S,L, Z) =
3

2
+ b+ a1 +

a2 + a3 + a4
2

.
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Proof. Recall that

L ∼Q −KS + a1E1 + a2L25 +
4∑

i=3

aiEi + b(L15 + E1).

Observe that the only (−1)-curves on S that intersect Z are the curves E1, L12,
L13, L14, L15, and C12345. Intersecting the divisor L with these curves, we get

L · L15 = 1 + a1 � L · L12 = 1 + b+ a1 � L · L13 = 1 + b+ a1 + a2 + a3

� L · L14 = 1 + b+ a1 + a2 + a4 � L · C12345 = 1 + b+ a1 + a3 + a4,

which implies that σ(S,L, Z) = 1 + a1 by (5.1).
Note that the curves L12, L13, L14, L15, and C12345 are disjoint. Let η : S → P2

be the contraction of these curves, let L̃ = η∗(L), and let Z̃ = η(Z). Then Z̃ is a
conic and

L̃ ∼Q (3 + 2b+ 2a1 + a2 + a3 + a4)�

so that σ(S̃, L̃, Z̃) = τ (S̃, L̃, Z̃) = 3
2 + b+a1+

a2+a3+a4

2 . Moreover, a2+1 > a3+a4

if and only if σ(S̃, L̃, Z̃) > L · C12345 = 1 + b+ a1 + a3 + a4. Observe that

L− σ
(
S̃, L̃, Z̃

)
Z ∼Q

5∑
i=2

(
σ
(
S̃, L̃, Z̃

)
− L · L1i

)
L1i

+
(
σ
(
S̃, L̃, Z̃

)
− L · C12345

)
C12345.

(5.9)

Using Remark 5.2, we see that if a2 + 1 > a3 + a4, then τ (S,L, Z) = τ (S̃, L̃, Z̃) =

σ(S̃, L̃, Z̃) so that (5.9) is the Zariski decomposition of the divisor L− μZ. Hence,

if a2 + 1 > a3 + a4, then we may assume that η = π, S̃ = S, C1 = L15, C2 = L12,
C3 = L13, C4 = L14, and C5 = C12345.

To complete the proof, we now assume that a2 + 1 � a3 + a4. Let υ : S → F1

be the contraction of the curves L12, L13, L14, and L15, let L̂ = υ∗(L), and let

Ẑ = υ(Z). Then

L− (2 + b+ a1 + a2)Z ∼Q υ∗(L̂− (2 + b+ a1 + a2)Ẑ
)

+ (2 + b+ a1 + a2 − L · L15)L15 + (2 + b+ a1 + a2 − L · L12)L12

+ (2 + b+ a1 + a2 − L · L13)L13 + (2 + b+ a1 + a2 − L · L14)L14,

(5.10)

where the coefficients on the right-hand side of (5.10) are all positive. Furthermore,

σ(Ei) ∼ f if i � 2, σ(E2)·Ẑ = 1, and Ẑ2 = 3, so it follows that Ẑ ∼ e+2f . Similarly,
σ(L25) ∼ e+ f . Hence, we have

L̂ ∼Q (2 + b+ a1 + a2)e+ (3 + 2b+ 2a1 + a2 + a3 + a4)f.

Since 1 + a2 � a3 + a4, it follows from Remark 5.1 that

σ(Ŝ, L̂, Ẑ) = τ (Ŝ, L̂, Ẑ) = 2 + b+ a1 + a2.

Using Remark 5.2, we see that τ (S,L, Z) = 2 + b + a1 + a2, and the Zariski de-
composition of the divisor L− μZ is given by (5.10). Hence, we may assume that

υ = π and Ŝ = S so that k = 4 in this case. Moreover, we may also assume that
C1 = L15, C2 = L12, C3 = L13, and C4 = L14. This completes the proof of the
lemma. �
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Lemma 5.7. Suppose that K2
S = 3, L is of (P1 × P1)-type, that Z = E1, and that

μ = τ (S,L, Z). Then

σ(S,L, Z) = L · L16 = 1 + a1 � L · L12 = 1 + b+ a1

� L · L13 = 1 + b+ a1 + a2 + a3 � L · L14 = 1 + b+ a1 + a2 + a4

� min

{
1 + b+ a1 +

a2 + a3 + a4 + a5
2

, 2 + b+ a1 + a2

}
= σ

(
S,L, Z

)
= τ (S,L, Z).

Moreover, one has k � 1 and C1 = L16, and one of the following cases holds:

(a) If a1 = a2 = a3 = a4 = a5 = 0, then k = 1 and μ = 1 + b.
(b) If a2 = a3 = a4 = a5 > 0, then k = 2, C2 = L12, and μ = 1+ b+ a1 + 2a2.
(c) If a2 = a3 < a4 = a5, then k = 3, C2 = L12, C3 = L13, and μ =

1 + b+ a1 + a2 + a5.
(d) If a2 + a5 = a3 + a4 and a4 < a5, then k = 4, C2 = L12, C3 = L13,

C4 = L14, and μ = 1 + b+ a1 + a2 + a5.
(e) If a2+ a5 < a3+ a4 and a3+ a4+ a5 < 2+ a2, then k = 5, C2 = L12, C3 =

L13, C4 = L14, C5 = L15, S = P1 × P1, and μ = 1+ b+ a1 +
a2+a3+a4+a5

2 .
(f) If a2 + a5 < a3 + a4 and a3 + a4 + a5 � 2 + a2, then k = 5, C2 = L12,

C3 = L13, C4 = L14, C5 = L15, S = P1 × P1, and μ = 2 + b+ a1 + a2.
(g) If a2 + a5 > a3 + a4, then k = 5, C2 = L12, C3 = L13, C4 = L14,

C5 = C12346, S = F1, and μ = 1 + b+ a1 +
a2+a3+a4+a5

2 .

Proof. Recall that

L ∼Q −KS + a1E1 + a2L26 +

5∑
i=3

aiEi + b(L16 + E1).

Observe also that the only (−1)-curves on S that intersect Z are the curves L12,
L13, L14, L15, L16, C12345, C12346, C12356, C12456, and C13456. Moreover, we have

L · L16 = 1 + a1 � L · L12 = 1 + b+ a1 � L · L13 = 1 + b+ a1 + a2 + a3

� L · L14 = 1 + b+ a1 + a2 + a4 � L · C12346 = 1 + b+ a1 + a3 + a4

� L · C12356 = 1 + b+ a1 + a3 + a5 � L · C12456 = 1 + b+ a1 + a4 + a5

< L · C13456 = 1 + b+ a1 + a2 + a3 + a4 + a5 � L · C12345

= 1 + 2b+ a1 + a2 + a3 + a4 + a5,

and L · L14 � L ·L15 = 1+ b+ a1 + a2 + a5 � L ·C12356. Then σ(S,L, Z) = 1 + a1
by (5.1).

If a2 + a5 � a3 + a4, let η : S → S̃ be the contraction of the curves L16, L12,

L13, L14, and L15. Similarly, if a2 + a5 > a3 + a4, let η : S → S̃ be the contraction

of the curves L16, L12, L13, L14, and C12346. In both cases, let L̃ = η∗(L), and let

Z̃ = η(Z). Similarly, denote by L̃26, Ẽ3, Ẽ4, Ẽ5, and C̃12345 the images on S̃ of the

curves L26, E3, E4, E5, and C12345, respectively. If a2+a5 � a3+a4, then Z̃2 = 4,

L̃2
26 = 2, Ẽ2

3 = Ẽ2
4 = Ẽ2

5 = C̃2
12345 = 0, and Z̃ · Ẽ3 = 1, the curves Ẽ3, Ẽ4, and Ẽ5

are disjoint, and C̃12345 · Ẽ2 = 1 so that S̃ ∼= P1 × P1. In this case, we may assume

that Ẽ3 ∼ Ẽ4 ∼ Ẽ5 ∼ f2, which implies that Z̃ ∼ f1 + 2f2 and L̃26 ∼ f1 + f2 so
that

L̃ ∼Q (2 + b+ a1 + a2)f1 + (2 + 2b+ 2a1 + a2 + a3 + a4 + a5)f2,
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which in turns implies that

σ
(
S̃, L̃, Z̃

)
= τ (S̃, L̃, Z̃) = min

{
2 + b+ a1 + a2, 1 + b+ a1 +

a2 + a3 + a4 + a5
2

}
.

Similarly, if a2 + a5 > a3 + a4, then Z̃2 = 4, Ẽ2
5 = −1, L̃2

26 = Ẽ2
3 = Ẽ2

4 = 1, and

Ẽ5 · L̃26 = Ẽ5 · Ẽ3 = Ẽ5 · Ẽ4 = Z̃ · Ẽ5 = 0, which implies that S̃ ∼= F1 and Ẽ5 ∼ e.

In this case, we have Z̃ ∼ 2e+ 2f and L̃26 ∼ Ẽ3 ∼ Ẽ4 ∼ e+ f so that

L̃ ∼Q (2 + 2b+ 2a1 + a2 + a3 + a4 + a5)e+ (3 + 2b+ 2a1 + a2 + a3 + a4)f,

which also gives σ(S̃, L̃, Z̃) = τ (S̃, L̃, Z̃) = 1+ b+a1+
a2+a3+a4+a5

2 by Remark 5.1.
If a2 + a5 � a3 + a4, then

(5.11)

L − σ
(
S̃, L̃, Z̃

)
Z ∼Q η∗

(
L̃ − σ

(
S̃, L̃, Z̃

)
Z̃
)
+

6∑
i=2

(
σ
(
S̃, L̃, Z̃

)
− L · L1i

)
L1i.

and the coefficients in front of each L1i in (5.11) are all nonnegative so that Re-

mark 5.2 gives τ (S,L, Z) = σ(S̃, L̃, Z̃). Moreover, if a2 + a5 < a3 + a4, then all
coefficients in front of each L1i in (5.11) are positive so that (5.11) is the Zariski
decomposition of the divisor L − μZ by Remark 5.2. In this case, we may as-

sume that η = π and S̃ = S, C1 = L16, C2 = L12, C3 = L13, C4 = L14, and
C5 = L15, which gives us cases (e) and (f). Similarly, if a2 + a5 > a3 + a4, then

τ (S,L, Z) = σ(S̃, L̃, Z̃) by Remark 5.2 since all of the coefficients in front of the
right-hand side of

L− σ
(
S̃, L̃, Z̃

)
Z ∼Q η∗

(
L̃− σ

(
S̃, L̃, Z̃

)
Z̃
)
+
(
σ
(
S̃, L̃, Z̃

)
− L · L16

)
L16

+

4∑
i=2

(
σ
(
S̃, L̃, Z̃

)
− L · L1i

)
L1i +

(
σ
(
S̃, L̃, Z̃

)
− L · C12346

)
C12346,

(5.12)

are positive. Using Remark 5.2 again, we see that if a2 + a5 > a3 + a4, then (5.12)
is the Zariski decomposition of the divisor L − μZ. In this case, we may assume

that η = π, S̃ = S, C1 = L16, C2 = L12, C3 = L13, C4 = L14, and C5 = C12346,
which gives us case (g).

To complete the proof, we may assume that a2 + a5 = a3 + a4. Then μ =
1+b+a1+a2+a5 so that (L−μZ)·L16 = −b−a2−a5 < 0, (L−μZ)·L12 = −a2−a5,

(L − μZ) · L13 = a3 − a5, and (L − μZ) · L14 = a4 − a5. Let υ : S → Ŝ be the
contraction of the curve L16 and those curves (if any) among L12, L13, and L14

that have negative intersection with L − μZ. Let L̂ = υ∗(L), and let Ẑ = υ(Z) so
that

(5.13) L− μZ ∼Q υ∗(L̂− μẐ
)
+ (μ− L · L16)L16 +

4∑
i=2

(μ− L · L1i)L1i.

By Remark 5.2, the Zariski decomposition of the divisor L−μZ is (5.13) so that we

may assume that η = π, S̃ = S, and C1 = L16. If μ−L ·L12 = 0, then k = 1, which
is case (a). Moreover, if μ− L · L14 > 0, then k = 4, and we may also assume that
C2 = L12, C3 = L13, and C4 = L14, which is case (d). Similarly, if μ− L · L14 = 0
and μ−L ·L13 > 0, then k = 3, and we may assume that C2 = L12 and C3 = L13,
which is case (c). Finally, if μ− L · L13 = 0, then k = 2, and we may assume that
C2 = L12, which is case (b). This completes the proof of the lemma. �
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If K2
S = 2, let us denote the (−1)-curve Z1 also as Z17.

Lemma 5.8. Suppose that K2
S � 2, that L is of (P1 × P1)-type, and that Z = E1.

Then

σ(S,L, Z) = L · L1r = 1 + a1 � L · L12 = 1 + b+ a1

� L · L13 = 1 + b+ a1 + a2 + a3 � L · L14 = 1 + b+ a1 + a2 + a4

� L · L15 = 1 + b+ a1 + a2 + a5 � L · L16 = 1 + b+ a1 + a2 + a6.

Moreover, one has L ·L14 � L ·C1234r = 1+ b+a1+a3+a4. Furthermore, one has

L · Z17

Z · Z17
=

1 + 2b+ 2a1 + a2 + a3 + a4 + a5 + a6
2

,

and the curve Z17 is disjoint from the (−1)-curves L1r, L12, L13, L14, L15, L16,
and C1234r. Let C be a (−1)-curve on the surface S such that the curve C intersects
the curve Z, and such that C is not one of E1, L1r, L12, L13, L14, L15, L16, C1234r,
Z17, or a3 � 2

3 . Then

L · C
Z · C � min

{
L · L16, L · C1234r,

L · Z17

Z · Z17

}
.

Proof. Recall that

L ∼Q −KS + a1E1 + a2L2r +

r−1∑
i=3

aiEi + b(L1r + E1),

and observe that all assertions of the lemma are obvious except for the last one.
Let us prove it. Note that C · B � C · Z � 1 since B ∼ E1 + L1r and C �= L1r.
Moreover, by looking at the classes of the list of (−1)-curves in S, we have C ·Z �
4 − K2

S . Furthermore, the surface S contains a unique (−1)-curve Z ′ such that
Z ′ · Z = 4 −K2

S . We also have Z + Z ′ ∼ −(3 −K2
S)KS . Indeed, if K2

S = 2, then
Z ′ = Z17, and if K2

S = 1, then γ(Z ′) is a sextic curve that has a triple singular
point at γ(E1), and double points at the points γ(E2), γ(E3), γ(E4), γ(E5), γ(E6),
γ(E7), and γ(E8).

Suppose first that C · Z = 1. Then

L · C
Z · C = L · C � 1 + b+ a1 + a2C · L2r +

r−1∑
i=3

aiC · Ei.

Thus, if C · (L2r + E3 + · · ·+ Er−1

)
� 3, then

L · C
Z · C � 1+ b+ a1 + a2 + a3 + a4 � 2+ b+ a1 + a2 � 1+ b+ a1 + a2 + a6 = L ·L16.

Going through the list of (−1)-curves on S, we see that if C · (L2r + E3 + · · · +
Er−1) � 2, then either C = L17 and K2

S = 1 or C is one of the curves C12ijr with
2 < i < j < r and (i, j) �= (3, 4). In the former case, we have L · C � L · L16. In
the latter case, we have L · C � L · C1234r.

Suppose now that C · Z � 2. If K2
S = 2, then C · Z = 2 as C · Z � 4−K2

S and
C = Z ′ = Z17. Thus, to complete the proof, we may assume that K2

S = 1 and that
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3 � C · Z � 2. If C · Z = 3, then C = Z ′ ∼Q −2KS − Z so that

L · C
Z · C =

L · (−2KS − Z)

3

=
1 + 4b+ 3a1 + 2a2 + 2a3 + 2a4 + 2a5 + 2a6 + 2a7

3
� L · Z17

Z · Z17

because a3 � 2
3 . Thus, we may assume that C · Z = 2. If C = Z1i, with 2 � i � 8,

then

L · C � 1 + 2b+ 2a1 + a2 + a3 + a4 + a5 + a6 + a7 − ai � L · Z17.

For the other three types of classes of possible (−1)-curves introduced in section 4,
it is straightforward to see that L · C � L · Z17. �

Now we are ready to complete this section by proving the following lemma.

Lemma 5.9. Suppose that K2
S � 2, that L is of (P1 × P1)-type, that Z = E1,

and that a3 � 2
3 . Then σ(S,L, Z) < μ � τ (S,L, Z), k � 2, C1 = L1r, C2 = L12,

μ = σ(S,L, Z), and the curve Z is smooth, where

min

{
1 + 2b+ 2a1 + a2 + a3 + a4 + a5 + a6

2
, 1 + b+ a1 + a2 + a6

}
.

Moreover, one of the following cases holds:

(a) If 1+a2+a3 � a4+a5+a6, then k = 2 and μ = 1+2b+2a1+a2+a3+a4+a5+a6

2 .
(b) If 1 + a2 + a3 < a4 + a5 + a6 and a3 + a5 + a6 � 1 + a2 + a4, then k = 3,

C3 = L13, and μ = 1+2b+2a1+a2+a3+a4+a5+a6

2 .
(c) If a3+a5+a6 > 1+a2+a4, a3+a4+a6 � 1+a2+a5 and a2+a5+a6 � 1+a3+

a4, then k = 4, C3 = L13, C4 = L14, and μ = 1+2b+2a1+a2+a3+a4+a5+a6

2 .
(d) If a3 + a4 + a6 > 1 + a2 + a5 and 1 + a2 + a6 � a3 + a4 + a5, then k = 5,

C3 = L13, C4 = L14, C5 = L15, and μ = 1+2b+2a1+a2+a3+a4+a5+a6

2 .
(e) If a3 + a4 + a6 > 1 + a2 + a5 and 1 + a2 + a6 < a3 + a4 + a5, then k = 5,

C3 = L13, C4 = L14, C5 = L15, and μ = 1 + b+ a1 + a2 + a6.
(f) If a2+a5+a6 > 1+a3+a4, then k = 5, C3 = L13, C4 = L14, C5 = C1234r,

and μ = 1+2b+2a1+a2+a3+a4+a5+a6

2 .

Proof. Using Lemma 5.8, we see that

L · Z17

Z · Z17
=

1 + 2b+ 2a1 + a2 + a3 + a4 + a5 + a6
2

� 1+b+a1 = L ·L12 � σ(S,L, Z)

because a3 � 2
3 so that μ is the smallest number among L·Z17

Z·Z17
, and L · L16 so that

μ > σ(S,L, Z). We will show later that μ � τ (S,L, Z). Observe that μ > L · L1r

and μ > L · L12. However, we do not know whether or not μ is larger than the
remaining intersections L ·L13, L ·L14, L ·L15, L ·L16, and L ·C1234r because L·Z17

Z·Z17

can be small. This explains the several cases we may have.
Suppose first that either μ > L · L15 or μ > L · C1234r (or both). Note that

μ > L · L15 if and only if a6 > a5 and a3 + a4 + a6 > 1 + a2 + a5. Similarly,
μ > L · C1234r if and only if a2 + a6 > a3 + a4 and a2 + a5 + a6 > 1 + a3 + a4. In

particular, we must have a2+a5 �= a3+a4. If a2+a5 < a3+a4, let η : S → S̃ be the
contraction of the curves L1r, L12, L13, L14, and L15. Similarly, if a2+a5 > a3+a4,

let η : S → S̃ be the contraction of the curves L1r, L12, L13, L14, and C1234r. Denote

by Ẽ5, Ẽ6, Ẽ7, L̃16, L̃17, Z̃15, Z̃16, and Z̃17 the images on S̃ of the curves E5, E6,
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E7, L16, L17, Z15, Z16, and Z17, respectively. Then S̃ is a smooth del Pezzo surface,
and K2

˜S
= K2

S + 5. If K2
S = 1 (resp., K2

S = 2) and a2 + a5 < a3 + a4, then all

(−1)-curves on S̃ are Ẽ6, Ẽ7, L̃16, L̃17, Z̃16, and Z̃17 (resp., Ẽ6, L̃16, and Z̃17).

Similarly, if d = 1 (resp., d = 2) and a2 + a5 > a3 + a4, then all (−1)-curves on S̃

are Ẽ5, Ẽ6, Ẽ7, Z̃15, Z̃16, and Z̃17 (resp., Ẽ5, Ẽ6, and Z̃17).

Let L̃ = η∗(L), and let Z̃ = η(Z). Then Z̃ is smooth, and μ = σ(S̃, L̃, Z̃). The

latter follows from the intersection of the divisor L̃ − μZ̃ with (−1)-curves on S̃.
For example, if a2+a5 > a3+a4, then μ = 1+2b+2a1+a2+a3+a4+a5+a6

2 , which implies

that (L̃−μZ̃) · Z̃17 = 0. Similarly, if a2+a5 � a3+a4 and 1+a2+a6 < a3+a4+a5,

then μ = 1+ b+ a1 + a2 + a6, which implies that (L̃−μZ̃) · L̃16 = 0. In particular,

L̃− μZ̃ is nef. On the other hand, if a2 + a5 < a3 + a4, then L · L15 � L · C1234r,
and

(5.14) L− μZ ∼Q η∗
(
L̃− μZ̃

)
+ (μ− L · L1r)L1r +

5∑
i=2

(μ− L · L1i)L1i,

where μ−L ·L1i > 0 for every i ∈ {2, 3, 4, 5, r}, as μ > L ·L15. If a2+a5 < a3+a4,
then

L− μZ ∼Q η∗
(
L̃− μZ̃

)
+ (μ− L · L1r)L1r

+

4∑
i=2

(μ− L · L1i)L1i + (μ− L · C1234r)C1234r,
(5.15)

where μ − L · L1i > 0 for every i ∈ {2, 3, 4, r} and μ − L · C1234r > 0. Therefore,
the divisor L − μZ is pseudo effective in both cases. In particular, we see that
μ � τ (S,L, Z). Moreover, (5.14) (resp., (5.15)) is the Zariski decomposition of the
divisor L−μZ in the case in which a2+a5 < a3+a4 (resp., when a2+a5 > a3+a4).
Since the Zariski decomposition of L−μZ is unique, we may assume that η = π and

S̃ = S so that k = 5 in this case. Thus, we may assume that C1 = L1r, C2 = L12,
C3 = L13, C4 = L14. If a2 + a5 < a3 + a4, then C5 = L15 so that we are either in
case (d) or in case (e). If a2 + a5 > a3 + a4, then C5 = C1234r, which is case (f).
This proves the required assertion in the case in which μ > L ·L15 or μ > L ·C1234r.

Now we suppose that μ � L · L15 and μ � L · C1234r. The former inequality
implies that a3+a4+a6 � 1+a2+a5 so that, in particular, a3+a4+a5 � 1+a2+a6.
Thus, we have

μ =
1 + 2b+ 2a1 + a2 + a3 + a4 + a5 + a6

2
=

L · Z17

Z · Z17
.

Then (L−μZ) ·Z17 � 0, (L−μZ) ·C1234r � 0, (L−μZ) ·L15 � 0, (L−μZ) ·L16 � 0.
Let us use the same notations as in the previous case with one exception: now

assume that η : S → S̃ is the contraction of those curves among L1r, L12, L13, L14

that have negative intersection with L−μZ. In particular, η contracts L1r and L12

since we already know that (L− μZ) · L1r < 0 and (L − μZ) · L12 < 0. We claim

that L̃ − μZ̃ is nef. Indeed, let C̃ be a (−1)-curve on S̃, and let C be its proper

transform on the surface S. Then (L̃− μZ̃) · C̃ = (L− μZ) ·C � 0 by Lemma 5.8.

This implies that L̃− μZ̃ is nef. Now, arguing as in the previous case, we see that

we can assume that η = π and S̃ = S.
If L1r and L12 are the only curves among L1r, L12, L13, L14 that have negative

intersection with L − μZ, then we get k = 2, and we may assume that C1 = L1r
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and C2 = L12. In this case, we have (L− μZ) · L13 � 0, which can be rewritten as
1+a2+a3 � a4+a5+a6, which gives us case (a). Similarly, if (L−μZ)·L13 < 0 and
(L− μZ) ·L14 � 0, then 1+ a2 + a3 < a4 + a5 + a6 and a3 + a5 + a6 � 1+ a2 + a4,
respectively. In this case, we have k = 3, and we may assume that C1 = L1r,
C2 = L12, and C3 = L13, which is case (b). Finally, if both (L− μZ) ·L13 < 0 and
(L − μZ) · L14 < 0, then a3 + a5 + a6 > 1 + a2 + a4 and k = 4. In this case, η
contracts all four curves L1r, L12, L13, L14 so that we may assume that C1 = L1r,
C2 = L12, C3 = L13, C4 = L14, which is case (c). This completes the proof of the
lemma. �

6. Computing Donaldson–Futaki invariants

In this section, we will prove Theorems 1.3 and 1.6. Namely, let S be a smooth
del Pezzo surface such that K2

S � 5, and let L be an ample Q-divisor on it. We
will apply the results of section 3 to the pair (S,L) using Lemmas 5.3, 5.4, 5.5, 5.6,
5.7, and 5.9. To do this, let us use the notations and assumptions of sections 3, 4,
and 5. As usual, we may assume that μL = 1, where μL is the Fujita invariant of
(S,L).

Observe that the inequality (5.4) (resp., (5.6)) follows from (1.1) or (1.2) (resp.,
(1.4)). Similarly, the inequality a3 � 2

3 follows from (1.3). Thus, we assume

that (5.4) holds in the case in which L is of P2-type, that (5.6) holds if L is of
F1-type, and that a3 � 2

3 if L is of F1-type.
Let Z = E1, and let μ be the number defined in Lemmas 5.3, 5.4, 5.5, 5.6, 5.7,

and 5.9. Then μ = τ (S,L, Z), except the case in which K2
S � 2 and L is a divisor

of (P1 × P1)-type. In this case, we have

μ = min

{
1 + 2b+ 2a1 + a2 + a3 + a4 + a5 + a6

2
, 1 + b+ a1 + a2 + a6

}
so that μ � τ (S,L, Z) by Lemma 5.9. Moreover, there exists a birational morphism
π : S → S that contracts a disjoint union of (−1)-curves C1, . . . , Ck, canonically
determined by (S,L, Z) and described in Lemmas 5.3, 5.4, 5.5, 5.6, 5.7, and 5.9.
In each case, we have μ = σ(S,L, Z), where L = π∗(Z) and Z = π(Z). Here
σ(S,L, Z) is the Seshadri constant of the pair (S,L) with respect to the curve Z.
Moreover, it follows from Lemmas 5.3, 5.4, 5.5, 5.6, 5.7, and 5.9 that the curve Z
is smooth, and L · Ci < σ(S,L, Z) for every i. Thus, it follows from Corollary 3.6

that (S,L) is not K-stable if D̂F(μ) < 0, where D̂F is the rational function defined

in (3.4). The goal is to show that D̂F(μ) < 0 provided that the divisor L satisfies
the hypotheses of Theorems 1.3 and 1.6.

To simplify computations, let D = 3
2D̂F(μ)L2 so that D has the same sign as

D̂F. Using (3.4) and L · E1 = 1− a1, we get
(6.1)

D = −KS ·L
(
−μ3−3μ2(1−a1)

)
+3μ2L2+3μL2(1−a1)−KS ·L

(
k∑

i=1

(
μ−L·Ci

)3)
,

where k, each L · Ci, and μ = σ(S,L, Z) are given by Lemmas 5.3, 5.4, 5.5, 5.6,
5.7, or 5.9. If L is of F1-type or (P1 × P1)-type, then D = A · b2 + B · b + C for
some functions A, B, and C that depend only on a1, . . . , ar−1. For instance, if
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K2
S = 5 and L is of (P1 × P1)-type, then (6.1) and Lemma 5.5 imply that D is the

polynomial

(
3a21 + 3− 3a22 − 3a23

)
b2 +

(
4a31 + 3a21a2 + 3a21a3 − 3a1a

2
2 − 3a1a

2
3 − 4a32

− 6a2a
2
3 − 2a33 + 6a21 − 9a22 − 9a23

+ 6a1 + 3a2 + 3a3 + 8
)
b

+ 5 + 4a1 + 4a2 + 4a3 + 2a41 − 2a42 − a43 + 4a31

− 7a32 − 2a33 + 3a21a2a3 − 3a1a2a
2
3 + 3a21

+ 3a1a2 − 6a22 − 6a23 + 2a31a2 + 2a31a3 − 2a1a
3
2 − a1a

3
3 + a32a3 − a2a

3
3 + 3a21a2

+ 3a21a3 − 6a1a
2
2 − 6a1a

2
3 + 3a22a3 − 12a2a

2
3 + 3a1a3 + 9a2a3 − 3a22a

2
3.

(6.2)

If K2
S = 4 and L is of F1-type, then Lemma 5.4 implies that A = 3a21 + 6 − 3a22 −

3a23 − 3a24,

B = 4a31 + 3a21a2 + 3a21a3 + 3a21a4 − 3a1a
2
2 − 3a1a

2
3

− 3a1a
2
4 − 2a32 − 2a33 − 2a34 + 3a21 − 9a22 − 9a23

− 9a24 + 9a1 + 3a2 + 3a3 + 3a4 + 16,

and

C = 8 + 8a1 + 8a2 + 8a3 + 8a4 + 2a41 − a42 − a43 − a44 + 2a31 − a32 − a33 − a34 − 9a24

− 9a23 − 9a22 + 2a31a2 + 2a31a3 + 2a31a4 − a1a
3
2

− a1a
3
3 − a1a

3
4 − a32a3 − a32a4 − a2a

3
3

− a2a
3
4 − a33a4 − a3a

3
4 + 3a21a2 + 3a21a3 + 3a21a4

− 6a1a
2
2 − 6a1a

2
3 − 6a1a

2
4 + 3a22a3 + 3a22a4

+ 3a2a
2
3 + 3a2a

2
4 + 3a23a4 + 3a3a

2
4 + 3a1a2

+ 3a1a3 + 3a1a4 − 6a2a3 − 6a2a4 − 6a3a4.

Similarly, if S is a smooth cubic surface, L is of (P1 × P1)-type, a2 + a5 < a3 + a4,
and a3 + a4 + a5 � 2 + a2, then Lemma 5.7 gives k = 5, C1 = L16, C2 = L12,
C3 = L13, C4 = L14, C5 = L15, S = P1 × P1, and μ = 2 + b + a1 + a2. In this
case, we have L · C1 = 1 + a1, L · C2 = 1 + b + a1, L · C3 = 1 + b + a1 + a2 + a3,
L · C4 = 1 + b+ a1 + a2 + a4, and L · C5 = 1 + b+ a1 + a2 + a5 so that (6.1) gives
A = 3a21 + 9− 3a22 − 3a23 − 3a24 − 3a25,

B = 4a31 + 3a21a2 + 3a21a3 + 3a21a4 + 3a21a5 − 3a1a
2
2 − 3a1a

2
3

− 3a1a
2
4 − 3a1a

2
5 − 4a32 − 6a2a

2
3 − 6a2a

2
4 − 6a2a

2
5 − 2a33 − 2a34

− 2a35 − 9a22 − 9a23 − 9a24 − 9a25 + 12a1 + 15a2 + 3a3 + 3a4 + 3a5 + 24,

and

C = 9 + 12a1 + 12a2 + 12a3 + 12a4 + 12a5 − 3a21 − 6a22 − 12a23 − 12a24 − 12a25

− a44 − a45 − 9a32 + 3a21a3 + 3a21a4 + 3a21a5 − 6a1a
2
2 − 6a1a

2
3 − 6a1a

2
4 − 6a1a

2
5

+ 3a22a4 + 3a22a5 − 12a2a
2
3 − 12a2a

2
4 − 12a2a

2
5
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+ 3a23a4 + 3a23a5 + 3a3a
2
4 + 3a3a

2
5

+ 3a4a
2
5 + 3a1a3 + 3a1a4 + 3a1a5 + 9a2a3

+ 9a2a4 + 9a2a5 − 6a3a4 − 6a3a5 − 6a4a5

− 3a22a
2
3 − 3a22a

2
4 − 3a22a

2
5 + 9a1a2 + 2a31a2 + 2a31a3 + 2a31a4 + 2a31a5 − 2a1a

3
2

− a1a
3
3 − a1a

3
4 − a1a

3
5 + a32a3 + a32a4 + a32a5 − a2a

3
3 − a2a

3
4 − a2a

3
5 − a33a4

− a33a5 + 3a22a3 − a3a
3
4 − a3a

3
5 − a34a5 − a4a

3
5 − 3a21a2 + 3a21a2a3 − 3a1a2a

2
3

− 3a1a2a
2
5 − 3a1a2a

2
4 + 3a24a5 + 3a21a2a5 + 3a21a2a4 + 2a41 − 2a42 − a43.

We clearly see the pattern for the polynomial A. Indeed, if L is of F1-type or
(P1 × P1)-type, then

A = 3a21 + 3r − 9− 3a22 − · · · − 3a2r−1.

Thus, if L is of F1-type or (P1 × P1)-type and a21 + r − 3 < a22 + · · ·+ a2r−1, then

D(a1, . . . , ar−1, b) < 0

for b � 0. This proves Theorem 1.3.
Now let us denote by DP2 the polynomial

5 + 2a34 + 2a35 + 2a36 + 2a37 + 2a38 + 2a41 − a42 − a43 − a44 − a45 − a46

− a47 − a48 + 3a1a6 − 6a1a
2
8 − a2a

3
5 + 3a2a

2
6 + 3a3a

2
6 + 3a6a

2
2 + 2a4a

3
1 + 3a3a

2
7

+ 20a6 − 18a23 − 18a24 − 18a25 − 18a26 − 18a27 − 18a28 + 3a1a2 + 3a1a4 + 3a1a5

+ 20a7 + 3a1a7 + 3a1a8 − a1a
3
2 − a1a

3
3 − a1a

3
4 − a1a

3
5 − a1a

3
6 − a1a

3
7 + 3a8a

2
6

− a1a
3
8 − 6a1a

2
2 − 6a1a

2
3 − 6a1a

2
4 − 6a1a

2
5 − 6a1a

2
6 − 6a1a

2
7 − 6a2a3 + 3a8a

2
4

+ 20a8 − 6a2a5 − 6a2a6 − 6a2a7 − 6a2a8

+ 2a2a
3
1 − a2a

3
3 − a2a

3
4 − a2a

3
6 + 3a8a

2
5

+ 2a33 − a2a
3
7 − a2a

3
8 + 3a2a

2
1 + 3a2a

2
3 + 3a2a

2
4 + 3a2a

2
5 + 3a2a

2
7 + 3a2a

2
8

− 6a3a5 − 6a3a6 − 6a3a7 − 6a3a8 + 2a3a
3
1 − a3a

3
2 − a3a

3
4 − a3a

3
5 − a3a

3
6

− 4a31 + 3a1a3 − a3a
3
7 − a3a

3
8 + 3a3a

2
1 + 3a3a

2
2 + 3a3a

2
4 + 3a3a

2
5 + 3a3a

2
8

− 6a3a4 − 6a5a6 − 6a4a6 − a5a
3
7 + 3a7a

2
2 − a8a

3
6 + 2a7a

3
1 + 3a8a

2
7 + 3a5a

2
8

+ 20a2 − 6a4a5 − 6a4a7 − 6a4a8 − a4a
3
2 − a4a

3
3 − a4a

3
5 − a4a

3
6 − a4a

3
7

+ 2a32 − a4a
3
8 + 3a4a

2
1 + 3a4a

2
2 + 3a4a

2
3 + 3a4a

2
5 + 3a4a

2
6 + 3a4a

2
7 + 3a4a

2
8

+ 20a3 − 6a5a7 − 6a5a8 + 2a5a
3
1 − a5a

3
2 − a5a

3
3 − a5a

3
4 − a5a

3
6 − a5a

3
8 + 3a5a

2
1

− 18a22 + 3a5a
2
2 + 3a5a

2
3 + 3a5a

2
4 + 3a5a

2
6 + 3a5a

2
7 − 6a6a7 − 6a6a8 + 2a6a

3
1

+ 20a1 +−a6a
3
2 − a6a

3
3 − a6a

3
4 − a6a

3
5 − a6a

3
7 − a6a

3
8 + 3a6a

2
1 + 3a6a

2
3 + 3a8a

2
2

+ 3a6a
2
4 + 3a6a

2
5 + 3a6a

2
7 + 3a6a

2
8 − 6a7a8 − a7a

3
2 − a7a

3
3 − a7a

3
4 + 3a8a

2
3

− 9a21 + 20a4 − a7a
3
5 − a7a

3
6 − a7a

3
8 + 3a7a

2
1 + 3a7a

2
3 + 3a7a

2
4 + 3a7a

2
5 + 3a7a

2
6

+ 20a5 − 6a2a4 + 3a7a
2
8 + 2a8a

3
1 − a8a

3
2 − a8a

3
3 − a8a

3
4 − a8a

3
5 − a8a

3
7 + 3a8a

2
1.

(6.3)
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If L is of P2-type, then D equals DP2 , DP2(a1, a2, a3, a4, a5, a6, 1), DP2(a1, a2, a3, a4,
a5, 1, 1), DP2(a1, a2, a3, a4, 1, 1, 1), and DP2(a1, a2, a3, 1, 1, 1, 1) in the case in which
K2

S = 1, K2
S = 2, K2

S = 3, K2
S = 4, and K2

S = 5, respectively. This follows
from (6.1) and Lemma 5.3. Now, by Lemmas A.1 and A.2, we get D < 0 when L
is of P2-type and (1.1) or (1.2) hold.

To deal with an ample Q-divisor L of F1-type, let us denote by DF1
the polyno-

mial

−
(
1 + 2b+

7∑
i=1

ai

)(
(2 + a1 + b)3 + 3(1− a1)(2 + a1 + b)2

)
+ 3

(
2 + a1 + b

)2(
1 + 4b+ 2

7∑
i=1

ai −
7∑

i=1

a2i

)
+ 3(1− a1)(2 + a1 + b)

(
1 + 4b+ 2

7∑
i=1

ai −
7∑

i=1

a2i

)
+
(
1 + 2b+

7∑
i=1

ai

)
·
(
(1 + b)3 + (1− a2)

3 + (1− a3)
3 + (1− a4)

3

+ (1− a5)
3 + (1− a6)

3 + (1− a7)
3
)
.

(6.4)

Then D = DF1
in the case in which L is of F1-type and K2

S = 1. Indeed, if K2
S = 1,

then it follows from Lemma 5.4 that μ = 2 + a1 + b, k = 7, C1 = L18, C2 = L12,
C3 = L13, C4 = L14, C5 = L15, C6 = L16, and C7 = L17 so that L · C1 = 1 + a1,
L · C2 = 1 + a1 + a2 + b, L · C3 = 1 + a1 + a3 + b, L · C4 = 1 + a1 + a4 + b,
L·C5 = 1+a1+a5+b, L·C6 = 1+a1+a6+b, and L·C7 = 1+a1+a7+b. Thus, in this
case, it follows from (6.1) that D = DF1

. Similarly, one can deduce from Lemma 5.4
and (6.1) that D equals DF1

(a1, a2, a3, a4, a5, a6, 1, b), DF1
(a1, a2, a3, a4, a5, 1, 1, b),

DF1
(a1, a2, a3, a4, 1, 1, 1, b), DF1

(a1, a2, a3, 1, 1, 1, 1, b) in the case in which K2
S = 2,

K2
S = 3, K2

S = 4, and K2
S = 5, respectively. Thus, it follows from Lemma A.3 that

D < 0 in the case in which L is of F1-type and (1.4) holds.
If K2

S = 5 and L is of (P1×P1)-type, then D is the polynomial (6.2). In this case,
we have D < 0 by Lemma A.4 provided that (1.3) holds. Similarly, if K2

S = 4, L is
a divisor of (P1 × P1)-type, and a3 + a4 � 1 + a2, then it follows from Lemma 5.6
that D is given by(

3a21 − 3a22 − 3a23 − 3a24 + 6
)
b2 + 4a31b+ 3a21a2b+ 3a21a3b+ 3a21a4b− 9a22b

− 9a23b− 3a1a
2
2b− 3a1a

2
3b− 3a1a

2
4b− 4a32b

− 6a2a
2
3b− 6a2a

2
4b− 2a33b− 2a34b+ 3a21b

− 9a24b+ 9a1b+ 9a2b+ 3a3b+ 3a4b+ 16b

+ 8 + 8a1 + 8a2 + 8a3 + 8a4 + 2a41 − 2a42

− a43 − a44 + 2a31 − 8a32 − a33 − a34 − 9a24

− 9a23 − 6a22 + 3a21a2a4 − 3a1a2a
2
4 − 3a1a2a

2
3(6.5)

− 12a2a
2
4 + 3a21a2a3 + 2a31a2 + 2a31a3 + 2a31a4

− 2a1a
3
2 − a1a

3
3 − a1a

3
4 + a32a3 + a32a4 − a2a

3
3
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− a2a
3
4 − a33a4 − a3a

3
4 + 3a21a3 + 3a21a4 − 6a1a

2
2

− 6a1a
2
3 − 6a1a

2
4 + 3a22a3 + 3a22a4 − 12a2a

2
3

+ 3a23a4 + 3a3a
2
4 + 3a1a3 + 3a1a4 + 9a2a3

+ 9a2a4 − 6a3a4 − 3a22a
2
3 − 3a22a

2
4 + 6a1a2.

If K2
S = 4 and a3 + a4 � 1 + a2, then D is

(
3a21 − 3a22 − 3a23 − 3a24 + 6

)
b2 + 4a31b+ 3a21a2b+ 3a21a3b+ 3a21a4b− 3a1a

2
2b

− 3a1a
2
3b− 3a1a

2
4b− 2a32b− 2a33b− 2a34b+ 3a21b

− 9a22b− 9a23b− 9a24b+ 9a1b+ 3a2b

+ 3a3b+ 3a4b+ 16b+ 8 + 8a1 + 8a2 + 8a3

+ 8a4 + 3a21a2 + 2a41 − a42 − a43 − a44 + 2a31 − a32

− a33 − a34 + 3a1a2 − 9a24 − 9a23 − 9a22 − 6a1a
2
2

+ 3a1a3 − 6a4a2 − 6a3a2 + 2a31a2 + 3a23a4

+ 2a31a3 + 2a31a4 − a1a
3
2 + 3a3a

2
4 − a1a

3
3

− a1a
3
4 − a32a3 − a32a4 − a2a

3
3 − a2a

3
4 − a33a4

− a3a
3
4 + 3a21a3 + 3a1a4 + 3a21a4 − 6a1a

2
3 − 6a1a

2
4

+ 3a22a3 + 3a22a4 + 3a2a
2
3 + 3a2a

2
4 − 6a3a4.

(6.6)

In both cases, (1.3) implies D < 0 by Lemmas A.6 and A.5.
If K2

S = 3, L is of (P1 × P1)-type, and a3 + a4 + a5 � 2 + a2, then D is the
polynomial

−
(
3 + 2b+

5∑
i=1

ai

)(
(2 + b+ a1 + a2)

3 + 3(1− a1)(2 + b+ a1 + a2)
2
)

+
(
3(2 + b+ a1 + a2)

2 + 3(1− a1)(2 + b+ a1 + a2)
)

·
(
3 + 4b+ 2

5∑
i=1

ai −
5∑

i=1

a2i

)
+
(
3 + 2b+

5∑
i=1

ai

)
·
(
(1 + b+ a2)

3 + (1 + a2)
3 + (1− a3)

3 + (1− a4)
3 + (1− a5)

3
)
.

(6.7)
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This follows from Lemma 5.7. Similarly, if a3 + a4 + a5 � 2 + a2, then D is
(6.8)

− (3 + 2b+ a1 + a2 + a3 + a4 + a5)(2 + 2b+ 2a1 + a2 + a3 + a4 + a5)
3

8

− 3(1− a1)(3 + 2b+ a1 + a2 + a3 + a4 + a5)(2 + 2b+ 2a1 + a2 + a3 + a4 + a5)
2

4

+
3(2 + 2b+ 2a1 + a2 + a3 + a4 + a5)

2

4

(
3 + 4b+ 2

5∑
i=1

ai −
5∑

i=1

a2
i

)

+
3(1− a1)(2 + 2b+ 2a1 + a2 + a3 + a4 + a5)

2

(
3 + 4b+ 2

5∑
i=1

ai −
5∑

i=1

a2
i

)

+
(b+ a2 + a3 + a4 + a5)

3

8

(
3 + 2b+

5∑
i=1

ai

)
+

(a2 + a3 + a4 + a5)
3

8

(
3 + 2b+

5∑
i=1

ai

)

+
(a4 + a5 − a2 − a3)

3

8

(
3 + 2b+

5∑
i=1

ai

)
+

(a3 + a5 − a2 − a4)
3

8

(
3 + 2b+

5∑
i=1

ai

)

+
|a3 + a4 − a2 − a5|3

8

(
3 + 2b+

5∑
i=1

ai

)
.

In both cases, (1.3) implies that D < 0 by Lemmas A.7 and A.8.
If K2

S � 2 and L is of (P1 × P1)-type, then we can derive the formulas for D

using (6.1) and Lemma 5.9. To present them in a compact way, let us denote by F

the polynomial

− 1

8

(
1 + 2b+ 2a1 +

6∑
i=2

ai

)3(
1 + 2b+

7∑
i=1

ai

)
− 3

4
(1− a1)

(
1 + 2b+ 2a1 +

6∑
i=2

ai

)2(
1 + 2b+

7∑
i=1

ai

)
+

3

4

(
1 + 2b+ 2a1 +

6∑
i=2

ai

)2(
1 + 4b+ 2

7∑
i=1

ai −
7∑

i=1

a2i

)
+

3

2
(1− a1)

(
1 + 2b+ 2a1 +

6∑
i=2

ai

)(
1 + 4b+ 2

7∑
i=1

ai −
7∑

i=1

a2i

)
+

1

8

(
1 + 2b+

7∑
i=1

ai

)(
− 1 + 2b+

6∑
i=2

ai

)3

+
1

8

(
1 + 2b+

7∑
i=1

ai

)(
− 1 +

6∑
i=2

ai

)3

.

(6.9)

If K2
S = 1, L is of (P1 × P1)-type, and 1 + a2 + a3 � a4 + a5 + a6, then D = F by

Lemma 5.9. Similarly, if K2
S = 1, 1 + a2 + a3 � a4 + a5 + a6, and a3 + a5 + a6 �

1 + a2 + a4, then D is the polynomial

(6.10) F+
1

8

(
1 + 2b+

7∑
i=1

ai

)(
a4 + a5 + a6 − 1− a2 − a3

)3
.
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Likewise, if K2
S = 1, a3 + a5 + a6 � 1 + a2 + a4, a3 + a4 + a6 � 1 + a2 + a5, and

a2 + a5 + a6 � 1 + a3 + a4, then D is the polynomial
(6.11)

F+
1

8

(
1+2b+

7∑
i=1

ai

)((
a4+a5+a6−1−a2−a3

)3
+
(
a3+a5+a6−1−a2−a4

)3)3

.

If K2
S = 1, a3+a4+a6 � 1+a2+a5, 1+a2+a6 � a3+a4+a5, and a2+a5 � a3+a4,

then D is the polynomial

F+
1

8

(
1 + 2b+

7∑
i=1

ai

)(
a4 + a5 + a6 − 1− a2 − a3

)3
+

1

8

(
1 + 2b+

7∑
i=1

ai

)(
a3 + a5 + a6 − 1− a2 − a4

)3
+

1

8

(
1 + 2b+

7∑
i=1

ai

)(
a3 + a4 + a6 − 1− a2 − a5

)3
.

(6.12)

If K2
S = 1, a2 + a5 + a6 � 1 + a3 + a4, and a2 + a5 � a3 + a4, then D is the

polynomial

F+
1

8

(
1 + 2b+

7∑
i=1

ai

)(
a4 + a5 + a6 − 1− a2 − a3

)3
+

1

8

(
1 + 2b+

7∑
i=1

ai

)(
a3 + a5 + a6 − 1− a2 − a4

)3
+

1

8

(
1 + 2b+

7∑
i=1

ai

)(
a3 + a4 + a6 − 1− a2 − a5

)3
+

1

8

(
1 + 2b+

7∑
i=1

ai

)(
a2 + a5 + a6 − 1− a3 − a4

)3
.

(6.13)

Finally, if K2
S = 1, a3 + a4 + a6 � 1 + a2 + a5, 1 + a2 + a6 � a3 + a4 + a5, and

a2 + a5 � a3 + a4, then D is the polynomial

−
(
1 + 2b+

7∑
i=1

ai

)(
4 + b− 2a1 + a2 + a6

)(
1 + b+ a1 + a2 + a6

)2
+ 3

((
1 + b+ a1 + a2 + a6

)2
+
(
1− a1

)(
1 + b+ a1 + a2 + a6

))
·
(
1 + 4b+ 2

7∑
i=1

ai −
7∑

i=1

a2i

)
+
(
1 + 2b+

7∑
i=1

ai

)
·
((

b+ a2 + a6
)3

+
(
a2 + a6

)3
+
(
a6 − a3

)3
+
(
a6 − a4

)3
+

(
a6 − a5

)3)
.

(6.14)

This gives the formulas for D in the case in which K2
S = 1 and L is of (P1×P1)-type.

In these cases, if a2 − a1 � 0.9347, then D < 0 by Lemmas A.9, A.10, A.11, A.12,
A.13, and A.14.
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If K2
S = 2 and L is of (P1 × P1)-type, then the formulas for D are obtained

from (6.9), (6.10), (6.11), (6.12), (6.13), and (6.14) by letting a7 = 1. In this case,
if a2 − a1 � 0.9206, then D < 0 by Lemmas A.9, A.10, A.11, A.12, A.13, and A.14.

We see that D < 0 in the following cases: when L is of P2-type and either (1.1)
or (1.2) holds, when L is of F1-type and (1.4) holds, and when L is of (P1×P1)-type
and (1.3) holds. As we already explained above, this implies Theorem 1.6.

Appendix A. Symbolic computations

The proof of Theorem 1.6 relies on computations which use symbolic algebra
packages. The length limitations of journal articles make it impractical to include
such computations in original articles. On the other hand, the code used to perform
computations is hardly ever maintained or preserved after several years, making
it impossible to verify results decades later, causing the reader to rely on good
faith and the skills of the authors. In reality, this is hardly a new problem of
the 21st century. Indeed, let us recall the following quote of one of the articles of
Sylvester [24] from 1871:

The manuscript sheets containing the original calculations [. . .] are
deposited in the iron safe of the Johns Hopkins University, Balti-
more, where they can be seen and examined, or copied, by any one
interested in the subject.

Similarly, the online platform arXiv allows us to preserve our computations. The
proofs in this article ultimately require verifying that certain polynomials of degree
4 in up to eight variables are negative under suitable conditions. The appendix
in the online version of this article [6] contains all details of the proofs of the
following lemmas, where such positivity is claimed, while the version submitted for
publication contains only the proofs of three lemmas, each serving as an example
of the three different approaches used in the proofs.

Let a1, a2, a3, a4, a5, a6, a7, a8, b be real numbers such that 0 � a1 � a2 � · · ·
� an < 1 and b � 0. Let s1 = a2 − a1, s2 = a3 − a2, s3 = a4 − a3, s4 =
a5 − a4, s5 = a6 − a5, s6 = a7 − a6, and s7 = a8 − a7. For every polyno-

mial f in R[a1, a2, a3, a4, a5, a6, a7, a8, b], let us denote by f̂ the polynomial in
R[a1, s1, s2, s3, s4, s5, s6, s7, b] obtained from f using the corresponding change of
variables.

Lemma A.1. Let f be the polynomial (6.3). Then the following assertions hold:

• f(a1, a2, a3, a4, 1, 1, 1, 1) < 0 when a2 − a1 � 0.6248.
• f(a1, a2, a3, a4, a5, 1, 1, 1) < 0 when a2 − a1 � 0.7488.
• f(a1, a2, a3, a4, a5, a6, 1, 1) < 0 when a2 − a1 � 0.8099.
• f(a1, a2, a3, a4, a5, a6, a7, 1) < 0 when a2 − a1 � 0.8469.
• f(a1, a2, a3, a4, a5, a6, a7, a8) < 0 when a2 − a1 � 0.8717.

Proof. Let f5 = f(a1, a2, a3, a4, 1, 1, 1, 1). Then f̂5(0, x, 0, 0) = −9x4 + 12x3 −
36x2 + 12x + 5. This polynomial has one positive root. Denote it by γ5. Then
γ5 ≈ 0.6247798071 and

f̂5(a1, x+ γ5, s2, s3) = −4a41 − 26a31s2 − 13a31s3 − 39a31γ5 − 39a31x− 36a21s
2
2

− 42a21s3x− 63a21x
2 − 20a1s

3
2 − 30a1s

2
2s3

− 66a1s
2
2γ5 − 66a1s

2
2x− 24a1s2s

2
3 − 8s32s3
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− 84a21s2x− 12s23γ
2
5 − 66a1s2s3γ5 − 66a1s2s3x

− 78a1s2γ
2
5 − 78a1s2x

2 − 7a1s
3
3

− 36a21s2s3 − 27a1s
2
3γ5 − 27a1s

2
3x− 39a1s3x

2

− 39a1γ
3
5 − 12s3γ

3
5 − 39a1x

3 − 4s42 − 9s22s
2
3

− 15a21s
2
3 − 27s22s3x− 30s22x

2 − 5s2s
3
3

− 21s2s
2
3γ5 − 21s2s

2
3x− 30s2s3x

2 − 72s2γ
2
5x

− 42a21s3γ5 − 21a1s3 − 63a1x− 18s22 − 18s2s3

− 6s23 − s43 − 6s33γ5 − 24s2γ
3
5 − 2s33 − 18s32x

− 24s2x
3 − 6s33x− 24s23γ5x− 12s23x

2

− 36s3γ
2
5x− 12s3x

3 − 9x4 − 6a1s
2
3 − 3s2s

2
3

− 48s2x(1− γ5)− a21(24− 7a1 − 9γ5 − 3s3)− 9xa21(14γ5 − 1)

− 6a21s2(14γ5 − 1)− 24s3x(1− γ5)

− 63a21γ
2
5 − a1s2x(13γ5 − 2)− 2s32(9γ5 + 1)

− 4s3(6γ5 − 1− 3γ2
5)− a1(63γ5 − 16− 18γ2

5)

− 6a1s3x(13γ5 − 2)− 6s22γ5(5γ5 − 2)− 12s22x(5γ5 − 1)

− 3s22s3(9γ5 − 1)− 12s3x
2(3γ5 − 1)

− 3a1s3γ5(13γ5 − 4)− 24a1s2(2− γ5)

− 8s2(6γ5 − 1− 3γ2
5)− 9a1γ5x(13γ5 − 4)

− 9a1x
2(13γ5 − 2)− 24s2x

2(3γ5 − 1)− 12s2s3x(5γ5 − 1)− 3s2s3γ5(10γ5 − 4)

− 12(3γ3
5 − 3γ2

5 + 6γ5 − 1)x− (54γ2
5 − 36γ5 + 36)x2 − 12(3γ5 − 1)x3.

All coefficients of this polynomial are negative. This shows that f5 < 0 when
a2 − a1 > γ5. In particular, if a2 − a1 � 0.6248, then f5 < 0. The other cases are
similar; see [6] for a complete proof. �

Lemma A.2 ([6]). Let f be the polynomial (6.3). Then the following assertions
hold:

• f(a1, a2, a3, a4, 1, 1, 1, 1) < 0 when a3 − a1 � 0.7698.
• f(a1, a2, a3, a4, a5, 1, 1, 1) < 0 when a3 − a1 � 0.8595.
• f(a1, a2, a3, a4, a5, a6, 1, 1) < 0 when a3 − a1 � 0.8985.
• f(a1, a2, a3, a4, a5, a6, a7, 1) < 0 when a3 − a1 � 0.9206.
• f(a1, a2, a3, a4, a5, a6, a7, a8) < 0 when a3 − a1 � 0.9347.

Lemma A.3. Let f be the polynomial (6.4). Then the following assertions hold:

• f(a1, a2, a3, 1, 1, 1, 1, b) < 0 when a2 − a1 � 0.7701.
• f(a1, a2, a3, a4, 1, 1, 1, b) < 0 when a2 − a1 � 0.8595.
• f(a1, a2, a3, a4, a5, 1, 1, b) < 0 when a2 − a1 � 0.8985.
• f(a1, a2, a3, a4, a5, a6, 1, b) < 0 when a2 − a1 � 0.9206.
• f(a1, a2, a3, a4, a5, a6, a7, b) < 0 when a2 − a1 � 0.9347.

Proof. Denote by f5 the polynomial f(a1, a2, a3, 1, 1, 1, 1, b), and let g5(a1, s1, s2, b)

= f̂5. Then g5(0, x, 0, b) = (3−6x2)b2+(8−4x3−18x2+6x)b−4x4+2x3−18x2+
8x+ 5. The discriminant of this polynomial is equal to −80x6 + 192x5 − 108x4 −
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112x3 + 84x2 + 4. Denote by δ5 its unique positive root. Then g5(a1, x+ δ5, s2, b)
is a sum of

− (12δ5 + 18)bs2x− (36 + 36δ5)a1bx− (6 + 30δ5)a
2
1s2

− (18δ5 + 12)a21b− (9 + 21δ5)a1s
2
2

− 12δ5b
2x− 12a1b

2δ5 − 27a1s2x
2 − 6bs2x

2

− 18a1bx
2 − 4x4 − 4bx3 − (12δ5 + 18)bx2

− 18a1x
3 − (8δ35 − 3δ25 + 18δ5 − 4)s2 − (16δ5 − 2)x3

− (18 + 18δ5)a1bs2 − (6 + 54δ5)a1s2x

− 9s22x
2 − 8s2x

3 − (54δ25 + 12δ5 + 30)a1x

− (6 + 54δ5)a1x
2 − 18a21bx− 12a1b

2x− 30a21s2x

− 21a1s
2
2x− 6bs22x− 6b2s2x− (5δ5 + 2)s32

− 18a31x− 5s32x− (27δ25 + 6δ5 + 15)a1s2

− 6b2x2 −−(24δ25 − 6δ5 + 18)s2x− (24δ5 − 3)s2x
2

− (18δ5 + 3)s22x− (12δ25 + 36δ5 − 6)bx

− (6δ25 + 18δ5 − 3)bs2 − 9a1s
2
2b− 9a21s2b− 6a1s2b

2

− 12a21s
2
2 − 6a1s

3
2 − (6δ5 + 9)bs22

− 2s32b− (30δ25 + 12δ5 + 9)a21 − 9a31s2 − s42

− (60δ5 + 12)a21x− (18δ25 + 36δ5 − 12)a1b

− 30a21x
2 − 3a21b

2 − 3s22b
2 − (24δ25 − 6δ5 + 18)x2 − (18δ35 + 6δ25 + 30δ5 − 12)a1

− 18a31δ5−(16δ35 − 6δ25 + 36δ5 − 8)x−(9δ25 + 3δ5 + 6)s22 − 18a1bs2x− 6b2s2δ5

and the polynomial

(3− 6δ25)b
2 − (4δ35 + 18δ25 − 6δ5 − 8)b− 4δ45 + 2δ35 − 18δ25 + 8δ5 + 5.

Observe that all coefficients of the former polynomial are negative since δ5 ≈
0.7700518. On the other hand, the latter polynomial is not positive for all b � 0
by the choice of δ5. This shows that g5(a1, s1, s2, b) < 0 if s1 > δ5 so that f5 < 0
when a2 − a1 � 0.7701.

One can use the same arguments to prove that f5 < 0 if a2 − a1 � 0.7698 and
b � 0.2308. See [6] for a complete proof of this lemma. �

Lemma A.4 ([6]). Suppose that f is (6.2). If a2 − a1 � 0.7452, then f < 0.

Lemma A.5 ([6]). Suppose that f is (6.6). If a2 − a1 � 0.848, then f < 0.

Lemma A.6. Suppose that f is (6.5), that a3+a4 � 1+a2, and that a2−a1 � 0.848.
Then f < 0.

Proof. Let g(a1, s1, s2, s3, b) = f̂ . Then g(a1, x+ 21
25 , s2, s3, b) is a sum of the poly-

nomial

− 12x4 − 1558

25
x3 − 3b2s23 − 4bs32 − 2bs33 − 15s23x

2 − 186

5
s23x− 18s32x− 6s33x

− 1112178

15625
x− 1812

25
s22x− 387

5
bx2 − 9087

125
bx− 2766

25
s2x

2 − 92586

625
s2x

Licensed to University of Essex. Prepared on Thu Nov 14 03:55:22 EST 2019 for download from IP 155.245.101.38.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



7294 IVAN CHELTSOV AND JESUS MARTINEZ-GARCIA

− 477

25
bs23 − 60a31x− 96a21x

2 − 58a1x
3 − 9b2x2 − 378

25
b2x− 20bx3 − 32s2x

3

− 84a1bs2x− 42a1bs3x− 84a1s2s3x− 24bs2s3x− 6b2s2s3 − 15a1bs
2
3 − 6bs2s

2
3

− 172434

625
a1x− 30a1bs2s3 −

5754

25
a1x

2 − 1383

25
s3x

2 − 46293

625
s3x− 21a21s

2
3

− 36s22x
2 − 16s3x

3 − 6bs22s3 −
441

25
s2s

2
3 − 21s2s

2
3x− 6432

25
a21x− 6a21b

2

− 7204

3125
b− 954

25
bs2s3 − 114a1s2x

2 − 1923

25
a21s3 −

2364

25
a1s

2
2 −

2364

25
a1s2s3

− 15513

625
bs3 − 6a1b

2s3 − 12a1b
2s2 −

1332

25
a1bs3

− 42a21bs2 − 21a21bs3 −
2664

25
a1bs2

− 30a1bs
2
2 − 69ba1x

2 − 4248

25
ba1x− 27s22s3x

− 2412

25
bs2x− 18bs3x

2 − 1206

25
bs3x

− 954

25
bs22 −

6888

25
a1s2x− 36bs2x

2 − 252

25
b2s2 − 12b2s2x− 3444

25
a1s3x

− 36a1s
2
3x− 24bs22x− 378

25
a1b

2 − 18a1b
2x− 92736

625
a21

− 12bs23x− 1812

25
s2s3x− 36s2s3x

2 − 84a1s
2
2x

− 57a1s3x
2 − 63a21s3x− 69a21bx− 3708

125
s23 − 126a21s2x

− 126

25
b2s3 − 6b2s3x− 73902

625
x2 − 6b2s22

− 4s42 − s43 −
278

25
s32 −

54687

625
a1s3 −

37176

625
s2s3

− 40a31s2 − 20a31s3 − 48a21s
2
2 − 20a1s

3
2

− 151

25
s33 −

37176

625
s22 − 7a1s

3
3 − 8s32s3 − 9s22s

2
3 − 5s2s

3
3 −

3846

25
a21s2

− 48a21s2s3 − 24a1s2s
2
3 −

1206

25
a1s

2
3 −

417

25
s22s3 −

109374

625
a1s2 − 30a1s

2
2s3

− 31026

625
bs2 − 8a41 −

412

5
a31 − 16a31b−

2049

25
a21b−

219

625
b2 − 43779

625
ba1

and the polynomial

265178

390625
− 1120738

15625
a1 −

385426

15625
s3 −

770852

15625
s2.

All coefficients of the former polynomial are negative. But we have a1 + s1 +2s2 +
s3 � 1. This follows from a3+a4 � 1+a2. Thus, if s1 � 21

25 , then a1+2s2+s3 � 4
25

so that
265178

390625
− 1120738

15625
a1 −

385426

15625
s3 −

770852

15625
s2 < 0.

Hence, if a2 − a1 � 21
25 = 0.84, then f(a1, a2, a3, a4, b) < 0. �

Lemma A.7 ([6]). Suppose that f is (6.8), that a3 + a4 + a5 � 2 + a2, and that
a2 − a1 � 0.8911. Then f < 0.
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Lemma A.8 ([6]). Suppose that f is (6.7), that a3 + a4 + a5 � 2 + a2, and that
a2 − a1 � 0.8911. Then f < 0.

Lemma A.9 ([6]). Suppose that f is the polynomial (6.9). If a2 − a1 � 0.9305,
then f < 0. Similarly, if a2 − a1 � 0.915, then f(a1, a2, a3, a4, a5, a6, 1, b) < 0.

Lemma A.10 ([6]). Suppose that f is the polynomial (6.10) and that 1+a2+a3 �
a4 + a5 + a6. If a2 − a1 � 23

25 , then f < 0. Similarly, if a2 − a1 � 9
10 , then

f(a1, a2, a3, a4, a5, a6, 1, b) < 0.

Lemma A.11 ([6]). Suppose that f is the polynomial (6.11) and that a3+a5+a6 �
1 + a2 + a4. If a2 − a1 � 23

25 , then f < 0. Similarly, if a2 − a1 � 9
10 , then

f(a1, a2, a3, a4, a5, a6, 1, b) < 0.

Lemma A.12 ([6]). Suppose that f is the polynomial (6.12) and that a3+a4+a6 �
1 + a2 + a5. If a2 − a1 � 23

25 , then f < 0. Similarly, if a2 − a1 � 9
10 , then

f(a1, a2, a3, a4, a5, a6, 1, b) < 0.

Lemma A.13 ([6]). Suppose that f is the polynomial (6.14) and that 1+a2+a6 �
a3 + a4 + a5. If a2 − a1 � 23

25 , then f < 0. Similarly, if a2 − a1 � 9
10 , then

f(a1, a2, a3, a4, a5, a6, 1, b) < 0.

Lemma A.14 ([6]). Suppose that f is the polynomial (6.13) and that a2+a5+a6 �
1 + a3 + a4. If a2 − a1 � 23

25 , then f < 0. Similarly, if a2 − a1 � 9
10 , then

f(a1, a2, a3, a4, a5, a6, 1, b) < 0.
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