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In memory of Oscer Zorishs

This asticle aims to do three things: (1) to give a tutorial introduction to
e g and singularities, with some of the motivating axampleu )
to provide a skeleton key to the results of my two papers on canoni
ities [C3-1, [Pagodal, and those of Morrison-Stevens] and ori, T
singularities; and (1IT) to explain the recent “exact plurigenus formula.” The
expository intention is reficcted in explanations of some well-known standard
technical points (well-known to experts but maybe not to the algebraic geome-
ter in the street), and also worked examples, exercises, and deliberate mistakes
to entertain the reader; 1 apologise if any secrets of the pricsthood are divulged
despite my best effrts
fer §4, most of the material is
[Morrison-Stevens] and [Morl] in el Tandered form, 0 th 7o

6 and 7 contain the material of

with equivariant R and toric geometry; of course, these are linked in a primary
ey by te fact thtqtintsnlrkis maks cotentions (o cxampl (o
HOP.O(k) for  wighted v spce P) i a0 b compted s
by equivariant RR or s the number of lattce points =

e vaa ometbin of e s o ot ooy i
to the combinatorics of the Newton polyhedron at the heart of the cassification.
of terminal singularities.

My contribution to the subject has mainly been concerned with the study of
3-ld singularities. It should be noted that most o the recent worlk on varities
‘of dimension > 4 (in particular the two cirles of ideas, cone, contraction, non-
Vanishing theorems of Kawamata and Shokurov, and positvity of /., G, of
Fuita, Viehweg, Kawamata and Kollér) uses only the definitions of canonical
and terminal singularities (and their log generaliations), together with general
properties such as rationality and behaviour in codimension 2, but does not
o 1080 R, Py MBS Scondry 1503

o Si{;‘,‘.’: T
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in any essential way use specific results concerning the singularities. Indeed,
counterexamples (see (3.13)) suggest that it is unlikely that we can expect any
worthwhile classification of these singularities in dimension > .

‘The bulk of this paper was written during a six-week visit to the NSF-
sponsored special year in singularity theory and algebraic geometry at the Uni-
versity of North Carolina, Chapel Hill; I thank Jonathan Wabl, Jim Damon,
and the other visitors for providing a stimulating environment. 1 am indebted
to Y. Kawamata, S. Mori and D. Zagier for helpful conversations, and to A. R.
Fletcher, who has repeatedly corrected false versions of the formulas of Chap-
ter I11; . Mori has saved me from serious error in two places

Contents
Chapter I Overview of the subject
§1. Definition and easy examples
§2. Brief introduction to global canonical varieties
§3. The main reduction steps
Appendix to §3. Cohen-Macaulay and all that

Chapter I1. Classification of 3-fold terminal singularities
§4. Toric methods for yperqsotient singlciies
Appendix to §4. The Fine interio
§5. The terminal lemma.

Appendix to §5. Cyclotomy and the protf 5.4
§6. Terminal singularities accords
§7. Case-by-case proof of Theorem 6.1

Chapter IIL. Contributions of Q-divisors to RR
§8. Quotient singularities and equivariant RR
Appendix to §8. Computing the o;

§9. Contributions from Du Val singularities
§10. The plurigenus formula

References

Chapter I
Overview of the Subject

1. Definitions and easy examples. Varicties are always assumed to be
normal and quasiprojective, and defincd over an algebraically closed field  of
characteristc zero; my favourite s k = C.

{1:) DEFIION. A vaiety X has canamical singularite i oiisthe
following two conditior

() o some nteger 1 3 1, the Wel divisor ¥ is Cartie

()£ 1: = X i 3 rsltion o X and {5 the amily ofal xceptona
prime divisors of , the

Ky = () + ik with 20,
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I ; > 0 for every exceptional divisor E, then X has terminal singularitcs.

This section is devoted to explaining and motivating by examples the terms in
the definition (see (1.8-9) fo easy examples); the definition is ultimately justified
by the fact (see (2.5)) that the canonical model of a variety of general type has
canonical singularites.

‘Although the defnition of canouical singularities is abtract, there is a kind
of classification in the 3fold case which will reduce most problems to hyper-
surface singularities, cyclic quotient singularities, and cyclic quotients of isolated
hypersurface singularities. (It will be shown in (3.14), see also [Pagodal, that
every terminal singularity s of this Kind.) The reduction steps consist of various
eyelic covers, partial resolutions, and partial smoothings, and each step involves
of course some definite understanding of the “general” singulatity.

Here is some more terminology: the smallest 7 for which rKx is Cartier in a
neighbourhood of P € X is called the indez of the singularity P; the Q-divisor
A = (1/r) X o4 which satisfies the formal equality

Ky =f'Kx+a
s called the discrepancy of . (To remember which way round this equality goes,
ik o the djunctin, ol o the U Y — X o oot okt
P€X of a surfac Lis a (~1)-curve, and Ky =
() The suface case. Everyone knows tha the oinary double pont of

a surface (the singularity X: (z2 = y?) C A%) has a resolution /: ¥ — X
for which the exceptional curve E is a (~2)-curve, that is, B = P', E?
2. 1t's easy to see by the adjunction formula (or by a direct calculation with
differentials, as in (1.9) below) that Ky = /*Kx, so that this is a canonical
singulerity. In fact it can be proved that the surface canonical
exactly nonsingular points, together with the Du Val surface singularitcs, the
hypersurface singularities given by one of the equations

An: PHP 42 (forn21),

Da:2? 4’24271 (forn24),

Eo: 22490424,

Ep: 24P 4y,

Ey: 4+
(One derivation of this list is sketched in (4.9, (3)) Among the many extra-
ordinary properties enjoye by these singularitis is the fact that each of them
has a resolution /¥ — X such that the exceptional locus of  is a bunch of
(~2)-curves (forming & conﬁl\ln(mn siven by the corresponding Dynkin dia-
gram), and such that Ky =

14 lmportaa to relie that tis armles-oaking observation i central t0

the theory of minimal models of surfaces and canonical models of surfaces of
general type. The point is this: if X is a canonical surface (a surface with at
worst Du Val singularities and ample Kx), then a minimal resolution /¥ — X
is 2 nonsingular surface ¥ with Ky nef. conversely, if ¥ is a nonsingular surface
with Ky nef and big (s minimal nonsingular model o a surface of general type),
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then the curves £ with KyE = 0 form bunches of (~2)-curves, and can be
contracted to Du Val singularities. Thus for surfaces of general type, it's a
matter of personal preference whether you take the canonical model X, or a
sonsingular minimal model ¥ with Ky nef. In fact the influence of the Du Val
singularities extends throughout the classification of surfaces. Now let’s see how
this fils in higher dimensions.

(1.3) EXAMPLE: The Veronese cone. The simplest example of a singularity
of index > 1 is the cone aver the Veronese surface; this has a resolution ¥ with
exceptional locus £ satisfying B = P? and O5(~E) = 0(2). By the adjunction
formula, O5(Ky + E) = Kpa = 0(=3), so that purely formally we should have

Ky = ["Kx +}E.

We'll see presently that this is meaningful in terms of differentials. The first
context in which I met a variety with these singularities was the Kummer vatiety
of an Abelion 3-fold 4 dividing out A by the involution (1), the resulting
variety X = A/(~1) has 64 Veroncse cone singularities (at the 64 fixed p

of (~1)), and 2Kx ~ 0. You can simply blow up these singularities to get a
smooth variety ¥ if you wish, but then 2Ky ~ T, Ex, 50 you've lost the good
numerical properties of Kx. This is one reason why the Kummer surface does
not generalise to higher dimensions (at least, not in a very simple way).

Two examples where this singularity appears on caonical models of 3folds
are given in (2.8-9); compare [Ueno]

(1.4) Canonical differentials. 1f V. is a smooth variety, wy = Oy (Ky) =
ia the invertible sheaf generated by dzy A+~ A dzn, Where zi,..., Zy are loc
coordinates. Sections of wy are canonical differentials, and sections of w§™ are
m-canonical differentials. Canonical diferentials are important for the following

(1) Intrinsic nature. The sheaves wy and Oy (rKy) are part of the bundled
bardware which comes free when you buy V. This is particularly important in
classification theory; for example, if wy is ample, then there is an intrinsic way
of embedding V into projective space.

(2) Duality. wy is the dualising sheaf which makes Serre duality work; that
is, there is a perfect pairing H(V, %) x Extp™ (F,wy) —

@) Vnm.mmg Kodaira vanishing says that H'(V, £ @ wy’
sheaf £ an

4) Biratonal mature. 1 V = W is  biratonal map between nonsingular
projective varieties, then it is easy to see (for example, [Shafarevich, p. 167))
that regular differentials on V' and W coincide, so for example

HV, 0y (rKy)) f—H"(W< Ow(rKw))

(8) Adjunction formulas. 1f two varieties X and Y are closely related, then
you expect to be able to compute Kx in terms of Ky and vice-versa; a formula
of this kind is called an adjunction formula. In practice this means that Kx is
readily computable. The following are some of the many examples of adjunction
formulas.

=0 for an ample
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(a) If Y is & smooth variety and X C ¥ is a hypersurface, then Ky =
(Ky + X)lx.

) The Riemann-Hurwitz formula Kx = f*Ky + Ry for a generically
inite (separable) morphism /X — ¥ between nonsingular varitie: there e
a canonical map J: f*(03) 0%, and the ramification divisor can be defined
by Ry = div(J); this s of course just an ntrinsc way of sayin the determinant
of the Jacobian matrix

LICTE )
J = dey SElecnaFn)
1, 19m)
¥ — X is the blow-up of a nousingular point P € X of an n-fold,

(1
and E

0™P, then Ky = 0"Kx +(n - 1)E.
(@) 1fp: F — X is the P"*-bundle F = P (£) associated to a rank r vector
bundle € over X, and 0(1) is the tautological I
(1) on each fibre, and p. Ox (1)

(€) On a deeper level, Kodaira's canonical bundle formula for an elliptic sur-
face (soe, for example, [Barth-Peters-Van de Ven, p. 161]) should be viewed

an adjunction formula.

(L5) Definition of wx and Ox(mKx) for singular X. Assume X is normal.
Then ), the space of rational eanonical diflrentials of X (more preciscly,
1 should write @x,,), i & 1-dimensional vector space over k(X), with basis
i A+ Adfo for any ..., fo € k(X) forming a separable transcendence basis
of k(X) over k. Write X° for the nonsingular locus of X. Then for P € X°
1 can choose local coordinates 1,....,zn at P, and write any 5 € 0f

Rx) 8

dzy Ao Adz  with £ € k(X).

Then s is regular at P € X° if £ is a regular function at P. Now by defnition,
o is regular at P € X if there is a neighbourhood P € U C X such that s is
regular at every z € U 1 X°. This defines a sheaf wy, with

T(U,ux) = {s € W) | i regular on U n X%},
That is, I don't attempt to define directly a regular differential at a singular
point P, but just take rational differentials which
points of a neighbourhood of P. There
of defining the same shef.

&) x = (02), whee j: X° X isth inlusion of the smooth locus

(b) wx is the double dual of 1.

(16) Esplanation. Although the Kabler differentials 01 and 0" have good
universal properties, they are often not right for (birational) geometrical pur-
poses; the construction (a) of wx in terms of rational differentials which are
regular in codimension 1 is one obvious geometrical alternative, due to Zariski
To explain (b), taking the dual kills any torsion which might be present in (1%,
and then taking the double dual saturates flx, in the sense that any rational
sections of % which belong to 2% in codimension 1 actually belong to wx; or

n the smooth
are several traditional alternative ways
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il the cotorsion” in the Jargon of the trade. The universal constructions of
tensor product and /* of a sheal are often not right for geometrical purposes for
cimilar reasons. A simple example: i /2 ¥ — X is the blow-up of a nonsingular
point of a surface, many writers who should know bette write *mp for theideal
ip-Oys in fact there are at least 3 difierent pull-backs of mp, namely, the sheaf-
theoretic /-mp, the ringed-space construction f*mp = f~mp @ Oy (which
has torsion, as you should check for yourself), and mp - O mp — Oy}
In more complicated situations you might also contemplate saturating mp - Oy,

g3

ete

(1.7) The sheaves

Ox(mKx) = {s € @fx))®™ | ¢ is regular on X°) = 5u(%e)®™)
are defined in  similar way. Here the canonical divisor Kx s the Weil divisor
(more precisely, divisor class) corresponding to wx; this means the following:
nonaero rational diflerential 8 € 0y, and let Kx = div(s) be the

divisor of zeros and poles of s. The statement, that rKx is Cartier at P € X
(that s, locally principal) is equivalent to saying that Ox(rKx) is invertible.

(L8) EXAMPLES. (1) Suppose that P € X (f = 0) C A" is a (normal)
bypersurface singularity. Consider the expression

dn A Adza o
37910 € Mxyy
h An+t P. Atany
pon Q€ X where Oloe(@ 0o X anitold vith ol coordinte
<+, and 8 = (unit) - (dzy A+ A dzg) i  basis on . Now because
e mmication imlved. . e donton of Ny nd i taking the wedge
product, it happens that under permutation of Zo,..., n, the clement s € )

s invariant up to 1. Thus 7o does not play any particular role, and s a basis
of 5 o any sonsinglr point n/ X. This means that s is regular at P. In
fact  is & basis of wx, that is, O -s: for given any ¢ € wx, I can write
=13 with / € k(X); but mm / s b reglar at every Q € X0, and 0 by
normality of X, / is regular

(2) Let X be the quotient x A?/p3 of A? by the cyclic group ps of cube
roots of 1 acting by

e (m) = (ezey) forallc € s
The ring of invariants of the action is

Kla®, 20,292, 47) % it s, s, sl (ot — u wrus = o wous — wava),
and the quotient X is Spee of ths ring, which as you can see is the affine cone
over the twisted cubic.

1 now wite down a basis s € Ox(3Kx) as a rational 3-canonical differential
on X. The idea is that upstairs on AZ, dz Ady is a basis of 07, but under the
group action, e (dz Ady) — €2(dz A dy); s0 (dz Ady)® s imvariant under the

YOUNG PERSON'S GUIDE TO CANONICAL SINGULARITIES
group action, and should come from something on X. Now if I set

)% g2
o € @)®,

then differentiating uo 2y shows that

(anit) - (dz A dy)®,

(where 7: A7 — X i the quotient map); since r is etale outside the origin, it is
clear that s is a basis of (1%)®? everywhere on X ~ P. Alternatively, note that
from the equations defining X, (uo,us) are local coordinates wherever o # 0,
and that (by direct calculation)

(duo A duy)®
C

. (duz A dug)®

which works wherever us # 0. Thus » € Ox(3Kx)
two examples illutrate condition (1.1), (i
explain condition (i

(1.9) Regularity of differentials on a resolution. As discussed above, condition
(1.1), (i) means that the sheaf Ox(rKx) is invertible. Suppose that s is &
ocal basis of Ox(rKx) at a singular point P € X, and that f: ¥ — X is a
resolution. Then s € ()", and since K(¥) = (X), I can consider s a5 a
rational differential on Y and ask again whether it s regular; of course, where
i an isomorphism there is no problem, but s can perfectly well have poles along
exceptional divisors of /. So condition (1), (i) s the condition tht s remains
regular on a resolution Y.

Exaurtzs. () In the sotation o 1), sgpose i wditin that P & X ©
A" s an ordinary point of multiplicity k, so that the projectivised tangent
cone & onsingulx hyperurace £ C P o degre k. oo P X e
if k < n, canonical i k = n, and not canonical i k > .

‘You can see this by an explict calculation: let o Y — X be the blow-up of P;
then Y is nonsingular and the exceptional locus ersurface

C P". I'm interested in the zeros or poles along E of the rational canonical
differential

s a basis, and 3K is Cartier.
‘The next section tries to

_dn A Adm o
0= ot <
To calculate this, write down one affine piece of the blow-up of A™*+!, which

s the map o A — A™ given by

Zn = Yn, Zi=yyn fori=0,1,...,n—
where yo, ..., yn are coordinates in a copy of A"*1. Then

71 = f(wo¥ns-+-sUn) = Y 9(80s-- -1 ¥m),

where g is the equation of the affine piece of ¥ in A"*!. Now since

9= f(Uovn, - Un) ¥ %,
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it follows that -
89/3y0 =y - (01 /020);
bence at a point Q € E where (30/0%0)(@) #0,
dryAdza Ao Adzn _ oy dinAdi A Adyn

e 9f/azo
oypt BNy A Ay
R T oo

where (o dn A A Ay
o basis of 2 mear Q.
he rational differentia » has
& 2er0 of oder n— k along Eif k<,

a pole of order k —n along E if k > n,
k. More succinetly, the computation can be expressed

and no zero or pole if
s follows:
Kx=(Ka+X)lx and Ky=(Kp+Y)ly
where 0: B — A is the blow-up of P. However,
Kp=0"Kao+nE and Y =0"X-kE,
where E C B s the exceptional divisor. Adding these up gives
Ky =a"Kx +(n- ).
(2) Use the notation of (18), (2). The quotient singularity X is resolved by
a single blow-up 02 ¥ — X, so that one affine piece of the resolution is a copy.
of A? with coordinates (z,t), mapping to X by
(2,8) = (2,28, 2%, 28%).
‘The exceptional curve E = 0~"P of the blow-up has E = P!, 0(~E) = 0(3),
and is given in the affine piece A% by z
The rational 3-canonical differential s = (duo A duy)®/ul € Ox(3Kx) is a
basis. Now think of # as a rational differential on the resolution : A? — X, by
just writing o = 2, uy = #t. Then

dz A 2dt)? _ (dz Adt)®

Where dz A d is a basis of the regular canonical diffrential on A%; 50 » has a
pole along the exceptional curve E.
(1.10) Ezercise. A similar calculation that the 3-fold quotient singularity
X = A% 3 whe
By (@ 0,2) o (e en,€’2)
is canonical of index 3. To see this, note that X = Spec A, where
A

(2%, 2%, 207, %, 22,92,2°) = Kluo, wh, ua, us, vo, v, wl/ 1,
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and the ideal 1 of relations between the 7 generators is generated by 10 relations
of monommial type; you will enjoy checking that the projectivised tangent cone to
P € X consists of Ey U Ey, where E is a plane and ; is a quartic scroll, and
the blow-up of P € X is nonsingular. Next,

= (o N duy Adug)®

satisfies

(dzndy Ads)’,
and 50 is a basia of Ox(3Kx). It has zeros of order 1 and 2 along the two
exceptional components of the resolution.

(L.11) Historical note. This example was first discovered in this context
(35 a counterexample to my primitive idea that the index is always < 2) by
N. Shepherd-Barron, although it had been previously hinted at in a letter of
K. Ueno. The of (1.3) and (2.8-9) was also th -
redient in Ueno's paper o the same period (Uenol. Note that the Veronese cone
of (1.3) and the quotient singularity of (1.10) are the first of a well-understood
series of terminal quotient singulariies (sce (5.2)); the nice resolution con-
structed in Exercise 1.10 s generalised in (5.7).

Brief introduction o global canonical 3-folds. This section is
logically independent of the rest of the paper, giving some of the examples and
historical motivation underlying (C3-f].

(2.1) Is the canonical ring of @ varicty fnitely generated? Zariski's work
[Zariski implies that the canonical ring of a surface of general type is a g
kealgebra; i

fien been closely related to a description of the canonical ring (sce, for example,
[Catanese, §1.3]). Experience has shown that many of the basic assertions in
a traditional treatment of the classification of surfaces fail in higher dimensions;
perhaps fnite generation of the canonical ring generalises? At present this is not
completely sttled for 3-folds, although it looks good. Be that as it may, early ex-
amples of canonical models of 3-folds of general type for which the canonical ring
is £ (see (28-11)) displayed interesting new features compared with surfaces
of general type, and studying canonical 3-flds has led to some understanding of
what seem to be typical features of higher-dimensional birational geometry.

(22) Hilbert’s 14th problem. A standard method of constructing a graded
ring: start from a nonsingular projective variety V' and a divisor D on V., and

RY.D) = @ H(0y (nD))
R4

Hilbert asked [Mumford, ] i rings of this form are £.5. in general; this is false:
the first counterexamples were given by Nagata and Zariski in the 1950s. How-
ever, Zariski gave the following sufficient condition for R(V, D) to be £g. (Graded
rings appearing here are assumed to have Ro = , and £.g. means finitely gener-
ated as k-algebra.)
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(2.3) THEOREM. Suppose that the lincar system |mD)] is free for some
m>0; then R(Y, D) is /5

MODERN SKETCH PROOF. Suppose first that m = 1, so that |D)] itself is
free; then | D) defines & morphism ¢ = pp: V — (V] P to a projective
space P such that Oy (D) =" Op(1). I L sct A= p. Oy it follows that for any

£.0v(nD) = A® O(n) = A(r),
50 that
HO(V, 0y (nD)) = H'(P, .0y (nD)) = H'(P, A(n)).

H A bras, it fol Iy from Serre's
theorems that the ring )0 HO(P, A(n)) is inite as & module over the homo-
gencous coordinate ring of P. This gives the result in the case m =

re general case is similar, using the morphism ¢ = pmp and consid-
ering the coherent sheaf of Op-algebras A = o0y together with the sheaves of |
A-modules ; = p.Oy (iD) for i =1,...,m ~1. QED.

(2.4) Projective normalisation. Suppose V' and D are as in (2.3). Set

X = Proj R(V, D),

and consider the morphism 1 V' — (V) = ¥ C P for any n such that [nD]
is free. Then as is clear from the proof just given, X coincides with Specy
which in Zariski's language is the normalisaion of ”in the function fed of V;
wite
vaxLlyce

for the factorisation of pap (the Stein factorisation). Then ( is a contraction
‘morphism corresponding to D: it is the unique morphism such that .0y =
and for every curve C C V,

9(C)=pt. < CD=0.

Furthermore, since f: X — ¥ is finite, /Oy (1) is ample on X, and some
‘multiple is very ample. This gives:

COROLLARY. X = Proj R(V, D) & pup(V) for cvery suffciently large and
divisible n,

Note that if § is a minimal surface of general type then [mKs| is free for any
24 in fact for m > 2 if K3 > 5, see [Catanese]), so that it follows that the
canonical ring of § is initely generated.

(2.5) Canonical models.

DEFINITION. A canonical varity is a projective variety X with at worst
canonical singularities such that the Q-Caxrtier divisor Kx is ample. If V is a
‘variety of general type and X is a canonical variety birational to V/, then X is
the canonical model of V.

'YOUNG PERSON'S GUIDE TO CANONICAL SINGULARITIES ass

THEOREM (C3-f, (1.2), (II)]. Let V' be a smooth projective variety of
general type. Then V' has o canonical model X if and only f the canamical yimg
R=R(V,Ky) is /.g., and then X = Proj R(V, Ky).

PROOF. For a graded ring R = @yz0 R and m > 0, the truncated ring
R s defined by R(™ = @430 R by the Veronese embedding, Proj R(™

First, let X be a canonical variety, and m > 0 an integer such that O(mKx)
is an ample Cartier divisor; then of course R(X, Ox(mKx)) is g and X =
Proj R(X, 0x(mKx)). However, from the definition of canonical singularitics
and the birational invariance of HO(mKy) it follows that
HO(V,kKy) = H(Ox(kKx))
for any nonsingular projective variety V' birationally equivalent to X and any
k> 0. Therefore R(V,Ky) is finitely generated, and
X = Proj R(X, Ox(mKx)) = Proj R(V,mKy) = Proj R(V, Ky).

(26) I now prove the converse; suppose that R(V, Kv) is fg. and set X =
Proj R(V, Ky).

1t is well known that if R is a £g. graded ring, there exists m > 0 such that
R(™ is generated by elements of the smallest degree m (s, for example, EGA
11, (2.1.6), (v)); ix such an m. In other words, for each k > 1, HO(Oy (kmKy))
is spanned as a vector space by k-old products of elements of HO(Oy (mKy))

V’ — V' be a resolution of the base locus of [mKy; in view of the
birational invariance of HO(mKy), I can replace V by V", 50 assume that
ImKy|= M|+,
where |M[ is a free linear system and F'the fixed part. Because of what I just
said about HO(kmKy), T also have
TkmKy| = kM| 4 kF for k> 1

By (2.4) applied to M, the map p = ppr: V — ppe(V) = X C P is birational,
and X is normal. By construction Oy (M) & p* O (1).

CLAIM.  Every irreducible component I of F is contracted by  to a locus
@(T) of dimension < n~2.

The cla

implies that X is a canonical variety: indeed, if I set
VO =V ~ {exceptional divisors of ¢}
and write X° for the open subset of (V) where ! is regular, then XO is
the complement of a subset of codimension > 2 in X; and p: V© = X0 is an
isomorphism induc
Ox(1)lxe 2 Oy (M)lye = Oy (mKy)lyo = Ox(mKx)lxs.

So mKx is a Cactier divisor, giving (1), () and mKy = p*mKx + F gives
(1), (i
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(2.7) PROOF OF CLAIM. This is an easy result i the style of [Zariski]
notice first that if dim pa(F) 1 then AO(Or (kM + 4)) ~ (const.) - k"1
a8 k — oo for any divisor A on I Now T s i I60 4.1 for very by and
heace the restriction map.

ri: HO(Oy (kM +T)) — HO(Or (kM +T))

is 2er0. Also, one gets a bound of the form
B(Oy (kM) < (con
In fct, since .y (M) = Ox(k) is ample, H(p,Oy (kM)) = 0 for k0, and
the Leray spectral sequence gives
HY (O (kM) = HO(R 0.0y (kM) = H(R' 0.0y ® Ox(K)),
50 that KO grows like k¥ where d = dimSupp R'p. Oy <n =2

‘This contradietion proves the claim. QE.D.

(28) EXAMPLES. The following is an example of & canonical model of &
3-old of general type: take the weighted projective space P(1,1,2,2,7) with
weighted homogeneous coordinates 1,72,1, 42w, and the hypersurface X =
Xie © P(1,1,2,2,7) given by w? = fua(z1,72,91,35). To explain this variety
i terms of ordinary projective spaces, consider the generically 2-to-1 morphism
72X P(1,102) g b oting . The (11,22 s somorie inan
obvious way to the quadric of rank 3, Q C P ouble covering
branchd in s nerction Q11 of @ Vit genral sptc, and long the
vertex of Q.
of the vertex iy

e

of weighted projective spaces (see [Dnlg.nchev])
Kx=0(14-7-2-2-1-1)=0(1)

is an ample Q-Cartier divisor satisfying K3 = 14/(2+2-7) = 1/2; this number

controls the growth of the plurigenera of X (that is, of & nonsingular model of

X), 50 that

o FAYY

Pa(X) = (X, 0(n)) ~ (m) (5) " an—oo
However, if X had a nonsingular model ¥ with Ky nef, RR would give P ~
(1/3) - K3 13, with K € 2Z; 5o the plurigenera of this X grow a lot slower
than those of any 3-fold of general type having a nonsingular model with Ky nef.
Note also that @ canaot be birational for n < 6, 5o that this kind of example
is analogous to Fariques' famous example Xio C P(1,1,2,5) of a surface of
general type for which pq is not birational (compare [Catanese])

(2:9) Now cosider the weighted complete intersection
X = Xoes CP(2',8°).

“This is a rare case when the theoretical idea of embedding a weighted projective
space P by means of some Op () actually helps to understand t. The embedding
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of P(24,3%) by means of O(6) looks as follows: take a copy of P* in ita Veronese
embedding by O(3), and a copy of P? in its Veronese embedding by O(2), then
take the linear join:
P = P(24,8%) = vs(P) + va(P?) C P,

My fold X is the intersection of P with 3 suficiently general hyperplanes
of P25, 1t's not hard to see that X has 27 Veronese cone singularities at its
intersection with the 3-dimensional stratum vs(P?), and has Kx = O(1) and
K3 = 1/2; moreover, since there are no homogeneous polynomials of degree 1,
HO(P,0(1)) = 0, so it follows that py(X) = 0. Thus in contrast to the surface
case, its quite easy to write down 3-folds of general type with p, = 0, even with
the canonical ring a complete intersection.

(2.10) Since the -fold X of (2.9) it i of some interest to have an

i s 7% m Iecycles;
am grateful to D. Ortland for permission to include a description of his beautiful
solution of this. The idea is to look at the net (2-dimensional linear system)
Fy = DA with A = (Ay,...,)5) € A = P? of weighted hypersurfaces of
degee 6 through X, and to note that in coordinates vi, -, Va, 21,23 of Py
each F is of the form

Fy=calUnee ) +0(21,-00,2)
with e cubie and gy quadratic. This can be viewed as a net of cubic surfaces in
P9 and & net of plane conics parametrised by the same base space A = P?

Now the conic @a.: (g2 = 0) C P? breaks up as a line pair when A belongs
to a discriminant curve E C A (for general X thi
Also, for general X € A, the cubic surface Sy (c
contains 27 lines. Hence the set

B = (pairs (1,m) of ines | 31 € A with | C @ and m C $2}

is & nonsingular cubic curve).
0) C P* is nonsingular and

is a generically 54-to-1 cover B — E; each pair € B corresponds to a
weighted linear subspace Ily = P(2,2,3,3) C P iy conained om0 of the
ypernataces Fy. s cay tose tha G =T X e o curve of genn 2.

H°(X.Q)
i il o suiiently gonrs X, e i e termeie acon
X, o that the family (Cbloes induces an Abel-Jacobi (or cylinder) map
JB'— JX which must be cither sero or surective. Finally, Ortland uses meth-
ods of Clemens to interpret. the derivative of JB — JX and to prove that it is
nonero.
‘Speculation. Note that the key to success in Ortland’s example i to find some
peid eprsntaion of one of the defning equations: if the line (1,m) € B is
given by 2,= 0 then the corresponding F) s of the form

FA Nan o) e on) +an
(which looks almost like a quadric of rank 6); the 5-fold hypersurface (F = 0)
has nontrivial -cycles, from which X inherits nontrivial curves.
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Now ther are plnty uy st £0 of geral tpo with 7

0 for which
(Can

e v 2wt 0
Vith degs = 2, degy 5, degs = 4, deg = ) Hore the genralived Hodge
conjecture predicts a family of curves having a nontrivial Abel-Jacobi map, so
that this i (to say the least) a substantial case where the Hodge conjecture has
yet to be verifed.

There is an analogy between these deep questions and the Bloch-Mumford
conjecture on the Chow group of O-cycles on a surface § with p, = 0 (see,
for example, [Inose-Mizukami]): in this case the traditional conjecture could
also be destroyed by proving that there are no nontrivial curves on the F-fold
SxP

(@11 Canoniea hyperowacas. There e several mothods of sarcing for

ple, thi
be done by fants going into i 510 (that
intege x,  rational number K, and a baket o terminalcyclic quotient
singularites), then computing the plurigenera, and determining whether or not
there exists & complete intersection ring with this as its Hilbert function. This
can all be done by computer, and systematic searches have been carried out by
A. R. Fletcher, giving rise to many interesting families of varieties.

The following list of canonical weighted bype s was generated by a
much cruder computer program. It is a complete list of X = Xu C P(an, .., as)
in a “well-formed” weighted projective space (that is, 1o 4 of the a; have a
common factor, see [Dolgachev, (1.3)]) such that

() X bas trmine ot snglarie (o the tpe b o (52

(i) Kx =0

(i) d < 100,

(Probably there are no others for any d, but the list was obtained by starting
an infinite search and switching off the computer after it stopped priating out
data.)

Canonical 3-fold hypersurfaces

XecP!
X1 cPU42)

X CP(C,2)

Xo CP(1%,2,9)
Xio C P(1%,24,3)
Xu CP(1L,2%3)
Xiz CP(1%,2,3,9)
Xio CP(14,5)

Xus C P(1,2,8,5)
Xus CP(1,2,3,4,5)
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B0, K =1/20
Py #0, K*=1/30

Xis CP(2,8%,4,5)
Xao C P(2,3,4,5)
Xia CP(1%,2,6)
Xi CP(%2%7)
X CP(1,3,4,5,7)
Xie CP(1%,2,3,8)
Xas CP(3,4,5,7,8)
Xis CP(1,27,3,9)
Xa CP(1,2,3,4,11)
Xa CP(1,3,4,5,10) 1, K =1/30

Xso CP(2,3,4,5,15) =0, P #0, K*=1/60

Xeo C P(3,4,5,7,20) Pi=0, By #0, K*=1/210

X CP@,5,67,2) py=P=Py=0, Pi#0, K®=1/420

Note that K? can gt fairly small, although it is now known to be bounded
below for canonical 3-olds with x(Ox) < 1; see [Fletcher] where it is proved
(folowin ideas of J. Kollar) that Piz # 0, Py 2 2, and hence by results
X — PN is birational for m > 269, and so in particular,

(212) Esercise. Find the singularities of some of these canonical hyper-
surfaces; write (z,,2,4,u) for homogeneous coordinates on the 4-dimensional
weighted projective space. Consulting [Dolgachev] for information on weighted
projective spaces, you can prove, for example,
() X5 © P(1,2,3%,5) bas X(0x) =0, K® = 1/6, and singularities
1 point of type §(1,1,1) at (0,1,0,0,0)
and 5 points of type 3(2,1,1) along the (z,t)-axis.

(i) Xis C P(2,3%,4,5) has x(0x) = 1, K* = 1/20, and singularities:
4 points of type §(1,1,1) along the (z,)-axis;
6 points of type }(2,1,1) along the (y, )-axis;
L point of type (3,1,1) at (0,0,0,1,0);
and 1 point of type §(3,2,1) at (0,0,0,0,1).
(The notation for the quotient singularities is explained in (4.2).)
3. The maln reduction steps.
(3.0) Overview. This section gives a brief run-down of the general theory of
canonical singularities under the following 6 beadings:
(4) Canonical = Du Val singalarties in codimension 2.
(B) Reduction to index 1 by cyclic cow
(C) Index 1 canonical = rational = Cohen-Macaulay.
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‘brough a rational is a rational

(D)
or ellptic singularity.
(E) Reduction to <DV singularities by crepant blow-ups.
(F) Further reduction to isolated cDV singularitis.
The final 7th topic
(G) Mori's detailed study of terminal singularities
il be the subject of Chapter I1 §§6-7. (The material of (A)~(D) is valid in all
dimensions, but, (E)-(G) is restricted to dim X = 3 see (3.13).)
(3.1) The overview (3.0) has introduced two new definitions:
DEFINITION. A eDV singularity is a 3-fold hypersurface singularity
PeX:(F=0)cA*
given by an equation of the form
Fla,yz1) = [(2,3,2) + 19z, 51).
where f isthe equation of a Du Val singularity (as in (1.2)), and g is an arbitrary
‘polynomial. Soa cDV point is just a 3-fold singularity which has a Du Val surface
singularity as a hyperplane section; on the other hand, a cDV point can be viewed
1-parameter deformation of a Du Val singularity.
DEFINITION. A birational morphism f: ¥ — X between normal varieties
s crepant if Ky = f*Kx. If rKx is a Cartier divisor, this means that a local
basis clement » € Ox(rKx) ot P € X remains a local basis around /1P;
(here and elsewhere there is an ab riting J*Kx, since Kx
ot Cador, . delson i s (/r)/-(FCx) € PicY & Q). Note
that. the defiitions of canonical and terminal singulaites diffr only in that
appearing with
plicity 0 A il resolution of a variety X with
Canonical singlarte s ane whih pulle ut ony such !xctp(mud divisors; the
key example is a blow-up of a Du Val surface singularity
(3:2) The goal of steps (A)-(F) i the following thoorem, the main resut of
[Pagodal:

THEOREM. () Any terminal 3-fold point P € X is of the form ¥ pr, where
QEY is an isolated cDV singularily (or nonsingular), and py acts on Y freely
outside Q and such that on a generator s €

B3 ses

(b) f X is a 3-fold with canonical singularities then there eists a crepant
partial resolution Y — X where Y has only terminal singularities.

(3.3) The result (a) is a partial classification of terminal singularites. (Most of
§35-7 will be devoted to the further classification of the singularities of (a).) On
the other hand (b) represents a certain reduction of all canonical singularities to
terminal singularities. Compare the situation with the surface case: for surfaces,
the canonical points are just the Du Val singularities; the terminal singularities
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are just nonsingular points. As mentioned in (1.2), the key fact is that there is
a resolution ¥ — X such that Ky = f*Kx. (Note however that for 3folds,
the partial resolution given by (b) is not unique, so that if you've ever heard of
the “absolutely minimal models” of surface theory you should do your best to
forget about them in higher dimension.)

Finally, one of the key consequences of (G) (see (6.4), (A)) will be that if

€ X isa terminal singularity, then it has & Q-smoothing, that is, a deformation
X such that all the singular points P € X; of a neighbouring fibre are terminal
eyclic quotient singularities A%/, where the action is

B3 (2,0,2) e (€2, e2).
This reduces certain problems on 3-folds with canonical singularities to this spe-
cial class of quotient singularities; in particular, this i the key to the plurigenus
formula of sm below. One can think of this as saying vaguely that a representa-
3-folds has only this

in the same way that “most” canonical surfaces are nonsingular (so that the
‘minimal model does not contain (~2)-curves); beware that there is defiitely no
theorem to this effect, even for surfaces.

T now run through the points (A)~(F) in more detail; (G) will be the main
subject of §§5-7.

(34) (A) Canonical = Du Val singularitics in codimension 2. Canonical
singularities are not necessarily isolated, but if X has canonical singularities
then X is analytically of the form

X = (Du Val singularity) x A"
in a neighbourhood of a general point of any codimension 2 stratum. This is
what you would expect, and is easy to-prove; see [C3-f, (1.14)).

(3.5) (B) Reduction to indez 1 by cyclic covers. There are several ponts to
make here, since cyclic covers are used in various ways. Firstly, if P € X is
canonical singularity then there is a standard local p-cover : X' — X with
Kx: a Cartier divisor and K . This construction is discussed in detail
in (56) below. Next,in varius contexts ther av dingraumsof the form

v

where f and /" ate partial resolutions. In this set-up, I have
Kx=7"Kx and Ky =¢'Ky + Ry,

where R, is the ramification divisor of . Taking / and /' to be resolutions

in this diagram, it is easy to see that if P € X is canonical, then Q € X" is

canonical of index 1 (where Q = 71 P).
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nd of diagram s to take /' to be some

A different way of using the same ki
from an index 1 point, for example, @

construction made in an intrinsic way
crepant blow-up. Then I can canstruct f: ¥ —
the quotient of ¥ by the group action, and use the
aletation to shaw that f i also crepaat. In short,this kind of argument allows
o reduce the study 1o the index 1 case; for details, see [Pagoda, €21

(6.6) Cyeic covering trik. Suppes that P € X i point of a normal varies,
wsD s  Weil divisor on X which is Q-Cartier; this means that D o a Well
iiser of X, and 7D is & Garter divisor near P for some r € Z, 7 > 0. Suppose
Ghat v ia the smallest such r (the nde of D). Let s € Ox(=rD) be a local
Deats moas P; by taking & smaller neighbourhood of P, 1 will assume that # ia
© vasia of O(rD) over the whale of X, and view 5 as giving an isomorphism
5:0x(rD) = Ox.

PROPOSITION. There ezists a €0
e, and such that the sheaves OX(iD)
on w0y, that is,
® 0x(iD) = {/ € 7Oy | (/)

¥ s normal, x is ctale over the locus Xo where D is Cartier, and =~
'Qudivisor 7D = E is a Cartier divisor on Y.

ver 7 ¥ — X which is Galois with group
) are the eigensheaes of the group action

1 Jor all€ € pr}.

Ao,
Q is o single point. The
(3.7) This is an important reduction of the problem, since working directly
with the singular sheaves Ox(iD) is likely to be diffcult. ‘The proof can be
the invertible sheaf Ox(~ D) corresponds t0 &
e e Ly = Xo. A local generator z € Ox(=D) is & coordinate on the
Bbres of Lo now consider the locus Yo: (27 = 8) C Lo, Since s is a nowhere
Semihing section of Ox(~rD), the projection map 7o: ¥o — Xo is etale. The
e of the proof is to extend this over the whole of
PROOP. Using the given section s, construct the
A=0x©0x(D)® -+ ®Ox((r = D),

X.
shea of Ox -algebras

with multiplication defined by
0x(aD) @Ox(bD) — Ox((a +1)D) ifa+b<r
Ox(aD) @Ox(0D)  Ox((a+8)D) % Ox((a+b=)D) a+b2r
There is a natural action of i, on A given by multiplication by e' in the summand
Ox(iD). Then : ¥ = Specy A — X is o cycle Galois cover which is etale
over X; the fact that ¥ is normal follows by the Serre criterion (see (3.18))
S-1P = Q is a single poiat, since otherwise the subgroup of iy stabilsing
ot Q ¢ 1P would be a proper subgroup, and then it is easy to get &

contradiction to r = index(D),

To see the last sentence, suppose without loss of generali
effctive divisor. Then the inclusion maps Ox((i — 1)D)  Ox(iD), together

ty that D is an
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with the isomorphism a: Ox(rD) = Ox defines an A
x x defines an Adinear map g: A — A such
that g is the local equation of °(+D). Think on
n of 7*(rD). Thinking of g as a section of Oy , clear]
div(g) *D. ety
38)(C) 1 singularities are rational. It is
in characteristic zero, canonical singularities are rational and therefore Cohen-

Macaulay; since a quotient of & rational singularity i
& rational singularity is again rational (this is easy
for a quotient ¥ = X/G by a finite group G, essentially because if 4
Yy X
Y — X

where the ions, then 0,
see, for example, (Pinkham, p. 150] for details) it is in any case enoug shrove
this for index 1 singularities: ” s iopme

THEOREM [Elkik; Flenner, (1.3)]. Let P € X be a cananical singularity
of index 1 (that is, K is Carticr at P, and fuwy = wx Jor a resolution f+Y —
Then Jor a resolution [ ¥ — X,

Rif.0¢

Jor alli > 0.

There are two ingredients in any proof of this: (1) vanishi

roof of this: (1) vanishing and (2) duality.

Let me run through Shepherd-Barron's proof in the 3-fold case, where these
appear in a transparent way; although this is now a standard result, it still
seems rather miraculous to me.

PROOF. Let P € X be a canonical index 1 point, and f: ¥ — X a resolution
which is the minimal resolution along the Du Val locus. Grothendieck duality
for the morphism  gives at once that

R .0y L ux/ Loy,

e s by s, 0 s Tmust prove that R!£,0y =0.
vw.:;::gim Kx + B, where A is an eflctive divisor with /(8) = P.
Rifuoy =0 foralli>0.

However, sbove a neghbourhood of P, wy = Oy (4),s0 that also /.0y (&) =

0. Bearing this in mind, consider the cohomology long exact sequence of
00y — Oy () = 0a(8) = 0.

Since X is normal, /.0y = £,0y (&) = Ox, and the long exact sequence becomes

HY(8,04(8)) = R*' Oy fori=0,1,2.

Since the fbres of J have dimension <2, it follows that
H(8,04(8)) = 1.0y =0.
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On the other hand, A is a Goreastein scheme with dualsing sheal
OalKy +8) =04(28),
and therefore Serre duslity on A gives
HO(A,04(8)) £ H*(8,0a(8))

This proves that R £.0y = 0, 50 that R4f,0y =0 for i >0, and P € X is &
rational singularity

(3.9) Rational singularities are known to be Cohen-Macaulay; the Appendix
058 contains all you need to know about this notion,including a direct and sl
contained proof of the case of the result required here: the general hypersurface
section through a rational 3-fold singularity P € X is again normal (see (3.19))

(3.10) (D) The general section.

THEOREM. Let P & X be a rational Gorenstein singularity (of an n-fold X,
thn > 3). Then the general hyperplanc section P € § C X through P is
rational or ellptic Gorenstein singularit
Here cllptic Gorenatein means that Jor a resolution f: T — S,

powr =mp-ws
(or equivalently R~ 1.7 is 1-dimensional).

PROOF. Suppose that § runs through any linear system of sections P € § C
X whose equations generate the maximal ideal mp of Ox,p. Then s noted in
(3.19), a general element  of this linear system is normal
Let /2 ¥ — X be any resolution of X which dominates the blow-up of the
the blow-up, Bbre over P
i anffctive divisor E uch that mp-O = O (~E). Honce /5 = T+, where
T =flr: TS
Ks.

Y. By
ioresolation of 5. Now I us the aduneton ormla to comapre K nd
In the disgram

Y > T+E
Il
X,
Thave
Ky =[Kx+d witha20
and
T=[S-E,
50 that
Ky +T=f"(Kx +S)+A-E
and

Kr=(Ky +T)r = p"Ks + (A - E)s.
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‘This just means that any s € ws has at worst (E ~ A)r as pole on T. On the
other hand, since the maximal ideal ms, C Os,p s the restriction to S of the
maximal ideal mx,p C Ox (this is where the argument uses Cohen-Macaulay in
an essential way), it follows that every element of ms,p vanishes along £ .
Hence every element of m,p  ws is regula on 7, that is,

pawr dmpows. QED.

(3.11) (D) says that if dim X = 3 and P € X is a canonical index 1 singularity,
then cither it is ¢DV, or a general hyperplane section through P is an elliptic
Gorenstein surface singularity. L will use special results on the
classification of elliptic Gorenstein surface singularities, so that the remainder of
the discussion is restricted to dim X =

(3.12) (E) Reduction to eDV points by erepant blow-ups. If P € X is a canon-
ical index 1 pom which s not DV then there exists  blow-up a: X' — X
such that Kx: = 0*Kx. This follows by using analogous properties of elliptic
Goreustein singlarite; see (CB., (311-12) for detal

COROLLARY. (i) A rational Gorenstein 3-fold singularity P € X is terminal
if and only if it is cDV.

(ii) Let P'€ X be a canonical indez 1 point; then there exists a partial reso-
tution /Y — X which is crepont (that is, Ky = [*Kx) and such that ¥ has
<DV singulrites.

EXAMPLES. (i) Suppose that P € X is the hypersurface sy X
U =0) where ] = 22 42+ 2 4% with n 2 3;then the blow-up o X'
of mp s the vriety X's (/7 = 0), where /= 23+ 43 + £ 4 tv-3. Essenialy
the same calculation as in (1.9), (1) shows that Ky = 0" K;

(ii) A hypersurface double point is rather special, and in this case the required
blow-1 4p s o st the bowup of . Forcxample, e P € X (/ = 0) where

<+" wiith n > 6; then the required blow-up is given in one affine

piee by seing
z=x6, v=ut, z=xt.

The blown-up variety is then X': (f" = 0), where ' = 23 432 + 2§ +7-5. The

proof that Kx: = *Kx in this case is similar to the calculation of (19), (1),

and you can try it as an amusing exercise.

(3.13) I is important to understand that Corollary 3.12, (i) i proved via the
classification of eliptic Gorenstein surface singularities. The statement that
terminal index 1 singulrity has a ational hypersurface sction isfase for 4-fold
singulariies, s shown by the following example (one of a large class elated to
weighted K3 hypersurfaces):

0€X: (2 4yt +ud 428 +5=0)C A,
here X is a terminal 4-fold singularity. This fllows by the argument of Theorem
4.6 (see also [C3-f, (4.3)]), essentially because

L4lededed=14go14 5



66 MILES REID

However, any hypersurface section 0 € H C X is an irrational singularity: for
example the hyperplane section (23 = 0) is a weighted cone over a K3 surface.

This is one aspect of the fact that there are very many more terminal singu-
larities in dimension > 4 than in dimension 3, aud it seems unrealistic to expect
any useful classification.

(3.14) (F) Further reduction to isolated cDV singularitics. The procedure of
(3.12) reduces 3-old canonical singularities of index 1 to cDV points, but the
singularities are not necessarily isolated. Let X be a 3-fold with at worst cDV sin-
gularities, and suppose that T is an irreducible curve component of Sing X; then
as mentioned in (3.4), X is analytically isomorphic to T' x (Du Val singularity)
in a neighbourhood of a general point. of I" (and possibly worse at a finite set of
dissident points). Above this neighbourhood, the blow-up of X along I is just
T'x the blow-up of a Du Val singularity, which is crepant. The idea is to extend
this crepant blow-up along the whole of T, 5 that the nonisolated singular locus

X can be reduced by a crepant morphism /: ¥ — X.

The key to understanding this situation is the Brieskorn-Tyurina theory of
simultaneous resolution of families of Du Val singularities. 1f P € X is & cDV
point and t € mp is such that the section Xo: (¢ =0) C X is a Du Val singularity,
then the map ¢: X — A} = T represents X a8 a deformation of Xo over a
L-dimensional parameter space T.. Now it is well known [Brieskorn] that after
making a base change

1

p—
by a cyclic branched cover ' — T of the base, the family admits a simultaneous
resolution, that is, there is a morphism /: ¥ — X’ which fibre-by-fibre is the

cover, 50 that the relation between singularities of X' and those of X can be
studied by the methods mentioned in (3.5).

that isolated cDV poi "
the terminal singularities of index 1, and that nonisolated cDV singularities can
be blown-up along the Du Val locus to give crepant partial resolutions; this leads
t0 a proof of Theorem 3.2 (see [Pagodal for details).

Appendix to §3. Cohen-Macaulay and all that.

(3.15) The following two properties are the main things you need to know
about Cohen-Macaulay (CM):

(i) Invariance under passing to a hyperplane section. CM is a property of the
local ring Ox,p of a point P € X of a scheme X (think of P as the generic point
of an irreducible subvariety of X); if P has codimension 0 then X is CM at P
by definition. Otherwise P € X is CM if and only if there exists an element
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& mx.p of the maximal ideal which is a non-zerodivisor of O, and such that
P €Y is CM, where ¥ C X is the subscheme defined locally by the principal
ideal sheaf Sy = hOx, that is, ¥ : (h = 0) C X.

(i) The Serre criterion. An isolated surface singularity is CM if and only if
it is normal.

So by definition, a 3-fold X which is nonsingular in codimension 1 is CM if
‘and only if there is a normal surface section through every point P € X. Despite
the geometric significance of this notion, young persons seem to find it hard to
grasp, and I give a brief treatment.

(3.16) The definition of depth and Serre’s condition Sy. Given a point P of a
scheme X, there is a well-defined integer

d=depth Ox
with the property that there exist chains of subschemes of length d
® PEX4CXiCoCXiCXo=X,

where for each i, Xiy1 C X is the subscheme defined locally by the principal
ideal sheaf 140 x, with h; a non-zerodivisor of Ox, ¢, and no such chains of length
d+1. In this situation,

cither dim Xy =0, and P € X is Cohen-Macaulay,

or  dimXq > 1, and every element of mx, p is a zero-divisor of Ox, 4;

by elementary results in primary decomposition, the second possibility happens
if and only if there exists 0 # / € Ox,.» such that mx, p-/ =0, that s, [ is &
section of Ox, whose support is just {P}

EXAMPLE. Let X C A7 be the subscheme given by (% = 2y = 0); then
0 # z € I(Ox) is killed by the maximal ideal m = (z,); hence m does not
contain any non-zerodivisor, and depthy Ox

‘This is of course just a geometrical translation of the algebraic definition of
depth in terms of regular sequences. There s only one thing to be checked: that
the property is independent of the choice of the chain (s), or equivalently, that
the statement of (3.15), (i) is independent of the choice of A; see for example
[Matsumura, (16.3)].

DEFINITION. A scheme X satisfies condition S if for every paint P € X,

depthp X > min(k,codim P).

1t follows at once from the above discussion that X fails to satisfy S if and
anly if there exists a section / € (U, 0x) of Ox (over an open U C X) whose
support has codimension > 1 in X; since / is necessarily nilpotent, this can't
happen for an integral scheme: a variety automatically satisfes 5.

(3.17) Now 1 discuss the S condition. Let X be an integral scheme and k(X)
its function field.
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LEMMA. Let Q € X be a point of an integral scheme; then
depthqOx =1 <= 3/ €k(X) st /¢ Oxg but mxg -/ C Oxg
PROOF. (<) For any 0 # 7, y € mxq, both 21,/ € Oxq, but 2f ¢ (z)
(otherwise f € Ox,q). Thtny is a zero-divisor in Ox,g/(z), since y(z/) = z(uf);
this proves that depthg Ox

(=) Let 0 # z € mx,q; 2 in automatically a non-zerodivisor. Then by the
assumption depthg Ox = 1, there exists 0 # € Ox,g/(2) which is killed by
mx,q- Let g € Oxq be any lift of 7 then mx g 9  (2), S0 that f = g/ € K(X)
satisies / ¢ Ox.q but mxq -/ C Oxa- QED.

EXAMPLE (Macaulay). Let S = Spec k[z+, 2%, 2%, ; this s the affine cone
over an embedding C P of PY as a quartic in P?, which is not linearly normal.
Then S bas depth 1 only, since 2%? ¢ Os.

(3.18) The Serre criterion: normality and S. It is well known that & rational
function on a normal variety X with no poles along divisors is regular on X. (In
commutative algebra, the assertion is that & normal Noetherian domain s an
intersection of DVR's, see [Matsumura, (11.5)})

Now let X be an affine integral scheme; say that a rational function / € k(X)
is quasiregular if | € Ox,p for every codimension 1 point P €

THEOREM. An integral scheme X satisfies S, if and only if
quasiregquiar = regular;
in other words, for an open set U C X,
(U, 0x) = {f € KX)If € Ox,p ¥ codim. 1 points P € U).
In particular,
normal <= regular (nonsingular) in codimension 1 and ).

PROOF. Given a quasiregular element [ € K(X), the set X = (f) of points
P X such that [ ¢ Ox,p is closed, and codim T > 2. By the Nullstellensatz,
if Q is a generic point of 4 component of £ then (mq)¥ - f C Oxg, so that
a suitable multiple g of / satisfies g ¢ Ox,g but mq -9 C Ox,g, and by the
lemma, depthg Ox = 1. This proves the first part: if X is S; then £ = @, and
conversely

1f X is regular in codimension 1 and S then the local ring Ox.p at each prime
divisor is normal, and by what I've just proved, (U, O) is an intersection
of these, hence again normal. Conversely, if X is normal then so s the local
ring Ox,p at each prime divisor, and hence Ox,p is & DVR (see [Matsumura,
(11.2)); this gives regular in codimension 1, and by the fact that a Noctherian
normal domain s an intersection of DVRs, quasiregular implies regular, which
gves ;. QE.

Notice that the theorem must be stated in terms of scheme-theoretic points
of X; for example,if S is as in Example 3.17 and X = A' x S then the closed
points of X have depth 2 2.
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(3.19) Rational = Cohen-Mocauloy. The general proof that rational singu-
larities are Cohen-Macaulay in characteristic 0 seems to involve vanishing and
two applications of duality; the 3-fold case can be done much more simply.

Let P € X be a normal 3-Jold singularity and P € S C X a
general hypersurface section. Then R*[.Oy = 0 for a resolution f: ¥ — X
implies that P is  normal point of S, and hence P € X is OM.

PROOF. Write mp = mx,p C Ox,p for the maximal ideal, and |mp] for
the lnearsysem of all ypersurfacesection through P. An clemant S € jm|
i o 3 e seton P € 5 C X. Then s o s vry amplo outie
tably general S || is nonsingular outside P (by the trivial Bertini
e o g 10 v o 5 ol
Let /: ¥ — X be a resolution which dominates the blow-up of mp; then
J*S =T +E, where E i the scheme-theoretic fibre, and T'is & surface moving
in & free linear system. By Bertini (using characterisic 0), T is a resolution of
S, 50 that Os C /.07 and S is normal if and only if .0 = Os. Since O
is generated as a vector space by k and mp, this ia equivalent 1o saying that
1.02(~E) = mp. But this follows from the cohomology long exact sequence of
0 Oy(~/"8) = Oy(~E)  Or(~E) 0,
Indeed, R/, 0y (~/*S) = (R*/.0y) ® Ox(~$) = 0 (by R*£.Oy = 0); hence
1.0y(~E) = 1.07(~E)
i suctive. However, /.0y(~E) = mxp, od m.p maps to mar  Os.
s proves  is normal

Classification of 3-Fold Terminal Singularities

4. Torle methods for hyperquotient singularities.

(4.1) Hyperquotient singularitis in general. This section is pure toric geome-
try. I put together the notation in force throughout §64-7

Pedantry. Recall that s, denotes the cyclic group ofrth roots of unity i ; the
choice of a primitive rth rooth of unity € defines an isomorphism Z/r iy, but
I want to avoid making this choice. The point is that the action of i, on any
kvector space V' will break it up into 1-dimensional irreducible eigenspaces,
Where the action is given by jip 3 €: v+ €2 for some a € Z/r; in the notation
&, think of the element a € Z/r as a character of 4y (the endomorphism fr —
B given by &+~ ¢%). The advantage of distinguishing elements € € i from
characters a € Z/r is analogous to that of distinguishing between a vector space
and its dual

Suppose that

Qev:(f=0)cAm

is a hypersurface singularity with an action of i, and P & X = ¥/ is the
quotient; I'm interested in saying when the singularity P € X is canonical (or
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\erminal, Tog canonical, etc.) in terms of the action of i and the Newton
olyhedron of /. 1 always assume that the group action isfree in codimension 1
on Y (so “no quasirefiections"). The two cases
r=1 and Y:(20=0)

are ot excluded, so that this class includes both cyelic quotient singularities
2 hypersurface singularites. Points P € X of this kind are hereby christened
hyperquotient singularitis. )

@2) Type of o singularity. Any cyclic quotient singularity is of the form
X = A™/pi; the action jr on A™ can be disgonalised, and is then given by

A AR

e D €5 (@0 rZn) o (131, € 0)
for certain ay,...,an € Z/r. The singularity is determined by a knowledge of
4y 1Gn, and I define 1 an) to be the type of X; there is a reason
for the fractional notation in toric geometry, although you can think of it as

@,
purely symbolic.
ow return to the set-up of (4.1); in suitable local analytic coordinates, the
group action on ¥ extends to an action on A" (it acts on the tangeat space
Ty.o), and 1 can assume that there, i acts diagonally by
B D€ (0pe12n) = (€070, ).
Since ¥ is fixed by the action of ir, it follows that / is an eigenfunction, so that
pes fmefs
the symbol (ao,..-ani¢) i the type o the hyperquatient singularity P € X.
It will e useful to note that the action of iy on the standard generator
oA Ndzy _ dri A Adz
= Reay B2 N A dEn _ G AN
YT 2 a7
(see (1.8)) is given by
heDEsrecs, Withe=aodertan=c
The assimption that the group acts freely in codimension 1 on ¥ implies that
for any divisor dir,
#ild divides ag) Sn =1
(4:3) Write 372 Z7#1 for the latice of monomials on A"+, and ¥ for the
dual Tattice; then define IV to be the overlattice of N given by

Gn)-

N=F+2-1o
Thus

aeN <= a=Ll(joo....jas) modZ™* for somej =

Let M ¢ 7 be the dual sublattice. (Each of these lattices is = Z"*', 50 it
is important to give each its own name; think of M as monomials, and N as
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Weightings or valuations of monomials.) The point of this construction is just
that pr acts on a monomial 2™ = 2"

32 M2 yith a(m) = Sami,

50 that

2™ is invariant under p, <= a(m)=O0modr <= meEM.

Write o for the positive quadrant in Ng and ¥ for the dual quadrant in M.
Then as usual in toric geometry,

AnH

SpeckM no¥),

and the quotient, corresponding to polynomials invariant under the action of pr,

pec k[zo, . Zn)

A= A"/, = SpecHM N0¥)
Notice that P € X C A, so that the quotient singularity still lives naturally in
an ambient space, but is not necessarily a Cartier divisor there: the ideal
IxCkMnaY)

s the intersection of the ring of invariants K{M 16¥] with the principal ideal (f)
) k{zo, ., zx], and is generated by some set {z™ - /) of invasiant products of
1 with suitable monomials.

1t's nevertheless useful to think of X as being X: (/ = 0) C A, but beware
that this can lead to error. A typical paradosx of this kind is the fact that the
hypersurface X: (f = 0) C P in a weighted projective space P (defined globally
by & weighted homogeneous polynomial) is not necessarily defined locally by one
equation

(4.4) There is of course no purely toric method of getting a resolution of a
general singularity P € X of this type (it includes all hypersurfaces). However,
given a resolution /: B — A of the ambient space A, the proper transform
X'C B of X can be thought of as lying between X and its resolution, and the
conditions

1.0x(rKx:) = Ox(rKx)

for various toric resolutions B — A provide necessary conditions for P € X to

produce useful information. If X is nondegenerate with respect to its Newton
‘polyhedron (by definition this means that  suitable toric resolution B — A of
the ambient space leads to a nonsingular X') then these conditions wil also be
suffcient,

(45) Let o= (b, ., bu) € N be a vector; this means that i a weighting
a(z) Q on monomials such that

(i) @€ N, that is, & = L(jao, ., jan) mod Z™* for some j =
and (i) @ € o, that is, b > 0 for each i
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1 can extend this weighting to k[zo, ., ] in the obvious way: say that

onomial 2™ = 237 -2~ appears in / (or just write z™ € /) ifits coeficient
in / is nonzero; then define

a(f) = min{a(z™) | 2" € 1).
In these terms, the Newton polyhedron of / is the lattice polyhedron of Mg
defined by
Newton(f) = {u € Mn | au) > a(f) for every a € NN}

note that the “inside” of Newton(/) is the part above the polygon, except in
some contexts when it is the part below.

(4.6) THEOREM. A necessary condition for P € X to be terminal (or canon-
ical) s that
® alzo---zn) > alf) +1
(pmestiely2)forevery rimiioe ssor o € N, (For o utien inguloriy

is nonsingular, the condition is a(zy - x) > 1, formally the

ie £ o (o) s o e rcn o ok it et
to deal with this case.)

REMARK. 1f r = 1, then (+) is the condition that the point (1,....1) € M

in the interior of Newton(f). For r > 1, the analogous statement involves a
slightly nonobvious notion of inteior of a laitice polyhedron due to J. Fine which
is important in other “canonical” contexts, and I discuss this in the appendix to
5t

(47) The unit cube O and the weightings ax. 1 run through notation and
ideas which will appear throughout the rest of this chapter. Write O for the unit
cube of N; this s the unit cell of the sublattice 2"+ = N C N. Both the unit
point (1,....,1) € N and the symmetry i: a o = (1,....,1) ~ a will appear in
what follows, and obviously O = 0 (o).

(+) applies to any weighting of N 1o, but in practice the most important ones
to consider are the points of N (which correspond to Newton(f) independently
of the p-action), and those of N 11O

In the case of a cyclic group action, N = Z"*1 +.Z - L(ag,...a,), and it is
easy to check that N N consists of (the vertices of O together with) the r — 1
weightings

+(@oF, .., ank)
for k=1,...,r~ 1 (where  denotes smallest residue mod r). I will usually be
i p f clements of 4,

50 that most of the g, are coprime to r.

(4.8) PROOF OF (4.6). This is a tutorial on standard toric stuff. Roughly
speaking, the residue of s = ((dzoA --Adzn)/f)®" on X bases Ox(rKx) and (s)
is the condition that s i regular and vanishes along an exceptional prime divisor
corresponding to a. I's easy to apply the methods without understanding the
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proof, and some clementary applications are given in (49); the reader not in
need of remedial instruction on these topics should GOTO (.10)

For each primitive vector a € N N0, there s torie blow-up ;B — A of the
ambient space A = A"+ /4, with a single exceptional divisorial stratum I C B,
such that the valuation of a monomial 2™ (for m € M) along T is given by

(+) or(=™) = a(m).
given in toric geometry by the baryeentric subdivision of the cone o at a.
A ne;ghbe\uhcod of the geere point of [ in D i iven an follows: the Iatice
© M is isom

sad thee is s complementary vector m such that
atma) = 1. The senigrous M (o 5 0) s thn af te fo o & 0 Mo, and
Spec of this is G, x A', with a single remaining toric stratum I' = GJ, given by
(2= 0), where = 2, Then forany m € o290 with a(m'
‘which proves (.

Weite X' C B for the proper transform of X C A under the blow-up p: B —
A of the ambient space, and %: ¥ — X' for & resolution of X'; as usual, the
pull-back of Q-divisors is denoted by *. The following proposition abviously
implies (4.6)

Pnomsmm In the above notation,

(/)T and Kp = 0*Ka + (a(zo-+-2a) ~ 1)T.

m) 5upyou thata = a(zo++2) — a(f) =150, so0 that
Kp+X' =g (Ka+ X)+al witha <0;

then the resolution h=poy: ¥ — X satisfics

Ky =hEKx-2,
where every cxzeptional component of h ling over o component of X' (T C B
appears in Z with coefficient > 0. In particular, X is not terminal.

PROOF OF [n 1 follows from the deﬁnmnn of o(f) that 0 / J2re) is 2
X" is the
divisor given by (9 0) 8 numbourhoud of XNl it  Totows it 9=y
where m € o and X" is given by (' =0). This proves the first equality in (1).

ow to compare diferetils on A snd B. The fllowing manoeuvre i the
standard treatment of the canonical class n torie geometry: let mo, M
be a Q-basis of M, and write 7 = 2™ for the comesponding monomials then
write down the rational canonical differential

20 az,.
d0 5 p G
E)

¢

‘The point is that ¢ is independent of the nam(ular choice of Q-basis of M (up
t0 a scalar factor): to see this, consider the Jacobian of a monomial coordinate
change.

Clearly ¢ is a basis of O(Kr) over the big torus T C A, with logarithmic
poles along all codimension 1 strata of A. For any toric variety A, write Dy for
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the reduced divisor of A made up of all the codimension 1 strata of A. Then
£ € 0K + Da) is & basis clement, essentilly independent of the choice of
basis iy, In pasticular, the toric blow-up : B — A satisfies
Kp+Dp=¢'(Ka+Da)

(This proves that, quite generally,  toric variety A4 marked with its divisor D
has log canonical singulasities.) To prove the second formula in (1), note that
D is 8 Q-Cartir divisor which cojncides with Dp outside the exceptional
Jocus T of ; on the other hand, by construction, T bas multiplicity 1in D, and
it clearly has multiplicity a(zo - a) in 10" Da (since rD is a Cartier divisor
with defining equation (o Zn)").

'PROOF OF (II). The statement in (1) looks obvious eaough: the adjunction
formula should give

Kx 2 (Kp + Xl = (" (Ka+X) +al)lx =

4o that if @ < 0, the components of I'1 X' make a negative contribution to
the canonical elass. The simple case is when the generic points of I'N.X' are
all contained in the nonsingular locus of B, and X" is nonsingular there; then
there is no problem about using the adjunction formula, and Ky = ¢*Kx +al',
where a = a(zo -+ 2a) - a(f) ~ 1

Unfortunately this argument doesn't work in general: the plausible-lookin
adjunction formula for Q-divisors (indicated by L) is false whenever B is
singular along a divisor of X'. (Consider, for example, a generator of the ordi-
nary quadratic cone in P%.) The point is to see that singularities of B along
divisor of X! make a negative contribution to the canonical class

By easy results on surface singularities, B can be resolved by & morphism
J:C — B such that, resticting to a neighbourhood of the general point of any
codimension 2 singular stratum, K¢ = J*Ky = Zc with Zc > 0; if Y is the
proper transform of X' in C then ¥ = J*X' ~ D with D > 0, and then, wrting
9:Y — B for the composite ¥ — X' <+ B, get

*Kx +al NX'),

Ky = (Ko +Y)ly =¢"(Kp + X') = (Zo + D)ly
h*Kx +ag"T = (Zo + D)ly.
Thus if a < 0, any exceptional divisor lying over a component of X' NT appears
in the formula for the canonical class with coeffcient < 0, 0 that X is not
terminal. (If Y is not normal, then passing to its normalisation again makes
negative contribution to the canonical class.) This proves (11). QED.
REMARK. A component of X' AT can easily be contained in the boundary of
T, that is, in a codimension 2 torie stratum of B; this will happen, for example,
if there is only a single monomial 2™ € / for which the minimal value a(z™) =
a(f) is achieved, since then g = /7/2"*(/) restricted to I is a monomial
(49) Elementary applications. (1) Applying (+) to the simplest possible
weighting (1,....,1) shows at once that a hypersurface singularity

PeX:(f=0)cA™
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is terminal (or canonical) only if

multpf<n(respectively < n);
fn‘r)'m ordinary multiple point, the condition is also suffcient (compare (1.9),

(2) Let X = A/ be a cyclic quotent singulasity of type (1,a), for some
a coprime to r; applying (+) to the weightings

i@
for i = 1,...,r = 1 (where — denotes minimal residue mod r), it is easy to
Has a canonical singularity if and only if @ = ~1. Every quotient
singularity (eyclic or otherwise) s log terminal.
“The next example is important, and you won't et much furthe in this paper
without understanding it thoroughly.
diton () gives at once Du Val's analyss of canonical points of an
(f = 0) C A% first, the quadratic part f of f
s mongero, by (+) applied to (L,1,1), 50 that by a chaice of coordinates 1 can
arrange that

[=hte, where =22 +yP+orayor s

and -+ denotes terms of degree > . If f; = zy then some power of z appears
in /, and this gives the Ay points / = zy + 2"+ (in suitable coordinates).
It = 22 then (+) applied to (2,1,1) implies that

1= +9w7)
where g has a nonzero cubic part, and in suitable coordinates,

f=argmt withg =y + oryzory
Now 22 + 47z gives the Dy points 2 + 7 + 2~
16 = 2 + 17, then (+) applied to (3,2,1) shows that one of the three
monomials 24,y or 22 appears i /, which gives Es, By, and Fa.
(4.10) Tt turns out to be pleasurable and important to consider the curious-
ion of which h ¢ i This

i
means the following: take @ € ¥: (f = 0) C A® and an action of jy on ¥
which is free outside Q, and consider the quotient P € X. If I ask for X 1o be
canonical, it is a Du Val singularity, so the question is equivalent to asking for
all the ways in which one Du Val singularity can be a cyclic unramified cover
of another. This can of course be done in a number of different ways, but T
particularly recommend it as an exercise in toric technique.
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Eaercise. In the above situation, suppose that ¥ is singular and r > 1. Prove
that one of the following six cases oceurs (in suitable coordinates).

r Type )i Description
() any 1(1,-1,0,0) zy+z" Ao SN Ay
@) 4 10,3,22) L+ +20 A EE Dy,
() 2 HOLLO) 2+ 42" Ao ZSh Dy,

Dy 2=l gy
Dnyy 222 Dy,

F 2ol g

@ 3 0120 D+P+P
6 2 H1,100  Pzean

© 2 1050 F++st

The question may look artificial, since surface quotient singularities of this
type have been well understood for more than a century, and the coverings
can be classifid in many other ways (and were of course, by Felix Klein and
subsequently by Patrick Du Val and Caxeter). However, both the list and its
derivation by torie methods seem inextricably linked to questions on terminal
3-fold singularities, and in particular to Mori's Theorem 6.1. [Hint: if you have
at the proofof §56-7, starting

at (67))

(4.11) Canonical quotient singularitics. In the case of cyclic quotient singu-
arities A"/ of type Hay, ., an), condition (+) of (46) can be rewritten in
terms of the 7 — 1 weightings

o = LFar... i)
for k=1,...,r ~ 1 (here ~ denotes smallest residue mod r).

THEOREM. A quotient singularity X = A"ty of type 2(an, .. ,an) it ter-

minal (or canonical) if and oniy i

axferm) = LSRR > fork=1e

(respectivly 2)

“This Holds because (o) of (4.6) i tivialy satisfied for any latice point a not
contained in the unit cube (. This theorem implies ot once the Reid-Shepherd-
Barron-Tai criterion [C3-f, (3.1); Tal, (3.2)}: a quotient singulacity A™/G by
an arbitrary group G acting without quasirefections is canonical if and only if
every element g € G of order 1 when written diagonally

9 (21000 20) = (621, E802)
in terms of any primitive ¢ € i, satisfies Cay > .

The combinatorics o the condition in (4.11) and some of its consequences will
be studied in §5, see also [Morrison)

Appendix to §4. The Fine Interior, plurigenera and canonical mod-
els. The ideas of ths appendix are due to J. Fine (around 1080).

llﬁ
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(412) The Fine interior. 1f r = 1, then () of (46) is the condition that
the point (1,....,1) € Mp is in the interior of Newton(f). For r > 1, the
statement involves the following notion of interior of a lattice polyhedron A (a
lattice polyhedron is a convex polyhedron with vertices in M): define the Fine
interior of A to be the closed (1) polyhedron Fine(A) given by
Fine(4) = {u € M | a(u) > a(8) +1 for every a € N with a(&) > 0}

To describe this in words, take each supporting hyperplane of A and push it
into A until it hits another point of M (see Figure 1); now take the intersection
of all of these half-spaces. It is definitely not suficient to take just the walls of
4; for example if M = {my,ma | my +m; = 0mod 3) and A = o is the first
quadrant (giving the quotient singularity X of type 3(1,1)), the monomial zy
(which gives the canonical class of X) is i the interior of o, but not in Fine(7)
(see Figure 2); this is equivalent to the computation of (19), (2).

(m) = (&) » 1

(m) = (&)

FIGURE 1

FIGURE 2

Fine(&) is rather tricky to calculate, because the definition imvolves in princi-
ple all the supporting hyperplanes of A; the correspondence with the canonical
class in toric geometry shows how to reduce this to the finitely many vectors o
involved in a toric resolution of the variety Xa. This proves that Fine(A) is a
fnite rational polyhedron. Note that it s not in general a lattice polyhedron.

(4.18) Plurigencra, canonical models. The poiat. of the construction is that, by
[Khovanski, lattice points in the interior of Newton() correspond in various
set-ups to the geometric genus of the variety or singularity given by (f = 0);
Fine observed that, the plurigencra correspond in a similar way to the lattice
points of multiples of Fine(f). Clearly (4.6) just says that P € X is canonical
only if (sometimes also i) (1,...,1) € Fine().

Quite generally, these ideas determine the plurigenera (and canonical models)
of nondegenerate toric hypersurfaces in terms of the Fine interior

EXAMPLE. Consider the hypersurface singularity X: (/ = 0) C A%, where

J= et fre<k<iy
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then Finel( ) s the polyhedron in Mg, = R given by
© 121, m21, 21, Hemen2641=7

Of course, & = (3k,2k,6) is also a supporting hyperplane of Newton(/), but the
condition
3kl -+ 2km 4+ 6n > 6k +1

is already implied by (+) (because
15(1 = 1)+ 10(m = 1) + (11 = K)(n = 1) + (k = 5)(3 + 2m +n ~ 7) > 0).

account

of the weighting (3, 4, &

In this case if p: ¥ — X is a resolution of X then the pluri-adjunction ideal 45,
defned by .0y (aky) = 3O (akx), is the ideal generted by all monomials
aly™z" with 31 +2m +n > a. It is easy to calculate from this the (genuine)
plurigenera

PolX) = dimOx/8a =1+ (3

(4.14) REMARK. There are (at least) two other notions of plurigenera in
the lterature on singularities

) The log plurigenera correspond to taking the resolution ¥ marked with
its exceptional divisor E (assumed to be  reduced normal crossing divisor) and
working with .0y (a(Ky + E)) C Ox(aKx)

i) The L? plurigenera correspond to diferentials on the nonsingular locus

X© C X which are square-integrable; it is known that this is the same as con-
sidering .0y (aKy + (a — 1)E).

These invariants are determined by the usual interior of Newton() in a much
simpler way than the genvine plurigenera.

(4.15) EXAMPLE. Let M C 24 be the 3.dimensionl afine lattice defined
by

M = {(my,ma,m3,mq) €24 | }Jm; =5 and Y im; =0 mod 5),

and let & C M be the simplex spanned by the 4 points (0,...,5,....,0), that
is, the monomials zf, 7§, 23, z§. A general polynomial f supported on A is the

equation of a nonsingular quintic ¥ C P invariant under the ps-action
M3z s for (21,72, 25,20) € PO,

‘The toric space P4 constructed from A is in this case P*/us, and the hyper-
surface Xa: (fa = 0) C Pa is the Godeaux surface Xa = ¥/ps. It is a nice
exercise to prove that,
Fine(&) = (1,1,1,1) + 1A,
Problem (1. Dolgachey). It i an interesting problern to lok for other examples
of this phenomenon: a lattice A 27), and a lattice polybedron A having no
interior points (so that the toric hypersurface Xa C Pa has py(Xa) = 0), but
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with Fine(&) # 0 (s0 that x(Xa) > 0), or better still with Fine(A) of positive
3-dimensional volume (so that x(Xa) = 2). Note that J. Fine observed in 1981
P i i i

through the edges of the coordinate tetrabedron is a construction of this form
(here A is & cube, and M the lattce generated by the vertices of A and the
midpoints of the six faces)

5. The terminal lemma.

(5.1) The terminal quotient singularitics 1(a, ~a, 1). Condition (+#) of (4.11)
5 a nice geometric interpretation: it says that all the lattice points of N
contained in the cube O actually live in the midde strip (see Figure 3 for
picture).  In fact (++) says that every point of N 1O lies on or above the
By =1, and since n ~+ (1,...,1) = is & symmetry of N (as an
affne lattice), they clearly also lie below the hyperplane 3y = n — 1 (Figure
3).

(1,1,1)

©,0,0)

FIGURE 3

(5.2) The condition for terminal singularities is of course that the points of
N O live strictly in the middle strip of the cube. In the 3-dimensional case,
this situation s completely understood by the following theorem of G. K. White,
D. Morrison, G. Stevens, V. Danilov and M. Frumkin.

THEOREM. A 3-fold cyclic quotient singularity X = A%/p is terminal if
and only if (up to permutations of (z,9,) and symmetries of i) it is of type
1(a,~a,1) with a coprime to 7.

(5:3) An obvious, but nevertheless key step in the proof of (5.2) i to replace
the inequaliy (s+) by 7 — 1 equalities:

LEMMA. Let X be of type }(a,b,c), and write d = a+b+c. Then X is
terminal if and only i

G+ TE+E=TEdkr  fork

-1

(where ™ denotes smalleat residue mod r),
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PROOF. The points Py = (3, ) are just the points of N 1. The two
sides are congruent mod 7, and equality holds if and only if the left-hand side
i in the interval (r,2r).

(5.4) The lemma reduces Theorem 5.2 to the case n = 3, m = 1 of the
following more general result.

THEOREM (TERMINAL LEMMA). Let n and m be integers with
mod 2, and suppose that 1(ai, -, Gnibi,. - bm) s an (n-+-m)-tuple o aional
numbers with denominator 1

(A) Suppose each ; and by is coprime to r; then the following two conditions
are cquivalent:

Sk R
(3) The 4 cements {a,~by) con be spitupino (n-+m)/2 disioint airs
of the form (as,a¢) or (bj,by) or (a:,—b;) which add to 0 mod r. (That is, each
S0 e v st = 08, ¢
5 ouch tht by = oy o 1, nd smlry o the .

(B) More pznzmlly (without the coprime condition), (i) is equivalent to (i)
i the Jotioutn coni

i) For vy diisor ¢ of 7,

#{pairs(ai,av) | g = hef(a:,7)} = #{pairs(by, by) | g = hef (b, 7))}

Note that (i) = (i) is trivial, since

N i

SFHEOR=N0

e mpntion () ) 0 i il v oy o
ENARK. For (5.2) T only need the case n = 3, m = 1 with a;

b, coprime; the case n = 4, m = 2 will be used in §6 in onnection with tn
minal hyperquotient singularites in the form of Corollary 5.6. The tuple might
more generally correspond to an action of iy on @ complete intersection singu-
lasty @ € ¥ C A™, for example with 2(ay,....,ax) speciying the type of the
action on the coordinates, L(by,....,b_1) that on the defining equations, and
£(bn) corresponding to a choice of generator of the class group of the singularity
P€X = Y/pr (a “polarisation” of the singularity).

(5.6) COROLLARY. Let }as,...,auie,1) be a G-tuple of rational mumbers
with denominator r such that

g=hef(e,r) =hef(as,r) and  ay,a2,a5 are coprime to r;

assume that

Eaktr fork
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Then aq = emod 7, and the remaining 4 clements can be paired together as
121,02 +a3 = 0 mod r (or permutations).

The proof of Theorem 5.4, taken mainly from [Morrison-Stevens],is some-
thing of a digression from the main theme, and is left as an appendix so that
the reader can skip over it.

(5.7) Economic resolutions. An important consequence of Theorem 5.2 is
that the r — 1 points of N N0 are Qi = 1@, [r = a)i,i) for i =100
equivalently,

Pi=1Gr-ib) forj=l..,r-1,
od r; hence they all ie on the affine plane z +y = 1 of R%. It
follows from this that there is a class of “economic” toric resolutions of X, due
to Danilov and R. Barlow (see [Danilov, §4]): these correspond to subdivisions
of the cone o obtained from the picture of Figure 4 (the shaded polygonal area
s to be subivided into basic triangles).

where af

T
£t b

(0,0,1) —

)

FIGURE 4

This set-up has the following nice properties.

(1) Each of the r triples (P, P41, Po) is & basis of NV, so that the subdivision
leads to a toric resolution /: ¥ PeX.

(2) Each new vertex P, of the subdivision lies in the interior of O, so that
17'P = UE;, where E; has fractional discrepancy a, with 0 < a; < 1; these
are the so-called “essential” or “semicrepant” exceptional components, which
necessarily occur in any resolution of P € X. In fact there is one exceptional
th each discrepancy 1/7,2/r,.... (r = 1)/r, generalising the resolu-

(3) The shaded polygon is planar, so that triangulating it leads only to curves
I with Kyl = 0; in fact these curves are always (~1,~1)-curves, that is, | P4
with Nyl  O(~1) @ O(~1), and there are (r ~ 1) of them. Although the
triangulation, and hence the toric resolution ¥ — X, is not unique, you can get
from one to another by a composite of flops (symmetri fips) in these curves.
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Various properties of the singularities 2(a,~a, 1) can be read off quite con-
veniently from the explicit resolution given here; for example the plurigenus
contributions I(n) of (C3-, §5 (discussed in $10 below) could in priniple be
calculated from it, and this s in fact a reasonable approsch to calculating the
main term

@A
(compare (10.3) and [Kawamata, (22)])

Eaercise, 1067 +1) = 5] +b (one of the two possible aaes] then

(i) the afine piece Uy A2 of ¥ corresponding to (P, Py+1, Peo) has coordic
nates

S, = (), w2,

and in terms of these, the invariant monomials ,, et. are given by

2y =vu, (o),

(ii) (Pr, Py, Py41) i o basic cone contained i the shaded area of Figure 4 if

and only if [bk/r] = [bj/r] + 1 (see Figure 5); the corresponding affine piece V; 5
of ¥ then has coordinates

o=

A (o),

(o), ete

2" (zy) I, W I (g,

and in terms of these,

2y =, =y (),

oo " (-0 1)

FIGURE 5

Appendix to §5. Cyclotomy and the proof of (5.4).

(5.8) Write s for the r-tuple
(@)k=o,..r1 €Q"
then (i) of (5.4) is a certain relation between s, for different values of a, and
the implication (i) = (i) is deduced by proving that the s, are as linearly
independent as you could reasonably expect. As remarked above,
{ roifrtak,

0 ifrlak;

()i + (3r-a)i = 2k +(r — a)
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because of this, for each a = 0,...., ~ 1, define a new r-tuple 5, €V’ by

. _[@-r/2 ifrtak,
= {g iflak
Then the above reltion takes ths form
) Sa+Sp-a=0.

In fact only the subspace V= = {(ux) | 9n +vy—x = 0 ¥k} C V" will play any
part in the following argument; this is a Q-veetor space of dimension ((r — 1)/2],
and in due course of time I will prove that
(82 fora=1,...,[(r=1)/2)}

is 8 basis. This easily implies (5.4).

For the purpose of proving (5.4), (A) restrit attention to a coprime to r (the

ral case will be dealt with later). If al the o and b; are coprime to r,

hen coniton () of (54 I ofth form

Y Sa = Sun

and the following result clearly gives the implication (i) = (i)

(5.9) PROPOSITION. Consider only a coprime to r; then the relations (+)
are the only linear dependence relations holding between the S,. In other words,
the (s)/2 elements S, with a = 1,...,[(r ~ 1)/2) coprime to r are lincarly
independent.

Discussion. The proof which follows, due to [Morrison-Stevens], s some-
what abstract. To be absolutely concrete, write out the multplication table of
the ring Z/r in terms of smallst residues mod r, and let

Mo = (@-r/20r0}
be the r x r matrix obtained by subtracting r/2 from all nonzero entries; the
result I am after is equivalent to saying that the top left quarter determinant
of M formed by taking rows and columns 1,2,...,(r - 1)/2] s nonsero; for
example, if r = 11 then
~o2 ~12 -5 -3
=72 -3/2 1/2 5/2

-52 12 12 -92 (%
-3/2 52 —o2 -1)2
-2 92 -3 12

orif r = 14 then
-6 -5 -4 -3 -2 -1
-5 -3 -1 1 3 5
I R |

-3 1 5 -5 -1 3
-2 3 -6 -1 4 -5
-1 5 -3 3 -5 1
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‘These determinants are quite fun to evaluate by row and column operations (for
example, on a home computer using commercial spreadsheet. software); if you
difference successive rows then you see that the essential information contained
in the matrix is whether

@R

Fok o aE-(r—k)

and whether or not 2 = 0 (that i, whether & “carry” oceurs) for each a,

‘The nonvanishing of these determinants is equivalent.to Dirichlet’s theorem
L{1,X) # 0 for odd characters x; due to my ignorance of number theory, I can't
help wondering if there isn't an elementary proof of this fact. The actual value of
the determinant s presumsbly a power of r times a factor of mumber-theoretical
interest, compare [Lang, p. 92]

(5.10) PROOF OF (5.9). 1 will ind w(r)/2 linearly independent vectors
0y € V@ which are linear combinations of the S, for € (2/r)"; this obviously
proves the proposition. The vectors wy are construeted as eigenvectors of the
‘natural action of (Z/r)* on V with distinct characters X! os cigenvalues, so that
by a standard argument of linear algebra, to prove they are linearly independent
it will be enough to prve that each ty .

@ € (/1) acts on V by (vx)s = (vox)s; note that a(Sy) = S,. Given any
character X: (2/r)" ~ C* and any v € V, the linear combination

w®= Y x(@)-a@)evec
aelzinr

i of course an eigenvector of the action of (Z/r)* on V, with eigenvalue x~. 1
apply this with v = S, and x an odd character (that is, x(~1) = ~1), getting
cigenvectors
n=un)= Y x-S
wcain
there are just (r) characters of (Z/r)* of which ((r)/2 are odd, so this does
I want, except that I must still prove that oy 0.
(5:11) Proof that wy # 0. Suppose firt. for simplicty that x s a primitive
character mod r (that i, it does not factor through the quatient map (2/7)" —
(2/¢')" for any divisor #Ir), and consider the irst coordinate of g € V"

(we)r = (@) - (Sa)s = @) (a-3)= @)-a
o X Txt@)-(a-5) = Txt@

(the last equality uses = x(a) = 0). The fact that this number is nonzero now
follows from results of analytic number theory:
(wxisby r li number

Bam} B w0 (o-5) =] T xow

acla " aclatn
see (Washington, p. 30|

(a)
By, where
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(b) A contour integration shows that the Dirichlet L-function Z(s,x) for x
satisfes
~L(0,x) = Bix

(see [Washington, p. 31]).

(c) The functional equation relating L(s,x) and L(1 — ,x™") shows that
L{0, ) i & nonzero multiple of L(1,x~*) (see [Washington, p. 29))

(d) Finally, the statement that L(1, x~*) # 0 is  famous theorem of Dirichlet
(see (Washington, p. 33] or any book on analytic number theory).

(5.12) A suitable modification of the argument willin fact go through for any
odd character x: if r = qf is a factorisation of r, and x is induced by a primitive
character x: (2/f)" — C* mod / (that is, X has conductor /) then I prove that
the gth coordinate (wy)g # 0. (In fact it is true that (i) # 0, as will be proved
in Proposition 5.17; but,the calculation is quite a lot more involved.) First, for
each a € (2/r)",

Sy =m-3
50 that (S also only depends on amod f. Then

(= T x@)a(e

<@/

where a is the smallest residue of a mod J; now since (Z/r)* — (2/f)" is a sur-
jective group homomorphism, to every o’ € (Z/)" there correspond ((r)/ (/)
values of a, 5o that

0 o () r 2 o
=0 ZF = 1 (¢-4)=r- 25 -Bix
z il ot hisis oo, nw o thepriitive

character x mod J, so I conclude as before.
This completes the proof of Proposition 5., and with it (5.4), (A).
(5.13) T now go on to prove that the only linear relations between all the S,
are given by () of (5.8), that is, that the [(r — 1)/2] elements

=721

are linearly independent. The sim is as before: to show that the vectors wx (Sa)
provide the right mumber of linear combinations of the S, which are linearly
independent. This time however I take 1y (S4) for different divisors alg, where
g = r/f. (Note that wy(S,) is a linear combination of the vectors Sy for
& €[0,..,7 1] such that hef(a',r) = a; the divisor alr s just a natural choice
of representative of this set.)

MAIN CLADM. Let r = [g be a factorisation, and x: (Z/r)" — C* an odd
character whic  indced fom  piniie hacer X (z/1)* = C*. Then
the vectors y(S,) with alg are linearly indepen

{S.] fora
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The claim implies Theorem 5.4, Since there cannot be a nontrivial linear
dependence relation between eigenvectors belonging to different characters, the
claim gives that the set
{1¢(S2) | = as and x is an 0dd character mod s}
is linearly independent; by analogy with the formula r = ¥, (s), if I write
™ (n) for the number of odd characters of (Z/n)" then clearly

] =dimV~ =§v’(:7,

50 that T have just the right number [(r —1)/2] of vectors to base V'~; since they
are linear combinations of the S, for a = 1,2..., [(r~1)/2], it follows that these
also base V. Given condition (i), the relation (i) is (as before) just of the form

PIEREDIEN
50 that this implies (5.4), (B).
(5.14) For the proof of Claim 5.13, note first the following easy facts:

LeMMa. (.) (5 depnds anly o theproduct  ood 5

(@) ifac=

wy(Sa)e = wx(8)),
(i) # 'l and hef(a'e,r) t ¢ then
wx(Sar)e = 0.

PROOF. If you write out the defnition of (s (Sa))e then (i) s trivial, and
(i) follows by the argument of (5.12).

(i) Write ¢ = hef(a'c,r) and /' = r/g’. Arguing as in (5.12),

-
wx(Sur)e = x(®)-f®), S :{ o'
_a)z—‘;”_ 0 ifria,
‘where the term /(5) multiplying x(5) depends only on bmod /'; 8o its invariant
b bk for k € Ker((Z/r)* — (2/1')"). By definition of /, this is
subgroup on which  is nontrivial, and hence the sum s zero. QE.D.

(5.15) It's important to understand the distinction made in (ii); if p is &
number with some factor in common with  then of course bellpn) o st
multiple of ¢; however, if p is coprime to / then hef(pg,r) = hef(q,r), and it
follows that,

elr)/elf) - Bux # 0

p=P modr,
with 1€ (2/¢)"; in foet § is uniquely determined mod /.

(i) by
a'c § q, then it is easy to order the divisors a and c of g in such a way that the

{wx(Sa)e} s @ and ¢ run through the divisors of ¢

YOUNG PERSON'S GUIDE TO GANONICAL SINGULARITIES 7

is upper-triangular with nonzero diagonal entries. (Just write aie; = g, and
e the o auch < = 0 ) Ths already poves (5,19 n the special
case that every prime divisor of g also divides /. 1 now endeavour to modify the

in the general case.

only one way to proceed (*Mabius inversion”).

{5.16) Wite  for she et of prme cviors of g which are coprime to J; for
each p €  let p* be the highest power of p dividing r, and choose fl, € (Z/r)"
such that B, = p mod r/p?. (This s of course possible, and I could even require
fp = 1 mod p?, since the mumbers p+1-r/p* for i = 0,...,p° ~ 1 take every
value mod ) Then

pa=fpamodr for every avwith plo.

To simplify notation, if d = T2, ps is & produet of distinct primes p; € , |
wite g = I By Now define vectors tx(a) € V ® C for each a by the folloving
formla:

ox(0) = ux(Sa) = 3 ux(Sa,00) + 3 (S8, atow) =
4 er
) e i

= 3 udw(Saraa:
=

where the sum runs over products of distinct primes in % dividing a, and u(d) is
the Mabius function defined on square-free integers by
() = (=)™ where m = #{distinct prime factors of d}.
This means of course that if a i not divisible by any p € 2 then vy (a) = wx(Sa);
and for pe
vx(p'a) = we(Spra) = wx(Sp,pt-1a)-

In this case, Lemma 5.14, (i) together with the defiition of 6, gives
@) (sx('a))e =0 for all ¢ with p~*+1jc.

(5.17) PROPOSITION. Let a,e,¢’ be divisors of g

() I ac’ g then (vy(a))er =0,

() Supposc that ac = q, and let dla be a product of distinct primes in %; for
cach divisor d'ld, write d = d'd”. Then (sorry folks)

(wy(Spearee {}:m -‘tt')) or-

()
5 Bt
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Notice that (i) and (i) together prove Cleim 5.13, and Theorem 5.4, since the
e (o (0 e uppesingier v dcved i (515

PROOF. (i) is easy: if ac t g then there is some prime p appeating in ac’ with
higher power than in g. 1f p divides  then bef(ac,7) 1 g, so that Lemma 5.14,
(i) gives (wx (S5))e- = 0, and the same afir dividing primes in P out.of a, which
gives the result at once. Otherwise p & %, and (i) comes from grouping the sum
for (t(a))e into paics of terms
(5) #(d)(10x(Saara))e + B(pd)(wx(Sa 0, 0/pa))ers
where p + d, 50 that () = —u(d). Under the assumption that p*+lac’ it fol
Iows from the definition of f, that fp-ac'/p = ac’ mod r, so that by Lemma 5.14,
(1), this pair of terms cancels out.

(5.18) The proof of (i) breaks up into several steps. By definition

wx(Spearade Z x(®): (-

® 3 —
:}f‘,‘, PRGNS SRR
=
St 1. Consder fst the rongeof ummation of the inerualsum. Thiscan
e b v he e 1 (/)i Mot i
forench ivisor 1, it d = "
I @)= Z (summand);

sedilen
then clearly, since (Z/df)~ (Z/df)* is the union of (¢'Z/dfZ) for different divisors
, 1 have

)

Step 2. 1 now make the range of summation in T(¢) more explict. First,
since d and f are coprime, for any ¥, exactly one of the integers b/ + if for

+d~ Lis divisible by d, 5o that there exists io and z with &/ +iof = dz.
Snce th oum T(#) ey ot b whichsve v by a1 S
only depends on 6 mod df, 1 can take the range of summation to be

b=V tiof +jdf wherej=0,...,d" -1

Step 3. For each divisor , T claim that

-
© @)= T ()= T varig
=

perd
se(dzjaz)

where ™ denotes smallest residue mod f.
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PROOF. By definition,

(10) @)= Y (o8]

sz

Using Step 2, this becomes.

¥
(1) 2 (0 iof +5dN)Par G
2) ¢+ §
where the middle congruence uses the defining property of 54. Gathering to-
gether the terms o fo/d into r/", this gives

13) e+

and since fly € (Z/r)", multiplication by A just permutes the range of summa-
tion. This proves the first part of (9).
+ the second equality, note that the numbers

[

fag=zdg=(¥ +iofli=Vg  modr,

=dsps-§

asi=0,...,d"~1

take on a smallest value
LTTF when0<Hd+if<J,

@

and if I then change the range of summation t0 § = iy +5 W i

the summand simplifies, and the rh.s. of (9) emerges e st e
Step 4. Writing (8) for the internal sum in (6) gives

(1) "
9 w(opearade = S5 x() 3 uld)T(d),
= 2 ™

which by (9)iscqual fo
o) , T (). 1
[ 3 O WOR IR B
eldf) ve@/n & 2) @
Now it nclear that for fxed ' summing the two ters in curly brsckts against
x(V) leads mpe:uvv]y to x~1(d") 7 By x and 0. The first equality of (3) then
Comes ut 4t 0
ond tq\m\l!y is easy: p(df) = ¢(d) - [T(p — 1) gives the denominator,
and cxpandmg T1(x~*(p) - 1) the numerator.
Step 5. This is also easy: each factor on the right-hand side of (4) is

)]
p-1
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the product of these taken over the primes p € P with pla is obviously of the

E.u(") H(x’;(pi*l)

Now by (3), after multiplication by r-(r)/(f) - Bi,x, each summand becomes

(unSprasalles
and comparing with the definition of uy(a) in (5.16), the sum is just (uy(a))e.
Am

(5.19) Interpretation. Suppose I take it into my head to write down the sum.

B(e) = B,(¢)

for any & € i ~ 1, B(1)

B(e*

‘where aa’ = 1 mod r. So the sum pulled out of & hat organizes the apparently
random combinatorial data of the periodic values of @F into a single element
B(€) € K = Q(a) of the cyclotomic fiel.

If I multiply the kth equality in (i) of (5.4) by c* for some primitive & and
sum over k, then (provided the a; and b are coprime to r), I get

‘i"“"’ ia(s‘l;

= (i) in (5.4) to linear dependence relations between

‘This reduces the proof of

the B(c) € K for prinitive clements € . Since
Lee) i sk
Brle z{t} 7T

.= oxp@hi/r), theprablem s cquivalent to provin the Fllowin resut
PROPOSITION. The p(r)/2 mumbers
o v
@2 fork= 1 [Z] oprime tor
are linearly independent over Q

REMARK. The preprint version of this paper contained a false proof of this
proposition.

OOF. The vector space Q" = V' of (5.8) can also be thought of as
QIXJ/(X ~ 1); now corresponding to the factorisation X* ~ 1 = [[®,(X)
of X"~ 1 into the product of cyclotomic polynomials @, for divisors dlr, the
Qalgebra Q[X)/ (X" - 1) splits in a canonical way as the product of cyclotomic
fields Qeq) of degree d (where &4 denotes a primitive dth root of 1).
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Now by construction, i a is coprime to 7, the projection to Qer) of 5, € V

+3 ket =r Be);

on the other hand if hef(a, ) > 1, it is not hard to check that S, projects to zero
in Q(er). 1t follows from this that the S, with a coprime to r map 0 linearly
independent elements of Q(s;). QED.

6. Terminal 3-fold singularities according to Morl

(6.1) The results of §§6-7 are taken essentially from [Mori]. Part (1) of the
main theorem gives necessary conditions on the possible equations and group
actions for terminal hyperquotient (= quick) singularities, whereas (I is a first
attempt at giving sufficient,conditions.

THEOREM (S. MORY). (1) Let P € X = (Q € ¥)/py be a terminal hyper-
quotient singularity, where r > 1 and @ € Y s singular. Then P € X belongs to
one of the following 6 familics:

r Type Conditions
W o Ho-ai00)  mro.0 g€ a,rcoprime
1,1,3,2,2) ay+22 +glt) geEm®

® 2
3
© 2 JOOLEY 2yt

© 2 L0050 2 +yu(an) +hint) shemt, h#0.

() The general element of each of the famlies (1)~(6) is terminal.
(6.2) REMARKS. (5) Some of the families can be tidied up into discrete
‘normal forms using standard methods of singularity theory: for example, the
second alternative case of (4) can be reduced to one of
24y + 2249t with a=1mod 3, a > 4
or 24y 422+ O withb=0mod 8, b>6
or 224y 4 22+ oyt 4+ 1% with ¢ = 2mod 3, ¢ 22, dod + 2767 £0.

More information s given in [Morl, (12.1), (23.1), and (25.1)].

(i) In fact, for each of (1)-(6), every isolated singularity is terminal, as has
recently been proved by [Kolldr and Shepherd-Barron, §6] (compare (6.5),
(2)). For the most important family (1), this can be proved as follows: any
singularity in (1) is a Cartier divisor P € X: (zy +9(z", 1)) C A? x A, where
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AY corresponds to the invariant coordinate , and A is the terminal quotient
singularity (a,~a,1). Now let B — A be Danilov's resolution as in (5.7), and

@i Al xB— Al XA,

Clearly X' = p='(X) C A x B is irreducible, and it can be seen that, X' is
normal; p: X' — X i tatally docrepot, that toprov that P& X i tril
This

cn vedone (with qmw ot o pain) by a e mminion using the expliit
coordinates for B described in Exercise 5.7.

(6.3) Part (1) of Theorem 6.1 is proved in §7 ater some preliminary work at
the end of §6. The main point will be to determine what the iy-action looks ike

‘making knowledgeable use of the terminal lemma (5.4). T should emphasise
that. this is merely a technical reworking of Moris original argument, and that
each step is derived more or less directly from (Mori).

(6.4) Q-smoothing and the gencral clephant. (A) If P € X is a terminal
singularity it belongs to one of the families of (6.1) and is the quotient, of an
isolated <DV singularity Q € ¥ (/ = 0) C A%, It is then possible to write
down deformations of X by just varying the equation / in its eigenspace; the
singularity of X just varies inside its toric ambient space A*/sr

Now in every case of (6.1), one can write down a 1-parameter deformation
{¥a) of ¥ compatible with the action of 4 such that Y is nonsingular for  # 0
and meets the fixed locuses of i, transversally; this is possible because in each

ase at least one of the coordinates 2, has the same eigenvalue as /. Define a
deformation of X by X = /. I call this situation a Q-smoothing of P € X:
it is a deformation {X»} of P € X such that the general fibre has as its only
singularities a number of terminal quotient, singularities 2(a, ~a, 1),

Notice that since {X» ) is constructed as a quotient of a flat deformation (Y}
of ¥, the eigensheaves £; of the action of i, on Oy are sheaves over X which
vary i flat family with X; this will be important for the proof of Theorem 10.2.

For example, in (1) the fixed locus of the group action is the t-axis I; suppose
that allest power of ¢ appearing in f. Then f|; has 0 a8 a root with
‘multiplcity n; taking f» = / + M, this root splits up into n simple roots. The
picture for X is given in Figure 6.

FIGURE 6

'YOUNG PERSON'S GUIDE TO CANONICAL SINGULARITIES m

(B)If P & X is a Cohen-Macaulay point of a -fold then it follows by stan-
dard formalism that the general clephant § € |~ Kix| has a normal Gorenstein
singularity at P. The following is an interesting and important question: when
does S have » Du Val singularity at P? There is some hope that under ths con-
ition, the 3-fold singularity can be treated as a kind of generalised cDV point,
50 that, for example, problems related to the class group and small partal reso-
lutions of X can be dealt with by some (quite conisiderable) generalisation of the
Brieskon techniques for <DV points. For 3-old terminal singulariies P € X,
e lists of Theorem 6.1 allow me to write down an explicit § € |~Kx] with a
Du Val singularity by writing down a hyperplane section of Q € ¥ which belongs
0 the igenvalue corresponding to Kx. This shows clearly the close elationship.
between the list of Theorem 6.1 and that of (4.10).

General
Type Q-omoothing elephant Setion

M) Ma-al0:0) [+M : Anet = Ay
@ 101822 f+x 2oy A D
@) H0LLLO) f+iz Aztpt  Asne 1LDnu
@ 302150 [+ Aebut DAL ES

6) 30.0L50) S+ Netpt Dupy 2D

6 $(1,0,1,50) S4+ry Netut  Bo2LEr

(6.5) Remaining problems. As (Ivsc\u-zd in (6.2), the converse statement
state. The lsts of Theorem 6.1

Probcms. (1) 1a e drct ot the o = e general elephant

S€|~Kx] is 2 Du Val singulari

(2) Is there & proof of the converse statement (II) based on the fact that the
general elephant is Du Val?

(3) How should one resclve these singulsities? Tn particular, i there an
analogue of the economic resolution (5.7)7 It would be useful to have a partial
resolution /Y — X such that all exceptional primes have discrepancy < 1 and
¥ has only isolated cDV points.

For example, the equation in family (1) is of the form zy + g(s",); in
singularity theory it is traditional to ignore quadratic factors (“Morse lemma”),
s0 that one might look for a resolution of the 3-fold singularity in terms of that
of the curve singularity (g(Z,t) = 0). See also [Kollér and Shepherd-Barron,
),

(6:6) The proof of (6.1) will break up nto proofs in 3 disjoint cases, which are
carried over to §7; I start by setting up the general framework.

Notation. Tntroduce the following terminology: frst, (z,3,2,t) = (21, 74)
are local analytic coordinates on A*, and the group action is given by

b3 E (myntif) - (2,862,860,
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where (a,5,¢,d) = (ax, .., aa). Note that all the monomials in / belong to the
same eigenvalue of the action, o that for example if zy € / then -+ b= ¢ and
(/) = a(ay) mod Z for all & € N No. The group action on the generator

is given by
By e g entbetie

and since the quotient X has index r, a+ b+ ¢ +d — ¢ is coprime to ; it is
therefore reasonable to fix this to be 1, which corresponds to the fact that the
local class group of P € X has a canonical gencrator Kx.
Rules of the game.
Rule

or every primitive a € N N,

a(f) +1 < afayat).

I hef(ayr) # 1 then a; divides ¢;

(i) ellanr) =1
(i) a+b+c+d—e
Raule II:

can be used to put f in normal form with respect o ts leading terms. That is,

I can assume that;

0 1= m0) + L @y 20)
with g & nondegenerate quadratic form in 21..., zx; moreover
() if the Sjet of / is 22 + 42 then

122+ 5%+ 3g(0) + h(z,1),
or if the et is 2 + 4° then

=7+ +yglz, ) + h(z,1).

Raule IV: Only one entry per household; employees of Kelloggs' or of their
subsidiarics are not eligible for entry; the referees' decision is final

Here Rule L the condition of Theorem 4.6, and Rule I, (i) i a consequence
of the fact that p, acts freely on ¥ outside the origin: if the action of some
element of . fixes the z,-axis pointwise then some power of , must appear in
J, hence ayle; Rule 1, (i) is similar, and (i) has already been discussed. Rule
Ml is a standard manipulation in singularity theory. The normal forms can be
80k by expic ad o coordinate changes, and it s ey Lo s that these can be
done in an equivariant way. For cxample, 2 €. thn th tem n  divisile
by 27 can be gathered together to give

1=+ 0) +20(y,2,0) + h(y,2,0)
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with 7 € m. Then € = /IF7 is an analytic function invariant under the group
action, and

I=2? +W(y21),
where 2/ = €2 + (1/2)g/€.

(6.7) First division into cascs. [Hint: if you have trouble following the proof
of Theorem 6.1, redo Exercise 4.10,

1 know from general theory that Q € ¥ is a cDV point, which implies /
contains certain quadratic, cubic terms, etc.; as in (4.9), (3), these restrictions
can of course be deduced from Rule I applied to suitable weightings a € Z¢, but
T wil not spend time on this, and just assert what I need about f without proof.

Ji Ja+ fa -+, where fy is the quadratic part, /3 the cubic
part, and - indicates terms of higher degree. I write m for the maximal ideal
of k[z,,2,t], 50 that for example g(z,) € m? means that g € (z,1)? C klz, (]
‘The following proposition deals with the quadratic part of J.

PROPOSITION. Ezactly one of the following 5 cases holds in suitable eigen-
coordinates. To be more precise, I can make a i -equivariant analytic change of
coordinates (including possibly permuting the coordinates), to achiese one of the
Jollowing, where the coordinate functions z,y,z and t are eigenfunctions of the
e-action; the 5 cases are disjoint.

A case: [ =zy+gl(zt) with g € m¥;
odd case: 23 442 +g(z,1) with g€ m?, anda # b;
D, 224 o(y,2,1) with g € m3 and gy @ reduced cubic;

22 +y%2 4 0(2,1) with g € m;
224+ +y9(z,0) + h(z,1) with g € m and h & mé.
Note that by the proposition, the proof of Theorem 6.1 breaks up nto the 3
disjoint proofs of the implications
A= (1) or (2);
odd case = (2) or (3);
€Dy,cDy or cE = (4),(5) or (6).
(6.8) PROOF. Ifrank f < 1 thn ther’scssntilly nothing to prove since
f2=2% with 2 an cigenfunction; completing the square (by Rule I1l) gives

f=2 40,50 withg€m® and g3 £0.

Now if g3 is & reduced cubic I'm in the ¢Dy case. Failing that, since the tangent

cone to (g = 0) is invariant under the group action, either g3 = y?z with y and
2 eigenfunctions, or go = ° with y an eigenfunction.

1t's convenient to deal with the case rank f3 2 2 by means of a general result,

) LEMMA. Let V. be a vector space (over an algzbmlmﬂy clns ft
k of characteristic # 2) with  linear action of pr, and
nomirs gvadratc orm which is an etpeforn. Then the cxiot inegrs >
and I <2 with 2k +1 = rankgq and a basis of V. consisting of eigenvectors
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e Uk ULy Uk W, Wi (when 7 = dimV) ouch that
) q is given in the dual coordinates (21, ) by

() =3 ,y.+)_:, 4

and (i) if L =2 then w, and w; have different eigenvalues.

(6.10) This proves (6.7), since if rank f; > 3 then by (69) I can make a
coordinate change to get 3 = zy + ga(z,), and by Rule II this reduces to the
e case; if rank f; = 2, a coordinate change will give either /j = zy, or 23 4 3
with different, eigenvalues for = and , giving the cA or 0dd cases.

PROOF OF (6.9). (GOTO § if you already know this,) This can be done
25 an exercise in undergraduate algebra. The main point i that i ¢ = " A,z?
is diagonal in cigencoordinates (..., z,), and no two z/s with A, # 0 have
the same cigenvalue then rank < 2; thi is tivial, since the two square roots
of the eigenvalue of q are the only two possibilities for the eigenvalues of z,. On
the other hand, if it i not diagonal then you can pick a term say 2,73 € g, and
make coordinate transformations arguing on the other terms in which 25 and 23
appear.

(6.11) Now here's the real proof of (6.9). By choosing a o-invasiant com-
plement of the kernel of , I can assume that g is of maximal rank n. Now the
existence of the normal form (+) is formally equivalent to the existence of an
isotropic subspace £ C V" of dimension k = ( ~ 1)/2 invariant under the action
of #r. Indeed, lt £ be an invariaat k-dimensional subspace with gl = 0; th
£ C B, where E* is the orthogonal of £ with respect to the associated bilinear
form. Choose F C V to be an invariant complement of E* in ., necessarily

and it is easy to complete the proof.

The form g defines  nonsingular quadric @ C P™~1; an isotropic linear
subspace £ C V' of dimension k corresponds exactly to a (£—1)-plane in Q (that
15, a linear subspace P! € Q C P™1), and the problem is to ind an invariant
one. This s very well known material (see, for example [Hodge and Pedoe, val,
1L pp. 230-257). Since k = (rankq—1)/2, there are lots of (k ~ 1-planes on O;
these are maximal linear subspaces of Q if 1 = 0 or 1, or one less than masimal
il = 2. The space parametrising themm is a nonsingular variety Gy.(Q), and
is ireducible if 1 = 1 or 2, or has two components if { = 0; each component is

ationsl. Now sy acts on @ C P(V), and hence on Gy—1(Q): if n = rankg is ever
and for | = 0 the group action interchanges the two componets of Gy (Q),
then there can't be any fxed point and so there's 5o normal form (s) with { = 0.
But in case 1= L or 2, or in case | = 0 f the group action takes each component
10 itself, the action must have at least ome fixed point,(snce the component of
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Ge-1(Q) s irreducible and rational). This corresponds to an invariant isotropic
subspace of V of the required dimension. Q.ED.

7. Case-by-case proof of Theorem (6.1).

(1.1) Plan of proof. In (6:7) 1 divided the proof into the 3 implications

ed: cA= (1)or (2)
odd:  odd case = (2) or (3);
D=E: cDycDa, or cE = (4), (5) or (6).
Although the proofs in each case are logically disjoint, they all follow the same
4-step pattern; the first 3 steps involve only the quadratic terms zy or 2% + 7
orzd of

Step 1! Bt i i, T part is analogous to Lemma 5.3 in
the classification of terminal quotient singularities; it goes from the inequalities
a(/) < a(zyzt) - 1 of Rule |, applied to the weightings

= 1@k, B, K, ) fork=1,...,
08 set of r — 1 equalites; see (7.2).

Step 2. Coprime problem. This step discusses the possible common factors
of a,b,¢,d and ¢ with r to verify the assumption of Theorem 5.4, () or of
Corollary 5.6.

Step 3. Using the terminal lemma, write down in a mechanical way a list
containing all possibiliies for the ty

Step 4. Final method. The situation wil be that the terms zy or 27 +? or
@ of f will satsfy the conditions of Rule I for one-half of all the weightings
the remaining half of the weightings will then impose further monomials on /,
and the condition that f € m? will then exchude many of the cases written down
in Step 3. See (7.8) for a more precise statement in the cA case.

(7.2) How to reduce to the terminal lemma.

PROPOSITION. (s) Suppose that 2y € /. Then for any a € N 00,

cither alf) = a(zy) <1 and a(st) > 1;
v alf)=alz) - 1 anda(zt) < 1
(b) Suppose that 2 € J. Then for any a € NNO,
cither a(/) =2a(z) < 1 and a(yst) > 1+ a(z);
or () =2a(z) -1 end a(yzt) < 1+afa).
In (a) and (b), the lternative cases are interchanged by the symmetry

ama’= (1. ) - a

(¢) If either zy or 22 € [, then
R+ Bk +ck+dk =k +k+r
for each k

7.3) PROOF OF (a). Assume that zy € /; it follows that a -+
and therefore

et =1,

alf)=alzy) forallaeNno;
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also from Rule I, (if), c+d = 1 mod r. From this it s clear that

ak(zt) >1 <= apk(at) <1.
In view of a(zy) = a(/) mod Z and 0 < a(f) < alzy) < 2, the two cases
a(f) = a(zy) o afzy) - 1 seem pretty well mevitable. Also Rule I gives
a(f) = a(zy) = a(et) > 1
So Lonly have to show that
neither a(f) = a(zy) > 1 and a(2t) > 1;
9

nor a(zy) 1 and a(at) 2 1

can happen for any a. Write o’ = (..., 1) = a. Then clearly in either of the
two cases
a(m) 2 1= () Sd@) <1,

and therefore o/(f) = o/(zy), whereas a(xt) >
contradicts Rule .

(7.4) PROOF OF (1) (This i word-for-vord the same oot Lr (1))
Assume that 77 € /. Note that since 2° € / it follows that
therefore

1 implies o/(st) < 1. This

7, and

a(f)
alsofrom Rule 1, (i), b+c-+d
o see that,

a(z) foralla€ Nno;

+a mod r. From thisit is an easy computation

(i) > 14a(r) = arxlyzt) <1+ al2)
Now in view of 2a(z) = a(f) mod Z and 0 < a(f) < 2a(z) < 2, one of the
two cases a(f) = 2a(z) or 2a(z) - 1 must hold. Also Rule I gives
a(f) = 2a(z) = a(yzt) > 1 +afz).
So 1 only have to show that
neither a(f) = 2a(z) > 1 and a(yzt) > 1+ a(z);
a(f) = 2a(z) ~ 1 and a{yzt) > 1+ az)
can happen for any a. Write o’ = (1,

++1) = a. Then clearly in cither case
2a(z) 2 1= d'(f) S2/(z) < 1.
and therefore o(f) = 2a/(z), whereas
alyst) > 1+a(z) implies o' (yzt) < 1+ a(z)
“This contradicts Rae 1.
7.5) PROOF OF (c). This is easy: if zy € / then in the two cases of (a),

ak+BE=ek and ck+dk
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Similarly, i 22 € / then in the cases of (b),

k= and BE+K+T=GK+k+r

2k =7k+r and GE+K+TE=ak+k QED.
(7.6) The cA case. The time has now come to divide up into the cases of
(6.7). The case cA: J = zy + g(,() will occupy me from now until (7.8)

:A. Step 2 (coprimencss). Lemma 7.2 gives me the conditions of the terminal
lemma (5.4), (A) for the (4 +2)-tuple 1(a,b,e,d;e, 1), except that some of the
numbers may not be coprime to . However, this does not make too much
trouble, thanks to the following argument.

Define g = hef(e,r); the cases g = 1 and g = r are not excluded in what
follows

LEMMA. After interchanging z and t if necessary, the following hold:

(1) g =hef(d,r),

(2) a,b and c are coprime to,

@) 9=9("1)

PROOF. Since zy € f, T have ¢ = a +bmod r, and it's easy to prove that a
and b are coprime to r using Rule II, (i). By Rule I, (i), any common factor of
 or d and r divides g, 50 that I only need to prove that g divides either ¢ or d.
Note that if I set & 50 T must be in the second case of the
computation in (7.5), and hence

F+dE=k and

therefore not both of
F+E=D and T AT
can be equal to r. This proves that g divides d, say

(7.7) cA. Step3. 1 lst all the possibilities for the type; one of the following
cases holds (after possibly interchanging z and  or z and t)

14
0,.d

emod r, thatis, 1(a, ~a,1,0;
emod v, thatis, £(1,b, ~b,b+ b+ 1)

(©) Yol -a,0+ Lia+1);
D) H(a,—a—1,-a,0+1;-1)
with a and a + 1 coprime to 7
PROOF. Recall that a+b= ¢ and a +b-+ mod .
Tho verina lemma sl e tht (o 6 ket o e and 1 st b
paired off: if g > 1 then by Corollary 5.6 1 must pair d and ¢, giving () an
(B).1f g = 1 then by Theorem 5.4 it's casy to see that (C) and (D) are the iy
two possibiltes
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(7.8) cA. Step 4. Case (A) gives 4(a,~a,1,0;0), which is case (1) of (6.1).
To complete the proof of (6.1) in case cA, I must prove that (C) and (D) are
impossible, and that (B) is only possible if either

Habedi)=3(1,1,3,22) and Pef

or H(a,b,¢,d;) also falls in case (A).
thod. The condition which remains to use is that, by (7.2), (a),
a(f) = afzy)
50 that g must have a monomial 2™ with a(z™) = a(zy) ~ 1; on the other hand,
9=o(e",1) € m
Tokill (C), let k(a+1) d v with k < r. Then ax(zt) = k/r < 1, but
ax(zy) 1 = 1/r, o that no monomial in m? stands a chance. To kill (D),
choose k =~ 1. Then a(zt) /7 < 1, but again ax(zy) ~ 1 = 1/r 50
that again no monomial in m? ean work.
(Gase (BY is (1,5, ~b,b-+ 1;d-+1) with b coprime to ; if b+ 1 = 0 mod r, this
simpliies to (1, ~1,1,0;0) which is in (A). So assume I have

1 for every a such that a(at) <1,

11,05+ 15541 wnhbmunme torandb+1<r.

Consider the weighting a = a. ~ 1,7 =bb,r—b=1); then a(zt) =
(r=1)/r < 1 and s0 by the method o tis 0 (o) < (b= . This means
that there is some monomial 2™ € (2,¢)? wi

€9 and a(z™

a(ay)

(r —b=1)/r.
()hvm\uly no multiple of ¢ will work, so that the monomial can only be

hnb = r—b—1. Notice that since n > 2, it follows that
rzanuzzb+2

CLAM.

b

 andn=2.

PROOF. I choose another weighting

B=ara=tr-2,r—20,2r~2-2);
since f(zt) = (r = 2)/r <1, the method gives
Blg) = Blzy) = 1= (r =26~ 2)/r.

However, the same monomial 2" can't possibly work, nor can any multiple o t;
hence some power (™ must appear in g with m > 2 and
mr-2-2=r-2-2
‘This implies r = 2b +2, and the claim follows at onee.
‘This completes the proof of case cA = (1) or (2) of (6.1).
(7.9) The odd case: £ =27+ 42 +(z,1) with g € m® and a  b; this will take

until (7.11). Note that 20 =25 = ¢ and a # b mod 7 implies that r is even, and
+r/2.
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Odd. Step 2 (coprimeness). Either (after interchanging z and y f necessary)
o mod r, and b,c,d are coprime to r, or (after interchanging 2 and ¢ if
necessary) T have: hef(d,r) and a,b,¢ are coprime to .

PROOF. First of all 1 claim that if a # Omod r then hef(a,r) = 1; for
otherie ter exis some v & of 7 wilh 0 < k< such k. 3F =
a7 =) = 0. Then by the computation in (7.5), I have

B+ e+ 3R

ktr

a@=F
(or the same with k and (r ~ k) interchanged). Adding these together would
show that not all of

FABoR), e

wd T4
an be r; 50 one of 6,¢,d has a common factor with a and r, contradicting Rule
1L, ).

Nowsince ¢
2. Then setting

a and hef(a,r)

/21 get ak

and i even, i follows that
/2 and 2 = 0, s0 that from (1.5),

ﬁ+§+7_7/1+r/1,

and exactly one of b, c,d is even.
(G Sy i s .1 i i e e
aher 3(0,1,1,1,0)
jouyy

)
1,742, %52,2,2)  for some r with d]r.

a+r/2 {a =0 then by
on. Otherwise by (7.9)

In fact 20 = 2b = e mod r 5o that 1 s even and b
Rule I, (i), 1 must have r = 2, giving the first concly
and (5.6), L must pair d with ¢, and

eithera=1,b+c=

or a+b=0,c

n the frst case, b= 1+ 7/2.= (r+2)/2 i 0dd 50 dlr, 2 required. Its easy to
see that the second possibilty gives a = r/4, b = 3r/4, and then using Rule 11,
(i), necessarily r = 4, which gives 4(1,3,1,2;1).
(7.11) Odd. Step 4 (final method). To prove that this case implies (3) of
Theorem 1, 1 only have to show that the case
L5, 5222)  withdrand > 4

is impossible. By (7.2), (b), for every a with a(yzt) < 1+ a(z), there exists a
‘monomial of weight 2a(z) - 1. So let

a=ara=r-2r-22r-4)
then a(yzt) = (2r - 4)/r < a(z) + 1 = (r - 2)/r + 1. Also

=4/

2a(z) -




e MILES REID

ifr > 4 then it is easy to see that the only monomial in (s, 1) of weight < (r—4)r
and in the same eigenspace as / is 22, which s excluded by the case assumption.
“This proves that 1 am in case 3(1,3,1,2;2) with J = 17 + y? 4 g(or0), and
permuting y and  gives (6.1), (2).
This completes the proof of odd case => (2) or (3) of (6.1).
(7:12) Now consider the remaining cases £ = 2% + g(y,z,1) with g & .
€D-E. Step 2 (coprimeneas). Suppose that 2% € J; then
cither 0= = 0mod r and b,c,d are coprime to r,
or  risodd and ab,c,d,e are coprime to r,
or (after interchanging y, z, and ¢ if necessary)

cf(d,) and a,b,c are coprime to .

PROO. First of all, exactly as i (7.9), if a # 0.mod r then hef(a, ) = 1.

Now since ¢ = 2a, it follows that hef(e,r) = 1 if r is odd, or 2 if 1 is even
Also, in the first case, a,5,c, and d are coprime to r, since any common factor
with r would have to divide ¢ by Rale I (i). On the other hand, if  is even
then setting k = /2 gives aF = /2 and 2k = 0, 50 that from (7.5),

T4 T = r/241/2,
and exactly one of b,c and d i even, QED.

(7.13) cD-E. Step 3 (lsting possibl types). After posibly permuting y,  and
¢, the possible types are:

Ifa d r, then

(2) 2(0,5,~8,1;0) with b coprime to r.
1fa and r are coprime and ¢ = 2, then

(6) 4(a,~a,1,20;20) with r even and a coprime to r;
or (¢) £(1,5,-8,2,2) with r even and b coprime to .
1g=1, then
(@) (0 = 1)/2,~(r = 1)/2,6,~¢; ~1) with r 0dd and c coprime to r;
or (¢) £(a,~a,2a,1;20) with r odd and a coprime to r;
or (1) (1,,-5,2;2) with r 0dd and b coprime to

PROOF.  As before, this follows easily from the terminal lemma.(5.4), (A)
and (56).

(7:14) cD-E. Step 4 (Final method). First of all in cases (b) and (c), I laim
that r = 2; in both cases this gives 4(1,1,1,0;0) which implies (5) or (6) of
Theorem 6.1. Iudeed, suppose that r is even and r > 2; so choose k such that
= (r+2)/2<r. Then in case (b),

(252, k,2)

satisfies

HEF D) <on@) +1=1(F240).

2ax(z) =1 = 2/r; but nothing in m® has weight < 2/r, which
§ives a contradiction. A similar calculation also leads to a contradiction in case
(¢),
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Next (d), (¢), and (f) are impossible; indeed, choose k such that Fa = (r-+1)/2,
and consider

ax = }(ak, BK, K, dF).

It is easy to check (separately in the 3 cases) that ax(y=t) < ax(z) + 1, 50 that
by (7.2), ax(f) = 2ax(z) ~ 1 = 1/r. But no monomial in m? can have weight
(7.15) The only remaining case s (a) of (7.13), and for this I need to translate
Rule I for / into a similar condition for g(y, ). Note that a(g) = 2a(z) mod Z
forany a € N N
LEMMA. Assume case (s). Then
(1) For anya € Nia,
i alo) - 2(z) is even, then a(g) < 2a(yzt) =%
i a(g) - 2a(z) is odd, then ag) < 2a(yzt) ~ 1.
(2) The weightings

@ Jork=1,....r=1
satisfy a(9) = 1.
PROOF OF (1). Define §= a+i-(1,0,0,0), where i = }(a(9) - 2a(z)) or
4(al9) - 2a(z) +1) in the two cases. Then
B(f) = min{a(s), 2a(2) + 2i} = al).
Also
Blayet) = a(z) +5 +alyzt),
50 that Rule I gives
BU1) < Blavat)

1
that s,
alg) <alz) +i+afyst) - 1,
and writing out the definition of i gives the statement in the lemma.
PROOF OF (2). In fact xx(g) even implies that

0< ayle) < 2ax{yzt) ~2 = 2k/r <2,
which has 1o solutions, and a(g) 0dd implies
0< o) < 2an(yst) - 1 = (2 +1)/r <3,

which has the single solution ax(g) = 1. QE.D.

(7.16) To prove that (a) = (6.1), (4) I need to show that r = 3. So choose
K such that BE = (r — 1)/2. By interchanging y and z if necessary, I can assume.
that k2 (r — 1)/2. Then consider

ar=1 (0,554, 551, 8).
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Since (o) = 1, there mustbe a monomil i 2, of weght 1, and ofdegree > 3
(since g € m?). Note that ax(yz) = 1 and ax(z?) > 1, 50 that no multiple of vz
or 27 can work. However, since k > (r - 1)/2,

a(y®, v, vt%,£2) > (3r — 3)/2r = 1+ (r - 3)/2r.
So the only way to got & monomial of weight 1 i if r = .
“This shows that the type of X i §(0,2,1,1); it is aa exercie to see that /
must contain both * and a monomial of degree 3 in (2,¢), giving (4).

Chapter
Contributions of Q-divisors to RR

8. Quotlent singularities and equivarlant RR.
(8.1) This chapter introduces a number of formulas of the type

X(X,£) = (RR.type expression in D) + 3" cq(D);
g

here X is a normal variety, and £ = Ox(D), where D is a Weil divisor which
is Q-Cartier, and Cartier outside a finite set of points; the terms cq(D) are
contributions due to the singularities of the sheaf Ox(D), and are local analytic
invariants of the “polarised singularity” (Q € X and Ox (D). Notice that this
s not immediately related to the “singular Riemann-Roch theorems” in the
literature, which deal in the shea £, singularities and all: the formula here deals
only in the Q-divisor class of D in Pic X ® Q, so involves  substantial abuse of
notation.

(8:2) The existence of such a formula is not in itself particularly exciting,
but in several cases of interest the computation of cq(D) can be reduced to the
contributions of a “basket”

{Pa € Xo and Ox, (Da)}

of eyclic quotient singularities, which can in turn be calculated by equivariant
RR. Lintroduce the term “basket of singularities” to emphasise the fact that the
singularities Py € X, are not points of X, but only “fctitious singularities”: the
singularities of X and D make contributions to RR. equal to those which would
occur if X had these singularities. For example, X and D might in good cases
deform to & variety really having these singularities.

(8.3) The notation for cyclic quotient singularities is as in (4.1).

DEFINITION. The quotient X = A" /4, where , acts on A" by

w3E

) (€0, 2y

5. cyclic quotient singularity of type (ay,....an). Wete x: A" — X for the
quotient map; then the group i acts on 7.0, and o decompose it oo 1
cigensheaves

Li={fle()=¢floralle€p)
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1. Asingularity P € X with a Weil ivisor D s a eyelic quotient
singularity of type «(}(a1, ., an)) if P € X is (locally isomorphic to) a point of
tpe H(an, .., an), and Ox(D) £,

REMARK. In writing the action (z1,...,2a) = (¢21,...,e%z,), T am
thinking of the 2 85 coordinates on A", as usual in algebraic geometry. (This
is the dual of what the topologist would write; since the tangent space is
based by {9/0.}, the action of & on the tangent space Tys o has cigenvalucs
(€7,...,67*). 1 am repeating the bizarre pronouncement that the relation
between points of A™ and coordinates is contravariant; sorry.

(8.4) The following result s useful in reducing local problems concerning quo-
tient singularities to the projective case.

ROPOSITION. Given 4(ax,...,an) (with a; coprime to r), there exists @
smooth projective n-fold ¥ with an action of i having a number N of fized
points at which p, acts by

B3 (@1, 7)o (€21, % 2)
and freely outside these points.
PROOF. This is very easy. Suppose that k > maximum number of the
a; which are congruent modulo any prime p dividing r (for example, k > n)
Consider the action of 4 on P™+* given in homogeneous coordinates by

(Lo 1,6, e,
Preyoedy
‘The action of 4, on P+ has a fixed locus P¥ where the action in the normal

direction is given by (21, 1Za) = (E9171,....,62,), and other fixed locuses
of smaller dimension. Let X C P™**/p, be the intersection of k general very
ample divisors, and ¥ its inverse image under ™% — P+ /j,; then it is casy
0 check that ¥ satisfes the conditions of the proposiion. Q.ED.

(8.5) THEOREM. Under the conditions of (8.4), write x: ¥ — X for the
quotient map, and let L; be the ith eigensheaf of the action of , on 7.Oy. Then
fori=0, -1

XX, £)

san)) s
where

(e, ‘un)):ga(,
the oum eatending over ll & € p (1)

PROOF. This follows easily from equivariant RR. Let ¥ be a nonsingular
projective n-fold and g an automorphism of ¥ acting with only finitely many
fixed points {Q). The Lefschetz number L(: Oy) of g acting on Oy is defined
by

&) L{g: Oy) = 3_(=1) Tr(g: H(Oy))
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Wite dag: Ty,g — Ty,q for the differential of the action at a fixed point Q.
Then the Atiyab-Singer equivariant RR.formula [Atiyah-Segal, p. 541] takes
the simple form

-
o 10 = Sz

In the present, case, this can be used as foll

0y =D

: since

it follows that

HI(Y,0y) @Hx(x L)

moreover, any € € pr acts on £; by multiplication by €/, o that,
e H'(V,Oy))zzh’[x,[,‘) B

Therefore B

@ L 0y) = D1 e (1, 00) = Tx(X, )€

By construction, € acts on Ty,q by (€™,
applying (2) to g = ¢ gives

~21) at each fixed point Q. Then

4 S P R
) T L) ¢ = ey
forany e € pr -

1 consider (1) 3 giving r — 1 equations for the r uknowns x(X, £0). The
Snal cquation s

(@) 5 x(X,£0 = x(Or).
&

i now solve the r equations (4,) for x(X, £;) by inverting a Vandermonde
‘matrix: multiply (4) through by e~ and sum over all € € pr. This gives

© Xt =txon) + 2o,
where for £ =0,....r 1,

(6) i (Xay,...,an)) = Lo

© (3 ) ‘};“,E, R

the sum extending over all € € Since ¢! runs g~ (1)

together with , I can ignore the minus signs throughout,
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(86 1 i cay to lminate x(0y) from this formala to et
N
6,60 =xx) + (F) o= o),

& prototype of the kind of formula referred to in (8.1): £ is a sheaf on X with
isolated singularities, and since as a Q-divisor, Ly = 0 € Div X ®Q, I can think
of x(0x) 3 a RR-type expression in L, and the remainder of the formula as
being a sum of N local contributions (1/7){s; — oo} coming from the singular
points of £

COROLLARY. Let X be an n-fold hating a fnite set of quotient singularitics
{QY, and £ = Ox(D) a divisorial sheaf on X. Then there is a Jorma of type

X(X,.€) = (RR-ype cspasson in D) + Y- eq(D):
7

where (i) the contributions cg(X) are of the form
cq(X) = 0i (2a,-..an)) = 00 (}(ar, .. an))

if £ i locally of type (2(as,...,an) at Q; and (i) the RR-type expression in
D is the usual ch(D) - Tdx interpreted formally in the following ad hoc way:

divisor, s0 can be moved awvay from the singularities; for the remaining term,
just substitute x(0x).

SKETCH OF PROOF. The fact that a formula of this kind exists can be
readily scen by comparing X and £ with a suitable resolution; the contribution
which the argument gives is & sum of local analytic invariants at each of the
singulasities, 50 can be computed on any example where only this singularity
appears, for example that of (8.4-5).

Appendix to §8. Computing the ;.

(5.7) The sums oy(2(as,.... o) ave defined by

i (Han,.am)

i general ame cannot expect t0 get a closed formul for them, but T evaluate
then her it casesof nterest. The 0 are  kind of Dedekind sum, and a ot
of information on them is contained in [Hirzebruch-Zagier), although I prefer
o work from fs princples.

The aus (3 (a1san) e determined secursivly by the following two
conditions

(A)
and

(B) (@ivan =) (Har, =oi (Har, -y n-1))
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Here (A) follows from the fact that

o,

‘and (B) is easy to check. Formula (B) is particularly useful if one or more of the
ajis 41
Of course the recursion starts with

@ (}@)
9 {da
Another useful fact s the relation
®) i (an,--,an)) = ons (H(bay, .. ban))

if b is coprime to r, which comes at once from the fact that € v+ ¢? is a bijection

of

(88) Using (A) and (B), it iscasy to vriy that
G =-12-i for

(89) To caleulte ey((~1, 1), note that

G —oi=~(r—1)/2+i fori=0,..,r1,

e (-

So from (A) I get

hence
o=~ 1)/12.
PROPOSITION. For i =

(1) o

7}
Using (D), it follows that for any a coprime to r, and j =0,

o= =0 _Be=B)
7 (Ha,-a) = L

where

1mod r and ~ denotes smallest residue mod .
(8.10) To calculate (4(a, ~a, 1)) I proceed in the same way:

-y &
i

)

=i (ta-a)

i
H
H
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where ba =

mod r and ™ denotes smallest residue mod . This gives

d;mvz )

As before 0 = 74 0, and taking account of the number of times each of the
ummands 5~ )3 ppesr i cho s avr 5 1 g

+E(r - B =)

Now notice that the compieated sum bre can be evauatd: sinc the fatars
Bj(r ~ 57)/2 in the jth and (r - j)th terms are the same, it simplifies to
S gt o
PRl T L A S LLabt
=1

this proves the following result

0=raor(r=1) "

PROPOSITION. 0o = (r? — 1)/24, and for i =0,

(the sum is by convention 0 i = 0 or 1),
he proposition was first proved by A. R. Fletcher, using results of [Hirze-
bruch-Zagier] on Dedekind sums
(8.11) Exzercise. Set ¥-a; = kmod r, o that the divisorial sheaf Ox(Kx) is
of type a(L(a1,..,an)) near Q. Give two cifferent proofs of the proposition

o= (~1)\ar

whenever i +1' = kmod r;

(one based on Serre duality and (8.5), one by induction on n using (A)-(C)).

9. Contributions from Du Val surface singularities. Let X be a pro-
jective surface with at worst Du Val singularities, and D a Weil divisor on X.
Since D is Q-Cartier, the intersection numbers D KxD € Q are well defined
(in fact KxD € Z since K is Cartier).

(9.1) THEOREM. (1) There is a formula

X(X,0x(D)) = x(0x) + (1/2)(D* - DKx) + }_ ca(D)
T

where cq(D) = cq(Ox(D)) € Q i a conribution due tothe singularity of Ox(D)

at Q, depending only on the local analtic ype of Q € X and D the sum takes

place over the singularitis of D (the points Q € X at which D is not Cartier).
(1) If P& X and D is a cuclic quotint singularity of type {(3(1, ~1)) then

ep(D) = ~i(r i) 2r.
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(1) For cvery Du Val singularity @ € X and Weil divisor D on X, there
ezists a basket of points of {Pa € Xa and Da} of types i, (£ (1,-1) and with
ia coprime to 7a, such that

(D) =Y cr.(Da) ==Y &

REMARKS. (§) () is rather trivial it is proved by comparing X and D with
a resolution as in (8.6). The proof gives an expression for cg(D) which is not
useful for computational purposes

(i) In (1),  does ot have to be coprime to r.

(iil) The point of (II) is that the contribution cg(D) can be expressed as
a sum of a basket of contributions of the type described in (II) with i and r
coprime. To prove (III), I show that there is a deformation which replaces the
Tocal analytic singularity Q € X and D with a basket {(Pa € Xa and Do)}

(9.2) PROOF OF (I). It i easy to see that there s a resolution
and a Cartir divisor E on ¥ such that /*Ox(D) — Oy (E) is surjective; then
als £,0y (E) = Ox(D) and R£.Oy (E) =0, so that

X(Y, 0y (E)) = x(X, 0x(D))

(1) now follows by writing out RR for E on ¥ in more detail, let {I'} be the
exceptional curves of /. Then I can write

Ky =["Kx+ A, where A=Y o,

and

where B= Y 0T,
with a; € Z and b; € Q. Then (since f* DT = J*KxT; = 0 for all T\),
X(X,0x(D)) = (¥, 0 (E)) = x(Oy) + (1/2E(E - Ky)
(Ox)+(1/2)(*D+ B)(f*(D - Kx) + B - 4)
= X(0x) +(1/2)(D* - DKx) + ¥ ca(D),
T

where cq(D) = (1/2)(Bq)(Bq ~ Aq).
(11) follows from (8.5-6), together with the result. of (8.9),

(9.4) PROOF OF (III). This is a deformation argument; I show that given
the singulatity Q € X and D, there is  flat deformation {X, and Dy} of X
together with the Weil divisor class D such that X, has only cyclic quotient
singularities. The deformation family {X,} extends to a family of projective
surfaces. Since X(Ox(D)) and the invariants D? and DK are continous in
flat family, the contribution cq(D) is equal to the sum of the contributions from
the cyclic quotient singularities of X,

Consider Q € X and D let 7 ¥ — X be the eyelic cover corresponding to D.
Then O € Y is a Du Val surface singularity (i it's nonsingular, there’s nothing
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to prove), together with an action of 4, on O € ¥ satisfying the properties:

(i) the action is free outside O;

(i) it acts trivially on a generator of wy (corresponding to the fact that X is
Gorenstein).

‘This is exactly the situation classified in Exercise 4.10. From the list given
there, one sees that suitable Q-smoothings of X are as follows:

(1) /+A; (~1) has two fixed points on the y-axis, given by y? + A = 0.

)1+ dx the oubgrowy s © o s (2n+1) Bk oo on e 2ais,
given by 77 4 de =

5) 7 3 . b S pont o the - given by " + A= 0.

(4) 7+ X, s has 2 fixed points on the z-axis given by 22 + A = .

(6) 74 (1) ba n ied ponts on the =i gven by +

67 (1) b 3 e ot o he s given by -+

completes the proof of Theor

10. The plurigenus formula. Let X be a projective 3-fold with canonical
singulasities, and D a Weil divisor on X such that Ox(D)
neighbourhood of every P € X for some i (possibly varying with F). Note that
there are only finitely many points at which D is not Cartier.

(10.1) Definition of D - ¢5(X). By definition,

D-ca(X) = (J*D) - cal¥),

where f: ¥ — X is a resolution (and as usual, /* D refers to the pull-back of
Q-Cartier civisors). This does not depend on the resolution (if X has only 0-
dimensional singular locus, D - ¢3(X) = (1/r)E - ca(X), E ~ rD, where E s a
divisor linearly equivalent to rD not passing through any singular points of X).

(10.2) THEOREM. (1) There is a Jormula of the form

x(X,0x(D)) = x(0x) + % D(D - Kx)(2D - Kx) + 5D c:(Xi-&ZCQ‘D)\

where the summation takes place over the singularities of the sheaf ﬂx(D)‘ and
(D) € Q is a contribution due to the singularity at Q, depending only on the
local analytic type of Q € X and Ox(D).

(2) If P € X is the terminal cyclic quotient singularity X =
type 1(0,~a,1) and Ox(D) is locally isomorphiz to Ox(iKx) (so that the pair
(X and D) is of type i(}(a, =, 1)) in the terminology of (8.3)) then

e (D)

where b satisfies ab mod r, and  denotes smallest residue mod r (the sum
=1 i 2er0 by comvention i =0 o
(3) For every 3-fold canonical singularity Q € X and Weil divisor D on X
such that O(D) & Ox(iK') for some i there exiss a baske of points

{Pa € Xa and Da} of tpe i, (% (00r =20,1))
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such that
(D) = Fer. (Da).

This means that the contribution from any singularity Q € X and D can be

eapressed as a sum of contributions from a basket of terminal cyclic quotient

ingularitie,

PROOF. As before, (1) is proved by comparing X and D with a suitable
resolution ¥ and E. Since X has only a finite set of dissident points, it is not
hard to choose a resolution /' ¥ — X whose discrepancy A is concentrated
above a finite set of X. For details of the argument, compare (C3-f (5.5)]

(2) follows directly from (8.6) and (8.10)

‘There are two reductions in the proof of (3): the frst step reduces to terminal
singularities by a crepant partial resolution as described in (3.12) and (3.14), and
the second to terminal quotient singularities by a flat deformation as described
in (6.4), (A); the second of these is easy using (6.4), (A), and the reader should
think through the details for himself

CLAIM. Let P € X be a canonical 3-fold singularity, and g: X' — X a
crepant partial resolution such that X' has only terminal singularitics. Then the

qual 0 a sum of over the finite
set of points @ € 1P ot which Kx. is not Cartier

‘This can be seen by looking more closely at the proof of (1): if T choose
the resolution of X by first constructing g: X’ and then resolving o
singularities of X by h: ¥ — X', then obviously the discrepancy of /: ¥ —
equals that of h: ¥ — X'

Alternatively, argue as follows: there is 1o loss of generality in assuming that
X, prjective with P € X its nly disident singularty. By the fact that

~ X is crepant it follows that g.0x(iKx:) = Ox(iKx); also, by standard

use of vanishing, R'g. Ox:(iKx:) = 0. The Leray spectral sequence then gives

X(Ox(iKx)) = x(0x:(iKx));
together with (1) this proves the claim.

(10.3) COROLLARY. (4) Let X be a projective 3-fold with canonical singu-
larities and

{Pa & X and Ky, of type 1((00r-00 1)}

the mwmx and Kix in the sense of (3). Then x(Ox) and Kx - ca(X) are
related

XOx) =~ Kx-a(X) + T gD

or alternatively,

.
5o = -2x(0x)+
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(5) Suppose that in addition H is a Carticr divisor on X; then
x(Ox(H +mKx)) = (1 - 2m)x(0x)

3CH +mER)(H +(m = 1) (H + (2m — )Kox) + 15 H -s(X)

T =2

where inside the curly blankets, ~ denotes smallest residue of mmod r and
1mod r (note that r varies with Q). In particular,

(m-m)+ E Be-%)

X(Ox(mKx)) = (1= 2m)x(0x) + gym{m — 1)(2m — 1)K

where the sum takes place over the basket of singularities for X.

Historical remark. The correct version of the formula in (5) is due to Authony
Fletcher; s paper [Fletcher] gives several atenaive verions o te ormula
(4 has been computed
by seerl peole, probaby ret by Rebeccn Batlow (woind 1980) using her
Version of Danilov’s economic resolution (see (5.10)); essentially her computation
is given in [Kawamata, (2.2)]

(10.4) Exercise. Check that the formula gives the right values for the frst few
plurigenera of the -folds of Exercise 2.12. For example, (i) has

Pa=x(Ox(Kx) = -4+ (1} +5x (3)
=X(Ox@Kx) =} 4+ +5x (3
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