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NOTES ON A NET OF QUADRIC SURFACES:
(V) THE PENTAHEDRAL NET

By W. L. EDGE.

[Received 18 July, 1940.—Read 17 December, 1940.]

Introduction.

The four preceding Notes of this series* have, save for a few para-
graphs at the end of Note IV, been concerned with a general net of quadric
surfaces; in them enough properties of the general net have been found
to justify an examination of special nets, and it may be hoped that, from
this standpoint, these special nets will be seen in their proper perspective,
more of their properties discovered, and those of their properties which
are already known better appreciated. It would be a long undertaking
to consider all the different specialisations of a net of quadrics, and the
importance of some of these would be small and out of all proportion to
the labour involved in investigating them thoroughly. Some few of the
special nets, however, would well repay study, and of these the pentahedral
net is outstanding.

Contrary to what was first believed, a net of quadric surfaces does
not, in general, possess any self-conjugate pentahedron. Reye showed
that the existence of such a pentahedron demanded a particularisation
of the netf, and that the condition thus imposed was poristic, the existence
of one such pentahedron involving that of a singly-infinite set; the
resulting net of quadrics may therefore fittingly be described as pentahedral.
The faces of the pentahedra all belong to a developable to of the third class,
and so osoulate a twisted cubic y\ each plane of to belongs to one and

* (I) " The Cremona transformation", Proc. LondonMath. Soc. (2), 43 (1937), 302-315.
(II) " Anharmonic covariants ", Journal London Math. Soc, 12 (1937), 276-280. (Ill) "The
scroll of trisecants of the Jacobian curve ", Proc. London Math. Soc. (2), 44 (1938), 466-480.
(IV) " Combinantal covariants of low order", Proc. London Math. Soc. (2), 47 (1941), 123-141.

t Journal fur Math., 82 (1877), 76. Reye proved that a net of quadric envelopes
does not, in general, possess a self-conjugate pentad of points.
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456 W. L. EDGE [Deo. 17,

only one of the pentahedra, which therefore constitute the sets of a linear
series g^ among the planes of o> or, what is the same thing, the sets of
osculating planes of y at the pentads of a g^ on the curve.

It was suggested a few years ago* that it is preferable to define the
pentahedral net of quadrics in this way rather than in the way in which
it originally presented itself—as the net of polar quadrics of the points of
a plane with respect to a cubic surface. It is now proposed to pursue
this suggestion further, and use it, in conjunction with the results obtained
in the preceding Notes of the series, to give an exposition of the properties
of the pentahedral net. This net will be denoted throughout by the
symbol &, and the linear complex to which the tangents of y belong by
the symbol I.

Among the advantages of this approach to the study of the penta-
hedral net is one which is exploited in the third section (§§ 13-22) of this
Note. A grg1 on a rational curve is given algebraically by a pencil of
binary quintics. Any condition which is imposed on this pencil must be
reflected in some corresponding particularisation of the net of quadrics;
in some further particularisation, that is, in addition to the one to which
it has already been subjected in order to be pentahedral. For our purpose
any particularisation of the g6

x is admissible so long as there is no member
common to all its sets; i.e. so long as the quintics of the pencil do not
have a common factor. One particular pencil of binary quintics, in some
ways the simplest of all, is that constituted by those quintics which are
linearly dependent on two fifth powers; and the special pentahedral net
which arises from this pencil is studied in detail. It will be found, inter
alia, that, while this net does not contain any plane-pairs, it has only
two distinct base points, each of which must be counted four times to make
up the eight which a net of quadrics in general possesses; that the Jacobian
curve breaks up into two twisted cubics and its trisecant scroll into two
quartic scrolls. The simplification of the algebra consequent upon the
specialisation of the g5

x allows forms for some concomitants to be obtained
which do not yield themselves so readily for a general pentahedral net;
in particular an explicit expression is found for Gundelfinger's contra-
variant.

The first section of the Note (§§ 1-8) is concerned to set up the con-
figuration and obtain equations for some of the loci which play principal
parts in it. In § 1 and § 2 equations are given for the quadrics of 9> and
for their Jacobian curve #, these being the particular instances in three

* Proc. Edinburgh Math. Soc. (2), 4 (1936), 185. Some references to papers concerned
with the pentahedral net are given there.
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1940.] NOTES ON A NET OF QUADRIC SURFACES (V). 457

dimensions of equations that have previously been given for n dimensions.
In § 3 the plane equation of the scroll generated by the trisecants of & is
obtained. In § 4 certain apolarity relations between sets of points on y
are described; these are used, in §5, to obtain a quartic surface com-
binantally covariant for 9* (the equation of another such surface is given
in passing), and, in §6, to establish a (1, 1) correspondence between the
quadrics of £P and the axes of a>. At the end of §6 a further quartic
covariant appears. § 7 is concerned with the base points of the net, while
the geometry in §8 is preparatory to the second section as well as an
ending for the first.

In the second section (§§ 9-12) the net 3> is considered in the light of
some of the results of Notes III and IV. It will be remembered that,
in Note III, a five-dimensional configuration consisting of a quadric and
two Veronese surfaces was encountered; this configuration is markedly
particularised for the net <§>, and is described in outline in § 9 and § 10.
In §11 the net of quadric envelopes is identified which is the special
instance, for 9, of the contravariant net discovered by W. P. Milne, and
the geometrical identification which we give is corroborated by using
Milne's canonical form. In § 12 the special forms assumed, for the
pentahedral net, by one or two of its covariants are given.

The classical results in the geometry of the twisted cubic, and of the
linear complex associated with it, are assumed throughout.

I.

1. The plane whose equation is

varying with the parameter 6, belongs to a developable co of class 3, and
osculates a twisted cubic y.

Take any two sets of five of these planes; the parameters of the five
planes of the first set are the roots of a quintic

f(6) = a^ax 6+a2 d*+a3 0
3+a4 0

4+% P = 0,

while the second set of planes is similarly determined by a quintic equation

Then, as the ratio A: \i varies, the equation

A/(0)+/«7(0) = O (1)

determines an involution, or g6\ of pentahedra whose faces are planes of a>.
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458 W. L. EDGE [Dec. 17,

These pentahedra are known to be self-conjugate for the quadrics of
a net 3*; if the roots of f(6) = 0 are 0lf 6%, 63, 04, 65, then 3* is the net
determined by the three quadrios

P 2 5 0.P.2 6 &2P.2

where

The left-hand sides of the equations of these quadrics are functions of
the roots of f(6) = 0, these roots being the parameters of the faces of a
definite pentahedron. But if the corresponding functions of the roots of
any other of the quintic equations (1) are taken, the three quadrics so
obtained are always* the quadrics (2). Every quadric of 5> is linearly
dependent on the quadrics (2), and is outpolar to every quadric inscribed
in u>.

2. Each pentahedron is self-conjugate for each quadric of 3>, so that
the polar plane of the vertex of a pentahedron with respect to any quadric
of the net passes through the opposite edge of this pentahedron. Whence
the Jacobian curve # of <? is the locus of vertices of the pentahedra, while
the scroll R8 of trisecants of & is generated by their edges.

Suppose then that x is a point of #; the three planes of w which pass
through x all belong to the same pentahedron; hence there exist constants
A, fi, a, jS, y such that

Equating the different powers of 6 on the two sides of this identity, and
eliminating the five constants from the six linear equations so arising, we
have, for the equations of &,

by

*1

h
«5

6 K

= 0.

* These results are included in the more general results for space of any number of
dimensions which are obtained in the paper, already referred to, in the Proc. Edinburgh
Math. Soc,
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1940.] NOTES ON A NET OP QUADRIC SURFACES (V). 459

An alternative form for the equations of #, obtained directly as the
Jacobian of Qo, Q1} Q2, is

<T0 Oj (Tg O3

a3 a 4 CT5

= 0,

where

3. It is also easy to obtain a form for the plane equation of R8. For
if the plane

'oajO""l~'la'l 1 ̂ 2**'2~r'3a'3 — 0

touches R8, it contains an edge of one of the pentahedra, and so has an
equation of the form

where both <f>{ and <f>t are roots of an equation \f(d)-\-fjig(d) = 0. Thus,
since

we have 1 : <£,-+<£3- : ̂ ,-0, = Lo : — Lx : L2)

where L0 = Z0Z2—l̂ , ^^l^—lj^ L^l^—

Hence there must be constants A, p, a, j8, y, 8 such that

Equating the coefficients of the different powers of 6 on the two sides of
this identity, and eliminating the six constants from the six equations
which arise, we find

a0 60

a2 62

o9 60

Li
= 0.
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460 W. L. EDGE [Dec. 17,

This form of the plane equation of R8 shows most clearly a particular
feature of the pentahedral net, namely, that every plane of to is a quadri-
tangent plane of R8. For the planes of to satisfy the equations

Lo = Lt = L2 — 0,

and, when these are simultaneously satisfied, the determinant has rank
two only.

4. The quadrics of 9* cut out a gr6
2 on y, the six points of the set cut

out by the quadric £#0+7?#i+£#2 = ° being given by

This sextic polynomial, being a linear combination of the five sixth powers
(0—0,-)6, is apolar to the product of the five factors 0—0,-; it follows
similarly, from the other forms for the equations of the quadrics, that
it is apolar to every quintic giving a set of the gr5

x. Thus the gr6
2 is par-

ticularised since, in general, there is no quintic apolar to all the sets of
a <76

2. Now those binary quintics which are apolar to the binary quintics
of a given pencil constitute a triply infinite set, so that the g^1 has an
apolar g^. Moreover the sets of any </5

3 consist of the third polars of a
definite octavic, the only exception to this being when the g5

s includes a
set which consists of a single element counted five times over*. But this
exception cannot arise here, since such an element would belong to every
set of the original g5

x, and it is supposed always that these sets do not
have a common element; thus this unique octavic always exists for a
pentahedral net. Its second polars are then apolar to g^, and constitute
the <76

2 cut out by the quadrics of # on y. The particularisation of the
g6

2 therefore consists in its property, not possessed by a general g^, of
being the set of second polars of a binary octavic. This has recently
been pointed out by B. Ramamurtif, and we will call this octavic by his
name. If Ramamurti's octavic, written with the usual binomial
coefficients, is

(A, B, C, D, E, F, 0, H, K$fi, I)8,

* Grace, Proc. London Math. Soc. (2), 28 (1928), 423-425.
•j- Proc. Indian Academy of Sciences, 9 (1939)', 316,
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then the conditions of apolarity are expressed by

'ABC D)

B C D E

% ~al a2 ~a3 ai ~ a ,

b2 —ba

/ •

\

C D E F

D E F G

E F G H

F G H K I

461

= 0,

the mutual ratios of the nine coefficients of the octavic being uniquely
determined by this set of eight homogeneous linear equations.

5. The <76
2 on y, with the corresponding g6

2 of planes of a>, is covariant
for SP, and loci which are covariantly related to it mast themselves be
covariants of G*; for instance, the g6

2 of planes of w yields a set of hexa-
hedra whose vertices lie on a surface, while, reciprocating with respect
to JL, the hexads formed by the sets of the <76

2 on y give, as the envelope
of the planes joining groups of three points in the same set, a contravariant
of S>.

The equations of this surface and envelope are obtainable forthwith.
If a point lies on the surface, then, since it is a vertex of a hexahedron,
those three planes of co which pass through it must all belong to the same
set of g6

2; hence there must exist constants A, p, v, a, jS, y, S such that

where <f>{d), ifj(9), x(0) are any three linearly independent sextics belonging
to the gr6

2. Equating the coefficients of the different powers of 6 on the
two sides of this identity, and eliminating the seven constants from the
resulting seven equations, we obtain

A
B

C

D

E

F

G

B
C

D

E

F

G

H

C
D

E

F

G

H

K

CCo Xn

•Oo U/

xx x0

= 0.
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462 W. L. \peo. 11,

This is, then, a quartic covariant of 3>. Reciprocating with respect to £
we obtain a contravariant, of class four, whose equation arises from the
above determinant on replacing x0, xv x2> x3 respectively by —13, 3Z2,

Another quartic surface which, as its definition shows, is a combinantal
covariant of £? is the locus of a point 0 such that the intersection, 0', of
its polar planes with respect to all the quadrics of 3* lies in its polar plane
with respect to L. This surface must contain the Jacobian curve and
the eight base points of 3>; its equation is

dx0

dxQ

dx0

d_Qo BQo BQo
dxi dx2 dx3

rf/y W/yi ^
/
> "\JJU-\ \JJbn UvU*x1. u O

OOC-i O*Cn O90*>

= 0.

6. Each quadric of 3> cuts out on y a set of six points which is the
polar set of some pair of points on y with respect to Ramamurti's octavic;
the two planes which osculate y at this pair of points intersect in an axis
of o>. Conversely: given an axis of w, the two planes of w which pass
through it determine a pair of points on y; if Ramamurti's octavic is
polarised by this pair of points a set of six points is obtained in which
y is met by a quadric of <P. Thus there is* a (1, 1) correspondence between
the quadrics of 3> and the axes of to.

Suppose that, to speak the language more appropriate to binary forms,
we take for the moment the ratio 9:0' in. place of the parameter 8. Then
the sets of points in which y is met by the three quadrics Qo = 0, Qx = 0,
Q2 = 0 respectively are, on referring to (2), seen to be given by

* QtQ \g A V

i - 1
a,0,-2(00/-0'0f)

6 =

* This correspondence has, under another aspect, been noticed before. When 3* is
regarded as a net of polar quadrics of a cubic surface, the point of which a given quadric
of 0̂  is the polar must lie on a definite line, namely that axis of « which corresponds to
the quadric. See Turnbull (who refers also to Toplitz), Proc. Cambridge Phil. Soc, 31
(1935), 177-179. The argument used by Ramamurti on 318 of his paper is also relevant.
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1940.] NOTES ON A NET OF QUADBIC SURFACES (V). 463

where the a,'s are certain constants, the same in each of the three equations.
The sextics on the left of these equations are second polars of an octavic
rg

8, and their form shows that they must respectively be

d2 r d2r d2r
W ~ddW' W2'

The sextic which gives the six points cut out on y by the quadric
= O is therefore

* dd2

and this is obtained by polarising r with the pair of points whose para-
meters are the roots of the quadratic gd'2-\-r)dd'+£02 = 0.

So, returning to the non-homogeneous parameter, the (1,1) corre-
spondence between the quadrics of <& and the axes of to is given by the
fact that to the quadric £Q0-\-r}Q1-\-£Q2 — 0 there corresponds that axis
of co which is the line common to those two planes whose parameters
satisfy f+7?0+£02 = O.

To this result two corollaries may be appended.

Take an edge e of one of the pentahedra; it is an axis of co, and as such
corresponds to a quadric of <$>. The intersections of this quadric with y are
obtained on polarising Ramamurti's octavic by means of two points belonging
to the same set of gs

x. It may be supposed that the quintic f(6), whose five
roots 9{ appear in (2), is the one which gives this set, so that the group of
intersections is obtained by polarisation of the octavic with two of these roots,
say 6X and 62. These are the roots of the quadratic 6162—d(61-\-d2)-\-8

2 = 0,
so that the quadric of <3> which corresponds to e is 6X 62 Qo— (01+92)Q1-\-Q2 = 0;
this is a linear combination of P3

2, P4
2, P5

2, being without the terms in Px
2

and P 2
2 ; hence it is that cone of 3* whose vertex is that vertex of the penta-

hedron opposite to e. The correspondence between quadrics of 2P and axes of
co is therefore such that to the cones of 9 there correspond those trisecants
of & which are respectively conjugate to the vertices of the cones.

Secondly: those quadrics of 9* which correspond to tangents of y are
such that the quadratic g+7)d+£62 = 0has equal roots; hence they are those
quadrics iQ0-\-r)Q1-\-t>Q2 = 0 for which 772 = 4££. The envelope of these
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464 W. L. EDGE [Dec. 17,

quadrics is* the octadic surface Q±
2 = Q0Q2) it is a covariant of the net of

quadrics, and is the third covariant quartic surface that we have obtained.

7. No mention seems ever to have been made of the base points of
the pentahedral net; they may be found as follows.

5 Qjt

The identity 2 , ' = 0 is true for # = 0, 1, 2, 3. Hence, if it is

possible to find constants, K and p say, such that

for each of the five values of i, the equations (2) will all be satisfied. But
this demands that the equation

(a?0+ftB1+^a;a+tf8a;3)«= (K+p0)g(0)

should be satisfied by each of the five roots of f{9) = 0, and hence there
will be, corresponding to each base point, an identity

(asb+ftrl+0«aja+0»aj3)«= ( * + P % ( 0 ) + (<X+T0)/(0), (3)

where a, T are two more constants. The form of this identity shows that
its existence or non-existence depends on the gs* as a whole, and not on
the choice of some particular set belonging to it.

The existence of such identities is best established by consideration
of linear series. The planes of the pentahedra osculate y at points forming
sets of a 051; those sets of six points which consists of a set of this g^1

and a point of y constitute a (non-linear) doubly-infinite aggregate
which belongs to that g6

z whose different sets are found by equating
the right-hand side of (3) to zero and varying the constants K, p, a, T.
If it is possible to choose these constants so that the right-hand side
of (3) becomes a perfect square, then the g^ contains a corresponding
set of points which consists of three points of y, taken twice over. The
corresponding base point (x0, xx, x2, x3) of 3* is then the intersection of
the osculating planes of y at these three points. Thus it is to be expected
that the gr6

3 contains eight such double sets of three points, and this
expectation is soon confirmed. If y is transformed, by means of the <76

3,

* See the paper " Octadic surfaces and plane quartic -curves ", Proc. London Math.
Soc. (2), 34 (1932) 492-525.
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1940.] NOTES ON A NET OF QUADBIC SURFACES (V). 465

into a rational twisted sextic s, the sets of the g6
3 become the sections

of s by the planes of the space in which it lies, and the number of double
sets of these points is therefore the number of planes which are tritangent
to s. Known formulae show, however, that s has precisely eight tritangent
planes. It is true that s is not a general twisted sextic, since the <76

3 is
not itself general; through every point of s there pass the planes of a pencil
cutting out a g5

x, each set of which may be obtained in the same way
from every point of s; thus s lies on a quadric, meeting the lines of one
regulus each in one point and the lines of the complementary regulus
each in five points. But this specialisation of 5 does not affect the validity
of the formula for the number of its tritangent planes.

The g6
3 is that constituted by those sextics which are apolar to all

the sextics of the g6
2 cut out on y by the quadrics of 3>; for each member

of the <jr6
2 is apolar to any quintic of the g^, and so to every sextic of which

this quintic is a factor.

8. Consider now the relation between the surface R8, generated by
the edges of the pentahedra, and the developable surface JP4 generated
by the tangents of y.

A pentahedron consists of those five planes which osculate y at the
points of a set of the g5

x. Were two of these planes to meet in a tangent
of y, the corresponding set of g^ would have a double point at the point
of contact of this tangent. Conversely: if a set of gs

x has a double
point, the osculating plane of y at this point counts for two among the
faces of the pentahedron to which it belongs, and the tangent of y
there is an edge of this pentahedron and so a generator of R8. Thus R8

and F* have eight common generators, namely the tangents of y at the
points of the Jacobian set J of g^.

Having shown that R8 and F* have these eight common generators,
let us consider the residual curve in which they meet. Any generator
of R8 is common to two planes of w, and an intersection of this generator
with F* lies on a tangent of y. But through a point on a tangent of y
there passes only one plane of o> other than that in which the tangent
itself lies; hence the only tangents of y which the generator of R8 can meet
are those which lie in the two planes of to intersecting in the generator.
Thus the generators of R8 are bitangents of F*. On the other hand, let
t be a tangent of y at a point not belonging to J. Through a point of t
there passes only one plane of co other than that in which t itself lies;
hence, since a generator of R8 is the intersection of two planes of a> which
belong to the same set of g^1, R8 cannot meet t except in the four points

SEB. 2. VOL. 47. NO. 2318. 2H
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466 W. L. JEDGia [Dec. 17,

where t is met by those planes of w which are the four remaining planes
of that set of g^ to which the plane of co through t belongs. Conversely,
each of these four points does lie on R8. Hence t is a quadritangent line
of R*.

Thus, apart from their eight common generators, R8 and F* touch
wherever they meet.

Those four generators of R8 on which lie its points of contact with a
generator of .F4 are, as has just been shown, the four lines in which one
face of a pentahedron is met by its remaining four faces; they are con-
jugate to the vertices of the tetrahedron formed by these remaining four
faces. Now the equations (2) show clearly that the tetrahedron which
is obtained by omitting any face of one of the pentahedra is self-conjugate
for a pencil of quadrics of 3>, and so its vertices form a canonical set on #.
Thus those four generators of R8 on which lie its points of contact with
any generator of F* form a canonical set of generators of R8. Now it
was shown in Note III that, of the oo2 canonical sets of generators of R8,
oo1 are such that one of their singly-infinite set of transversal lines is a
quadritangent line of R8; and it was further shown that these quadri-
tangent lines of R8 generate a scroll p8. Hence, for the net <&, the covariant
p8 must include the scroll i74; it will indeed be seen that p8 is simply ^ 4

itself, counted twice over.

II.

9. It was shown in Note III that, when the lines of [3] are represented
by the points of a quadric Q in [5], the generators of R8 are represented
by the curve in which Q. is met by a Veronese surface.

For the net 3D it is seen immediately that the curve on Q. which repre-
sents R8 lies on a Veronese surface v; for the generators of R8 are
all axes of oo, and it is known* that the axes of a cubic developable are
represented on £1 by the points of a Veronese surface. But now, since
all points of this surface v represent lines of [3], v lies entirely on D. Here,
then, is a property which sharply distinguishes the pentahedral net 5>
from a general net; the expression a'M'AME of Note III must, in
consequence of the form of the matrix M which corresponds to a penta-
hedral net, vanish identically. The fact that v lies entirely on Q, how-
ever, in no way prevents it from being reciprocated with respect to Q,

* Baker, Principles of geometry, 4 (Cambridge, 1925), 52.
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1940.] NOTES ON A NET OF QUADBIC SUEFAOES (V). 467

and so a second Veronese surface w, the locus of points whose polar primes
with respect to Q. touch v along conies, is obtained as in Note III.

10. An axis of co is the intersection of two planes

so that its line coordinates are

If the quadratic of which, fa and <f>2 are roots is i+yd+Zd2 = 0, these are
proportional to

{«. rf, P, tt-n\ iv, -£2}, (5)

which are therefore the coordinates of that axis of co which, in the manner
described in § 6, corresponds to the quadric whose equation is

Since they are homogeneous quadratic polynomials in £, rj, £ the points
in [5] which represent the axes of at lie on a Veronese surface v. When
£, ry, £ are so restricted that the quadric is a cone the axis of w, as was
proved in § 6, is a generator of R8, and so the representative point in [5]
describes, on v, the curve F which represents this scroll.

It was proved in Note III that the coordinates of a point in [5] which
represents a generator of R8 are given by

y = M[?, yf, i\ Ttf, *«, rft]' = MS,

where M is a non-singular matrix and ra = 2. The set of coordinates (5),
when written as a matrix of one column, is in agreement with this, and has

• • / * • \

* - • l

- 1 --1

2H2
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468 W. L. EDGE [Dec. 17,

The equation of Q, the quadric in [5] whose points represent the lines
of [3], is, here, yQ yz-\-yx 2/4+2/2 Vs = °> which may be written y'Ay = 0 with

: : : ! , : \

. . ; . . 1

V • ; : : :/
These forms of M and A give

. . - 1 . . .

- 1 .

V . /

and it is now easily verified that E'M'AME vanishes identically, in con-
formity with the fact that v lies entirely on Cl.

It was also shown in Note III that the points of the Veronese surface
w, being the poles with respect to Q of those primes which touch v along
conies, are given parametrically by

y = (M'A)-1 [I2, m2, w2, mm, ml, rim]'

f T \ / W2 \

— 1 .

: ; : : : /

min

ml I
= [—m2, 2lm, —I2, m2+2nl, 2mn, n2]'.

This surface does not lie entirely on Cl; those of its points which do lie on
Q. satisfy

2(2 —l2n2= 0,

{m2-nl)2 = 0.
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1940:] NOTES ON A NET OF QUADRIC SURFACES (V). 469

Thus Q meets w twice in that curve Aonw for which m2 = nl; this is the
section of w by the prime L whose equation is 3yo+2/3 = 0.

The intersection of L with v is seen, on referring to (5), to be given
by taking rf == 4£f. Indeed L meets both v and w in the same curve A,
as is seen by taking

for this gives the parametric form

(02, 20, 1, -30 2 , 203, _04}

for the coordinates of a point of A. Any such point represents a tangent
of y, for it is obtained by putting <j>x = <f>2 = — 0 in (4).

It was seen in Note III that the curve of intersection of w and Q was,
for a general net of quadrics, of the eighth order, and that it represented
the scroll ps generated by quadritangent lines of R8. Thus, as was antici-
pated at the end of §8, p8 becomes, for the pentahedral net, F* taken
twice.

11. Let us now consider the net 3> from the standpoint adopted in
Note IV. It was there pointed out that, for a general net of quadrics,
R8 has eight tritangent planes; these are associated, and so determine
a net v of quadric envelopes. For <&, however, R8 has not merely eight,
but an infinite number of tritangent planes, and, indeed, of quadritangent
planes, namely the planes of co. Thus, in order to identify for <? those
eight planes which correspond to the tritangent planes of R8 for a general
net of quadrics, some further property would have to be appealed to.
This has been done previously*; but it is not necessary to know the result
in order to identify the net which, for 9>, plays the part of the net v. For
every tritangent plane of R8 is now (a quadritangent plane and) a plane
of co, so that every quadric envelope to which any eight tritangent planes
of R8 belong is inscribed in w. The net v is therefore now the net w of
quadrics which are inscribed in CJ.

The existence of the net v, as acknowledged in Note IV, was established
by W. P. Milnef; moreover Milne gives a set of equations for three
linearly independent envelopes Q = 0, R = 0, S = 0 of v. The condition
for icQ-\-pR-\-oS = 0 to consist of planes which pass through the tangents

* The eight planes axe those which constitute the Jacobian set of the gb
l given by

the pentahedra; see Proc. London Math. Soc. (2), 34 (1932), 521-522.
f Journal London Math. Soc, 8 (1933), 211-216.
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470 W. L. EDGE [Deo. 17,

of a conic is that the discriminant D of KQ-\-pR-\-o8 should vanish. The
sets of values of K : p: a for which this happens are in (1, 1) correspondence
with the planes of the conies; these planes form, in general, a developable
of the sixth class. When the coefficients, in the equations of the quadrics
of v, are so specialised that v becomes a net m of quadrics inscribed in a
cubic developable, the envelope of the planes of the conies, instead of
being of the sixth class, is the cubic developable taken twice over; D must
become a perfect square. This can be verified for Milne's canonical form.
For this canonical form is derived from a canonical form for a net of
quadric loci, and, from what has been said above, when the coefficients
in the equations of these loci are so chosen that they yield a pentahedral
net, v must thereby become a net w. Now the condition for Milne's
equations (1) to represent a pentahedral net is easily shown to be
a2^3ci = a3^ic2J a n ( i , when this is satisfied, the discriminant of the
quadratic form KQ+pR-\-o8 is found, in Milne's notation, to be the square
of the expression

k [pa {ka2 a3 (c2 r—b3 s)+b1 cx (a2
2 c2—a^ bz)}

12. After what has been written in Note IV, some of the concomitants
of 9* may be readily identified.

The surface S8, generated by the conies belonging to v, is here the
surface generated by the conies belonging to to; it is known, from the
geometry of the twisted cubic, that these conies all lie on F*. Hence,
for the pentahedral net, S8 is the surface F* taken twice.

The quartic surface 6?4, dual to Gundelfinger's contravariant, contains
the eight curves along which S8 is touched by the base planes of v. Thus
Q* now contains eight quartic curves in which F* is met by planes of <o,
and must therefore be the same surface as F*. The property, possessed
by #4, of having all the twenty-eight lines of intersection of pairs of base
planes of v for bitangents, is quickly verified. For the curve in which
F* is met by a plane of a> consists of a tangent of y and a conic, the tangent
of y counting twice because the plane touches F* all along it. The remain-
ing planes of u> meet this one in the tangents of the conic, which are all
bitangents of the composite quartic curve in which the plane meets JP4,
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1940.] NOTES ON A NET OF QTJADKIC SURFACES (V). 471

The identification of Gundelfinger's contravariant itself is not so
simple; but it is obtained below for the specialised form of SP to the
consideration of which we now proceed.

III.

13. A pentahedral net is determined when a twisted cubic y and a
051 thereon have been assigned; and numerous specialisations of ^ arise
corresponding to the different special types of g5

x. Let us then take what is,
in one way, the extreme specialisation; namely, a g5

x two of whose sets
consist of single points counted five times; each other set of g5

x is linearly
dependent on these two. Using the notation and coordinate system of
the earlier part of this Note, and choosing the parameter 0 to have the
values 0 and oo at the two points, we take

The expressions appearing in the equations (2) of § 1 then become, with
e denoting a primitive fifth root of unity,

6 p.2 6 /,*. I A~ \Jii~ J_^3i«. \2

(6)

Here the five roots 6{ may be the parameters of any set of the g^1 which
consists of five distinct points, and so the roots of any equation A05+/M = 0
which has five distinct roots; we have therefore taken them to be the roots
of 05= 1. The net determined by (6) will be denoted by the symbol p.

If the coordinates of a point on y had been given the homogeneous
form (03, —3020', 300'2, —0'3), then the g£ would be determined by the
two binary quintics

Ramamurti's octavic, apolar both to /(0, 0') and g(d, 0'), is then*

* For this special pencil of binary quintics, Ramamurti's octavic is the same as the
Jacobian; this is due to the specialisation of the pencil, and is not true in general.
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472 W. L. EDGE [Dec. 17,

The g6
2 cut out by the quadrics on y must be the set of second" polars of

r, and, from the forms obtained above for Qo, Qv Q2 it is seen that a
point of y lies on the quadric ^Q^-qQ^^Q^ = 0 provided that its para-
meter satisfies

020'2(15f0'2-2O7700'-f-15£02) = 0.

And this sextic is obtainable by polarisation from r, being in fact

, rd
2r

^ 30

in agreement with § 6. Thus, for the net p, the g6
2 cut out by the quadrics

on y has four fixed points, namely the two vertices XQ and X3 of the
tetrahedron of reference each counted twice; and the sets of gr6

2 are got
by adding the pairs of points of y to this fixed group of four.

14. That Zo and X3 are both base points of p is obvious from (6). It
may be confirmed, and more completely explained, by the considerations
of § 7. For the g6

3 which is apolar to the gr6
2 cut out on y by the quadrics

is that one of which four sets are determined by the sextics 06, 050', 00'5,
0'6. The only linear combinations of these which are perfect squares are
06 and 0'6; there are no others, and these two must count each for four
of the eight which would arise, as explained in § 7, for a more general g6

z.
Hence the base points of p coincide four at each of two points, namely Xo

and X3.
Conversely: the argument of § 7 shows that if 9> has a base point on

y this point, when counted six times, makes up a set of the <76
3; it then

counts for four among the eight sets of repeated triads which a general
g6

3 possesses, and for four of the eight base points of <$.

15. Let us now address ourselves to the study of the Jacobian curve #
and of the scroll R8 which is generated by its trisecants. These break
up, each into two component parts. The plane equation of R8 is, in the
notation of § 3,

Lx L2 .

Lo

L L ' = 0 >

that is L^- ZL0L2 L^+LQ2 L2
2 = 0,

and so it factorises. Thus, for the net p, R8 consists of two quartic scrolls,
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1940.] NOTES ON A NET OF QUADBIO SUBFACES (V). 473

Since the quadr-ic envelopes

Lo = 0, Lx = 0, L2 = 0,

are all inscribed in to, each quartic scroll has o> for its bitangent develop-
able; this is in accordance with the fact that every plane of to is a
quadritangent plane of Bs. Moreover, since the simultaneous interchange
of l0 with l3 and lx with l2 interchanges Lo with L2 and leaves Lx unaltered,
it is seen that each quartic scroll is symmetrically related to the two base
points.

It is now to be expected that the sextic curve #, whose trisecants
generate E8, will also break up; the presumption is that # will consist of
two twisted cubics, those chords of either which meet the other being
trisecants of the composite curve and generating a quartic scroll. In
order that these two scrolls should each be of the fourth order, it will be
necessary for the two cubics to have four intersections.

These expectations are easily confirmed. The equations of # are

0

0

= 0;

it is thus the intersection, apart from the twisted cubic xQjxx = x1/x2 = x2/xs,
of the two surfaces

~~~ *vi ~\ •*'Q ctUd u-\ *XJ<% *VQ ——

these are Cayley scrolls, their nodal lines being, respectively, xo = x1 = 0
and x2 — x3 = 0, the tangents of y at X3 and Xo. They intersect, apart
from the twisted cubic which has already been excluded, in the two
twisted cubics

9.xo =
 xl== JE<L anc[ ^o_ ?!i — ££§

qxz qxx

where q is written for £ (1 + A/£>)> SO that <72 = <Z+1; the two curves are
obtained, each from the other, on replacing q by* —q~1 = $(l — '\/5).
They will be called yx and y2 respectively; the coordinates of their points
are given parametrically by

(1, 30, and ( 1 , -

The primitive fifth root e may be chosen so that e+e4 = q-1 and e
8+«s = —5.
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474 W. L. EDGE [Dec. 17,

so that they both pass through Xo and X3, and have the same tangents
and osculating planes there as does y. Incidentally it is confirmed that
yx and. y2 have four intersections, these being Xo and Xs, each taken twice.

16. Those chords of y2 which meet yx generate a quartic scroll F2;
two of them pass through each point of y2, which is therefore the nodal
curve of F2. Hence the equation of F2 is obtained by equating to zero
some homogeneous quadratic polynomial in the three expressions

XQXi~\~9.X\ > XQXZ 9. X1X2> xlx3~rQx2 j

for these, when equated to zero, give the linearly independent quadrics
through y2. The quadratic polynomial is identified by the fact that it
must vanish at every point of yx, and thus the equation of F2 is found to be

{xoxz~q2xxx2)
2 = {xQXz+qxtfixyXs+qxf).

The equation of the scroll Tlt generated by those chords of yx which meet
y2, is obtained from this on replacing q by — q~\ and so is

The equation of B8 is found by taking the product of the equations of
Fx and F2. The factorised form of the plane equation, found above, for
228 is

17. We now have a Jacobian curve consisting of two twisted cubics
yx and y2, and its trisecant scroll consisting of two quartic scrolls Tx and
F2; the generators of Yx are chords of yx and secants of y2, while the
generators of F2 are chords of y2 and secants of yv

For a general net of quadrics, any point of the Jacobian curve & is
conjugate to a trisecant of &; thus the points of yx are conjugate to the
generators of one of the two scrolls Fl5 F2, while the, points of y2 are con-
jugate to the generators of the other scroll. On examination it is seen
that the scroll whose generators are conjugate to the points of yx is I \ ,
while the points of y2 are conjugate to the generators of F2. For consider
any pentahedron which is self-polar for p; each face has three intersections
with yx and three with y2> *n e *e n vertices lying five on yx and five on y2.
An edge of the pentahedron is a chord of one of the two curves and a
secant of the other. Let an edge c be a chord of yx, and so meet y2 in one.
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point. Any plane through e has one further intersection with yx and two
further intersections with y2; this applies, in particular, to either of the
two faces of the pentahedron which intersect in e, so that these two faces
together account for four points of yx and five points of y2. The remaining
vertex of the pentahedron must therefore be a point of yx. Now this
vertex is the one opposite to e; thus an edge of a pentahedron is a chord
of that twisted cubic, yx or y2, as the case may be, which passes through
its opposite vertex. This proves that the lines conjugate to the points
of yx are the generators of Yly while the lines conjugate to the points of
y2 are the generators of F2.

I t is easily verified that the points of yx whose parameters are 6X and
02 are conjugate with respect to every quadric of p provided that

the corresponding relation between conjugate points of y2 being

18. The breaking up of the cones belonging to p into two families can
be seen otherwise; for the discriminant of the quadratic form

is

0 0 £ t]

0 £ 7) £

£ v I °
7) £ 0 0

Thus the quadric iQ0+r)Q1-\-^Qi = 0 is a cone either when £f = q~2rj2

or when ££ = g'2<>?2, the existence of two families of cones being thus
demonstrated. When the quadrics of p are represented by the points
(£, r), £) of a plane the quartic curve whose points represent the cones
of the net breaks up into two conies having double contact, the points of
contact of the conies representing the cones, Qo = 0 and Q2 = 0, which
are common to both families.

The locus of vertices of the cones of one family will be the twisted
cubic yv while the cones of the other family will have their vertices on y2.
I t is seen that those cones which are represented by the points of the
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conic £f = q~2r)2 have their vertices on yv For the coordinates of a point
on this conic are expressible parametrically as g:r):£= l:—qd:d2, and
the vertex of the cone

x2
2+2x1x3-2qd(xox3+x1x2)+d2(x1

2+2xox2) = 0 (7)

is found to be the point (1, qd, qd2, 63), which is on yv Similarly, those
cones which are represented by the points of the conic H = q2rj2 have
their vertices ony2.

19. We now proceed to obtain, for the net p, the form of the identity

which occurred in Note IV, and was there, denoted by (G). This identity
was not obtained for 0>; but the specialisation that has now been imposed
on the pentahedral net renders its derivation more practicable.

First let us obtain the contravariant a8 which, when equated to zero,
gives the envelope, of class eight, of the cones belonging to p. Here CT8

will be the product of two factors Sx and 22> where Sx = 0 is the envelope
of those cones whose vertices are on y1 while 22 = 0 arises similarly from
those cones whose vertices are on y2. Both Sx and E2 will be homogeneous
quartic polynomials in the plane coordinates l0, llt l2, l3, either being
obtained from the other by changing q into — q~x wherever it occurs in
the coefficients.

The condition for a plane to touch a quadric whose point equation is
given is obtained, in all the text-books on three-dimensional analytical
geometry, as the vanishing of the determinant that arises when the matrix
of the coefficients in the point equation of the quadric is bordered by a
row and column of plane coordinates. When a plane touches a quadric,
it passes through its own pole; there thus arises a system of five homo-
geneous linear equations having a non-zero solution, and so the matrix
of these equations, which is precisely the matrix of the above bordered
determinant, must have rank 4 instead of its full rank 5.

Now, though the books generally omit to say so*, this argument can
be carried further. For if a plane touches a quadric at every point of a
line, then there is a singly-infinite set of points, linearly dependent on
any two of them, which are poles of the plane with respect to the quadric

* Sommerville, in particular, in his Analytical geometry of three dimensions (Cambridge,
1934), seems strangely to miss the opportunity on .217-218.
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and which also lie on the plane itself. The above set of five homogeneous
equations must now have two independent solutions, and so the rank of
the matrix of the bordered determinant must reduce to 3. This gives
a necessary and sufficient set of conditions for a plane to touch a quadric
(then necessarily a cone) along a generator*.

This being so, the plane

is a tangent plane of the cone (7) when and only when the matrix

0

0

02

-qd

k

0

02

-qt

1

h

02

-qS

) 1

0

h

-qd

1 1

0

0

h

h
h
h
h
0

has rank 3. The determinant of the matrix obtained by omitting the
last row and column vanishes identically, since it is the discriminant of
a cone. The determinant of the whole matrix is (iQ-^-^qd-^-^qd^+^d3)2,
and its vanishing is the condition for the plane to pass through the vertex
of the cone. If the last column and any row other than the last, or the
last row and any column other than the last, are omitted, the determinant
of the resulting matrix is a multiple of lo-\-l1qd-\-l2q62-\-l36

3. But, if the
last row and column are both retained, and some other row and column
omitted, the resulting determinant is always quadratic in lQ, lx, Z2, lz and,
after taking account of the vanishing of lQ-\-liqd-\-l2qd2-\-l38

3 and
perhaps dividing through by some power of 6, in 8. The vanishing of
such a determinant causes the plane, already constrained to pass through
the vertex of the cone, to touch the cone along a generator. For example:
omitting the first row and column a determinant is obtained whose value
is l2

2-\-2lzl1-\-2l2liqd -\-l^ q82; omitting the central row and fourth column
a determinant is obtained whose value is

Iod(lo+l1qd+l2qd2-j-l3d^-q8{qlo
2+2qlol18+(l1

2-h2lol2)8
2};

and so on. The envelope of all planes which touch cones whose vertices

* An alternative form of these conditions, but not so suitable for our present purpose,
la given by Bertini: Geometria proiettiva deali iperspazi (Messina, 1923), 148.
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are on yx is found by the elimination of 6 between the cubic

and any one of the quadratics. When this elimination is carried out,
for example by the dialytic method (the routine algebra may be passed
over), the result is found always to be

Let us write Sx=A+q510
2 Z3

2.

Then S |

and so a* = I,1Il2

20. Having calculated a8, we proceed to calculate <£4. This contra-
variant, as explained in Note IV, is the envelope of those planes which
cut p in nets of conies for which Sylvester's invariant T vanishes. Now
the plane

meets the quadrics

xa
2+2xzx1 = 0, 2x0 xz+2x1z2 = 0, x1*+2xox2 = 0,

in conies which are projected from Xo by the cones

! = 0 ,

l1xsx1—2loxxx2 = 0,

The value of the invariant T is now obtained forthwith from the expression
given in § 389 of Salmon's Conic sections; omitting again a few lines of
routine algebra, we find that

T =-16{2A+UW),

where A is as before. So we may take

Gundelfinger's contravariant for p.
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21. The identity (G) satisfied by the contravariants of a net of quadrics
tells us that there must be some linear combination of a8 and of the
square of <£4 which splits up into eight linear factors, these factors, when
equated to zero, giving the base points of the net. But the eight base
points of p consist of the two points Xo and X3, each counted four times;
it is therefore to be expected that the expression which, for a general net,
is the product of eight linear factors is here a numerical multiple of Z0

413*.
The forms found for a8 and ^4 clearly admit this, since

22. An alternative derivation of the forms 2X and S2 is of sufficient
interest to be described before the Note ends.

The cones of p whose vertices lie on yx are those quadrics

for which £,£ = q~2 r)2; since the conic £,$ = q~2r)2 has the line equation
4vA = q2 /j,2, the envelope of these cones is the quartic surface*

This is then the surface whose plane equation is 2X = 0, and is thus of the
fourth order as well as of the fourth class. It may therefore be suspected
that it is a scroll, and this suspicion is confirmed by noticing the identity

which shows that Sx = 0 has the bitangent developable, of the third class,
q2iolh=-hlh = hl<i2k-

The nodal curve of the surface is put in evidence by observing that

which shows that the nodal curve is, as will be expected, yv The cones
of p whose vertices lie on yx are the tangent cones to this scroll from the
points of its nodal curve.

The plane equation, 2^ — 0, of the scroll can now be deduced from
its point equation. For it is found that the chord which joins the two

* See the paper, " Octadic surfaces and plane quartic curves ", quoted in § 6.
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points of Yi whose parameters are 6X and d2 lies on the scroll provided
that (614-d2)

2+2qd1d2 = 0. Hence we require the envelope of a plane,
of coordinates lQ, lv l2, l3, such that the cubic equation

has two of its three roots connected by the above relation. Thus, if the
three roots of the cubic are called dlt 62, 63, the symmetric function

must vanish. This symmetric function is found, save for a factor which
is a numerical multiple of a power of Z3, to be identical with the form
found for Sj in § 19.

Mathematical Institute,
16 Chambers Street,

Edinburgh, 1.

 at E
dinburgh U

niversity on N
ovem

ber 15, 2011
http://plm

s.oxfordjournals.org/
D

ow
nloaded from

 

http://plms.oxfordjournals.org/

