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THE subject of this paper, a ' simple' group of order 27.36.5.7, is familiar
(5) in its representation as a group of collineations in complex projective
space of five dimensions. It has, however, orthogonal and unitary repre-
sentations in finite projective spaces of five and three dimensions respec-
tively; these have not been studied, and here some account is offered of the
geometry of the orthogonal one. The nucleus of the figure is its invariant
quadric Q\ noteworthy features are (§§ 28-33) the 540 null systems which
reciprocate Q into itself and (§§ 18-27) 5184 heptahedra, of two categories,
that are circumscribed to Q. The figure also provides clear definitions of the
Sylow subgroups S2 (§§ 7-8) and £3 (§§ 15-17).

1. The geometry of quadrics in projective spaces of 2, 3, 4 dimensions
over the Galois field Jf of three marks has been described in earlier papers
(2, 3). A non-singular conic a consists of four of the 13 points that compose
the finite plane, and the quadrilateral of tangents thereat has six vertices;
hence there are only three points that do not lie on any tangent, and they
form a triangle whose sides are the only lines of the plane skew to a and
which is self-polar for a. Elementary though this figure is (see the diagram
on p. 264 of (2)) reference to it is often helpful because, as well as being a
section of non-singular quadrics in spaces of higher dimension, it is the
section of a quadric cone in [3]—for instance, of the intersection of a non-
singular quadric in [4] with a tangent solid—by any plane not passing
through its vertex.

There are two kinds of non-singular quadric in [3]; two kinds, that is,
in that neither can be transformed into the other without extending C4T.
One, the ruled quadric, is a hyperboloid H whose two complementary reguli
each consist of four lines. Of the lines in [3] 18 are skew to H; they are
edges of two triads of desmic tetrahedra. These six tetrahedra are all self-
polar for H but the two triads cannot be transposed by any quaternary
orthogonal transformation with coefficients in JC The other kind of quadric
has no lines on it and is an ellipsoid F; it involves two systems of six penta-
hedra whose edges all touch F. Other properties oiH and F are given in (2);
their orthogonal groups of projectivities have orders 288 and 360. The
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THE GEOMETRY OF AN ORTHOGONAL GROUP 417

former has a subgroup of index 2 isomorphic to the direct product of two
alternating groups J / 4 which act as permutation groups on the lines in its
two reguli, while the latter is isomorphic to jaf6 which acts as a permutation
group on either system of pentahedra.

A non-singular quadric a> in [4] consists of 40 points and has on it 40 lines;
there are 27 self-polar pentagons whose edges are all skew to a> whose
equation, referred to any such pentagon, is given by equating the unit
quinary quadratic form to zero. The polar solids of 45 of the 81 points off
to meet it in hyperboloids—it is these 45 points that are vertices of the 27
pentagons—while those of the remaining 36 points meet o» in ellipsoids.
The orthogonal group of projectivities that leave a> invariant is of order
51840 and is isomorphic to the cubic surface group; it acts as a permutation
group on the 27 pentagons, the 40 lines on w, and the batches of 40, 45, 36
points just mentioned, and affords a direct access to the study of the many
properties of this group (3, 4).

There are two kinds of non-singular quadric in [5]. One is the Klein
quadric Q whose 130 points represent the lines of [3]; it is ruled in the sense
that planes lie on it, and the presence of these planes helps to disclose the
properties of Q.. But the concern of this paper is the other kind of quadric Q
on which there are, over the field J4T, no planes and which consists of 112
points m. It is Q, not Q, that is given by equating the unit senary quadratic
form to zero, and so we study the geometry, over Jf, of the quadric

x2+y2+z2+u2+v2+w2 = 0,

and use this geometry to investigate the corresponding protective ortho-
gonal group. The marks of J f are 0, 1, — 1; they obey the usual multiplica-
tion rule, but 1 + 1 = —1 as with residues modulo 3.

2s The finite protective space [5] wherein Q lies consists of £(36— 1) = 364
points; each of the six constituents of the vector of homogeneous coordinates
of a point can be any of 0, 1, — 1, with the sole exception that not all six are
0', and each point answers to two vectors, negatives of each other. Points
are of three categories k, I, m according as the sum of the squares of the six
coordinates is 1, — 1, 0; points k, I are off Q, points rn on Q. The correspond-
ing capitals K, L, M denote their polar primes; primes M are tangent
primes of Q. Since the square of either non-zero mark is 1 each k has either
one or four, each I two or five, each m three or six squares of its coordinates
equal to 1, so that the number

of k is 6+15.23 = 126,

of I is 15 .2+6 .2 4 = 126,

of mis 20 .2 2 +1 .2 5 = 112.
5388.3.8 Ee
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418 W. L. EDGE

3. Q is invariant for all substitutions whose matrices M satisfy either
M'M = 7 or M'M = —/; but, in the latter contingency, although Q is
left invariant in the sense that its 112 m are permuted among themselves,
the categories k and I are transposed, so that only those substitutions for
which M'M = I will be discussed. \M\ may be either 1 or — 1 ; those
substitutions with \M | = 1 form the orthogonal group and impose per-
mutations of like parity on the two batches of 126 points, whereas those
with \M\ = — 1 impose permutations of opposite parity. For example:
the harmonic inversion in a point k and its polar prime imposes an even
permutation on the 126 k, transposing each of 40 pairs, but an odd
permutation on the 126 Z, transposing each of 45 pairs. The substitutions
of matrices M and —M impose the same projectivity and have the same
determinant; the projective orthogonal group has half the order of the
orthogonal group of substitutions. In the projective group there is a sub-
group of index 2 which is simple and consists of those projectivities which

(i) leave Q invariant,

(ii) do not transpose the categories k, I,

(iii) have determinant 1,

(iv) permute each batch of 126 points evenly.

This simple group is called G* here because it is isomorphic to the group
so designated by Miss Hamill at the end of (5). The group of the title of (5)
has order double that of G* and is isomorphic to the group which, while
obeying (i) and (ii) and including only projectivities that permute one batch
of 126 points, say the k, evenly is permitted to include projectivities, of
determinant — 1 , that impose odd permutations on the other batch of
126 points.

The group G* of projectivities is found by Dickson ((1), p. 183) in a text
illustrious for the flood of its new contributions to the subject of linear
groups and, at the same time, notorious for the absence of any geometrical
account of them. The corresponding group of substitutions is what Dickson
there denotes by O[(G, 3).

4. Primes K, L meet Q in non-singular quadrics such as the one described
in §§ 12-15 of (3). Such a section of Q has ((3), § 12) 27 self-polar pentagons,
so that there are 126 X 27/6 = 567 'positive' simplexes 2+, self-polar for Q,
whose vertices are all & and faces all K; among these is S^, the simplex of
reference. There are, likewise, 567 'negative' simplexes 2~, self-polar for Q
whose vertices are all I and faces all L. A prime M, however, meets Q in a
singular quadric, a cone with m as vertex. An instance is

1 .x-\-y-\-z-\-u-\-v-\-w = 0,
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THE GEOMETRY OF AN ORTHOGONAL GROUP 419

the tangent prime at the unit point m0; the points of Q herein, other than
m0 itself, are manifestly those of whose coordinates three are 1 and the
others —1, together with the two further points (these have three co-
ordinates zero and the other three equal) on each of the lines that join the
ten to m0. The cone consists of ten lines g and projects an ellipsoid from a
point outside the solid that contains it.

5. The conditions for a matrix M to satisfy M'M = I are, precisely,
that its columns are the coordinate vectors of 6 points k which are vertices
of a 2+; these conditions are necessary and sufficient. Since there are 6!
permutations of the columns, and since each column may be replaced, by its
negative without changing the k of which it is the coordinate vector, the
number of orthogonal matrices of determinant A = 1 is :

£.567.6!26 = 29.36.5.7,

and so, since each is here accompanied by its negative, there is a group of
28.36.5.7 orthogonal projectivities. This, with all its members having
A = 1, is not the group of this order that provides the title of (5); but both
these groups have 0* as a subgroup of index 2. The above group includes
projectivities that permute both batches of 126 points oddly; an instance
is the harmonic inversion whose fundamental spaces are any chord c of Q
and its polar solid C (which meets Q in an ellipsoid). For, of the points k,
one is on c and 15 in C, leaving 110 to undergo transpositions of 55 pairs;
and likewise with the points 1. Thus 0*, wherein the permutations have to
be even, has order 27.36.5.7. It includes the harmonic inversions whose
fundamental spaces are any edge and opposite solid of any 2+ for, of the
points k, two, namely vertices of 2+, are on the edge and 12 in the solid,
leaving 112 to undergo transpositions of 56 pairs. These inversions are, in
fact, the only involutions in 0*.

6. G* is transitive on the 567 2+. For any 2+ is obtained from 2,f by
using a matrix whose columns are the coordinate vectors of the required
simplex. Should this matrix, with its columns arranged to make A = 1,
subject the k to an odd permutation it is only necessary to multiply it by
another which, also having A = 1 and subjecting the k to an odd permuta-
tion, does not change the former matrix except in so far that it may permute
the columns and may multiply any of them by — 1. Such an auxiliary is,
for instance,

(6.1)
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420 W. L. EDGE

which leaves invariant those 12 k for which x = y = 0, transposes the two
vertices of 2 ^ that lie outside this solid, and permutes the remaining 112 k
in 28 cycles of four. 0* is, indeed, transitive on the plane faces of the 2+;
it is now only necessary to establish transitivity on the plane faces of 2^",
or triple transitivity on the primes of reference. Since, as we shall see at
once, all the even permutation matrices belong to G* the statement is
proved.

Since G* is transitive on the 2+ the stabilizer of E "̂ has order 27.32.5; the
projectivities which constitute it are imposed by monomial matrices—by
those matrices, that is, with only a single non-zero element, and that either
1 or — 1, in any row or column. There are 26.6! monomial matrices, of which
25.6! have A = 1; since each of these is accompanied by its negative they
impose 24.6! projectivities. This is double the order of the stabilizer, the
reason being that half of them, including (6.1), subject the 126 k to odd
permutations and so are extraneous to G*. The criterion which serves to
discard these extraneous matrices is a simple one: those monomial matrices
that impose odd permutations on the vertices of 2̂ j" do so also on the whole
set of 126 k. I t is enough to show this for any of the 15 transpositions of pairs
of vertices of 2^", and this has just been done. Though one should add that
those projectivities in the stabilizer that impose the identity permutation
on the vertices of 2 ^ all permute the 126 ^ evenly; the corresponding
matrices are diagonal, for example

d i a g ( - l , - 1 , 1 , 1 , 1 , 1 )

for which the invariant k are the vertices of 2<f and eight more k having
x = y = 0, z2 = u2 = v2 = w2 = 1; the remaining 112 undergo 56 trans-
positions. The criterion is now fully established.

7. The way is now open to identify the Sylow 2-groups S2, of order 27, of
G*, and to find how many there are. Take the stabilizer of 2̂ f", of order
27.32.5, whose projectivities are imposed by what we may now call even
(monomial) matrices. There are 15 ways of selecting three edges of 2^" that
together account for all six vertices; these 15 trios of edges, each edge the
polar of the solid spanned by the other two, are permuted transitively by
the stabilizer, and so each trio is, while admitting permutations of its three
edges and transposition of the vertices on any edge, invariant for a sub-
group of 27.3 projectivities. This itself has subgroups of order 27 for which
a single edge of the trio is invariant, and these are S2. Each Sz has a normal
subgroup of order 26, the intersection of three S2, for which all three edges
of the trio are invariant. There is also a normal abelian subgroup of order 24

consisting of those operations for which every vertex of 2^" is invariant;
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THE GEOMETRY OF AN ORTHOGONAL GROUP 421
this abelian subgroup belongs to 45 S2 and is elementary, all its operations
save identity having period 2.

Each line s skew to Q is an edge of three 2+ whose other vertices, as seen
in (2), form a triad of desmic tetrahedra in the polar solid of s. For
so:x = y = z = u = 0 these tetrahedra T, Q,,R in v = w = 0 are displayed
on p. 268 of (2). Take, as a trio of edges of 2^ , the intersections of the pairs
Of SOlids A A A

and, when a definite 82 is in question, let it be S? which, in addition to
keeping this trio fixed, leaves s0 invariant. One of its projectivities is
imposed by, let us say,

' . . 1 . . ."
. . . 1 . .
. 1 . . . .

— 1
1

(7.1)

This transposes Q and R so that, although s0 is an edge of three 2+, no S2

associated with any of these three can be the same as the one associated with
another. Now s0 belongs to three trios of edges of 2^ , and the S2 associated
with 50 in these trios are distinct. For each trio is completed by combining
with s0 one of the three pairs of opposite edges of T and while (7.1), as postu-
lated, leaves one pair invariant (transposing its two members) it inter-
changes the other two pairs and so does not belong to the S2 associated
with <s0 in either of these two trios. Hence the number of S2 in G* is

567.15.3 = 25515.
The simplexes 2~ also provide an approach to the 82; but the same S2

are obtained as from the 2 + because any trio of edges of a 2 + is also a trio of
edges of a 2~, and conversely (see § 29 below).

The operation (7.1) belongs to a single S2, namely £f. For, since its
characteristic polynomial (A4+1)(A2+1) is devoid of roots in Jf it does not
leave any point of [5] invariant; any pairs of points that it transposes
must be invariant for its square which on multiplying

(x, y, z, u, v, w)'
produces (y, —x, u, —z, —v, —w)'.
These non-zero vectors cannot be identical; but they can be negatives of
each other when, and only when, x = y = z = u — 0; they are then co-
ordinate vectors of a point on s0. Hence (7.1) transposes in pairs the points
of sQ, and only these, and cannot belong to any 82 other than those defined
by s0 and the trios involving it. It has just been demonstrated that S? is the
only such $2 to which (7.1) does belong.
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422 W. L. EDGE

• 8. The period of the matrix (7.1) is 8. The number of such operations in
G* was calculated ((5), pp. 449-51) by Miss Hamill by a process that was
the culmination of a long exposition of steadily increasing elaboration. It
is of interest that this other, orthogonal, representation of G* affords a
much more direct route to these operations. All that is now necessary for
calculating their number is to calculate the number in an S2 and then, as
each belongs to a unique S2, multiply by 25515. The calculation is elemen-
tary, and can run as follows.
1 All operations of £? are given by 6 X 6 matrices partitioned into nine
blocks of 2 x 2 matrices, six of these nine blocks being composed of zeros.
The other three blocks are the tail, at the bottom right-hand corner, and
two others either both on the diagonal or else, as in (7.1), both off it. Should
they be on the diagonal the square is a diagonal matrix and the projectivity
of period 2 or 4; furthermore, should they be off the diagonal and both, as
2x2 monomial matrices, of the same kind, either diagonal or non-diagonal,
the same situation prevails. Hence the only matrices that can yield opera-
tions of period 8 have their non-zero elements either as in (7.1) or in the
transpose of (7.1). The fourth power is

d iag (7T , TT, 7T, 77, 1 , 1 ) ,

where TT is the product of the non-zero elements in the top four rows, and so
the period is 8 if and only if TT = —1. This allows 23 choices when these
non-zero elements are disposed as in (7.1), and then, as the elements in the
tail must be off its diagonal to provide an even matrix, and the determinant
is prescribed, 2 choices for the tail; hence there are 16 matrices, each being
accompanied by its negative. Their transposes provide 16 more, and so Sf
includes 16 projectivities of period 8. The number of these in G* is thus
(cf. (5), p. 451) 408240.

An incidental observation is that an S2 does not have any operations of
period exceeding 8.

9. In the geometry of Q, the mere numbers of points and lines on it are
certainly known, but it is the different subspaces in [5] that have to be
enumerated and their relations to Q and to one another described. We first
examine how Q partitions the lines of [5], and it is convenient to retain the
notation of (3), denoting

generators, lying wholly on Q, by g,
chords, meeting Q in two points, by c,
tangents, meeting Q in a single point, by t,
lines skew to Q by s.

The t divide among positive and negative categories, p and n, according as
the three points on t other than its contact are all k or all I.
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THE GEOMETRY OF AN ORTHOGONAL GROUP 423
. Any {7. or t through m has to lie in the tangent prime M and since, as
already noted, there are ten such g the total number of g is 112 x 10/4 = 280,
each g consisting of four m. Moreover, since there are 15^ and 15 n through
m (answering to the two categories of 15 points off an ellipsoid) the number
of p, as of n, is 1680. Now there pass through m 121 lines in all because there
are, over X] £(35— 1) = 121 points in a [4]; of these 10, 15, 15 are g, p, n;
81 remain. These are c, and indeed join m to the 112—1 — 30 = 81pointsof
Q outside M. Hence there are 112 x 81/2 = 4536 c. As for s, it has been
noted that each is an edge of three S + and so, since each of the 567 S+ has
15 edges, the number of s is 567 X 15/3 = 2835.

The polars of lines g, c, p, n, s are solids G, C, P, N, S; S meets Q in a
ruled quadric or hyperboloid as in § 6 of (2) while C meets Q in a non-ruled
quadric or ellipsoid as in § 12 of (2). Through C pass two M, and the ellipsoid
is the section by either of the cone in which the other meets Q. But O, P, N
meet Q in singular quadrics.

Consider the section by P, the polar solid of p. If m is the contact of p and
M the tangent prime there p lies in M as well as passing through m; hence
P passes through m as well as lying in M. P and p are polars not only for Q
but also for the cone in which M meets Q. Hence, observing the section by a
solid lying in M but not passing through m, the section of Q by P is the cone
which projects from m the section of an ellipsoid by the polar plane, with
respect to this ellipsoid, of a point k. This plane section (cf. the figure on
p. 264 of (2)) consists of four points: the diagonal points of this quadrangle
are three I forming a self-polar triangle whose sides are s, while the plane is,
completed by six k, vertices of a quadrilateral of p. Thus P meets Q in
four g, the lines of intersection of planes spanned by complementary pairs of
these g being n. The section by N is analogous, the roles of p and n being
interchanged.

A like argument shows G to meet Q in the cone which projects, from any
point of g, the section of an ellipsoid by one of its tangent planes; this
section is the point of contact, so that G meets Q in g alone. There are four
planes in G through g; the properties of the four tangent lines at a point
on an ellipsoid ((2), § 14) imply that all points in such a plane y are of the
same category, that two planes y+ and two planes y~ constitute the four,
and that each pair of similarly signed y are polars of each other; y+ has k
while y~ has I for all its nine points off g. Such planes occur too in the solids
P and N. Through any g in, say, P pass four planes lying in P; of these
three join g to the other three generators in P, while the fourth is a y+.
Likewise there are four y~, one through each g, in any N.

10. Q partitions the planes of [5], and y+, y~ have just been recorded.
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424 W. L. EDGE

Since two of either category pass through any g there are 560 y+ and 560 y~,
each aggregate consisting of 280 polar pairs. For other planes, as for y, we
retain the notation of (3). Every intersecting pair of g spans a plane TT, of
which there are £(280 x 36) = 5040; their polars are 5040 v each meeting Q
in a single m through which pass, in v, two p and two n. The lines of TT
through m consist of two g, one p, one n. TT and v project, from their inter-
section m, c and s, polar lines for an ellipsoid. There remain planes e and F
which meet Q in non-singular conies, i.e. in vertices of a quadrangle.
Each e includes a unique triangle of h, as does its polar e', and the two
triangles furnish a 2 + ; conversely, each 2+ has 20 plane faces e. Hence
there are, in all, 567 X 20 = 11340 e; and, likewise, 11340 F, plane faces of
simplexes 2~.

There is another way of calculating how many planes meet Q in non-
singular conies. Such a plane is spanned by three points mv m2, m3, no two
of which are conjugate. There are 112 choices for rax; thereafter m2 may be
any of the 81m outside Mlt m3 any m outside both Mx and M%. Since Mly Mz

intersect in a C, wherein lie ten m, there are 21 m in Mx and outside C, and
21 m in M2 and outside C; hence the number of m in at least one of Mx, Mz

is 52, and the number outside both Jfl5 M2 is 60. The successive choices of
m1} m2, m3 thus number 112, 81, 60; the plane m1m2ni3 then automatically
provides m4. Hence, since the points could have been chosen in any of 4!
sequences, the number of 'secant planes' of Q is

112x81x60/4! = 22680.

This accords with the sum of the numbers of e and F.

11. The table shows the number of subspaces in each space of the figure:
reciprocation in Q provides the number of spaces through any subspace.
Much of the table is already known: the columns headed K, L consist of
the numbers along the top of Table 4 of (3). I t is only columns such as those
headed by P, N, M, spaces which give singular sections, that may require a
word of explanation; these, incidentally, have been split each into two
columns, the right-hand one giving the numbers of spaces through the
contact with Q. Moreover one may always calculate a number by the
reciprocal process. The number of e in M is the same as the number of e
through m which, since each e contains four m, is 11340x4/112 = 405.
Or the number of s in P, being the number of S through p, is

2835x16/1680 = 27.

Again: any c in P joins points one on each of two g, since the only points of
Q in P are on four concurrent g. Since there are six planes spanned by pairs
of these g, and since each of these planes contains nine c, there are 54 c in P .
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THE GEOMETRY OF AN ORTHOGONAL GROUP 425

It may be borne in mind too that, since the total number of subspaces of
any space is known, for instance 13 lines in a plane, 130 in a solid, 1210 in
a [4], the sum of the entries in a vertical column in any compartment is
known. The numbers in the table all have some relevance to a full study of
the orthogonal group.

g n p a c

..321

.3.21
4 11.2

•n

3
3
7

2
]

1

9

e

3
6
4

4

3
6

y+

9

4

1

12

y

9
4

1
12

r
6
3
4

4
3
6

V

6
6
1

2
2
9

G

15
15
10

20
20
45
45

15

15
10

S

12
12
16

8
16
16
18
72

16
12

12

P

18
9
12

36
27
54

27

1

4
3
6

6

4

3

N

9
18
12

36

27
54

27

1

4
6
3

6

4

3

O

18
18
4

1
24
24
81

2
2

36

K

45
36
40

40
120
240
270
540

240
270
40

540
120

36
45
40

L

36
45
40

40
240
120
270
540

240
540

40
270
120

36
45

40

M

45
45
30

180
180
405
405

405

405
270

81

1

10
15
15

45

20
20

45

15
15
10

h
I
in

g
n
P
s
0

•tt

6

y+

v~
r
V

G
S
P
N
O

126
126
112

280
1680
1680
2835
4536

5040
11340
560
560

11340
* 5040

4536
2835
1680
1680
280

12. When the same group is represented geometrically in two different
spaces the isomorphism will imply many relations and correspondences; and
that the numbers in the table should, so many of them, occur in (5) is only
to be expected. Both spaces have dimension 5, but whereas the geometry
here is finite the geometry in (5) is of complex projective space; moreover
Miss Hamill uses an antipolarity whereas here there is ordinary reciproca-
tion in Q. These are two conspicuous contrasts amid the multitude of
similarities between the figures. Miss Hamill's figure is built on 126 vertices
which correspond to one of the batches of either k or I; the other batch is
not, at first sight, represented although its polar primes, since they include
points of both batches, are. Nor are the m represented in Miss Hamill's
figure though, again, their polar primes are. If it is the 126 & that corre-
spond to vertices then primes K, L, M correspond to primes 77, /?, a of (5),
each of the 112 M answering to six of the 672 a—a word about such multi-
plicity in a moment—and each of the 126 L to 27 of the 3402 j8.

Since Miss Hamill builds only spaces that are spanned by vertices,
analogues of k, her figure lacks the analogues of those spaces whose k are
inadequate to span them, namely c (lines whereon there is only one k),
n, g, y~ (devoid of k) and -n (a plane wherein all k are collinear). But she
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426 W. L. EDGE

produces a wider variation in types of solid and prime, and often a single
space in the finite geometry has several that correspond to it in the complex
geometry. I t would be disproportionate to catalogue all the details, but
one or two features should be underlined to illustrate the circumstances.
Take, then, Miss Hamill's #-solids, polar to /c-lines; they answer to P ,
polar to p; but the six /c-lines edges of a tetrahedron in S answer to six p
concurrent&t the contact m of P . Yet just as ((5), p. 404) there are 36 /c-lines
in S other than the edges of this tetrahedron, so there are 36 p in P that do
not pass through m. Note that whereas a /c-line is skew to all those in its
polar S &p is not skew to all those in its polar P ; it is skew to those 36 which
do not pass through m but meets those six which do. Thus a d-plane,
defined in (5) as spanned by a /c-line and a vertex on an edge of the tetra-
hedron (not, tha t is, a vertex of the tetrahedron but one of the 126 vertices
on which the figure is built), has for analogue a plane spanned by p and a k
on one of those six p in P that pass through m. This analogue is a v and can
be so defined in six ways, there being a choice of two p in v and then of three
k on the other p. This is why the 5040 v answer to 30240 d-planes. Also a
E/-solid, being defined as tha t spanned by a /c-line and one of those in the
polar of K that is not an edge of the tetrahedron, corresponds to the solid
spanned by a p, say p0, and one of those p in the polar of p0 that do not inter-
sect p0. hetp' be one, among the 36 eligible, and consider the solid [^0^']-
I t is the polar of the g which joins the contacts of p0 and p', and so is a
solid G. But G is spanned by 108 pairs of skew p; for the 24 p in G lie 12 in
each of two planes y+, and any p in either y+ is skew to nine in the other.
Thus the fact of there being 280 G is in accord with there being
280 X 108 = 30240 C/-sohds. And so on.

13. Of the hexahedra in (5) those there designated by TT correspond to
2 + , those by jS to S~; but those designated by a correspond each to an M—
a hexahedron with six coincident faces. Yet the edges and plane faces of the
a-hexahedron are mirrored distinctly in the finite geometry: the 15 edges
answer to the 15 p in M through m while the 20 plane faces answer to the
20 y+ in M. These y+ consist of ten polar pairs, one pair through each of
the ten g, and a polar pair corresponds to a pair of opposite plane faces of
the hexahedron.

Miss Hamill also constructs 2592 heptahedra; their analogues will emerge
in § 18 below.

14. The solid spanned by a pair of skew g is an S because the line of inter-
section of their polar G is skew to Q. Since each g consists of four m through
each of which pass nine other g, any given g is skew to 280—1—4.9 = 243
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THE GEOMETRY OF AN .ORTHOGONAL GROUP 427

others. This, since each S meets Q in a hyperboloid whereon lie 12 pairs of
skew g, accords with there being £(280x243)/12 = 2835 8.

The above remark indicates that G* is transitive on the 280 g; for if two
g are skew they can be transformed one into the other by the orthogonal
group induced, in the 8 which they span, by those transformations of G*
leaving S invariant; while if two g intersect either can be transformed into
the other via any g skew to both. Moreover, the stabilizer of a given g, say
g0, in G* is transitive on the four m thereon as is seen by another appeal to
the orthogonal group induced by G* in any 8 containing g0. Thus G* is
transitive on incident pairs (g, m) and so, a fortiori, on m simply.

15. The geometry points the way to the identification of the Sylow sub-
groups $3 of G*. Each point of Q has, in G*, a stabilizer of index 112 (that
G* has subgroups of this index was noted by Todd in (7)). The stabilizer
of m0, of order 23.36.5, acts as a permutation group on the ten g through
m0 and any given one, say g0, of these ten is invariant for 22.36 of these
permutations. These 22.36 operations include some, and therefore 2.36,
which transpose each similarly signed pair of y through g0. For, taking the
matrix M5 from § 12 of (4) and extending it by an extra row and column,

— 1
— 1

1

~ x~
y
z
u
V

_w_

= y
X

u
—z
— V

w_

(15.1)

so that the latent column vectors are, with multiplier + 1 , the points on

x—y = z = u = v = 0

and, with multiplier — 1, the points on

x-\-y = z = u = w = 0;

both these lines are c, and every point of either is conjugate to every point of
the other. Hence the joins of the two intersections of either with Q to the
two intersections with Q of the other are four g, all invariant under the opera-
tion, each having two of its four points invariant and the remaining two
transposed. Take one of these g; say

x = v-\-w, y = —v-\-w, z = u = 0.

The two planes y+ which contain it are

x—y-\-v = x-\-y-\-w = z = 0,

x—y-\-v = x-\-y-\-w = u = 0.
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428 W. L. EDGE

Each of these contains a vertex of 2 ^ , but these two vertices are transposed
by the projectivity and so therefore are the two y+. The matrix in (15.1)
belongs to G* because it is, as explained in § 6, in the stabilizer of 2 ^ .

Thus the group which leaves invariant ra0, g0 and each y through <70 is of
order 2.36. Each permutation that it imposes on the ten g through ra0

induces one on the points of the ellipsoid F wherein Q is met by any C in
MQ, the point A of F on g0 remaining fixed, as also does each of the four
tangents to F at A since it is the section by C of a y through g0. This group,
of permutations of points of F, is homomorphic to the group of order 2.36;
it is, as remarked in § 25 of (2), of order 18 and it has a subgroup of order 9
which is elementary abelian. This is clear from (2); the matrices there
called g and M commute and (when the lower sign is taken for M) are both
of period 3. This subgroup of order nine consists of, in addition to identity,
operations which permute the nine points of F other than A in cycles of
three, the plane of each cycle passing through A; the homomorphism maps
it on to a group of order 36, an S3 of G*. Thus, by way of definition, an S3

is the aggregate of those operations of G* which leave a generator g0, a point
ra0 thereon, and every y through g0 all invariant while they do not leave
invariant any of the other g through ra0 unless they leave all nine invariant.
Those which do leave every g through ra0 invariant form, in Sz, a normal
subgroup K of order 34, the kernel of the above homomorphism, and the
intersection of ten of the 1120 8Z in G*.

16. Every operation of 8Z has odd period, so none can impose an odd
permutation on the points of g0; ra0 being fixed, the other three are either all
fixed or undergo cyclic permutation. The latter alternative does occur:
take, for example, the projectivity in G* wherein u, v, w are unchanged but
x -» y -» z -»• x; if ra0 is (1, 1, 1, 0, 0, 0) and gQ is

u = y—z = z—x, v = w = 0

then the other points on g0 undergo cyclic permutation. Thus S3 is homo-
morphic to the cyclic group 9oz, and the kernel of this homomorphism is a
normal subgroup A, of order 35, consisting of those projectivities of S3

which leave all four m on g0 invariant. Since the cube of any operation of S3

not only leaves every point of g0 invariant but also imposes the identity
permutation on the g through ra0 (the operation itself, if it imposes on them
some other permutation than identity, permuting them in cycles of three,
the solid spanned by each cycle passing through g0) this cube belongs to
both A and K. The above projectivity, permuting three points on g0 cycli-
cally, leaves each g through ra0 invariant and so belongs to K; thus K too is
homomorphic to c€z and the kernel, of order 33, of this homomorphism is
the intersection of K and A.
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THE GEOMETRY OF AN ORTHOGONAL GROUP 429

It has been remarked that the cube of every operation of S3 belongs to this
intersection; should the operation belong itself either to K or to A its cube is
the identity. If the operation belongs to K it imposes the identity permuta-
tion on the ten g through ra0, though it may permute cyclically the three
points, other than ra0, on any of these g; in any event its cube leaves in-
variant every m in Mo, and hence every point in each of the 45 planes spanned
by pairs of the ten g, that is every point of Mo. But the invariant points of
an orthogonal projectivity span in [5] a space of odd dimension ((4), p. 2)
so that every point in [5] is invariant when every point of Mo is. Should the
operation belong to A but not to K let gv g2, g3 be a triad of g through mQ

that undergoes cyclic permutation, and Ax, A2,A3 points on these respective
g such that Ax -*• A2 ->• A3. The plane AXA2A3 does not contain m0 but,
since the solid gxg2g3 contains g0, meets g0 in mx; but mx, as the operation
belongs to A, is invariant. So, therefore, is the plane AxA2A3mx because
it is spanned both by the triad Ax A2 mx and by the triad A2 A3 m1 into which
AxA2mx is transformed. Hence it is the same plane as A3Bmx where B
is the transform of A3, and so a point on gx. But the plane meets gx at Ax,
with which therefore B coincides: hence Ax^- A2^~ A3^> Ax. This applies
to any of the three cycles of generators through ra0, and to the cycle initiated
by any point, other than ra0, on any one of them. So, again, the cube of
the operation, leaving invariant every m in MQ, is the identity.

17. The operations of 83 that belong neither to A nor to K have period 9;
as such an operation is outside K one can begin to discuss it as above, with
the triad such that A1^-Ai-^A3; but the intersection of g0 and the plane
AXA2AZ now, since the operation is outside A, changes and the transform
Bx of Az is on gx but distinct from Ax; the cycle now runs

AXA2AZ BXB2 B3CXC2C3,

points with suffix i being on g{. Thus the operations of S3 have only periods
1, 3, 9 and the number of those of period 9 is

= 432.

Since such an operation leaves no point on g0 invariant save m0 and no
generator through m0 invariant save gQ it only belongs to one S3. Hence
there are (cf. (5), pp. 429, 448) in G* 432 x 1120 = 483840 operations of
period 9.

18. The discriminant D of a quadratic form over tf is 1, —1, or 0; if
D = 0 the form is singular. A non-singular linear transformation, while
altering the form, multiplies D by the square of the determinant of the
transformation and so does not change it. Conversely: if D = 1 the
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430 W. L. EDGE

quadratic form is equivalent to the unit form. Now

has D = n-\-l so that, over X, the quadric

z}+xj+Z!+xi+X!+z|+z? = o,
where Z14-Z2+X3+Z4+Z5+Z6+Z7 = 0,

has D = 1; this is therefore an eligible equation for Q. Since, over 3f,
D = 0 when n = 5 the sections of Q by the primes Xt = 0 are singular;
these primes are all i f and Q is inscribed in the heptahedron J4f. The 35
edges of 2/f are all tangents: this is seen either by remarking that D = 0
when n = 2 or by noticing that the 21 vertices of J fdo not lie on Q, which
meets each edge only in that one of its four points which is not a vertex.
These contacts of Q with edges of Jif have four of their seven supernumerary
coordinates zero and so are different from its contacts with the primes
Xi = 0, these latter contacts having only one coordinate zero and the other
six equal.

When n = 4, D = — 1; the section of Q by a solid Xi = Xj = 0 is an
ellipsoid: these 21 solids are all C. This form for the equation of an ellipsoid
is mentioned in (2) on p. 274, as is the relation to the ellipsoid of the penta-
hedron of planes in which the other five primes of J f meet C. These planes
are secant planes of the ellipsoid, and so of Q; each contains four edges and
six vertices of #?. The heptahedra fall into two categories according as their
vertices, edges, and plane faces are k, p, F or I, n, e. Each category embraces
two equinumerous species in the sense that a member of either can only be
transformed into one of the other by a projectivity outside G*; it will
appear that there are 30* of the same category and sharing three primes,
and that two such JPt? are of different species.

19. Methods of constructing J4f are found by using its polar property:
any point common to q of its primes is conjugate to any point common to
the other 7—q. The plane face opposite to any of the 35 edges has to lie in the
polar solid of this edge; the polar prime of any vertex has to contain the
solid of intersection of the two primes not passing through this vertex.
Suppose then that a vertex k of an J4?+ is given. The opposite solid C has
to lie in K and so is one of 36; when it is chosen the two primes of Jf+ that
contain it are known because their contacts are on its polar c. Take any of
the 15 F in C to be its intersection with a third prime M of «5f+; the
contact of M is in the polar plane V of F but is not to be on c; hence it can
be either of two points m, m'\ suppose that it is m. There are ((2), p. 273)
two of the six pentahedra in C which include F, and either of these can
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THE GEOMETRY OF AN ORTHOGONAL GROUP 431

provide, with its other four faces, the intersections of C with the remaining
primes of Jf+. But these primes are known once the choices of m and the
pentahedron have been made, for their line of intersection has to lie in V
yet cannot contain the contacts of any of the other three primes; hence it
is km'. Since there are 36 choices for C, 15 for F, 2 for m, and 2 for the
pentahedron, and since any face of the chosen pentahedron can play the
role of T, there are 36 x 15 x 2 x 2/5 = 432

34?+ with A; as a vertex. And since there are 21 of the 126 fc that are vertices
of any 2tf + the number of ^ + is 2592.

Of the left-hand sides of the equations of the primes of J^+ five vanish
at k; the remaining two do not, and so both have 1 as their square. Since
the sum of these two non-zero squares is — 1 it follows that, in terms of the
original homogeneous coordinates,

Moreover, when the Xt are suitably signed their sum is identically zero.
But for an 3^~ the sum of the seven X\ is equal to x2+^y2+-z2-\-u2+-v2+-w2.

As an example let c he u = v = w = y—z = 0, so that k is the first vertex of 2f
and C is x = y-\-z = 0. Take F to be the intersection of C with u = 0; then I" is
y~z = v = w = 0 and m, m' are the points

( . 1 1 1 . . ) and ( . 1 1 - 1 . . ) .

Choose the former to be the contact of the third prime of &C+; then the remaining four
primes join the other four faces, of one of the two pentahedra which include T, to
the join of the latter point to k. The two pentahedra (save for change of notation) are
given on p. 275 of (2); take the one whose faces are the intersections of C with

u = 0, y+u+v = 0, y-\-u—v = 0, y-\- w—u = 0, y — w—u = 0.

Then the seven primes are given by
-X̂ i = x+y + z
X2 = — x+y + z
X3 = —y — z — u
Xi= y +u + v
X5 = y +u—v
X6 == z + u —w
X1 = z + u +w.

Had the other pentahedron in C, of which u = 0 is a face, been chosen the resulting
primes are obtained from these seven by transposing v, w and changing the sign of u.

There are, likewise, and they admit the analogous construction, 2592 Jf-
of which 432 have a given vertex I.

20. The partition of each category into two species appears on construct-
ing an #F to have a given edge. Let p0 be prescribed as an edge of J^+; the
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432 W. L. EDGE

plane of intersection of the three primes which do not pass through p0 is a F
in the polar solid Po; choose it to be Fo, any plane in Po that does not pass
through the intersection m of Po with p0. The contacts of the three primes
are in the polar plane T'o (which contains pQ) and are identified as the three
points, other than m, of Q in F'o. The intersections pv p2, p3, p^ of Fo with
the remaining primes of J4?+ are known. Now those primes that meet Fo

in p2, p3, Pi intersect in a plane Fj through pQ which has to lie in the polar
solid Px of px and yet be distinct from Vo; there are two choices for this plane
since, of the four planes through p0 in Pv three are planes F. Once this
choice is made the primes which join Fx to p2, p3, px are fixed, and so six
primes of «*f+ are known. The seventh is then determined too. Since there
are 27 choices for Fo and two for Yx there are 54 J f + having p0 for an edge.
And since 35 of the 1680 # are edges of any given Jf + the number of Jf? + is,
again, 54 X 1680/35 = 2592.

The two 34? + consequent upon the two choices for Fx are intimately
related; they have in common the three primes through Fo and are harmonic
inverses of each other in the planes Fo and F'o; for this inversion leaves the
three primes all unchanged and transposes the alternative Fj of the choice.

Let us illustrate by constructing a pair of 3tf~ which have in common the edge

n0: u = v = w = x-\-y-\-z — 0,

and the opposite plane face

e0: x = y = z = 0.

In this plane lie the lines nlf n2, n3, n4; namely

x — y = z = 0 = u-\-v-\-w, u—v—w, —u-\-v—w, —u—v-\-w.
The polar solid of nx is u = v = w and the two secant planes other than the polar
plane of e0 which lie in this solid and contain n0 are

u = v = w = e(x-\-y-{-z)

where e2 = 1; three primes of the required J^~ are to join this plane to n2, n3, nt

respectively. Hence, as the contacts of the three primes through e0 are

(1,-1,-1,0,0,0), (-1,1,-1,0,0,0), (-1,-1,1,0,0,0),

these being the three points, other than (1, 1, 1, 0, 0, 0), of Q in the polar plane of e0,
we take „

Ax = x-y-z

Xz = — x + y—z

X3 = -x-y+z

Xt = x + y + z-\-e(u-v-iv) (20.1)

X5 = x-\-y-\-z-\-e{ — u-\-v—w)

X6 = x+y + z + e(-u—v+w)

which imply X7 = x-\-y+z + e(u+v+w),

the prime X1 = 0 containing n0 and nx so that X1 is a linear combination of x+y + z
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THE GEOMETRY OF AN ORTHOGONAL GROUP 433
and u+v+w. The two &C~ that answer to the two choices ± 1 of e are transformed into
one another by changing the signs of u, v, w; that is by harmonic inversion in e0 and its
polar plane.

Heptahedra 2^x and Jf2> of the same category, with three common primes
cannot be transformed into one another by any projectivity of G*; this will
now be proved, and the partition of each category into two species follows.
Suppose, to fix ideas, that ^ and ^ 2 are both Jf+; call the harmonic
inversion, whose fundamental planes are the plane F, of intersection of the
three common primes of 3^x and Jf2, and the polar plane of F with respect
to Q, J. J permutes the 126 & oddly, imposing £(126—6—6) = 57 trans-
positions, and the 126 Z evenly, imposing £(126—3—3) = 60 transpositions.

All projectivities that transform 3#\ into M*2 are obtained by combining
J with those projectivities which leave'«*f2 invariant, and these are products
of those projectivities fl that transpose pairs of primes of «?f2, namely of
harmonic inversions whose fundamental spaces are a vertex h of 24?2 and
its polar K. Each such inversion transposes £(126—1—45) = 40 pairs of
k and £(126—0—36) = 45 pairs of I. If a projectivity permutes the primes
of yf2 evenly then, being the product of an even number of Ji, it permutes
both the k and the I evenly; hence, when it is combined with J, the resultant
imposes permutations of opposite parity on the k and the I and so is outside
G*. If a projectivity permutes the primes of 3tf2 oddly then, being the
product of an odd number of ̂ , it imposes an even permutation on the k
and an odd permutation on the I; hence, when it is combined with J, the
resultant imposes odd permutations on the k as well as on the I and so is
outside 0*.

21. When an 34? is given the appropriate harmonic inversion produces
any of those 35 2ft? of the same category but opposite species that share three
primes with it. For take the canonical ^f of § 18; the polar of the plane
Xx = X2 = X3 = 0 is Z 4 = X5 = X6 = X7, and harmonic inversion in
these two planes leaves any prime through either, and so the first three

7 7

primes of Jf, invariant. The primes ^uiXi = 0 and ^tviXi = 0 are

inverse when % = %_ ^ = ^ ^ ^

v2 = u2, v5 = — u 4 + u 5 — u e — u 7 , (21.1)

vz = u3, v6 = — w4—u5+u6—u7,

The form of these relations may be varied because, in virtue of 2 %i = 0,
all seven ui} as likewise all seven vi} may have the same mark added to them

5388.3.8 Ff
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434 W. L. EDGE

without affecting the geometry; but (21.1) are symmetric as they stand in
ua,ndv. They are obtained by stipulating that the primes ]£ (u^v^Xi = 0
pass one through each of the two fundamental planes of the inversion. I t
follows that one 3^ of the opposite species (and same category) to the
canonical «?f has the primes the left-hand sides of whose equations are

X4—X5—X6—X1

Z 6 - Z 7 (21.2)

—X±—X5-\-Xe—X7

—X±—Xb—Xe-\-X7

The sum of these seven linear forms is 2 Xi> the sum of their squares 2 X\-
Note the application of this substitution to the two 3%*- of (20.1).

This substitution changes the species within the category; its combina-
tion with another of the same type therefore conserves the species, and so
one can derive Stf which belong to the same category and species while
having two common primes. The seven linear forms (21.2) were derived by
fixing the first three; if the same process is now applied to (21.2) but with
the first two and the last of the forms kept fixed the outcome is

—X3—X5—X6-\-X7

- X J - X 4 - X 6 + X 7 (21.3)

—Xs—Xi—X5-\-X7

Z3+X4+X5+Z6
—-X.4—X5—X6-\-X7

This set of forms is symmetric in X3, X4, X5, X6 and so is one of five sets
obtainable by permutations of X3, X4, X5, X6, X7\ thus six 3% arise, of the
same category and species, sharing the two primes Xx = 0 and X2 = 0:
the canonical 3£ and five more. Nor are there any others. For the residual
five primes of every such J f meet C12—the solid X1 = X2 = 0—in the
faces of a pentahedron, and six pentahedra are eligible, their faces being F
for 3€+, e for Jf~. If, say, an #?- is required to share Xx = 0 and X2 = 0
with the canonical £?it is determined when one, p say, of the six pentahedra
in C12 whose faces are e is chosen; for its opposite vertex, being the only I on
the polar of C12, is fixed, and while there are two M containing the solid
joining I to a face of $ they lead to tff- of opposite species.

The number of «5f of given category and species that include a given M
among their seven primes is 1296 X 7/112 = 81; if ^ is any one of these six
others, it has just been shown, share with «^0 not only M but any one of its
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THE GEOMETRY OF AN ORTHOGONAL GROUP 435

six other primes. Thus 81 — 36 = 45 share M only, and so there are •

1296-1 — 7 . 4 5 - 2 1 . 6 = 8 5 4

of this category and species that have no prime in common with 2^Q.

22. The use of supernumerary coordinates whose sum vanishes shows
that every heptahedron in [5] yields a quadric Q for which it serves as an 34?.
Of the 112 points of Q 35 are those points, one on each edge of 2%*, that are
not vertices; of these 35, 20 lie in each prime of J f and consist of 10 opposite
pairs whose joins are concurrent: these points of concurrence, one in each
prime, are the contacts of the primes with Q. Each join has on it one further
point and these 60 further points, 10 contributed by each prime, make
up the tally of 112. It may also be noted that the plane spanned by the
contacts of three of the primes meets Q further on the line of intersection
of the remaining four: the seven contacts form a heptagon whose 35 plane
faces meet each an edge of Jf.

Since Q is thus determined completely by 2tf any projectivity which,
though permuting its bounding primes, leaves 2^ invariant also leaves Q
invariant; moreover", since a projectivity is uniquely determined when the
seven primes corresponding to any given seven primes (no six of either set
concurrent) are known, there is a group of 7! projectivities imposing the
symmetric group of permutations on the primes of 2€,'. The odd permuta-
tions however are imposed by indirect projectivities: the harmonic inversion
in a vertex V of 24? and its polar prime v with respect to Q leaves the five
primes through V invariant and transposes the other two—for the C com-
mon to these latter is in v, and they are those two primes through C other
than v and the join of C to V. This inversion, which has determinant — 1,
thus imposes the transposition; hence every odd permutation, being the
product of an odd number of transpositions, is imposed by a projectivity
also of determinant — 1 , that is, by an indirect projectivity. Thus it is the
alternating group of order \.1\ that consists of direct projectivities; it is a
subgroup of 0* because, leaving 2tF invariant, it cannot transpose the
batches of k and I and because, each of its members being the product of an
even number of harmonic inversions, all these members impose even
permutations on k as well as on I.

23. The presence of the heptahedra, each providing an s#1 which is a
subgroup of G*, explains why G* has operations of period 7; such an
operation is provided by any projectivity which permutes the primes of an
24? in a single cycle. Conversely: since 1296 = 1 (mod 7) there must, for
any operation of period 7 in G*, be an 2/f of each category and species that is
invariant and so has its primes cyclically permuted. In order to give
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explicitly the matrix of such an operation take that J f of (20.1) with e = 1.
The poles of its faces are given by the columns

1
—1
—1

#

1 I
1 - 1

- 1 1

1
1
1
1

—1

1
1
1

—1
1

- 1

1
1
1

— 1
- 1

1

1
1
1
1
1
1

and one demands a matrix fi which, on premultiplying any of these columns,
turns it into the one, or the negative of the one, immediately on its right
(the last column reverting to the first). Only one projectivity, and so only a
pair of matrices ±JU., will serve; but the foreknowledge of the orthogonality
of/u, may ease its calculation as well as being a useful check. The outcome is

. 1

—1
1
I

—1

—1

1—
1

- 1
—1

1
1

. - 1
1

1
1

- 1

1

1
1
.

1—
1

1

24. An alternative way of finding /x opens by observing that a cyclic per-
mutation of seven objects is the resultant of six successive transpositions:

(1234567) = (17)(16)(15){14){13){12)

where transpositions to the right act first; hence an operation of period 7 in
0* is the product of six harmonic inversions (cf. (5), § 7.2); these inversions
do not themselves belong to G* but the product of an even number does.
The centres of these inversions are those vertices of 2%* that are common to
the sets of primes

23456 23457 23467 23567 24567 34567

and so, from (20.1), have the respective coordinate vectors

. 1 1
— 11

1
— 1
— 1
— 1

1
1
1
1

— 1

1
1

1—
1

— 1

1—
1

1—
1

1
—1

1
1

1 (24.1)

The matrices for the corresponding inversions are instantly written down
(see below) and their product, in this order, is precisely /x.

The harmonic inversion in a point, whose coordinate vector is £, and its
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polar prime with respect to Q has the matrix ££ '+ / when £ is a k, the
matrix ££'—1 when £ is an I. It is enough to substantiate the second state-
ment, which is relevant to the points (24.1). When £ is an I, £'£ = — landso

so that ££'—/ is the matrix of an involution and, being symmetric, is
orthogonal. Moreover

so that | is a latent vector with multiplier 1; while, if 77 is any point in the

polar prime of £, and so g'-q — 0,

(!f-/h = ti'v-v = —n,
so that every point of the polar prime of | is latent with multiplier — 1.
The matrices of the inversions centred on the points (24.1) are therefore

- 1
1 — 1 — 1 — 1

1 . - 1 - 1 - 1

— 1 - 1 . 1 1

- 1 - 1 1 . 1

- 1 - 1 1 1

- 1

- 1
1 - 1 1 1

1 . - 1 1 1

- 1 - 1 . - 1 - 1

1 1 - 1 . 1

1 1 - 1 1 .

- 1

1 — 1

1 - 1

1 - 1

- 1

— 1

- 1
— 1

1 1 — 1 1

1 . 1 - 1 1

1 1 . - 1 1

- 1 - 1 - 1 . - 1

1 1 1 - 1

- 1

- 1

— 1

— 1

25. It is now to be shown that an operation of period 7 in G* leaves
invariant a unique «9f of each category and species. I t will then follow,'
since each of the 1296 Jj? of given category and species is invariant for 6!
operations of period 7 in G*, that there are (cf. (5), p. 449)

1296x6! = 933120

such operations in all. Furthermore: precise formulae will be found which
make the passage from one invariant 3f? to the other three.

First a word or two concerning the primes M referred to the seven co-

ordinates X4. If J 0,1X1 = 0 touches 2 Xi = ° a t Xi = it, ai = &+A
i = l

where A is any mark of Jf. Then
2 of = 2 £f-A 2 &+*2 =

so that af = ( 2 aif-
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One may take A = 1, as has happened with all linear forms in the Xi already
used for faces of 3f, and so

2ai = Xat=l; (25.1)

the contact is then given by X{ = ^—1. Each M admits two representa-
tions that conform to (25.1); instances are

(i) Xx and Xx—Z2—Z3—Z4—Z5—Z6—X7,

(ii) Z 1 - X 2 - X 3 - Z 4 and Xx-X5-X6-X7, (25.2)

(iii) X 1 +X J +X 3 +X 4 and X 1 + Z 2 + Z 3 + Z 4 - Z 5 - Z 6 - Z 7 .

All the M are thus identified: 112 = 7+£.7.6C3+7C4. Those headed (i)
consist only of the seven primes of the canonical Jf to which all other primes
are, in this coordinate system, referred.

There are, on the line Xx = X2 — Z3 = Z4 = 0, three vertices of the
canonical «^; at each of them

2X1 = Z|+ZI+Zf = 0+1 + 1 = - 1 .

There is also a fourth point of the line, and there

* = l + i + i = o.

In other words, the edge of ̂ f is a tangent of Q, beings or n according to the
category of Jf. The 21 vertices of Jf leave over 105 more points whereat
2 XI is — 1; these lie five in each of the 21 solids Cyi Xt = Z,- = 0. The
five points in Cy are those which do not lie either on the ellipsoid section of
Q or in any face of the pentahedron wherein Ci:j is cut by the five primes of
i f that do not contain it wholly. The 126 points whereat 2 ^1 is "M a re
4lso partitioned as 21 + 105; there are 21 which do not lie in any face of 34?,
such as the point (1, 1, 1, 1, 1, —1, —1), and three in each of the 35 plane
faces of Jf, such as (0, 0, 0, 1, 1, — 1 , —1). Whenever two 3/if are of opposite
categories 2 -^1+ 2 ^1 is z e r 0 a* every point in [5].

26. Consider now the projectivity TT that permutes the suffixes of the Xt

in the cycle (1234567); it belongs to G* and leaves the canonical «5f in-
variant. Does it leave any other 3/F invariant and, if so, which ?
; Let one face of an 2^ invariant under TT be

, = 0, (26.1)

so that, by (25.1), a2+62+c2+d2+e2+/2+02 = 1, (26.2)

a+b+c+d+e+f+g = 1. (26.3)
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Then, by (26.3), £ X ; = 2%i = 0; but, in order that 2X? = 2Xi
and so the Jf be of the same category as the canonical one as well as being
invariant, not only must (26.2) hold but also the three relations

ab+bc+cd+de+ef+fg+ga = 0,

ac+bd+ce+df+eg+fa+gb = 0, (26.4)

ad-\-be-\-cf4-dg-\-ea-\-fb-\-gc = 0.

The question to be resolved is whether any of the forms (25.2), other than
those under (i), satisfy (26.4). It may therefore be presumed that three of
the seven coefficients are zero and all the other four non-zero; furthermore,
since one is at liberty to impose a power of n, one may take a = 1 while,
of the other coefficients, three are zero and the others equal but non-zero.
Thereupon (26.4) become

b+bc+cd+de+ef+fg+g = 0,

c+bd+ce+df+eg+f+gb = 0, (26.5)

d+be+cf+dg+e+fb+gc = 0.

Were b = g = 0 the first of these would demand that cd-\-de-\-ef = 0,
which cannot happen with only one of c, d, e, / zero; were, on the other hand
b = g ^ 0 then three of c, d, e, f would be zero and another condition in
(26.5) contradicted, just as the first would have been by 6 = g = 0. Hence
it must be that #, x „

b ^g
which, under the prevalent restrictions, imply that

bg = cf = de = 0,

b+g = c+f=d+e.

Now subtract the third from the first of the relations (26.5):

d(c-g)+e(f-b)+(b-g)(c-f) = 0.

The third term here is non-zero; were b = f, and so also c = g, the first two
terms would both be zero and the condition violated. Each pair of relations
(26.5) may be so combined, and it follows that

6 = c = e, d=f=g.

One of these two unequal marks is zero; (26.5) then requires the other to
be — 1; the two choices for the zero triad yield however the same M, as (ii)
of (25.2) asserted. Hence there is a single «2f, distinct from but belonging
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to the same category as the canonical <5f, invariant under -n; namely that
whose primes are *

Xx—X2—X3 —X5 = 0,
X2—X3—X4 —X6 = 0,

-X, +X4-Z5-Z6 = 0,
—X2 -\-X5—X6—X7 = 0,

—Xx —X3 -\-X6—X7 = 0,

—X1—X2 —%i -\-%7 = 0-

27. It being now established that, in one category, there is a single J f of
either species invariant under -n it follows, on applying an outer auto-
morphism to G* that transposes k and I, that the same is true for the opposite
category: there is a single Jf therein of either species invariant under a
projectivity of period 7. It is, however, informative to inquire precisely
which Jf these are under w. Equations (26.1), (26.2), (26.3) still hold but
now, for the opposite category, 2 x'i = — 2 -^f • "^ms *s n 0^ incompatible
with (26.2) since any multiple of the vanishing form ]£ Xi can be added to
either side; as the forms now to occur are to have cyclic symmetry the linear
form that multiplies ]F Xi will be ^ Xi itself, and the identity to be satis-
fied is 2 Z ? = ~ ( I Xi)2~I Xl
The relations (26.4) and (26.5) are now to be replaced by those with the
same left-hand sides but with —1 instead of zero on their right; one again
takes a = 1, three of the other coefficients zero and the remaining three
equal but not zero. If, now, b = g = 0, then

cd+de+ef= —1 = c+ce+d/+/= d+cf+e;
one of c, d, e, f is zero and this cannot be d or e. Hence
either c = 0, d = e = f = 1,
or / = 0, c = d = e = 1.
These are the only solutions occurring when 6 = ^ = 0. Hence the two J4?
of the category opposite to the canonical Jti? that are invariant under TT
have for their primes

= 0 , Xi+Xz+X, +X0 = 0 ,
+X6 = 0 , Xt+Xs+Xt +X7 = 0,

+X7 = 0, Xx +X3+Xi+X5 =0,
X1 +X4+X5+X6 = 0, X, +X<+X6+Xt = 0,

X2 +X5+XG+X7 = 0, X, +X5+X6+X7 = 0,
Xl +X3 +X6+X7 = 0, Xx +X4 +X,+X7 = 0,

= 0; Xx+Xz +X5
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This information is available for any projectivity of period 7 and any of

its four invariant Jf. Take the Jf~ of (20.1) with e = + 1 , and the pro-
jectivity whose matrix fx has already been calculated twice. The invariant
2^+ have for their primes

—u-{-v—w = 0, —u—v-\-w = 0,

—y—z -\-v = 0, —y—z—u = 0,

—x—y-\-z-\-u-\-v—w = 0, —x —z -\-w = 0,

x—y—z—u—v—w = 0, —x-\-y—z—u—v—w = 0,

—x-\-y—z—u-\-v-\-w = 0, — x—y-\-z—u-\-v-\-w = 0,

—x —z —w = 0, x—y—z-\-u—v-\-w = 0,

—x—y —u = 0; —x—y —v = 0.

28. There are, in any projective space of odd dimension, null-systems
or screws—correlations whose matrices are skew and non-singular. If x
is the column vector of coordinates of a point and u the row vector of co-
ordinates of a prime the correlation is

u' = Bx
where B' = —B. Since the prime equation of Q is uu' = 0 the locus of
those points that are polars, in the screw, of the primes M is x'B'Bx = 0,
so that the screw reciprocates Q into itself whenever B'B = ±1; each m
then has, in the screw, a polar M and each M a pole m. Now the primes K
are those satisfying uu' = 1, so that their poles in the screw satisfy
x'B'Bx = 1; hence these poles are k if B'B = I and I if B'B = —I. We
confine the discussion to screws which not only, as leaving Q invariant,
turn each m into an M, but which also turn each k into a K and so too each
I into an L. That is, we take B'B = I; B is not only skew, but orthogonal
as well, and the symbol B will henceforward denote only a matrix with
these attributes. The diagonal of B consists of zeros and the sum of the
squares of the other five elements in any row is 1; hence, in any row, either

(a) there is only one non-zero element, or
(6) there is only one zero beside the diagonal one.

Moreover all rows of B are alike; there are no hybrids. For let row r consist
of zeros save for ± 1 in column s so that, since B' = —B, column r has =F 1
in row s and all its other elements zero. Then, because of the orthogonality,
every element save the ^ 1 in column 5 is zero, as is every element save
the ^ 1 in row 5. Hence each row has two zeros off the diagonal and is
of type (a).

In a matrix of this type there are five places in the top row each of which
can be occupied either by 1 or by — 1; if this mark is in column s row s is
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thereby fixed. In any row other than 1 and s there are now three places
available, namely those off the diagonal but in neither column 1 nor column
$; each of these can be occupied by either 1 or — 1; if this mark is in column t
row t is thereby fixed. In either of the two remaining rows only one place
is available for the non-zero mark; hence there are

5.2.3.2.1.2 = 120
matrices under (a).

The calculation of the number of matrices under (6) is but slightly more
elaborate. There are five choices for the column f that the zero element off
the diagonal in the top row occupies, and 24 choices for the other four ele-
ments of the top row; the choice fixes the first column too. Next write in
row r, which already has zeros in columns 1 and r; the orthogonality requires
that rows 1 and r must have zero splice and this allows six choices for the
four non-zero elements of row r; the choice fixes column r too. Every row
other than 1 and r now has two non-zero elements and these contribute zero
to the splice of this row with both row 1 and row r; the other two non-zero
elements still to be inserted must therefore contribute zero too to both
splices, and this double condition determines which two of the three remain-
ing places off the diagonal they occupy as well as determining, save for a
common multiplier — 1 , what they are. Thus two choices are available,
and the choice fixes the corresponding column too. The matrix can then be
filled in one, and only one, way, and so there are

5.24.6.2 = 960
matrices under (6). The whole tally of matrices is thus 1080 so that, as each
matrix is here accompanied by its negative, there are 540 screws. Their
separation into 60 and 480 in the two types has no geometrical significance
but is merely a consequence of the choice of ££. The 60 monomial ±B recipro-
cate the vertices of Z "̂ into its own faces but, whereas Q turns each vertex
into the opposite face, each of the 60 screws is seen, in virtue of the monomial
form of B, to superimpose a triple transposition; to transpose, that is, each
of the three pairs of a syntheme of the six faces. Each of the 15 synthemes
provides (eight matrices and so) four of the 60 screws, the non-zero marks
occupying the same positions in the matrices and differing only in sign.
The product Bx B2 of any two of these eight matrices is diagonal and so has
S ( l u a r e / : BXB%BXB^I
or, since B\ = B\ = —/,

Bt Bx = Bx B2.

This shows that the reciprocations in the four screws are mutually com-
mutative: the screws being

u' = Bxx, u' = B2x,
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the pole y in the second of the polar prime of x in the first is

y = B^Bxx,

so that there is commutation whenever

B?BX = B^B2

which is, since B\ = B\ = —/,
J52 JBJ = B± B2.

Each of the 15 synthemes from each of the 567 S+ provides such a tetrad
of four mutually commutative screws, so that there are 8505 of these tetrads.
The number of tetrads to which a given screw belongs is

8505x4/540= 63.

An equivalent statement is that the number of £+ which are self-polar
for a given screw as well as for Q is

567x60/540 = 63.

29. Similar reasoning can be founded on the negative simplexes S~,
but it is the same tetrads of mutually commuting screws that emerge. For
take any syntheme of faces of a S+, with the polar syntheme of the vertices;
the join s of each pair of vertices has for its polar in Q the solid S spanned
by the joins of the other two pairs. Now through S pass four primes,
namely two K that are faces of S + and two L\ the six L so arising, two from
each S spanned by two of three joins of vertices of £+, are the faces of a S~
whose vertices, poles of these L, are manifestly two on each of the three
joins of the pairs of the syntheme of vertices of S+. All this is clear on taking
Ejf and, say, the syntheme

x = 0, y = 0; z = 0, u = 0; v = 0, w = 0;

whereupon the six L are

x-\-y = 0, x—y = 0; z-\-u = 0, z—u = 0; v-\-w = 0, v—w = 0.

There is a (15, 15) correspondence between the 567 2+ and the 567 S~; two
simplexes correspond when they share three edges, joins of pairs of a syn-
theme of vertices.

30. Since B2 = —I the matrix B, when regarded as the instrument not
of a correlation but of a projectivity, imposes an involution; but it has not
appeared among the operations of G*. This is because it violates the pre-
scription (iv) of § 3; it has no latent root in J^ its characteristic polynomial
being A6+l, and so does not leave any point invariant; it transposes the
126 k as 63 pairs, and so subjects them to an odd permutation, as it likewise
does the 12QL
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B serves to impose an outer automorphism on G* and its geometrical
interpretation is salient once Jf is extended to GF(S2) by adjoining a
mark j satisfying j2 = j-\-l. There then appear planes on Q and they fall
into pairs that are conjugate in the automorphism of period 2 of the ex-
tended field. The Grassmann coordinates of such a plane are the con-
jugates, that is the cubes, of those of the companion plane. Any operation
that involves the two planes symmetrically is expressible in terms of the
marks of XI and B is simply the harmonic inversion whose fundamental
spaces are such a pair of conjugate planes. This inversion transposes the
m as 56 pairs, and the polar of any given ra0 in the corresponding screw is the
tangent prime of Q at that point m' which is paired with ra0. Since m0

lies in this polar, m'm0 is a g; each of the 30 m', three on each of the g through
ra0, is the pole of Mo in 18 of the 540 screws.

Each k has, in each screw, a polar K that passes through it; hence, since
there are only 45 K through k, each K that passes through a given kQ is
the polar of koin 12 of the 540 screws. Suppose, to fix ideas, that k0 is X,
the first vertex of S</"; w = 0 is the polar of X in any screw whose matrix
has every element in its first column zero save the bottom one. Such
matrices are all of type (a), wherein the 60 screws consist of five sets of 12
that reciprocate X into the five faces of Ŝ 1" which pass through it; those
12 that reciprocate X into w = 0 consist of three commuting tetrads, one
tetrad for each of the three synthemes of faces of £</" that include the pair
x = 0, w = 0. The 480 screws of type (6) correspond 12 to each of the
40 K through X which are not faces of S^.

31. A screw in [5] has null planes; planes, that is, which lie in the polar
primes of all their points. The conditions on B which ensure that
x = y = z = 0is& null plane are that the bottom right-hand quadrant
consist wholly of zeros. This not only causes B to be of type (a); it prohibits
any two of the faces u = 0, v = 0, w = 0 forming a pair of the associated
syntheme. Thus no two of x = 0, y — 0, z = 0 can form a pair either, so
that the top left-hand quadrant of B consists wholly of zeros too and
u = v = w = 0is another null plane. This is to be expected: if a secant
plane of Q is a null plane of a screw that reciprocates Q into itself, so is the
polar, in Q, of this secant plane. Now, of the 15 synthemes among the faces
of 2J~, six have the property of pairing each of u = 0, v = 0, w = 0 with
one of x = 0, y = 0, z = 0; hence there are 48 matrices B and so 24 screws.
And since there are, among the 540 screws, 24 which have a given polar pair
of planes e as null planes the number of polar pairs of planes e, as also of
polar pairs of planes F, that are null planes of a given screw is

5760x24/540 = 256.
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32. G* is certainly transitive on the pairs of polar planes e, and in order

to establish that it is transitive on the screws it is therefore only necessary
to show that it is transitive on those 24 screws which have a given pair of
polar planes e as null planes. Given a correlation and a projectivity

u' = Bx, y = Hx

then, if the polar plane of y in the correlation has coordinates given by the
row vector v, the relations

u = vH-1 = y'B'H-1 = x'H'B'H-i

show that the projectivity transforms the screw whose matrix is B into that
whose matrix is the transpose of H'B'H.-1 which, when H is orthogonal and
B skew, is —HBH. Hence, in order that the projectivity transform a screw
of matrix Bx into one of matrix J32, it is necessary that

B2 = HBXH.
This relation is H'B2 = BXH, and it is necessary to show that it is

satisfied, by some H that imposes a projectivity of G*, when

ui- °-up]
where P is a three-rowed monomial matrix. Since PP' = I the relation is
satisfied by rr

of the two matrices ±-Z?i we can use that for which \P | = l ,andso | / / | = 1.
This choice for H is adequate provided that the resulting projectivity
permutes each batch of 126 points, k and I, evenly; and this it certainly
does if P, and therefore H, has odd period. This disposes of those P where
the i 1 occupy the positions of the units in a cyclic permutation matrix,
but in other instances the above choice for H is not adequate. However,
there are always adequate choices available: to give just two instances, for

"1

respectively, take

H =

- 1
— 1

1

belonging to the stabilizer of 2^ in G* (see § 6).
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33. Since 0* is transitive on the 540 screws it has subgroups of index 540
and order 6048, namely the stabilizers of the screws. These are the sub-
groups found by Miss Hartley in (6), and the apparatus required to identify
them in this finite geometry seems simpler than that elaborated there. Yet
there can be little doubt that the most appropriate setting in which to
place these subgroups is neither there nor here. For G* is isomorphic to
one of the hyperorthogonal groups, namely to that group of projectivities
imposed by unitary matrices, of four rows and columns and unit deter-
minant, whose elements are marks of GF(32); that this group has the same
order as G* is seen on p. 310 of (1), where Dickson calls it #0(4, 32). But
there is no mention there, or perhaps for that matter elsewhere, of the
geometrical setting: a [3] wherein the points, with homogeneous coordinates
all marks of GF(32), fall into two classes; isotropic points for which the unit

is zero, and non-isotropic points for which, when their coordinate vectors
are normalized, H = 1. Of these non-isotropic points there are 540, and
#0(4, 32) permutes them transitively so that, in this setting, the occurrence
of the subgroups is patent and taken in at a glance. So, indeed, is their
isomorphism with #0(3 , 32), an isomorphism established by Miss Hartley
at the close of (6). The partitioning of the 6048 operations described in
§ 2.4 of (6), and accomplished there by a final appeal to group characters
by way of a respite from the perhaps over-elaborate geometry, is tanta-
mount to the separation of #0(3 , 32) into conjugate sets. This separation
is most expeditiously achieved by treating #0(3, 32) as a group of unitary
projectivities in a plane consisting of 28 isotropic and 63 non-isotropic
points.
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