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I 

1. The projective plane p of points whose homogeneous coordinates belong 
to the Galois Field GF(22), or F4 as we will call it, consists of 21 points lying 5 
on each of 21 lines; 5 lines pass through each point. F4 is a quadratic extension 
of that field F 2 which consists only of the zero mark 0 and the unit mark 1; 
the quadratic x 2 + x +  1 has its coefficients in F2, but not its roots. If co is 
either root the other is co 2, and F4 consists of 

0,  1, (.O, 09 2 

where 1 + 1 = 0  as in F2, and co+co2= 1=co 3. 

When the three coordinates of a point are arranged as a column vector, 
premultiplication by a non-singular matrix M (whose nine elements all belong 
to F,)  imposes a projectivity in ~; matrices M, 0-) M, 0-)2 M all impose the same 
projectivity and have equal determinants. The matrices of unit determinant 
impose the finear fractional group LF(3, 22) of projectivities; it is a simple 
group F of the same order as, but not isomorphic to, the alternating group 
d s  and DICKSON, by using canonical forms for the matrices ([3], p. 259), 
found all its sets of conjugate cyclic subgroups. Yet, although his w 228 shows 
F to be a doubly transitive permutation group of degree 21, there is not so 
much as a mention, with DICKSON, of p or its 21 points and 21 fines, let alone 
of the geometry to be explored here; and this geometry does point directly 
to some features of F. For instance, it throws into prominence 168 subgroups 
of order 360, 360 subgroups of order 168 and 280 subgroups of order 72. There 
are in p 168 hexads (the ovals of B. SEGRE [7], p. 37). There are 360 projectivi- 
ties that transform any hexad h into any other, but these do not belong to F 
unless of unit determinant. Some projectivities are imposed by matrices whose 
determinant is co, others by matrices whose determinant is 0.) 2 ; F is not transitive 
on the 168 hexads h but permutes them in three transitive sets of 56. The 
geometrical version of this fact is that any two hexads that are transforms 
under F share an even number  of vertices; this number is either 0 or 2 because 
a quadrangle belongs to one, and only one, hexad. That this relation, of 
sharing an even number of vertices, is reflexive and symmetric, is obvious. 
That it is transitive, so that all hexads satisfying it form an equivalence class, 
is shown below (w 16): if h and h' share an even number of vertices, as also 
do h and h" ,  then so do h' and h". 

The 168 hexads provide three non-equivalent permutation representations 
of F. These, together with the representations of degrees 21 and 105 provided 
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by the points and the flags in 9, facilitate calculation of the group characters. 
This calculation has been carried through, but will not be included here. 

2. The order of the subgroup of F that leaves a hexad h invariant is 
� 89189  This subgroup does indeed subject the six vertices of h to 
the alternating group d 6 of even permutations. Now it happens that there 
are precisely six lines in 9 skew to h, i.e. not containing any of its vertices; these 
form a hexagram H whose sides undergo, simultaneously with the vertices 
of h, the permutations of d 6. So 9 affords an appropriate setting for the 
automorphisms, outer as well as inner, of ~r The symmetric group ~ 6  is 
not accessible here as a group of projectivities; but it, and its automorphisms, 
present themselves when one uses the involution J that replaces each mark of 
F ,  by its own square. 

3. No hexad h in 9 has its points all on the same conic; a conic in 9 consists 
of only five points. So h can serve as the set of base points of a web of plane 
cubic curves mapping the plane sections of a cubic surface ([1], p. 360). One 
naturally takes the liberty of using "curve" and "surface" to denote the sets 
of zeros of homogeneous ternary and quaternary polynomials although, over 
finite fields, these sets are finite and possibly vacuous. The particular cubic 
surface 9g' so encountered is the one lately studied by HIRSCHFELD [6]; since 
HIRSCHFELD did not find it necessary to use the plane map it seems worth while 
to obtain some properties of ~ by using the geometry in 9. 

Any (1, 1) transformation of ~ is mapped by a transformation of p which 
is (1, 1) save perhaps at the points of h; as each point of h maps a whole line 
on ~ it is liable to be transformed into a "curve". In particular: any pro- 
jectivity leaving o~ invariant is mapped by a Cremona transformation of 9. 
All such projectivities are known to form a hyperorthogonal or unitary group 
([3], p.309; [5], p.661) of order 25920, so that one can represent this classical 
group as a group of 25920 Cremona transformations of 9. The full "cubic 
surface group",  of order 51840, will not be discussed. One would obtain it 
by using any of the 25920 correlations that permute the 27 lines on ~ among 
themselves; any one of 36 null polarities ([6], p. 87) would serve. 

II  

4. Each point of the projective plane 9 over F 4 has three homogeneous 
coordinates, all belonging t o / 7 ,  but not all simultaneously zero. There are, 
excluding (0, 0, 0), 4 3 - 1  = 63 coordinate vectors, but scalar multiples of the 
same vector represent the same point so that, with three non-zero scalars 
1, o), e) z in F4, 9 consists of 21 points. It is, like its subplanes over F 2, a 
Fano plane; the three diagonal points of any quadrangle are collinear in con- 
sequence of 1 + 1 being 0. A line in p consists of (42-1)/3 = 5 points, and 
through each point pass 5 lines in 9. 

Take any quadrangle q; a set of four points, that is, of which no three are 
collinear. Each of its six joins contains two of its four vertices and one diagonal 
point; the join is completed by two more points, so that the number of points 
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not on any join is 
2 1 - ( 4 + 3 + 6 . 2 ) = 2 .  

These complete the line 2 of diagonal points because these three diagonal 
points account for the intersections of 2 with all the joins of q. As 2 does not 
contain any vertex of q, and as neither of the points supplementing q lies on 
any join of q, these two supplementary points form a quadrangle with any 
two vertices of q. Indeed the six points compose a hexad h any four of whose 
vertices form a quadrangle whose three diagonal points complete the join of 
the remaining two vertices of h. 

Opposite joins of any quadrangle q belonging to h meet at a diagonal point; 
this is on the join 2 of the two remaining vertices of h. Thus h has the Brianchon 
property, and has it 15 times because there are 15 synthemes - to use SYL- 
WSTL~'S nomenclature ([9], p.91) - or partitions of six objects as three 
duads. Only over F4 and its extensions can a hexad have the Brianchon 
property so multiplied. It  involves partitioning six vertices as three duads, 
but the partitions as two triads are also relevant: if A=-A1A2A3 and A'-- 
A4AsA6 are triangles whose vertices together exhaust h they are in sextuple 
perspective. The joins of A1, A2, A3 to A4, As, A6 are, whatever the order of 
A4, As, A6, concurrent. Each Brianchon point is a centre of perspective for 
four of the ten pairs of triangles. 

One may take the vertices of the triangle of reference and the unit point 
to be the vertices of any quadrangle. Its line of diagonal points is then 
x+y+z=O and the hexad is completed by the other two points on it. Its 
vertices are 

A1 A2 A3 A4 A5 A6 

1 1 1 1 
(4.1) 1 1 co to 2 

1 1 co 2 co 

5. It  is, in plane projective geometry, known that there is a unique pro- 
jectivity transforming the vertices of a quadrangle into those of (the same or) 
any other, regard being paid to order. As h is determined by any quadrangle 
belonging to it there is a group of 6 �9 5 �9 4 �9 3 = 350 projectivities permuting 
its six vertices. Since only the identity can leave four, let alone six, of the 
vertices unmoved no two projectivities can impose the same permutation; 
the 350 provide a representation of the alternating group ~r Since this 
group is simple every matrix that imposes a projecfivity belonging to it has 
determinant 1. 

There is no projectivity transposing two vertices of h and leaving all the 
other four unmoved, so that the 360 odd permutations are inaccessible if 
oniy projectivities are used. But it is clear from (4.1) that the involution J 
transposes A s and A 6 and leaves every other A~ unmoved, so that when J 
is combined with the projectivities one obtains a representation in Z of the 
symmetric group 5z 6 . 
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6. There are 21 lines in p; of these, 15 are joins of h. Through each vertex 
of h pass 5 lines, all accounted for by its joins to other vertices, so that there 
are 21 - 15 =6  lines not containing any vertex - skew to h one may say. They 
form a hexagram H, a term justified because no three concur. For, the 15 
points not vertices of h being all Brianchon points, were 0 a concurrence of 
three sides of H it would, as a Brianchon point, also be a concurrence of three 
joins of h. But only 5 lines pass through 0 so that at least one join of h would 
be a side of H whereas, in fact, no side of H contains any point of h. The 
figure is serf-dual; not only does H consist of the lines avoiding every vertex 
of h but h consists of the points not on any side of H. Any four sides of H 
form a quadrilateral Q; the remaining two sides complete the set of five lines 
through the concurrence of the three diagonals of Q. If the sides o f / - / a r e  
partitioned as three pairs the three intersections, one for each pair, are col- 
linear; H has the Pascal property, and has it 15 times. The Pascal lines are 
the 15 joins of h just as the Brianchon points are the 15 intersections of H. 

No side of the hexagram associated with the hexad (4.1) passes through 
any vertex of the triangle of reference; all three coordinates have non-zero 
coefficients in its equation. Nor, since x=y=z is not to satisfy the equation, 
can these three coefficients have sum zero - a condition tantamount, over F4, 
to the demand that two, but not all, coefficients be equal. The sides of this 
hexagram are 

ogx+y+z=O, x+o~y+z=O, x+y+ogz=O, 
(6.1) l (D2xq-yWz=O, X+ok2yq-z=O, x+y+coZz=O. 

One of its Pascal lines is x+y+z=O, this equation being linearly dependent 
on the pair of any vertical column in (6.1). 

7. A Brianchon point is the concurrence of three joins of h. If the vertices 
of h are labelled 1, 2, 3, 4, 5, 6 each Brianchon point is identified by a syntheme; 
the fiften synthemes are thus associated one with each Brianchon point. What 
is the special property of five synthemes when the Brianchon points complete 
a side of H?  Since no two of these five points lie on the same join of h no 
two of the five synthemes have a duad in common: the five synthemes together 
include all fifteen duads and compose one of SYLVESTER'S ([9], p. 92) synthe- 
matie totals. And the six sides of H provide all six of SYLVESTER'S totals. 

Whenever six objects are given a second set of six objects, namely the 
synthematic totals, is associated with them; the groups d 6  and 5% permute 
both sets of objects simultaneously. There is a perfect reciprocity between the 
sets; to prefer either to the other is to take a one-sided view of the group 
structure and the groups are perhaps better regarded as pernmtation groups 
of degree ten, the number of separations of six objects into complementary 
triads; each such separation of either set induces one, and only one, of the 
other. In the representation in ~ one partitions the vertices of h as triangles 
A, A'; their six centres of perspective are themselves vertices of two triangles 
whose sides compose H, while the six axes of perspective of these latter triangles 



352 W.L. EDGE: 

are the sides of A and A'. Each of the ten partitions of the vertices of h as 
two triangles is thus linked unambiguously with one of the ten partitions of 
the sides of H as two triangles. If, in (4.1), A - A 1 A 2 A  3 and A ' - A 4 A s A  6 
the centres of perspective are 

(co 2, 1, 1), (1, co 2, 1), (1, 1, co2); (co, 1, 1), (1, co, 1), (1, 1, co) (7.1) 

and the three on either side of the semi-colon are vertices of a triangle whose 
sides all occur in (6.1) - the left-hand triad has its joins in the upper, the 
right-hand triad in the lower, stratum of (6.1). 

8. The 360 projectivities in/~ that leave h invariant leave H invariant too; 
but h and H can be transformed into each other by correlations, and it is these 
correlations that provide outer automorphisms of d 6 .  A correlation turns 
points into lines, collinear points into concurrent lines; it is uniquely deter- 
mined when the quadrilateral Q corresponding to a given quadrangle q is 
known, the order in which the sides of Q correspond to the vertices of q being 
relevant. If q is contained in h and Q in H the two vertices of h supplementing 
q become the two sides of H supplementing Q and since, when the vertices 
of q are given, there are 6 �9 5 �9 4 �9 3 = 360 choices for the sequence of sides of 
Q in H there are 360 correlations turning h into H. These, with the 360 pro- 
jectivities leaving both h and H invariant, make a group of order 720 represent- 
ing all the automorphisms of d 6 .  If, to this, one adds the involution J one 
finds a group of order 1440 representing all the automorphisms of 506 . 

Just as column vectors identify the points so row vectors can identify the 
lines of/~. A correlation is given by 

u'=(u ,v ,w) '=O = ~ x ,  

f2 being a non-singular matrix whose elements all belong to F4; ~2, co~?, e~2f2 
all impose the same correlation. It transforms the point x into the line 
u=(Ox)', the point ~ into the line p=(f l~) ' ,  and so, if x=M~,  

u'=f2 x=f2 M ~=f2 M Y2 -t~p,. 

To take just one look at an outer automorphism of d 6 ,  and of 5~6, in 
action let 

it permutes the coordinate vectors of A1, A2, Aa in (4.1) cyclically while merely 
multiplying those of A4, A 5, A 6 by scalars; the corresponding projectivity 
imposes the permutation (A1 AaA2) (A4) (As) (A6) on the vertices of h, leaving 
three of them unmoved. 
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There is a correlation transforming A1, A2, As, A,  respectively into the 
lines 

09x+y+z=O, x+09y+z=O, x+y+09z=O, co2x+y+z=O 

which appear in (6.1). The first three conditions demand that the rows of f2 
are scalar multiples of 

09, 1, 1; 1, 09, 1; 1, 1, 09; 

and the fourth condition thereupon allows 

( 2 =  09 , 

1 
so that 

12M(2-1= . 1 . 
2 

This matrix imposes the projectivity permuting the A~ in two cycles 
(A1A3A2) (A, A6A5), a permutation not conjugate to (A1A3A2) (A4) (As) (A6) 
whether in a '  6 or in 5a6. 

l l I  

9. So far one has considered only a single h, with its accompanying H, in/~. 
How many are there ? Construct h by selecting successive vertices. Take 

A1, any point of p (21 choices); 

A2, any point of p other than A1 (20 choices); 

A3, any point of p not on A1A z (16 choices); 

A4, any point of p not on any side of A --A1A2A 3 (9 choices). 

This fixes h because a quadrangle identifies its two supplementary points, 
so that the number of h in p is 

2 1 . 2 0 . 1 6 . 9 / 6 . 5  �9 4 . 3 = 1 6 8 .  

Each h has for its stabiliser in F a group d 6 . No two h have the same stabiliser; 
such h would have to be disjoint whereas, given ho, it will be seen that only 
ten h, none invariant under the stabiliser of ho, are disjoint from ho. 

F has, therefore, 168 alternating subgroups of order 360. It has, too, 
360 Klein subgroups of order 168. For  there are 

21 �9 20- 1 6 . 9 / 4 . 3  �9 2- 1=2520 

quadrangles q in 2; each q constitutes, with its three diagonal points, a 7-point 
subptane of /~ whose group of projectivities is a Klein group. Since each 
subplane includes 7 q (namely those consisting of the points not on some one 
its 7 lines) the number of Klein subgroups in F is 2520/7 = 360. 

10. The argument of w shows that there are 20 �9 16 �9 9/5 �9 4 �9 3 = 4 8 h  with 
one assigned vertex, 16 .9 /4 -  3 = 12 with two and 9/3 =3  with three. When 
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four vertices are assigned h is, of course, unique. Of the 47h that share a 
vertex V with a given hexad ho how many share V only ? V and each of the 
ten pairs of other vertices of ho are shared with two more h; V and each of the 
five other vertices of ho are shared with eleven other h, but these include 
4 . 2 =  8 sharing also a third vertex. Thus the number that share V only is 

4 7 - [ 1 0 . 2 + 5 ( 1 1 - 8 ) ] =  12. 

Let ho be the hexagon A 1 A2 A3 A4 A5 A6 and suppose that a second hexagon 
shares A1, and only A1, with h o. Each line A~A~ through A 1 contains a 
second vertex B, of h 1 ; three joins of h o pass through B~, but neither of the 
other two lines through B, contains any vertex of ho. These two lines are 
therefore sides of the hexagram Ho linked with ho. Now each line through 
B~ contains a second vertex of h~, so that each side of Ho through B, contains 
a second Bj (A1 is not  on any side of Ho); moreover no line in/~, and so no 
side of Ho,  contains more than two B~. If, then, one proceeds from B1, 
along one of the two sides of H o which meet there, to the other vertex of h 1 
on this side and then, from this other vertex of h~, along the other side of Ha 
which contains it, and so forth, one returns to Ba via five sides of Ho. One side 
of Ho is not used: it is skew to hi as well as to ho. Thus the twelve hexads 
that share only one given vertex As with h o fall into six pairs; each pair is 
associated with one of the six sides of Ho, this side being skew not only to h o 
but to both hexads of the pair. 

11. Every set of three vertices of h o is shared with two other hexads, each 
pair of vertices with three others that do not share any third vertex; also, given 
any single vertex V of ho twelve more hexads share only V with ho. So the 
number of h disjoint from ho is 

1 6 8 - ( 1 + 2 0 . 2 + 1 5  �9 3 + 6 . 1 2 ) = 1 0 .  

These are, therefore, the hexads determined one by each of the ten separations 
into triangles of the sides of Ho; they are permuted among themselves by the 
d 6 which stabilises h o. One instance is afforded by the points (7.1), ho being 
given by (4.1). 

12. Take any hexad and partition its vertices as triads t, u. Each triad 
belongs to two further hexads and the triads v, w that so supplement it are 
found to be the same whether it is t or u that is supplemented. Every two of 
t, u, v, w compose a hexad, so that there are six hexads 

t + u ,  t + v ,  t + w ,  

v+w,  w+u ,  u+v .  

Since there are ten partitionings of the vertices of any of the 168 hexads as 
two triads the number of such figures in p is 1680/6=280. With, for example, 
the hexad (4.1), and the vertices of the triangle of reference forming t, the 
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triads are 
1 . .  1 1 1 091 1 o921 1 
�9 1 . 1 09 (.0 2 1 0 9 1  1 0 2 1  
�9 . i 1 09209 1 1 co 1 1 09z 

Each three of these four triads consist of those nine points not on any side of 
the triangle whose vertices are the fourth triad. Through any intersection of 
sides of any two of these triangles pass sides of the other two. These nine 
intersections complete the plane and provide an analogue of the classical 
figure of MACLAURIN: nine points such that the join of any two contains a 
third. Here the points are 

1 1 c o l  091 
(12.1) 1 1 09 . 1 1 co 

1 c o l  1 091 

and, as in the complex field, they are the solutions of 

(12.2) x y z  = x 3 +y3 + z 3 _- 0. 

The figure is self-dual: through each of these nine points there passes, in 
addition to sides of the four triangles, a fifth line; these lines, one through 
each of the nine points, are such that through the intersection of any two there 
passes a third, and these intersections are the points in t, u, v, w. 

The occurrence of x y z  in (12.2) is, over F , ,  superfluous: the only cubes in 
F ,  are 0 and 1, so that every solution of xa+ya+z3=O has one of x , y ,  z 
equal to zero. The points (12.1) are just the solutions of 

x 3 +y3 ..{_Z 3 = 0 ,  

or of 

(12.3) x ~ + y ~ + z _ 7 = 0  

where the conjugation signified by the bars is pairing in the involution d. The 
21 points of ~ consist of 9 for which the unit Hermitian form in (12.3) is zero, 
12 for which it is unity; F has 280 unitary subgroups. They are of order 72. 
For  each subgroup is transitive on its four triads, and the triangle of reference 
is stable under projectivities whose matrices are monomial. The number of 
monomial U such that O O ' = I  is 3! 33. Of these, 3! 32 have determinant 1; 
they consist of 3! 3 = 18 sets O, 09 U, 092 O. 

13. The 15 �9 3=45  hexads sharing two vertices (only) with h o compose, 
with ho itself and the h disjoint from it, a class of 56. That  this is an equi- 
valence class will follow once it is known to be transitive�9 If two h are both 
disjoint from h o they are quickly seen to have two common vertices. Each 
of these two h consists of the vertices of a pair of triangles whose sides compose 
the whole hexagram Ho; if a, b, c and d, e, f are sides of one such pair of 
triangles one triangle of the other pair has one side among a, b, c and two 
among d, e, f ;  the triangles of the second pair could be, say, b d f  and ace 
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and then the vertices common to the hexads would be d f  and ae. This is the 
first step towards proving that hexads sharing an even number of vertices 
form an equivalence class. It remains to find how many vertices are common to 

(c 0 two hexads one of which is disjoint from, and the other shares two 
vertices with, h o and 

(fl) two hexads both of which have a pair of vertices in common with ho, 
and this whether the two pairs are (i) coincident, (ii) disjoint, (iii) overlapping. 

14. If A, B are vertices of h o three other hexads hi, hz, h3 share A and B 
(only) with ho. The remaining vertices of ho, hi, hz, h3 partition the 16 points 
off AB as quadrangles qo, q~, q2, q3; each qi has D, D', D" - the points 
that complete AB - for its diagonal points. If, by way of illustration, ho is 
(4.1) and A, B, are (1, co, co z) and (1, o9 2, co) then D, D', D" are (0, 1, 1), (1, 0, 1), 
(1, 1, 0) while the quadrangles are 

qo : (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1); 

ql : (o9 2, 1, 1), (0, 1, e)), (0, 1, co2), (co, 1, 1); 

q2: (e~2,0,1), (1,~oa, 1), (co, 0,1), (1,~o, 1); 

q3 : (1, co, 0), (1, co z, 0), (1, 1, o)Z), (1, 1, o9). 

Through each diagonal point pass four lines other than AB. A vertex of 
any qi on such a line 2 is accompanied on 2 by a second vertex of the same qi; 
2 is completed by pairs of vertices of two q~. The remaining vertices of these 
same two quadrangles complete a second line through this same diagonal 
point, which is a Brianchon point for all four hexads. Thus each of D, D', D", 
divides the four quadrangles into two pairs; of the four lines through it other 
than AB two are diagonals of one pair, the other two of the other pair. In 
the above example the lines, other than x + y + z = O ,  through D are 

x = 0  and y = z ,  diagonals of qo and ql; 

o o x = y + z  and O)2x=-y--kZ, diagonals of q2 and qa. 

Thus D divides the quadrangles as qo, ql and q2, qa. D' gives likewise the 
division into pairs qo, q2 and qa, q~, D" that into qo, qa and qa, q2. 

The sides of Ho pass two through each of D, D', D". The relevant lines 
are those not diagonals of qo; at D they are both diagonals of q2 and qa, 
at D' of q3 and q~, at D" of q~ and q2. When these six lines, in the four possible 
ways, are arranged as two triangles each having one side through each of 
D, D', D" one obtains four of the ten hexads disjoint from ho. Each of these 
four hexads shares two vertices with each of h a, h2, h3; for example, that vertex 
of either triangle common to sides through D and D" belongs to q2, and so 
to h2. 

Any other hexad disjoint from h o consists of vertices of triangles A, A' 
such that one of D, D', D" is a vertex of A, another a vertex of A', while the 
third is, as with the four hexads above, common to a side of A and a side of A'. 
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If, say, D is a vertex of A and D" of A' the hexad is disjoint from h2 while its 
vertices, other than D and D", belong two to ha and two to hi. 

An incidental result is that when two hexads share (only) two vertices A, B 
there are two hexads disjoint from both. These other two hexads also share 
(only) two vertices C, D; A, B, C, D are collinear and the two pairs of hexads 
are symmetrically related. 

15. Take a hexad ho=--A1A2AaA4AsA6. Let hi, h2, ha be those hexads 
sharing only A1 and A2 with ho; hi, h~, h; those sharing only A 5 and A 6. 
Quadrangles ql, q2, q3 supplement A1 and Az to complete ha, h2, h3; quad- 
rangles q;, q~, q; supplement A s and A6 to complete hi, h~, h; .  The concur- 
rence B of A~A 2, A3A4, AsA 6 is a diagonal point of all six quadrangles, a 
Brianchon point of all seven hexads; it is, too, a diagonal point of qo -= 
AaA4AsA 6 and of q~=A1A2A3A 4. 

Choose the suffix 1 so that B divides qo, ql from q2, q3 as well as q; ,  q~ 
from q~, q;;  then ql, q; have common vertices u, v on BA 3 A,~ while the vertices 
of qz and qz, lying as they do on the two lines through B that are not joins 
of vertices of ho, are the same eight points as the vertices of q~ and q; .  

Two points D', D" complete the line BA 1 A2; they are vertices of ql. Two 
lines, say D'A3 A6 and D'A4A s, through D' are diagonals of both qo and q2; 
the other two lines through D' are D'u and D'v;  call their respective inter- 
sections with BAsA6 C' and C". These are vertices of ql. The line D'uC'  
consists of D', two vertices of q~ and two of q3; since u, C' are vertices of ql 
the two remaining points are vertices of q3- But the same line consists of C', 
two vertices of q; and either two of q~ or two of q~; since u, D' are vertices 
of q~ the two remaining points are vertices either both of q~ or both of q; .  
There are similar statements for the lines D'vC",  D"uC",  D"v C'. Both q2 
and q3 share two vertices with both q~ and q; .  

This discussion has shown that h~ is disjoint from h~ and h; ,  hi from h2 
and h 3 ; on the other hand there are two common vertices for each of the other 
pairs of hexads: 

h l , h  i , h z , h ; ;  h 2 , h ; ;  h 3 , h ; ;  h 3 , h ; .  

16. Suppose now that, h o being given, a hexad h shares (only) A~ and A 2 
with it while k shares (only) A1 and Aa. It will appear that h and k share one, 
but only one, vertex in addition to Aa; this will complete the proof that the 
168 hexads fall into three equivalence classes of 56. 

Let A~ A~, A2Ai, AaAi meet AzA 3 , AaA1, A1Az respectively at Pi, Qi, R~; 
here the suffix i can be any one of 4, 5, 6. The diagonal points of the quadrangle 
A1A2P~Qi are Aa, A i, R~ and this quadrangle is amplified to a hexad when 
supplemented by the two remaining points of the line A3AiRi. The three 
hexads h~ that can serve for h occur on putting 4, 5, 6 for i. Likewise the 
three hexads k i occur on supplementing A1A3PiR i by the two points which 
complete the line AzAiQ ~. 

Hexads h~, k~ with the same suffix share A s and P~; they do not share any 
other vertex because the points completing A3A~R ~ are distinct from those 
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completing A2AiQi. If the suffixes differ take, for definiteness, h 6 and k4. 
The former consists of At, A2, 1"6, Q6 and two points on A3 A6 R6; the latter 
of A1, Aa, P4, R4 and two points on A2A4Q4; hence they share two, and only 
two, vertices, namely At and the intersection of AaA6R 6 with A2A4Q4. 

IV 

17. CLEBSCH'S mapping of a cubic surface G on a plane n is (1,1) save that 
each point A, of a hexad h in n maps all the points of one of six lines at lying 
wholly on G. These a, are mutually skew and form one half of a double-six 
9 ;  any five of them have a single common transversal and these six transversals 
b~ form the other half of 9 .  Every point of 7r other than the A~ maps a single 
point of G. 

Every curve in n maps a curve on G; an intersection of two curves in n 
that is not at any At maps an intersection of the corresponding curves on G. 
Two curves in n through As map two curves on G meeting at, but they will 
not meet a i in the same point unless the curves in n touch at A,. The plane 
sections of G are mapped by the web W of cubic curves through all six A~; 
every plane section is mapped by such a cubic and every such cubic maps a 
plane section. If the cubic of W is composite so is the plane section of G. 

The order of a curve on G is the number of its intersections with a plane; 
this is the number of intersections - apart from the A~ - of the mapping curve 
in n with a cubic of IV. Should this number sink to 1 the curve on G is a line. 
Any line A~Aj is an obvious instance; it meets a cubic in 7r three times in all 
so that, when the cubic belongs to W, there is a single further intersection in 
addition to A~ and Aj. A,Aj maps a line c,j-~cj, transversal to at and aj, 
and there are 15 such lines on G. Two of them intersect when they do not 
share a suffix, but are skew if they have a suffix in common. Again: a conic 
and cubic in n have six intersections; hence the conic t ,  that contains every 
point of h save A, has one free intersection with a cubic of Wand  maps a line 
b, on G; b, is tranversal to all six a, except that with the same suffix. The map 
shows that c,j is transversal to b~ and bj, skew to the remaining b's. Indeed 
ci~ is the line of intersection of the planes [a,, b j] and [a j, bd. 

The lines AtA2, AaA4, A5A6 compose a curve of W; it maps a plane 
section of G composed of c12 , %4, e56. This plane, meeting G in three lines, 
is a tritangent plane; the three lines in question are not, in general, concurrent, 
but they would be if AtA2, AaA4, AsA6 were, and so if h had the appropriate 
Brianchon property. When the three lines on G in a tritangent plane do concur 
their point of concurrence is called an Eckardt point, say E-pt. for brevity 
([4], p.229). CLEnSCH himself described a surface - his diagonal surface - 
with ten E-pts. and remarked on a hexad having the Brianchon property ten 
times over ([2], p. 336). 

18. All these matters concerning G and ~ can be translated to finite fields 
and applied to ~f  and 2; although one cannot, perhaps, be quite so glib in 
saying that curves touch one another. Yet here, too, the points on a~ are 



Some implications of the geometry of the 21-point plane 359 

mapped by the directions at A~ - there are five of them - and two curves on 
out ~ meet ai at the same point when, and only when, the mapping curves in p 
have the appropriate relation at A~. Each Brianchon point of h again maps 
an E-pt. The ten synthemes associated with CLEBSCH'S concurrencies at Brian- 
chon points are those exclusive of the five in one synthematic total. In 2, 
however, all 15 synthemes provide concurrencies so that ~ can be said to 
have the properties of the diagonal surface in sextuplicate - each of the six 
totals being available to play the part of that one which was exceptional with 
CLEBSCrI'S hexad. 

An E-pt. mapped at the concurrence of three joins of h is not on any line a~. 
An E-pt. on a i is also on some bj and then c~i, as well as lying in the plane 
[a~, bj], contains the intersection; in z, AiA j touches flj at A~ ([10], p.206 to 
207). This can also happen in a finite plane, and indeed happens in/a for every 
pair ij. A conic in ~ consists of five points and has ([7], p.4 and 37) a tangent 
at each one: namely that one line through the point which is not a chord; 
thus the five tangents of flj all contain Aj or, alternatively, A~A i touches fli 
at A i (and fl~ at A j). Every point on a~ is, whatever i, an E-pt. So ~o has 
45 E-pts., and indeed consists of these points only; each point of ~ not on 
any a i is mapped in ~ by a point not at any A~, and so by a Brianchon point 
of h. The lines c~j cover ~ .  

When the vertices of h are the points (4.1) the conics fl~ are 

fiX" Y z+X2-~O, f12: zx+Y 2=0, f13: xY+ zz=O, 

(18.1) f14: yz+zx+xy=O,  fls: Yz+~176 =0, 

/36: yz+oo2 zx+ogxy=O. 

The web W consists of those cubic curves 

(18.2) ayz2 +bzx2 +exy2 +eyZz +/3zZx + ~xZy=O 
for which 
(18.3) a+b+c=c~+/3+?=O. 

19. Properties of .r accord with the map in 2. As in the classical geometry, 
the 45 tritangent planes are faces of STEINER trihedra; any such trihedron 
accounts for nine of the 27 lines, three in each of its faces, and is paired with 
a second trihedron whose faces account for the same nine lines; each of these 
nine lines is determined as the intersection of two planes, faces of the two 
trihedra. Furthermore, such a pair of trihedra is accompanied by two other 
pairs ([8], p. 137) so that the three sets of nine lines, one set determined by 
each pair, account for all 27. But, with ~(f, the faces of any STEINER trihedron 
meet not in a point merely but in a line and so, correspondingly, three composite 
curves of W belong to a pencil. The plane sections 

alb2e12, mapped by (zx+y2)z=O, 

(19.1) a2b3ez3, mapped by (xy+z2)x=O, 
a3blqa, mapped by (yz+x2)y=O, 

Math. Z., Bd. 87 24 
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afford an instance; the sum of the three cubic polynomials is identically zero 
over F , .  The other trihedron of the pair has for its faces the planes of the 
sections al b3 C13 , az bt  ct2 , a3 b2 ez3 of  ~g .  The sections c14 c2s c36, 
c~5 c26 c34, q 6  c24 c3s form another ST~I~r~R trihedron; the mapping curves 
are { (y+z)(coz+x)(0)2x+y)=O, 
(19.2) (0) y +z)  (0) 2 z +x)  (x +y)  = 0 ,  

(0)2 y + z) (z + x) (0) x + y) = 0; 

here too the three polynomials have zero sum. And so on. 

20. The axes of three pairs of ST~INEg trihedra whose faces together account 
for all 27 lines on J/f are the pairs of opposite edges of a tetrahedron ~ .  
dgf is linearly dependent on the cubes of the faces of ~ ;  it is an equianharmonic 
surface ([4], p.265), indeed in 40 different ways since the 240 STEINER trihedra 
fall into 40 such sets of three pairs. The sections of ~ by the faces of ~ are 
mapped by four curves of W; the cubes of the left-hand sides of their equations 
are linearly dependent over F4. For  instance: 

~" (y2  Z -'}-0) Z 2 X + 0 ) 2  X 2 y)3 +(y  z z +0) z x 2 +0)2 x 22)3 
(20.1) 

l = (22  z + 0)2 Z 2 X -1- 0) X 2 2) 3 + (fl Z2 "~ 0)2 Z X 2 "-~ 0) X 22 )  3 . 

Here y2z  + 0)z z2x  + o9 xZy is linearly dependent both on the cubic polynomials 
in (19.1) and those in (19.2); the axes of the two corresponding trihedra meet 
and the section of Ng by their plane is mapped in p by yZ z + 0)2 z 2 x + 0) xZy = O. 
There are 40 identities like (20. I). 

The fact that the equation of ;/f can, by choice of ~ ,  be written 

X3 + y3 + Z3 + T3=O 

o r ,  o v e r  F 4 

X X  + Y Y + Z Z +  T ' F = O ,  

is a reminder, with the appearance of the unit Hermitian form, that J f  is 
invariant under a unitary group of projectivities ([5], p. 659). Such a projectivity 
induces a (1,1) transformation on the points of i f ;  this is mapped in ~ by a 
transformation (1,1) save that the Ai are exceptions, i.e. by a Cremona transfor- 
mation whose fundamental points, if any, are among the A f and which, since any 
projectivity turns plane sections of d/f into plane sections, leaves the web W 
unchanged. So one can represent the well-known simple group of order 25920 
as a group of Cremona transformations in p. 

21. There are involutory quadratic transformations whose fundamental 
points are the vertices of any triangle A belonging to h and which leave one 
vertex of the residual triangle unmoved while transposing the other two. These 
transformations map involutory self-projectivities of Yd. If A is the triangle 
of reference A t Az A a a relevant transformation is 

(21.1) x:y:z=- Y Z : Z X : X Y .  
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On substituting in (18.2) and cancelling X Y Z  (this factor, like others to appear 
in subsequent cancellations, is the Jacobian of the homaloidal net of transforms 
of lines of p) the outcome is 

(21.2) ~ Y Z z  + o~ Z X  2 "t- fi X Y  2 + b Y2 Z + c Z2 X + a X2  Y = 0 ,  

and W is transformed into itself. In order to ascertain the transform of a line 
on ~ under the projectivity mapped in Z by (21.1) it is enough to take two 
planes (five are available) through the line, map these sections in 2, transform 
the maps by (21.1) and note the line on ~ that is common to the sections 
mapped by these transforms. Take, say, ca2. The sections 

a l b 2 c 1 2 ,  a2b l c12 ,  c12c3gc56 
are mapped by 

(zx+y 2) z=O, (yz+x 2) z=O, z(x+y)(x+y+z)=O 

whose transforms under (21.1) are, by (21.2), 

( Z X +  Y2)X=0,  (YZ--]-X 2) Y=0,  ( X +  Y ) ( Y Z - t - Z X w X Y ) = O .  

These map the sections 

b2cz3a3, bacaaaa, c34b4a3 ,  

so that the projectivity turns ca2 into a3. And so for other lines on ~ .  If, 
on the other hand, A is the triangle A4AsA 6 a relevant transformation is 

x: y:z= Y z  + x Z : z x +  YZ:XY+ ZZ. 

On substituting in (18.2) and cancelling X3+ Y3+Z3+XyZ ,  i.e. the product 
of the lines AsA6, A6A4, A4A5 that join the pairs of fundamental points, 
the outcome is - and here, in order to reach the conclusion, one has to use 
(18.3) - 

fl YZ2 + 7 ZX2 + o: XY2 + c Y2 Z + aZ2 X + b X2 Y=0.  

The involutory quadratic transformations just used, say U and V, do not 
commute; but UVU and VUV are the same involution, namely 

x:y :z = Xl(YZ + x 2): rl(ZX+ Y~): Zl(X~+ z~). 

When one substitutes X(ZX+ y2)(XY+ Z 2) for x, and the allied polynomials 
for y and z, in (18.2) the resulting polynomial, of degree 15, includes the six 
quadratic polynomials in (18.1) as factors. The residual factor is 

O: Y Z  2 d - f l Z X  2 "}- 7XY 2 +a YZ z--]- bZ2  X-I - c X  -2 Y.  

This last involution maps a projectivity that transposes the two halves of N. 
It generates, with the 360 projectivities in p that leave h invariant, the subgroup 
of Cremona transformations mapping those 720 projectivities that leave in- 
variant not only ~4 ~ but also the double-six ~ .  

A multitude of other details could be talked about. But the algebra is 
routine, the geometry elementary, and matters may be left here. 

24* 
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