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Introduction
1. One of the best known and most intensively studied of all algebraic
curves is Klein's plane quartic with its group of 168 self-projectivities. It
afforded, antedating it by some fifteen years, a ready support to Hurwitz's
proof (6) that no algebraic curve of genus p ^ 3 can possess more than
84(p — 1) birational self-transformations. That this maximum is actually
attained for certain genera exceeding 3 has only recently been appreciated,
and is now publicized by Macbeath's discovery (7) of a Hurwitz curve
with p = 7: a discovery the more exciting because it has lain so near
the surface for so long. The following paragraphs aim to construct this
newly discovered Hurwitz curve by the elementary procedures of classical
projective geometry. The ultimate objective is a curve admitting 504
self-transformations, but the first step towards it is the construction of
a curve, of genus 7, admitting merely two: the identity and an involutory
self-transformation. This group of order 2 is then successively amplified,
by further specializing the curve, to groups of orders 4, 8, 56.

2. Special features of a curve of genus p are mirrored by projective
peculiarities of its canonical model F2p~2 in [p— 1]; one denotes, follow-
ing long-established usage, projective w-dimensional space by \n\. The
first restriction to which F12 will be subjected is to admit a harmonic
inversion. Invariance of F4 under an involutory projectivity in its plane
is a phenomenon so frequent as hardly to call for comment: suffice it to
say that, if F4 is its own harmonic inverse in a point 0 and a line A, four
of its bitangents concur at 0 and their eight contacts are on a conic
for which 0 and A are pole and polar. Klein's curve admits 21 such
inversions. For p = 5, F8 is the base curve of a net of quadrics in [4].
One could demand ((1) 24) that a given plane IT and line A be polar spaces
for every quadric of the net, thus producing a special F8 that admits
harmonic inversion in IT and A: the joins of points of F8 that are paired
in this inversion generate a scroll and meet v in points of a F4. This
F8 has, as will F12 below have, the special attribute of being in (2,1)
correspondence with a curve of genus 3; but, while the [4] containing
F8 is spanned by a plane and line, the [6] containing F12 is spanned
by a plane and solid. If, in [4], the quadrics of a net have a common
Proe. London Math. Soc. (3) 17 (1967) 207-25
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208 W. L. EDGE

self-polar simplex the resulting F8 admits an elementary abelian group
of 16 self-pro jectivi ties of which ten are inversions in planes and lines
((4) 486). A Hurwitz F12 admits 63 inversions in planes and solids.

A scroll R in [6], of order 10 and genus 3
3. Take, then, in [6] a plane -n and a solid S skew to one another and,

in 77, a quartic q to be the canonical model for a sextic a, of genus 3, in S.
The joins of corresponding points on q and a will generate a scroll R, of
order 10, having q and a for directrices; a curve being a directrix on a
scroll when it is unisecant to the generators.

4. a is to be the twisted sextic studied by F. Schur (8) and defined
by him as the locus of points of concurrence of related planes belonging
one to each of four protectively related stars. I t is the residual inter-
section of two cubic surfaces through a twisted cubic y. I t is not on any
quadric, but it lies on a web of cubic surfaces—a web being a system
linearly dependent on any four linearly independent members. Any two
of these cubic surfaces meet in a and a twisted cubic y having eight inter-
sections with a ((8) 14, 15). When a cubic surface is mapped, as by
Clebsch, on a plane so that the maps of its plane sections are cubic
curves through six points Ai (i = 1,2,3,4,5,6), the map of its complete
intersection with another cubic surface is a curve of order 9 with the Ai

as triple points. Should the map of y be a line, that of a is of order 8
with the Ai as triple points; should, alternatively, the map of y be a
quintic with the Ai as nodes, that of cr is a quartic passing through the A^
In either event the map of a has genus 3 and the two maps of a and y
have eight intersections apart from the At. I t is by appealing to this
mapping tha t Schur proves ((8) 14) a to have genus 3 or, as he puts it,
to have seven apparent double points. I t has, by the same token, three
trisecants through each of its points.

There is, and it is a basic, property of <r, a (1,1) correspondence between
its points P and its trisecants t ((8) 18). If P is any point of a, the planes
of those triads that complete tetrads of the canonical series £(o) which
include P have a common line t, and this is the trisecant associated
with P. The terms canonical set and canonical series are not used by
Schur and only came, with canonical curve, into currency somewhat later
((9) 118); but Schur's quadruplets '4g' are, nevertheless, the sets of 3£(CT)

and are cut on cr by the net of quadrics through the twisted cubic y
common to any two cubic surfaces through a ((8) 17; (2) 475). Mention
of the canonical series X affords the opportunity to introduce the
bicanonical series £(2 ) . £(q) is cut on the canonical model q by the lines,
X{2){q) by the conies, of m. £{2)(a) is cut on a by the quartic surfaces
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A CANONICAL CURVE OF GENUS 7 209

having y for a double curve. These are scrolls, and each is generated
by those chords of y that belong to a linear complex. There is a unique
chord of y through an arbitrary point; if five points are chosen arbitrarily
on a the chords of y through them determine a linear complex and, hence,
the whole set of £{2)(o) that includes the five points. This accords with
X{2) having freedom 5 on a curve of genus 3, each set of eight being
uniquely determined by any five of its members.

5. The canonical model for a can be taken as a quartic curve q in TT.
The points of a are in (1,1) correspondence with the points of q, and
the joins g of pairs of corresponding points generate, in the [6] spanned
by TT and 2, a scroll R of order 6 + 4 = 10. Since the g answer one, and
only one, to each point of a or of q one can speak of the canonical series
X(R) and bicanonical series £{2)(R), and of canonical and bicanonical
sets of g.

The generators gx, g2, g3 through collinear points alt a2, a3 on q meet a
in points whose plane contains £4, the trisecant of a associated with the
point on the generator <?4 through the fourth intersection a4 of q with
axa^av As glt g2, <73 all meet the line axa2az they span a [4]. The pencil of
primes (i.e. hyperplanes) through this [4] cuts R in a pencil of directrices D,
of order 7, all passing through a4 and the intersections of a with £4. Two
directrices of this pencil are composite: one consists of q and the generators
through the intersections of a with £4, the other of a and g±; but the
others are not composite. Such a curve, of order 7 and genus 3 with a
trisecant t in [4], is known to complete, with t, the base-curve of a net
of quadrics.

The web of quadrics containing R
6. Any quadric containing R contains q, and so the whole of IT, and or,

and so the whole of 2. It is enough, in order that it contain the whole
of R, for it to contain one directrix in addition to q and a, since then every g
would be trisecant to the quadric and so lie on it. Since D lies on three
linearly independent quadrics in [4] its postulation for quadrics is
15 —3 = 12. But, once a quadric has been constrained to contain both
TT and 2, it has four assigned intersections with D and so needs to be
made to contain only eight further points of D. Hence the postulation
of R for quadrics is

6+10 + 8 = 24 = 28 -4 ,

and R lies on the quadrics of a web W. I t would lie on more quadrics
if the 24 conditions imposed were not independent; but they are seen
to be independent in certain instances and therefore are so in general.
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210 W. L. EDGE

Such an instance is afforded ((2) 473; (3) 163) by the twisted sextic

X : Y : Z : T = zx2 :yz2: xy2: xyz

being in (1,1) correspondence with Klein's quartic

yz3 + zx* + xyz = 0. (6.1)

Any quadric which contains both

TT: X = Y = Z = T = 0 a n d I , : x = y = z = 0

has an equation

(axx + a$ + a%z)X + (bxx + b$ + 63z) Y + {cxx + c$ + c3z)Z

+ {dxx + d& + dzz)T = 0 (6.2)

and contains the whole of R when, and only when,

(axx + a$ + a3z)zx2 + (b^x + b2y + b$z)yz2 + {cxx + c^y + czz)xy2

vanishes identically in virtue of (6.1). This identical vanishing demands
that ax = 63 = c2 and

di + 0,% = d2 + c$ = d3 + bi = 0 = ci3 = b2 = c-y.

The quadrics through R are therefore those, and only those, linearly
dependent on

xX + yZ + zY = 0, xT = yX, yT = zZ, zT = xY.

Canonical curves on R admitting a harmonic inversion
7. The equation of any quadric in [6] is

+(x,y,z)+Q + x(X, YtZ,T) = 0, (7.1)

where «/r, x a r e quadratic forms in the variables shown, and Q is a linear
combination of the twelve products appearing in (6.2). Every quadric
of W has an equation Q = 0 with appropriate coefficients. The conic
«/>(aj,2/,z) = 0 in it cuts q in a set of £{2)(q). The same equation represents,
on the other hand, the cone in [6] which projects this conic from the
vertex 2 . Both interpretations of the equation will be used, the context
at any time indicating which of the two is in question. Likewise for
x{X, Y,Z,T) = 0; this can be the equation either of a cone with vertex TT
or of a quadric surface in 2 . One can always take a quadric through
any set of 36(2)(a); it is to be supposed henceforward that this set of
3£<2)(CT) corresponds exactly with the set of £{2)(q) on 0 = 0 in that the two
sets, of eight points on a and eight points on q, are on the same eight g
composing a set of £{2)(R). All these g lie both on the cone ^ = 0 and
on the cone x = 0; they therefore all lie on (7.1) if, and only if, they
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A CANONICAL CURVE OF GENUS 7 211

lie on Q = 0. That they should so lie is assured by taking Q = 0 to
belong to W. The intersection of R and (7.1) then consists of this set
of X{2){R) and a curve F, bisecant to the generators and of order
2.10 —8 = 12, skew to q but meeting <r four times. F is canonical: to
verify this one has only to prove that F has the proper genus. Since
every g is now on Q — 0 it meets (7.1) in the same points as it meets
tf, + x = 0. But rr and S are polar spaces for this last quadric, so that every
g cuts F in points harmonic to the intersections of g with q and a. In
particular, F touches, at its intersections with a, four g; and these are
the only g tangents to F. The (2,1) correspondence between F and a
curve, whether q or a, of genus 3 therefore has four branch-points; the
classical formula of Zeuthen ((13) 152; (6) 417; (9) 83; (11) 211),

rj-rj' = 2OL(P' -l)-2a'(p-l) (7.2)

gives, with a = 2, a' = 1, -q = 0, if = 4, p' = 3, the value 7 for p. Any
quadric containing F but not the whole of R meets R in F and eight g
which, meeting q at its intersections with a conic, form a set of X(2){R).

8. If F is cut on R by the quadric tp + x = 0 the pencil of quadrics
Ja/j+x = 0 cuts R, apart from the eight g of a definite set of Xl2)(R), in a
pencil of canonical curves, all touching one another at four points on a
but haying no further common points. Two of these curves are composite:
that for k = 0 consists of a reckoned twice, that for k = oo of q, reckoned
twice, and those four g that are common tangents to the curves.

Suppose that F is given. There are six linearly independent quadric
surfaces x = 0 through its four intersections with a; each of them cuts a
further in a set of X{2){a). Each cone x = 0 contains the eight g through
the corresponding set of X{2)(a)\ if «/> = 0 is the conic through the inter-
sections of these g with q there is a definite constant k such that
ktfi+x = 0 contains F. So one has a linear system of quadric primals,

all containing F. But none contains R because for R, and so n, to be
on the quadric, would require £ a{^0{ = 0 whereas the conies tft{ = 0,
cutting out the complete Xl2)(q), are linearly independent. Since there
is a web of quadrics through R it follows, in accord with the standard
theory ((5) 106), that F is on ten linearly independent quadrics.

Canonical curves admitting a four-group of self-projectivities
9. These curves F are, whereas a general canonical curve of genus 7

is not, invariant under the harmonic inversion $P in a plane TT and solid 2 .
If one requires two such inversions «#", «9f' to commute one can achieve
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212 W. L. EDGE

this by taking TT' to join a point 0 of IT to a line A' of 2 while 2 ' joins a
line A of TT to a line A" of 2 : A' and A" are, of course, skew, and A does
not pass through 0. There are other ways of ensuring the commutation,
but in the way presented above the product Jf" = 3^3f' = tff'dP is an
inversion of the same kind, namely in the plane TT" = OX" and the solid
2" = AA\ The whole [6] is spanned by 0, A, A', A", and the object now
is to find ourves V invariant not only under 3? but also under tf" and tf".
If coordinates are used it will be natural to take the vertices of the simplex
of reference to be 0 and two points on each of A, A', A".

Any generator of R joins a point v on q in n to a point P on a in 2 ;
its transform, the same under &" as under «#*", joins the harmonic
inverse of p in 0 and A to the harmonic inverse of P in A' and A". This
join, too, has to be a chord of F and so, being transversal to IT and 2,
a generator of R; its intersections with IT and 2 are therefore on q and a
respectively. Thus q is its own harmonic inverse in 0 and A, a its own
in A' and A".

10. Schur sextics invariant under a biaxial harmonic inversion H in
[3] occur as intersections of two cubic surfaces which are transposed
by H and both contain a twisted cubic y invariant under H. H pairs
the points of y in an involution / ; the joins of these pairs of points form
a regulus and, since all these joins meet both axes of H, these axes A', A"
belong to the complementary regulus and meet y each in a single £oint.
These points, F' on A' and F" on A", are the foci of / . A cubic surface G
through y meets A' in F', A, B, and A" in F", C, D\ its transform G' also
contains these points, so that G and G' meet in y and a sextic a through
A, B, C, D. Since X(a) is cut on a by the quadrics through y, ABCD
is a canonical set; it is mapped on the canonical model q of a by a set
a, b, c, d of points on a line A. Since A, B, C, D are the only invariant
points on a the only points on q that are fixed under the corresponding
involutory transformation h are a, b, c, d.

Its chord FF' lies, with y, on the quadrics of a pencil K\ on each
quadric of K is a regulus of joins of pairs of an involution on y that
includes the pair F, F'; each such involution shares one pair with / .
Since y, FF', and the join of this pair of / determine the quadric, and
since y and these two chords are all invariant under H, so is the quadric
invariant, and so is the tetrad of X(a) that it determines. Thus every
tetrad of the pencil p in X(a) cut by a quadric of K is invariant;
H transposes the four points in pairs. One quadric of K contains A;
but A is its own transform under H so that this quadric touches a at A,
cutting out that tetrad of X(a) of which A is a double member. Likewise
for those quadrics of K that contain, respectively, B, C, D. The lines,
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A CANONICAL CURVE OF GENUS 7 213

in the plane v of q, that cut on q the pencil p', corresponding to p,
of tetrads of £(q) invariant under h include the tangents at a, b, c, d\
so these concur, at 0 say, and the two remaining points of q on any one
of these four of its tangents are transposed by h. If a quadric of K touches
a at a point P other than A, B, C, D, it also touches a at P' = H(P);
the corresponding tetrad of X(q) is on a bitangent of q through 0.

11. It could perhaps be said, although it is not relevant to the following
discussion, that the chords joining points of a to their transforms by H
generate an elliptic quartic scroll ((2) 476; (3) 177) on which AB and CD
are nodal lines. The special case of a having for its canonical model a
Klein quartic, and so lying on 21 such quartic scrolls, has been studied
in full detail. Baker shows ((2) 477) incidentally that, if a quartic scroll 8
with nodal lines A', A" is given, a web of Schur sextics, all self-inverse
in A' and A", is obtained on cutting S by quartic surfaces, all of them
self-inverse, through A', A", and six fixed generators of S. He notes,
too, that A' and A" are chords of these Schur curves.

12. When q is its own harmonic inverse in a point 0 and a line A, and,
consequently, a its own in two skew lines A', A", are there any curves F
on R that are self-inverse not only in -n and 2 but also in TT' and 2 ' , and,
therefore, also in n" and 2" ? The equations in 2 of A' can be taken as
X = T - 0, those of A" as Y = Z = 0. In IT, A is x = 0 and 0 is the point
y = z = 0.

A base for ternary quadratic polynomials ip(x, y, z) can consist of (i) four
polynomials invariant under h and (ii) two that are changed in sign by h.
When equated to zero the polynomials (i) provide those conies for which A
is the polar of 0, while (ii) provide the line-pairs of which A is one member
while the other contains 0.

A base for quaternary quadratic polynomials x(-̂ > Y,Z,T) can consist
of (i) six polynomials invariant under H and (ii) four that are changed
in sign by H. When equated to zero the polynomials (i) provide those
quadrics for which A' and A" are polar lines, while (ii) provide those
quadrics of which A' and A" are both generators.

If tfj is of type (i), the set of £i2)(R) on the cone 0 = 0 meets a in eight
points which, corresponding to points of q that are transposed in pairs
by h, are transposed in pairs by H. Hence only four conditions are
required for a quadric x = 0 of type (i) to contain them all. This leaves
a pencil of quadric surfaces any one of which gives quadrics ktft + x = 0
cutting R in curves F that are invariant under Jtf"'. If, alternatively, if/ is
of type (ii), the cone 0 = 0 meets R in the four generators aA, bB, cC, dD
and in a second set of X(R) whose members are transposed in pairs by 3%".
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214 W. L. EDGE

Every quadric ^ = 0 of type (ii) contains A, B, C, D\ in order that it
contain any other set of £(o) that is invariant under H only two
conditions are necessary. This, too, leaves a pencil of quadric surfaces
any one of which gives quadrics hjt + x = 0 cutting R in curves F that
are invariant under 3tf".

Canonical curves admitting an elementary abelian group of eight
self-projectivities

13. The curves F just constructed admit a four-group of self-
projectivities consequent upon o admitting a biaxial and q a central
harmonic inversion. It will appear that there are curves F which admit
an elementary abelian group not merely of four but of eight self-
projectivities, and that there are, in (1,2) correspondence with F,
curves a and q each admitting three harmonic inversions: a in the pairs
of opposite edges of a tetrahedron U, q in the vertices and opposite sides
of a triangle A. Since the product of the three inversions is the identity,
one expects either two or none of them to change the signs of xjj and x-
In the latter event x = 0 has U for a self-polar tetrahedron, and 0 = 0
has A for a self-polar triangle; 0 + x» referred to the simplex S? whose
vertices are those of U and A, is the sum of seven squares. In the former
event x — 0 contains two pairs of opposite edges of U, and «/r = 0 consists
of two sides of A; 0 + x> referred to S?, is a sum of three binary products.

14. Curves a that are invariant under the three harmonic inversions
in pairs of opposite edges of a tetrahedron U are found by using the
web of cubic surfaces through a. There is one, and only one, such
surface 0 through any three vertices of U; since all these vertices are,
and a is to be, invariant under the three inversions, so is 0. If U is the
tetrahedron of reference there is a single coordinate, T say, whose cube
is present in the equation of G; the cubes of X, Y, Z are all absent. 0 is
to be invariant when T and any one of X, Y, Z are left unchanged while
the other two change sign; the left-hand side of its equation is unaltered
and hence is a linear combination of multiples of

T3, TX2} TY2t TZ*, XYZ;

i.e. of the five monomials that occur in the expansion of

T Z Y

Z T X

Y X T

The other three analogous sets of five monomials also provide eligible
cubic surfaces. But the four sets are those that furnish the expansion of
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A CANONICAL CURVE OF GENUS 7 216

the four determinants with three rows in

T Z Y X'

Z T X Y

Y X T Z

(14.1)

and a Schur sextic can be denned precisely in this fashion, as the set of
points that reduce to 2 the rank of a matrix of three rows and four
columns, whose elements are quaternary linear forms. If these twelve
elements are numerical multiples of the coordinates as displayed in (14.1),
the matrix identifies a curve a that is its own harmonic inverse in each
pair of opposite edges of U.

15. The (1,1) correspondence between such a curve a and q is governed
by the fact that when any two of X, Y, Z change sign simultaneously
so do two of x, y, z. One now arranges bases for polynomials tp(x, y, z)
and X{X, Y,Z, T) as follows.

(i) Polynomials that are invariant under all three inversions. These,
equated to zero, give conies for which A is self-polar, and quadric surfaces
for which U is self-polar. If «/» is of type (i), the set of X{2)(R) on the
cone 0 = 0 meets a in eight points composed of two tetrads, each tetrad
being derivable from any one of its members by the inversions in pairs
of opposite edges of U. Only two conditions are necessary, when x is
also of type (i), for ^ = 0 to hold at all eight points. As there are four
linearly independent polynomials x of type (i), a pencil of quadric surfaces
is available to be associated with ip = 0 and provide quadrics cutting R
in curves V admitting all the desired self-transformations.

(ii) Polynomials that are invariant under one inversion but change
sign under the other two. This type can be subdivided into three sub-
categories according to which inversion of the three leaves the sign
unchanged. It is enough to consider one of the three: so take

tfj = yz; x a linear combination of YZ and XT.

The line-pair ift = 0 contains two sets of X(q), and both the corresponding
sets of X(a) are common to the whole pencil of quadrics x = 0; the three
sets of X(q) on the sides of A correspond to those of X{a) on the pairs
of opposite edges of U.

16. A Schur sextic, invariant for a four-group whose involutions are
biaxial harmonic inversions, has been encountered previously: indeed
there were 14 such four-groups for which the curve was invariant. But
each of these had, as axes for its involutions, not the edges of a tetra-
hedron but three mutually harmonic pairs of lines in a regulus ((3) 180).
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216 W. L. EDGE

Such four-groups are of the type designated azygetic by Study ((12) 457),
whereas the one that concerns us is syzygetic. There seems to be no ready
reference to any earlier occurrence of the curve invariant under a syzygetic
four-group.

17. A curve invariant for an elementary abelian group G2 of order
8 admits not merely one but seven four-groups of self-pro jectivities.
They are derived from any one by using the powers of an automorphism,
of period 7, of G2; this permutes the seven four-groups, each of which
includes three involutions, in the same way that a projectivity of period 7
permutes the seven lines, each of which consists of three points, of a
7-point plane m.

Take a simplex of reference

for homogeneous coordinates yi in [6]. Each plane face of SP is opposite
to a solid face, and any such pair of opposite faces can serve as fundamental
spaces for a harmonic inversion. The geometry of m shows how to choose
seven plane faces of Sf so that any two share one, and only one, vertex;
for each of the seven lines in m consists of three points, and any two
lines share one, and only one, point. There are cyclic pro jectivities in -m
which permute the points and lines in single cycles: in any such projec-
tivity every four consecutive points of the cycle involve three collinear
points, but these are not themselves consecutive. In order, then, to be
able to impose the cycle (0123456) on the points of m suppose that,
say, 013 is a line. The lines of vr are then

013, 124, 235, 346, 450, 561, 602,

and the quadrangles of points complementing them are

2456, 3560, 4601, 5012, 6123, 0234, 1345.

Any two quadrangles share two points, namely those points of m on
neither of the lines I, V of which the quadrangles are complements. Note
that these two points are on the third line V through the intersection
of I and V.

18. Now let the same seven digits denote vertices of SP. The harmonic
inversion in the plane 013 and the opposite solid 2456 is imposed by the
diagonal matrix

diag(l,l , - 1 , 1 , - 1 , - 1 , - 1 ) ;

the other six harmonic inversions by those matrices arising from this
by cyclically permuting its diagonal elements. The product of any two,
D and D', of these seven matrices is a third, D". For there are, answering
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A CANONICAL CURVE OF GENUS 7 217

to two vertices shared by quadrangles, two places occupied by — 1 that
are the same in D as in D', so that DD' = D'D is also a diagonal matrix D"
four of whose seven entries are — 1; moreover, the three entries in D"
that are 1 also answer to collinear points in m. So one obtains an
elementary abelian group G2 consisting of the identity projectivity and
seven harmonic inversions. G2 induces, in either fundamental space of
any of its own inversions, a four-group of projectivities, whether this
space be a plane or a solid. For instance, the biaxial inversion in the
lines 01 and 46 in the solid 0146 is induced by two operations of G2:
by the inversion in 013 and 2456 as well as by that in 346 and 0125.

Canonical curves admitting a group of 56 self-projectivities
19. A curve F constructed to be invariant under G2 now appears as

one of a septet, all invariant under G2 and obtained from any one by
imposing powers of a projectivity & that permutes the vertices of Sf
in the cycle (0123456). The possibility thus arises, should two, and so

all, of the septet happen to coincide, of F admitting a group G1 of 56
self-projectivities. Assume, then, that this occurs. Since the 21 edges
of S? lie three in each of the seven planes IT, and since F is skew to n,
F cannot meet any edge of Sf. Its intersections with, say, 0146 therefore
have coordinates

p, q, 0, 0, r, 0, s,

-p, -q, 0, 0, r, 0, s,

p, -q, 0, 0, - r , 0, s,

-p, q, 0, 0, -r, 0, s,

where pqrs is not zero. The quadric Q,

contains these four points when, and only when,

a0p
2 + axq

2 + a^r2 + a6s
2 = 0

and
= 0.

If Q contains the whole of F the 24 further conditions derived from
these by using the powers of (0123456) have also to be satisfied. In
order that there should be an adequate number of independent quadrics
through F one has to circumscribe the independence of these 28 conditions.
Treat the 21 binary conditions separately, and then later attend to the
seven quaternary ones.
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218 W. L. EDGE
20. The binary conditions fall into seven sets of three associated

conditions. Each coefficient ai:j corresponds, by its two suffixes, to a
line in m, and each set of three associated conditions answers to three
concurrent lines in m. The digit for the point of concurrence is absent,
and the coefficient corresponding to the other two digits for any one of
the lines figures in two of the three conditions. For example, one set is

ai5ps

= 0,

= 0.

(20.1)

If, then, these three a{j are not all zero a certain determinant has to be;
the ratios of the a^ are then uniquely determined. Since the same
determinant occurs with each of the seven associated sets, its vanishing
permits seven linearly independent quadrics to contain the 28 points,
and so the whole curve F. As none of p, q, r, s vanishes, the determinantal
condition is, from (20.1),

q r .

. q p

5 . q

= 0 ,

(20.2)

Then
a45 : a13 : a26 = r2s2 :

45 13 26
: s2q2,

together with the other six sets of relations with suffixes obtained from
these by using (0123456).

21. It remains to deal with the seven quaternary conditions. Each
of these involves four of the coefficients of the squares y{

2; their determi-
nant is the circulant

P2

s2

r2

q2

P2

s2

r2

•

q2

P2

5 2

r2

q2

P2

s2

r2

q2

P2

s2

-
r2

q2

p2

s2

r2

q2

t, being any seventh root of unity other than unity itself.
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A CANONICAL CURVE OF GENUS 7 219

If
P2 + CV + ̂  + F V = 0 (21.1)

6
then F lies on the quadric 2 ^y2 = 0, and one can choose p2 : q2 : r2 : a*

i-0

uniquely so that this holds for any three integers j of which no two are
congruent mod 7. If it is possible to take these integers so that q* = r2s2p2,
the signs of p, q, r, s can be arranged so that q3 = —rsp, and then one
has, as the classical theory lays down ((5) 106), ten linearly independent
quadrics through F.

22. If a, 6, c are the integers for which (21.1) holds the condition
q% _ r252^2 j 8

_ trb+c _|_ rc+a _j_ £a+6\3 _ ma+b+c)IT2b + Y^)IT^ -f- L2a)(l2a + t2 6)

x{ttb + t,c)ttc + ta)tta+ ?)}*. (22.1)
If none of the congruences (mod 7)

6 + c = 2a, c + a = 26, a + b = 2c (22.2)

holds, the seven integers

2a + b, 2b + c, 2c + a, a + b + c, a + 26, 6 + 2c, c + 2a

are all incongruent. The right-hand side of (22.1) then reduces to
£2(0+6+0} a n ( i the equation does not hold because

rb+c _j_ fc+a _j_ ra+b ^. y3(o+6+c) ^ 0 .

One then has to presume that a congruence (22.2) does hold; not more
than one can hold for incongruent a,b,c, so suppose that

6 + c = 2a, a = - 3(6 + c).
Then, since

_ rb+c _ £-36-2c _ £-26-3c _ £26 _j_ £36-c + £3c-6 _̂ £2c

the left-hand side of (22.1) is now

while the right-hand side is found to be

£6+*(£6 + £C)4(£26 + £2c)(£36 + £3c)4#

So (22.1) will be satisfied when 6-he = 2a provided that
£3(6+c) = (£6 + £c)(£26 + £2c)(£36 + £3c}>

and this is certainly true whenever 6 and c are incongruent. So one has
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220 W. L. EDGE

a curve F on the quadrics

S^2/i2 = O, S ^ 2 = 0, £ £-3(6+0̂ 2 = 0 , (22.3)

as well as on seven more quadrics, linearly independent of these, whose
equations are

^2y<+42/i+5 + 9r42/<+i2/i+3 + *V2/»+22/i+6 = 0 (* = 0 , 1 , . . . , 6),

with suffixes reduced mod 7. This last equation, when the values for
p2: q2: r2: s2 are calculated from the three equations (21.1) with^' = a, b, c,
becomes

£6+c(£46 _ ^)yMyi+5 + £3<6+c)(£& _

Abbreviate this, for the moment, to

= 0 .

= 0. (22.4)

23. That the manifold common to the quadrics (22.4) is its own
harmonic inverse, in, say, IT = 013 and 2 = 2450 is clear, n and 2 both
lie on those quadrics for which i = 2, 4, 5, 6; their equations may be
displayed as

^ = 0,

(23.1)
= 0,

= 0. .

These four equations have no solution in y2, yi} y5, y% unless

Cy3 By0 . Ayx

Byx . Cy0 Ayz
= 0,

which is the equation of the curve q in IT. On the other hand, there is
no solution in y0, yx, yz unless

Ay6 By5 Cy^ By2

Cy^ Ay2 By6 Cys

By5 Cy6 Ayz AyA

has rank 2, as with (14.1), restraining (j/2, j / 4 , j/5,2/e) *° u e o n a Schur
sextic ffinS. The edges of the tetrahedron U whose vertices are those
of S? which lie in 2 are all chords of a, which cuts each of them in
points harmonic to the vertices that it joins. For example, the points
2/2 = 2/4 = 0. ACy6

2 = B2y5
2 are on a.
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A CANONICAL CURVE OF GENUS 7 221

The four quadrics (23.1) are the base of a web intersecting in a scroll R
having q and a for directrices; other quadrics through F have equations

/L S/a) + x(2/a> 2/4* 2/s» 2/e) = °) e-g-

and those derived herefrom by the permutation (,4.B(7)(013)(254).

The Hurwitz curve of genus 7
24. The curve V now obtained admits the group Gx of 66 self-projec-

tivities, whereas a Hurwitz curve admits 504. Indeed, as is clear on
comparing (22.3) and (22.4) with ((7) 535-36) Macbeath's (11) and (15),
a further specialization is available by taking 6 + c = 0. It is this last
stipulation that allows a further self-pro jectivity of period 3 and thereby
amplifies Qx tq the group G of order 504. If one solves the three equations
(21.1) for j = 0, 1, - 1 determinantally one finds, if £ = exp(27rt/7), that

and, then,

"45

877 , n 4TT „ 2TTs= 2 cos — : 1 : 2 cos — : 2 cos —

8TT . 2TT k 4TTy :smy :sin—.

The Hurwita curve F is the assemblage of points common to Macbeath's
ten quadrics

2TT 4TT
= 0.

(24.1)

^5. The projectivity ^ embedded G*2
 a a a normal subgroup in a group

Gv of order 56, having eight subgroups ^7. But F, which is the assemblage
of points cbinmon to all ten quadrics (24.1), admits a group G of 504
self-pro j Activities of which Gx is only one of nine conjugate subgroups.
G includes projectivities of period 3, each a product of two non-commuting
involutions; two such involutions, named U and V by Macbeath
((7) 540-41), give the projectivity imposed by

•
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where 2T = 1. If
Y = (y*yi>y*yz>yi>y*y*)'

then
(I + M + M2)Y = 2(yo + yi + y6)(l,O,0,0,1,0,1)',

so that any point in S, the prime yo + yn+y6 = 0, is collinear with its
two transforms by M and M2, whereas any point not in 3 spans, with
its two transforms, a plane through the point X with coordinates
(1,0,0,0,1,0,1).

26. X is invariant, its coordinate vector being latent for M with
latent root 1. Since

the other latent roots of M are to (= exp(27rt'/3)) and co2, each occurring
three times. The invariant points, in addition to X, are those of two
planes. The plane m whose points are invariant with latent root to is
found to have equations

(26.1)
= (co-co^-j/o + t/j)-.^

= -2yo + y1 + (a)-a>2)y

while the equations for the other plane vr' appear on transposing co
and co2. But this is tantamount to changing the signs of yQ, yv y4, «/6;
so vr and vr' are transposed by the harmonic inversion in 235 and 0146.
Indeed, if

D = d i a g ( - 1 , - 1 , 1 , 1 , - 1 , 1 , - 1 )
then

DM = M'D = M-XD,

so that D and M generate a dihedral group of order 6.
Both vr and vr' lie in H, and indeed span it. They also lie on the

quadric £ 2/<2 = 0, and because all the matrices in this representation of 0
are orthogonal each subgroup #3 of G gives two planes of invariant points
on this quadric. Since M3 = / ,

M {I + u>2M + coM2) = u>{I + w2M +

thus any point not in S spans, with its two transforms, a plane which
contains a point for which MY - w2Y and another point for which
MY = wY. Every plane spanned by a triad which is its own transform
under M meets both m and -m' as well as passing through X.
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27. S has a total of 12 intersections with F. Were any of these not
invariant it would be one of a collinear triad; but F has no trisecants
((5) 107-8): any such would lie on every quadric through F, whereas F
is the complete set of points common to them. Every intersection of F
with S is therefore either in vr or in vr'; moreover since, at any such
intersection, the tangent of F is invariant it comprises collinear triads
and so lies in S: S is a contact prime of F, touching it wherever it meets
it. Any intersection of F with vr is accompanied by one with TO-', the
coordinates of either intersection being the complex conjugates of those
of the other. The conclusion is that vr meets F in three points A, B, C,
while vr' meets F in three points D, E, F.

Now let P be a point of F 'near' A; its transforms P', P" are also
near A and hence, since the plane PP'P" always contains X, so does
the osculating plane of F at A as, likewise, do those at B, C, D, E, F.
A second triad Q, Q'', Q" on F spans a second plane through X; the planes
PP'P" and QQ'Q" span a [4], so that the osculating [4] of F at A has
six-point, not merely the common five-point, intersection. The [5]
spanned by P, P', P", Q, Q\ Q", A contains vr since it passes not merely
through A itself but also through the two intersections of vr with the
planes PP'P" and QQ'Q": it thus, being invariant under M, meets F
in A, B, C, P, P', P", Q, Q', Q", and an invariant triad R, R', R". As
P and Q both approach A along F so do P', P", Q' Q"; but R, Rf, R"
need not do so. The osculating prime of F at A thus has seven-point
intersection: only 1 higher in multiplicity than the intersection with the
osculating [4]. A is a point of superosculation, or Weierstrassian point,
on the canonical curve; it counts, by C. Segre's rule ((10) 90), for two
among the totality of Weierstrassian points on F, as, likewise, do
B, C, D, E, F. As there are 28 subgroups ^3 in G, all giving rise as above
to six points each contributing two to the total of Weierstrassian points,
one obtains the whole aggregate of 28.2.6 = 336—this- being the value
of p(p2 — 1) when p = 7.

28. The plane of any triad that is its own transform under M meets,
as has been shown, both vr and vr'; hence there are two plane curves,
one in vr and one in vr', in (1,1) correspondence with each other and in
(1,3) correspondence with F. This latter correspondence has, in either
plane, six branch-points: in vr these are A, B, C, and the intersections
of VT with the osculating planes at D, E, F; in m' they are D, E, F, and
the intersections of m' with the osculating planes at A, B, C. Now each
branch-point contributes, with all three correspondent points on F
coinciding, two to the proper total of branch-points ((11) 213). So, if p
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is the genus of these two plane curves, the Zeuthen formula (7.2) gives

Thus F is, and in 28 different ways, in (3,1) correspondence with elliptic
curves.

29. The projectivity 0> of period 7 that was introduced in § 19 can be
defined as the one permuting the bounding primes of the simplex SP
in a definite cycle while leaving unmoved the unit prime £ yi = 0. Its
united points are

(1, V, P, F, i-3i, Z-2j, M {j = 0,1,2, . . . , 6),
vertices of a simplex whose seven bounding primes are, like the unit
prime which is one of them, unmoved. Of its vertices two, and these two
only, are on F ; namely those with j = 1 and 6. Their coordinates are
seen to satisfy the equations of all the quadrics through F. Call them
/ , J; and call IJ a principal chord of F : it is one of 36 such chords, one
for each subgroup % of G. The osculating planes of F at / and J are
both invariant under &, and so, therefore, is the prime S5 spanned by
them. Since S5 has (at least) three-point intersection with F both at /
and at J, it meets F in (at most) six further points which, however, are
too few to furnish a cycle for 0*. So one presumes that S5 is the osculating
prime of F both at / and at J.

30. If P on a, and p on q, correspond, the solid spanned by the tangent
to o- at P and the tangent to q at p touches F at both its intersections
with Pp. If EFG is a tritangent plane of a the prime joining it to IT
contains not only the tangents to a at E, F, G but also the tangents to q
at the corresponding points e, / , g; this prime therefore touches F at
six points—namely its intersections with Ee, Ff, Gg—and so is a contact
prime of F. Since a has 64 tritangent planes ((1) 43), one accounts for
63.64 = 4032 contact primes of F which is known, by standard theory
((1) 41), to have 2 6 ( 2 7 - l ) = 8128. Of these, 28 are primes such as S ;
of the other 8100 there remain 4068, and these include the 36 that osculate
F at both ends of principal chords. The remaining 4032 will fall into
eight sets of 504, the primes of each set being permuted among them-
selves by G.

31. A point of F is one of a set of 504, closed under G, unless it happens
to be invariant for some projectivity in G, in which event the cardinal
of the set to which it belongs is a factor of 504. I t has now been shown
that there are three sets of this specialized kind, numbering 72, 168,
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252 points: namely the intersections of F with
(a) its 36 principal chords;
(b) the 56 planes, of points invariant for operations of period 3,

containing cubic curves on scrolls of trisecant planes of F;
(c) the 63 solids containing Schur sextics on scrolls of chords of F.

These factors 7,3,2 are orders of subgroups of 0 which possess invariant
points on F, and are predestined j(for a Hurwitz curve. For the Klein
group of order 168 there are invariant sets of 24, 56, 84 points on the
plane quartic: namely inflexions, contacts of bitangents, and sextactic
points.
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