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1. The simple groups g, of order 168, and 0, of order 660 occur as linear
fractional groups LF(2,^>) with^) = 7,11. There is a close analogy between
them, all the closer because 7 and 11 are congruent modulo 4. The smaller
group, although encountered by Galois, is commonly called 'Klein's
group' since Klein's famous paper [8] of 1878 was much involved with
what later proved to be an irreducible representation of g of degree 3.
This can be regarded as a group of collineations in a projective plane,
and it is there found to have an invariant non-singular quartic curve k,
Klein's quartic. The larger group has, analogously, an irreducible
representation of degree 5; this can be regarded as a group of collineations
in [4], a projective space of four dimensions. Indeed Klein himself so
handled it, and discovered an invariant curve C of order 20 with some
of whose properties we are to be concerned. But to encounter C after
encountering k was to venture on terra incognita after journeying through
thoroughly explored and meticulously mapped country. For the properties
of the plane quartic, of which & is a specialization, were already known
owing to the work of Steiner, Hesse, Cayley, Salmon, and others; Klein
was well aware of this and ready to exploit his advantages. But there
was nothing ready to his hand when he encountered C; organized projec-
tive geometry of hyperspace lay still in the future.

2. It is necessary now to give a short description of relevant properties
of k since they indicate, by analogy, likely properties of C.

There are on k three special sets of 24,56, 84 points, designated by
Klein points a, b, c. They are invariant under cyclic subgroups #7, #3, ^
of g and are, respectively, inflections, contacts of bitangents and sextactic
points of k. So there are on G three special sets of 60,220,330 points
invariant under cyclic subgroups ^ n , ^ , * ^ of G.

g has eight subgroups %; the collineations of any one of them share
three fixed points which are all on k, all of them inflections; the tangent
at each of them meets k again in another. Thus k has eight inflectional
triangles; this is perhaps its best-known property and it will be seen in § 4
that, analogously, C has 12 inflectional pentagons associated one with
each of 12 subgroups ^xx.
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648 W. L. EDGE

g has 28 subgroups #3; of the three points invariant for the collineations
of a ^3 two are on k and are contacts of one of its 28 bitangents. It will
be seen in § 20 that, in association with 55 subgroups $3 of 0, C has 55
quadritangent solids; the contacts of such a solid with C are among the
points invariant for the collineations of the corresponding ^?3. But while
the two contacts of a bitangent account for all its intersections with k
the four contacts of a quadritangent solid with G leave 12 further inter-
sections of G and the solid to be accounted for, as they will be in § 20.

g has 21 subgroups ^2. Each involution in g is a harmonic homology
the four intersections of whose axis with k are sextactic points. G has
55 subgroups %. Each involution in G is harmonic inversion in a line
A and a plane 77,77 meeting C in six points on a conic while A is skew
toC.

Another property of k is explained by the occurrence in g of two sets
of seven octahedral subgroups w. Each a> contains four of the 28 $g;
the four bitangents of k associated with them undergo all 4! permutations
under the collineations of to, and their eight contacts with k are on a
conic. So there arise two sets of seven conies; as soon as he encountered
them Klein recognized ([8] p. 106) that they were of great importance.
Each set of seven conies cuts on k the whole set of 56 contacts of
bitangents.

The four subgroups #3 of an octahedral subgroup co of g belong to its
intersections with four octahedral subgroups of the opposite set: indeed
the actual intersections are dihedral, of order 6. The conies associated
with the other three subgroups of this opposite set span a net to which
the conic associated with o> belongs. This criss-crossing between the
two sets of seven conies does not appear in Klein's original paper; but
equations that imply it are in the Klein-Fricke treatise ([10a] p. 759).

3. Just as g has two conjugate sets of seven octahedral subgroups to
so G has two conjugate sets of 11 icosahedral subgroups j . Every
icosahedral group has 10 subgroups %; each ^ in j is associated with
four points 6, contacts of G with a quadritangent solid, and the 10 sets
of four points compose the complete intersection of G with a quadric.
Thus there appear two sets, each of 11 quadrics, and these, like Klein's
conies, are of great importance. As there were seven conies in a set they
were necessarily linearly dependent; the mere number 11 does not, of
necessity, imply linear dependence among quadrics in [4], but the 11 of
either set are linearly dependent nonetheless. Now an icosahedral group
has five tetrahedral subgroups; if j is any of the 22 icosahedral subgroups
of G its tetrahedral subgroups are its intersections with five icosahedral
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KLEIN AND THE SIMPLE GROUP OF ORDER 660 649

subgroups of the opposite set ([10a] p. 482). Thus each of the 22 quadrics
is put in correspondence with five quadrics of the opposite set and is
indeed linearly dependent on them.

Equations which imply this are on p. 429 of [10b] and were transcribed
by Klein when his collected papers were published (p. 167). In his
original 1879 paper he did mention the two sets of 11 quadrics but
instantly ([9] p. 150) discarded one set as having the same properties
as the other. So, indeed, it has; but its absence from the investigation
there pursued postponed the recognition of any linear dependence
between quadrics of different sets.

That the 22 quadrics in [4] are linearly dependent on only 10 calls for
an explanation; it implies that there are 15— 10 = 5 linearly independent
quadric envelopes inpolar to all 22 quadric loci. Could these five be
polar quadrics of a cubic envelope ? The mention of an envelope indicates
outer automorphisms of G, and perhaps it is again advisable to summarize
the corresponding circumstances for g, the more so as they are not com-
monly discussed in this geometrical setting.

Quadratic forms which, equated to zero, give Klein's 14 conies are
labelled cx on p. 108 of [8]. The matrix of each cx is, in fact, a scalar
multiple of a unitary matrix: this implies that the coefficients of the point
equation of a conic of either set of seven are the same as those of the line
equation of a conic of the other set which, in its turn, implies the existence
of a conic reciprocating either set into the other. But this is only one of
28 such reciprocations all of which transform k into the same quartic
envelope e (e is the equianharmonic envelope of k which, in its turn,
is the equianharmonic locus of e). Indeed each conic cx = 0 can,
by these means, be reciprocated into four of the opposite set: namely
into those other than the three spanning a net to which cx = 0 itself
belongs.

The analogy between g and O is now patent. Quadratic forms which,
equated to zero, give Klein's 22 quadrics are labelled (3) and (4) on p. 428
of [10b]. The matrices of these quinary forms too are scalar multiples
of unitary matrices, and the coefficients of the point equation of any
quadric of either set are the same as those of the prime equation of a
quadric of the other set. The reciprocation, hereby implied, of either set
into the other is one of 66 such reciprocations which all transform the
invariant cubic primal into the same cubic envelope $\ given any
one of the 22 quadrics there are six of the opposite set into which it
can be reciprocated, namely those other than the five on which it
is linearly dependent. And it is £" whose first polars are all inpolar to
all 22 quadrics.
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650 W. L. EDGE

These 22 quadrics are therefore all outpolar to $\ it is this that explains
their linear dependence. There is no analogous linear dependence among
the 14 conies; e does not have any outpolar conic.

4. Klein discovered this cubic primal, therefore to be labelled K, in [4]
that was invariant under the group G of 660 collineations. This was before
Veronese and Corrado Segre had propelled the Italian geometers into
hyperspace so that, in marked contrast to the circumstances attending
his discovery of k, Klein was forced to construct any necessary geometrical
apparatus for himself. But he remarked that, as the Hessian H is a
covariant of K, it too was invariant under 0 as was also therefore its
nodal curve G: and so he was provided with the curve and Riemann
surface that he was seeking.

The order of C, and indeed of far more complicated loci, can now be
found by mere substitution in a formula; put [j. = 1, c = 3 in the product
on p. I l l of [1], and then p = 4; G has order 20. But Klein, in finding the
order of C himself, acquired information that unveils the true nature
of the 60 points a: information far beyond the scope of the mere formula.
He gives the first terms of the expansions, in terms of a local parameter dt,
of the coordinates of five points on C, namely the vertices of the simplex
of reference for his homogeneous coordinates; these points, being invariant
under a group # n , are points a. He deduces that the order of G is 20 by
adding the exponents of the differential dt in a column of his table
(14) ([9] p. 154).

But let us now note the exponents in a row of this table. They disclose
that this linear branch of G is inflectional ([14] p. 183), the tangent having
3-point intersection: not only so, but the osculating plane has 6-point
and the osculating solid 10-point intersection. There is an inflectional
pentagon axa^a^,h inscribed in G; axaz is the tangent, axa2a3 the
osculating plane, and axa^aza^ the osculating solid at ax; and likewise,
cyclically permuting the suffixes, at the other vertices. And there are
12 such pentagons: they afford a permutation representation of O just
as the eight inflectional triangles of k did of g. The 60 points a compose
the whole set of intersections of G with K.

5. What of the genus of G ? Here again Klein had to improvise, and
he was sufficiently dissatisfied with the somewhat tentative nature of his
reasoning to suggest its replacement when preparing his collected works
for publication ([9] p. 155, footnote). But even his second thoughts
should now yield place to an argument that takes advantage of the
properties of linear series on algebraic curves.
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KLEIN AND THE SIMPLE GROUP OF ORDER 660 651

The solids in [4] cut on C a linear series g\Q\ a standard formula
([16] p. 188; [1] p. 10; [15] p. 389) says that there are (4 + l)(20 + 4#-4)
quintuple points of this series, p being the genus of C. Moreover, there
are precise rules for counting points, whose multiplicity exceeds 5, the
proper number of times. In the present situation each of the 60 points a is

simple for a triple infinity of sets,
triple for a double infinity of sets,
sextuple for a single infinity and
tenfold for one set of g%Q;

the rules ([16] p. 188) prescribe that it be counted

1 + 3 + 6 + 10-1.5.4 = 10

times. Since there are 60 such points a

20(4+^)^600, p ^ 26.

An opposite inequality is found by appealing to a theorem of Clifford
([4] p. 329; [16] p. 131; [15] p. 384), published, so it happens, in the
same year 1878 as Klein's paper.

There are 35 linearly independent cubic primals in [4]; it will be seen
in § 7 that none contains C, so that they cut on C a linear series gr̂ . Since
its grade 60 is less than double its freedom 34 the series is, by Clifford's
theorem, non-special; so the complete series to which it belongs has
freedom 60— p, not more. Hence 34 ^ 60— p, or p ^ 26. The two
inequalities leave no alternative; p is 26.

One may note the two consequences:
(i) C has no stationary osculating solids, i.e. solids with more than the

statutory 4-point intersection, save those at the 60 points a.
(ii) The cubic primals in [4] cut a complete linear series on C.
It is, perhaps, appropriate here to apply the rule for the correct

enumeration of multiple points also to the series g\% cut on C by the
quadrics of [4]; the formula states that there are

(14 + l)(40 + 350) = 5850

points on C where 15 of the 40 points of a set of g\% coincide. It appears,
from the exponents in any of the rows of Klein's table (14), that the
lowest powers of dt in the five squares and 10 products of the coordinates
are, in non-descending order,

0,1,2, 3,4, 6, 6, 7,9,10,11,12,13,16, 20.

The sum of these integers is 120, so that the rule prescribes

120-| .14.15= 15

for the number of times each of the 60 a-points must be counted among
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652 W. L. EDGE

the 5850. There remain 5850-900 = 4950 further points to be accounted
for; no doubt Klein's 220 6-points and 330 c-points make their due
contributions.

6. The Hessian H of a general cubic primal F is the locus of points
whose polar quadrics with respect to F are cones; if A is a point on / /
the vertex A' of its polar cone is on H too, and the vertex of the polar
cone of A' is A: the points of H are thus linked in pairs; if A describes a
curve or surface on H then A' describes a curve or surface linked thereto.
Moreover, the polar solid of a point on H with respect to F is the tangent
solid of H at the linked point—supposed non-singular.

But if A is on the nodal curve G of H its polar quadric (with respect
to F) has for its vertex a line q on H, and H has the same tangent solid
at all (non-singular) points of q ([18] p. 518). The polar cones of the
points of q belong to a pencil with a common vertex, and therefore
include four line-cones; q is quadrisecant to C, and the tangents to C
at its intersections with q all lie in the solid touching H along q. Voss5

paper is concerned with a cubic primal in projective space [p — 1]; he
certainly observed the lines on the Hessian meeting its nodal locus in
p — 1 points, and remarked too that p — 1 of the lines pass through each
point of the locus. When p = 5 these lines are quadrisecants of the nodal
curve, but there was no investigation of their properties; indeed there
seems, strangely, no other mention of them before Seifert's two notes
of 1937; each is conjugate to a point of C and they generate a scroll 8,
like C of genus 26, having C for a quadruple curve. Among the properties
found by Seifert perhaps two may be mentioned here.

(i) The solid I! spanned by the three, other than any one qQ, of the
four q concurring at a point of C contains also those q conjugate to the
remaining three intersections of q0 with C. S thus contains six q comprising
two concurrent sets of three; its 20 intersections with C consist of the
two points of concurrence and three further points on each of the six q
([13b] §13).

(ii) The cubic curves, in which planes spanned by complementary
pairs of concurrent q meet H, are linked.

The first of these two properties accords with the striking attribute
of K. Let XYZTU be an inflectional pentagon, 1 7 , YZ,ZT,TU,UX
being the tangents of K, at X, Y, Z, T, U respectively; the polar quadric
of each point is a line-cone whose vertex is the opposite side of the pentagon.

For instance—to use Klein's coordinates for the moment—the polar of
(1,0,0,0,0) with respect to

x2y + y2z + zH + t2
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KLEIN AND THE SIMPLE GROUP OF ORDER 660 653

is u2 + 2xy = 0 with vertex ZT. On the other hand, the polar of
{0,0,£,T,0) on ZT is

and the discriminant of the quadratic form here is £T3 : those points on
ZT whose polar cones have line-vertices consist of Z} counted three
times, and T.

The q through X therefore are XU,XU,XU,XY; take XY to be the
q0 of Seifert's first property. Its 'remaining' intersections with K are
X, X, Y so that there is a solid whose 20 intersections with K consist of
two sets of 10 points:

X + 9U and T + 6Z + U + 2T.

The whole aggregate is IQU + 6Z + 3T + X; the integer coefficients here
are the same as the powers of dt in Klein's table ([9] p. 154). The solid
is y = 0; it osculates K at U.

7. The condition for the quadric x'Ax = 0 to be outpolar to x'Bx = 0,
or for the second quadric to be inpolar to the first, is that the trace of
the matrix A adj B should be zero. Here A and B are symmetric matrices
and x the column vector of n point coordinates; the condition is linear
in the elements of A and of degree n — 1 in those of B. For us, n is 5.

Those points of [4] whose polar quadrics with respect to F are inpolar
to a given quadric Q lie on a quartic primal R. Since the condition for
a point-cone to be inpolar to Q is that its vertex should lie on Q, R cuts
H in the surface linked to the common surface of H and Q; B contains
those, and only those, 40 q that are conjugate to the intersections of Q
and C. And since every line-cone is inpolar to Q (the adjugate of the
matrix of rank 3 of the point equation of such a cone being the zero
matrix) R contains C. The 15 linearly independent quadrics of [4] are
thus linked with 15 linearly independent quartics through C. That there
are quartics through C is known because C is on all those primals given
by equating to zero the 15 different first minors of the 5-rowed symmetric
Hessian determinant A, and the elements of A are linear forms.

The intersection of R with the scroll S can only consist, in addition to C
counted four times, of a certain number of generators. But it has just
been seen that this number is 40 so that, if S has order n,

in = 80 + 40, rc = 30.

This order was found otherwise by Seifert ([13a] p. 15), who used the
Jacobian curve, of order 10, of the net of polar quadrics of points of a
plane.
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654 W. L. EDGE

The existence of S proves there to be no cubic primal through C. For
such a primal would, of necessity, contain every q, and so the whole of 8;
yet the surface in which it meets H cannot be of larger order than 15.

8. A certain number of q are tangents of G, and an application of
Chasles' principle of correspondence discloses what this number is.

Take a plane a: two solids through a are to correspond whenever there
is a q two of whose four intersections with C lie one in each solid. Any
solid meets G in 20 points through each of which pass four q; given this
solid through a, 240 others are in correspondence with it. The correspon-
dence has, by Chasles' principle, 480 coincidences. But coincidences are of
two kinds: the solid may join a to

(i) the contact of a q with C, or
(ii) one of the 30 q which meet a.

Each of the 30 solids in (ii) can be defined as the join of a to any one
of four points on q; its coincident correspondent can then join a to any
one of the other three; it contributes 12 to the number of coincidences.
Hence there are

480-12.30 = 120

q that are tangents of G. The question of how many q have a prescribed
cross-ratio for their four intersections with G appears to be still
outstanding.

For Klein's special F the tangents to C are inflectional at its 60 a-points;
they occur among the q because each meets G at another a-point in addi-
tion to that at which it has 3-point intersection. And since this is 3-point
and not the 2-point intersection of an ordinary tangent this q must be
counted twice among the 120. So there are no q tangent to this C other
than the sides of the 12 inflectional pentagons.

9. The linkage between quartic primals JR through C and quadrics Q
yields relations between the orders n, n' of linked curves m, m' and the
numbers i, i' of their intersections with C. For the points linked to the
intersections of m and Q are those intersections of m' and R that do not
lie on C; and likewise with the roles of m, m' transposed. Hence

2n = 4n'-i't 2n' = in-i, (9.1)

or, more symmetrically,

i + i' = 2(n + n'), i-i' = 6{n-n').

For example: a plane section ft' of H has n' - 5, i' = 0; the curve ft
linked to ft has therefore n = 10, i = 30; it is the Jacobian curve of the
net of polar quadrics of all points in the plane of ft'.
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KLEIN AND THE SIMPLE GROUP OF ORDER 660 655

10. The particular circumstances of Q becoming a pair of solids E^ E2

or, still more particularly, a repeated solid E, occur in Seifert's second
note. If a quadric is inpolar to the pair S1} S2 then S1} S2, are conjugate
for it; if a quadric is inpolar to a repeated solid S then E is one of its
tangent solids. The quartic locus of the point, whose polar with respect
to F the quadric is, touches H along a surface /, of order 10 and con-
taining C; f is linked to the section of H by S and is the Jacobian surface
of the web of polar quadrics of points of E. The surfaces fx and / 2 so
arising from the solids Ex and E2 form the complete intersection of H
with the quartic whose points are such that Sx and S2 are conjugate for
their polar quadrics. Of course / contains those 20 q conjugate to the
intersections of C with S. These quartic primals are those whose equations
arise on bordering A with a row and column composed of the coefficients
in the equations of Ex and S2.

11. This (1,1) correspondence between quadrics of [4] and quartic
primals through C is markedly reminiscent of Hesse's correspondence
between quadric surfaces in [3] and plane cubics ([7] pp. 288-89); indeed
algebra analogous to that by which Hesse sets up his correspondence
shows that, if Ay is the cofactor of diF/dxi dxj in the Hessian determinant
A of F, the correspondence in [4] is just

Xfij <—> Ay .

Ay is quartic in the coefficients of F as well as in the x^ The surface in
which H is met by any quadric 2 aaxixj = 0 is linked to that in which H
is met by the quartic 2 fly Ay = 0.

The quartic primals are, admittedly, restricted to contain C whereas
Hesse's cubic could be any of its plane. But corresponding quadrics
and quartics are in the same projective space and the two surfaces in
which they meet H are related mutually, each linked to the other. If
one regards the quartic as a biquadratic, a quadric function of the
quadrics, one can replace these quadrics by the appropriate linear
combinations of the Ay and so produce a polynomial of degree 8. This
one would anticipate to be the product of the original quadric and a
sextic polynomial <5, the primal & = 0 meeting H in the scroll S of
order 30. Of course when (5 = 0 does contain S so does every sextic
primal whose equation has for its left-hand side any linear combination
of <3 and the product of A by any linear form; this accords with the
fact that a quartic can be written as a biquadratic in various ways, e.g.

whenever A + /x + v = 1. Some rule is necessary if the procedure is to be
unambiguous, and such a rule is provided by Sylvester's principle of
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656 W. L. EDGE

unravelment ([17] p. 322; [5] pp. 251-52); not only so, but the adoption
of this principle ensures that Q will be a covariant of F. Since it is of
order 6 in the variables and of degree 12 in the coefficients of F its weight
is w where 5w + 6 = 36, so that w = 6.

For the special case when F is K there is a generating function
([2] p. 301) giving the number of invariants, of different degrees, for the
representation of 0 as an irreducible group of quinary substitutions. Its
first terms prove to be l+x5 + x5 + 2x6; the two independent invariants
of degree 6 are Q and the square of K. If a denotes the 5-term sum
generated by the cyclic permutation (xyztu) from a single term Klein's
quinary cubic and its Hessian are a.x2y and 3xyztu + a.x2y(y2 — xt). The
covariant S turns out to be

a. (xy*z + x3z2t — xyzH2).

There is, subordinate to the correspondence between quadrics in [4]
and quartics through C, a less ample correspondence that should be
mentioned. If P is common to H and the polar quadric of a point A
with respect to F the polar solid of P with respect to F contains A. But
this solid is ([18] p. 516) the tangent solid of H at the point P' linked
to P, so that P' is on the first quartic polar of A with respect to H. In
other words: the first polars of any point with respect to F and H cut
H in linked surfaces.

12. The polar cones of points on a line of H belong to a pencil. There
are, according to Segre ([12] p. 895) three kinds of pencils of quadric
cones in [4].

(i) Cones with a common vertex A. They include four line-cones whose
vertices qvq2,q3) g4 concur at A. The polar solid of any point (other
than A) on qt with respect to every cone of the pencil is that spanned
by the remaining q.

(ii) Cones with collinear vertices. The line I on which the vertices lie
is on all the cones, which all have the same tangent solid 2 along I.
There are two line-cones in this pencil; both their vertices meet I and
lie in 2, spanning this solid.

(iii) Cones whose vertices lie on a conic.
These facts suggest the occurrence of three kinds of lines on H:

(i) quadrisecants of C\
(ii) chords of C which will be linked in pairs, the polar cones of the

points on either having their vertices on the other;
(iii) lines skew to C, linked to conies that meet C in six points.
Suppose that the chord PQ of C is on H; it is linked to a second chord

BS of C, also lying on H. Let p, q, r, s be the quadrisecants conjugate
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KLEIN AND THE SIMPLE GROUP OF ORDER 660 657

to P,Q,R,S. Then, by Segre's results, the solid pq touches the polar
cone of every point on PQ all along RS and the solid rs touches the polar
cone of every point on RS all along PQ. So, if A is on PQ and B on RS,
the polar solid of B with respect to the polar cone of A is pq and the polar
solid of A with respect to the polar cone of B is rs. Hence pq and rs
are the same solid, namely the 'mixed polar' of A and B with respect
to F. The 20 intersections of this solid £ with C consist of P, Q, R, S
and four points on each of p, q, r, s.

2 meets the polar cones of P and R in the repeated planes pRS and
rPQ respectively; these repeated planes meet in a line and determine a
pencil whose members are the pairs of planes of the involution whose
double members are pRS and rPQ. But these are the intersections of E
with the polar quadrics of points on PR, which quadrics must therefore
be cones. So PR is on H, and the chord linked with it is common to the
planes pRS and rPQ. Thus all six edges of the tetrahedron PQRS are
on H, each edge being linked with the opposite one. Each face of the
tetrahedron contains the quadrisecant conjugate to the opposite vertex.

Since the solid which touches H along p does so in particular at its
intersections with RS, SQ, QR it contains these three lines and their plane;
the intersection of the plane QRS with H consists of p reckoned twice
and of the three lines RS,SQ,QR. As the solid has 12 intersections with
C off p there are four such planes through p, and 12 of its chords through
a point P of G lie on H.

Alternatively: assume that there is a plane m containing the quadri-
secant p conjugate to P as well as three further points Q, R, S of G none
of which is on p and which are not collinear. Every point of m has the
same polar solid T with respect to a line-cone with p for vertex; hence T
contains the vertices q, r, s of the polar cones of Q, R, S—the polar solid
of Q, say, with respect to the polar cone of P being the same as that of P
with respect to the polar cone of Q and so containing q. Likewise Q has
the same polar solid with respect to the polar cone of R as does R with
respect to the polar cone of Q, and this solid is qr, i.e. T. Thus T is the
polar solid of each of P, Q, R, S with respect to the polar cones of the other
three. And so we find again a tetrahedron inscribed in C with a quadri-
secant, conjugate to the opposite vertex, in each of its faces; for example:
Q and R have the same polar with respect to the polar cone of S so that
QR meets s, and so on. And so QR, as meeting both 5 and p and being a
chord of the nodal curve, lies on H and is linked with SP.

13. The polar quadrics of the points of T constitute the web linearly
dependent on the polar line-cones of P,Q,R,S. The whole system of
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658 W. L. EDGE

polar quadrics of points of [4] is spanned by this web and the polar quadric
Y of any point X outside T. Now the polar solid of P with respect to \F
being also the polar solid of X with respect to the polar line-cone of P,
contains p; p is the intersection of the plane QRS and the polar plane
of P with respect to the quadric surface tp which is the section of Y by T.
So, likewise, are q, r, s the intersections of the faces of the tetrahedron
PQRS with polar planes of its opposite vertices with respect to this same
quadric surface if/.

So, by a classical theorem ([3] p. 402; [11] pp. 118-22) p.qj,s belong
to a regulus p. The quadric surface on which p lies meets the quintic
section of H by T in p, q, r, s and a sextic curve through the intersections,
16 in all, of p, q, r, s with C. The curve linked to this is, on putting n — 6
and i = 16 in (9.1), seen to be a quartic through P,Q,R,S. Each line
of the regulus complementary to p meets Ht and so the sextic curve,
only in one point in addition to points on p, q, r, s so that the sextic, and
therefore the quartic linked with it, are rational.

14. The types of projectivities for which K is invariant are known,
being deducible from Klein's original work. But they are more
immediately identified by the characters of this representation of O
since these are so familiar: for example, put p = 11 in the second table
on p. 502 of [2] and use the second or third column. If x = 3 the entry
in the table gives + 1 for the character of every involution; the five
latent roots of the matrix of the substitution are therefore 1,1,1, — 1, — 1
and the projectivity is harmonic inversion in a line and plane. Likewise,
with x = 2, the character of operations of period 3 is — 1 so that the
latent roots of the substitution must be l,a>, co, o»2, co2 with o> either
complex cube root of unity. And so on.

The larger the number of projectivities for which a non-singular cubic
primal F is invariant the more geometrically significant properties is it
likely to have. So take F2—the suffix indicating the order of the finite
group of self-projectivities admitted by F—and then gradually raise the
order of this group.

Suppose that F2 admits a harmonic inversion J in a line A and a plane
77 skew to A: as Fz is to be non-singular it does not contain n, and so
meets n in a plane cubic/. Since every transversal t of A and TT is invariant
so is the set of three intersections of t with F2. But t need not meet tr
on / ; it follows that A is on F2 and that, if t is not wholly on Fz, the remain-
ing two intersections are transposed by J. In particular: the join of
L on A to P on / touches F2 at P. The tangent solid of F2 at P contains A
and, since this solid cuts F2 in a cubic surface with a node at P, the plane
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KLEIN AND THE SIMPLE GROUP OF ORDER 660 659

PA cuts F2 in A and two lines through P. Those lines on F2 transversal
to TT and A generate a scroll of order 9, the intersection of F2 with the
cubic cone of planes joining A to the points of/. The scroll has / for a
double curve and, since the tangent solid to F2 at any point of A cuts n
in a line meeting / in three points, A for a triple directrix line.

Since every point of A lies in the tangent solids of F2 at all the points
of/ every point of/, and so the whole plane TT, lies on the polar quadrics
of all the points of A. These quadrics are therefore cones with vertices
in 7T; A is on the Hessian H2 of F2 and is linked to a curve A' in TT.

One naturally chooses a system of homogeneous coordinates for which
A is x1 = x2 = x3 = 0 and IT is #4 = x5 = 0. Then F2 has an equation

= 0

where <p is cubic and a, jS, y are linear in xv x2, x3. H2 is

?21 ?22 ?23

= 0,

IP \Y
and, as a covariant of F2, is also invariant under J. I t is apparent that
its intersection with TT consists of the conic j32 = y<x and the Hessian h
of/, the plane cubic <p = 0; and, furthermore, that at the six intersections
w of these two curves in TT every first minor of A2 vanishes: the points w
are on the nodal curve C2 of H2.

The polar quadric of (0,0,0, p, a) on A is

i + yx5) = 0,

a cone whose vertex, satisfying

= pfi + oy = xi = x!i = 0, (14.1)

is in TT on the conic p2 = yoc; this conic is therefore A'.
The polar quadric of P{iv £2, £3,0,0) in TT is

When P is on A', so that

this quadric is
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and so is a cone whose vertex (0,0,0, s, — r) is on A. For it to be a line-cone
its discriminant must have rank 3; this symmetric 5-rowed matrix has
zeros in the first three places of its last two columns and of its last two
rows, the bottom right-hand corner being

I" r2 rs 1

[ rs s2 J
On the other hand, the top left-hand corner is the discriminant of the
ternary quadratic f 1(p1 + £2<p2 + gs<p3, i.e. of the polar conic of P with
respect to / . Since r, s are not both zero it is this polar conic that must
be singular for the rank of the 5-rowed discriminant matrix to fall to 3;
P is then on the Hessian h of / . I t is thus the six intersections w of h
and A' that have polar line-cones: their vertices q join the points on A
linked to the w regarded as points of A' to the points on h linked to these
same w regarded as points of h.

15. The common surface of the polar cones of the points on A consists
of 77 and the cubic scroll F given by

F has A for directrix and contains A'. Indeed F is generated by the joins
of pairs of linked points (cf. 14.1) on A and A'. It meets F2 where it meets
the cubic line-cone <p(xv x2, x3) = 0, i.e. in A counted thrice and six
generators, namely those through the intersections of A' with / .

The points of F2 whereat the tangent solid contains the whole of A are
on the polar cones of all points on A, and so on F or in TT; they consist
of / , A and those six generators of F just remarked. If g is any one of
them any solid through the plane gX is bitangent to F2, its contacts
harmonic to the intersections of g with A and A'. The solid spanned by
two such g is therefore quadritangent to F2 meeting it in a four-nodal
cubic surface. Thus 15 quadritangent solids of F2 contain A; these are
invariant under J while any remaining ones are transposed in pairs.
There are 480 of these, Fano having shown ([6] p. 282) that a cubic
primal in [4] has, in general, 495 quadritangent solids.

Since C2 is invariant under J the plane joining A to a point of C2 meets
C2 again; the projection of C2 from A onto n is a curve of order 10 covered
twice. This curve in TT is, by Zeuthen's formula ([19] p. 107; [16] p. 169),
of genus 12 because the (1,2) correspondence between it and C2 has six
branch points—the intersections w of C2 with TT. The quadrisecants q
conjugate to these points w meet TT at singular points of the projected
curve which, because H2 has the same tangent solid at every point of q,
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KLEIN AND THE SIMPLE GROUP OF ORDER 660 661

passes through the singular point with two branches both of which have
there the same tangent as does h.

16. Since the 55 involutions in G belong to a single conjugate class
the 55 harmonic inversions for which K is invariant are all of the same
kind. When three such involutions belong to a 4-group—each pair
commuting and having the third for their product—one may take lines
Xv A2, A3 forming a triangle XXX2XA in a plane 8 while the planes TT1} TT2> 7T3

join Xv X2, X3 to a line p skew to 8.
Let X4, Z5 be the Hessian duad of the three intersections of F± and ̂ ,

and use X1X2X^XiX5 as simplex of reference. Since the simultaneous
change of sign of any two of xvx2, #3 must not alter it the equation of FA

has the form
s = 0.

(16.1)

JP4 contains Al5A2, A3 and meets 7rls TT2, 7r3 in cubic curves / i , / 2 , / 3 ; the
equation of, say, / 2 is

Zx^bxt + exJ+gxf + hx* = 0. (16.2)

This curve is invariant under the harmonic homology in TT2 whose centre
is X2 and axis X4X5; X2 is an inflection, X±X5 the corresponding harmonic
polar.

.04 meets TT1 in the Hessian h€ of ft and the conic Â  linked to Â ; X^
and fi are pole and polar for Â , X$ an inflection on h€ with n as the
corresponding harmonic polar. H^ meets S in Al5 A2,A3 and a conic x f°r

which X1X2X3 is a self-polar triangle.
The point X[ linked to the intersection Xx of A2 and A3 is common to

A2 and A3; it thus lies in both TT2 and TT3 and so on /u.. So X{,X2,X^ are
among the five intersections of H± and /x; the other two are X4 and X5

whose polar quadrics are seen, from the equation of F±, each to be a cone
whose vertex is the other.

Each of Al5 A2, A3 is met by six of the 30 q which meet S; there remain
12 to meet x> a n ( i *n e points in which they do meet x form three
quadrangles each with XVX2,X3 for diagonal points. The curve linked
to x is a rational quartic x meeting C4 12 times and each of X'x,\'2,A3

twice.

17. The joins of linked points on Â  and Â  generate a cubic scroll I \ ;
those six which pass through the intersections of A.̂  with fi are on i^.
These intersections are collinear in pairs with JQ; if the join of a pair
meets fx at L the solid 8L, containing two of the six generators of I \ that
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are on F±, is quadritangent to JP4. There are three of these solids, there
being three points L on /x. But the same points L occur for i = 1,2,3.
If, say, i is 2 then A2 is /?2 = y<x where, as seen in the discussion of F2,
a, jS,y are the multipliers of Xj2, 2x3x1, x3

2 in (16.1), i.e. X2 is

The three joins, of pairs of points common to f2 and A2, concurrent at X2

are, by (16.2),

3(az4 + *B5)(6a;4 + ea;6)(ca;4 +fx5) + k2{gxf + hx<?) = 0. (17.1)

This same equation appears for each i.
That the solids 8L meet F± in four-nodal cubic surfaces also appears

as follows. The solid x5 = px± gives, for its section of Fi} a cubic surface

GJcXjXfa + Sx^ax^2 + bx2
2 + cx3

2) + dpx^dx^2 + ex2
2 +fx3

2) + (g + hps)x^3 = 0

and this has the standard form for the equation of a four-nodal cubic
surface, namely

= 0,

-x.

provided only that

3k~2{a + pd){b + Pe)(c + pf) + g + hpz = 0;

in other words provided that x5 = px± joins S to one of the three points L.
This solid contains pairs of generators of each of r i } F2, F3; these pairs
of generators join the same four nodes, i.e. are pairs of opposite edges
of the tetrahedron of nodes.

Each scroll I \ affords, spanned by pairs among six of its generators,
15 quadritangent solids of F^; the same three solids 8L occur for
t = l ,2,3. Each I \ affords 12 more, so that 3 + 36 = 39 of the 495
quadritangent solids of .F4 are accounted for.

18. One embeds the above 4-group in a tetrahedral group y by
adjoining a projectivity of period 3 that permutes Xv X2, X3, cyclically
and leaves X^,X5 invariant; for example, that whose matrix is
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KLEIN AND THE SIMPLE GROUP OF ORDER 660 663

with co either complex cube root of unity, will serve. .F4 will not admit
this new projectivity unless the coefficients in (16.1) satisfy

b = coa, c = co2a, e = co2d, f = cod;

a primal F12 is given by

+ hx* = 0. (18.1)

It has the properties already found for .F4 as well as others consequent
upon its invariance under the four subgroups ^3 of ST.

The 4-group leaves X1} X2, X3 all invariant and permutes the points of S
not on any side of the triangle in tetrads: each tetrad forms a quadrangle
having Xv X2,X3 for its diagonal points. ST now permutes these
quadrangles in threes save for three special ones: those, namely, any
of whose vertices is invariant under a ^3. Such a special quadrangle
has one vertex invariant for each of the four ^3, and this ^z permutes
the remaining vertices cyclically. So far as the restriction of ST to S
goes the matrices of period 3 consist of

- 1

- 1

- 1

- 1

- 1

and their squares. Each matrix has latent roots l,cu,co2; the associated
latent vectors of the first are

( 1 1 , 1 ) , (1, co, a,2), (1, co2, co);

those of the others are the transforms of these by the 4-group.
What is significant here is the occurrence of a> and co2 as latent roots;

it implies, in [4], that the joins u of (l,co, co2,0,0) to X4 and u' of
(1, co2, co, 0,0) to X5 are both pointwise invariant under %.

19. Consider, therefore, a cubic primal F3 that admits a <̂ 3 of self-
pro jectivities for which a point 0 and the points of two lines u, u' are
all invariant; u, u' are skew and 0 is outside the solid S spanned by them.

S meets Fz in a surface E. The three intersections of E with the join
of P on u to Q on u' are cyclically permuted by a projectivity on PQ
whose fixed points are P and Q themselves; P,Q are the Hessian duad
of the triad of intersections of PQ with E. Should one of P, Q be on E,
PQ has three-point intersection with E there; should P,Q both be on E
so is the whole line PQ. Thus all nine joins of the intersections P1}P2, P3

of E with u to its intersections Qv Q2> Q3 with u' are on E.
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A transversal PQ of u and u' meets the Hessian H3 of F3 in five points,
the whole set invariant under #8; it must consist of a cyclically permuted
triad and of two invariant points which can only be P and Q themselves.
So u and u' both lie on H3.

Since the points of u are all invariant so are the vertices of their polar
cones, i.e. the points of the curve linked to u on H3; this must be either u
itself or u'. Now the polar cone of a point P, on u, other than Pv P2, P3

cuts u at the polar pair of P for this triad—a pair generally distinct—so
that its vertex is not on u. The conclusion is that u and %' are linked
on H3 and so are both chords of its nodal curve C3. Had P been, excep-
tionally, one of the Hessian pair of P1,P2,P3 its polar pair would not
have been distinct, but would have been the other member, taken twice,
of this Hessian pair.

20. Let A be an intersection of u and C3. Its conjugate quadrisecant
meets u' and, being invariant, meets u too, say at B. Then the vertex
of the polar cone of B is A so that A, B is the Hessian duad of PX) P2, P3:
the intersections of C3 with u and u' are the Hessian duads of the triads
of their intersections with F3; the q conjugate to any of these four points
passes through the complementary point of the duad and is transversal
to u and u'. Moreover, the tangents to C3 at these four points, since
they are invariant, are also transversals of u and u'; 2 is quadritangent
to C3, and its 12 intersections, other than its four contacts, with C3 are
the remaining triads on the four q. These triads are invariant too, so
that C3 cuts all four q equianharmonically.

Each point of C3 on neither u nor u' belongs to a cycle of three; four
of these cycles are collinear on q, the other cycles all span planes through 0.
The only coincidences in the (3,1) correspondence between C3 and the
aggregate of triads are the four points on u and u'; each of these counts,
when reckoned three times, as a triad and so contributes the equivalent
of two coincidences; the osculating planes of G3 there contain 0.
Zeuthen's formula shows the aggregate to have genus 8.

If the intersection of the tangent to C3 at A with v! is, say, T the
osculating plane of G3 at A is OAT; the osculating solid contains this
plane and so, being invariant, joins it either to u or to u'. But the
latter alternative cannot occur: for the solid would then meet C3 at
20 — 4 — 2 = 14 points not on u or u'; none of these could be invariant,
nor do they admit permutation as cycles of three. So the osculating
solid joins OAT to u and has 20 — 4—1 = 15 intersections with C3

not on u or u'. Similar considerations apply at each contact of E
with O3.
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ST contains four $3, each with an isolated invariant point Oi and axes
ui%u\ {i = 1,2,3,4). The 4-group V in &~ is a normal subgroup, but
each % permutes the involutions of V cyclically, as it therefore does
XVX2,XS. Thus 8 contains each Oi} meets i^ at, say, Ĉ  and u\ at U^;
Z,X2X3 is the diagonal point triangle of all these three quadrangles in 8.
Moreover, each ^3 induces a projectivity on //, of which X4, X5 are the
fixed points; each %i passes through, say, X4, each u\ through X5. The
quadrangles of TJi and U^ are both inscribed in %; each of them is equi-
anharmonic on x and is the Hessian tetrad of the other. This last remark
is validated by the fact that each ^ in 3~ permutes the others cyclically:
the one which has, say, ux and u'x for axes induces permutations (u2usu^)
a n d {U'$L'ZU'^ .

21. The tetrahedral group &~ can be extended to an icosahedral group
J by adjoining a suitable operation of period 5. One way of achieving
this is to take a standard irreducible representation of «/ as a group of
monomial quinary substitutions ([2] p. 353). If a tetrahedral subgroup
in this representation is transformed into 3~ the same transformation,
of a monomial substitution of period 5, will produce an appropriate
operation to adjoin to 2T. So one finds the substitution

(X)X» —'

(21.1;

the multipliers at the left ensuring that the substitution has
determinant + 1 .

In order that the quinary cubic in (18.1) be invariant under (21.1) it
is necessary that k,a,d,g,h be proportional to the corresponding coeffi-
cients in the cubic produced by the substitution; this is found to happen
(the verification is routine) provided that

A quinary cubic contains 35 terms, only nine of which appear in (18.1);
it is necessary for the invariance of the primal that none of the 26 missing
terms intrudes in consequence of the substitution; happily the conditions
(21.2) ensure that none does.

So, invariant under </, there is î 60 given by

4- d{Sxb(x^ + OJ2O;2
2 + u)X3

2) — Qx^x^ + 2x4
3 + rc5

3} = 0.
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It is important to note that there is a single quadric Q invariant under
«/; in the present coordinate system Q is

/>• 2 I />• 2 i /v» u i v'v* o* — O

Each of the ten subgroups #3 of J provides a solid S spanned by two
axes u,u' both pointwise invariant under ^z\ any transversal t of u,u'
meets Q in two points which, invariant as a pair under $3, are individually
invariant so that one is on u, the other on u'. Thus u,u' both lie on Q.
They are chords of C60, the nodal curve of the Hessian /760 of F6Q; as
there are 10 such pairs of axes u, u' they together account for all 40
intersections of Q with C60. Of course each of the ten £ is quadritangent
to C60.

The group G for which Klein's curve C is invariant has 55 subgroups
%; thus C has 55 pairs of chords, the chords of a pair being linked on H,
the solid spanned by each pair quadritangent to C. It is the contacts
of these solids with C that make up the set of 220 points b. Each icosa-
hedral subgroup «/ of G is one of a conjugate set of 11; the 11 quadrics,
one invariant for each subgroup J of the set, together cut all 220 points
6onC.

22. The latent roots of

- 1 1 - 1 - 1

— 1 — 1 • - c o 2 - c o

- 1 • 1 - c o - c o 2

1 CO — C O 2 * 1

1 CO2 — C O 1

are the five fifth roots of unity. The latent column vector associated with
unity itself is

(0, 0, co-co2, co, -co2) ' (22.1)

while tha t associated with any primitive root 77 is

(77-rf, rf-rf, - 1 , 1 -C077 -C0774, 1-co277-coV)'. (22.2)

The four points Ov O2, Oa, O4 of which these latter, i.e. the vectors occurring
on writing 77,17s, TJ3, 77* for 77 in (22.2), are coordinate vectors are all on Q;
the solid spanned by them is the polar solid

of the other point 0 whose coordinate vector is (22.1).
This subgroup ^ of«/ has thus four isolated fixed points O, Ox, O2,03,04;

the join of any two of them is invariant, its points, other than the two,
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KLEIN AND THE SIMPLE GROUP OF ORDER 660 667

being permuted by ^ 5 in cycles of five. Any primal invariant under ^5,
and all primals invariant under J in particular, can only meet the join
in such, cycles apart form the two fixed points themselves. Q has been
seen to touch 00,- at 0,-; it cannot meet it elsewhere. It is also found to

If If 3

contain two pairs of opposite edges of the tetrahedron O1O2O3O4; the two
edges not on Q are 0X04 and 0203.

î 60 does not pass through 0. But it does pass through 0^; not only
so but, as can be verified by substituting the coordinates of Oi in the
equations of the polar quadric and polar solid of 0, 00^ has 3-point
intersection with JP60 at 0^.

Each point of C60 belongs to a pentad whose members are subjected
to cyclic permutation by ^5. There are no coincidences in the (5, 1)
correspondence between 06O and this aggregate of pentads, which aggregate
therefore has genus 6 by Zeuthen's formula. Since there are 66 subgroups
#5 in 0 Klein's curve is in (5, 1) correspondence with a curve of genus 6
in 66 different ways.
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