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INTRODUCTION

(1) There are, in projective space £ of three dimensions, two famous quartic surfaces:
W, the Weddle surface with six nodes ((13), p. 69, footnote) and K, the Kummer surface
with sixteen ((8), p. 246, (7) passim). They are in birational correspondence and have
the same non-singular model: the octavic base surface F of the net of quadrics in [5],
which contain a given line A and for which a given simplex S is self-polar ((5); (6)).
One naturally takes S, with vertices Xo, Xv X2, Xa, Z4, X& as simplex of reference for
homogeneous coordinates x0, xx, x2, x3, x4, xb; F is invariant under the harmonic
inversions hj in the vertices Xj and opposite bounding primes xt = 0 of S. These six hjt

mutually commutative and having identity for their product, generate an elementary
abelian group § of order 32. This representation of & throws into prominence what
may, in this context, be called its positive subgroup S+, of order 16, consisting of
identity and the 15 products hjhk = hkhj\ these are harmonic inversions in the edges
XjXk and opposite bounding solids Xj = xk = 0 of S. The coset of S+ consists of the
six hj and their ten products in threes, complementary products being the same
{h^h^h^ = h^hji^) because of the product of all six hj being identity. These ten products
are harmonic inversions in the ten pairs of opposite plane faces of S.

A, which is presumed skew to every solid Xj = xk = 0, is thus one of a set of 32 lines

it meets, at its intersections with the primes Xj = 0, its six images in the ht but is skew
to the other 25 lines. The 32 lines are a closed set under S, and are equivalent; absence
of a suffix confers no privilege, each line meeting its six images in the hj. For example,

A01 meets Ax, Ao, A012, A013, A014, A015;

0̂12 meets A12, A02. Aol, A45, A35, A34;
and so on.

The projection of F from A onto a solid S skew to A is W; this is explained in (5).
The plane joining A to a point PoiF meets S at a pointy and, as P traces F, p traces W.
But the plane XXt contains A,- so that its intersection n} with 21 is the projection of
every point on Â ; nt is a node of W. Since AJfe meets both Â  and Afe its projection is
TO,- nk. Since the proj ection of A012 must meet the proj ections of any lines on F that meet
A012 this projection is the line Z012 = Z345 common to the planes n0nxn% and TI3W4W5.

(2) In this communication some description is offered of specialized surfaces T?%

whose projections are specialized surfaces W*; they possess properties not possessed
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by F. This endowment with additional properties is familiar for specialized Kummer
surfaces K*. The best known example is the tetrahedroid Kl recognized by Cayley (3)
in 1846 as the projective generalization of the Wave Surface in Euclidean space; K1 can
be parametrized by elliptic functions, not so K. And whereas every curve on K is its
curve of contact with some other surface there are curves on Kx that are not curves of
contact: indeed there is a tetrahedron T (hence the name tetrahedroid) each of whose
faces meets K^ in a pair of conies. The corresponding non-singular model Fx was
mentioned towards the close of (6); it contains eight conies, whereas there are no conies
on F. Hence there are eight curves on Wt that are not present on W; these are lines or
conies according as the conies on Fx of which they are projections meet, or do not
meet, A.

Cayley ((3), p. 303) unhappily says that there are, in addition to the faces of T,
48 other planes meeting Kx in pairs of conies; this is not so, nor is the dual statement
on p. 303 concerning pairs of quadric tangent cones true. The slip is a consequence of
the unwarranted assumption that six concurrent lines are joined in pairs by 15 planes,
whereas the lines in question happen to be intersections in pairs of only four planes!
The 48 planes imagined by Cayley consist in fact of four sets of four concurrent tropes,
each trope reckoned thrice. I t was only too easy to be so deceived when the geometry,
indeed the very existence, of the general Kummer surface was unknown; but regret
that the mistake was not corrected when the volume of collected papers was published
more than 40 years later is perhaps permissible.

The specialized surfaces W* admit groups of self-projectivities; these, of course,
operate on 2 whereas the field of operations of the non-projective involutions discovered
by Baker (1) so long ago is confined to W* itself. But our main purpose is to give some
description of the non-singular models F* and thereby of the nets of quadrics whose
base surfaces they are.

THE ESSENTIAL FEATURES OF THE NON-SPECIALIZED FIGURE

(3) I t is necessary, before imposing any specialization, to give details of certain
formalities concerning F, and the algebra involved when projecting F into W.

The equations determining F are

Qo = Qx = O, = 0,

where Qk = 2a*a^,

summations being for j = 0,1,2,3,4,5. I t is presumed throughout that no two at are
equal. Write

f{d) = (6-a0) (6 - a,) (d- a2) (0-a3) (6- a4) (0-a5)

also sk = 2 ^

Then s0 = sx = s2 = s3 = st = 0, s5 = 1, (3-1)
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and any sn can be found in terms of the e;- from these initial conditions and the recurrence
relation

*fc+6 - elSk+5 + e2*fc+4 - e3Sfc+3 + e4«fc+2 ~ e5Sk+l + e6*fc = °»

the last 5 — k terms here being zero if k < 5.
The relations (3-1) show that A, the line

(3-3)

where 6 is a parameter, lies on F; 32 lines A, A,-, Ajft, Ayfe are obtained from the different
signing of the six square roots. Every point on A satisfies

Xo = -3̂ 1 = A 2 = .A3 = 0,

where Xk = Sa^/^//'^); (3-4)

A is skew to S, the solid Xi = X5 = 0, because the Vandermonde determinant \aj\ is
not zero. So F may be projected from A onto 2, wherein W then appears.

The tetrahedron of reference in £ is to be that whose faces x = 0, y = 0, z = 0, t = 0
are its planes of intersection with the [4]'s Xo — 0, X1 = 0, X2 = 0, X3 = 0. One
therefore seeks to know the coordinates of its vertices in terms of the xy With this in
view note that, when Xj is replaced by l /^ / / ' ^ ) , Xk becomes sk which, by (3-1), makes
each Xk zero save X 5 = 1. Next, replacing x}- by (ê  — ej/^ficij), Xk becomes sk+1 — e1sk

which, by (3-1), is zero for k = 0, 1, 2, 3 and 1 for k = 4; it is also zero for k = 5 by (3-2).
Proceeding thus one finally replaces x^ by

(a| - ex a) + e2af -
and so Xk becomes

S&+5 ~ elSfc+4 + e2Sfc+3 ~ e3Sfc+2 + eiSk+l ~ e5Sk'

which is — eesk_1 = 0 for & = 1,2,3,4,5 and s6 = 1 for k = 0. The upshot is that any
point in [5] can be labelled by

- exaf + e2af - e3at + e4)

- e3) + t(aj -exat + e2) +p{aj - ex) + q, (3-5)

where x, y, z, t can now be used as coordinates in S; p, q as coordinates on A.
Now substitute these expressions for x} in D.Q = 0, fix = 0, Q2 = 0; all three sub-

stitutions produce linear relations in p and q which may then be eliminated deter-
minantally. The first two columns of the determinant are Unear, the third quadratic,
in x, y, z, t and so the equation (3-6) below of the quartic surface W emerges. That this
form of equation for a surface mentioned so long ago as 1849 is new is because the
projection from S has not been used before. But however new the form may be the
equation itself, as a referee has kindly said, is not; it was found by Cayley in 1869 ((4),
p. 179; (7), p. 172). One may therefore be excused from detailing the calculations of
the various entries in the determinant; those in the first two columns are dealt with

26 PSP 80
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more briefly than those in the third, but constantly repeated appeals to (3-1) and (3-2)
bring one to

x y 2zt
y z t2-
z t — e

= 0. (3-6)

Incidentally the tangent plane to F at a point of A, being common to the tangent
primes of the quadrics containing F, is

6X0 + X1 = 6X1 + X2 = 6X2 + X3 = 0,

so that these tangent planes generate

a line-cone meeting 2 in the twisted cubic y;

x/y = yjz = zjt.

On y the first two columns of the determinant are proportional, so that y is on W which
is readily seen to have nodes at the points (ft = a3- when y is parametrized as

x : y : z : t = l:^>:<j>2:(j>z.

(4) Several writers have submitted equations for W, Baker proferring no less than
eleven in (l); but they seem, with the notable exception of Cayley, always to select
a special tetrahedron of reference. Nothing could be more natural: but equations so
obtained, unlike Cayley's, are not symmetrically related to the six nodes.

Cayley's equation appears at the very end of a long memoir, possibly as an after-
thought and his method of obtaining it is perhaps not the simplest one. For all one
needs is the Jacobian of the web of quadrics through the nodes, a web spanned by the
net containing y and one other quadric meeting y only at the nodes. As the net is
spanned by

xz = y2, xt = yz, yt = z2

the web is spanned by these and, say, any of the ten plane-pairs containing the six
nodes. But in order to obtain an equation symmetric in the a^ one must use a quadric
that itself has this symmetry; for example

= 0-

The Jacobian W of this web is

z t . 2e6a-e5?/ + e4z
-2y -z t -e5x-e3z + e2t = Q

viz ^ ^ €/ +J& *̂ *A ' ^ ^ v 1

o; y 62y —

This determinant, not given by Cayley, is that in (3-6) multiplied by —2.
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(5) The merit of Cayley's equation, in whichever form, is to be available even when
the situation of the nodes on y is protectively specialized. Suppose, to take a single
example, that the a?- are the six sixth roots of unity. Then

e1 = e2 = e3 = e4 = e6 = 0, e6 = - 1
and (3-6) collapses to

x y 2zt

y z = 0,
z t 2xy

H) = (xz + t2) (Byz- xt). (5-1)

This surface W4 is in birational correspondence with the quadruple tetrahedroid Ki

((6), p. 966).

Fj_ AND ITS DOTTBLE-FOTTB OF CONICS

(6) F is invariant under the harmonic inversions in pairs of opposite plane faces of 8,
and under no other biplanar inversions than these ten. But since specializations F* of
F will be invariant under further such inversions it will best serve our purpose if the
following lemma is ready to hand. The notation used chimes in with later develop-
ments, and although the lemma is stated with m = 3 it has a clear analogue in [2m — 1],

LEMMA. The harmonic inversion in the two planes

<^xolyo = ^2/2/2 = 7^/2/4 = ±k (6-1)

transposes the points whose coordinate vectors are

xo, 2/o> X2> 2/2>
 xi> 2/4 (6-2)

and kyjcc, axo/k, kyz/fi, flxjk, kyjy, yxjk. (6-3)

This is because the sum of these two vectors provides a point in one of the planes (6-1),
their difference a point in the other. One may add, what is readily proved, that the
pairs (6*1) with + k and + k' afford commutative inversions if, and only if, k' = + ik;
and, further, that the product of any such commutative pair is harmonic inversion in
the planes x0 = x2 = x4 = 0(k = 0) and y0 = y2 = y4 = 0(k — 00).

(7) The Kummer surface K becomes a tetrahedroid Kx when the six nodes on the
conic in any trope can be partitioned as three pairs of an involution J. Assign to the
foci of J the parameters 0 and 00; then the parameters of any pair of J have zero sum.
The non-singular model of Kx is, as remarked in (6), ̂ i , the surface Qo = Q.x — Q3 = 0
where now „ „ „ „

j = a(xl - x\) + b(x\ - xl) + c{x\ -x\),

Fx, though not F, is unchanged by the triple transposition (^0^) (x2x3) (a;4x5) since
this changes neither O0 nor Q2 and merely multiplies Qx by — 1. This operation is, by
(6-3), the harmonic inversion in the planes

xolxi = XJX3 = xJxs = ± * (7-1)
26-2
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and so commutes with H, the harmonic inversion in

Xofa = xjjxz = xjx5 = ±i; (7-2)

the product of these two inversions is A0A2A4 s= hxhzlib, inversion in the opposite
plane faces X0X2Xi and X1XiX6 oiS; so H and h0h2h4 commute. Since H permutes
the vertices of £ as

it transforms each member of any pair

K> hi, h2, h3; ht, h5

into the other, and so commutes with h^, hth,z, hAhs. Thus H commutes with all of

Kh 1
h0h3h4 h0h2h5)

which compose the centre of the non-abelian group of self-projectivities of Fx.
The eight planes

xl + xf = xl + xl = xl + x* = 0 (9)
are, as noted in (6), on both Qo = 0 and Q2 = 0, so that the conies in which they meet
Q± = 0 are on Fv They consist of four pairs of skew planes, one such pair being

- xa\xx = x^\xz = x4/x& = ±i; (7-4)

harmonic inversion in this pair is the transform of H by h0 (or byh^. Inversions in two
other pairs of skew planes in 2 are the transforms of H by h2 and by h4; the four
inversions in opposite pairs of planes in 3) are

H, Hh^h-L, Hhzh3, Hh,^ih.

These are the coset of the first line of (7-3) in an elementary abelian group of order 8.
(8) The eight planes 2l form the base surface of a net of quadrics whose singular

members include three pencils of line-cones with respective vertices Xo Xv X2 Xz, Xt X5;
the common member of any two of these pencils is a pair of primes. The eight planes
belong four to each of the two systems on any non-singular quadric of the net. The
figure has been aptly called ((2), p. 238) a double-four of planes and occurs when the
lines of a tetrahedral complex in [3] are mapped on a non-singular quadric in [5], the
vertices and faces of the tetrahedron providing the four planes of each of the two
systems.

Each plane of 2fl is transversal to XOXU X2X3, X4XS; it is spanned by three points,
one on each of these edges of S. Each of the 12 joins of two of these points not on the
same edge is, as lying in two of the planes, on both Qo = 0 and Q2

 = 0 s o that its two
intersections with £lx = 0 are on F^ the conies in which the two planes meet Ft both
pass through these two points on the line.

Through each of the six points, two on each of X0Xls X2XS, X4XS, pass four planes
of 3i; they lie in the [4] joining the point to the solid spanned by those two of the three
edges on which the point does not lie; this [4] meets Fx in four conies, any one of these
being met twice by each of two others. There are six such composite sections of ^i-
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(9) The cardinal feature on which the relation between Fx and its projection Wx

hinges is that each line on Fx meets one of the four skew pairs of Si. Since

a0, ax, o2, a3, o4, o5
are now replaced by

a, —a, b, —b, c, —c

f{6) becomes an even and so/'(0) an odd function. The first two of the six relations
(3-3) become ,«,, .

so that (#§+ £?)/'(«) = 4a#, a 'quadratic' in 6 whose roots are 0 andoo; one of these
roots makes x0 + ixx, the other x0 — ixx, zero. Analogous statements hold for the present
forms of the other two pairs of equations in (3*3). The upshot is that the two foci of that
involution now existing on A three of whose pairs are its intersections with Ao and A1(

A2 and A3, A4 and A5 are one in each of a skew pair of Q>.
Every individual plane of 2$ is invariant under the four projectivities in the top line

of (7-3) while those in the bottom line transpose the planes of each skew pair. If,
therefore, a skew pair of 3) meets A it meets all of

A V X A45

^024 A124 ^034 ^025

|

A plane of 3i that meets A meets A01, A23, A45 in points with the same parameter,
whether 0 or oo, since hohx, h2h3, htha leave both plane and parameter unchanged; but
the same plane meets A024, A124, A034, A025 in the points with the opposite parameter
because the inversions in the lower line on (7-3), while not changing the parameter,
transpose the plane with its opposite member in 2.

The three sets of eight lines that meet the other skew pairs are found by operating
on this set with h0, h2 and ht since these inversions transform any opposite pair of 9)
into the other three pairs. One such set is

Ao K A023 A045|
A24 A35 A34 A25-J

A, meeting two conies on Fx, is skew to the six others and their planes. Consider, then
the [4] spanned by A and cr, one of these six conies. The opposite pair of planes of S>
which includes the plane of o~ is obtained from the pair which meet A by operating with
an hp say, to be definite, with h0 and so with ht too. Then cr meets both h0A = Ao and
h0A01 = Ax; the [4] therefore contains A, Ao and Ax as meeting both cr and A, as well as Aol

meeting both Ao and Ax. But Xo and Xx are one on each diagonal of the quadrilateral
AA0A01A1 so that the [4] is invariant under h0 and hx and contains the conic

T = hocr = hxcr.

Its complete intersection with ^i consists of a quadrilateral and a pair of conies, each
conic meeting an opposite pair of sides of the quadrilateral.

(10) The projection Wx of Fx from A onto £ is now seen to contain two lines, pro-
jections of the conies on Fx that meet A; these lines ((U), p. 359) ft, /i' pass one through
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each focus of that involution now existing on y three of whose pairs are n0 and nv n2 and
n3, n4 and nb. Both [t and fi' meet all seven of the lines (cf. (9-1))

7 7 7 7
TIQWJ, n2n3, n47lb\ *024> 'l24> 'o34> ^025"

There are also six conies on Wx; these lie one in each of the planes joining /i and fi' to

^0^1> ^2^3» ^4^5'
When the involution on y is (f> + <}>' = 0 the chord joining nQ((f> = a) to M1(^ = — a) is

< — a2«/ = g — a2x = 0.

The lines /i, fi' are y = t = 0 and z = a; = 0. Since, with

/ (0 ) = (0»-a«)(08-&»)(0»-ca),
« — » _ « A

ej — e3 —• e5 — v

the equation of Wx is
a; ?/ 2z^ + 2e2(yz-l-a;i) + 2e4a;«/y z t2 + e2(z

2 + 2yt) + e4y
2 -

z t 2e2zt
= 0,

and the presence of the lines on the surface can be verified. The expanded form, to be
available for reference, is

t(Zyzt - 2z3 - xt*) + e%z{2yH - yz2 - xzt) + e4y{y2z + xyt - 2xz2)

0. (10-1)

Points in [5], neither of them on A, that are harmonic inverses in the pair of planes
of Sd that meet A are projected into points in S that are harmonic inverses in [i and /i'.
With the present coordinate system this is effected by multiplying either x and z or
y and t by — 1, a procedure which merely multiplies the left-hand side of (10-1) by — 1
and so leaves W± unchanged.

(11) If a0, als a2, a3, at, ab can be paired not only in one but in two involutions their
single common pair may, or may not, include one and therefore two of the a,-. Suppose
that it does not, and assign to its two members the parameters 0 and 00. Any involution
which includes this pair has the same product of the two parameters of all its pairs so
that there are, say, relations

But these relations imply that

a2a5 = axa± = aoaa = k3,

where &x k2 k3 = a0 ax a2 a3 a4 a5.

Hence the ai can be paired also in a third involution as proved geometrically long ago
on page 12 of (9). This situation will be explored below; one may then presume, for the
moment, that the common pair of the two involutions consists of a4 and a5 and
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assign to these the parameters 1 and — 1. Any involution that includes this pair has

an equation 66'+ K(6 + 6') + 1 = 0.

Use, therefore, the same label J for the involution 6 + 6' = 0 as above and call the
involution 66' +1 = 0 J'; take

«0a3 = a l a 2 = a4a5 = - 1

so that the a^ are
a, —a, ar1, -a-1, 1, - 1

and /(<9) = (0 2 -a 2 ) (0 2 - a - 2 ) (0 2 - l ) . (11-1)
This may be the proper place to note, with an eye to any calculations involving points
on A, that

/'(a), / '(-a), / ' ( O , /'(-a-1), /'(I), / ' ( - I )

are proportional to

a2, -a2, a-2, -a"2, - l/fa+a-1), l/Ca + a-1). (11-2)

(12) F2 is the surface common to the quadrics

Qo = x% + x\ + x\+xl + x\ + xl = 0,

Qx = a{x%-x\)+ ar\x\-x%) + xl-xl = 0,

Q2 = a?{xl + x\) + OL-z{xl + xl)+xl + xl = 0.J

As with Fx so with its specialization Fz: the planes of the double-four

x

meet the surface in conies. But now there appears a second double-four

a?x% -x\ = **x\ - x\ = x\ - x\ = 0, (2')
on both Qt = 0 and Qo = Q2> whose eight planes therefore also meet F2 in conies.

Any of the 32 lines A on F2 meets two skew planes of 3l and two skew planes of Si', the
intersections being the pairs of foci of the two involutions in which the six intersections
of A with other lines on F2 are paired. The projection W2 of F2 from A onto 2 contains,
in consequence of the specialization, four lines and twelve conies.

I t was seen in section 9 that A meets planes of 3) where 6 = 0 and 6 = oo; (3-3) and
(11-2) show that it meets

ax0 + x3 = ax± + x2 = xi — x5 = 0 where 6 = i,

<xx0 — x3 = <xxx — x2 = xi + x5 = 0 where 6 = —i.

The inversion H' in this pair of planes of &)', whose equations are

axo/x3 = a-1x2jx1 = -xjx5 = + 1,
commutes with

/ , h0h3, hxh2, hjib

hoh2hit h2hz\, \\hi, hoh2hs.
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I t replaces x0, xx, x2, xz, x±, xs by arxxz, arxx^, <xxx, axQ, — x5, — xi and so is seen to
commute with H that replaces them by

%X-y, 1X0, KC3, 1>X2> ^5' W 4 .

Both H and H' commute with

/ , A4A5, h0h2h4, hoh2h5,

which form the centre of the group of 128 self-pro jectivities of F2; this group consists
of its normal subgroup $ and three cosets B.S, H'S, HH'S1.

The commutativity of H and H' is also apparent from geometrical considerations.
For the four planes concerned, skew pairs of Ql and Si', all meet the four skew lines
A, A45, A024, A035 and do so in related ranges: the parameters on A and A45 cut by any of
the four planes are equal while the parameter on either A or A46 is related to that on
either A024 or A025 by the involution #<-+ 0-1. This shows the four planes to be among the
oo1 generating planes of a cubic threefold V, a family fittingly described ((12), p. 12) as
a regulus 01 of planes, and parametrized by their intersections with any of the oo2

directrix lines of F. The two pairs of S> and 2' are, as their parameters show, harmonic
in ^ and this not only explains why H and H' commute but discloses that HH' is also
a biplanar inversion, its fundamental planes completing in tffl a regular sextuple with
the two harmonic pairs.

When V is projected from A, one of its own directrices, onto £ the planes on V become
lines in 2 . Any transversal of three of these lines is joined to A by a solid meeting three
planes of Si each in lines: these lines have a regulus of transversals which, meeting
three planes of V, meet them all ((12), p. 13, with n = 3). The regulus of planes on V is
thus projected from A into an ordinary regulus of lines in 2, and the inversions H, H',
HH' induce three mutually commutative biaxial inversions in 2 whose axes form a
regular sextuple in a regulus.

(13) The projection W2 of F2 from A onto S contains four lines /i, fi', v, v' belonging
to a regulus, and twelve conies. Just as /i, /i' are the transversals y = t = 0 and
z = x = 0 from the foci of J on 7 to the chords joining its pairs so are v, v' related to J'.
But if <jxj>' = — 1 the chords

= 0

of 7 are members of the regulus

z-x=py, t-y = pz

and so have for transversals the lines of the complementary regulus

q(z-x) = t-y, qy = z.

This line meets 7 where (j> = q; nowhere else. So v, v' occur when q = ± i and are

v: y = iz, x = —it; v'\ y = —iz, x = it.

They must, with /i and /i', lie on W2 and are quickly seen to do so. For now, by (11*1),
e6 = — 1 and e4 = — e2 so that (10-1) may be written

)-2yz(xz+yt)}. (13-1)



Models of Weddle surfaces 409

The harmonic inversion in v and v' transposes (x,y,z,t) and (it, —iz,iy, —ix); this
merely multiplies each side of (13-1) by — 1.

I t is apparent that /i, /i', v, v', all lie on Q, the quadric xy = zt, occurring when p = oo,
0, — i, i in the regulus xjt = z/y = p. They are harmonic pairs therein, and the regular
sextuple is completed by xjt = zjy = + 1. Harmonic inversion in these two lines
transposes x with t and y with z, an operation which, by (13-1), leaves W2 unchanged.

When e2 = 0 (13-1) collapses to (5-1); this occurs when a2 + 1 + a~2 = 0, so that a is
a sixth root of unity other than 1 and — 1. This special case will be encountered later.

Now as with Q, so with W2; a plane through 7i4vi5 has only a single contact, namely
the intersection, other than n4 and ns, oinin5 with the cubic curve residual to w4w5 in
which the plane meets W2. So the points of %4w5 are in (1,1) correspondence with the
contacts of planes through »4n5 either with Q or with W2: the sets of contacts with the
two surfaces are projectively related. Hence if Q and W2 have the same tangent plane
at three (or more) points on ?i4n5 they touch all along the line. And this they do, having
the same tangent plane at the four intersections of nin5 with /i, /i', v, v'.

The twelve conies on W2 are one in each of the planes joining nonv n2na, nin5 to ju, and
fi' or joining n0n3, nxn2, »4?i5 to v and v'.

Since A024 and A025 meet those pairs of 3! and 3s' which meet A the lines l02i and Zo25

meet all of/*, fi', v, v' and so lie on Q. The complete intersection of Q and W2 is thus
accounted for, consisting of (if the line of contact is reckoned twice) four lines in each
regulus.

(14) That there are on conies hexads whose points may be paired in three different
involutions is apparent from the figure of two equilateral triangles with the same
circumcircle; their six vertices are joined by three parallel chords in three different
directions and, incidentally, the three involutions have a common pair 'at infinity'.
This Euclidean example also indicates that the six points may be assigned parameters

a, (Mb, cj2a, b, (ob,

zeros of/(8) = (83 — az) (83 — b3). The pairings in the three involutions are

h h h
a, b a, (ob a, aFb

wa, (ozb (oa, b <oa, utb

(o2a, o)b ofia, (ozb (o^a, b.

The respective quadratics whose roots are the foci of these involutions are

Take, then, in [5] the quadrics

= 0,

= 0,

+ (ox\) = 0..

(14-i)
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F3, the surface Qo = Qx = Q2 = 0, is invariant under p, the projectivity of period 3
that replaces

b y o)2x2, o)2x3, 6)2xit (o2x5, (o2x0, o)2x1

and so multiplies Qo, Q^ Q2 by a), 1, w2. One expects that F3 will contain 24 conies, and
so it does; they lie in the planes of the three double-fours

ax\ + bx\ = (oax\ + o2bx\ — u)2ax\ + oibx\ = 0, (3)0)

ax\ + uibx\ = wax\ + bx\ = u>2ax\ + uFbx\ = 0, (3>2)

axl + (i)2bx2— (oax2+ a>bx\ = w2ax2+ bx\ = 0. (®i)

Indeed all these 24 planes are on Q1 = 0 while those of ^ 0 , î 2> ^4 are> respectively,
on abQ0 + Q2 = 0, wa6Q0 + £12 = O, o)2abQo + D.2 = 0.

Since, now,
/

the six square roots of

/ ' (a) , f'i?M), f'(o*a), f'(b), f'(cob),

are proportional to

a, o>a, G)2a, ib, icob, i(o2b

so that A, given in terms of a parameter 8 by

x0 = ib(d + a), x2 = ib((o2d + a), x4 = i
x5 = a(o)d + b), J

5

is on i^, as are all the other lines which occur on prefixing minus signs to any of these x^.
Each of the 32 lines meets six others, the intersections being one in each of the primes
Xj = 0 and so having parameters

— a, —OM, —<j)2a, —b, —cob, —co2b.

These six points are also paired in /„, in I2 and in /4.
Whatever line among the 32 is chosen it meets two planes of each double-four, the

parameters of the intersections satisfying

62 = ab, 6% = u>ab, 82 = <o2ab

according to which double-four (but not which line) is in question. These are the three
pairs of foci of Io, I2,14. The 192 intersections, six on each of 32 lines, lie eight in each
of the 24 planes.

(15) If the non-singular Q.x = 0 is cast in the role of Grassmannian of lines in [3] so
that the planes, four in each system on Q± = 0, of a double-four map the vertices and
faces of a tetrahedron, then £>0, @!2, S>4 correspond to tetrahedra of a desmic triad: for
if two planes are taken, one from ^ 0 and one from S>2, in the same system on D.1 = 0 and
so with a single common point, it is found that a plane of ^ 4 also passes through this
point. Such a point is (15-2) below. The 16 such points afforded by one system of planes
map the 16 lines that contain three vertices, one of each tetrahedron; the 16 afforded by
the other system map the 16 lines that lie in three faces, one of each tetrahedron.
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Three planes, one belonging to each of So , @l2, ^ 4 , that meet A are

b = 0,

b = 0,

b = 0;

here one may take either square root of a and either square root of b, but the same
roots are used throughout. These three planes all lie in the prime

(x0 + w2x2 + o)x4) ^ja + i(xt + co2x3 + a)x5) *Jb = 0

and so, since they are all on Qx = 0, all contain the pole

of this prime with respect to Q.± = 0.
The opposite planes of the double-fours occur on multiplying (either Ja or) *Jbby — 1

and lie in the prime
(x0 + o)*x2 + (oxz) ^a — i(xx + w2x3 + o)x5) *Jb = 0. (15-3)

These primes are transposed by the biplanar inversion h0h2h4 and so both contain
A024 as well as A. They both meet -P3in A, A024 and three concurrent conies. Each pair of
the 32 lines that are transposed by this inversion, for example A3 and A15, spans a solid
through which pass two primes each meeting F3 further in three concurrent conies, so
that there are 32 such composite sections o£Fs. Since there are 32 points each common
to three of the 24 conies there will be four of the points on each conic.

(16) If r is a square root of — b/a F3 is invariant under the biplanar inversions

Ho in the planes xQ\xr = o)x2/x5 = (i)2xjx3 = ±r,

H2 in the planes o)xo/x3 = u>2x2\xx = xjx5 = + r,

H4 in the planes w2x0/«5 = xjx3 = wxjxy = ± r,

which, by section 6, transpose x0> xv x2, x3, cc4, x5 with, respectively

rxx, r~xx0,

0)2rx3, o)2r~rx2,

co2rx5, wrx3,

rx 5>

rx3, w2rxv

(16-1)

Matrices imposing Ho, H2, Ht are

, \o)R .
R

R .

i?= 'where

These matrices are all, with R, of period 2 and, as their form shows, generate a sym-
metric group of degree 3. Their products in pairs impose p and p2.
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Ho, H2, Ht subject the vertices of S to the permutations

(X0X1)(X2X5)(X4X3), (X0Z,)(X,X1)(X4X,), (X0X5)(X2X,)(X4X1).

The group so generated is imprimitive, the planes X0X2X4 and ^ ^ 3 X 5 being
either invariant or transposed. S, under which every vertex of S is stable, is a normal
subgroup of the group of 192 self-projectivities of F3; h0hzh4 is still central for this
larger group.

(17) The projection W3 of F3 from A onto S contains six lines

and 18 conies. The /ij are coplanar and concurrent, as are the /I'J. Moreover, since
x0 + CJ2X2 + <jix± — 0 joins A to Xx X3 X5 and xx + o)2x3 + o)xb = 0 joins A to Xo X2 X4 the
two planes in S both contain Z024 = l135 and are harmonic to n0 n2 nt and % ns nb. fij and
fi'j meet A one at each focus of Ip and are transversals to the three joins of nodes of W3

that are paired in I^ony; the planes which contain either /ij or /i'j and one of these joins
meet W3 further in its 18 conies.

The plane containing /i0, /i2, /t4 is the intersection of S with (15-1) and this opens one
way to finding its equation. Since, with F3, three of the relations (3-5) may be taken as

ax0 = — aWx— ab3y — bsz+ aH+ pa + q,

= — u)2a%zx — coab3y — b3z + o)2aH + aypa + q,

= — wa2b3x — (o2dhzy — b3z + coaH + (o2pa + q,
it follows that

a(x0 + (02xz+o)xt) = 3(aH—a2b3x).

Similarly ib{xx + o)2x3+<oxs) = 3(bH - a3b2x)
so tha t (15-1) is

i $t-a3x) = 0,

showing fi0, n2, /<4 to be in the plane t - (ofe)4x = 0. Similarly /i'o, /i'it ju,'t are in

Since, now, ex = e2 = e4 = es = 0 the equation of W3 is

x V
y z = 0
z t

e6(3xh/z - 2xy3 - xH) + e3(y
3t - xz3) + xt3 + 2z3t - 3yzt2 = 0, (17-1)

where e6 = a3b3 and e3 = a3 + b3. The six lines jip /I'J lie three in each of two planes
through z = t = 0, the intersection of the planes t = a3x, t = b3x spanned by the triads
of points on y(l, d, 62, d3) whose parameters are

a, (oa, o)2a and b, ab, (o2b.
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The lines become conspicuous on writing (17-1) in the form (abbreviating a square root
of a3b3 by the letter p)

(t* - a3b3x2) (xt - 3yz)+—£— {(py3 - z3) (px + t)- (py3 + z3) (px -1)}
&p

- {(py3 - z3) (px + t) + (py3 + z3) (px -1)} = 0.

The /ij are the intersections ofpx = t with the planes py3 = z3 and concur at (1,0,0, p);
the /i'j occur on writing — p for p.

W3 is invariant under biaxial inversions <tf?0,34?2,3^, the axes of ^ being fij and ji\.
These, like the JH,- which have given rise to them on projection from A, generate a
symmetric group of degree 3 under which Wz is invariant. Indeed a glance at (17*1)
wherein y and z only occur cubed and in the product yz, shows that Wz admits the self-
projectivity which replaces x, y, z, t by x, wy, uPz, t and this does in fact happen to be
J ^ ^ = J^J^0 = tf^v Since the axes of ^ are px\t = hpp^yjz = ± 1 the effect of
the inversion is clear from (6-3), or rather from the analogue in [3] of this rule in [5];
it is to replace

x, y, z, t by t/p, zw^/pi, WPpiy, px.

This, as e6 = p2, multiplies the left-hand side of (17-1) by — 1.

(18) While the vertices of any two equilateral triangles with the same circumcircle
can be paired in three involutions IQ, /2, J4 it is noticeable that a fourth such partitioning,
in an involution J, is available when the two triangles supply the vertices of a
regular hexagon, for they then he two on each of three diameters. This, in the notation
of section 14, happens when a + b = 0; the pairing in J is

a, —a; wa, —wet,; w2o, —o)2a.

The quadrics are then precisely as in section 17 of (6); JF4 admits, among its self-
projectivities, not only Ho, H2, Ht but also H of section 7 here. Since H imposes the
triple transposition

(X0X1)(X2X3)(XiXs)

on the vertices of S it transposes the planes Xo X2 Xt and X1X3 X5. These vertices now
undergo a dihedral group of twelve permutations and JP4 admits 384 self-projectivities.
The product H2H0H, for example, permutes the six Xt in a single cycle.

h0h2ht is still central in this larger group.
When b = — a (17-1) becomes

a6(xH + 2xy3 - Bx*yz) + xt3 + 2zH - Zyzt* = 0

in agreement, when a6 = 1, with (5-1). The six hues /ij, /tj are apparent from

(t2+a6x2) (xt - Zyz) = (ia3y3 - z3) (ia3x + t) + (ia3y3 + z3) (ia?z -1).

This equation may also be written

*) (xt - yz) + 2t(z3 - a6a;3) - 2x(t3 - a6y3) = 0,
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showing that xt — yz cuts Wt, apart from y, in the five lines

z = a2x, t = a2y; z = watx, t = (oa2y; z = co2a2x, t = o)2a2y;

x = z=0, y = t = O.

The former three join nodes of W4 paired in J; the latter two, in the opposite regulus,
pass one through each focus of J on A and are the axes v, v' of a biaxial inversion
3P leaving W^ invariant. Wi admits a dihedral group of 12 self-projectivities: the
symmetric group, already available for Wz, extended by £F.

The lines /iis fi'j on Wt are
t — ± ia?x, z = + i(o'ay

and lie in a regulus with v, v' on Qp the quadric zt = oficftxy which touches W4 all along
the join of the two nodes that are paired both in J and in Ij; i.e. those whose parameters
on 7 are ± «%.

(19) There are on conies hexads admitting six partitionings as three pairs in
involution; such a hexad, as Corrado Segre first remarked ((10), p. 133) affords a
sextuple tetrahedroid Ke. In birational correspondence with K6 is a specialized Weddle
surface W6 which is the projection of a non-singular model Fe.

One way to obtain such a hexad is to use a regular sextuple, i.e. three pairs each
harmonic to both the others. Each pair belongs to two of the six involutions: one
supplements it by crossings of the other two. For example: a standard regular sextuple is

0, oo; 1, - 1 ; i, -i;

the pair 0, oo is to be supplemented either by 1, i and — 1, — * or by 1, —i and — 1, i.
Take, then, the three pairs

a, b; (oa, (ob; w2a, o)2b.

Since they undergo cyclic permutation on multiplication by <o any two of them are
harmonic if one pair of pairs is; this occurs when

0. (19-1)

There are, in these circumstances, six involutions each containing three pairs of the
hexad, namely

a, b

wa, w2b

w2a, wb

k
a, b

wa, w2a

wb, w2b

k
a, wb

wa, b

w2a, w2b

h
a, wa

b, wb

w2a, w2b

h
a, w2b

wa, wb

w2a,b

h
a, w2a

wa, wb

b,w2b

The quadratics whose roots are the foci of these involutions are

2O:<92= ah. I1:d
i+ 2(a + b)d+ ab = 0.

J2: 02 = coab. I3: 0
2+2w2(a + 6)0+ oab = 0.

4: 62 = o>2ab. I5: 62+ 2w(a + b)d + w2ab = 0.

(19-2)
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The Ij admit coupling as

the pair common to any couple belonging to the hexad; F6 has the properties of F3 in
triplicate and so, after projection, T^ will have the properties of W2 in triplicate.

Three involutions do not, in general, share a common pair; they do so when the
quadratics whose roots are their foci are linearly dependent; this occurs for

-*0> 2> -*4> A)> *3' -*5> -^2' A>> -*1» -M> A ' -*3"

So -P6 has the properties of F3 in quadruplicate, as, after projection, W6 will have those
of Wz. One expects four sets of three double-fours of planes all meeting F6 in conies and,
as each Ij belongs to two sets of three with a common pair, each double-four will belong
to two of the four sets of three double-fours.

One set is £&0, Q)t, S4 , already encountered in section 14; the others will be labelled

%,£>3,&5; S2 ,^6 ,^ i ; @t,9lt9z; (19-3)

they can, of course, only occur when (19-1) is satisfied and we now proceed to identify
them.

(20) By (14-1) the sum a2Q0 + aQ.x + Q2 lacks the terms in x\ and x\, while

lacks those in x\ and x\. Is there, in the pencil of quadratic forms spanned by these two,
one lacking x\ and x\% The only possibility is ab£l0 — {a + b)Q.1 + D2 which is not in the
pencil unless

a 1
= 0,

ah —a — b 1

and this is so by (194). Now

a2t20 + aQx + O2 = 3a2xg + (a2 + ah + b2) x\

(a2 + wab + w2fc2) x\ + (a2 + w2a6 + w62) x\\

by a further appeal to (19-1). But (19-1) is

(o)a-(o2b)2 + ((o2a-cob)2 = 0
and to take

wa-(o2b = i(oj2a-a)b) (20-1)

is merely to select one of two sets of quadrics possessing the properties now demanded.
Then

a2Q0 + a£lx + Q2 == 3a(ax2-bx\) + (a-b)(a- w2b) (x2 + iwx\).
Likewise

62DO + b£lx + Q2 = 3b(bx2 - ax\) + {b-a)(b- w2a) {x\ - iwx2)
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so that the double-four of planes

is on every quadric of the pencil. The remaining two double-fours are, by using p,

ax\-bx% ~x\-icoxl = x\ + icoxl = 0, (%)

ax\ — bx\ = x\ — icoxl — x\ + *wx! = 0- {&>5)

Every plane of any of these six double-fours cuts eight lines on F6 at the foci of the
appropriate involutions. This may be verified by substituting the parametric forms
(14-2) in the equations for the 3>J; the resulting quadratic for 6 must be the same as
that in (19-2) with 6 changed in sign. One instance must suffice. The two primes
x\ = icoxl cut A, where

coW + 2ioad + a2 = ico(02 + 2a6 + a2)

which accords with 76 in (19-2), with — 6 instead of 6, provided that

oa(l— i) (l — io))a
=-u)(a

These conditions are indeed satisfied, by (20* 1).

(21) I t was noted in section 14 that @l0, @i2,2i are all on Qx = 0; it is therefore to be
expected that each of the sets of three double-fours in (19-3) is on some quadric
containing F§. Since @x is on

a2Q0+aQ1 + Q2 = 0 and 62O0 + bCl1 + Q2 = 0

it follows, on applying p, that ^ s is on

watQo + aQx + w2D2 = 0 and ob2Q0 + bQ1 + w2Q2 = 0

and that &iz is on

<o2a?£2o + aQ.x + wQ2 = 0 and w262D0 + b^lx + wO2 = 0.

The quadric that is common to the pencil containing 3)5 and the pencil containing
contains both £&5 and 3>z\ which quadric this is appears from the identity

+ a(<oa - w

and since the quadratic form in brackets is (a+b) {abQ.o + Q2) — abQ1 the corresponding
quadric, to be called Q03S, contains ^ 0 . Moreover, by (19-1), the equation of Q0Z5 is

a6Qo + |(o + 6)i2i + Q2 = 0.

From this, using p2 and p, one finds that ^ 2 , 3>5, Sl1 are all on

#261= (o2abQ0 + i(a+b) Q1 + o)Q2 = 0

and that £F4, Qlt 3>z axe all on

Qil3: (odbQ.0 + \{a+b)£ll + (D2Q.2 = 0.

The quadric Qa = 0 is Q0M.
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The two planes of 2>j that meet A are fundamental spaces of a harmonic inversion
Hj leaving F6 invariant; Hj induces in S a biaxial harmonic inversion ^ for which We

is invariant. The effects of Ho, H2, H4 are indicated in (16-1); they show that these three
inversions act on Qo, Clv Q2

 a n ^ the above four quadrics as follows.

ClJab

o)2Q.Jab

(oQJab

Oi O,

— Qx — a

— Qx — a)c

-Qx - w 2 ,

2 $024

bOo $024

^6^0 $024

a6O0 Q024

$035

$035

$413

$251

$251

$413

$251

$035

$413

$251

$035

$413

Thus each Hj leaves invariant those two of the four quadrics on which the planes of 3lj
lie, while transposing the other two quadrics. So, enlisting Hlt H3, H5, the six Hj impose
the six transpositions of pairs and the group generated by the H} imposes the sym-
metric group of 4! permutations on the quadrics.

If every one of Q02i> $o35> $25i> $413 is invariant under a projectivity P so is every
quadric of the net to which they belong and so, therefore, is their common self-polar
simplex 8 whose bounding primes are thus permuted among themselves. But no
permutation, other than the identity, of these primes x} = 0 can leave every quadric
of the net invariant; so P must be the identity. Thus the group of projectivities
generated by the Hj is of order 24, a symmetric group of degree 4; F6 has a group of
768 self-projectivities.

(22) F6 has, as already remarked, the properties of F3 in quadruplicate; for example,
each set of three double-fours provides 32 prime sections of F6 consisting of two lines
and three concurrent conies. Of the 128 such sections of F6 a single example must
suffice: the planes (a being a square root of i)

= 0,

= 0,

xx = 0

belonging respectively to £>0, !3Z, Q)h are all in the prime

<r(x0 *Ja + ixx Jb) + i(o2(x2 ^a — x3yjb) — w(x4 Ja+x& Jb) = 0

and all pass through the point

(o-co2^b, i<TG)2Ja, —*Jb, —Ja,i(o<]b, —ico^a).

Since A meets an opposite pair of planes of each of the six double-fours there are, in
addition to the lines on an unspecialized Weddle surface, 12 lines /ij, JI'J ((11), p. 360)
on We; Hj and /i'j meet y at the foci of Ij and are the transversals from these points to the
chords joining points paired by Ij on y. The 12 lines fall into four pairs of coplanar and
concurrent sets of three, such a set being the projection of three concurrent conies on
F6 that all meet A. The intersection of such a pair of planes is on WG and is also the
intersection of planes spanned by complementary triads of nodes. The six biaxial
inversions in pairs of lines fij, fi'j belong to a group of 24 projectivities under which Ws

is invariant.
27 PSP 80
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These, and other properties, are analogous to those of W3; but W6 has also properties
that are analogous to those of W2. For example: /i0, /A,'O, /ilt /i[- the suffices as in one of
the three couplings of the I}-belong to a regulus on a quadric qgl which meets W6

further in two lines and touches it along another line.
Of the ten lines of intersection of planes, spanned by complementary triads of nodes

of W6, four are also intersections of planes such as /i0, /i2, /t4 and /i'o, /i'2, ju,^; these four
lines are , . , . _ .

'024 = '135) *0S5 — fJ.24> ''251 = lB40> f413 — ''502

and indicate the possession by Wa of a property of Wz in quadruplicate. The remaining
six of the ten lines lie two on each of three quadrics that touch W6 along the join of two
nodes, and indicate the possession by W6 of a property of W2 in triplicate. Indeed there
are quadrics:

q01, touching W6 along /IOTOX and containing l023 = lli5 with l12a = lOi6,

^23, touching W6 along n2na and containing l2iS = lS01 with Z345 = l201,

q45, touching W6 along n4rc5 and containing l401 == l&23 with ?501 = li23.
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