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PREFACE
In this volume all the ruled surfaces in ordinary space of orders up to and

including the sixth are studied and classified. Tables shewing the different

types of surfaces are given towards the end of the book, and the tables for

the surfaces of the fifth and sixth orders are here obtained for the first time.

It seems that the results so obtained are of great importance ;
but the

incidental purpose which, it is hoped, may be served by the book is perhaps

of still greater importance. For there exists at present no work, easily

accessible to English readers, which tests the application of the general

ideas here employed in anything like the same detail. One might mention

especially the use of higher space and the principle of correspondence, and

these two ideas are vital and fundamental in all modern algebraic geometry.

It is hoped therefore that the book may be of use to a wide circle of readers.

I wish to express here my thanks to the staff of the University Press

for their unfailing accuracy in the printing and for the ready courtesy

with which they have accepted my suggestions.

Notwithstanding the large number of surfaces which are herein in-

vestigated, the book would be incomplete were I not to make an acknow-

ledgment of my obligations to Mr White, of St John's College, and Professor

Baker. Even those who have only a slight knowledge of the inultifarious-

ness of Mr White's mathematical public services will be surprised to learn

that he found time not only to read the proof sheets but also to read

through the whole of the manuscript, and I am very grateful to him for

his criticisms and suggestions.

My gratitude to Professor Baker is something more than that of a

student to his teacher. He it was who first suggested that I should under-

take this work, and his encouragement has been given unsparingly and

effectively in times of difficulty. I have derived great benefit not only

from my personal conversations with him but also from attending his

courses of lectures. I thank him for many things; but especially for his

interest, which has never flagged, and for his trust, which has never

wavered.
W. L. E.

TBINITY COLLEGE
CAMBBIDOE
October 1930





CHAPTER I

INTRODUCTORY

SECTION I

PRELIMINARIES

1. The system of points on a line is determined by two of them,

any third point of the line being derivable from these two ;
the same line

is equally well determined by any two of its points. Similarly, if three

points are taken which are not on the same line they determine a plane,

the same plane being equally well determined by any three non-collinear

points of it. Proceeding in this way we say that n + 1 independent points

determine a linear space of n dimensions, the points being independent
when they are such that no one of them belongs to the space of less than

n dimensions determined by the others; the same space of n dimensions is

equally well determined by any n -h 1 independent points belonging to it.

We shall use the symbols [ri\ and Sn to denote a space of n dimensions.

In [n] two spaces [m] and [n m] of complementary dimensions have, in

general, one point in common and no more. A space [p] and a space [q]

have, in general, no common points if p -f- q < n, while if p + q > n they
have, in general, a common [p + q n] . If they have in common a space

[r] where r > p -\- q n, then they are contained in a space [p + q r] or

[n s] ,
where s = r p q -{- n. For example : two lines in ordinary

space do not intersect in general; if they do so they lie in a plane. If we
call the intersection of [p] and [q] their meet and the space of lowest

dimension which contains them both their join, then the sum of the

dimensions of the meet and the join is p -f q.

2. Just as we can project, in ordinary space, on to a plane so we can

project, in [n], on to [n 1]; if is the centre of projection and P any
point of [71] the line OP meets [n 1] in a point Pt which is the projection
of P. We can then project again from a point of [n 1] on to a space

[n 2] in [n 1J, the line O^P^ meeting [n 2] in a point P2 . The

passage from P to P2 can, however, be carried out in one step, simply by
joining P to the line OOl by a plane and taking P2 as the intersection of

the plane with [n 2] . We thus speak of projecting the points of [n] from
a line on to [n 2] . Similarly, we can project from a plane on to an

[n 3] ,
from a solid on to an [n 4], and so on

;
the sum of the dimensions

of the space which is the centre of projection and of the space on to which

we are projecting being always n 1.
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3. Just as the order* of a plane curve is the number of points in which

it is met by a line, and the order of a twisted curve is the number of points

in which it is met by a plane, so the order of a curve in [4] is the number
of points in which it is met by a solidf and so on, the order of a curve in

[n] being the number of points in which it is met by a space [n 1] of

complementary dimension. The order of a surface in [n] is the number of

points in which it is met by a space [n 2], just as the order of a surface

in ordinary space is the number of points in which it is met by a line. It

is here implied that the space [n 2] has a general position in regard to

the surface, otherwise it might moot it in a curve; a line in ordinary space

may itself lie on a surface. Similarly the order of a locus of r dimensions

is equal to the (finite) number of points in which it is met by a space

[n r] of complementary dimension and of general position. A locus of

dimension r and order m will be denoted by a symbol Mr
m or I

7
/"? ftnd if

r = n 1 the locus will be spoken of as a
"
primal." A space [n 1]

lying in [n] is called a "prime" of [/&]<

4. If we have a curve in ordinary space its chords fill up the space;
there is a finite number of them passing through a point of general position.

But in [4] the chords of a curve do not fill up the space ; they form a locus

of three dimensions whose order is the number of points in which it meets

a line. If we have a system of coordinates in [4], say five homogeneous or

four non-homogeneous coordinates, the locus is given by an equation in

these coordinates, and the order of the locus is the order of this equation.
In [n] the chords of a curve form a three-dimensional locus whose order is

equal to the number of points in which it meets an [n 3]. The chords

of a surface form a five-dimensional locus.

5. Suppose that we have a curve of order N in [n]\ there may be a

point of the curve such that any [n
~

1] passing through it only meets

the curve in ^V 2 other points. Such a point is called a double point of

the curve. In particular we have the double points of a plane curve
;
for

example, the point x = y = is a double point on the cubic curve

x* 4- 2/
3 = 32/z,

any line through it meeting the curve in only one further point. It is

known that a plane curve of order N cannot possess more than

\(N-\)(N- 2)

double points, a -ple point (i.e. a point such that any line through it

meets the curve only in N k further points) counting as \k (k 1) double

* It is always to be understood that the curves and loci spoken of are algebraical.

t The word solid will always mean a three-dimensional space. We shall sometimes
find it convenient to use the word solid as well as the symbols [3] and $3 .
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points*. If d is the actual number of double points possessed by the plane
curve the number \ (N 1) (N 2) d was called by Cayley the de-

ficiency of the curve. This number is in fact the same as the genus of the

curve. The most fundamental property of the genus is that it is invariant

for birational transformation of the curve; the genus of a curve in space
of any number of dimensions can therefore be defined as the deficiency of

a plane curve with which it is birationally equivalent.
The explanation of what is meant by birational transformation must be

given here. Two curves are said to be birationally equivalent or to be in hi-

rational correspondence when the coordinates of a point on either curve are

rational functions of the coordinates of a point on the other. In this way
to a given point of either curve there will correspond one and only one

point of the other
;
but multiple points will prove exceptions to this rule,

to a multiple point 011 one of the curves there will correspond several

points on the other. Thus we can say that there is a (1, 1) correspondence
between the two curves, with certain reservations as to the multiple points.

But it appears that we can always regard a multiple point as consisting of

several points on different branches of a curve, and if we regard the multiple

point in this way we can say that the correspondence is (1, 1) without

exception. Thus a birational correspondence and a (1, 1) correspondence
between two curves mean the same thing ;

and the fundamental property
of the genus is that it is the same for two curves which are in (1, 1) corre-

spondence.
If we are considering correspondences between the points of two curves,

or between the points of a single curve, then a double point must be re-

garded as two distinct points on different branches of the curve. At a

cusp, however, there is only a single branch.

In the quadratic transformation

_ 1 _ 1 _lX ~X 9 U ~f Z
~Z*

the rational quartic y
zz2 -f- z 2

t*
2

-1- x2
y* = 0,

with nodes at the three vertices of the triangle of reference, is transformed into

the conic

x* + y* + z 2 - o,

and to each node of the quartic there correspond two distinct points of the conic.

Corresponding to the node y = z = we have the two points in which the conic

is met by the line X =
;
and to either of these points on the conic corresponds

the node y = z = on the quartic, the two points on the conic giving points on
two distinct branches of the quartic.

* It may be equivalent to more than thisnumber of double points if the k tangents
are not all distinct or are such that some of them meet the curve in more than k + 1

(instead of exactly k -f 1) points at the multiple point.
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On the other hand, the rational quartic

t/
2z2 + zzx* + aV = 2xyz (x + y + z)

has cusps at the three vertices of the triangle of reference, and is transformed

by the same transformation into the conic

X2 + F2 + Z2 = 2 (TZ + ZX + XT).

Then to each cusp of the quartic there corresponds only one point of the conic,

e.g. to the cusp y = z = corresponds the point in which the conic is touched

by its tangent X = 0.

6. When two curves are in (1, 1) correspondence it is of course not

necessary that they should belong to spaces of the same number of

dimensions; either of them can belong to a space of any number of dimen-

sions. The genus therefore of a curve in [n] is simply the genus or deficiency

of the projection of this curve from a space [n 3] on to a plane ;
the

correspondence between the curve and its projection will be (1, 1) if the

[n 3] is of general position. A curve has the same genus as any curve of

which it is the projection.

For example, we may project the curve of intersection of two quadric surfaces

in ordinary space on to a plane from a point 0. If is of general position in

regard to the curve there are two and only two of its chords * which pass through
0\ the projection is a plane quartic with two double points and therefore of

genus 1. Hence the curve of intersection of two quadrics is also of genus 1.

Of the oo 3
possible positions of there are four (not on the curve) for which

an infinity of chords of the curve pass through O, these being the vertices of the

four quadric cones which belong to the pencil of quadrics containing the curve.

The projection from one of these points does not give a (1, 1) correspondence but
a (2, 1) correspondence, and the genus of the curve is altered by such a projection.

A curve of genus zero is said to be a rational curve because the co-

ordinates of any point on it can be expressed as rational functions of a

parameter, and this parameter can be so chosen as to be a rational function

of the coordinates of a point of the curve f. Thus to each point of the curve

corresponds one and only one value of the parameter and to each value

of the parameter corresponds one and only one point of the curve. A
rational curve is birationally equivalent to a straight line and all rational

curves are birationally equivalent to one another.

A curve of genus 1 is said to be an elliptic curve; but it is not true that

all elliptic curves are birationally equivalent to one anotfeer. There is

belonging to an elliptic curve an invariant called its modulus ;
and in order

* Salmon, Geometry of Three Dimensions (Dublin, 1914), vol. 1, pp. 355, 356.

f If we have expressed the coordinates of a point of a curve as rational functions

of a parameter and this parameter is not a rational function of the coordinates, we
can always find a second parameter which is; the second parameter is a rational

function of the first and the coordinates are rational in terms of it. See Lliroth,

Math. Ann. 9 (1875), 163.



INTRODUCTORY 5

that two elliptic curves should be birationally equivalent it is necessary
and sufficient that they should have the same modulus.

A curve of genus 2 is said to be hyperelliptic, although not all hyper-

elliptic curves are of genus 2*.

7. When we project a curve C of order N in [n] on to any lower space
the order of the projected curve is also N provided that the centre of pro-

jection does not meet C. If the centre of projection is a space [r] the space
on to which we are projecting is an [n r 1]; an arbitrary [n r 2]

in this space meets the projected curve in a number of points equal to its

order, and this number is the same as the number of points in which the

[n 1] joining [n r 2] to [r] meets C. If C is met in M points

by the centre of projection the projected curve is of order N M . If we

project on to a plane from an \.
n 3] which does not meet C we know that

we shall obtain a plane curve of order N with \ (N 1) (N 2) p
double points, where p is the genus of G. But the space [n 2] which

joins [n 3] to any one of these double points must, unless it contains a

double point of C itself, contain two different points of (7; so that we have

a chord of C meeting [n 3] . Conversely, any chord of C which meets

[n 3] gives rise to a double point of the projected curve. Thus, if 8 is the

number of actual double points of C, there must be|(^V l)(N 2) p 8

chords of C meeting an [n 3] of general position; so that the chords of

C form a three-dimensional locus of order J (N 1) (N 2) p S.

8. Normal curves. We now introduce the important concept of a

normal curve^. A curve is said to be normal when it cannot be obtained

by projection from a curve of the same order in space of higher dimension.

It is clear that no curve can lie in a space of higher dimension than the

order n of the curve, for taking any n + 1 points of the curve we determine

thereby a space of dimension n at most, which contains the curve since

it meets it in a number of points greater than its order. For example:
a curve of the second order always lies in a plane.

The coordinates of a point of a rational curve of order n in [m] can

be expressed as rational functions of a parameter 0. If the coordinates

are homogeneous, and so m + 1 in number, the coordinates of a point of

the curve can be taken as polynomials in 6. Further, can be so chosen

that it is a rational function of the coordinates ( 6) so that to any given
value of there corresponds one and only one point of the curve. Then
none of the m + 1 polynomials can be of degree higher than n, for other-

wise a prime Sm-1 ,
which is given by a single linear equation in the

* A curve of genus 2 is the simplest example of a class of curves which are said

to be hyperelliptic. We can have hyperelliptic curves of any genus; but all curves
of genus 2 are necessarily hyperelliptic. See e.g. Severi, Trattato di Geometria

Algebrica, i, 1, 159 (Bologna, 1926).

f See Severi, ibid. 110-111.
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coordinates, would meet the curve in more than n points; while one

polynomial at least must actually be of degree n. Thus a rational curve of

order n cannot lie in a space of dimension greater than n, since we cannot

have more than n + I linearly independent polynomials of order n in 8.

On the other hand, a rational curve of order n can always be regarded as

the projection of a rational curve of order n in \n\*. If the curve is in [m]
we can suppose the homogeneous coordinates #

,
xl9 ...

9
xm of any point

on it to be linearly independent polynomials of order n in a parameter 9.

We can then choose n m further polynomials of order n in 9 such that

all the n + 1 polynomials are linearly independent ;
we then take a

curve in [n] 9 the homogeneous coordinates xQ9 xl9 ..., xn of a point on it

being proportional to these polynomials. The former curve can be regarded
as lying in the [m] whose equations are xm+1 = xm+2 = ... = xn = and is

the projection of the normal curve from the [n m 1] whose equations
are XQ

= xl
= ... = xm = 0.

We can, merely by means of a lineal ^'transformation of the coordinates,

take the coordinates of a point on a rational normal curve of order n to be

/yt _ Qn /* _ /?W 1 /yt _ /3n f /> - /J /y - 1
XQ U , Xi U

, . . . ,
Xr U

, . . . ,
Xn _i 17, Xn 1 .

The expressions (0
2

, 9, 1) for a point on a conic and (0
3

,

2
, 9, 1) for a point

on a twisted cubic are well known.

The curve is given uniquely by the equations

xn

or xr ... xn _t II
= 0.

X

Incidentally we have the equations of \n (n 1) quadric primals con-

taining the curve
;
these are linearly independent and any other quadric

primal containing the curve is in fact linearly dependent from these.

The chords of the curve form the three-dimensional locus given by

x xl ... xr ...xn_2
= 0,

X1 X2 ... Xr+l ... #n _i

X2 X3 ... Xr+2 %n

which is of order \ (n 1) (n 2)f.

* Veronese, Math. Ann. 19 (1882), 208.

t The coordinates of a point on the three-dimensional locus of chords are of the
form

(0"+A^, 0-i + A*"-
1
, ..., 9 + A#, 1 + A),

and depend on the three parameters 0, </>, A.

For the order of the system of equations given by the vanishing of the deter-

minants of a matrix see Salmon, Higher Algebra (Dublin, 1885), Lesson 19.
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In particular the rational quartic curve is normal in [4] and can be given by
# :o;1 ::r2 :a;3 :#4

= 4 :03 :02 :0:l.

Its equations are = 1 = - =

and it lies on six linearly independent quadric primals. It can be shewn that

there is one quadric primal which contains not only the quartic curve but all

its tangents ;
its equation is

/y /y ^^ A.'V < \
S
\'V 2 __. C\04 ~~~ ^C/1*t'Q |"^ iJwn \J .

The chords of the curve form the cubic primal

. =0-

xl
x2

We now state a fundshnental result : A curve of order n and genus p is

normal in [n p] if n > 2p 2
; that is to say, every curve of genus p

whose order n is greater than 2p - 2 can be obtained by projection from

some curve of order n and genus p in [n p]*. In particular an elliptic

curve of order n can always be obtained by projection from an elliptic

curve of order n in [n 1],

9. Ruled surfaces. A surface formed by a singly infinite system of

straight lines is called a ruled surface ;
the lines are called the generators of

the surface. If two different prime sections of the surface are taken it is

clear that they are in (1, 1) correspondence, two points corresponding
when they lie on the. same generator ;

the sections are met each in one

point by every generator. Hence all prime sections of the surface are of

the same genus, so that we can speak of the genus of a ruled surface,

meaning thereby the genus of its prime sections. We thus have rational

ruled surfaces, elliptic ruled surfaces and so on.

Incidentally we can speak of the genus of any singly infinite set of elements,

meaning thereby the genus of a curve whose points are in (I, 1) correspondence
with the elements of the set.

10. Suppose now that we have a ruled surface of order n in [3]. It is

clear that the tangent plane at any point contains the generator which

passes through that point.

Consider the section of the surface by a plane passing through a

generator g\ it consists of g and a curve C^^ of order n 1. We may
* See Clifford, "On the classification of loci," Phil. Trans. 169 (1879), 663; and

Collected Papers (London, 1882), 329. Clifford's result is obtained by the use of

n
Abelian integrals and states thatp < -

. This same result is arrived at differently by

Veronese, Math. Ann. 19 (1882), 213.

For the complete statement with n > 2p 2 see Segre, Math. Ann. 30 (1887),
207.
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assume that, for a general position of this plane, Cn^ is irreducible and

does not touch g. Then it will meet g in n 1 distinct points. Cn^ is

simply the locus of the points in which the plane is met by the generators,

and every generator other than g meets Cn_^ in one point. Thus Cn_i has

the same genus as the ruled surface
; to each point of Cn_^ there corresponds

a generator of the surface passing through it and conversely, the point of

Cn-i corresponding to g being one of their n 1 common points. Thus

through then2 remaining intersections of g and Cn_^ there will pass other

generators, so that we conclude that every generator is met by n 2 others.

If now we take a point P on Cn _^ the plane which contains the tangent
of Cn _i at P and the generator which passes through P will be the tangent

plane of the ruled surface at P. In particular, the tangent plane of the

ruled surface at that intersection of Cf

w_1 and g which is not an intersection

of g with another generator is the plane of Cn_^ itself.

If we consider any generator g, every point of g is the point of contact

of a tangent plane passing through g* while every plane passing through

g is a tangent plane touching the surface at some point of g. There is thus

established a projectivity between the range of points on g and the pencil

of planes through g ;
the range of points of contact is related to the pencil

of corresponding tangent planes. The particular case of this property of

a quadric is familiar; the generators of either system are met by those of

the other in related ranges of points.

11. We have seen that every generator of a ruled surface of order n
in [3] is met by n 2 others. We thus have on the surface a double curve

meeting every generator in n 2 points ;
this curve is the locus of inter-

sections of pairs of generators and at any point of it there are two tangent

planes to the surface, one containing each of the two generators which

intersect there.

Similarly we have a bitangent developable formed by the planes con-

taining pairs of intersecting generators ;
there are n 2 planes of this

developable passing through each generator, and every plane of the

developable touches the surface in two points one on each of the generators

lying in the plane.

The section of the ruled surface by any plane has double points at the

intersections of the plane with the double curve. The tangent cone to the

surface from any point has as double tangent planes those planes of the

bitangent developable which pass through the point.

If the ruled surface is of order n and genus p a plane section is a curve

of order n and genus p-9 such a curve has J (n 1) (n 2) p double

points. Hence the plane must meet the double curve of the ruled surface

in these \ (n 1) (n 2) p points, so that the order of the double

curve is (n 1) (n 2) p.
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Those planes through an arbitrary point which contain the generators
of the surface form a singly infinite aggregate of genus p\ they meet an

arbitrary plane in the tangents of a curve of class* n and genus p. Such

a curve has J (n 1) (n 2) p double tangents; so that there are,

passing through an arbitrary point, % (n 1) (n 2) p planes each

of which contains two generators of the surface. Hence there are

% (n 1) (n 2) p planes of the bitangent developable passing through
an arbitrary point, so that the bitangent developable is of class

| (n 1) (n 2) p\ the class of a developable in [3] being defined as

the number of its planes which pass through an arbitrary point.

We have thus shewn that, for a ruled surface of order n and genus p,

the order of the double curve and the class of the bitangent developable
are both equal to

12. The classification of ruled siyrfaces in three dimensions. We shall

classify ruled surfaces in three dimensions according to :

(i) the order;

(ii) the genus ;

(iii) the double curve;

(iv) the bitangent developable.

13. Correspondence formulae. The position of a point on a straight line

or on any rational curve is given by a single parameter, this being chosen

as in 6. Suppose then that we have a correspondence between the points
of a rational curve

;
this means that there is an algebraic relation connecting

the parameters and
<f>

of corresponding points P and Q, the correspondence

being given by equating some polynomial in 6 and to zero. If the poly-
nomial is of degree in 6 and of degree /3 in

<f>
we say that there is an

(a, j8) correspondence between P and Q\ when P is given there are j8

corresponding positions of Q, and when Q is given there are a corresponding

positions of P. It is then evident that there are a + )3 points which co-

incide with one of their corresponding points ;
their parameters are simply

the roots of the equation of degree a + j3
which is obtained by equating

the polynomial to zero after putting 6 =
<f>.

We shall then say that on a

rational curve there are a + j8 coincidences in an (a, ]8) correspondence.
This is Chasles' principle of correspondence-)*.

There will be certain points P for which two of the
j3 corresponding

points Q coincide; the number of these is 2a (jS 1) since the condition

that an equation of order j8 should have a double root is of order 2)82
* The class of a plane curve is defined as the number of its tangents which

pass through an arbitrary point.

f Comptea Rendua, 58 (1864), 1175.
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in its coefficients*. Here it is not necessary that the correspondence
should be between the points of the same curve; 6 and

<f> may be the

parameters of points on two different rational curves. These points P for

which two corresponding points Q coincide are called branch-points of the

correspondence. Similarly, there are 2j8 (a 1) branch-points Q for which

two of the a corresponding points P coincide.

We may have two correspondences between the points P and Q of

a rational curve'or between the points P of one rational curve and the

points Q of another rational curve ; suppose that we have an (a, j3) corre-

spondence between P and Q and an (', /?') correspondence between P'

and Q' ;
P' is on the same rational curve as P and Q' is on the same rational

curve as Q. Then for any given position of P and P' the
|8 positions of Q

will, in general, be distinct from the /J' positions of Q' ;
there are, however,

aj3' -f a')8 positions such that if P and P' together take up one of them one

of the p corresponding points Q coincides with one of the /J' corresponding

points Q'. The condition that two ^uations of orders j8 and /J' should

have a common root is of order
/J'

in the coefficients of the first equation
and of order /? in the coefficients of the second equationf.

14. These results which we have obtained for rational curves can be

generalised for curves of any genus p ;
in order to do this we must introduce

the idea of the valency^ of a correspondence and the idea of a linear series

of sets of points on a curve.

If we have a curve in [n] then the family of primals

AO/O + AI/L+ ... + Ar/r =0
cuts out on the curve a linear series of sets of points. The primals / = are

all of the same order and the equation of any primal of the system depends

linearly and homogeneously upon the r -f 1 parameters A
;
we have a linear

system of primals. Thus on a plane curve a linear series of sets of points
is cut out by a linear system of curves ;

on a twisted curve a linear series

of sets of points is cut out by a linear system of surfaces, and so on. We
will then consider for definiteness a linear series of sets of points on a plane
curve.

The linear system of plane curves

contains oo r curves and cuts out on a curve h = a linear series of sets of

points. There may be an infinity of curves of the linear system passing

* Salmon, Higher Algebra (Dublin, 1885), 99.

f Salmon, ibid. 69.

t Called Werthigkeit by Brill, Math. Ann. 1 (1874), 611.

/ is a homogeneous polynomial in the n + 1 homogeneous coordinates

#o xl9 ... 9 xn .

It is assumed that these r + 1 polynomials / are linearly independent.
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through a set of the linear series
;
it can be shewn that this happens when

and only when there are curves of the system containing the curve h = 0.

We can then always work with a reduced linear system of curves*, none of

which contains the curve h = as a part. Then, supposing that we are

working with such a system containing the r + 1 parameters A, the linear

series of sets of points contains oo r
sets, each set containing the same number

n of points. Through r general points of the curve h = there will pass

just one curve of the linear system, as we have just enough conditions to

determine the ratios of the parameters A. The linear series of sets of points
is then said to be of freedom r and is denoted by gn

r
\
r general points of

the curve h = determine just one set of gn
r

. The number n is called the

grade of the linear series.

If now we have an (a, j8) correspondence between the points P and Q
of a curve of genus p, and if a point P of the curve counted y times, taken

together with the j8 points Q which correspond to it, gives a set of points
which varies in a linear series of se& of

/? + y points as P varies on the

curve, the correspondence is said to be of valency^ y. It is not necessary
that every set of the linear series should be given by the variation of P,
but merely that all the oo 1 sets of points so obtained should belong to some
linear series of sets of

j8 + y points. When this is so it can be shewn that

a point Q of the curve counted y times, taken together, with the a points
P which correspond to it, gives a set of points which vary in a linear

series of sets of a -I- y points as Q varies on the curve. On a general curve

every correspondence has a valency ; correspondences without a valency
can only exist on curves which are special for their genusj.

We can, for example, set up a correspondence between the points P
and Q of a plane cubic without a double point ; saying that the points
P and Q correspond when the tangent at P passes through Q. To any point
P corresponds one point Q, since the tangent at P only meets the cubic in

one other point ;
to any point Q correspond four points P since four tangents

can be drawn to the cubic from any point of itself
;
thus the correspondence

is a (4, 1) correspondence. Also its valency is 2
;
the point P counted twice

together with the point Q which corresponds to it form the complete
intersection of the cubic with its tangent, and therefore vary, as P varies

on the curve, in a linear series of sets of three points, viz. that cut out by
the lines of the plane. The four points of contact of the tangents drawn to

the curve from any point Q of itself lie on the first polar of Q, which is a

conic touching the curve at Q ; hence the point Q counted twice together
with the four points P which correspond to it form the complete inter-

section of the cubic with a conic and therefore vary in a linear series of

* See Severi, Trattato di Geometria Algebrica, I, 1, 20 (Bologna, 1926).

t Severi, ibid. 198.

J Hurwitz, Math. Ann. 28 (1887), 565.
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sets of six points as Q varies on the curve, viz. that cut out by the conies

of the plane.

The analogues of the formulae for rational curves are as follows.

// we have on a curve of genuspan (a, j8) correspondence of valency y there

are a + /? + 2yp coincidences*. For example, there are nine coincidences

in the (4, 1) correspondence just mentioned on the cubic curve of genus 1
;

these are simply the nine inflections of the curve. Again, the number of

branch-points P for which two of the j3 corresponding points Q coincide^ is

2a (j8 1) 4- 2 (a y
2
) p and the number of branch-points Q for which two of

the a corresponding points P coincide^ is 2j8 (a 1) + 2 (j8 y
2
) p. Finally,

if we Jiave on the same curve of genus p an (a, /?) correspondence of valency

y and an (a!', /J') correspondence of valency y the number of pairs of points

common to the two correspondences^ is aft' + a'/? 2yy'^>.

As an example of this last result consider a plane quartic curve without

double points (p = 3). If P and Q correspond when the tangent at Q
passes through P we have a (2, 10) correspondence of valency 2

;
if inversely

P/ and Q' correspond when the tangent at P' passes through Q' we have

a (10, 2) correspondence of valency 2. Then the number of pairs of points
common to these two correspondences is

2 . 2 + 10 . 10 - 2 . 2 . 2 . 3 = 80 = 2 x 28 + 24.

The interpretation of this result is clear since the curve has 28 bi-

tangents and 24 inflections. If one of the points of contact of a bitangent
is taken as a position of P and P' then the other point of contact is one

of the corresponding positions of Q and also one of the corresponding

positions of Q'. Since there are two points of contact of each bitangent
we have in this way 56 pairs of points common to the two correspondences.

Again, if the point of contact of an inflectional tangent is taken as a position
of P and P' this same point is one of the corresponding positions of Q and

also one of the corresponding positions of Q'.

We must also mention the fact that the valency of a correspondence
can be negative ; this is clear from other definitions of the valency but it

also arises naturally from the idea of the equivalence of sets of points on

a curve, two sets of points on a curve being equivalent when they belong
to the same linear series.

As an example of a correspondence with negative valency let us consider the

correspondence between the point P of a plane cubic without a double point and

* See Cayley, Comptes Rendus, 62 (1866), 586 = Papers, 5, 542; Phil. Trans. 158

(1868), 146 = Papers, 6, 265. Brill, Math. Ann. 6 (1873), 33; 7 (1874), 607. Severi,

Memorie Torino (2), 54 (1904), 11; Trattato di Geometria Algebrica, I, 1, 233

(Bologna, 1926).

f This formula has been given by Professor Baker in lectures. It can be deduced
from Cayley's formula (Papers, 6, 267). P and Q are on the same curve.

{ Brill, Math. Ann. 6 (1873), 42; 7 (1874), 611. Hurwitz, ibid. 28 (1887), 568.

This result we shall in future call Brill's formula.
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the point R which is the second tangential of P. If the tangent at P meets the

curve again in Q, Q is called the tangential of P; if then the tangent at Q meets

the curve again in R, R is called the second tangential of P. Clearly to a given

point P there corresponds one and only one point R.

Now it is known that if conies are drawn through four fixed points of a cubic

curve the line joining their two remaining intersections with the curve meets

the cubic again in a fixed point*. In particular, the conies which have four-point
contact with the curve at P meet it again in two points whose join passes

through R.
Take then any point on the cubic and join OR, meeting the cubic again in

R 1

'. The conic through which has four-point contact with the curve at P passes

through R'
'

. Moreover, if P' is any point whose second tangential is R' we can
draw a conic having four-point contact with the curve at P' and passing through
and R.

Now the conies passing through cut out on the cubic a linear series of sets

of five points; one set of thiu series consists of R' taken with P counted four

times, while another consists of R taken with P' counted four times. Thus these

two sets of points are equivalent, so that we write

4P + R' =*4P' + R.

Writing this in the form
R - 4P = R' - 4P',

we say that the correspondence from P to R has the valency 4.

This exemplifies a general theorem which states that the "product" of two

correspondences of valencies ^ and y2 has the valency y^- The correspondence
from P to its second tangential is the "square

"
of the correspondence from P to

its first tangential, and this latter correspondence we have already seen to have

valency 2.

15. A correspondence has, of course, two senses; in the "forward"

sense the /? points Q19 Q2 , ..., Q
ft
correspond to the point P, while in the

"backward" sense the a points Pl9 P2 , ..., Pa correspond to the point Q.

In calculating the number of pairs of points common to two correspondences

by Brill's formula we imply that we take both correspondences in the same
sense : having chosen a point we proceed to the two sets which correspond
to it, either both in the forward sense or both in the backward sense

; the

formula gives the number of positions of the chosen point for which a point
of one of the two sets coincides with a point of the other.

There is a special kind of correspondence which we shall call a sym-
metrical correspondence; in such a correspondence there is only one sense,

or there is only one way of passing from a given point to those points

which correspond to it. The two indices of such a correspondence are equal ;

and if Q is one of the set of points corresponding to P then P is conversely
one of the set of points corresponding to Q. As an example of such a

correspondence let us consider, on a quadric S in ordinary space, the curve

C which is the intersection of 8 with another quadric; and suppose that

two points of C correspond when they lie on the same generator of 8.

* Salmon, Higher Plane Curves (Dublin, 1879), 134.
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Every generator of 8 meets C in two points ;
so that to any point P of C

there correspond the two other points Ql9 Q2 in which C is met by the

generators of S through P. To Qi correspond P and another point Pl9

while to Qz correspond P and another point P2 . We thus have a sym-
metrical (2, 2) correspondence.

The formulae giving coincidences and branch-points hold for sym-
metrical correspondences as for other correspondences ;

but it is important
to remark that the number of pairs of points common to two correspondences

as given by BrilVs formula must be halved when both the correspondences are

symmetrical*.

Still more special correspondences are those known as involutions ;
an

involution is a symmetrical correspondence in which a point P and the

m points Ql9 Q2 , ..., Qm corresponding to it form a closed set; to any one

of them correspond the remaining m. A simple example of an involution

is the correspondence between the points of a plane curve of order n which

are collinear with a given point 0. I*-P is any point of the curve there are

Ti1 points corresponding to P, namely, the remaining intersections of

the curve with the line OP. We thus have a set of n points such that to

any one point of the set there correspond the remaining n 1
;
or we have

a symmetrical (n 1, n 1) correspondence which is an involution.

An involution, as consisting of oo 1 sets of points, will have a genus

just as will a curve consisting of oo 1
points. In the example given the

involution is rational, its sets being in (1, 1) correspondence with the lines

of a plane pencil. We can, however, have involutions of any genusf.

16. Zeuthen
9

s formula. There is a formula due to Zeuthen concerning
a correspondence between the points of two curves which is of great

importance. If we have an (a, a') correspondence between the points of

two curves C and C' whose respective genera are p and p', so that to any

given point of G there correspond a' points of C' and to any given point
of C" there correspond a points of (7, and if the correspondence has

77

branch-points on C and ?/ branch-points on C", then we have the relation

7)
-

77'
= 2a (p'~ 1)

- 2a' (p
-

1).

We shall always refer to this as Zeuthen's formula^. A geometrical

interpretation of the formula has been given by Severi.

If a and a' are both unity then
77
and r{ are both zero; and so two

curves in (1, 1) correspondence have the same genus.

* In this case Brill's formula includes each pair twice (from each end it might
be said).

t Severi, Trattato di Oeometria Algebrica, i, 1, 52 (Bologna, 1926).

| Zeuthen, Math. Ann. 3 (1871), 150.

Eendiconti del Reale Istituto Lombardo (2), 36 (1903), 495.
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The formula is at once verified when the curves are both rational; it

becomes then
77 + 2a =

77' + 2a'. But we have already seen* that in such a

correspondence 77
= 2a (a' 1) and vf

= 2a (a 1), so that

7) + 2a = r[ + 2a = 2aa'.

17. The genus of a simple curve on a ruled surface. One very important

application of Zeuthen's formula is the calculation of the genus of a curve

on a ruled surface. We suppose that the curve is a simple and not a

multiple curve on the surface
;
so that through a general point of the curve

there passes only one generator of the surface.

Suppose that we have in a space [r] a ruled surface of order n and genus

p ;
and suppose that there is on this ruled surface a curve of order v meeting

each generator in k points. Suppose that this curve is of genus TT and is

touched by rj generators. Then Zeuthen's formula gives

rj
= 2 (TT

-
1)
- 2k (p

-
1),

there being a (1, k) correspondence between the points of a prime section

of the ruled surface and the points of the curve, two points corresponding
when they lie on the same generator.

If we take an arbitrary [r 2] there is a pencil of primes passing through

it; we consider the correspondence between primes of this pencil, two

primes corresponding when they join [r 2] to two points of the curve

lying on the same generator. Then, since any one of the primes meets

the curve in v points, there are v (k 1) primes of the pencil which corre-

spond to it; we have a symmetrical correspondence between the primes of

the pencil in which both indices are v (k 1). Since Chasles' principle of

correspondence can be applied to the primes of this pencil just as it can

to the points of a line there will be 2v (k 1) coincidences of pairs of

corresponding primes.
Now these coincidences can occur in two ways; either by the prime

passing through one of the
t\ points where the curve touches some generator

or by the prime containing one of the generators which pass through the

n intersections of [r 2] with the surface. On each of these generators
there are k points of the curve, and we count the prime joining [r 2] to

such a generator k (k 1) times among the coincidences. Hence

2v (k
-

1)
=

7) + nk (k
-

1),

so that, eliminating r},

2v (4
-

1)
= 2 (TT

-
1)
- 2k (p

-
1) + nk (k

-
1),

whencef TT = (v 1) (k 1) -f pk \nk (k 1),

giving the genus TT of the curve in terms of the other constants.

* 13. f Segre, Rom. Ace. Lincei Rendiconti (4), 32
(1887), 3.
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We have not mentioned the fact that the curve may have double

points. If it has, the formula

f)
= 2 (TT

-
1)
- 2k (p

-
1)

is not altered; but the prime joining [r 2] to a double point P will count

twice among the coincidences provided that P is not also a double point
of the ruled surface. The double point must be regarded as two points

P! and P2 on different branches of the curve
; these are on the same generator,

the prime joining [r
-

2] to Px has the prime joining [r
-

2] to P2 among
its corresponding primes and the two coincide; and so with P1 and Pa

interchanged. Thus

2v (k
-

1)
=

77 + nk (k
-

1) + 2rf,

or TT = (v
-

1) (k -1)4- pk - Ink (k
-

1)
-

d,

where d is strictly the number of those points of the curve which count
twice among the k intersections with a generator*.

18. The genus of a curve on a quadric. Suppose, for example, that we
have a curve on a quadric surface in [3] ; it is clear that any two generators
of the same system of this quadric are met by the curve in the same
number of points, because planes can be drawn through them and any
generator of the opposite system. Suppose then that the curve meets all

generators of one system in a points and is of order a + j8, meeting all

generators of the other system in
)8 points. Then its genus will be

77 = (a + j8
-

1) (a
-

1)
- a (a

-
1)
- d

=
(a
-

1) (j8
-

1)
-

d,

where d is the number of double points of the curve. If the curve has no
double points then TT = (a 1) (/3 1).

This result for the genus of a curve on a quadric surface is important
and will be of use subsequently. It is obtained at once by projecting the

curve from a point on the quadric into a plane curve ;
if the point of pro-

jection is not on the curve we obtain a plane curve of order a + j8 with d
double points, a point of multiplicity a and a point of multiplicity ^3,

and
therefore of genus

i (a + ft
-

1) (a + ft
-

2)
- d - \a (a

-
1)
-

JjB (ft
-

1)
= (a- 1) (0- 1) -d.

If the point of projection is on the curve we obtain a plane curve of order
a -f ft

- 1 with d double points, a point of multiplicity a 1 and a point
of multiplicity ft 1 and therefore of genus

\ (a + ft
-

2) (a + ft
-

3)
- d - \ (a

-
1) (a

-
2)
-

(j8
-

1) (]8
-

2)

= (a
-

1) (JB
-

1)
- d.

Zeuthen's formula can also be used to find the genus of a curve on a

quadric cone. More generally, if we have a cone of order n and genus p
*

Segre, Math. Ann. 34 (1889), 3.
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and on it a curve of order v meeting every generator in k points other than

the vertex, the genus of the curve is given by

TT =
(
v _ 1) (k

-
1) + pic

-
\nk (k

-
1)

with possibly a reduction for double points*.

19. The ruled surface generated by a correspondence between two curves.

If in a space [n] we have a correspondence between the points of two

curves the lines joining pairs of corresponding points are .oo
1 in aggregate

and form a ruled surface.

The order of this ruled surface can be calculated when the properties

of the correspondence and of the two curves themselves are known;

suppose that the correspondence is an (a, a') correspondence between two

curves of orders m and ra> Let us then take a space [n 2] of general

position ;
the order of the ruled surface is the number of its intersections

with [n 2], i.e. the number of it^ generators which meet [n 2], or

the number of pairs of corresponding points of the two curves whose joins

meet [n 2].

We can set up a correspondence among the primes passing through

\n 2] ,
two primes corresponding when they join [n 2] to corresponding

points of the two curves. It is clear that the indices of this correspondence
arc m'a and ma', so that there are m'a + ma' coincidences of pairs of

corresponding primes. There is clearly a coincidence when the join of two

corresponding points meets [n 2]; and, in general, these will be the only
coincidences. Hence, in general, the order of the ruled surface is m'a + ma'.

Through every point of the curve of order m there pass a! generators of

the surface, or we shall say that this curve is a multiple curve on the ruled

surface of multiplicity a'. Similarly the curve of order m' is a multiple
curve on the ruled surface of multiplicity a.

In particular, the order of the ruled surface generated by joining pairs

of corresponding points in a (1, 1) correspondence between two curves is,

in general, the sum of the orders of the two curves.

The result which we have obtained for the order of the ruled surface

is always true except when the m'a + ma' coincidences include primes
which do not contain generators of the ruled surface ; this can happen only
when the curves have one or more intersections which are "united points"
of the correspondence. If P is an intersection of the two curves which is

a united point then the a' points of the curve of order m', which correspond
to P regarded as a point of the curve of order m, include P\ and the

a points of the curve of order m, which correspond to P regarded as a point
of the curve of order m', also include P. Thus the prime joining [n 2]

* The result for a curve on a cone was first obtained by Sturm by application of

a coincidence formula due to Schubert, Math. Ann. 19 (1882), 487.
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to P counts among the m'a + ma' coincidences
;
the generator of the surface

joining the pair of points which are united is indeterminate.

It is then clear that the order of the ruled surface is always m'a + ma'

when the curves do not intersect
;
and it also has this value when the curves

do intersect unless there are united points. But if there are i united points

the order of the ruled surface* is m'a + ma' i. Here again a still further

adjustment may be necessary, as the prime joining [n 2] to a united

point may count more than once among the m'a + ma' coincidences ; it

may be that when P is regarded as a point of the curve of order m there

are more than one of the a' corresponding points coinciding with it, and

inversely. This cannot happen however when we are dealing with a (1, 1)

correspondence ; and we can always say that the order of the ruled surface

determined by a (1, 1) correspondence tvith i united points between two curves

of orders m and m' is m + m' i.

20. In order to exemplify this last icsult let us consider in [3] a conic and
a line which intersect in a point X.

Suppose that there is a (1, 1) correspondence between them and suppose
first that X is not a united point. Then to X regarded as a point of the line there

will correspond a point Z of the conic and to X regarded as a point of the conic

there will correspond a point T of the line. The line itself will then be a generator
of the resulting ruled surface as joining the points X and T, and the line ZX
will also be a generator. If the tangents to the conic at Z and X meet in Y, we
can take XYZT as the tetrahedron of reference; the equations to the conic are

xz y
2 = t = 0,

and to the line y = z = 0.

Then any point of the conic has coordinates (0
2

, 6, 1, 0), while any point of

the line has coordinates (0, 0, 0, 1), and the (1,1) correspondence will be deter-

mined by a bilinear relation

a6</> + be + c<f> + d = 0.

But we already know that to
<f>
= oo must correspond 9 = and that to

= oo must correspond ^ = 0; hence 6 = c == and
0</>

is constant. We can

therefore take

* There are always united points if we consider the ruled surface generated by
a correspondence between the points of the same curve. If the curve is of genus p
and the correspondence of valency y it has a + a' -f- 2yp united points, and the order

of the ruled surface will be m (a -f of) (a + a' -f 2yp) 9 where m is the order of the

curve. But if the correspondence is a symmetrical correspondence of index a this

number will have to be halved; the order of the ruled surface is then a (m 1) yp.

Thus, in particular, the order of the ruled surface formed by the joins of pairs of an
involution of pairs of points on a rational curve is m 1, on an elliptic curve m 2.

A curve which is neither rational nor elliptic and which possesses an ordinary
(rational) involution of pairs of points is always hyperelliptic ; for such a curve the

order of the ruled surface is m p - 1.
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as giving the correspondence, and a generator of the ruled surface joins the two

points

(0
2
,0,1,0) and (1,0,0,0).

Hence the coordinates of any point of the ruled surface are of the form

(0
2 + A, 0, 1, A0).

If is constant we have the points of a generator of the surface, and if A is

constant we have the points of a conic on the surface lying in a plane through
XZ.

The coordinates satisfy the homogeneous cubic relation

xyz = y
3 + tz

2
,

so that we have a ruled surface of the third order.

But suppose now that the (1,1) correspondence between the line and conic

is such that X is a united point. Then to a definite point T of the line will

correspond a definite point % of the conic, and our coordinates are as before

with the bilinear relation

a0< + 60 + c<f> + d = 0.

Now to = oo corresponds </>
= oo So that a = 0, and to = corresponds

<f)
= so that d = ;

hence is a constant multiple of
<f)
and we can take without

loss of generality
= <.

Then a generator of the ruled surface joins the two points

(0
2

? 0,1,0) and (0,0,0,1),

and the coordinates of any point on the ruled surface are of the form

(0
2 + A0, 0, 1, A).

These satisfy the homogeneous quadratic relation

xz - 2/
2 + ty,

so that when there is a united point the ruled surface is only of the second order.

21 . Just as, given two curves of orders m and m' in (a, a') correspondence
in [3], there are (subject to a deduction for united points) m'a + ma' joins

of pairs of corresponding points which meet an arbitrary line
; so, dually,

given two developables of classes m and m' in (a, a') correspondence in [3],

there are (subject to a deduction for united planes) m'a + ma' intersections

of pairs of corresponding planes which meet an arbitrary line. Or we can

say that the two developables give a ruled surface of order m'a + ma'.

In space of three dimensions we have three fundamental constructs;

curves formed by singly infinite families of points, ruled surfaces formed

by singly infinite families of lines, and developables formed by singly

infinite families of planes. We have seen how a ruled surface can be

generated either by joining pairs of corresponding points on two curves

or by taking the intersections of pairs of corresponding planes of two

developables, and how the order of such a ruled surface is given in terms

of the orders of the two curves or the classes of the two developables and

the constants of the correspondence.



20 CHAPTER I, 22, 23

22. It is also clear that if a correspondence is set up between the points

of a curve and the generators of a ruled surface the planes so determined,

as joining the points of the curve to those generators of the ruled surface

which correspond to them, form a developable; and, dually, if a corre-

spondence is set up between the planes of a developable and the generators
of a ruled surface, the points of intersection of corresponding planes and

lines form a curve.

Let us consider then a curve of order m and a ruled surface of order p ;

suppose that to any point of the curve there correspond a generators of

the ruled surface and that to any generator of the ruled surface there

correspond a points of the curve. Let us calculate the class of the develop-
able so formed; i.e. the number of its planes passing through any given

point 0.

We set up a correspondence between the points P and Q of the curve
;

the points P and Q corresponding when the line OP meets a generator of

the ruled surface which correspondsto Q. Then given a point P, the line

OP meets the ruled surface in
//, points, and each of the generators through

these points gives a points Q ; so that when P is given there are p,a positions

of Q. Given a point Q, we have a generators of the ruled surface, each of

which is joined to by a plane meeting the curve in m points ;
so that when

Q is given there are ma positions of P. The correspondence from P to Q
is therefore an (ma, pa) correspondence. The correspondence is of valency
zero

;
the points P corresponding to a given point Q form the complete

intersection of the curve with a set of a planes through 0. Hence there are

ma + pa coincidences of points P and Q ;
and such a coincidence means

that the plane joining a point of the curve to a corresponding generator
of the ruled surface passes through 0. This will be a plane of the develop-
able unless the point of the curve happens to lie on the corresponding

generator of the ruled surface; when this happens the plane of the

developable is indeterminate.

Hence, subject to a deduction for united elements of the correspondence,
the class of the developable is ma -f /xa.

In particular, if we have a (1, 1) correspondence between the points of a

curve of order m and the generators of a ruled surface of order
//,,

and if there

are i points of the curve which lie on the corresponding generators of the ruled

surface, the planes joining corresponding elements form a developable of class

m 4- /u,
i.

If we have a (1, 1) correspondence between the points of a line and the

lines of a regulus* the planes joining corresponding elements give a develop-

* The word regulus is used to denote either system of generators of a quadric
surface. It is thus a ruled surface of the second order; the other system of generators
of the quadric are not, strictly speaking, generators, but directrices of this surface.



INTRODUCTORY 21

able of the third class*, supposing that neither of the points in which the

line meets the regulus lies on the line which corresponds to it
;
if however

one of the two lines of the regulus which meet the line does so in the point

corresponding to it the developable is only qf the second class; while if

both lines of the regulus which meet the line do so in the points corre-

sponding to them we have a developable of the first class. In the first case

we have the osculating planes of a twisted cubic, in the second the tangent

planes of a quadric cone and in the third a pencil of planes through a

line.

Analytically, let the line meet the regulus in the points X and Zt\ through
X there passes a generator of the quadric surface on which the regulus lies

meeting the line of the regulus through Z in T
; similarly, F is the point in which

the line of the regulus through X is met by the generator of the complementary
regulus through Z.

*

Then any line of the regulus is given as the intersection of two planes

y = Oz, m x 9t,

the line XY being given by 6 = oo and the line ZT by = 0.

Any point of the line XZ is given by (<, 0, 1, 0), the point X being given by
(f)
= oo and the point Z by <f>

= 0.

We then set up a correspondence between and
<f>
and join lines of the regulus

to corresponding points of XZ by planes.
Q I Q

If
</>
= - the planes are given by

(6 + ft) (y
-

Oz) + 6(9 + y)(x- 9t)
= 0,

and involve the parameter 6 in the third degree.
If

</>
= -f a then 6 = oo gives the point X of the line corresponding to the

line XY of the regulus. The planes are given by

(8 + a) (y
-

Oz) + 0(x-0t) = 0,

and involve the parameter in the second degree.
Tf

cf>
= then = oo gives the point X of the line corresponding to the line

XY of the regulus, while = gives the point Z of the line corresponding to

the line ZT of the regulus. The planes are given by

y - Oz + x - Bt = 0,

and involve the parameter in the first degree.

23. Dually, if we have a (1, 1) correspondence between the planes of

a developable of class m and the generators of a ruled surface of order ^,

and if there are i planes of the developable which contain the corresponding

generators of the ruled surface, the points of intersection of corresponding
elements form a curve of order m -f p i.

A pencil of planes and the generators of a quadric cone whenprojectively
related give a twisted cubic, provided that no plane of the pencil contains

* von Staudt, Beitrdge zur Geometric der Lage, 3 (Nurnberg, 1860), 303; Reye,
Oeometrie der Lage, 2 (Stuttgart, 1907), 168.
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the corresponding generator of the cone. A regulus and a pencil of planes

when projectively related give a twisted cubic, provided that no line of

the regulus lies in the plane which corresponds to it.

24. We may observe still further that if we have three curves in corre-

spondence the planes joining corresponding triads of points, one point of

such a triad being on each curve, will form a developable ; while if we have

three developables in correspondence the points of intersection of triads

of corresponding planes, one plane of such a triad belonging to each

developable, will form a curve. The generation of the twisted cubic by three

related pencils of planes is familiar.

SECTION II
(

THE REPRESENTATION OF A RULED SURFACE IN
THREE DIMENSIONS AS A CURVE ON A QUADRIC
Q IN FIVE DIMENSIONS

25. The lines of three-dimensional space are oo 4 in aggregate; a line

can be determined by four parameters or by the ratios of five parameters.
The most convenient representation of the lines of three-dimensional space

is, however, by means of the ratios of six parameters which are connected

by one relation, thus being reduced effectively to five*.

Using homogeneous coordinates, let (xl9 yl9 z1? tj and (x2 , y2 ,
z2 , t2 )

be

two points ;
and write

n = ^z2
- t2 zl9

^ =
Zij/a

- x2yl .

* See Cayley, "On a new analytical representation of curves in space," Papers, 4

( 1860), 446, where a curve is given by the complex of lines which meet it; Grassmann,

Ausdehnungslehre (Berlin, 1862), 63-65; Pliicker, "On a new geometry of space,"
PhiLTrans. 155(1865); Cayley, "On the six coordinates of a line," Papers, 7 (1869), 66.

From Grassmann it is clearly seen how to determine a system of coordinates for

spaces of any dimension in a space of dimension n.

If we take the two points (xl9 yl9 zl9 ^) and (x29 2/2* Z2> ^2) f SP&C6 and form the

combinatory product

where er
a = and er es

= ea er , we have a linear function of the six coordinates of the

line joining the two points.
Given a space [&] in [n], we take k + 1 independent points of the [k] and write

down the matrix of k + I rows and n + I columns formed by the coordinates of

these points. Then the coordinates of [k] are simply the (k + 1) -rowed determinants
of the matrix, which cannot all vanish if the points are independent. These deter-

minants also arise in combinatory products (Grassmann, ibid.). They are sometimes

spoken of as Grassmann coordinates.

The idea of a line in [3] being linearly dependent on the six edges of a tetrahedron
occurs in Grassmann's Awdehnungslehre (Leipzig, 1844), 167.
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Then the six quantities (/, m, n
9 V 9

m'
9 n') are called the coordinates of

the line joining the two points. We are justified in speaking of them in this

way because their mutual ratios are the same whatever two points of the

line are taken; if instead of (xi9 yi9 Zi 9 tj and (x29 y29 z29 12) we take the

points

(0Xi + <f>x29 dyi + <f>y2 , Ozi + <f>z2 , 0ti + ^2)

and (0'xi + <f>'x29 6'yi + </>'y2 , O'zi + <f>'z29 d'ti + <f>'t2) 9

the six coordinates are each multiplied by 0<f>' 0'<f>.

The lines whose coordinates satisfy a single relation are said to form

a complex of lines
;
in particular, the linear relation

a'l + b'm + c'n + aV + bm' + en' =

gives a linear complex*. The lines whose coordinates satisfy simultaneously
two linear relations are said to form a linear congruence of lines.

The six coordinates of any line satisfy the relation

IV + mm' + nri = 0.

Conversely, it can be shewn that any six qiiantities connected by this

relation can be taken as the coordinates of a line.

26. If the line Ax joining (xl9 y\,z^ t\) to (x29 y29 z2 , #2) has coordinates

(Zx , mi, ni9 li' 9 ra/, rc/) and the line A2 joining (&, v)l9 19 rx ) to (|2 , r)29 2 , r2 )

has coordinates (Z2 ,
w2 , n2 , 129 m29 n2 )

the condition that the two lines

should intersect is the same condition that the four points should be

coplanar, or

*i 2/i

*2 2/2

- 0,

~ Y
S2 ^2 b2 T2

which is t712
=

Iil2 + m1m2

/ + ^Tig
7

4- Z/^ + m^m2 4- n/n2
= 0.

If this condition is satisfied, the six quantities

7 _i_ 7 <n _L />n _i_ 7 '
_i_ 7 '

/Ci
l/i ~Y~ K2 v2 ,

/Ci
ifl/i ~\~ K2 Itvn

, /Cj 'Z'l |" KnYvn
,

/Ci ti "| /C2 1'2 ,

/Cj Tfl/i ~f~ /C2m2 ,
ICi wi "i ^2 2 '

satisfy the condition

+ /c2 Z2 ) (/Ci/i" + K2 12 ) + (K mi + K2m2 ) (Kimi + K2m2 )

+ K2n2 ) (KI^' + fca^
7

)
=

* Geometrical properties of the linear complex were studied before the co-

ordinates of a line were introduced. See Mobius, "tJber eine besondere Artdualer
Verhaltnisse zwischen Figuren im Raume," Journal fur Math. 10 (1833), 317, or

Oesammelte Werke, 1, 491.
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for all values of KX : /c2 ; they are therefore the coordinates of a line which

may be denoted symbolically by /qAj + /c2 A2 . Since the condition that

two lines should intersect is linear in the coordinates of each line, any line

which is met by both Ax and A2 must also be met by all the lines KJ A^+ *2 A2 .

Hence the line /qAj + /c2 Ag is a line passing through the intersection of

Aa and A2 and lying in their plane ;
the different lines of this plane pencil

are given by the different values of the ratio iq : /c2 .

If we have three lines Ax ,
A2 ,

A3 the relation

(*!/! + K2 12

iS W23 K2 K3 + 103! IC,^ -f l&uKl'^ = 0.

There are oo 1 sets of values of /q : /c2 : K3 satisfying this condition; and

for such a set of values we have a iine which may be represented sym-

bolically by K^ + *2 A2 -f *3 A3 . This meets all the lines which meet Xl9 X2
and A3 and we thus obtain one system of generators of a quadric surface.

This supposes that the lines A1? A2 ,
A3 are of general position; but if

they all intersect one another we have tu23
= w31

= w12
= 0, and

jqAj + /c2 A2 + /c3 A3

is a line for all the oo 2 values of /q : *2 : /c3 . Now Al5 A2 , A3 are either con-

ciirrent or coplanar ;
if they are concurrent /q Aj -f- K2 X2 + KS A3 will be a

line through their intersection, and the oo 2 lines through their intersection

are obtainable in this way; if they are coplanar K^A! + /c2 A2 + /c3 A3 will

be a line in their plane, and the oo 2 lines in their plane are obtainable in this

way.
If we have a linear complex

a'l -f b'm 4- c'n + aV + bm' + en' = 0,

for which aaf + W -f cc' = 0,

the linear complex is said to be special. It consists of all the lines meeting
the line whose coordinates are (a, 6, c, a', &', c

x

).

27 . Linegeometry in [3 ] considered as the^point geometryofaquadricprimal
in [5]. If we have six quantities (I, m, n, V, m', n') satisfying the relation

IV 4- mm' + nn' = they can be regarded as the homogeneous coordinates

of a point in [5] which lies on a quadric primal i. This quadric H is a

general quadric; the left-hand side of its equation can be written as the

sum of six squares.

Thus we have a correspondence between the lines of [3] and the points
of ii

;
to every line of [3] corresponds a point of ii, while to every point of

ii corresponds a line of [3], There are no exceptions. Hence line geometry
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in [3] is exactly the same as the geometry of a quadric primal Q in [5]*, and

it will be found that great simplifications arise from this point of view.

28. If we take a definite point (A, p, v, A', p', *>') of Q and join it to an

arbitrary point (I, m, n, I', m', n') of [5] the coordinates of any point on

the joining line are of the form

(OX + cf>l, 8p + </>m, Ov + <(>n,
0X' + $1', Op' + <f>m'^ 6v + </>n'),

and this will lie on Q if

2
(AA' + pp' + w') + 0<f> (AT + pm' + vn' + A7 + p'm + v'n)

+ </>

2
(IV + mm' + nn') = 0.

This is satisfied by <f>
= as we should expect; it will have a double

root
<f>
= if

ZA' + mp\+ nv' + l'\ + m'p + riv = 0.

This equation, linear in (I, m, n, I', m' y n'), is the equation of a [4];

this [4] is such that the line joining ^iny point of it to (A, p, v, A', p', v)
touches Q at this last point. Or the lines which touch 1 at any point lie

in a prime the tangent prime of Q at the point ; and the equation to the

tangent prime at (A, /x, i/, A', p', v') is

IX' + mp + nv + l'\ + m'p + n'v = 0.

Clearly if a point Pl of Q lies in the tangent prime at a second point
P2 of ti the point P2 will lie in the tangent prime at Px . The line PxP2 will

then lie entirely on Q ;
all tangents of ti which meet it in points other than

their points of contact must lie entirely on Q, as meeting it in at least three

points. Two points of fi which are such that either lies in the tangent

prime at the other will be spoken of as conjugate.

It is then clear from the condition w12
= that two lines Aj ,

A2 of [3]

which intersect are represented on Q by two conjugate points P19 P2 .

Then the six quantities

+ K2m2 , KiUi + K2n2 , /q// + K2 12 , iqm/ -f K2m2 ,

are the coordinates of a point of the line PiP2 ; since this line lies on Q,

the point must lie on Q and therefore represents a line of [3] for all values

of KI : K2 . Hence the points of a line on i represent the lines of a plane

pencil in [3].

Corresponding to any line A of [3] we have a point P of Q,
;
the lines of

[3] which meet A are represented on i by its intersection with the tangent

prime at P.

* Klein, "tJber Liniengeometrie und metrische Geometrie," Math. Ann. 5 (1872),

257, or Qesammelte Mathematische Abhandlungen, 1, 106 ; Cayley, Papers, 9 ( 1873), 79.

The theory is greatly developed by Segre in his paper
'*
Sulla geometria della retta e

delle sue serie quadratiche," Memorie Torino, 36 (1883). See also Baker, Principles

of Geometry, 4 (Cambridge, 1925), 40 et seq.
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The lines of a linear complex are represented by the points of a prime
section of Q

;
but for a special linear complex we must take the section by

a tangent prime.

29. The planes* on i. Consider now three points Pl , P2 ,
P3 of fi, each

pair of which is a pair of conjugate points. Then these represent three

lines A1? A2 ,
A3 of [3] for which w23

= c?31
= tu12

= 0. The lines P2P3 , Pa-Pi >

P1P2 all lie on 1
;
so that the plane P^P^P^ meets ti in a curve whose order

is greater than two, and lies on fi entirely. Then the point whose six co-

ordinates are of the form K^ + K2 12 + KZ 13 lies on 1 for all values of

KI
'

*2
'

*3 and represents a line K^ -f *2 A2 -f *3 A3 of [3]. We thus obtain

every point of the plane P1
P2P3 .

We thus have two systems of planes on Q ; <the points of a plane of the

first system represent the lines through a point of [3], while the points of

a plane of the second system represent the lines in a plane of [3] . We
shall call the planes of the first system, representing lines through points

of [3], ta-planes and the planes of the second system, representing lines

in planes of [3], p-planes. Since there is one and only one line passing

through two given points of [3] two ro-planes have one and only one point
in common; and since there is one and only one line lying in two given

planes of [3] two /o-planes have one and only one point in common; two

planes of the same system on 1 meet in a point. Given a point and a plane
of [3], there will not be a line passing through the point and lying in the

plane unless the point itself lies in the plane, so that two planes of i of

opposite systems do not in general intersect. If however the point does

lie in the plane we have a pencil of lines passing through the point and

lying in the plane ; hence if two planes of opposite systems on 1 do intersect

they have a line in common.
On Q, there are oo 3

planes of each system ; through any point of 1

there pass oo 1 of each system. There are also on Q oo 5
lines, oo 2

passing

through any given point on tit-

30. The quatiric point-cone in [4] . We can now give a detailed de-

scription of the section of 1 by the tangent prime at a point P. The point
P represents a line A of [3]; on A there are oo 1

points and through A there

pass oo 1
planes. Hence there are oo 1

tn-planes on Q and oo 1
/o-planes on

Q all passing through P. Two of these planes which belong to the same

system will not intersect except in P, but two planes of opposite systems

* The two systems of planes on O are mentioned explicitly by Cayley, Papers, 9

(1873), 79.

f Cf. Segre, "Studio sulle quadriche in uno spazio lineare ad un numero qua-
lunque di dimensioned' Memorie Torino, 36 (1883), in particular p. 36.
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will intersect in a line through P. The section of 1 by the tangent prime
at P is nothing but these two sets of planes, since any point of 1 lying in

the tangent prime represents a line of [3] meeting A. Such a line in [3]

meets A in a point and is joined to A by a plane, so that the representative

point on 1 lies in two planes, one of each system. The line of intersection

of these two planes joins the representative point to P.

If we take a section by a [3] lying in the tangent prime and not passing

through P we obtain two systems each of oo 1 lines
; two lines of the same

system do not intersect but every line of either system meets every line

of the other; in other words, we have the two systems of generators of a

quadric surface. Thus the section of 1 by a tangent prime is the same locus

as is obtained by joining the generators of a quadric surface, by planes, to

a point outside the [3] in yhich the quadric surface lies. This locus in [4]

is called a quadric point-cone,*.

If we have a curve lying on a quadric point-cone in [4] and project
it on to a [3] from the vertex of the point-cone we obtain a curve lying on

the quadric in which [3J meets the point-cone. Thus, from a knowledge of

the properties of this projected curve, we shall be able to deduce certain

properties of the curve on the cone.

The section of a quadric point-cone by a [3] through its vertex is an

ordinary quadric cone, unless the [3] is that determined by two planes of

opposite systems of the point-cone; it then meets the point-cone simply
in these two planes. Such a [3] is called a tangent solid of the point-cone;
there are oo 3

[3]'s through the vertex, oo 2 of which are tangent solids.

31. The representation of a ruled surface. Since a line of [3] is repre-

sented by a point of 1, a ruled surface / in [3] formed by oo 1 lines will be

represented by the curve C on 1 formed by the oo 1
representative pointsf.

There is thus a (1, 1) correspondence between C and the generators of/,
so that the genus of C is equal to the genus of /. Moreover, the order of

the ruled surface, being equal to the number of its generators which meet

an arbitrary line A of [3], is equal to the number of intersections of C
with the tangent prime at an arbitrary point P of 1, and this is simply
the order of C. Thus we can say that a ruled surface f of order n and genus

p in [3] is represented on 1 by a curve C of order n and genus p.

We thus see how to begin the classification of ruled surfaces mentioned

in 12. We have first to investigate how the double curve and bitangent

developable can be studied by means of the curve C on 1. Then, taking
C to be of a given order and genus, different positions of C on 1 will give
different kinds of double curves and bitangent developables for /.

* Cf. Baker, Principles of Geometry, 4 (Cambridge, 1925), 120-121.

t Cf. Voss, "Zur Theorie der windschiefen Flachen," Math. Ann. 8 (1874), 54.

Segre, Memorie Torino, 36 (1883), 97.
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A given generator g of / is represented on Q by a point P of G. All

generators of / which meet g are represented on ii by points of C which

lie in the tangent prime of fi at P; but this tangent prime, meeting C
twice at P, will meet it in n 2 other points, where n is the order of / and

C. Hence every generator off is met by n 2 others (cf . 10).

32. Torsal generators. If we set up a correspondence between the

points P and Q of (7, saying that two points P and Q correspond when
the chord PQ lies on Q, we have a symmetrical (n 2, w 2) correspon-
dence. This correspondence is of valency 2 since the n 2 points Q which

correspond to any point P, when taken together with P counted twice,

form the complete intersection of C with a prime. Hence the number of

coincidences in the correspondence is

n- 2 + n 2+ 2 .2 .p= 2 (n+ 2p - 2),

where p is the genus of C.

This means that, for 2 (n + 2p ^) points P of (7, there are only n 3

chords of C passing through P and lying on Q, ; the tangent of C at P
lies on fi, and the tangent prime of ii at P meets (7 in three points there.

Then on the ruled surface / we can say that there are 2 (n + 2p 2)

generators which meet their "consecutive generators." Such generators
are called torsal generators', the tangent plane to the ruled surface is the

same for all points of such a generator. Thus a ruled surface of order n

and genus p has, in general*, 2 (n + 2p 2) torsal generators.

Incidentally we have proved that, if a curve of order n and genus p
lies on a quadric primal in space of any number of dimensions, there are

2 (n + 2p 2) tangents of the curve lying on the quadric*. This is easily

verified for simple curves on an ordinary quadric surface in [3] .

33. The double curve and bitangent developable. The degree of the double

curve of the ruled surface /in [3] is the number of points in which it meets

an arbitrary plane. Now the lines of such a plane are represented by the

points of a p-plane on 2, while the lines (including two generators of /)

which pass through a point of the double curve are represented by the

points of a ta-plane (meeting G in two points). Thus corresponding to each

intersection of the double curve with a definite plane of [3] we have a

to-plane meeting C twice and meeting a definite p-plane in a line ;
or we

have a chord of C lying on i and meeting the />-plane. Conversely, corre-

sponding to each chord of C which meets a definite p-plane (and incidentally

lies on } as meeting it in at least three points) we have two generators of

/ intersecting on a definite plane of [3]. Thus the order of the double curve

off is equal to the number of chords of C which meet any given p-plane of

* If C has K cusps then the number of tangents of C which lie on Q is only
2 (n + 2p - 2)

-
2/c, see 349 below.
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general position. Similarly, the class of the bitangent developable off is equal

to the number of chords of C which meet any given w-plane of general position.

These two results are fundamental.

The chords of C which lie on i form a ruled surface jRa on which C is

a multiple curve of multiplicity n 2. The two points of C on a chord which

lies on Q represent two intersecting generators of/, and conversely. The

generators of J?2 are ^us in U> 1) correspondence both with the points of

the double curve and with the planes of the bitangent developable of /.

A prime section of B2 is thus a curve whose genus is equal to that of the

double curve of / and also to that of the bitangent developable of /. We
can calculate this genus in the general case.

Denote a prime section of JB2 by C', and consider the (2, n 2) corre-

spondence between C and C', two points of C and C' corresponding when
the line joining them is a chord of C. The i^umber of branch-points of the

correspondence on C' is simply the number of tangents of C which lie on

Q; this we have seen to be 2 (n + 2p 2). The number of branch-points
of the correspondence on C is equal to the number of points P of C at

which two of the n 2 generators of jR2 coincide. This is equal to the

number of times two of the n 2 points Q coincide in an (n 2, n 2)

correspondence of valency 2 on a curve of genus p\ this number* is

2 (n
-

2) (n
-

3) + 2 (n
-

6) p.

Hence, applying Zeuthen's formula to the correspondence between C
and C', we have, if P is the genus of C",

2 (n
-

2) (n
-

3) + 2 (n 6) p 2 (n + 2p - 2)

= 4 (P - 1)
- 2 (n

-
2) (p

-
1),

or 2P - 2 - (n
-

5) (n + 2p - 2)|,

giving, for a ruled surface of order n and genus p, the genus P of the double

curve and the bitangent developable.

34. When the ruled surface / in [3] is not completely general for its

order and genus the double curve and bitangent developable may break

up; when this happens the ruled surface JR2 formed by the chords of C
lying on il will have to break up correspondingly. For each part of the

double curve and bitangent developable we have a set of pairs of inter-

secting generators of/ and thus a set of chords of C lying on } and forming

* See 14.

f This result is deducible from formulae given by Salmon for the theory of

reciprocal surfaces; see his Geometry of Three Dimensions, 2 (Dublin, 1915), 301.

The application to a ruled surface is given by Cayley, Papers, 8 (1871), 396. If q
is the rank and b the order of the double curve

q = 26 + 2P - 2 and 6 - J (n - 1) (n - 2)
-

p.

The actual form of the result as here stated is given by Wiman, Acta Mathematica,
19 (1865), 66.
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a ruled surface, say S2 ,
which is the corresponding part of J?2 The order

of this part of the double curve of / is equal to the number of generators
of $2 which meet a definite /o-plane, and the class of the corresponding part
of the bitangent developable of / is equal to the number of generators of

S2 which meet a definite to-plane. The genus of the prime sections of S2

gives the genus of these parts of the double curve and bitangent develop-
able.

As well as investigating the properties of the component parts of the

double curve we can investigate their relations with one another, and

similarly for the parts of the bitangent developable. To do this we have

to study the relations between the different component ruled surfaces

which constitute i?2

35. Given a ruled surface in [3] there is, in general, a finite number of

points which are triple points of th% surface
; through such points there

pass three generators of the surface and they are also triple points of the

double curve. Similarly we have, in general, a finite number of planes
which are tritangent planes of the surface

;
in such planes there lie three

generators of the surface and they are triple planes of the bitangent

developable.

When the ruled surface is represented as a curve C on 1 the triple

points give to-planes of ii trisecant to C, while the tritangent planes give

p-planes of fi trisecant to C\ there is a finite number of trisecant planes
of C lying on 5. There are oo 3

planes on Q ;
and since Q is a four-dimensional

locus one condition will be necessary in order that a plane and a curve

which lie on it should intersect; thus three conditions must be imposed
on a plane of ft to make it a trisecant plane of C, so that we naturally

expect a finite number of such planes.

Denote for the moment the curve C of order n and genus p by Cn
v

\ the

number of its trisecant planes lying on H can be calculated directly by
correspondence theory.

If we take any point X on Cn
p there are n 2 chords of Cn

p
passing

through it which lie on ti ; these meet Cn
p
again in points Xl , X2 , . . . , Xn_2 .

We have already noticed that the correspondence between .X" and Xr is

a symmetrical (n 2, n 2) correspondence of valency 2.

In the same way each point Xr gives rise to n 2 points

X X (1) X (n~3)
**-i -**T > > -**-r

Then the correspondence between X and Xr
(8} is also symmetrical and

both its indices are (n 2) (n 3). The points corresponding to X are

found by taking the square* of the former correspondence and leaving

* See Severi, Memorie Torino (2), 54 (1904), 5-9.
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out the point X each of the n 2 times it occurs. Hence the valency is*

-
(2)

2 4.^-2 = 71- 6.

Since both the correspondences are symmetrical the number of common

pairs of points is half that given by Brill's formulaf, and is therefore

N = J {(n
-

2)
2
(n
-

3) + (n
-

2)
2
(n
-

3)
- 2 . 2 (n

-
6) p}

= (n
-

2)
2
(n
-

3)
- 2 (n

-
6) 3?.

This result means that there are N points X on Cn
p such that some

point Xa coincides with some point Xft

(y)
. In particular the suffixes a and

j8 may be the same ;
and then the tangent of Cn

p at Xa lies on Q. There are

2 (n -f 2p 2) such points on Cn
p

\
and through each one of these there

pass ?i3 proper chords of Cn
p which lie on Q ;

each of these chords meets

Cn
p
again in a point X whifch is included in the above N points. Thus the

remaining points X are in number

(n
-

2)
2
(n
-

3)
- 2 (n

-
6) p - 2 (n

-
3) (n + 2p - 2)

= (n
-

2) (n
-

3) (n
-

4)
- 6 (n

-
4) p.

Then for any one of these points X we have Xa and X ft

(y)
coinciding,

where a and /J are not the same. This means that the chords XXa , XXp,

XaXp all lie on fl; so that XXaXp is a trisecant plane of (7W
P
lying on ii.

Thus these points X occur in groups of three, each group determining
a trisecant plane of Cn

p which lies on Q. Hence the number of trisecant

planes of Cn
p which lie on 1 is

(n
-

4) {$ (n -2)(n-3)- 2p}.

These trisecant planes of C which lie on Q, belong half to one system
of planes and half to the other. Thus, given a ruled surface of order n and

genus p in [3], the number of its triple points isj

t(n_2)(n-3)(n-4)-(n-4)i>,
and this is also the number of its tritangent planes.

36. A conic C on 1 represents a ruled surface in [3] of the second order,

or the points of G represent one system of generators of a quadric surface.

We have in fact already noticed^ that such a system of lines in [3] is

represented by coplanar points on fl. It is implied that the plane of C
does not lie entirely on O. The coordinates of any point of C being of the

form K^ + K2 12 + K3 Z3 , the equation to the tangent prime there is

= 0,

*
Severi, ibid. The "product" of two correspondences whose valencies are yx

and y2 has the valency y\y^
t 15.

$ See the references to Cayley and Wiman in 33. Also Castelnuovo, Palermo

Bendiconti, 3 (1889), 33.

II 26.



32 CHAPTER I, 36-39

where Tl
= 0, T2

= 0, T3
= are the tangent primes at three definite points

of C, so that the tangent primes of 1 at all the points of G have in common
the plane T^ = T2

= T3
= 0. This plane meets Q in a second conic C", and

the tangent primes of Q at all the points of C' all contain the plane of C.

The lines represented by the points of C' meet all the lines represented by
the points of C and conversely; thus C and C' give in [3] complementary

reguli on the same quadric surface. There is no double curve or bitangent

developable.
If the plane of C is a cr-plane we have the generators of a quadric cone,

and if it is a p-plane we have the tangents of a plane conic. Clearly we can

have point-cones and plane-envelopes represented on Q in this way by
curves of all orders and genera; in future these will be ignored.

37. Cubic ruled surfaces. As an application of the theory we will

investigate the ruled surfaces of the third order in [3]. For this we have

to consider cubic curves on fi, and the only relevant curve is the twisted

cubic C of $3 . The plane cubic is irrelevant, because if a plane cubic curve

lies on a quadric the whole of its plane must do so, and we have the case

mentioned at the end of 36.

In general, Ss meets fi in a quadric surface Q\ C will meet all the

generators of one system of Q in two points and all of the other system in

one point*. Through SQ there pass two tangent primes of Q, touching it

in two points and O'|. These two points represent two lines R and R',

and every generator of the surface meets these two lines. The surface has

therefore two directrices, where we define a directrix to be a line which is

met by every generator of the surface.

The tangent prime at meets 12 in a quadric point-cone containing Q ;

the two systems of planes on the point-cone passing through the two

systems of generators on Q. We may suppose that that system of generators
which are chords of C lie in the tu-planes through ;

these same generators
will then lie in the p-planes through 0''.

Hence through any point of R there pass two generators lying in a

plane through R', while any plane through JR' contains two generators

meeting in a point of R.

Wehave thus established a geometrical connection betweenthe facts that

(a) a twisted cubic on a quadric meets all the generators of one

system in two points and all of the other system in one point ;

(6) a cubic ruled surface has two directrices ; through each point of

one there pass two generators, while through each point of the other there

passes one generator.

* Salmon, Geometry of Three Dimensions, 1 (Dublin, 1914), 347.

f Just as there are two tangent planes of an ordinary quadric passing through
a line of [3]. The poles of the primes which pass through S9 all line on a line; this

meets O in the two points 0, O' at which the tangent primes contain Sz .
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The double curve consists of the points of E , the bitangent developable
of the planes through R'. An arbitrary plane of fi meets S3 in a point of

Q, and there is only one chord of G lying on Q and meeting this plane
that generator of Q which meets C twice and passes through the point
where the plane meets S3 . Thus the double curve is of the first order and

the bitangent developable of the first class.

38. It may happen however that $3 occupies a special position in

regard to ft, meeting it in a quadric cone with vertex F. Then only one

tangent prime of ii passes through $3 , this being the tangent prime
at F*. A cubic curve on the cone necessarily passes through F. Hence
the second species of cubic ruled surface has a directrix line R which is

also a generator. Any plaice
of i passing through F Hes in the tangent

prime at F and therefore meets $3 in a line. This line will be a generator
of the cone and will meet the curve G in one point other than F. Thus

through any point of R there passes oAe generator other thanR 9 while any
plane through R contains one generator other than R.

This is in fact the cubic ruled surface of 20.

We have thus obtained the two kinds of cubic ruled surfaces in [3]

given by Cayley |.

SECTION III

THE PROJECTION OF RULED SURFACES FROM
HIGHER SPACE

39. Just as a curve is said to be normal when it cannot be obtained by
projection from a curve of the same order in space of higher dimension,
so a ruled surface is said to be normal when it cannot be obtained by
projection from a ruled surface of the same order in space of higher dimen-

sion.

It is well known how the descriptive theory of curves has been

amplified and simplified by considering curves as the projections of normal

curves, and it is natural to expect that the theory of ruled surfaces will

benefit similarly by considering ruled surfaces as projections of normal

ruled surfaces. There are, however, as we should again naturally expect,
more complicated relations to consider in the theory of ruled surfaces

than in the theory of curves ; for example, the normal space for a curve of

order n and genus p is unique so long as n > 2p 2, but for a ruled surface

of order n and genus p the normal space is only unique when p = and

* The poles of the primes containing 3 now lie on a line which touches Q at V.

t Papers, 5, 212-213.
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p = 1. Again, rational curves of order n are all projectively equivalent,

but rational ruled surfaces of order n are not all projectively equivalent.

40. We shall, from this until 50, be concerned solely with ruled

surfaces which are rational. A rational ruled surface of order n is normal

in [n + 1]*, all rational ruled surfaces of order n can be obtained as pro-

jections of these normal surfaces.

In the first place no surface of order n, whether ruled or not, can lie

in a space of dimension greater than n -f If- K it did so every prime section

would be a curve lying in a space of dimension greater than its order.

In the second place, given any rational ruled surface of order n, there

exists in [n + 1] a normal surface of which it is the projection. For con-

sider such a surface in [m], where 2 < m < n + 1, and take two prime
sections. If the primes are of general position in regard to the surface the

sections will both be rational curv&3 of order n
;
the m + 1 homogeneous

coordinates of a point on either curve can be expressed as polynomials
of order n in a parameter. Since the curves are placed in (1, 1) corre-

spondence by the generators of the surface we can take the same parameter
A for both curves ;

so that for a point of the first curve

a< = ^<(A) (
= 0, 1, ...,m),

and for a point of the second curve

*. = MA) (*
= 0, 1, ...,m),

where
<f>
and

i/j
are polynomials of order n.

Thus the coordinates of a point of the ruled surface can be expressed
as rational functions of two parameters A and v in the form

*. = ^ (A) + *0, (A) (i=0, 1, ...,m).

Now the two prime sections have n common points, viz. the points in

which the surface is met by the [m 2] common to the two primes. Then
for these points the polynomials <, must be proportional to the polynomials
iji9 so that

where A1? Ag, ..., An are the n values of A giving the common points of the

two prime sections. We can write the coordinates of a point on the ruled

surface in the homogeneous form

x
{
=

p,<f>i (A, IJL) + vi/j, (A, p,) (i
= 0, 1, ...

, m).

Now let us choose further pairs of polynomials <f>
and

if/
of degree n in

A, the values of the ratios <{>/$ being also equal to the quantities k for the

Veronese, Math. Ann. 19 (1882), 228. f Veronese, ibid. 166.
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n values of A giving the common points of the two prime sections
;
and then

take further expressions

x, = iuf> t (A, fj,) + vifjt (A, p) (i
= m + 1, ...)

If (A, IJL, v) are regarded as the homogeneous co-ordinates of a point in

a plane the quantities x t when equated to zero represent curves of order

n 4- 1
; these curves all have :

(a) a multiple point of order n at A =
//,
= 0,

(6) a common point at p = v = 0,

(c) common points at the n points /x
= 1, A = A

; ,
v = kj.

Thus the number of coordinates xf it is possible to choose which

are linearly independent is the same as the number of linearly independent

plane curves of order n -f \ which have in common n -f- 1 ordinary points
and have also a given point of multiplicity n. But the number of such

curves is

\ (n + 1) (n + 4) + 1 - (n 4- 1)
-

\n (n -f 1)
= n + 2.

We can therefore choose linearly independent coordinates

x t
=

/*</>, (A, IJL) + vifrt (A, /x) (i
= 0, 1, ... , n + 1),

n -f- 2 in number and no more.

Then these quantities x
t
are the coordinates of a point on a rational

ruled surface of order n in [n + 1], the generators being given by

,
== const.

This surface is normal and cannot be obtained by projection from a ruled

surface of the same order in higher space. The original surface lies in the

[m] whose equations are #m+1 = xm+2 = ^ %n +i = an(i ig the projection
of the normal surface from the [n m] whose equations are

#Q #!=...= Xm = 0.

To a general point of the ruled surface there corresponds one point of the

plane, while to a general point of the plane there corresponds one point of the

ruled surface. The correspondence between the plane and ruled surface is

birational save for a certain number of exceptional points.
To a prime section of the ruled surface corresponds on the plane a curve of

order n -f 1 with a fixed n-ple point and n -f 1 other fixed points. To the points
in which the surface is met by a space of dimension two less than the space to

which it belongs we have the variable intersections of two such plane curves;
the number of these is

(n 4- I)
2 - n2 - n - 1 = n,

which is, as it should be, the order of the ruled surface.

A ruled surface of order n in [n -f- 1] is necessarily a rational surface

because its prime sections are rational curves.

3-2
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It can be shewn* that every surface of order n in [n + 1] is necessarily

a ruled surface except when n = 4.

41. The properties of the rational normal ruled surfaces were first

studied by Segre in his paper on rational ruled surfaces published at Turin

in 1884f. The results obtained by him are fundamental for our work, and

as we shall be using them constantly we give here some account of them.

In the first place we can immediately establish the existence of rational

ruled surfaces of order n in [n -f- 1] of several types which are projectively

distinct. For take two spaces [m] and [n ra] in [n 4- 1] which do not

intersect ;
in [m] take a rational normal curve of order m and in [n m]

take a rational normal curve of order n m. Then if the two curves are

placed in (1, 1) correspondence the ruled surface formed by joining pairs

of corresponding points is of order n%\ it is rational and no two of its

generators can intersect .

Take homogeneous coordinates
(1*> ,

xlt ...
,
xn+l)

so that the equations
of [m] are xm+l = xm+2 = ... = xn+i = and the equations of [n m] are

x = xl
= ... = xm = 0. Then a point of the curve in [m] can be given by

x = Am , xl
= A-1

, ...
,
xm = 1, xm+1 = 0, xm+z = 0, ... ,

xn+1 = 0,

while the corresponding point of the curve in [n m] is given by
x = 0, xt

= 0, ..., xm = 0, xm+l = A'1-, xm+2 = A"--1
, ... , xn+1 = 1.

The coordinates of a point on the ruled surface are then given rationally

in terms of two parameters A and
//, by the equations

a: =Awl
, o;1

= Am-1
, ..., #m =l, xm+l= An-">, xm+2= An-m-V ..., #n+1 =/*,

so that the coordinates of every point of the ruled surface satisfy the

equations

^0 _ ?1 _ = ^w*-!
.... ^w+1 __. _. *^n .

^1 ^2 ^m xm+2 xn+l

and conversely every point whose coordinates satisfy these equations is

a point of the ruled surface.

The equations to the ruled surface are therefore

I # Xi ... xm_i Xni+i xn = 0.

II #i #2 ... #m #m+2 xn+l II

In particular, a ruled surface of order 2 in [3] is obtained by a (1, 1) corre-

spondence between two skew lines. If the lines are # =
#!
= and #2 = #3

**

the equation to the ruled surface can be taken as

* Del Pezzo, "Sulle superficie di ordine n immerse nello spazio di n + 1 dimen-

sion!," Rend. delV Accad. di Napoli, 24 (1885), 212.

f "Sulle rigate razionali in uno spazio lineare qualunque," Atti Torino, 19 (1884),

355.

J 19. For if they did the spaces [n] and [n m] would also intersect.
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42. We shall always assume that the ruled surface in [n + 1] is not

a cone and that it does not break up into separate surfaces. Further, it

does not lie in any space of dimension less than n + 1.

If there is on the surface a curve of order less than or equal to n it

can only meet each generator of the surface in one point; for if it met
each generator in more than one point any space containing the curve

would contain the whole surface. But the surface lies in a space of dimen-

sion greater than n, whereas the curve must lie in a space of dimension

less than or equal to its order. Since then the curve only meets each

generator in one point it is a rational curve.

A curve on a ruled surface meeting every generator in one point will

be called a directrix.

Thus on a ruled surfacfi of order n in [n + 1] every curve C^ of order

p. < n is a rational curve. But, further, every such curve is a rational

normal curve. For if it were contained in a
[//, b] , where b > 0, we could

take, through the curve and through any n /z + b generators, a space

[n] which would meet the surface in a curve of order

p, -\- n p, + b = n + b>n;
and this is impossible.

Moreover, we cannot have on the surface two curves the sum of whose

orders is less than n. For if we have two curves
M
and Cy of respective

orders
//,
and //, where /x + \*f < n, they are contained in spaces [/*] and

[//]; whence the space [^ -f \*! -f- 1] containing these would contain the

whole surface, which is not contained in a space of dimension less

than n + 1.

Similarly, if we have on the surface two curves the sum of whose orders

is n they cannot intersect.

43. When we generate a normal ruled surface by means of two curves

of orders m and n m we can always suppose, except when m = n m =
\n,

that
m < n m9

n
or m < ~ .

z

Then there can be no other curve on the surface of order as small as m
;

or the curve of order m is the directrix of minimum order on the surface.

We can call it for brevity the minimum directrix.

Now in generating the surface we can clearly take any value for m
n

such that 1 < w < (ignoring w= which gives a cone). Two surfaces

whose minimum directrices are of different orders cannot be projectively

equivalent.
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Thus if n is odd ice have -
protectively distinct types of rational

2i

normal ruled surfaces of order n in [n -f 1]; each surface has a directrix of

711
minimum order equal to m, where m is one of the numbers 1,2,..., ^

.

*W

// n is even we have ^ projectively distinct types of rational normal ruled
2t

surfaces of order n in [n -f 1]; one surface has minimum directrices of order

Y)

s ,
while the others have each a directrix of minimum order equal to m, where

2i

m is one of the numbers 1, 2, ... ,
1.

2t

44. We now shew that every rational normal ruled surface of order n in

[n -f 1] is of one of these types. To do this we must shew:

(a) that every ruled surface di order n in [n -f 1] has on it a curve

- , n
of order m < -

;

JL

(b) that such a surface has on it curves of order n m.

Then taking curves Cm and Cn _m of these orders they cannot have

any intersections, and the ruled surface can be given by a (1, 1) corre-

spondence between these curves.

The proof of (a) is immediate
;
for taking a ruled surface of order n in

[n + 1] we know that a prime [n] can be taken to contain n 4- 1 inde-

n -f- 1

pendent points. If then n is odd we can take a prime through -*
A

generators arbitrarily chosen; the remaining intersection of the prime with

n 1
the surface is a curve of order which may or may not contain other

2i

generators as parts of itself. It always includes, however, a curve which

is a directrix; so that on a ruled surface of odd order n in [n -f 1] there

yi i
is always a directrix curve of order less than or equal to -

. Similarly,
2t

on a ruled surface of even order n in [n -f- 1] there is always a directrix

curve of order less than or equal to ^.
2t

Consider now a surface F2
n with a minimum directrix y

m of order m.

If a prime [n] contains more than m generators of F2
n it will meet y

m in

more than m points and so contain it entirely, and its intersection with

the ruled surface will consist of y
m and n m generators. This further

illustrates the fact that there are no curves, other than y
m

itself, on F2
n

of order less than n m. If, however, a prime [n] is made to contain

exactly m generators of F2
n

(as
it always can since m<

j
it will
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not contain y
m and will meet F2

n further in a curve of order n m
; unless,

however, every prime through the m generators necessarily contains a

further generator. But this cannot be
;
for we can take a prime through

m arbitrary generators and n 2m -f 1 arbitrary points of F2
n

; if such a

prime necessarily contained a further generator it would also contain y
m

and therefore the n 2m + 1 generators of F2
n
through the chosen points ;

its intersection with F2
n would then be a curve of order at least

m -f m + n 2m + 1

or n + 1, which is impossible.

We have then clearly established the existence of curves of order

n m on F2
n

;
so that all rational normal ruled surfaces of order n in

[n -f 1] can be obtained as in 41.

45. Since any directrix curve of order n m and any m generators lie

together in an [n] all the curves of order n m can be obtained by means
of primes through m generators arbitrarily chosen. We can now state the

following :

On the surface F2
n ivhose minimum directrix is of order m there are

oo ri~2m+1 curves of order n m. These curves are all obtained by primes

through any m fixed generators of the surface] and through any n 2m + 1

points of general position on the surface there passes one such curve.

Any two curves of order n m will have n 2m intersections
;
a prime

containing one of them meets F2
n further in m generators and meets the

other curve in n m points of which m are on these generators, the re-

maining n 2m being intersections of the two curves.

In particular the ruled surface of even order which lias minimum directrices

77

of order - has oo 1
of them; through any point of the surface there passes one

2t

such curve and no two of them can intersect. The curves can all be obtained by
ijj

means of primes through any -= generators.
2t

In a similar way it can be shewn that, if < k < m, there are, on a

surface F2
n with a minimum directrix y

m
of order ra, oo n~2fc+1 directrix

curves of order n k such tfiat through any n 2k -f 1 points of general

position on the surface there passes just one. All these curves can be obtained

by means of primes through any k fixed generators. Two directrices of

orders n k and n k' intersect in n k k' points.

46. A space [n 1] of general position will meet F2
n in n points;

we can, however, consider spaces containing generators of F2
n

. If an

[n 1] contains k generators it will contain k points of y
m

\
so that if

k > m it will contain the whole of y
m

,
and its intersection with F2

n will

consist of y
m and a certain number of generators. If, however, k<m,
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[Ti1] will not contain y
m and its intersection with F2

n will consist of the

k generators and a certain number of isolated points. A prime through

[n 1] meets F2
n in the k generators and a curve of order n k ;

this curve

will meet [n 1] in n k points of which k lie on the generators, the re-

maining n 2k giving the isolated intersections of F2
n with [n 1].

Hence an [n 1] through k generators of F2
n

, where k < m, meets F2
n

,
in

general, in these generators and in n 2k points.

47. Having then such a knowledge of the properties of a normal

surface in [n -f 1] we can deduce the properties of a rational ruled surface

of order n in [3] by projecting from a space [n 3]. The spaces [n 2]

joining [n 3] to the points of the normal surface F meet the [3] in the

points of the projected surface/, while the spaces [n 1] joining [n 3]

to the generators of F meet the [3] in the generators of /. Surfaces / de-

rived by projection from the same type of normal surface are projectively

equivalent ; but surfaces / derived from different types of normal surfaces

are not. Knowing a method of generating F by a (1, 1) correspondence
between two directrix curves we can deduce a method of generating /, and
so if we wish obtain the equation to /.

In order to give a first illustration of this work we shall obtain the

two cubic ruled surfaces of [3], already met with in 37, 38, by projection
of the normal cubic ruled surface in [4]*.

48. In [4] there is only one type of cubic ruled surface F; it has a

directrix line A and oo 2 directrix conies. Through any two points of F (not

on the same generator and neither of them on A) there passes one directrix

conic; while any two directrix conies have a single intersection. Project
F from a point of $4 on to a solid S

;
we get a cubic ruled surface / in

S. The lines joining to the points of F meet 2 in the points of/, while

the planes joining to the generators of F meet 2 in the generators of/.

Through a general point of $4 there passes one plane containing a

directrix conic of F. There cannot be more than one, because the inter-

section of two such planes is the intersection of the two directrix conies

which they contain, and this lies on F. But there certainly exists one such

plane; for any solid through the point meets F in a twisted cubic, one

of whose chords passes through the point, and the two points in which

the chord meets F determine a directrix conic whose plane contains the

chord.

If then is a general point of $4 there is a plane TT passing through it

which contains a directrix conic F
;
and TT meets S in a line R which is a

double directrix of/, two generators of /passing through every point of R.

The plane joining to A, the line directrix of F, meets S in a line R' which
* Cf. Veronese, loc. cit. 229-232.



INTRODUCTORY 41

is a second directrix of/; through any point of E' there passes one generator
of /(see Fig. 1).

Any plane of 2 passing through R' is joined to by a solid containing
A and therefore meeting F in A and two generators gl and <72 *- This solid

meets rr in a line through 0, and this line must meet F in the two points

gl r and g2 F. Then gl and gr2 project into two generators of/ which intersect

in a point of R and lie in the plane through R' from which we started.

Hence any plane through ttf contains two generators of / which meet in

a point of R.

Fig. K

This shews that / is a cubic ruled surface in S belonging to the first

of our two species. Since F can be generated by placing its directrix line

in (1, 1) correspondence with any of its directrix conies* we deduce at

once that/ can be generated by placing two lines R, R' in (1, 2) corre-

spondence.

49. This general type of surface has naturally been obtained by
selecting a general point of projection. Let us then take a point in a

plane through A which contains a generator g of F, and project from

on to a solid S. Then the plane OXg meets S in a line R which is a directrix

and also a generator of /.

It is clear from the projection that any plane through R contains one

other generator of /, while through any point of R there passes one other

* 44.
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generator of /. Thus we have our second type of cubic ruled surface in

three-dimensional space.

From the known generation of F we deduce that / can be generated by
a line and conic with a point of intersection placed in (1, 1) correspondence
without a united point*. If we regard F as generated by a (1, 1) corre-

spondence between its directrix line A and one of its directrix conies F
this point of intersection is the projection of the point gT. The point of

intersection is not a united point because the two points in which g is

met by A and F project into different points of R f.

50. Irrational ruled surfaces. It is proved by Segre J that all ruled

surfaces of order n which are elliptic (p 1) can be obtained by projection

from normal surfaces in [n 1]; he has made a complete study of these

surfaces, and we shall give some account of his results and apply them to

surfaces of the fifth and sixth orders. But when we come to surfaces for

which p = 2 the normal space is no lofciger unique ;
this is clearly exemplified

in our study of sextic surfaces. It can be shewn that all ruled surfaces of

order n and genus p which are not contained in a space of dimension less

than n p -f 1 are cones
;
and on the other hand that all ruled surfaces

of order n and genusp have a normal space 1 1

of dimension at least n 2p + 1 .

Thus it would seem that, in order to obtain all the ruled surfaces of order

n and genus p by projection, we have to consider the possible normal sur-

faces in p different spaces.

51. The chords and tangents of a ruled surface. If we have a surface in

higher space then, just as in [3], all the tangent lines at a non-singular

point of the surface lie in a plane
i
ff.
The tangent plane at any point of a

ruled surface must clearly contain the generator of the ruled surface which

passes through the point ;
and it is the fact that the tangent planes at the

different points of the generator form a pencil of planes related to the

range of points on the generator and all lie in a [3]^|. We shall speak of

this [3] as the tangent solid of the ruled surface along the generator.

We thus have a four-dimensional locus Jf4 formed by these oo 1
tangent

solids of the ruled surface; we can also regard M^ as consisting of the oo 2

tangent planes or of the oo 3
tangent lines of the ruled surface. If the ruled

surface lies in [4] there will be a finite number of its tangent solids (or

planes or lines) passing through any point of [4] . If the ruled surface lies

* Cf . 20.

t Concerning this surface we may also refer to Reye, Die Geometric der Lage, 3

(Leipzig, 1923), 156.

J "Ricerche sulle rigate ellittiche di qualunque ordine," Atti Torino, 21 (1886),

868.

Segre, ibid. 2.
\\ Segre, Math. Ann. 34 (1889), 4.

H Del Pezzo, Palermo Rendiconti, 1 (1887), 243-245.
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in [r] ,
where r > 4, there will be a finite number of its tangents meeting

an [r 4] of general position, and this number is the order of Jf4 .

The chords of the ruled surface form a five-dimensional locus M5

on which the locus Jf4 formed by the tangents lies. If the surface is in

[4] there will be oo 1 chords of it through a general point of [4]. If the

surface is in [5] there will be a finite number of its chords passing through
a general point of [5]; this number is the number of "apparent double

points" of the surface. If the surface is in [r], where r > 5, there will be

a finite number of its chords meeting an [r 5] of general position, and

this number is the order of M5 .

For example, on the rational ruled surface F2
n in [n -f 1]

1 w, 1 n\,-\-\.
*** n II

~~~~ ^>

y* i* i* 'V <v II

c/j
*t/2 ... rf/m ^m+2 ^n+1 N

the coordinates of any two points can be taken as

(a
m

,
a 777 - 1

,...,!, a n ~m
b, ..., aft, 6),

and (a
m

,
a711-1

,...,!, an
- OT

j8, ... , a]8, /J).

Then the coordinates of any point on the line joining these are seen to

satisfy

XQ Xi ... #m_2 #7W+1 #n

/j /y
/vt

/yt
/vt

#2 #3 #m #ra+3

which represents a locus of five dimensions and of order | (n 2) (n 3).

52. In the actual projection of a ruled surface from higher space these

two loci MI and M5 are useful for studying any double curve which there

may be on the projected surface. When the surface is in [r] we project on

to [3] from an [r 4]; the locus M5 meets [r 4] in a curve ft; through
each point of this curve there passes a chord of F and the [r 3] joining

[r 4] to such a chord meets the [3] S on to which we are projecting in a

double point of the projected surface /. We thus have the double curve

of / in (1, 1) correspondence with the curve in which Jf6 meets [r 4].

The chords ofF meeting [r 4] give on F a curve C in (2, 1) correspondence
with the double curve of /; the number of branch-points of this corre-

spondence on C is the number of tangents of C which meet [r 4], and

this is simply the order of M^ . Thus the genus of the double curve of / is

the same as that of the curve & in which M5 meets [r 4] ;
it can also be

calculated by Zeuthen's formula when we know the genus of C.

There will, of course, not be a curve in [r 4] unless r > 5
;

if r = 5

we have a finite number of chords of F passing through each point of a

line, while if r = 4 we have an infinity of chords of F passing through a

single point : in both these cases, however, we still have the curve C on F.
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The projection of the cubic ruled surface in [4] exemplifies this ;
the chords

of F passing through an arbitrary point lie in a plane and meet F in the

points of a directrix conic F. There are two tangents of F passing through 0.

53. We already know, by means of the representation of / as a curve

on Q, that / will have, in general, a finite number of triple points : this is

confirmed by the projection. The triple points of / must arise from spaces

[r 3] passing through the centre of projection [r 4] and meeting F
each in three points. Now the spaces [r 3] in [r] which contain [r 4]

are in aggregate oo3
, and one condition is necessary for an [r 3] to meet

a surface in [r]. Hence there are, containing [r 4], oo 2
spaces [r 3]

each meeting F in one point, oo 1
spaces [r 3] each meeting F in two

points and a finite number of spaces [r 3] each meeting F in three points.

The first set simply joins [r 4] to the oo 2
points of F\ the second set

contains the oo 1 chords of F which meet [r 4]; the third gives the triple

points of /. The singularities of a general ruled surface in [3] are a double

curve and a finite number of triple points, these points being also triple

points of the double curve.

For a ruled surface in [4] the only singularities, in general, are a finite

number of double points. If the surface is a projection of a non-singular
ruled surface in [5] this is clear at once, for we have already seen that

there is a finite number of chords of this surface passing through a general

point of [5] . If the surface is the projection of a surface in [r] , when r > 5,

the centre of projection is an [r 5] , and this, if it is of general position,

meets the MB formed by the chords of the surface in a finite number of

points.

54. Conclusion. We have now two powerful methods of obtaining the

different kinds of ruled surfaces in [3]; the first by considering the surfaces

as curves on O, the second by projection of normal surfaces from higher

space. For surfaces which are the most general of their order and genus
we must choose the curVe to have a general position on Q, and the centre

of projection to have a general position in regard to the normal surface.

To obtain the other surfaces we specialise the position of the curve on Q,

and the position of the centre of projection in regard to the normal surfaces.

The first method is only applicable to the ruled surfaces in [3], whereas

the second is equally applicable to ruled surfaces in any space; but the

duality of the surface is lost in the second method, whereas it is retained

in the first; it is only in [3] that the line is the self-dual element. The two
methods will have to lead to the same results; and we may confidently

expect a greater efficiency than usual when we have two such different

methods confirming the workings of one another.

We proceed then to the main task of classifying ruled surfaces in [3] ,

beginning with those of the fourth order.



CHAPTER II

QUARTIC RULED SURFACES

INTRODUCTORY

55. The object of this chapter is to give a detailed and exhaustive

classification of the quartic ruled surfaces of three-dimensional space. The
most general type of surface is mentioned by Chasles *

;
the surfaces were

studied and classified, though not quite exhaustively, by Cayleyf, who
obtained his different types by means of directing curves and gave algebraic

equations for them. The complete classification was first given by CremonaJ,

who generated his surfaces by means of correspondences between two
curves.

We shall illustrate the general methods of this volume by obtaining the

quartic ruled surfaces of [3] in two ways:

(a) by regarding their generators as represented by the points of a

quartic curve on a quadric Q, in [5] ( 31);

(6) by regarding them afc projections of normal quartic ruled surfaces

in higher space.

56. Lines in [3] are oo4 in aggregate ;
there are thus oo 1 lines satisfying

three conditions. It is one condition for a line to meet a curve; so that

the lines which meet each of three given curves C19 C2 ,
C3 are oo 1 in aggre-

gate and form a ruled surface. Salmon remarked that if the curves Cl9 C2 ,

C3 are of respective orders ml9 m2 , w3 then the order of the ruled surface

is 2m1m2m3 ; further, the three curves are multiple curves on the surface;

through every point of GI there pass ra2m3 generators, through every point
of C2 m^m^ generators and through every point of C3 m^m^ generators.

Cayley added the further statement that if C2 and C3 have a intersections,

<73 and (7X have /J intersections and <7j and C2 have y intersections, then the

order of the ruled surface is reduced to 2m1w2w3 m:a m2 j8 ra3 y,

while through every point of Ct there pass w2ra3 a generators, through

* Comptes ftendus, 52 (1861), 1094.

t Papers, 5 (1864), 214-219, and 6 (1868), 312-328.

J Memorie deir Accademia di Bologna (2), 8 ( 1868), 235 ; Opere, 2, 420. Concerning
quartic ruled surfaces we may refer also to Reye, Die Oeometrie der Lage, 2 (Stuttgart,

1907), 301, and Sturm, Liniengeometrie, 1 (Leipzig, 1892), 48.

Cambridge and Dublin Mathematical Journal, 8 (1853), 45; cf. Geometry of
Three Dimensions, 2 (Dublin, 1915), 90.
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every point of C2 m^m^ j3 generators and through every point of (73

m1m2 y generators*.

Cayley then chose sets of directing curves which would give ruled

surfaces of the fourth order. For example, one such set can be taken to

consist of two conies Cl and C2 with two common points and a line C3

meeting one of the conies, say Gl . Then

ml
= 2, ra2 = 2, w3

=
1,

a = 1, 0=0, y = 2,

and we have a ruled surface of order 4 on which C2 is a double conic and

(73 a double line. He did not succeed however in discovering all the quartic

ruled surfaces in this way f.

Incidentally we also have a ruled surface formed by the chords of one

curve which meet another given curve
;
or by the lines trisecant to a given

curve. Formulae can be given for the orders of such ruled surfaces; we
shall see below that a quartic rule^l surface is formed by the chords of

a twisted cubic which meet a given line.

57. Cremona on the other hand generated the quartic ruled surfaces

by means of a (1, 1) correspondence between two conies. In general the

conies will not degenerate and will not intersect; but further types of

surfaces are obtained if one or both of the conies degenerates into a line

counted doubly, and still further types can arise if the two curves intersect.

It can at once be shewn by elementary methods that the ruled surface

is of the fourth order. For let the two conies be C and C' and suppose that

an arbitrary line meets their planes in p and q. Then an arbitrary plane

through the line gives a pair of points x, y on C and a pair of points 2', u'

on C'. Then as the plane varies in the pencil the pairs of points x, y will

describe an involution on C, the join of every pair of points passing through

p; while the pairs of points z', u' describe an involution on C", the join of

every pair of points passing through q ;
the pencils of lines through p and

q in the planes of the two conies are thus homographically related. But
to the points x, y of C there will correspond, in the (1,1) correspondence
between the conies, points x', y' of C'

;
and as the points x, y describe the

involution on C the points x', y' will describe an involution on C'. The

join of x' and y' thus passes through a fixed point p', and the pencil of

lines through p' in the plane of C' is thus homographic with the pencil

*
Papers, 5 (1864), 203.

t There are, as we shall see, ten species of quartic ruled surfaces With rational

plane sections and two with elliptic plane sections; in Cayley's first paper we find

the two elliptic ones and six of the rational ones. This paper was seen by Cremona
before he published his own, and meanwhile Cayley discovered two other rational

quartic ruled surfaces. He did not know of the existence of the remaining two

species until he was informed of them by Cremona.
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of lines through p in the plane of C. We have then in the plane of C' two

homographic pencils of lines with vertices p' and q\ the locus of inter-

sections of corresponding lines is a conic. This conic meets C' in four

points, and the plane joining any one of these four points to pq contains

a pair of corresponding points of C and C' and therefore a generator of the

ruled surface. We have thus four generators of the surface meeting pq, so

that the ruled surface is of the fourth order.

It is clear that the planes of C and C' are bitangent planes of the ruled

surface, each meeting it in a conic and two generators. The plane of C, for

example, meets C' in two points and therefore contains the two generators
which join those points to the corresponding points of C.

Further, there are three double points of the ruled surface in an

arbitrary plane. In the plane of C we have the intersection of the two

generators lying therein and two other points, namely, those intersections

of the generators with C which do not correspond to the two intersections

of the plane with C'. The double curve of the ruled surface is thus a twisted

cubic*.

The (1,1) correspondence between C and C' determines a projectivity

between their planes t ;
there are certain lines in either plane which intersect

their corresponding lines in the other plane, and the planes of such pairs

of intersecting lines are known to form a developable of the third class J.

Such a plane necessarily contains two generators of the ruled surface
;
and

conversely every bitangent plane of the ruled surface will meet the planes
of C and C' in lines which correspond to one another in the projectivity.

Thus we see that the quartic ruled surface has a bitangent developable of

the third class.

Just as the points of the surface which lie in a plane containing two

generators, but not themselves on either of the generators, lie on a conic,

so the tangent planes of the surface which pass through a point of inter-

section of two generators, but do not themselves contain either of these

generators, touch a quadric cone.

After these preliminary remarks we proceed to the classification of

the quartic ruled surfaces by the two methods
;
the reader is referred for

further investigations to Cremona's paper.

* The double curve, being algebraic, meets every plane of the space containing
the ruled surface in the same number of points. It is then sufficient, in order to be
able to say that the double curve is a twisted cubic, to prove that it meets the plane
of C in three points.

t von Staudt, Geometric der Lage, 2 (Niirnberg, 1857), 149; Reye, Geometric

der Lage, 2 (Stuttgart, 1907), 10.

J von Staudt, Geometrie der Lage, 3 (Niirnberg, 1860), 326; Reye, Geometrie der

Lage, 2 (Stuttgart, 1907), 163.
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SECTION I

RATIONAL QUARTIC RULED SURFACES CON-
SIDERED AS CURVES ON Q

58. The generators of a rational quartic ruled surface are represented
on ii by the points of a rational quartic curve C. Such a curve necessarily

lies in a space $4 and may be contained in a space $3 , so that we consider

five possibilities as follows :

I. G is a rational normal quartic lying in an $4 which has no special

relation in regard to ii.

II. C lies in a tangent prime T of fi.

III. C lies in a tangent prime T of Q and passes through 0, the point
of contact of Q and T.

IV. C lies in an $3 , the intersection of tangent primes to fl at two

points and 0'.

V. C lies in an /S3 through which there passes only one tangent prime
of Q, $3 meeting Q in a quadric cone with vertex V.

59. Let us now examine the general case I.

To find the degree of the double curve of the ruled surface we take a

plane p on Q and find how many planes w there are which meet this plane

p in a line and also meet C in two points*. The chord joining the points of

G in such a plane w would have to meet p (on its line of intersection with

w). But p meets $4 in a line ; and we know that any line in $4 is met by three

chords of C'f, because when we project G from the line on to a plane we
obtain a rational quartic, i.e. a plane quartic with three double points.

A chord of C which meets the line lies entirely on Q as meeting it in three

points, and therefore a plane w passes through it. We therefore obtain

three planes w such as we require.

Hence the double curve is of the third order.

Similarly the bitangent developable is of the third class.

The tangent prime of D at any point P of C meets $4 in a solid which

contains the tangent of C at P and meets C in two points other than P.

Hence every generator of the surface is met by two others. On any
generator there lie two points of the double curve, while through any

generator there pass two planes of the bitangent developable.
Since the points of G lie in an S4 which does not touch 2 the generators

of the surface belong to a linear complex which is not special. The surface

was thus given by Cayley, as that formed by the chords of a twisted cubic

belonging to a linear complex J.

* 33. f Cf. 8. J Papers, 6, 316.
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The chords of a twisted cubic are oo 2 in aggregate; they are therefore

represented on Q by the points of a surface V. Since one chord of the

cubic can be drawn through any point of the space [3] in which it lies, the

surface V meets every plane w on Q in one point; and since there are

three chords of the cubic in any plane of the [3], the surface V meets

every plane p on Q, in three points. Hence V is of order 4, meeting an

arbitrary solid in four points. This surface V is in fact the surface known
as Veronese's surface*.

The statement that the chords of a twisted cubic belonging to a linear

complex form a rational quartic ruled surface is the same as the statement

that the section of Veronese's surface by a prime is a rational quartic curve.

60. Quartic ruled surfaces of type II. A tangent prime T of ii meets

Q in a quadric point-cone f ;
this contains the two systems of planes on 1

through the point of contact O. Any solid of T meets Q in a quadric

surface; and the lines joining O to evefy point of this quadric surface lie

on Q. The rational quartic C is projected from into a rational quartic
on this quadric. Remembering that the generators of the quadric lie on

the planes of the two systems through O we can at once subdivide type II

into three parts :

II (A). C meets every plane w through O in three points and every

plane p through O in one point.

II (B). C meets every plane w through in one point and every plane

p through O in three points.

II (C). A chord of C passes through 0\ C meets every plane of Q
through O in two points.

The point of 1 represents a line R\ this is a directrix of the quartic

surface, being met by every generator.
When the surface is of the type II (A) there are three generators passing

through every point of J?, while there is one generator lying in each plane

through R.

To find the double curve we take, as before, an arbitrary plane p, and
we consider those chords of C which meet this plane. These are the three

chords of C which meet the line of intersection of the plane />
with the

tangent prime T, and are therefore those chords of C which lie in the plane
w joining this line to O.

If we now interpret this result in the space /S3 containing the ruled

surface the plane p represents an arbitrary plane of S3 ;
and the three planes

w which represent the three intersections of this plane of S3 with the double

* For this surface, regarded as representing the chords of a twisted cubic, see

Baker, Principles of Geometry, 4, 52-55, where references to the literature concerning
it will also be found.

t Cf. 30.
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curve all coincide in a single plane through 0. Hence the three points of

intersection of the plane of S3 and the double curve all coincide in the

intersection of this plane with the line R.

Hence the double curve is the line R counted three times.

To find the bitangent developable we take an arbitrary plane w\ this

meets T in a line which is met by three chords of C, and the bitangent

developable of the surface is a general developable of the third class.

When the surface is of the type II (B) there is one generator passing

through each point of R and three generators lying in any plane through
R. The double curve is a non-degenerate twisted cubic, while the bitangent

developable consists of the pencil of planes through R counted three

times.

When the surface is of the type II (C) there are two generators which

pass through any point of R and two which lie in any plane through R.

An arbitrary plane p meets T in a line
;
one of the three chords of C

which meet the line is contained iii the plane w joining it to 0. Hence the

double curve consists of R and a conic. R and the conic intersect; their

point of intersection is represented by the tu-plane which contains the

chord of C passing through 0. Similarly, the bitangent developable con-

sists of the pencil of planes through R together with the tangent planes of

a quadric cone, one tangent plane of the cone passing through R. This

tangent plane of the cone is represented on Q by the />-plane which contains

the chord of C passing through 0.

61. Quartic ruled surfaces of type III. We can subdivide III into two

parts; since the projection of C from on to a solid in T is now a twisted

cubic we have :

III (A). C meets every plane w through in two points and every plane

p through O in one point other than 0.

Ill (B). C meets every plane w through in one point and every plane

p through in two points other than 0.

The point represents a line R which is a directrix and also a generator
of the ruled surface.

In the type III (A) there are two generators other thanR passing through
each point of R and one generator other than R lying in each plane through
R. An arbitrary plane p meets T in a line

;
but the three chords of C meeting

this line all lie in the plane w joining it to 0. Hence the double curve is the

line R counted three times. An arbitrary plane w meets T in a line, and
the plane p joining this line to contains one chord of C. There will be
two other chords of C meeting the line, so that the bitangent developable
consists of the pencil of planes through R together with the tangent planes
of a quadric cone.
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In the type III (B) there are two generators other than R lying in any
plane through R and one generator other than R passing through any
point of R. The double curve consists of R and a conic, the bitangent

developable of the pencil of planes through R counted three times.

62. Quartic ruled surfaces of type I V. In IV we have a rational quartic
C lying on the quadric surface in which i is met by $3 . We have then two

possibilities :

IV (A). C meets all generators of one system in three points and all of

the other system in one point.

IV (B). G has a double point and meets every generator in two points.

Through a general point of SB we can draw three chords to either of

these rational quartics ;
in the second case we include the line to the double

point.

The points O and 0' of Q represent lines R and R', which are both met

by every generator; the surface has two directrices.

The planes of the two systems on Q which pass through and 0' meet
S3 in the two systems of generators of the quadric surface. Each generator
is the intersection of a plane of one system through with a plane of the

opposite system through 0'.

In IV (A) we may suppose that the generators trisecant to C lie in the

nj-planes through and in the p-planes through 0'. Then through any point
of R there pass three generators lying in a plane through R' ; any plane

through R' contains three generators meeting in a point of R. The double

curve consists of the points of the line R counted three times
;
the bitangent

developable consists of the planes through the line R' counted three times.

In IV (B) the double point of C represents a double generator O of the

surface. Through any point of R there pass two generators lying in a plane

through R' and through any point of R' there pass two generators lying in

a plane with R. The double curve therefore consists of the points of R, R',

G, while the bitangent developable consists of the three pencils of planes

through R, R', G.

63. Quartic ruled surfaces of type V. In V C lies on a quadric cone Q
with vertex V and must therefore have a double point. If two quadrics
in S3 touch there are three cones through their curve of intersection, one

of which has its vertex at the double point ;
so that V can be subdivided

according as

V (A), the double point of C is not at F,

or V (B), the double point of G is V.

Through every generator of Q there passes a plane of fi of either system.
In V (A) the surface has a directrix line R

; through any point of R there

pass two generators which lie in a plane with R
9
while any plane through

4-2
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E contains two generators meeting in a point of R. R is represented on

Q by the point V.

An arbitrary plane of Q meets S3 in a point P on Q, and it is clear that

the projection of C from P on to a plane of $3 is a quartic curve with a

double point and a tacnode, the tangent at the tacnode being the inter-

section of the plane with the tangent plane of the cone along the generator

through P. Hence the three chords of C which pass through P consist

of the generator PV counted twice and the line to the double point.

Hence the double curve consists of the directrix R counted twice and

a double generator, while the bitangent developable consists of the planes

through R counted twice and the planes through the double generator.

InV (B) the surface has a directrix line-B which is also a double generator.
C meets every generator of Q in one point other than V

;
so that through

any point of R there passes one generator other than R, while every plane

through R contains one generator other than R.

An arbitrary plane of ii meets $3 in a point P on Q, and the projection

of C from P on to a plane of S3 has a triple point. Hence the three chords

of C passing through P all coincide with PV. The double curve is therefore

the line jR counted three times, while the bitangent developable consists

of the planes through R counted three times.

64. This completes the determination of the rational quartic ruled

surfaces of ordinary space. We have obtained in all ten species, and these

are the same as the ten species obtained by Cremona. A table of the sur-

faces is given on p. 303.

65. The representation of the double curve and bitangent developable.

Two generators of the surface which intersect are represented on Q, by
two points of C such that the chord joining them lies entirely upon J.

This chord will meet an arbitrary prime in a point which can be taken as

representative either of the point of the double curve in which the two

generators intersect or of the plane of the bitangent developable in which

the two generators lie*. Hence the chords of C which lie on fi trace out

in the prime a curve D which is in (1, 1) correspondence with both the

double curve and the bitangent developable.
We assume that C is general unless the contrary is stated.

The chords of C form a locus C73 of three dimensions
; any point of this

locus which is on ii and not on C must be on a chord of C that lies

entirely on ii. Hence these chords form a ruled surface in the $4 containing

(7, this ruled surface being the intersection of 1 and U3 . The section of

this ruled surface by a prime or, what is the same thing, by an 83 lying

* Cf. 33.
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in $4 , gives us the curve D. The $3 will meet 1 in a quadric surface and

U3 in another surface; and D is the intersection of these two surfaces.

If C is projected from a line in $4 on to a plane we have a quartic curve

with three double points, so that the line must be met by three chords of

C. Hence C73 is of the third order and may be denoted by C73
3

. Moreover,

if C is projected from a line which meets it on to a plane we have a plane
cubic with one double point, so that the line is only met by one chord of

C besides those passing through its intersection with (7. Hence C is a

double curve on C73
3

. Since no plane can meet C in four points no two chords

of C can intersect except on C itself, so that there is no double surface on

t/3
3

. The section of Z73
3
by an S3 is a four-nodal cubic surface.

The curve D in S3 is therefore the intersection of a four-nodal cubic

surface with a quadric passing through the nodes; this is a sextic curve

with four double points. It lies on the quadric and meets every generator
in three points ;

so that if it is projected from a point of the quadric on

to a plane we obtain a sextic with two triple points and four double

points. This is a rational curve.

66. If the curve D should happen to break up into one or more parts
we expect the double curve and the bitangent developable to break up
into the same number of parts.

Let us consider in particular the case II (C). C lies in a prime T touching
fl in a point 0; a chord of C passes through 0, while every plane of Q
through meets C in two points.

Every chord of C which lies entirely upon Q is such that the plane

joining it to also lies entirely upon ii. Hence we can clearly separate
these chords into two distinct classes, those joined to by planes w and
those joined to by planes p. We therefore expect D to break up, and

moreover to break up into two similar parts.

Consider those points of an arbitrary $3 of T lying on chords which

are joined to by ta-planes; they form a curve Dl lying on the quadric

Q in which 83 meets Q. One system of generators of Q is joined to by
ra-planes, and clearly there is one point of D on each of these generators.
A generator of Q of the opposite system is joined to by a

/> plane : this

plane contains one chord of C, so that the generator of Q is met by two
other chords ; these must be joined to by tu-planes. Hence on this generator
we have two points of Dl .

Hence Dl is a twisted cubic meeting the generators of Q in to-planes in

one point and the generators of Q in p-planes in two points.

Similarly, those points of S3 lying on chords that are joined to by
p-planes form a twisted cubic J52 which meets the generators of Q in

ra-planes in two points and the generators of Q in /o-planes in one point.
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Through any point of there pass two chords which lie entirely on ii,

and these will be joined to by planes of opposite systems. This holds in

particular for the four points of intersection with S3 .

Thus we have again the intersection of a quadric with a four-nodal

cubic surface; but here the intersection D breaks up into two twisted

cubics, D1 and D2 ,
each passing through the four nodes. D! and D2 have

one other common point lying on the chord of C which passes

through 0.

The pairs of generators of the surface which meet in the points of R
and whose planes touch a quadric cone are represented on fi by the pairs

of points of C which lie in the ro-planes through 0. The chords of C joining

these points form a cubic ruled surface ^j*, so that the points of R and the

tangent planes of the cone are in (1, 1) correspondence with the generators

of <j . The section of < x by S3 is the twisted cubic Dl . < t has a directrix

line d and the plane w passing through ^ represents the vertex of the

quadric cone.

Similarly, the pairs of generators of the surface which lie in the planes

through R and whose points of intersection lie on a conic are represented

on 1 by the pairs of points of C which lie in the />-planes through 0. The

chords of C joining these points form a cubic ruled surface < 2 ,
so that the

planes through R and the points of the conic are in (1, 1) correspondence
with the generators of

(f>2
. The section of

(f>2 by $3 is the twisted cubic D2 .

<f>2
has a directrix line 12 and the plane pQ passing through 12 represents the

plane of the conic.

The planes w and
/>

do not lie in T.

67. We can also consider in this way the curves C of type III. Suppose
for definiteness that C is of the type III (B). The ruled surface formed by
the chords of C which lie on Q breaks up into two parts ;

the cubic cone

projecting C from and the cubic ruled surface formed by those chords

of C which lie in the p-planes through but do not themselves pass through
0. The tangent of C at belongs both to the cone and to the ruled surface,

and the plane w through this tangent represents a point of intersection of

R and the double conic. The plane of the double conic is represented on

ii by the p-plane which contains the directrix of the cubic ruled

surface.

* These chords join the pairs of an involution on C. The joins of the pairs of

points of an involution on a rational curve of order n form a ruled surface of order
n - 1 (see footnote to 19).
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SECTION II

RATIONAL QUARTIC RULED SURFACES CONSIDERED
AS PROJECTIONS OF NORMAL SURFACES IN

HIGHER SPACE
68. The rational quartic ruled surfaces / of ordinary space can all be

obtained as projections of the rational normal quartic ruled surfaces F of

S5 ; the projection will be from a line I not meeting F. There are two kinds

of surfaces F
;
the general surface with oo 1 directrix conies and the surface

with a directrix line.

We first confine our attention to the general surface F, and find that

by suitably choosing / we can obtain six types of surfaces /. From the

known methods of generating F we deduce methods of generating these

six types of surfaces
;
all these methods are given in Cremona's paper.

The other four types are obtained by projection from the surface with

a directrix line.

69. The normal surface in [5] with directrix conies. The general surface

F has oo 1 directrix conies; any such conic is determined by one point of F
and no two conies intersect.

We first assume that I has a general position, and project from I on to

a solid S.

A prime through I meets F in a rational normal quartic curve, three of

whose chords will meet I. Hence in any prime through I there are three

planes that pass through I and meet two generators of F. Projecting : on

any plane section of / there are three points through which two generators

pass. Thus the double curve of / is a twisted cubic.

The planes of the oo 1 conies on F meet any prime in lines forming a

ruled surface A. The prime meets F in a rational normal quartic, and the

generators of A must be chords of this curve since each one meets F in the

two points where it cuts the corresponding directrix conic. Further, these

chords join pairs of an involution on the curve because each conic is

determined by one point of F. Thus they form a cubic ruled surface. This

shews that the planes of the directrix conies form a locus F3
3

.

The line Z, having a general position, does not meet the F3
3

;
but a plane

w drawn through I meets the planes of three directrix conies F15 F2 ,
F3 .

w meets S in a point P. Then through w and F! there passes a prime
which meets F in Fj and two generators; the projections of these two

generators will lie in a plane through P. There are two other bitangent

planes through P arising from the primes tuF2 and tuF3 . Hence there are

three bitangent planes of / passing through a general point P of 2, so that

the bitangent developable of / is of the third class.

/ is therefore of the type I.



66 CHAPTER II, 69-72

F can be generated by a (1, 1) correspondence between any two of its

directrix conies. Hence the most general quartic ruled surface of ordinary

space can be generated by a (1, 1) correspondence between two conies.

70. F contains oo 3 directrix cubics, any such curve being determined

by three points of F. All these can be obtained as prime sections of F
residual to any given generator. Any one of these curves lies in a solid

;
it

is easily seen that for general positions of I none of these solids contains I.

Suppose, however, that I is taken in one of these solids a. Then the

projected surface / has a directrix line J?, the intersection of S and a. A
plane through I lying in a meets F in the three points where it meets the

directrix cubic of a
;
hence through any point ofE there pass three generators

of /. A prime containing a meets F again in one generator ;
hence every

plane through -R contains one generator of /.

Thus / is of the type II (A). <

F can be generated by placing a directrix cubic and a directrix conic

in (1, 1) correspondence with a united point. Hence the surface / can be

generated by taking a line and a conic with a common point P and placing

them in (1, 3) correspondence with P as a united point. To P regarded as

a point of the conic corresponds P regarded as a point of the line; while

to P regarded as a point of the line correspond three points of the conic

of which P is one.

71. Now let I be taken so as to meet a plane y of F3
3

, y containing a

directrix conic P. The solid ly meets S in a line R which is a directrix of/.

A plane through I lying in the solid ly meets y in a line having two points
of intersection with T, and therefore meets two generators of F. Hence

through any point of R there
tpass two generators of/. Moreover, a prime

through ly meets F in T and two generators, so that any plane through R
contains two generators of /.

Thus / is of the type II (C).

/can be generated by placing a line and a conic in (1, 2) correspondence.
With this last choice of I the solid ly will not in general contain a

generator of F, but we may clearly choose I so that it does. Then / has

a directrix line R which is also a generator. Any plane through R contains

one other generator, while through any point of R there pass two generators
other than R itself.

Here/ is of the type III (A).

To determine a generation for / suppose that F is generated by means
of F and some other directrix conic F'

;
the solid ly containing a generator

g which meets T in X and F in X' (Fig. 2).

The solid ZF meets S in the directrix R 9
while the planes joining I to

the points of I" meet 2 in the points of a conic C.
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Now consider the plane IX'. Since it lies in the solid Ig or ly it meets

the plane y in a line, and therefore meets 2 in a point on R. Hence R and

C have a common point P. The point X' on F' gives the corresponding point
X on F, which is clearly projected into a point Q of R different from P.

Hence the (1,1) correspondence between F and F' gives a (1, 2) corre-

spondence between R and C, P not being a self-corresponding point.

Thus / may be generated by taking a line and a conic with a common

point and placing them in (1, 2) correspondence without a united point.

Fig. 2.

72. Further, we may choose I to meet two planes y and y
f
of V3

3
,
these

planes containing directrix conies F and F'. Then / has two directrices

R and R', the intersections of the solids ly and ly with 2. Let I meet y
and y in P and P' respectively.

The lines of y through P give an involution on F. This gives an involu-

tion of pairs of generators of F, and thus an involution on F' also. But the

lines of y' through P' give a second involution on F' which will have a pair

of points in common with the former. This pair of points gives a pair of

generators g and g' on F\ and clearly g, g' 9 I lie in a solid as having two

common transversals. Thus the projected surface / has a double generator.

A prime through I and y meets F in F and two generators which meet

F' in a pair of points collinear with P'. Thus a plane through R contains

two generators of / which intersect in a point of R'. Similarly a plane

through R' meets / in a pair of generators which intersect in a point of R.

Hence / is of the type IV (B).
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We may clearly generate/by a (2, 2) correspondence between two lines

R and R'\ but this will not be the most general (2, 2) correspondence, it

must be specialised so as to give the double generator.

Conversely, take two generators g and g' of F\ the solid gg' does not

meet F again*. Take I in the solid gg'.

Any point p of g determines a conic of F meeting g' in a point p' ;

the plane of this conic meets the solid gg' in the line pp'. Also, through

p there passes a transversal of g, g', I meeting g' in a point q'.

The ranges (p') and (q') on g', both being homographic with the range

(p) on g, are homographic with each other
;
in general, they will have two

self-corresponding points. Thus I is met by two planes of F3
3 as before.

9'
^

But it may happen that the two self-corresponding points coincide, so

that I meets only one plane of F3
3

. The surface/has now a double generator
and a directrix R, but R must be regarded as a coincidence of two direc-

trices. Any plane through R contains two generators, while through any
point of R there pass two generators, / being of the type V (A).

The F3
3 formed by the planes of the directrix conies meets an arbitrary

solid in a cubic curve passing through the four points of intersection of

the solid with F. But a solid containing a pair of generators g and g' of

F is met by the planes of the directrix conies in lines which give homo-

graphic ranges on g and g' and therefore form a regulus.
A line I in the solid meets the regulus in two points, and on projecting

we have a surface / of the type IV (B) ;
but if I is taken to touch the quadric

surface on which the regulus lies we have a surface/ of the type V (A).

73. We can give another generation for a surface of type IV (B) which
can immediately be specialised to give the type V (A).

* 46.
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We have generated/ by placing its two directrices R, R' in (2, 2)

correspondence with united elements X, X' corresponding to one another;

whence the double generator XX'.
Let C be the projection of T

,
a third directrix conic of F (Fig. 3).

The plane of C is the intersection of 2 with the prime containing I and

F . This prime meets y in a line through P and y in a line through P'
;

hence the two generators which it contains must be the pair g and g
f
that

determine a solid containing /. Thus the plane of C contains the line XX'.

We may therefore generate / by a (1, 2) correspondence between R and

C; to the point X in which R meets the plane of C there must correspond
two points of C collinear with X, these giving the double generator XX'.

To the points of R correspond pairs of points of C which form an in-

volution
;
thus the chords ofCwhich join these pairs of points all pass through

a fixed point. This point will lie on XX ' and is in fact X'. For the two

generators of / which issue from any point of R both meet JR', so that their

plane contains R' and meets the plane of G in a line through X'.

Similarly the points of R' give rise to pairs of points on C whose joins

all pass through X.

This at once suggests the following generation for a surface of the

type V (A) : take a line R and a conic C in (1, 2) correspondence, every point
of R giving a corresponding pair of points of C whose join passes through
the point in which R meets the plane of C.

74. The normal surface in [5] with a directrix line. We now consider

the projections of the surface F which has a directrix line A.

Taking first a general position of Z, the projected surface /has a directrix

line R, the intersection of S with the solid IX. A prime through IX meets

F in A and three generators, so that any plane through R contains three

generators of/. A plane through I lying in the solid IX meets A in one point,

so that through any point of R there passes one generator of /.

Hence / is of the type II (B).

F can be generated by a (1, 1) correspondence between A and a directrix

cubic. Hence/ can be generated by a (1, 1) correspondence between a line

.R and a twisted cubic.

The planes through A which contain the generators of F form a locus U
of three dimensions, which does not meet a line of general position.

But if I is chosen to meet a plane IT of U the solid ITT meets S in a line

R which is a directrix and also a generator of /. The primes through the

solid ZA now meet F in sets of three generators of which one is always the

generator in TT. Thus any plane through jR contains two generators of /
other than R, while through any point of JB there passes one generator of

/ other than R.

Hence /is of the type III (B).
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By reasoning similar to that employed in obtaining the generation for

the type III (A) we see that / can be generated by a line and twisted

cubic with a point of intersection, placed in (1, 1) correspondence without

a united point.

Further, I may meet two planes of U. Then / has a directrix jR which

is also a double generator. Any plane through jR contains one other

generator, while through any point of R there passes one other generator.
Here / is of the type V (B).

/ can be generated by taking a twisted cubic and one of its chords, and

placing them in (1, 1) correspondence without any united point.

It is easily seen that the locus U is of the third order, meeting an arbitrary
solid in the points of a cubic curve. If I met three planes of U it would lie

entirely on U and so meet F, so that we do not consider this possibility.

75. F contains oo 3 directrix cubics, they can all be obtained as prime
sections residual to any given generator. In general I does not lie in a solid

with any of these curves ; if, however, it happens that I and one of the

cubics do lie in the same solid a the projected surface / will have two

directrices, R, the intersection of S with the solid /A, and R', the intersection

of 2 with the solid cr.

A prime through IX meets F in A and three generators and meets cr in

a plane through I. Hence any plane through R contains three generators

meeting in a point of R'. Through any point of R there passes one generator.
Thus / is of the type IV (A).

/is generated by placing two lines .R and R' in (3, 1) correspondence.
This last generation is mentioned by Cremona.

We have now completed the determination of the rational quartic
ruled surfaces of ordinary space ;

the results obtained by the two methods

are in complete agreement with one another and also with Cremona's

results.

SECTION III

ELLIPTIC QUARTIC RULED SURFACES

76. We must now give a short account of those surfaces which are

elliptic; i.e. those whose plane sections are elliptic quartic curves. The

generators of such a surface will be represented on Q by the points of an

elliptic quartic curve (7, which necessarily lies in a solid S3 .

77. In general, S3 will be the intersection of the tangent primes to Q
at two points and 0'

;
these two points represent lines jR and R' which

are directrices of the surface. $3 meets 2 in a quadric Q; every generator
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of Q is met by C in two points and is the intersection of a plane of fi

through with a plane of the opposite system through 0'.

Hence through any point of R there pass two generators which lie in

a plane through R', while through any point of R' there pass two generators

which lie in a plane through R.

The double curve consists of the lines R and R' y while the bitangent

developable consists of the pencils of planes through R and R'. A plane
section of the surface is a quartic with double points on R and R'.

This is the surface which is generated by means of the most general

(2, 2) correspondence between two lines R and R'. It is Cayley's first

species and Cremona's eleventh.

This general type of elliptic quartic ruled surface is the most general type
of Segre's "rigate biquadratiche*."

An elliptic quartic curve is determined by eight points on a quadricf;
hence a ruled quartic surface can be made to contain eight lines of a linear

congruence. *

78. Suppose now that only one tangent prime of 1 passes through
$3 ,

83 meeting H in a quadric cone with vertex V. C lies on this cone

and does not pass through V. Each generator of the cone meets C in

two points and is the intersection of two planes of 1, one of each system.
The point V represents a line R which is a directrix of the surface.

Any plane of JQ meets $3 in a point P of the cone. The projection of

C from P on to a plane of S3 is clearly a quartic with a tacnode
;
so that

the two chords of C which can be drawn through P consist of the generator
PV counted twice.

The double curve is thus the line R counted twice, while the bitangent

developable consists of the planes through R counted twice. Through any
point of R there pass two generators which lie in a plane with R. A plane
section of the surface is a quartic with a tacnode on R.

This surface is Cayley's fourth species and Cremona's twelfth.

79. An elliptic quartic ruled surface cannot contain a simple directrix

or a conic ;
but if we take a plane through a generator we obtain a cubic

curve on the surface. We have in this way oo 2 cubic curves on the surface.

Through any two general points on the surface there pass two of these

curves, because the line joining the two points meets the surface in two
other points, and through either of the two generators passing through
the latter points there is a plane containing the former points. In general
two of the cubic curves will intersect in two points on the line of inter-

section of their planes ;
the other two points of intersection of this line

* Memorie Torino, 36 (1885), 142.

f Salmon, Geometry of Three Dimensions, 1 (Dublin, 1914), 360.
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with the surface being on the generators which lie in the planes of the

cubic curves.

To generate the surface with two directrices we take a line -R and a

plane cubic curve without a double point, the curve passing through the

point P in which R meets its plane. We then place the line and cubic in

(1,2) correspondence with P for a united point. The pairs of points of the

cubic which correspond to the points of B must be collinear with a fixed

point P' of the curve*; the range of points on R is related projectively to

the pencil of lines through P', the point P of the range corresponding to

the ray P'P of the pencil. The planes joining the points of the range to the

corresponding rays of the pencil all pass through a line J?' which passes

through P'|.
From this we can deduce at once the generation for an elliptic quartic

ruled surface with one directrix. We take a line R and an elliptic cubic

curve with a point of intersection P and place them in (1, 2) correspondence
with P as a united point. But heite the pairs of points of the curve which

correspond to the points of the line are collinear with P itself; and the

two generators which pass through any point of R are co-planar with R.

The correspondence is at once determined by a projectivity between the

points of the range on R and the lines of the pencil through P, the point
P of the range corresponding to the tangent of the cubic curve at P. This

latter is the generator of the surface which lies in the plane of the cubic curve .

SECTION IV

ALGEBRAICAL RESULTS CONNECTED WITH
QUARTIC RULED SURFACES

80. We first obtain the equations of the different kinds of quartic
ruled surfaces by the methods which we have given for generating them.

The results may be compared with those in Salmon's Geometry of Three

Dimensions J.

The surface of the type I is generated by the chords of a twisted cubic which

belong to a linear complex.
We can take the coordinates of any point on the cubic to be (0

3
,

2
, 0, 1

) ; the

six coordinates of the line joining the two points for which the parameter has

the values A and
/u,

are then

A2 + A/n + p?, A + /x, 1,
-

A/x, A/x (A + M),
- A2/*

2
-

* The joins of the pairs of points of a g2
l on a plane cubic without a double

point all meet the curve again in the same point.

f If there were not a united element the planes would touch a quadric cone.

J 2 (Dublin, 1915), 546-554.
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Suppose now that the chord belongs to the linear complex
bl + 2fm + en - (b + 2g) V + 2hm' - an' = 0.

Then
aA2

//
2 + b (A + M)

2 + c + 2f (A + /x) + 20A/z + 2&A/* (A + ^) = 0.

Now the coordinates of any point on the chord are

A3 + V> A2 + V> A + %, 1 + t,

for which

a* - y
2 =

ftAp (A
-

/z)
2

,
atf - yz = k (A + /*) (A

-
/Lt)

2
, yt

- z2 = & (A
-

^)
2

,

so that the locus of the chords is the quartic ruled surface

a (xz
- y

2
)
2 + b(xt- yz)

2 + c (yt
- z2

)
2 + 2f (a*

-
yz) (yt

- b2 )

+ 2g (yt
-

z*) (xz
- y

2
) + 2h (xz

- y
2
) (xt

-
yz)

= 0,

on which the existence of the twisted cubic as a double curve is clear. This then

may be taken to represent the general surface * of type I.

If, however, we have
6 (6 + 2g)

-
4/A + ac =

the surface degenerates into one formed by the chords of the cubic which meet
the line whose coordinates are

{-(6 + 20), 2*, -a, 6, 2/, c}

and is of the type II (B).
Let us now take the surface of the type II (A).

We take a line and a conic in (1, 3) correspondence with a united point f.

The sets of three points of the conic which correspond to the points of the line

form a singly infinite set of triangles whose sides all touch another conic. The
two conies have four common tangents ; these touching the first conic in double

points of four of the sets of three points. Take two of these four points as X and

Y\ the plane of the conic being z = t and the line being x = y = 0. Let Z be
the point of the line which gives rise to the set of three points with the double

point X and T the point of the line which gives rise to the set of three points
with the double point Y. Let the equation of the conic be

yz + zx + xy z t = 0.

Then any point of the conic can be written (6, 1 0,
2

0, B2
6), while

any point of the line is (0, 0, <^, 1) ;
and the general (1,3) relation

< (a0
3 + b^ + c0 + d) - AO* + B6* + CO + D

must become
<j> (8

-
I)

2
(a6 + )8)

- 6* (a9 + y).

Any point of the surface is

(0, i_0, 8* - + A0, 0* - B + A),

so that z -
</>t
= x (9

-
1) (1

-
<),

and *=

Thus (x + y)(z- </>t) + xy (1
-

</>)
= 0,

(yz + zx + xy) y
2
{ax + /? (x + y)}

= {#/ + J (# + y)} x
2
{ax + y (x +

which divides by # + y, giving

zy
2
{ax + j8 (a? + y)}

- tx* {ax + y (x + y)}
= xy {ax (x

-
y) + yz

2 -

^ {$/
3 + (a + ]8) zi/

2
}
- * {y#

2
# + (y + a) z3

}
= xy {(y + a) x

2 - axy -

* Salmon, 549. f 70.



64 CHAPTER II, 80

Writing then z = f x and t = r y we find*

For a surface of the type II (C) we must take a line and a conic in (1, 2)

correspondence f. Let the line meet the plane of the conic in Y, and let X and
Z be the points of contact of the tangents from Y. Then the conic is

xz - y
2 = t = 0.

Take T on the line.

Then any point of the conic is (0
a

, 0, 1, 0), while any point of the line is

(0, <f>, 0, 1). The points of the line give rise to pairs of an involution on the conic ;

one of these pairs will be on a line through F, and we can take T to correspond
to this pair. Since this pair divides X and Z harmonically (the join passing

through the pole of XZ) we can take their parameters to be -j- 1 and 1, so

that the (1, 2) relation will be of the form

Any point of the surface is (A0
2

, A0 -f /*^, A, /x), giving

(y
-

0z) (a0
2 + bO + e)

=
(0

2 -
1) t,

ax (y Oz) + byzO bzx + cz (y 6z) = t (x z) ;

or a#i/ bzx + ci/z 4- (z x) = (azx byz + cz2).

Squaring this we have the equation to the surface in the form

[cyz bzx + axy -f zt tx]
2 = xz (ax by + cz)

2
.

This clearly has the double line z = x = and also a double conic, the inter-

section of the plane
ax by + cz = Q

with the quadric

cyz bzx + axy -f zt tx = 0,

or with the quadric
b (y

2 -zx) + t(z-x) = 0.

The planes x = and cy -f = give a torsal generator, as also do the planes
2 = and ay t = 0, the respective tangent planes being x = and 2 = 0.

The intersection of the surface with the plane t = is given by
=

(cyz bzx + axy)
2 xz (ax by + cz)

2

= {y (ax by -f cz)
2 b (zx t/

2
)}

2 xz (ax by + cz)
2

=
(zx

- y
2
) [b

2
(2x

- y
2
)
-

2by (ax
-

by + cz)
-

(ax
-

by + cz)
2
]

=
(zx

-
i/
2
) [(6

2 -
2ac) zx

- a2x2 - c2z2],

which consists of the original conic together with two lines through Y.

The equation of this pair of lines can be written

(ax + by + cz) (ax
- by + cz) + b2 (y

2 -
zx) = 0,

so that they pass through the two points of intersection of the double conic and
the conic xz y

2 = t 0; the two conies lying on a quadric.
For a surface of the type III (A) we take a line and conic with a point of

intersection and place them in (1, 2) correspondence without a united point f.

* Cf. Salmon, 646. f 71.
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The pairs of corresponding points on the conic form an involution; take the
two double points of this as X and Y, and let the corresponding points be Z
and T. Then we can take the line to be x = y = and the conic to be

yz + zx + xy = z - t = 0.

Any point of the line can be written (0, 0, </>, I) and any point of the conic

(0, 1 - 0,
2 -

0,
2 -

0). The (1, 2) relation must be of the form

< (0
-

1)2
= 02a

Then the coordinates of any point of the surface are

(0, 1-0, 2 - + A<,
2 - + A)

for which z -
<f>t
= x (0

-
1) (1

-
</>),

so that z (0
-

I)
2 - a02

* = # (0
-

1) [(0
-

I)
2 - a02

],

or (x + y) (zy
2 - ate2

)
= xy (ax

2 - y
2
).

Writing t = y + r and z = f x, we obtain

(y
2

-f ara;2
) (x + y) = mx2

y
2

,

and we take for the equation of the surface *

mx2
y
2 = (x + y]*(x

2
t + y

2
z).

For a surface of the type III (B) we may take a line and a twisted cubic
with a point of intersection and place them in (1, 1) correspondence without a
united pointf. We will, however, obtain this surface as the reciprocal of III (A) .

The equation of the surface III (A) is

fjiX
2
y
2 =

(x + y) (x
2
t + y

2
z).

A tangent plane is Ix + my + nz + pt = 0,

where n = (x + y) y
2

, p =
(x -f y) x

2
,

and Ix -f my = (nz + pt) = ^,x
2
y
2

.

Also nx2 + py
2 = 2x2

y
2
(x + y),

so that 2 (Ix + my) (x + y) + //, (ra,r
2 +^2

)
= 0,

or, since this is homogeneous in x and ?/ and x2
:y

2 ^ p:n,

Ip + mn + (I + m) Vnp + /*/&/;
= 0,

or (Ip -f mn + pnp)
2

( + m)
2

?&/>.

This being the tangential equation of the surface III (A), the point-equation
of the surface III (B) can be written J

It has a double conic x + y = xt + yz -f pzt = and a double line z = t =
which meets the conic in (1, 1, 0, 0).

To generate a surface of the type IV (A) we take two lines R and R' in (3, 1)

correspondence ||
. There will be four points of R' for which two of the three

corresponding points on R coincide. Take two of these four points as X and 7,
the corresponding coincident elements being Z and T. Any point of R' is

(0, 1, 0, 0), while any point of R is (0, 0, <f>, 1); the (1, 3) relation between and

<j>
is necessarily of the form

_, /3 i OJL2
a<p -f- p^>*

(J =3

yo -f- o

* Cf. Salmon, 548. f 74.

} Cf. Salmon, 548.
||

75.
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Then any point of the surface has coordinates (0, 1, A^, A), or

[c^
3 + ^2

, y< + 8, \<f> (>y<f> + 8), A(y^ + S)].

x az*/t* + pz*/t* _ (oz + fit) z*
HenCe

y
~

yz/t + 8
"

(yz + 80 t*

and the equation of the surface is *

x (yz + 80 t
z =

i/ (az + 00 z2 .

To generate the surface of the type IV (B) we take two lines B, R' in (2, 2)

correspondence, the correspondence being specialised so as to give a double

generator f. In a general (2, 2) correspondence there will be four points of

either line giving rise to pairs of coincident points on the other; but here two of

the four points will themselves coincide. Take thenX and Y as the corresponding
double elements

;
and let Z be another point on R which gives rise to a pair of

coincident points T on R' . Any point of R is
(</>, 0, 1,0) and any point of B

is (0, 0, 0, 1), the (2, 2) relation will be of the form

Any point of the surface is (A^, p,0, A, /,), whence

?.* ?.,.

?-.+*+,*
or xzt2 = cur

2
*
2 + ftxyzt + yy

2z2
\

and we have for the equation of the surface J

2/
2z2 + mxyzt + t* (axz + bx2

)
= 0.

There is a second generation which can be used for a surface of the type
IV (B) || ;

we take a line and conic in (1, 2) correspondence, making the two points
of the conic which correspond to the point in which the line meets the plane
collinear with this point. Take the point of intersection of the line with the

plane of the conic as Y
;
the points X and Z being the points of contact of the

tangents from Y. Then the conic is t = xz - y
2 = 0, with points (0

2
, 0, 1, 0), and

we can take the parameters of the two points which correspond to Y as 1.

Any point of the line is (0, 0, 0, 1), if we take T on the line. The pairs of

points of the conic which correspond to the points of the line form an involution
;

we shall take T as the point which gives rise to the pair of the involution in-

cluding Z. Then the (1,2) relation between
</>
and must be of the form

</> (0*
-

i)
= A0* + BB.

Any point of the surface is (A0
2

,
A0 -h /n<, A, /x), giving

x = B*z, y = 0z + </>t
= 0z +

* Cf. Salmon, 647. t 72.

J Cf. Salmon, 553.
||

73
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i.e. (y
-

0z) (6*
-

1)
= (A0

2 + BB) t,

x(y-0z)-z(y- Oz)
= t (Ax + Bz0),

xy -yz - Atx = (Bzt -f zx - z2 ) ;

and on squaring we have the equation of the surface in the form

(yz -xy + Atx)
2 = zx (x

- z + !)*.

This surface has clearly the double lines x = 2 = and x z = t == 0. Writing
it in the form

{y (z
- x + *) + * (4* - %)} 2 = zx (x

- 2 + Btj*,

we see that it has also a double line

x - z + Bt = Ax - By = 0.

The line #-z =
tf
= Oisa double generator; it meets the other two lines

which are double directrices.

Now if B = the two directrices
coincide,

and we have a surface of the

type V (A) whose equation is

(yz xy + Atx)
2 = xz (x z)

2
.

The pair of points of the conic which corresponds to any point of the line
is now such that its join passes through Y.

The section by any plane ax + fly + yz + At = is a quartic curve with a
tacnode at x = z = and another ordinary node.

To generate a surface of the type V (B) we take a twisted cubic and one of
its chords and place them in (1, 1) correspondence without any united points*.
Take X and Y to be the points where the line meets the cubic; any point of
the line is then (0, 1, 0, 0). Also, may be taken as the parameter of the cubic,
and if Z and T correspond to X and Y respectively any point of the curve can
be taken to have coordinates

6 (0
-

ft), 6 (0
-

a), (0
-

a) (0
-

ft), (0
-

a) (0
-

ft).

Any point of the ruled surface will have coordinates

(0
-

ft) + A0, (0
-

a) + A, 0(0-a)(0- j8), (0
-

a) (0
-

]8).

Then z - at = (0
-

a) t, z - fit (0
-

jff) *,

yz-xt = 0t {0
2 -

(a + 1) + };

so that (yz
-

art) (z
-

erf) (z
-

ftt)
= z* {z

2 -
(a + 1) zt + J&

2
}

is the equation of the surface.

By taking two other planes of the pencil z + kt = instead of z = and t =
we can reduce this equation to the form f

z2J2= (az
2 + bzt -f ct2

) (yz
-

xt).

To generate the general elliptic quartic surface, which we may call a surface
of the type VI (A), we take two lines and place them in (2, 2) correspondence!.

* 74. t Cf. Salmon, 548. J 77.

5-2
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On either line there will be four points for which the two corresponding

points coincide. Take, on one of the lines, two of these points as X and Y, the

corresponding double elements on the other line being Z and T. Any point of

the first line is (0, 1, 0, 0) and any point of the second is (0, 0, <, 1) with a (2, 2)

relation

aB2 + 6
(c</>

2 + d<f> + e) + b</>
2 = 0.

ile

(2, 2) relation gives

Any point of the ruled surface is (A0, A, p</>, p,) so that = - and
<f>
= -

. The
y *

x* x

and the equation of the surface is

ax2
t
2 + ay (cz

2 + dzt + et2
) + by

2z2 = 0.

To generate the type of elliptic quartic ruled surface with one directrix,

which we may call the type VI (B), wo take a line R and a plane elliptic cubic

curve; this cubic passes through the point P in which R meets its plane. We
then place the line and the cubic in (1, 2) correspondence with P as a united

point, the pairs of points of the cubic which correspond to the points of R all

having their joins passing throughP *. Let the cubic curve lie in the plane z = 0,

the point P being x = y = z = and the tangent to the curve there x = z = 0.

Then the equation to the curve may be written

xt2 + (ax
2 + 2bxy + cy

2
)

t + Ax* + 3Bx2
y + SCxy

2 + Dy* = 0.

We take R, passing through P, to be the intersection of the planes x = and

y = 0. We refer the points of R projectively to the pencil of lines x = ky,
z = in such a way that the point P of R corresponds to the line x = of the

pencil, i.e. we take the point (0, 0, k, 1) of R to correspond to the line x = ky,
z = of the pencil. Then the coordinates of a point of the ruled surface are

(kt), rj, kX, I + A),

where rj
is a root of

k + (ak
2 + 2bk + c) 77 + (Ak* + 3Bk2 + 3Ck + D) if = 0.

If then (x, y, z, t) denotes the point on the ruled surface we have

x ax2
4- 2bxy + cy

2
xy Ax* + 3Bx2

y + 3Cxy
2 + Dy* x2

y
2

y
+

y
2

~xT-^z
+ ^ (xt

- yzY
~~

'

and the equation to the surface isf

(xt
-

yz)
2 + (ax

2 + 2bxy + cy
2
) (xt

-
yz) + (Ax* + 3Bx2

y + 3Cxy
2 + Dy*) x = 0.

The section of this surface by a plane is a quartic curve having a tacnode at
the point where R meets the plane.

* 79. f Cf. Salmon, 554.
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Thus the equations of the different types of quartic ruled surfaces are as

follows :

I a (xz
- y

2
)
2 + b (xt

-
yz)

2 + c(yt- z2
)

2

+ 2/ (**
-

yz) (yt
- z2 ) + 2g (yt

-
z*) (xz

- y
2
) + 2h (xz

- y
2
) (xt

-
yz)

- 0.

II (A) zy
2
(ay + bx) + tx2 (cy + dx) = ex2y

2
.

II (B) As in I, but with the relation b2 + 2bg - 4A/ + ac = 0.

II (C) (cyz bzx + axy + zt tx)
2 = xz (ax by + cz)

2
.

III (A) mx2
y
2 =

(x + y) (x
2
t + y

2
z).

III (B) (xt + yz + pzt)
2 = zt(x + y)

2
.

IV (A) x (yz + 8t) t
2 = y(az + pt) z2 .

IV (B) ?/
2z2 + mxyzt + t

2
(az 4- bx) x = \

(yz
- xy + Atx)

2 = zx (x
- z + Bt)

2
}

'

V (A) (yz -xy + Atx)
2 = zx (x

-
z)

2
.

V (B) z2*2 = (az
2 + bzt + ct2 ) (yz

-
xt).

VI (A) axH2 + xy (cz
2 + dzt + et

2
) + by

2z2 = 0.

VI (B) (xt
-

yz)
2 + (ax

2 + 2bxy + Aj
2
) (xt

-
yz) + (^3 + 35a;2?/

+ SCxy
2 + Z>2/

3
)

a; = 0.

81. If in [5] we take two conies and place them in (1, 1) correspondence we
obtain the most general rational normal quartic ruled surface.

Let the planes of the conies be # = x
1
= x2 and x3 = tr4 = x

5
= 0. We

may then take a point of the first conic as (0, 0, 0, O2
, 9, I) and the corresponding

point of the second as (0
2

, 6, 1,0, 0, 0). Then any point on the ruled surface has

coordinates of the form

(0
2

, 0, 1, A02
, A0, A),

so that the equations of the ruled surface are*

If 9 is constant we have a generator of the surface
;
if A is constant we have

a conic on the surface. We thus obtain oo1 directrix conies. The equations to

the plane of any one of these are

#3 = A# , #4 = A^j, #5 = A#2>

so that the equations of the F3
3 formed by the planes are

This clearly contains the quartic surface.

All directrix conies can be obtained as residuals of prime sections through

any two fixed generators. The equation of the prime, which contains the conic

whose points are (0
2

, 0, 1, kO2
, k0, I) and the two generators given by (a

2
, a, 1,

Aa2
, Aa, 1) and

(

2
, 0, 1,^2

, /* 1), is

k [X
-

(a + j8) X1 + apx2]
= x3 - (a + p) x^ + apx&.

Take a point ( , fl9 ^2 fs> ^4 fs) on ^3
3 and anY other point whatever
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Then the coordinates of any point on the line joining them are

( + /**0 l + /^l & + A^2> 3

and if this point lies on F3
3 we have

These equations are satisfied by p,
= as they should be. There will be two

roots
jj,
= 0, or the line will touch the locus, if we have

3 23= 5 0;
and in virtue of the equations satisfied by these may be written

?k ,fy __
X3 X}

&
+
& e,i'

X5 ,

Xl ___
X\ ,

X2
t- ' > / ' 'f >

^5 fI' & &
?3 J_ ?? ?? _L 5?

3 I2 f5 f

so that the tangents of F3
3 at lie in a solid the tangent solid of F3

3
,
whose

equations are

XQ #*<j X^ X^ X% Xft

o ^3 ll l 2 I5

This tangent solid will, of course, contain the plane of F3
3 which passes

through f ;
to find the points common to the solid and F3

3 we write

5? = = = A
*3

~~

*4

~
^5

"

in the equations of the solid, which become

/A 1\ /A 1\ /A
*bU-J- a?i U-rJ"" a!k

and since &,/&
= ^/^4 = &/& =

/c, say, we have

Now these equations are satisfied by A == K
;
we have thus the plane of F3

3

passing through f . But they are also satisfied by

which make also, from the equations of the solid,

XQ X^ 3/2

ro

=
iria

'

so that we obtain the points of a straight line.

Incidentally through every point of F3
3 there passes a

[line whose equations
are

XQ^XJ^XZ ^3 === 54 == 55

fo li 2 fs 4 fs
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We have thus oo 2 lines on F3
3

. Each of them is a directrix, meeting every

generating plane. The oo1
generators of the quartic surface are a particular set

of these lines.

The coordinates of any point on the chord of the surface which joins the

points (0
2

, 0, 1, A02
, A0, A) and (^

2
, (f>, 1, pj>* 9 /*, /z) may be taken as

(0
2 + v<f>

2
, + v

<f>,
1 4- v, A02 + fjiv<f>

2
, A0 + pvj, A -f pv),

and the equations of the chord can be taken as

XQ - a?j (0 + <t>) + x2 6<f)
- 0,

#3 - #4 (0 + <) + #5 0< - 0,

the equation of any other prime through the chord being a linear combination

of these four.

These equations shew that through a general point of [5] there passes one
and only one chord of the surface; if the coordinates of the point are substituted

in the four .equations the first two will give and
<f>
and the last two A and p.

The only exception is when

or the point lies on F3
3

,
as is obvious geometrically.

Thus a general rational quartic ruled surface in. [4] has one double point, but

there is also a rational quartic ruled surface in [4] with a double line. This latter

is obtained by projecting the normal surface from a point of F3
3 and is generated

by a line and a conic in (2, 1) correspondence.



CHAPTER III

QUINTIC RULED SURFACES

SECTION I

RATIONAL QUINTIC RULED SURFACES CON-
SIDERED AS CURVES ON Q

82. There is a classification of quintic ruled surfaces given by Schwarz*,

the surfaces being classified by means of their double curves. When this

has been obtained we can at once deduce, by the principle of duality, a

second classification of quintic ruled surfaces by means of their bitangent

developables. These two classifications are quite different; two surfaces

which belong to different classes according to one classification can very
well belong to the same class according to the other this is sufficiently

clear from Cremona's table of quartic ruled surfaces and is quite evident

from the classification of the quintic surfaces themselves that we shall

obtain. Thus, although Schwarz's classification is exhaustive, it is such

that another, which is not included in it, can be deduced immediately from

it. It is then surely desirable to obtain the more precise classification

which includes both of these
;
and when this has been obtained the applica-

tion of the principle of duality can only reproduce it.

The work is more complicated than that for the quartic ruled surfaces
;

one cause of this is the higher degree of the double curve and class of the

bitangent developable. For the rational quartic ruled surface the double

curve is a twisted cubic, and if it breaks up it must contain a line as a part
of itself; this is always easy to detect when we represent the generators
of the ruled surface as the points of a curve C on fl. But for the rational

quintic ruled surface the double curve is a sextic, and if this breaks up it

does not necessarily contain a line.

It will, of course, be necessary to make use of the properties of quintic

curves; for some of these we can refer to a paper by Marlettaf, while

others that are required will be obtained in the course of the work
; certain

loci connected with the curve are investigated in so far as their properties
are required. At the end of his paper Marietta mentions this representation
of the generators of a rational quintic ruled surface, dividing the surfaces

into three main classes and referring to Schwarz's paper.

* "tfber die geradlinigon Flachen fiinften Grades," Journalfur Math. 67 (1867),
23-57.

f "Sulle curve razionali del quinto ordine," Palermo Rendiconti, 19 (1905), 94-
119.
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The rational quintic curves on a quadric Q in [5]

83. Any rational quintic curve may be regarded as the projection of a
rational normal quintic in [5] *. We may project on to a [4] from a point on
a chord of the normal curve ; this shews that it is possible to have a rational

quintic in [4] with a double point. Similarly, by projecting from a line meeting
two chords of the normal curve, we may have a rational quintic in [3] with
two double points and, by projecting from a line in a trisecant plane of the
normal curve, we may have a rational quintic in [3] with a triple point.

We shall then divide the rational quintic curves on 1 into seven
classes :

I. The rational normal curve in [5].

II. The curve lies in a prime which does not touch Q.
III. The curve lies in a tangent prime of 3 but does not pass through

the point of contact.

IV. The curve lies in a tangent jyime of fi and passes through the

point of contact.

V. The curve lies in a tangent prime of Q and has a double point at

the point of contact.

VI. The curve lies on the section of ft by an 3 through which pass
two tangent primes of Q.

VII. The curve lies on the quadric cone in which Q is met by an /S3

which touches it.

84. We can at once subdivide these classes. If a rational quintic C
lies in a tangent prime T touching Q in a point then, when projected
from O on to any solid of T, it becomes a rational quintic lying on a

quadric surface. If the curve passes through it becomes a rational quartic,
while if it has a double point at it becomes a twisted cubic. The rational
curves of the third and fourth orders which lie on a quadric surface are
well known; we give here those of the fifth order. There are two kinds:

(a) The residual intersection of the quadric with a quartic surface

passing through three of its generators of the same system. This curve
meets all the generators of one system in four points and all of the other

system in one point.

(6) The residual intersection of the quadric with a cubic surface which

passes through a generator and touches the quadric in two points. This
curve has two double points; it meets all generators of one system in three

points and all of the other system in two points.
There are also two kinds of rational quintic curves which lie on a

quadric cone:

(a) The residual intersection of the cone with a cubic surface passing
through a generator and touching the cone in two points. This curve has

* 8.
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two double points ; it passes through the vertex and meets every generator
in two points other than the vertex.

(6) The residual intersection of the cone with a nodal cubic surface

passing through a generator, the node being at the vertex of the cone. This

curve has a triple point at the vertex and meets every generator of the cone

in one point other than the vertex.

We are now in a position to give a more minute classification of the

rational quintic curves C on 1.

It may be remarked here that if we have a rational quintic curve in

[5] there is one trisecant plane passing through a general point of [5]*.

Hence the rational quintic in [4] ,
if it has not a double point, has a trisecant

chord.

85. We now classify the rational quintic curves which lie on Q as

follows :

I. The rational normal curve ifi [5] .

II. (A) C lies in a prime which does not touch }.

(B) C lies in a prime which does not touch 1, and has a double

point.

III. C lies in a tangent prime T of i but does not pass through the

point of contact 0.

(A) C meets every plane w through in four points and every plane

p through in one point.

(B) C meets every plane w through in one point and every plane

p through in four points.

(C) C meets every plane w through in three points, every plane

p through in two points, and has a double point ; lying on a chord of C.

(D) C meets every plane w through O in two points, every plane p

through in three points, and has a double point ; lying on a chord

of C.

(E) C meets every plane w through in three points and every plane

p through in two points; two chords of C passing through O.

(F) C meets every plane w through in two points and every plane

p through in three points ;
two chords of C passing through 0.

IV. C lies in a tangent prime T of Q and passes through the point of

contact 0.

(A) C meets every plane w through in three points and every

plane p through in one point other than 0.

(B) C meets every plane w through in one point and every plane

p through in three points other than 0.

(C) C meets every plane of Q through in two points other than

and has a double point.

* Marietta, loc. cit. 12.
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(D) C meets every plane of ii through in two points other than

and has its trisecant passing through 0.

V. C lies in a tangent prime T of fi and has a double point at the point
of contact O.

(A) C meets every plane w through in two points and every plane

p through in one point other than 0.

(B) G meets every plane w through in one point and every plane

p through in two points other than 0.

VI. C lies on the quadric Q in which fl is met by an S3 through which

pass two tangent primes of 2.

(A) O meets all generators of Q of one system in four points and all

of the other system in one point.

(B) C meets all generators of Q of one system in three points and

all of the other system in two points, and has two double points.

VII. C lies on the quadric cone in which Q is met by an S3 touching
it in a point V.

(A) C passes through V, meets every generator of the cone in two

points other than V, and has two double points.

(B) has a triple point at V and meets every generator of the cone

in one point other than V.

The general surface in [3]

86. The generators of a ruled surface of the fifth order in [3] will be

represented on Q, if the surface is general, by the points of a rational normal

quintic curve C. If C is projected from any plane on to another plane we
obtain a plane quintic curve which is rational, and has therefore six double

points. Hence, in the [5] containing (7, a plane is met by six chords of the

curve. This is true in particular for a plane of Q.

Hence the double curve of the ruled surface is of order six, while the

bitangent developable is of the sixth class*.

87. The genus of the double curve. We have just seen that there are six

chords of G meeting an arbitrary plane. Hence the chords of C form a

locus E73
6

,
of three dimensions and of the sixth order. If we project C from

a plane which meets it in one point on to another plane we obtain a rational

quartic with three double points ; so that the plane is only met by three

chords of G other than those which pass through its point of intersection

with G. Hence G is a triple curve on C73
6

. There is no double surface on

C73
8 because no two chords of C can intersect in a point not lying on (7f.

* See 33.

f For if they did there would be a [4] meeting C in more than five points. If

the curve is given by x : xl : xz : a?3 : #4 : a?5
= Q5 : 9* :

3
: 6* : : 1 , the equations of 73

6 are

#o xi x* #3 = 0.

Xi x% #3 a?4

x2 x* XL x^
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The tangent prime to 1 at any point of C meets G in three other points ;

hence through any point of C there pass three chords lying on Q. The

chords of C lying on 2 form a ruled surface with C as a triple curve ;
this

is merely the intersection of Q, and U3
B

. The curve of intersection of this

ruled surface with a prime is in (1, 1) correspondence with the points of the

double curve and the planes of the bitangent developable*.
Now a prime $4 meets C in five points a, 6, c, d, e, and meets C73

6 in a

sextic surface with these five points as triple points and no other singu-

larities. Also S4 meets ii in a quadric primal through a, 6, c, d, e. Hence

the chords of C which lie on ii meet $4 in a curve of order 12 with these

five points for triple points.

Project this curve from the line ab on to a plane in $4 . We obtain a

sextic with three triple points. Any solid through ab will meet J73
6 in a

sextic curve of which ab is a part; but if the solid contains the plane abc

it will meet C73
6 in the lines be, ca, ab and a twisted cubic passing through

a, 6, c. This cubic can only meet a plane through ab in one other point.

Thus it is clear that no plane through ab can meet the curve of order 12 in

more than one point in addition to a and b. Thus the plane sextic which we
obtain has no singular points other than three triple points, and is therefore

an elliptic curve. Hence the curve of order 12 is also an elliptic curve.

Thus we have proved that the double curve of the ruled surface is an

elliptic curve, while the planes of the bitangent developable form an elliptic

family.

88. The triple point and the tritangent plane. By a result already found f

for curves of any order and genus we see that if a rational quintic curve C
lies on fi there are two of its trisecant planes also lying on }.

It is at once seen that these two planes cannot belong to the same

system of planes on ii. For suppose, if possible, that we have two planes
wl

and w2 of the same system, both trisecant to C. w1 and w2 intersect in

a point A and lie in a [4] ,
and since no [4] can meet G in more than five

points A must lie on C. But wl and w2 both lie in the tangent prime of

Q at A, which only meets C in three points other than A. Hence our

supposition is false.

There is then one plane of each system of i which is trisecant to C
;

so that the rational quintic ruled surface has one triple point and one

tritangent plane.

89. We now know that the double curve of the ruled surface is an

elliptic sextic curve with a triple point. If we project this from a point
of itself on to a plane we obtain an elliptic quintic curve ;

this has a triple

pointwhich is the projection of the triple point on the sextic and it must have

* Cf. 33 and 65. t 35.
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two further double points. Hence through any point of the double curve

there pass two of its trisecants. These are precisely the two generators of the

ruled surface which intersect in this point of the double curve ;
and we

can therefore generate the surface by the trisecants of an elliptic sextic

curve with a triple point*.

It is not difficult to see which are the three generators of the surface

passing through the triple point. The plane containing two of the tangents
at the triple point will meet the curve in a single further point P, and if

the curve is projected from P on to a plane the triple point becomes, on the

resulting quintic curve, a triple point at which two tangents coincide. Thus
this quintic curve will only have one other double point, so that only one

proper trisecant of the sextic curve passes through P. The line joining P to

the triple point is a generator of the ruled surface. The other two generators

passing through the triple point are at once determined similarly.

Further consideration of the surfaces whose generators do

not belong to a linear complex
90. Considering again the rational normal quintic (7, let us take a plane

meeting C in a single point P. In general there are three points of this

plane, other than P, through which pass chords of C. But suppose that

there is an infinite number of chords of C which meet the plane; the

plane then meets C73
6 in a curve F.

If we project C from P on to a space [4] we obtain a rational normal

quartic, and there is no point of [4], which is not on the curve, through
which two chords of the curve can pass. Hence no line through P can

meet C/3
6 in more than one point other than P. This shews that F, if of

order n, has a point at P of multiplicity n 1, and n ^ 2.

If we project C from a line in the plane of F on to a space [3] we obtain

a rational quintic with n double points. Hence we must have n fg 2.

* For the degree of a ruled surface formed by trisecants of a curve see Zeuthen,
Annali di Matematica (2), 3 (1869), 183-185.

The result given by Zeuthen is only true for curves having the singularities which
he prescribes; it does not hold, for example, for a curve with a triple point. In the
first correspondence proof given by Zeuthen a triple point gives rise to 6 (m 3)
coincidences of the points x and n ; and, taking an elliptic sextic curve with a triple

point, we find a quintic ruled surface as we should do.

If we have an elliptic soxtic with three double points, then Zeuthen's formula

gives four for the degree of the ruled surface formed by the trisecants. There are

two trisecants passing through any point of the curve, and this would seem at first

to be at variance with our work on quartic ruled surfaces, where we shewed that the
double curve was of the third order. But this quartic ruled surface is none other
than the unique quadric containing the curve, counted twice. The trisecants are the

generators of this quadric. Since a quadric which is made to contain 2n arbitrary

points of an elliptic curve of order n will contain the curve entirely, this quadric is

determined by the three double points and six other points of the curve.

There is no quadric containing the curve with a triple point.
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Thus n = 2, and F is a conic passing through P.

The chords of G through the points of F form a ruled surface.

There is no doubt that such planes actually exist. For consider an

involution gj- of pairs of points on C. It is known that the chords joining

the pairs of g^ form a quartic ruled surface*. This ruled surface cannot

have a directrix line; for, if it had, any three of its generators, having a

common transversal, would belong to a [4] ;
and no [4] can meet C in six

points. Hence it has oo 1 directrix conies, one conic passing through each

point of the surface f. All these conies can be obtained as residuals of

prime sections through any two fixed generators, so that each conic meets

C in one point.

The planes of these conies are planes such as we require ; such a plane
will be called a secant plane (of f73

e
). There are oo 2 involutions g2

l on G;
each gives a quartic ruled surface lying on E73

6 and oo 1 secant planes of

?73
6

. There are thus oo 3 secant planes of J73
6

. Through a general point of

[5] there will pass a finite number of these secant planes; but through a

point of C73
6 there pass oo 1

,
and through a point of C there pass oo 2

.

If any point X is taken in a secant plane which meets C in P, the line

XP meets the conic F in a second point P' through which there passes
a chord k of C. The plane PkX is thus the trisecant plane of C which passes

through X. Hence if a secant plane passes through X it must contain

one of the three lines which join X to the three points of C lying in the

trisecant plane through X .

91. The geometry of the secant planes. There are oo 3 secant planes, each

meeting C in one point; if we have a quadric D containing C it will not,

in general, be possible to choose the parameters on which a secant plane

depends so that it lies entirely on Q. But the general quadric 1 containing
C is linearly dependent from ten quadrics, so that we should be able to

choose ii to contain a secant plane.

The condition that a quadric in [5] should represent the lines of a space

[3] is simply that it should be a general quadric and not a cone ;
if we take a

general quadric passing through (7, and containing a secant plane, to repre-

sent the lines of a space [3], the curve G will represent the generators of a

quintic ruled surface in [3] whose double curve and bitangent developable

* See footnote to 19. If the g is given by A - B (^ + 2 ) + CWa - on the

curve XQiXiiXtiXi'.XiiXi =* fl
6 :^4:^:^8 :^: 1, the quartic ruled surface is

- 0.

ABC
t 43.
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break up, because the chords of G which lie on the quadric form a ruled

surface which breaks up.

Suppose now that fi contains a secant plane meeting G in a point P,

this being a /o-plane. The involution determined on C by the conic F in

which the secant plane meets (73
6
gives a chord PA through P; this, in

common with all the other generators of the quartic surface, lies on Q.

Through P there pass two other chords PQ, PR which lie on Q (Fig. 4).

Through Q there passes a chord of G meeting F in Q' and through E
there passes a chord of G meeting F in J?'. Then the three lines PQ, QQ',

PQ' lie on ii, so that PQQ' is a plane wl which is trisecant to C. Similarly

R

Fig. 4.

PRR' is a plane tu2 which is trisecant to G. But there is only one plane w
trisecant to G, so we must conclude that this plane is PQR, the chord

QR meeting F.

Hence, if we have a quadric Q containing C and also a secant plane p
which meets C in P, the plane w of } which is trisecant to G passes through
P.

Let this trisecant m-plane meet C in P, Q, R and suppose that 1 con-

tains two secant planes /^ and p2 through P. Each of these determines an
involution on (7, the common pair of the two involutions being Q, R.

Hence we have two other chords PPX and PP2 through P and lying on fi,

one arising from each involution. But it is impossible for four chords PP1 ,

PP2 , PQ, PR all passing through P to lie on Q.

Hence it is impossible for ti to contain two secant />-planes passing

through P.
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The planes of the directrix conies of a quartic ruled surface in [5] form

a locus F3
3 of three dimensions and the third order*, and therefore meet

an arbitrary solid S3 in the points of a twisted cubic.

Suppose then that 1 contains C and also the quartic ruled surface

arising from an involution g on (7. Then a solid S3 meets Q in a quadric

Q and meets the F3
3 formed by the planes of the directrix conies in a

twisted cubic which meets Q in six points. Four of these six points will

be the points of intersection of S3 with the quartic surface
;
the other two

give planes which lie on i entirely, since each meets it in a conic and a

point. Since these two planes cannot intersect they are of opposite systems.

Hence, if Q contains a secant p-plane it must also contain a secant

to-plane ;
the two planes meet UJ in conies belonging to the same quartic

ruled surface. This secant to-plane will meet C in a point P', this being one

of the three points in which C is met by its trisecant p-plane.

92. Since the quadrics containing C are linearly dependent from ten

quadrics there will be five linearly independent quadrics containing C and

a secant plane. We may then suppose that there is a general quadric Q con-

taining C and two of its secant planes, these planes being of opposite systems
on Q and both arising from the same involution on C.

Then the ruled surface formed by the chords of C which lie on H breaks

up into a quartic ruled surface passing through C (and met by the secant

planes on ii in two of its directrix conies) and an octavic ruled surface

having C as a double curve. Through any point of C there pass one generator
of the quartic and two of the octavic ; by considering the correspondence
thus set up on C it is seen that these ruled surfaces have two common

generators, say g and g'.

The section of the composite ruled surface by a [4] gives an octavic

curve with five double points and a quartic curve passing through these

points ;
both these curves are rational.

It is easily shewnf that any general plane of Q will meet the quartic
ruled surface in two points and the octavic in four points. Thus the points
of C represent the generators of a quintic ruled surface in [3]; the double

curve breaks up into a conic and a rational quartic, while the bitangent

developable breaks up into a quadric cone and a developable of the fourth

class whose planes form a rational family.

Suppose that PQR is the la-plane which is trisecant to C and let the

secant p-plane pass through P. Then PQ and PR are generators of the

* 69.

t A plane w of fl meets the secant or-plane in a point O. These two planes lie

in the tangent [4] of O at 0, which meets O in a quadric point-cone and the quartic
ruled surface in a directrix conic and two generators. These two generators each
meet the first
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octavic surface while QR is on the quartic. Thus PQR represents the triple

point of the ruled quintic ;
the double conic passes through this point while

the double quartic has a double point ther. Further, the two parts of

the double curve intersect in two other points, these being represented on

ii by the to-planes through g and g' *.

Similarly the quartic developable has a double plane which touches

the quadric cone (this being the tritangent plane of the ruled quintic),

while they have also two other common tangent planes.

The plane of the double conic is represented on Q by the secant p-plane ;

it therefore contains a generator of the ruled quintic passing through the

triple point. The vertex of the quadric cone lies on a generator which is in

the tritangent plane.

93. The surface with three double cortics. The quadrics containing C
and a secant plane are linearly dependent from five quadrics. Such a

quadric meets any other secant plane in two definite points ; one of these

is on G and the other on that chord of C which belongs to both the in-

volutions determined on C by the two secant planes. If the quadric is

made to pass through four further points of the second secant plane (not

lying on the same conic with the two fixed points) it will contain the

secant plane entirely. Thus there will be a quadric containing G and two
secant planes.

Suppose then that Q, contains C, a secant plane pa meeting G in P and
a secant plane p2 meeting C in Q. There is a plane w of 2 meeting C in

three points P, Q, R. The ruled surface formed by the chords of C lying on
1 is in general of order 12 with G for a triple curve; here it consists of a

quartic ruled surface containing C and the chord QR, a quartic ruled surface

containing G and the chord RP, and therefore also of a third quartic ruled

surface containing C and the chord PQ. There is a directrix conic of this

last surface passing through R ; the plane of this conic meets ti in the conic

itself and also in a line of the plane PQR ;
it therefore lies on fi entirely and

is a secant plane p3 .

i will also contain three secant planes wl9 w2) WB belonging to the same
three quartic surfaces; these meet G in three points P', Q', R' and the

trisecant plane P'Q'R' is a p-plane of 1.

A general plane of fi of either system meets each quartic ruled surface

in two points. Thus the curve C represents the generators of a quintic
ruled surface in a space [3]; the double curve of this surface consists of

three conies and the bitangent developable of three quadric cones. The

planes of the conies intersect in the point represented on Q by the plane

PQR, these planes themselves being represented by the planes pl9 p2 , p3 .

* Cf. Schwarz, loc. cit. p. 37.
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The intersection of the planes of the three conies lies on all the conies,

and is the triple point. Similarly the tritangent plane touches all the cones

and is the plane joining the three vertices.

Any two involutions on C have a common pair of points, so that any
two of the three quartic surfaces have a common generator. Thus any
two of the three double conies have a second common point on the line of

intersection of their planes, this point being represented on ii by the plane
w passing through the common generator of the two quartic surfaces con-

cerned*. Similarly any two of the three quadric cones have a second

common tangent plane passing through the line joining their two vertices.

Surfaces whose generators belong to a linear complex
which is not special

94. We turn now to the quintic ruled surface in [3] whose generators
are represented by the points of a curve C on Q, this curve lying in a space

[4] which does not touch i. We assume, unless the contrary is stated,

that C has not a double point ;
we are dealing then with a surface of the

type II (A).

If we project C from a line on to a plane in [4] we obtain a quintic
curve which, as a rational curve, must have six double points. Hence six

chords of C meet the line, so that the chords of C form a locus F3
6 of three

dimensions and the sixth order.

Any plane of ii meets the space [4] in a line lying on ii ; this line is met

by six chords of C, and no other chords of C can meet the plane. Hence

we have a quintic ruled surface whose double curve is of the sixth order

and whose bitangent developable is of the sixth class.

95. The locus F3
6

. The curve C has a trisecant chord t"\ meeting it in

three points P, Q, R.

If we project C from a line which meets it on to a plane of [4] we obtain

a rational quartic with three double points ;
hence the line is met by three

chords of C other than those which pass through its point of intersection

with C. Hence C is a triple curve on F3
6

.

If we project from a line meeting t we obtain a rational quintic with a

triple point and three double points, so that the line is met by three chords

of C other than t. Hence t is a triple line on F3
6

.

If we project from a line through P we obtain a rational quartic with

three double points, one of these arising from t. Hence the line is only met

by two chords of G which do not pass through P, so that P, Q, R are

quadruple points on F3
6

.

If we project C from one of its chords on to a plane we obtain a cubic

with a double point; hence every chord of G is met by one other chord in

* Cf. Schwarz, loc. cit. p. 44. t Marietta, loc. cit. p. 101.
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a point not on C, these two chords lying in a quadrisecant plane of C. This

at once suggests a double surface F% on F3
6

. The order of F% is the number
of points in which it is met by a plane of [4]; the plane meets F3

6 in a

sextic curve having this same number of double points.

This number of double points is known when we know the genus of a

plane section of F3
6

. Now, since C is the projection of a rational normal

curve in [5], F3
6 is the projection of the locus Z73

6 of 87. Hence the genus
of the plane sections of F3

6 is the same as that of the sections of 73
6
by solids.

We then consider in [5] the curve in which a solid S is met by the

chords of a rational normal quintic curve C . If we take any four trisecant

planes of C then it is clear that the chords of <7 are obtained as the inter-

sections of corresponding primes of four doubly infinite projectively re-

lated systems of primes, each of the four trisecant planes being the base of one

of the doubly infinite systems. The section by S then gives four projectively
related

"
stars" of planes, each with a base point. If S is met by a chord

of G the point of meeting is an intersection of corresponding planes of the

four stars. But the locus of such points is known to be a sextic curve of

genus three*, and this is then the sectionf of C73
6 by S.

The plane sections of F3
6 are therefore also of genus three, and thus

have seven double points. Hence we have on F3
6 a double surface F2

7 of

order seven.

The section of F3
6 by a quadrisecant plane of C consists of the six

chords of C lying in the plane ; the section of F2
7 consists of the four points

of G together with the three diagonal points of the quadrangle formed by
them.

A trisecant plane PXY of C meets F3
6 in the three chords PX, PY,

XY and a cubic curve having a double point at P. This curve meets XY
again in a point W ;

the section of FJ by the plane PXY consists of the

points X , Y, W together with P counted four times. P, Q, K are quadruple

points on FJ.
A trisecant plane XYZ of C meets F3

6 in the three chords YZ, ZX, XY
and in a cubic curve passing through X, Y, Z and having a double point O.

This curve meets the lines YZ, ZX, XY again in points U, V, W. The

plane XYZ meets FJ in the seven points X, Y, Z, U, V, W, O.

* Schur, Math. Ann. 18 (1881), 15.

t The surface which is the prime section of C73
6 is a sextic surface in [4] generated

by four doubly infinite systems of solids projectively related to each other. It is a

particular case of that considered by Veronese, Math. Ann. 19 (1882), 232-233. The
projection of this sextic surface in [4] on to a solid is the same as the surface which
is the section of F3

6 by a solid. This surface in [3] has a double curve of order 7 (the
section of FJ) and, on this double curve, a triplanar point, this being the inter-

section of [3] with the trisecant t of C. Further, since the solid meets C in five points,
and the ten chords joining these points are lines of F3

6
, the sextic surface has ten

lines on it.

6-2
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The section of F3
6
by a plane through t and a point X of consists of

t counted three times together with the three chords XP, XQ, XR. The

point X is the only point of F2
7
, other than the points of t, which can lie

in this plane. A solid containing t will meet F2
7 in t counted three times

and in a quartic curve passing through P, Q, R.

t is a triple line on F2
7

, but C is only a simple curve.

96. The genus of the double curve. A quadric containing C will also

contain t
;
its intersection with FJ therefore consists of (7, t counted three

times, and a sextic curve
;
the total intersection being a curve of order 14.

Hence those chords of C which lie on Q form a ruled surface of order

12 in [4], the intersection of i and F3
6

. This ruled surface has C for a

triple curve and t for a triple generator ;
it has also a double sextic curve

meeting every generator in one point and passing through P, Q, R.

If we take the section of this ruled surface by a [3] we obtain a curve

in (1, 1) correspondence with the 'double curve of the ruled quintic. The
curve is of order 12, having six triple points and six double points; it is

the intersection of a quadric and a sextic surface, so that it meets each

generator of the quadric in six points. If we project the curve from a

point of the quadric on to a plane of the [3] we obtain a curve of order

12 with six triple points, six double points, and two sextuple points; its

genus is therefore

55- 18- 6- 30= 1,

so that it is elliptic.

Thus the ruled quintic has an elliptic double curve of order 6, while

the planes of its bitangent developable form an elliptic family of class 6.

Moreover, the double curve has a triple point ;
the three generators passing

through it lie in a plane and are represented on 1 by the points P,Q,R*.
Also the bitangent developable has a tritangent plane ;

the three generators
therein pass through a point. For this surface the tritangent plane passes

through the triple point ;
the plane p of fll passing through t represents the

tritangent plane, while the plane w of i passing through t represents the

triple point.

It is clear, either by the geometry of the planes on Q or by the geometry
of the linear complex, that at a triple point on any ruled surface whatever

whose generators all belong to a linear complex the three generators which

intersect there lie in a plane. Similarly, the three generators in any
tritangent plane pass through a point.

97. An associated ruled surface. We have just seen that the prime sections

of the ruled surface formed by the chords of C which lie on 1 are elliptic curves
;

this enables us to shew that the sextic curve which forms part of the intersection

* Cf. Marietta, loc. cit. p. 117.
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of Q and F is also an elliptic curve*. Its points thus represent the generators
of an elliptic sextic ruled surface/

6 in the original space [3]; this passes through
the double curve of the quintic ruled surface and is touched by the planes of the

bitangent developable of the quintic surface, and it contains the three generators
which meet in the triple point and lie in the tritangent plane.

Suppose then that we have in [3] a rational quintic ruled surface whose

generators belong to a linear complex. Take any point x on the double curve,
and the plane of the two generators which meet in x. Then this plane meets the

surface again in a cubic curve. This cubic meets each generator in three points ;

one point on each generator is a point where the plane (which is a bitangent

plane) touches the surface, the other two are points of the double curve. The

remaining point y in which the plane meets the double curve is a double point
on the cubic curve. If we had started with the point y instead of the point x
then the bitangent plane through y would have met the surface in two generators
and a cubic curve having a double point at x. The lines such as xy, chords of

the double curve and axes of the bitangent developable, generate an elliptic

sextic ruled surface /
6 whose generators belong to the same linear complex as

do those of the quintic surface. *

The curve of intersection of the two ruled surfaces, in all of order 30, will

consist of the double curve of the quintic surface counted twice, a certain number
of common generators, and another curve. Since every generator of/

6 can only
meet the quintic surface in one point other than the two points in which it

meets the double curve, this other curve meets the generators of /
6 each in

one point and is therefore elliptic. Moreover, it meets each generator of the

quintic ruled surface in three points, and an elliptic curve on a rational quintic
ruled surface which meets each generator in three points is of order 9f. Hence
the two ruled surfaces have in common this curve of order 9, the double curve
of the quintic ruled surface counted twice, and nine common generators. These
last consist of the three generators through the triple point of the quintic
surface and six others J.

* There is a (1, 2) correspondence between the points of this curve and the

chords of C on 13, to which we can apply Zeuthen's formula with a = 1, a' 2,

p' = 1, 4 - -if
= 0.

The assumption that vj
= is the assumption that the two chords of C which

intersect at a point of the sextic curve never coincide. We shall see later that there

are four special chords of C lying on FJ ; if H were to contain any of these chorda we
could not assume

TJ to be zero. But, in general, the assumption is true. The points
P, Q, R do not count as branch-points of the correspondence.

If O contained one or more of the special chords of C we should not have a sextic

curve of intersection on F2
7

.

t 17.

J This result shews that the sextic curve of intersection of 17 and FJ has six

intersections with C other than P, Q, R.
In the first paper of Segre's, referred to in 17, we find a formula for the number

of intersections of two simple (non-multiple) curves on a ruled surface. There is a

corresponding formula for the number of intersections of two multiple curves on a
ruled surface, but it is subject to modification as certain intersections may be in-

cluded more than once. For two curves of orders m and m' of multiplicities a and a'

on a ruled surface of order n, the curves meeting each generator of the surface in k
and k' points respectively, the formula gives the number of intersections as

i msk' + m'a'k nkk'.

If we apply this formula to the triple quintic curve and the double sextic curve
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98. Suppose that we take any point X on (7; is there a line through
X which is not a chord of C and yet lies on F3

8
? If we project C from X

on to a space [3] we obtain a rational quartic without a double point. If

such a line through X existed it would meet [3] in a point through which

an infinite number of chords of the quartic pass ; this would then be the

vertex of a quadric cone containing the quartic, and there are no such

cones*. But this reasoning does not hold for the three points P, Q, R.

If we project from P we obtain a rational quartic with a double point;
there are two quadric cones containing this quartic whose vertices are

not at the double poiritf, so that we expect two lines through P lying on

F3
6

. We shall call these lines axes.

We can also obtain some information as to these axes by projecting
a rational normal quintic from a point on to a space [4] . If we project
from X (see the end of 90) any axes of the projected curve must arise

from secant planes through X] so that we get a finite number of axes,

any one of which must pass through one of P, Q, R. Further, since any
line in the secant plane through X meets the conic in that plane in two

points there are two chords of the projected curve passing through any
point of an axis.

The chords of C meeting any axis form a quartic ruled surface in [4]

on which the axis is a double line the projection of a normal quartic
ruled surface in [5] from a point in the plane of one of its directrix

conies.

99, The geometry of the axes. We have two axes through each of the

points P, Q, R, giving six in all; call them p, p', q, q', r, r
1

', where p and

p' pass through P. They lie not only on F3
6 but also on FJ.

On any axis there are two points such that there is only one chord of C
passing through each of them ;

if the axis is the projection of a conic F from

a point X in a secant plane in [5], these two points arise from the two tan-

gents of F which pass through X . We may call these "pinch-points."
There is a cubic ruled surface

(f> containing (7; the directrix of
<f>

is the

trisecant of (7, while every generator of < meets G in one point. The oo 2

conies of
<f> give the oo 2

quadrisecant planes of C J. No two quadrisecant

which lie on the ruled surface of order 12 formed by those chords of C which lie on

Q, it appears that the two curves have fifteen intersections. But these really consist

of the three intersections P, Q, R and the six others each counted twice. See the

Note at the end of the volume.
* Salmon, Geometry of Three Dimensions (Dublin, 1914), p. 359, and above 63.

j-
We can regard the quartic curve as the intersection of the two quadrics

2xy + z2 - t
2 = and y

2 - m2z2 + n2
t
2 = 0.

J Marietta, loc. cit. pp. 101, 102. For the cubic ruled surface see 48 above.
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planes of C can intersect except on
<f>.

The oo 1
quadrisecant planes of C

which pass through any point of
<f>

lie on a quadric point-cone, and all

belong to one system of its planes.

Consider the F3
3 formed by the planes of the directrix conies of a normal

quartic ruled surface in [5] ; project it on to a space [4] from a point of

itself, lying in the plane of a directrix conic P. We obtain a quadric

point-cone ; one system of planes of this cone is the projection of the planes
of the directrix conies

;
the other system of planes is the projection of those

solids which contain pairs of generators of the quartic surface and pass

through 0, meeting the plane of F in lines through 0*.

This result shews that the quadrisecant planes passing through the

points of an axis all intersect in the same point, forming one system of

planes of a quadric point-cone.

Any axis determines an involution on (7; denote, for example, by (p)

the involution determined by p. Since any two involutions on C have a

common pair of points the involutions (p) and (r) give a chord joining their

common pair; this chord meeting both p and r. But any chord of C is met

by only one chord beside those passing through the two points in which

it meets C. Hence the chord must meet at least one of p and r in a pinch-

point.

The quadrics in [4] containing are linearly dependent from four

quadrics. Thus we can make such a quadric contain p by assigning two

points of p ;
there is a pencil of quadrics passing through C and p. More-

over, such a quadric, besides passing through Q and jR, meets each of

? ?'> r, if' in fixed pointsj. Hence we can find a quadric of the pencil

containing q. This quadric will contain the point of r which lies on the

chord common to (q) and (r), so that if this point is different from the

intersection of r with the chord common to (p) and (r) the quadric will

contain r entirely. There is a similar statement concerning r'. But it is

impossible for the quadric to contain p, q and both the axes r and r'
;
for

then we should have chords of C lying on it and forming a ruled surface of

order at least 4x4=16, which is impossible. We must therefore conclude

that the quadric containing (7, p, q contains one of r and r', say r, while the

chord common to (p) and (r') and the chord common to (q) and (r') meet

r' in the same point. We may denote the quadric by pqr.

Denote by (pq) r' the fact that the chord common to (p) and (r') and
the chord common to (q) and (r') meet r' in the same point.

*
Through each point of F3

3 there passes a line meeting all its generating
planes. See the footnote to 9 of Segre's paper, "Sulle varieta normali a tre

dimensioni," Atti Torino, 21 (1885), 95. Also 81 above.

t It meets q for instance in the point where it is met by the chord common to

(p) and (q). It does not, however, meet p' in a fixed point, because the chord common
to (p) and (p

f

) is QR.
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There are four quadrics
*

pqr, pq'r', p'qr', p'q'r,

which contain C and three axes, and we have

(pq)r
f

, (pq')r, (p'q)r, (p'q')r',

(qr)p
f

, (qr')p, (q'r) p, (q'r')p',

(rp)q
f

, (rp')q, (r'p) q, (r'p')q-,

the twelve elements of this array being determined by the first one.

Now from the three statements

(pq)r', (qr')p, (r'p) q,

we see that the involutions (p), (q), (r') have a common chord (we cannot

have three co-planar chords common to these pairs of involutions) ; this

meets the three axes p, q, r' which must therefore lie in a solid since they
have two transversals. We have four such solids which we may denote by

[Prt btfr],' [p'qr], [p'q'r
1

].

Let us denote the four common chords of the sets of three involutions by

pqr', pq'r, p'qr, p'q'r'.

The first of these, for example, is a transversal of the axes p, q, r'.

The points in which pqr' meets the axes p, q, r' are pinch-points on at

least two of them; since the six axes are on the same footing it is probable
that all the three points of intersection will be pinch-points.

We are thus led to the supposition that the unique quadrisecant plane

through pqr' does not contain any other chord, but touches C at both ends

of the chord pqr'. Thus we find four pairs of intersecting tangents of (7.

The existence of these pairs of intersecting tangents can be seen in

another way, for the tangents form a ruled surface which is the projection,

from a point, of the ruled surface formed by the tangents of a normal curve

in [5]. Now any surface whatever in [6] has a finite number of "apparent
double points

" *
; the number will be reduced by the existence of a cuspidal

curve on the surface, but we can still expect a certain number, and on

projection these give pairs of intersecting tangents of C.

The number of pairs of intersecting tangents of C can be found directly.

Take any point Q of C. The quadrisecant planes of C which pass through Q
are the planes of the oo 1 directrix conies of the cubic ruled surface

<f>
which

pass through Q. Since any one of these conies is determined by one point of any
generator of

</> they cut out on C an ordinary involution of sets of three points,
and such an involution has four double points. Hence there are four quadrisecant

planes which pass through Q and contain tangents of C.

* The only surface in [5] without any apparent double points is the surface of

Veronese. See Severi, Palermo Rendiconti, 15 (1901), 41, 42.
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Now let us establish a correspondence between the points P and Q of C\
two points corresponding when the tangent at P meets a chord through Q other

than QP. We have just seen that to any position of Q there correspond four

positions of P. Also a tangent of C is met by one chord other than those passing

through its point of contact*, so that to any position of P there correspond two

positions of Q. We have then, on the rational curve C, a (4, 2) correspondence
between P and Q\ there are eight points P for which the two corresponding

points Q coincidef . Hence there are eight tangents of C which are met by other

tangents, and these divide into four pairs of intersecting tangents.
The tangents of C therefore form a (developable) ruled surface whose cuspidal

curve C is of order 5 and which has four double points.

The chords which join the points of contact of the pairs of intersecting

tangents are none other than the four chords

pqr', pq'r, p'qr, p'q'r'.

The four planes which touch C twicg
can be taken in pairs in six ways;

the six solids formed by the six pairs of chords of contact each contain

one of the six axes.

The four chords of contact lie on F2
7

.

A bitangent plane of C meets F3
6 in the two tangents together with the

chord of contact counted four times ; it meets JF2
7 in the chord of contact

and the point of intersection of the two tangents.

There is one more remark which may be made concerning the configuration
of the six axes.

It is easily shewn, in ordinary space, that in general there are four quadric
cones passing through the curve of intersection of two quadrics. But if the two

quadrics touch their intersection is a rational quartic curve with a double point;
the four cones become the cone projecting the curve from its double point (this

cone counting doubly) with two other cones. Now the plane of the two tan-

gents to the quartic at its double point contains the vertices of these last two
cones.

Hence the solid containing the tangents of C at Q and E contains the axes

p and p' y with two other similar results. We thus have three solids which we

may denote by
[rr'tPtQ ].

100. Consider now the quintic ruled surface whose generators are

represented by the points of a rational quintic C in [4] , G lying on a quadric
which contains also the axis p%.

* For on projecting C from the tangent on to a plane we obtain a cubic with a
double point.

t If we have an (r, s) correspondence between points P and Q on a rational curve

then there are 2r ( 1) positions of P for which two of the 8 points Q coincide ( 13).

J This quadric is regarded as a prime section of fi.
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The ruled surface formed by the chords of C which lie on the quadric
here breaks up into a quartic ruled surface passing through (7, and having

p for a double line, and an octavic ruled surface having C for a double

curve. The trisecant t lies on the first of these ruled surfaces and is double

on the second.

Every line of ii lying in [4] meets the quartic
* in two points and there-

fore the octavic in four points. Hence we have a quintic ruled surface

whose double curve consists of a conic and a quartic and whose bitangent

developable consists of a quadric cone and a developable of the fourth

class.

The quartic has a double point which lies on the conic, this being re-

presented by the plane w of ii through t\ also the developable of the fourth

class has a double tangent plane which touches the quadric cone, this being

represented by the plane p of ii through t.

Through any point of C there pass one generator of the quartic ruled

surface and two of the octavic; by considering the correspondence thus

set up on C it is easily seen that the surfaces have two common generators.

Hence the quartic curve and the conic have two further common points,

while the developable of the fourth class and the quadric cone have two

further common tangent planes. The common generators of the quartic

and octavic ruled surfaces are pqr' and pq'r.

The prime section of 1 on which lies now contains the two chords

pqr' and pq'r. Hence the curve of order 14 in which it meets F2
7 is made up

as follows

C + p + pqr' + 'pq'r + 3J + C3 ,

where c3 denotes a twisted cubic, which must be a double curve on the

octavic ruled surface.

The section of this ruled surface by a solid is thus a curve of the eighth
order lying on a quadric and meeting each generator in four points, the

curve having nine double points f. This curve is rational; it represents the

double quartic curve of the ruled surface and also the bitangent develop-
able of the fourth class.

The section of the quartic ruled surface by a solid is a rational quartic

curve with a double point on p.

101. The surface with three double conies. Suppose that we have a

rational quintic ruled surface in a space [3] whose generators are repre-

sented by the points of a quintic C lying on the section of Q by a [4] ; the

axes p, q, r also lying on the quadric.

* A solid through the line meets 12 in a quadric with the line as generator and
the quartic in a quartic curve, with a double point, lying on this quadric.

t Five arising from (7, one from t t and three from c3 .
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Then the ruled surface formed by the chords of C which lie on Q breaks

up into three quartic ruled surfaces; each of these passes through C and

has a double line, while any two of them have a common generator. A
line on } lying in [4] meets each of these surfaces in two points, and t lies

on each surface.

Hence the quintic ruled surface in [3] has three double conies which

all pass through one point, this being represented on 1 by the plane w
through t, while any two of the conies have a second intersection. The

bitangent developable consists of three quadric cones all having a common

tangent plane, this being represented on Q, by the plane /> through t, while

any two of the cones have a second common tangent plane. The tritangent

plane passes through the triple point.

The quadric 1 now contains the three lines pqr', pq'r, p'qr; these are,

in fact, the common generators of the three pairs of quartic ruled surfaces.

The tangent planes at the different points of one of these lines, say

pqr', to either of the quartic surfaces on which it is a generator, are the

same
; the two tangents of C at the ends of its chord pqr' intersect and their

plane touches both the quartic surfaces at all points of pqr'. We can say

that pqr' is a torsal generator of both surfaces. The two quartic curves in

which the surfaces are met by an arbitrary solid will touch at the inter-

section of the solid with pqr'.

The curve of order 14 in which 1 and F2
7 intersect is now

G +p+q+r+ pqr' + 'pq'r + p
7
qr+ 3*.

The section by a solid of the composite ruled surface formed by the

chords of G which lie on 2 consists of three rational quartic curves lying
on the same quadric ;

each curve has a double point and there are six points
common to the three curves. Any two of the curves, besides having these

six points in common, touch each other at another point.

102. The surface with a double generator. If C lies in a non-tangent

prime S4 of Q and has a double point P its points represent the generators
of a rational quintic ruled surface in [3]; the generators belong to a linear

complex and there is a double generator represented by P. Any line of

S4 is met by five proper chords of C.

Any plane of ii meets $4 in a line I lying on Q
;
this line is met by five

proper chords of (7, and the plane IP meets Q in I and another line passing

through P. Hence we have a ruled surface whose double curve consists of

the points of a double generator G together with a quintic, while the

bitangent developable consists of the planes through a double generator

together with a developable of the fifth class.
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The tangent prime of 1 at P meets $4 in a [3] which meets C in four

points at P and therefore in one other point Q. Thus O is met by one other

generator g.

Through any point of C there pass three chords lying on fl; except
that through P we have the single chord PQ and through Q the chord QP
and one other chord.

Take the plane wl through PQ. A plane p which meets w^ in a line

must meet $4 in a line intersecting PQ. This line is only met by three

chords of C other than PQ, for if we project C from the line on to a plane
of $4 we obtain a rational quintic with a triple point and three double

points. The plane wl represents the point Gg, so that any plane through
this point meets the quintic double curve in only three other points.

Thus the quintic ruled surface has a double curve consisting of a double

generator G and a quintic. These meet in a point which is a double point
of the quintic, while through this point there passes one other generator.

The bitangent developable consists of a developable of the fifth class

together with the planes through G. One of these planes is a double tangent

plane of the developable ;
this is the plane Gg and is represented on Q by

the plane pl through PQ.
Consider again a rational quintic G in 4 with a double point P. Pro-

jecting from a general line of $4 on to a plane we obtain a quintic with six

double points; hence the line is met by five chords. Projecting from a line

meeting C we obtain a quartic with three double points, so that this line

is met by two chords other than those which pass through its point of

intersection with C. Projecting from a line through P we obtain a cubic

with one double point, so that this line is met by one chord not passing

through P. Hence the chords of C form a locus F3
5 of three dimensions

and of the fifth order, on which C is a triple curve and P a quadruple

point.

Further, if we take a chord of C passing through P, and project G on
to a plane from a line meeting this chord, we see that the chord must be

double on F3
5

. The chords of C through P form a cubic cone which is a

double surface on F3
5

.

Consider now a quadric Q3 containing C. It meets the cubic cone just

mentioned in G and also in one of its generators PQ. The chords of G
which lie on Qz form a ruled surface of order ten, the intersection of Q3

and F3
5

, on which C is a triple curve and PQ is a double generator. The
section of this ruled surface by a solid is a curve of order ten with five

triple points and one double point; it is the intersection of a quadric
and a quintic surface, so that it meets every generator of the quadric in

five points. If it is projected from a point of the quadric on to a plane
we obtain a curve of order ten with five triple points, one double point and
two quintuple points, which is therefore a rational curve.
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The quintic double curve of the ruled surface is therefore also a rational

curve. If we project it from a point of itself on to a plane we obtain a

rational quartic with three double points. Hence there are two trisecants

of the quintic curve passing through any point of it, and the ruled surface

is formed by these trisecants.

Any line on } meets the ruled surface formed by the chords of C lying

on Q in five points, but if the line passes through P it only has one other

intersection with the surface because P is a quadruple point thereon.

Now any plane p on 1 which passes through P meets $4 in such a line, so

that any plane passing through the double generator of the quintic ruled

surface meets the double quintic curve in only one point not on G. Hence
the quintic curve meets in two points besides the double point; this

shews at once that the quintic curve is rational.

Similarly, there are two planes of the developable, other than its double

tangent plane, which pass through G.

103. If we project C from a point of itself on to an $3 we obtain a

rational quartic with a double point ;
there are two quadric cones containing

this quartic whose vertices are not on the curve, so that we expect to find

two lines through any point of C which lie on F3
5 and are not chords of C.

These lines will form a ruled surface with C for a double curve.

The existence of these lines is also seen by projecting a normal quintic

in [5] from a point on one of its chords. There are oo 1 secant planes*

through such a point, one for each involution on the curve which contains

the extremities of the chord as a pair. Thus we have a finite number of

secant planes joining to any point of the curve, and in $4 a finite number
of lines through any point of C. The chords of G meeting such a line form

a cubic ruled surface, the projection of a quartic ruled surface in [5] from

a point O on it.

The quadrics of $4 containing C are linearly dependent from five

quadrics. It would thus seem that there is a quadric containing C and

one of the lines, and so the ruled surface formed by the chords of C lying

on the quadric breaks up into a cubic ruled surface passing through C and

a septimic ruled surface having C for a double curve. It would, however,

be wrong to conclude from this that we have found a new species of quintic

ruled surface belonging to the type II (B) ;
for it can easily be shewn that a

quadric in $4 which contains a cubic ruled surface is necessarily a point-cone.

Surfaces with a directrix line which is not a generator

104. Consider a ruled surface whose generators are represented by the

points of a curve C lying in a tangent prime T of ii. T touches Q in a

point ; O represents a line R which is a directrix of the ruled surface.

* Cf. 90.
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If C is of the type III (A) it meets every plane w through O in four

points and every plane p through in one point. An arbitrary plane p
meets T in a line and the plane w through this line is the plane joining it

to 0. This contains four points and therefore six chords of (7, so that the

double curve of the ruled surface is the line R counted six times. There are

four generators passing through every point of R and there is one generator

lying in every plane through R.

An arbitrary plane w meets J7
in a line and the plane p through this

line joins it to 0. This contains only one point of C\ there will be six chords

of C meeting the line so that in general the bitangent developable is non-

degenerate arid of the sixth class.

Similarly in III (B) we have a surface whose double curve is non-

degenerate and of the sixth order, while the bitangent developable consists

of the planes through R counted six times. Any plane through R contains

four generators, while through any point of R there passes one generator.

Remembering that C has a trikecant we see that in III (A) there is a

tritangent plane and in III (B) there is a triple point. Also the bitangent

developable in III (A) and the double curve in III (B) are seen to be

elliptic precisely as in 96.

105. We have seen in 99 that we can have a quadric point-cone con-

taining C and an axis
;
we may then regard this cone as a section of fi by T.

Thus in III (A) the bitangent developable may break up into a quadric
cone and a developable of the fourth class, this latter having a double

tangent plane which touches the former, and there being also two other

common tangent planes. The quadrisecant planes of C meeting the axis

are the tu-planes of the cone.

Also in III (B) the double curve may break up into a conic and a quartic ;

the quartic has a double point lying on the conic and the curves have also

two other intersections. The quadrisecant planes of C meeting the axis are

the /o-planes of the cone.

106. We shall now shew how a rational quintic curve C can be found,

in [4], so that it lies, together with three axes, on a quadric point-cone.
Take two planes TT, TT' in a space /S4 intersecting in a point 0. Then taking

three arbitrary points A, B, C in TT and three arbitrary points A', JB', C' in

IT' there is thus defined a collineation between the planes; the points

A, jB, C, of TT corresponding to the points A' y B', C", of TT'. If a conic

in TT is drawn through to have ABC as a self-conjugate triangle (there is

a pencil of such conies), then we have correspondingly in TT' a conic through
with A'B'C' as a self-conjugate triangle.
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Through any point of $4 there passes a plane pencil of lines incident to

both TT and it'
;
the plane of this pencil is the intersection of the solids which

join the point to TT and TT' and meets these planes in two lines passing

through 0. These lines will not, in general, correspond to one another in

the collineation.

The three lines AA', BB', CCf have a common transversal meeting
them in P, Q, R. Now take S, any point of the line PQR ; the plane of the

pencil of lines through S will meet re in a line I through and TT' in a line

V through 0. The three planes TT, TT', OPQR determine a quadric point-cone
with vertex 0, and the four planes OAA'P, OBB'Q, OCC'R, Oll'S are planes
of the opposite system of this cone. Hence the two pencils {ABCl} and

{A'B'C'l'} are homographic, so that / and V are corresponding lines in

the collineation between TT and TT' .

The pencil of lines through S incident to TT and TT' meets I and V in two

ranges in perspective. For a general position of S on the line PQR there

will be two points of I which are in perspective from S with their corre-

sponding points on V, and these include 0. Hence there is one line, other

than SO, through S which joins a pair of corresponding points of TT and TT'.

The lines C, B'C', QR lie in the solid determined by BB'Q and CC'R\
this solid contains P on the line QR. Hence there is a line PDD' meeting
BC in D and BfCf

in D'. The plane PDD'AA' meets TT in the line AD and
TT' in the line A'D', so that AD, A'D' must intersect in 0. Then the lines

GAD, OA'D' are corresponding lines and the points D, D' are corresponding

points. We have therefore two lines PAA' and FDD' other than PO which

join P to a pair of corresponding points of TT and TT'\ there must then be

an infinite number of such lines through P.

Through each of the points P, Q, R there passes a pencil of lines incident

to TT and TT' in corresponding points ; every line through one of these three

points which meets both TT and TT' does so in a pair of corresponding

points.

If X is the harmonic conjugate of O in regard to A and D, any conic

through having ABC as a self-conjugate triangle must pass through X.

Similarly we have X' in TT', and XX' passes through P. We also have

QYY' and RZZ' in the same way.

Returning to the point S, let SUU' be the line through it which

joins corresponding points U and U' of TT and TT'. There is a definite conic

passing through and U for which ABC is a self-conjugate triangle; to

this corresponds the conic through and V for which A'B'C' is a self-

conjugate triangle. The points of these two conies are in (1, 1) corre-

spondence with a united point 0; hence the lines joining corresponding

points of the two conies form a cubic ruled surface in /S4 . The four lines

XX', YY', ZZ', UV are generators of this surface, so that P, Q, R, S are

on the surface. Hence PQRS is its directrix line.
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Through eight points of general position on this surface there passes a

rational quintic C with the directrix for its trisecant*.

Take then points a, 6, c, d on the conic OUXYZ such that be, ad pass

through A ; ca, bd pass through B\ ab, cd pass through C. Similarly, take

points e, f, g, h on the conic OU'X'Y'Z' such that/0, eh pass through A'\

ge, fh pass through B' ; ef, gh pass through G'. Then there is a rational

quintic passing through a, 6, c, d, e, /, g, h with the directrix for its tri-

secant.

The lines PAA' 9 QBB', EGG' must lie on the F3
6 formed by the chords

of the curve, as each meets it in a triple point and two double points.

Hence these are three axes of the curve, which must meet its trisecant in

P, 0, R.

There is a quadric point-cone whose vertex is and which contains

the planes OAA'P, OBB'Q, OCC'R, as already mentioned above. The

planes TT, TT', OPQR belong to the opposite system. The cone therefore

meets the quintic curve in at least eleven points, and so contains it entirely.

It is the cone projecting the cubic ruled surface from 0.

Hence we have constructed in $4 a rational quintic which lies, together
with three of its axes and trisecant, on a quadric point-cone.

This shews that for surfaces of the type III (A) we can have a bitangent

developable consisting of three quadric cones; all the cones having a

common tangent plane, while any two have a secondcommon tangent plane.
Also in surfaces of the type III (B) we can have a double curve con-

sisting of three conies
;
all the conies have a point in common, while any

two of them have a second intersection.

107. In the type III (C) the curve C meets every plane w through
in three points, every plane /> through in two points, and has a double

point, lying on a chord of C.

An arbitrary plane p meets T in a line; the plane w through this line

is the plane joining it to 0, which contains three points and therefore three

chords of C. The plane joining the line to the double point P meets 2 in

a second line through P, and there will be two further chords of C meeting
the line.

Hence the double curve consists of the directrix R counted three times,
a double generator 6?, and a conic.

R and intersect. R and the conic also intersect ;
their point of inter-

section is represented on i by the zu-plane which contains the chord of

C passing through 0. The conic meets G also.

* Marietta, loc. cit. p. 102. No five of the points must be on the same conic and
no two on the same generator.
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The tangent prime of fi at P meets I7
in a solid passing through and

meeting C in four points at P. Thus it meets the curve in one further point

Q, and the plane OPQ is a tu-plane. Hence G is met by one other generator

g only, and this passes through the point RO.

Through any point of B there pass three generators.
An arbitrary plane w meets T in a line

;
the plane p through this line

is the plane joining it to O, which contains two points and therefore one

chord of C.

Hence the bitangent developable consists of the two pencils of planes

through R and G, together with a developable of the fourth class.

There is a plane of this developable passing through R ; it is represented
on ii by the />-plane which contains the chord of C passing through O.

The developable has the plane Gg as a double tangent plane; this is

represented by the plane pl through PQ. Any plane w which meets p in

a line meets T in a line intersecting PQ ; this line is met by three chords of

C other than PQ*, but one of these lies in the /o-plane which joins the line

to 0. Correspondingly, through any point of the plane Gg there pass only
two planes of the developable besides Gg.

108. The ruled surface formed by the chords of C which lie on a quadric

containing it is, in general, of order 10 with C for a triple curve, and has

a double generator*. But in surfaces of. the type III (C) this surface will

clearly break up into two distinct parts, one formed by those chords which
lie in ta-planes through and the other formed by those chords which
lie in />-planes through O.

The chords of O which lie in the p-planes through join the pairs of

points of an involution on G and therefore form a cubic ruled surfacef.
There is a generator of this surface passing through P, and the plane w
through this generator represents the point of intersection of G with the

double conic. Thus the ruled surface formed by the chords of C which lie

on ti breaks up into a cubic ruled surface and a ruled surface of the seventh

order, this latter having G for a double curve and having also a double

generatorJ. The section of this composite ruled surface by a solid consists of

a twisted cubic and a septimic having six double points. The two curves lie

on a quadric and form its curve of intersection with a surface of the fifth

order
;
the cubic meets all generators of one system in one point and all of

the other system in two points, so that the septimic meets all generators
of one system in four points and all of the other system in three points.
If then the septimic is projected on to a plane we obtain a curve with six

* Of. 102.

t The pair of points of C on its two branches at P is a pair of the involution, so

that we have a cubic ruled surface the projection of a quartic ruled surface in [5]
from a point of itself.

t Cf. 103.
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double points, one triple point and one quadruple point, and this curve is

of genus 15 636=0, so that it is rational.

The cubic passes through five of the double points of the septimic and

pieets it in one other point. This other point is on the chord of C which passes

through 0; this chord is a common generator of the two ruled surfaces.

109. In surfaces of the type III (D) the double curve consists of a

directrix J?, a double generator G and a quartic. This quartic is rational,

having a double point on G, this being the point of intersection of G with

the only other generator which meets it. The quartic meets JR. The bitangent

developable consists of the planes through R counted three times, the

planes through 6?, and a quadric cone; one tangent plane of this cone

passing through R and another through G.

Through each point of R there pass two generators; there is one point

of R at which the plane of the two generators contains J?, it is represented
on } by the ro-plane containing 1;he chord of G which passes through 0,

and is the intersection of R with the double conic. Each plane through R
contains three generators.

110. In the type III (E) G meets every plane w through in three

points and every plane p through in two points, while two chords of C

pass through 0. We have a rational quintic ruled surface in [3] with a

directrix line R\ through any point of R there pass three generators, while

any plane through R contains two generators. There are two and only two

planes through R such that the two generators in either plane intersect in

a point of R.

An arbitrary plane p meets T in a line; the plane w through this line

is the plane joining it to 0, which contains three points and therefore three

chords of C. There are three other chords of C meeting the line, so that the

double curve of the ruled surface consists of the directrix R counted three

times together with a twisted cubic. R is a chord of the cubic. The two

points in which R meets the cubic have, in fact, already been noticed ; they
are the two points of R in which pairs of generators meet and at the same

time lie in a plane with R. The tangents of the cubic at these two points

lie in the planes of the pairs of generators.
An arbitrary plane w meets T in a line, and the plane p through this

line is the plane joining it to 0, which contains two points and therefore

one chord of (7. There will be five other chords of C meeting the line.

Hence the bitangent developable consists of the planes through R together
with a developable of the fifth class. There are two planes of this develop-
able passing through R represented by the /o-planes of ii containing the

two chords of C which pass through ;
it has also a tritangent plane, this

being represented on Q by the plane p through the trisecant of (7.
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111. In the type III (F) we have a rational quintic ruled surface in

[3] with a directrix lineR
; through any point of E there pass two generators,

while any plane through R 'contains three generators. The double curve

consists of R and a quintic ; this quintic has a triple point and meets R in

two points. The bitangent developable consists of the planes through R,
counted three times, together with a developable of the third class, two

planes of this latter developable passing through R.

112. Consider now the genus of this quintic curve; we. know that it

must be rational, having a triple point.

The trisecant t of G is joined to by a p-plane; it therefore meets

every za-plane through in one point. The chords of C form the locus F3
6

with the double surface F2
7

;
a tu-plane through O meets F2

7 in two points
of (7, one other point on the chord joining these two points, three points
at the intersection of the plane with

,
and also in

;
while a p-plane through

O meets F2
7 in three points of C, three t)ther points on the chords joining

the pairs of these, and also in 0*.

The intersection of F2
7 with the quadric point-cone, vertex O, on which

C lies, consists of C y t counted three times, and a sextic curve with a

double point at and meeting every chord of O in one pointf. It is clear

that this sextic meets every ta-plane through in one point and every

/o-plane through in three points other than
;
it is thus a rational curve.

Here again the ruled surface formed by the chords of C which lie on fi

breaks up. The ro-planes through O meet C in pairs of an involution, so that

the chords in these planes form a quartic ruled surface with a double point
at 0, the projection of a normal quartic ruled surface in [5] from a point.
The section of this ruled surface by any solid lying in T is a rational quartic

lying on a quadric, meeting all generators of one system in three points
and all of the other system in one point.

The chords of C which lie in the p-planes through form a ruled surface

of order 8 with G as a double curve and t as a triple line. By considering
the intersections of the planes of ii through with the surface F2

7 it is

easily seen that there is no other multiple curve on this ruled surface. The
section by a solid gives an octavic curve having five double points and one

triple point ;
it lies on a quadric, meeting all the generators of one system

in three points and all of the other system in five points. Hence the genus
of this curve is

21 - 5 - 3 - 3 - 10 = 0,

so that it is a rational curve. Thus the quintic double curve of the ruled

surface in [3] is a rational curve.

The chords of C which lie in the to-planes through correspond to the

points of the line R regarded as part of the double curve and to the planes
* Cf. 95. t Of. 96.

7-2
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of the developable of the third class regarded as part of the bitangent

developable ;
the chords of C which lie in p-planes through correspond to

the points of the quintic curve and to the triple pencil of planes through R ;

this last must be regarded as a rational family of planes.

The ruled surface is formed by the chords of the quintic curve which

meet R ; clearly two such chords pass through any point of the curve and

three lie in any plane through R. We thus take a rational quintic with a

triple point and one of its chords, and we at once obtain a surface of this

type.

There are similar results for the surface of the type III (E).

Surfaces with a directrix line which is also a generator

113. In surfaces belonging to the type IV we have a directrix line R
which is also a generator, this being represented by the point of 1

;
C lies

in the tangent prime of ii at and passes through 0.

In IV (A) C meets every w-plane through in three points and every

p-plane through in one point other than 0. Through every point of R
there pass three generators other than JB, while every plane through R
contains one generator other than R.

An arbitrary plane p meets T in a line, and the plane w through this

line is the plane joining it to O. This contains four points and therefore

six chords of C, and no other chords meet the line. Hence the double

curve is the line R counted six times. An arbitrary plane w meets T in a

line, and the plane p through this line joins it to 0. This contains two

points and therefore one chord of (7; there will be five other chords meeting
the line. Hence the bitangent developable consists of the planes through
R together with a developable of the fifth class. Two planes of this latter

pass through R, and it has a tritangent plane represented on } by the

plane p passing through the trisecant of C. The to-plane through the tangent
of C at O meets C in two other points ; the two /o-planes containing the

chords of C which join these points to represent the two planes of the

quintic developable which pass through R.

In IV (B) we have another type of surface
;
R is both a directrix and

a generator, through any point of R there passes one generator other than

R, while any plane through R contains three generators other than R.

The double curve consists of R and a quintic with a triple point, R being
a chord of the quintic ;

the bitangent developable consists of the planes

through R counted six times.

114. In IV (C) G meets every plane of Q through in two points other

than and has a double point P; P will represent a double generator O
of the ruled surface. Through every point of R there pass two generators
other than if, while every plane through R contains two generators other

than R.
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Any plane of Q meets T in a line ; the plane of the opposite system

through this line passes through 0, containing three points and therefore

three chords of C. The plane joining the line to P meets Q in a second line

through P 9 while there are two other chords of C meeting the line. The

double curve therefore consists of G, R counted three times, and a conic.

R and G intersect. The p-plane through the tangent of C at O meets C in

another point, and the to-plane, which contains the line joining this point
to O, represents a point of intersection of R and the conic. O and the conic

also intersect. Similarly the bitangent developable consists of the planes

through 6r, the planes through R counted three times, and the tangent

planes of a quadric cone, one tangent plane of this cone passing through
R and another through G.

The ruled surface formed by the chords of C which lie on Q here breaks

up into a quartic cone with vertex passing through C and having the

double generator OP, together with twj cubic ruled surfaces both passing

through C.

115. In IV (D) the trisecant of C passes through 0, C meeting every

plane of ) through in two points other than 0. Again, we have a surface

for which the line R is both a directrix and a generator; every plane through
R contains two generators other than R 9 while through every point of R
there pass two generators other than R. The difference between this surface

andone of the type IV (C) lies in the fact that there is a plane throughR which

contains two generators meeting in a point of R, while in the former type
of surface we only have the plane through R and a double generator.

Any plane of fi meets T in a line; the plane of the opposite system

through this line joins it to 0, containing three points and therefore three

chords of C. There are three other chords of G meeting the line. Hence the

double curve consists of the line R counted three times together with a

twisted cubic. R is a chord of the cubic. One of the common points of 12

and the cubic is represented on fi by the to-plane through the trisecant of

C. The other is represented by the to-plane which contains that chord of

C which joins to the remaining intersection of C with the /o-plane con-

taining its tangent at 0. Similarly the bitangent developable consists

of the planes through R counted three times together with a developable
of the third class, two of whose planes pass through R.

116. If G lies in a tangent prime T of Q and has a double point at

we have a rational quintic ruled surface in [3] with a directrix line R which
is also a double generator.

For the type V (A) C meets every to-plane through in two points and

every p-plane through in one point other than O. An arbitrary plane p
meets T in a line; the plane to through this line joins it to 0, and meets
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C in the double point and two points A and B. The chords OA, OB, AB
are the only chords of C meeting the line, since OA and OB are double on

the locus F3
5 formed by the chords of (7*. Hence the double curve is the

line R counted six times. An arbitrary plane w meets T in a line
;
the plane

p through this line joins it to and contains one other point of C, so that

there will be three chords of C meeting the line which do not lie in this

p-plane. Hence the bitangent developable consists of B counted three

times and a developable of the third class. There are two planes of this

developable passing through B. The ta-plane through either tangent of C
at meets C in one other point; the p-plane through the chord of C joining

this point to O represents a plane of the developable passing through B.

Through any point of B there pass two generators other than B, while

any plane through B contains one generator other than B.

For a surface of the type V (B) we have a directrix B which is also a

double generator ; through any poi,nt of B there passes one generator other

than jR, while any plane through B contains two generators other than B.

The double curve consists of the triple line B together with a twisted cubic

having B for a chord
;
the bitangent developable consists of the planes

through B counted six times.

The ruled surface, formed by the chords of which lie on 2, breaks up
into the cubic cone which projects C from 0, counted twice, together with

a quartic ruled surface passing through C.

Surfaces whose generators belong to a linear congruence

117. Suppose now that C lies on the quadric Q in which i is met by a

solid $3 ,
the two tangent primes of Q through $3 touching it in and 0'.

Then and 0' represent lines B and R', in [3], which are both directrices

of the surface.

If G belongs to the type VI (A) it meets all generators of Q of one system
in four points and all of the other system in one point. We can suppose
that the generators of the first system lie in the ro-planes through and
the p-planes through O' ;

those of the other system lying in the tn-planes

through 0' and the />-planes through O. Then through every point of B
there pass four generators of the ruled surface which lie in a plane through
R' 9 while conversely every plane throughK contains four generators which

meet in a point of B.

The rational quintic in S3 has six apparent double points. An arbitrary

plane />
meets $3 in a point of Q ;

the six chords of C through this point
all coincide with the generator of Q which is quadrisecant to (7, the pro-

jection of C from this point on to a plane in S3 being a quintic with a

quadruple point. The plane w through this generator passes through O,

* Of. 102.
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so that the double curve of the surface consists of the line R counted six

times. Similarly the bitangent developable consists of the line R' counted

six times.

118. If G belongs to the type VI (B) it meets all generators of Q of one

system in three points and all of the other system in two points, having
two double points. These represent two double generators O and H of the

surface. Any point of R is the intersection of three generators lying in a

plane through R', while conversely any plane through R' contains three

generators meeting in a point of R. Through any point of R' there pass two

generators lying in a plane through JB, while any plane through R contains

two generators meeting in a point of jR'.

An arbitrary plane p meets S3 in a point of Q ;
the six chords of C through

this point consist of the lines to the two double points, the generator of

Q meeting G in two points, together with the trisecant generator counted

three times. Hence the double curve consists of O, H, R' together with R
counted three times. The bitangent developable consists of the planes

through (?, H and R together with those through R' counted three times.

119. Now suppose that G lies on the quadric cone in which Q is met by
a solid touching it at a point V.

In the type VII (A) C passes through V and meets every generator of

the cone in two points other than V. The surface has a directrix lineR which

is also a generator. Since each generator of the cone is the intersection of

two planes of fl, of opposite systems, both lying in the tangent prime at V,

through each point of R there pass two other generators which lie in a plane
with R, while each plane through R contains two other generators meeting
in a point of R. C has two double points, so that the surface has two

double generators G and H.

Any plane of } meets S3 in a point of the cone. The projection of C
from this point on to a plane of S3 gives a rational quintic with two double

points, and a triple point at which two branches touch each other. This

latter is equivalent to four double points, being formed by the union of

two double points and a tacnode. The six chords of C which can be

drawn from any point on the cone consist of the generator of the cone,

counted four times, together with the lines to the two double points.

The double curve of the surface consists of G and H with R counted

four times, while the bitangent developable consists of G and H considered

as pencils of planes together with the planes through R counted four times.

This surface is really a degeneration of the type VI (B) when the two
directrices R and JS' of that type coincide. The plane sections will be

rational quintic curves with double points on G and H and triple points

(at which two branches have a common tangent) on jR.
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120. In the type VII (B) G has a triple point at F and meets every

generator of the cone in one point other than F. The surface has a

directrix line B which is also a triple generator; through any point of R
there passes one other generator, while any plane through R contains one

other generator. Clearly the double curve consists of the points of R
counted six times, the bitangent developable of the planes through R
counted six times.

121 . We have now found twenty-four different kinds of rational quintic

ruled surfaces in [3] ;
these are exhibited in tabular form on p. 304.

SECTION II

RATIONAL QUINTIC RULED SURFACES CONSIDERED
AS PROJECTIONS OF NORMAL SURFACES IN
HIGHER SPACE

The general surface in [6]

122. The rational quintic ruled surface is normal in [6]; there are two
distinct kinds of surfaces, one with a directrix line A, and the most general
one with a directrix conic F*.

The rational quintic ruled surfaces / of ordinary space 2 can all be

obtained by projection from the normal surfaces F in [6] . The projection
will be from a plane w which must not meet F\ the solids joining w to the

points of F meet S in the points of /, while the [4]'s joining w to the

generators of F meet 2 in the generators of /.

Let us now consider the general surface F with a directrix conic F.

A prime through w meets F in a rational normal quintic, six of whose
chords meet w\ so that there are six solids in this prime which pass

through w and meet F in two points. Projecting on to S we see that in

any plane there are six points in which two generators of / intersect, so

that the double curve is a sextic.

123. Consider now the five-dimensional locusM5 formed by the chords

of F.

This locus M5 contains any solid K which contains a directrix cubic

A of F\ for through any point of K there passes a chord of A. Also M&

contains any solid K' which contains a pair of generators g, g' of jP; for

through any point of K' there passes a transversal of g and g'.

Conversely, through any point of M6 there passes a chord of F; this

meets F in two points through whichf there passes a directrix cubic A,
while the points themselves lie on two generators g and g'. Hence every

* 43. t 45.
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point of F lies in a solid K and also in a solid K', so thatM5 can be generated
either by the oo 2 solids K or by the oo 2 solids K'.

If any solid K is taken, a prime through it will meet F in the directrix

cubic of K and in two generators; these two generators lie in a solid K'
which meets the plane of T in the line joining the points where the two

generators meet I\ Taking three different solids K, each of them is

the base of a doubly-infinite system of primes; and we can establish a

projectivity between the primes of these three systems, two primes of

different systems corresponding when they join the respective solids K
to the same line in the plane of I\ Then corresponding primes of the three

systems meet in a solid K', and all the solids K' are given in this way.
Hence J/5 , being generated by the solids K', is generated by three

doubly-infinite systems of primes projectively related to each other. This

proves that M5 is a cubic primal M*?\ for if we take the section by an

arbitrary solid we obtain a surface generated by three projectively related

"stars" of planes, the vertices of the stars being the points in which the

arbitrary solid is met by the three solids K . We have thus the well-known

generation of the cubic surface.

When the cubic surface in [3] is generated by three projective stars of

planes there are six sets of three corresponding planes of the stars which
have a line in common instead of a point only ; these lines lie on the cubic

surface and form half of a double-six. Hence, given an arbitrary solid in

the [6] containing F, there are six solids K' meeting it in lines. In par-
ticular, we may take this arbitrary solid to contain the plane w from which
we are projecting F on to S. Then, through a given point of S there pass
six planes, each of which contains a pair of generators of /; so that the

bitangent developable of /is of the sixth class. The projected surface /has
one tritangent plane; this being the intersection of S with the prime
containing w and P.

The chords of F meet w in the points of a cubic curve c3 ,
this being the

intersection of w with M5
3

. Since no two chords of F can intersect (except
on F itself or at a point in the plane of F) jbhis curve has no double point
and is therefore elliptic. Hence the double curve and bitangent developable
of / are both elliptic ; the points of the double curve and the planes of the

bitangent developable both being in (1, 1) correspondence with the points
of c3 .

124. Algebraically, suppose that the surface is generated by a (1, 1) corre-

spondence between its directrix conic T in the plane x =
x^
= x2

= x3 = and
one of its directrix cubics A in the solid x4 = #5

= XQ = 0. Then we may take the
coordinates of corresponding points to be

(0, 0, 0, 0,
2

, 0, 1) and (0* 9

2
, 0, 1, 0, 0, 0),

so that any point of F has coordinates

(0*, 6*, 0, 1, A02
, A0, A),
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and the equations of the surface are

the generators being given by = const.

The chords of F are oo4 in aggregate and form a locus Mb whose equation
can at once be written down. For, taking any two points

(0
3

,

2
, 0, 1, A02

, A0, A) and (<*, <
2

, <f>, 1, ^2
, ^, /x)

on F, the coordinates of a point on the chord joining them are

(0
3 + K^

3
,

2 + K<
2
, + K0, 1 + K, A02 + /C^

2
, A0 + K/X<, A -f Kfl),

and these may be taken as the coordinates of any point of M& . The coordinates

are thus expressed in terms of five parameters. They satisfy the relations

*o
~

(0 + <) xi + e
<f>
x2 = 0,

*i
-

(0 + <) #2 + 0^3 = 0,

so that the equation of M5 is

= 0,

a primal M5
3 of the third order.

Since the equation of Jf6
3 is given by equating a determinant to zero it

follows at once that it can be generated by systems of spaces in two different

ways; it contains two doubly-infinite systems of solids.

The solid whose equations are

a# + /&i + y^2
== 0,

ax1 + px2 + y#3 0,

cur4 + j&r6 + ya:6
= 0,

lies on M5
3 for all values of a : /? : y. This solid meets .F in points for which

. . . x a02 + 80 + y = 0,
i.e. in two generators.

'

Conversely, the solid containing the two generators given by 6 = 61 and
8 = 62 is determined by the four points

W, e^ el3 1, o, o, o), (o, o, o, o, ^2
,
el9 1),

(Of, e*, 2 , i, o, o, 0), (o, o, o, o, 2
2

, 2 , i),

so that its equations are

3b- (0i + 2)a;1 + 1 2 a;2
= 0,

0,

0,

all other primes through the solid being linear combinations of these three.

Thus the solid lies on M^\ M^ can be generated by the solids K' .

We also have the conjugate generation of M^\ the solid whose equations are

ax -f- bxl + c#4 = 0,

ax + bx2 + cx5 = 0,

ax2 -f bx3 + ca;e
= 0,

lying on Jf5
3 for all values of a : b : c. This solid meets F in points for which and

A are connected by the relation

a0 -f 6 + cA = 0.
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Since this is linear in A it represents a directrix curve meeting each generator
6 = const, in one point; in fact it is a directrix cubic A given by

{c0
8

,
c02 , c8, c, -6*(a8 + b),

-
(aO + 6),

-
(06 + &)}.

We have thus the oo 2 curves A on F, andM5
3 can be generated by the solids

K containing these curves.

All these curves A can be obtained by means of prime sections through any
two fixed generators ; for the prime, whose equation is

a {XQ
-

(0l + 2) *1 + 0102*2} + & {*!
-

(01 + ^2) *2 + 0102*3}

+ C {Z4
-

(0! + 2) *6 + 0102*6} = 0,

contains the curve and the pair of generators given by =
X and =

2 .

If we consider the six primes

2X = ax + /tej + y#2 = > 22 = 0^! + #2 + y#8 = 0, S3
= cur4 + jto6 + y#6 = >

$! = a# + bx + cx = 0, S2
= a^ + 6^2 + cx5 = 0, /S3

= a#2 + 6^3 + ca:6
= 0,

then aSx + 6S2 + cS3
=

a/S^i + jftS2 + y/S8 ,

so that the six primes have a line in commpn. Thus a solid K and a solid K f have
a line of intersection.

Since all the first minors of the determinant

XQ X^ #

vanish at a point of F, F must be a double surface on M^. Since they also

vanish at a point of the plane of F this plane must be a double plane on M5
3

.

It follows, as a consequence of the two methods of generating F, that an

arbitrary solid of [6] is met in lines by six solids K and also by six solids K',
and that these lines

"1> "'S?

form a double-six on the cubic surface which is the section of M5
B
by the

arbitrary solid.

The quintic ruled surface F in [6] which has a directrix line has the equations

and its chords form the cubic primal

x
l 0.

125. Suppose now that we take two fixed generators, g and g*',
of .P.

Then the oo4 directrix quartics of F are obtained* by primes through g
and also by primes through g', and the system of oo4 primes through g is

thus related projectively to the system of oo4 primes through g'. If we
take a pencil of primes through g we obtain on -F a pencil of directrix

* 45. This applies also to the normal surface F with a directrix line A.
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quartics with three common points; these three points being in fact

the intersections (other than g itself) of F with the [4] which is the

base of the pencil of primes. Corresponding to this [4] we have a [4]

through g' containing the same three points of F. The trisecant planes of

F are thus the intersections of corresponding [4]'s of the projectivity. The

system of oo4 primes through g contains oo6
pencils of primes, the bases

of these pencils being the [4]'s through g\ these, with the corresponding

[4]'s through g', give the oo6 trisecant planes of F. The surface F itself is

generated by the intersections of corresponding planes of the projectivity ;

there are oo4 planes through g and oo4 corresponding planes through g',

and, since two conditions are necessary in order that two planes in [6]

should have a common point, there will be oo 2
planes through g which

meet their corresponding planes through g'\ these oo 2
points are the points

of the surface F.

126. We now enquire how maity trisecant planes of F there are which

meet an arbitrary plane w of [6] in lines
;
we expect that there will be a

finite number*.

The generator g and the plane w determine a [4] ^ ; corresponding to

this we have a [4] $/ through g' meeting Sl in a trisecant plane of F, and

this trisecant plane, lying in the [4] 8l with m, meets w in a point Pj.

Similarly, the generator g' and the plane w determine a [4] $2'; corre-

sponding to this we have a [4] S2 through g meeting S2
'
in a trisecant plane

of F, this trisecant plane meeting w in a point P2 .

Suppose now that there is a trisecant plane TT of F which meets w in

a line. There is then a [5] through $x which contains TT, so that there must
also be a [5] through $/ containing TT. Hence TT meets S/ in a line, and this

line will have to meet the line of intersection of TT with w, and therefore

must pass through Pl9 the point of intersection of $/ and w. Hence TT

must pass through P1? and similarly TT must pass through P2 . If then

there is a trisecant plane meeting w in a line, this line must be PiP2 .

There are threef chords of F meeting PiP2 , and these do in fact lie in

a plane. For consider one of these chords meeting F in B and C. We have

a [4] containing g, PxP2 and BC. Now the plane gP2 is the intersection of

$! and /S2 , so that the corresponding plane through g' is the intersection

of Si and S2', i.e. the plane g'Pl . Hence the [4] through g' which corre-

sponds to the [4] through g containing P2 and BC must contain Pl and

BC, and therefore the plane P^^BC. We thus have corresponding [4]'s

through g and g' meeting in the plane P^P^BC, which is therefore a tri-

secant plane of F. If A is its third point of intersection with F the three

chords of F which meet P P2 are BC, CA, AB.
There is then one trisecant plane of F which meets w in a line.

* 53. f 123.
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127. Any prime through w contains six chords of F, so that. those

chords of F which meet w meet F in the points of a curve <712 of order 12;

this projects from w into the double curve of /. (712 has three double points
at A, -B, (7, and, since the [4] through w and any generator meets F in three

further points, (712 must meet each generator of F in three points. It

cannot have any other double points, so that it is a curve <712
4 of

genus* 4.

The (3, 1) correspondence between (712
4 and P shewsf that there are

twelve generators of F touching (712
4

; hence there are twelve generators of

/ touching the double curve.

Also the (2, 1) correspondence between (712
4 and c3 ,

the elliptic cubic

curve in to, shewsf that there are six tangents of (712
4
meeting w. Hence

the tangents of F form a locus M of the sixth order\.

128. Rational quintic ruled surface^ in [4]. Before proceeding to in-

vestigate the surfaces / of [3] it will be convenient to interpolate here a

few remarks upon the rational quintic ruled surface in [4]; this is obtained

by projecting the general surface F in [6] from a line I which does not

meet it. Some of the properties that we shall obtain are given by Severi||,

but it is instructive to deduce them directly by projection.

We have seen that there are three points a, 6, c on I through which

there pass chords aa1a2 ? bb 62 , cc^ of F. The $4 determined by these

three chords must meet F in a directrix quartic, and on projecting from

I on to the space [4] this becomes a plane quartic curve with three double

points.

There is a solid K containing a directrix cubic of F which passes through

! and a2 ;
K containing the chord aa^. On projection this cubic becomes

a plane cubic curve with a double point, this being at the same point as

one of the double points of the quartic. We thus obtain three rational

plane cubic curves on the surface in [4] ; any two of these cubics intersect

in the point of intersection of their planes, this being the projection of the

point of intersection of the corresponding twisted cubics on F.

* 17. f By Zeuthen's formula, 16.

J The order of M4 is obtainable at once by elementary methods. For suppose
F to be generated by a (1, 1) correspondence between T and one of the directrix

cubics A. The tangents of T and A are also in (1, 1) correspondence, and the

tangent solids of jP are determined by the pairs of corresponding tangents. But
the QO * solids determined by corresponding generators of two ruled surfaces, of

orders 4 and 2, whose generators are in (1, 1) correspondence, form a locus of

order 4 + 2 = 6.

Similarly, the tangents of a rational ruled surface of order n form an Af4
2n~4

.

||
See the footnote on p. 49 of his paper, "Intorno ai punti doppi impropri di

una superficie generate dello spazio a quattro dimension! e a' suoi punti tripli

apparent!," Palermo Rendiconti, 15 (190r 33.
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Thus the general rational quintic ruled surface in [4] has three double

points. It has a plane quartic on it
;
this lies in the plane of the three double

points and has double points itself at these points. There are, further, three

plane cubics, each of which has a double point at one of the double points

of the surface. Further still, there is a directrix conic.

Of course we can obtain other surfaces in [4] by specialising the position

of I in regard to F. If I lies in a solid K the projected surface has a triple

line and is generated by a (1, 3) correspondence between a line and a conic.

If I lies in a solid K' the projected surface has a double generator and

contains oo 1
plane cubics with double points on this generator. If I is an

axis of a directrix quartic E the projected surface has a double conic.

It is generated by two conies in (1, 2) correspondence with a united point.

We can also project the surface with a directrix line.

Similarly, ruled surfaces in [5] are obtained by projecting F from a

point of [6]; a general point of [6] does not lie on Jf6
3

, so that the general

rational quintic ruled surface in [5J has no double points. But if the point
of projection does lie on a chord of F we obtain a surface in [5] with one

double point and having a plane cubic on it with a node there, while if

the point of projection lies in the plane of F we obtain a surface in [5]

with a double line, generated by a (1, 2) correspondence between a line

and a cubic curve.

The surfaces in [3] derived by projection from the

general surface in [6]

129. We now proceed to obtain the rational quintic ruled surfaces of [3]

by projection from the two normal surfaces in [6] , and also to give methods

for generating them. Of the twenty-four types which we have enumerated

seventeen are obtained from the general surface JP, the other seven arise

from the surface F with a directrix line.

We have already shewn how to obtain the most general surface/. Since

F can be generated by placing its directrix conic F in (1, 1) correspondence
with any one of its directrix cubics A, the most general surface/is generated

by a conic and a twisted cubic in (1, 1) correspondence.

130. Suppose that we take an ordinary involution 7 of pairs of

generators on F. If we take any directrix quartic E on F9 1 will determine

an involution on E\ the chords of E joining the pairs of the involution

form a cubic ruled surface lying in the $4 determined by E. This has a

directrix line Z, and a general plane w will not contain this line *
; but let

us choose w to pass through such a line.

The plane w will meet M6
3 in I and a conic &. The chords of F which

meet I will meet F in the points of the quartic E, while those which meet
* The lines of [6] are oo 10 in aggregate and include oo 6 lines Z.
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& will meet F in the points of an octavic (78 , meeting each generator of F
in two points. The involution on E has two double points, so that there are

two tangents of E which meet I
; hence thfere must be four tangents of G8

meeting &, the (2, 1) correspondence between CB and & having four double

points. Applying Zeuthen's formula to this correspondence we at once

find that C8 is an elliptic curve, and then applying Segre's formula for the

genus of a curve on a ruled surface we see that C8 has one double point A.

There are two chords of F passing through A, meeting CB again in B and

(7, and as these cannot be double points on C8 they must be intersections

of C8 with E. The two chords of F which pass through the points common
to I and & are chords both of C8 and E, so that we have four other inter-

sections of these curves. There are, in fact, precisely six intersections*.

Projecting from w on to the solid S we obtain a surface/ with a double

curve consisting of a conic (the projection of E) and a quartic (the pro-

jection of (78); the quartic is rational since its points are in (1, 1) corre-

spondence with those of &; it has a double point (the projection of A, B
and C) lying on the conic and meets the conic in two other points')*.

F can be generated by placing F and A7
in (1, 1) correspondence with

a united point. Hence/ can be generated by two conies Fj and F2 in (1, 2)

correspondence with a united point P. To P, regarded as a point of F^
there correspond two points P, P' of F2 one of which is P\ to P regarded
as a point of F2 corresponds the point P of Fj .

Fj meets the plane of F2 in a second point Q ;
to Q there correspond two

points Q' 9 Q" of F2 . The pairs of points of F2 which correspond to the points
of Fj are the pairs of an involution; their joins all pass through 0, the

intersection of PP' and Q'Q". The planes of the pairs of generators which

intersect in the points of the double conic Fa are therefore formed by the

points of F! and the corresponding lines of a plane pencil in (1, 1)

correspondence with 1^; there is one united element, the point P of Fx

lying on the line PP' of the pencil which corresponds to it. ThusJ these

planes touch a quadric cone E2 . This quadric cone is part of the bitangent

developable of the surface.

The plane of F2 is a tritangent plane of the ruled surface since it

contains the three generators PP', QQ', QQ". It is a tangent plane of E2

as joining Q to the line OQ'Q". The vertex of the cone E2 is 0.

131. If any directrix quartic E is taken on F all the axes I arising from

this lie on the cubic locus formed by the chords of E, and no two involutions

on E can have the same axis||.

* See the formula for i given in the footnote to 97.

t Cf. 92. J 22.

||
For the configuration of the axes of E see Segre, "Sulle varietd, cubiche dello

spazio a quattro dimension!," Memorie Torino (2), 39 (1889), 3; in particular 43.
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Any two directrix quartics E, Er

intersect in three points ; the plane
of these three points is the plane of intersection of the two [4]'s which

contain the curves. If then an axis of E coincided with an axis of W it

would lie in a trisecant plane of either curve, which is impossible.

If a plane w contains two axes of the same curve E it must be contained

in the /S4 to which E belongs ;
it then occupies a special position. The type

of surface / arising by projection from such a plane will be subsequently
considered.

Thus to obtain a surface/ with two double conies we try to find a plane
w containing an axis ^ of a directrix quartic E and an axis 12 of a directrix

quartic E'. This we can certainly do; we have merely to take a common
chord of E and E' and an axis of each curve passing through any point
of this chord*. The plane w meets Jf5

3 in the lines l and 12 together with

a third line Z3 ,
and the chords of F which pass through the points of 19 meet

it in a third directrix quartic E". The curves E' and E" have a common
chord passing through the intersection of /2 and 13 and have also a third

common intersection A, and we have similar points B and C arising from

the other two pairs of curves. The plane ABC meets w in a line; the

chords BC, CA, AB all meeting w.

Projecting from to on to a solid S we obtain a rational quintic ruled

surface / with three double conies. The conies all pass through one point,

while any two of them have a second intersection.

The surface F can be generated by a (1, 1) correspondence between

E and W with three united points. Thus to generate a surface / with two

(and therefore three) double conies we take two conies I\ and F2 in S
with two common points P, Q and place them in (2, 2) correspondence.
To the point P regarded as a point of I\ there correspond two points of

F2 which both coincide with P, while to the point P regarded as a point of

F2 there correspond two points of Fj which both coincide with P. To the

point Q regarded as a point of F! there correspond two points of F2 ,
one of

which coincides with Q, while to the point Q regarded as a point of F2

there correspond two points of Fx ,
one of which coincides with Q. The lines

joining corresponding points of Fx and F2 generate a rational quintic ruled

surface with two double conies Fx and F2 .

132. We have seen that the prime wT contains three generators of F\
in general there will not be a solid passing through w and meeting each of

these generators. But we may clearly choose w so that this happens, and
then the surface /, instead of being of the type I, is specialised and is of

the type II (A).

* There are two axes of each curve passing through any point of the chord

(Segre, toe. cit.).
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Take any three points of F and the three generators through them.

These determine a prime containing F; take points X, Y, Z one on each

of the three generators and a line I lying in the plane X YZ. Then if we take

any plane w passing through I and lying in the prime and project from it

on to S we obtain a surface / of the type II (A), having three generators

passing through a point and lying in a plane.

When a surface /is generated by a conic and a twisted cubic in (1, 1)

correspondence the plane of the conic is the tritangent plane. But, if we

specialise the correspondence so that the lines which join the three

points in which the cubic meets the plane of the conic to their corre-

sponding points are concurrent, the three generators in the tritangent

plane meet in the triple point.

This type of surface can be further specialised so as to have one or

two double conies.

If, in the generation given in 130, the correspondence between Fx and

F2 is so specialised that PO passes through Q we obtain a surface with

a double conic Fa which is of the type II (A).

In the generation at the end of 131 the point Q is a triple point of the

ruled surface ;
one generator through Q lies in the plane of F! and a second

in the plane of F2 . As a point approaches Q along one conic one of its

corresponding points on the other conic must also approach Q ;
the limiting

position of the line joining the two points is the third generator through Q.

If the correspondence is specialised so that these three generators lie in

a plane we have a surface belonging to the type II (A).

133. A solid K' through two generators does not meet F again. If we
choose w to pass through a line I of K' which does not meet either generator,
and then project on to S, we obtain a surface / with a double generator 0.

w meets M^ in a line I and a conic ft; the chords of F which meet w
will meet F in two generators and a curve C10 of order 10 meeting each

generator in three points ;
(710 meets every solid K'

in six points and every
solid K in four points.

There are six tangents of <710 meeting &, and applying Zcuthen's

formula to the (2, 1) correspondence between <710 and # we find that (710

is a hyperelliptic curve of genus 2; the g^ on Cw consists of the pairs of

points which correspond to the points of &. Applying Segre's formula we
see that <710 must have one double point A.

There are two chords of O1Q passing through A and meeting w\ these

meet <710 again in points B and G which must be intersections of (710 with

the two generators of F that we originally selected. The chord BO meets

/. On projecting we have a surface / with a double generator and a double

quintic curve having a double point on the double generator. The quintic
is rational since its points are in (1, 1) correspondence with those of 9-.
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Further, the quintic meets the double generator in two other points, these

arisiiig from the chords of F which pass through the intersections of I

and &. The generators of / are trisecants of the quintic*. The bitangent

developable consists of the planes through C?
,
and a developable of the fifth

class whose planes form a rational family in (1, 1) correspondence with

the points of &. This developable has one double tangent plane and two

ordinary tangent planes passing through G.

The prime wP necessarily contains the two chosen generators of F
9

assuming that the planes of w and F do not meet.

Hence to generate this surface / in 2 we take a conic and a twisted

cubic in (1, 1) correspondence, but we so specialise the correspondence
that two of the points in which the cubic meets the plane of the conic have

for corresponding points those two points of the conic which lie on the line

joining them.

134. Suppose now that w is chosen to meet the plane of F in a point
0. Then the projected surface / has a directrix line R, the intersection of

S with the [4] containing w and F. A prime through the [4] wT contains

three generators of F, so that a plane through R contains three generators

of/. A solid passing through w and lying in the [4] tnF meets two generators
of F, so that through any point of R there pass two generators of /. This

plainly indicates the types III (D) and III (F).

Suppose that there is a point X on R such that the two generators

gl and g2 of / which intersect there are co-planar with R.

The two generators of F which give rise to gl and g2 must clearly

lie in a prime containing w and F. Such primes form a pencil, and each

meets F in F and three generators ; they thus cut a g^ on any directrix

curve of F, the two generators in question passing through two points of

a set of this g3
l

.

Further, the two spaces [4] which project the generators from w must

meet the [4] wT in the same solid and therefore must meet the plane of

F in the same line through O. The lines through meet F in the sets of

a grg
1 an(i ^e pairs of generators so determined give a g2

l on any
directrix curve.

Now, if we are given a g2
l and a g3

l on a rational curve, there are two f

sets of the g2
l
belonging to sets of the g3

l
. Hence there are, in general, two

pairs of generators of F such as we require.
* Cf. 102.

t The g2
l may be regarded as a (1, 1) correspondence, and the g3

l as a (2, 2)

correspondence; both these correspondences are symmetrical, and are, in fact,

involutions. Hence the number of common pairs of corresponding points ia 2

half the number given by Brill's formula (see 16). More generally, the number
of pairs of points common to a gml and a gn

l on a curve of genus p is

(m - 1) (n - 1)
- p.
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Hence, in general, there will be two points X on R such that the two

generators of / which intersect there are co-planar with It, and then / is

of the type III (F).

It may, however, happen that one of the two pairs of generators of

F is such that there is a [4] through w containing them. The surface / has

then a double generator and is of the type III (D).

If both pairs of generators are special in this way it appears that there

is a directrix cubic A of F for which the solid K meets w in a line; / is

then a type of surface which will be subsequently considered.

For let gg
f and 1M be the two pairs of generators ;

the solids gg' and hh'

meeting w in the lines x and y. Take a point P on g and the transversal

through P of gg'x, meeting g' in Q and x in R. The two points P and Q
determine a directrix cubic A meeting h and Ti' in S and T. Through 8 there

passes a transversal of hh'y, meeting y in U and V in T'.

Then the ranges (T) and (T') on h' are homographic, and have two
common corresponding points. One of these is clearly on F ; the other gives
a curve A for which the solid K meets win a, line.

135. The generation of the surfaces / of the preceding article is at

once obtained, since F can be generated by a (1, 1) correspondence between
F and any of its directrix cubics. We take in S a line and a twisted cubic

in (1, 2) correspondence; the joins of corresponding points give a quintic
ruled surface with the line as a double directrix.

The pairs of points of the cubic which correspond to the points of the

line form an ordinary rational involution; the chords joining the pairs
therefore form a regulus. Hence there will be two of these chords meeting
the line in points A and B. Through A passes a chord Aoa', the pair of

points oaf corresponding to a point a of the line ; through B passes a chord

Bbb', the pair of points bb' corresponding to a point j3
of the line. In general,

the surface is of the type III (F) ;
but if either a coincides with A or j8 with

8-2
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B we have a surface of the type III (D) with a double generator. If

a coincides with A and
j3

coincides with B the surface / degenerates into

a type with two directrices.

If a (1, 1) correspondence has been established between the points of

a line and the lines of a regulus then the planes containing corresponding
elements form a developable of the third class*. If one of the two lines

of the regulus meets the line in the point which corresponds to it the

planes touch a quadric cone, while if both lines of the regulus which meet

the line do so in their corresponding points the planes all pass through a

line. This confirms the result found for the bitangent developables of the

surfaces III (F), III (D) and VI (B).

136. When w has been chosen to meet the plane of F in a point the

[4] wT will not, in general, contain a generator of F, but we may clearly

choose w so that it docs. Then th,e projected surface / will have a directrix

line R which is also a generator ; any plane through R contains two other

generators, while through any point of R there pass two other generators.

It is easily seen that, in general, there is one point of R at which these

two other generators are co-planar with R\ f is then of the type IV (D).

We have to consider two linear series on a directrix curve of F
;
one gt

l

and a second g2
l which arises from a g^ having a fixed point. These have

one pair of points in common.
It may, however, happen that the common pair of these two linear

series gives two generators which lie in the same [4] with w ; we may clearly

choose w so that this happens. Then / has a double generator and is of the

type IV (C).

137. We again consider F as generated by a (1, 1) correspondence
between F and one of its directrix cubics A. The [4] t&F contains a generator

g, and, when we project on to 2, F and A become a line and a twisted cubic

which intersect in a point P, the projection of the point </A. Thus to generate

/ we take a line and twisted cubic meeting in a point P and establish a

(1,2) correspondence between them. To any point of the line correspond
two points of the cubic, while to any point of the cubic corresponds one

point of the line, P not being special in any way. We have a surface / of

the type IV (D).

The pairs of points of the cubic which correspond to the points of the

line give rise to lines forming a regulus meeting the line in two points P
and Q. The planes of the pairs of generators issuing from the points of the

line thus form a developable of the third class which is part of the bitangent

developable of /.

* See 23 above.
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Through Q there passes a chord Qaa' of the cubic ; a and a' forming the

pair of points corresponding to some point a of the line. If then a coincides

with Q we have a surface / with a double generator of the type IV (C) ;

this has a quadric cone as part of its bitangent developable.

138. Further, when w meets the plane of F in a point, it may happen
that the [4] wT contains two generators of F. Then/ has a directrix line

B which is also a double generator; any plane through R-contains one

other generator, while through any point of R there pass two other

generators. Hence / is of the type V (A).

To generate / we take a twisted cubic and one of its chords and place

them in (2, 1) correspondence without united points. Those planes of the

bitangent developable which do not pass through the chord form a

developable of the third class.

139. We have seen that of the oo 2 solids K there is a singly infinite set

meeting a general plane w in points but that there is none meeting it in a line.

If, however, we choose w to meet a solid K in a line the projected surface

/ has a directrix line .B, the intersection of S with the [4] wK . Since any
prime through the [4] wK meets F in a directrix cubic A and two generators
we see that any plane through R contains two generators of /, and since

any solid passing through w and lying in the [4] wK meets F in three

points there will be three generators of / passing through any point of R.

This indicates the types III (C) and III (E).

Suppose that there is a plane x through R such that the pair of

generators which it contains intersect in a point on R.

The two spaces [4] joining w to the two generators of F from which

these arise must meet the [4] wK in the same solid, and must therefore

meet K in the same plane. This plane will contain the line of intersection

of w and K, so that the two generators of F meet A in a pair of points

belonging to a set of a g^ cut out on A by planes of K passing through a

line. Also the two generators of F must lie in a prime through w and K
;

such primes form a pencil, each meeting F in A and two generators, giving
thus a (/2

1 on A. But the g2
l has two sets belonging to sets of the g^. Hence,

in general, there are two planes x through R such as we are seeking, and

/ is of the type III (E).

It may happen that one of these two pairs of generators of F is such

that there is a [4] through w containing them. Then / has a double

generator and is of the type III (C).

If both pairs of generators are special in this way it appears that tu

must meet the plane of F in a point ; the surface / then belongs to a type
which will be subsequently considered.



118 CHAPTER III, 139-143

For let one pair of generators be g and g', the other pair h and h'.

The solid gg' will meet w in a line x\ the solid hh' will meet w in a line y.

Let G, G', H, H' be the points of intersection of F with the four generators.

Then GG' and HH' intersect, and this point of intersection is the point
common to the two solids gg' and Tihf and is therefore also the point of

intersection of the lines x, y.

140. Since F is generated by a (1, 1) correspondence between A and

F, / can be generated by a (1,3) correspondence between a line and a

conic ; to any point of the line R correspond three points of the conic, while

to any point of the conic corresponds one point of the line R.

We have an involution of sets of three points on the conic, and the sets

of three joins of all such triads are known to touch a conic F *. There are

two tangents to F from the point in which the line R meets its plane ; these

give the two pairs of generators^ of / which lie in planes through R and

intersect in points of R. The surface is, in general, of the type III (E).

The point of intersection of R with the plane of the conic gives three

corresponding points of the conic. If two of these happen to be collinear

with the point on R we have a surface / of the type III (C) with a double

generator.

141. When w is chosen to meet a solid K in a line the [4] wK will not,

in general, contain a generator of F, but we may clearly choose w so that

it does. Then, on projecting, the surface / has a directrix R which is also

a generator. Any plane through R contains one other generator, while

through any point of R there pass three generators. Hence F is of the

type IV (A).

To generate /we again take a line R and a conic in (1, 3) correspondence,
but here they have a point of intersection. This point does not specialise

the correspondence in any way.
The point of intersection of R and the conic is the projection from w

on to S of the point of intersection of F with the generator of F which

lies in the [4] wK .

142. We now investigate a type of surface / to which we have already
twice referred. Suppose that w is chosen to meet a solid K in a line

and also to meet the plane of F in a point 0. Then the projected surface

/ has two directrices; JR, the intersection of S with the [4] wK, and R', the

intersection of with the [4] toF.

Any prime through w and K meets F in A and two generators which

Tiust meet F in a pair of points collinear with O. Also any solid through

* Cf. Baker, Principles of Geometry, 2 (Cambridge, 1922), 137.
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w lying in the [4] wT meets F in two points collinear with 0; there is

then a prime containftig these two generators and w, which necessarily

contains K also. Hence any plane through R contains two generators of

/ meeting in a point of R', while through any point of R' there pass two

generators of / lying in a plane with R. Similarly, any plane through R'

contains three generators of / meeting in a point of E, while through any

point of R there pass three generators lying in a plane with R'.

Now let us enquire whether/ has any double generators. This is the

same question as whether there exist spaces $4 through w' which contain

two generators of F. Such an S4 would have to meet the plane of F in

a line through and the solid K in a plane. Conversely, if we have a pair
of generators of F such that the chords of F and A determined by the pair

both meet w, there is an $4 through w containing the pair of generators.

Now the chords of F through determine an involution on F and thus

also a
(/g

1 on A
;
while the planes of K parsing through its line of intersection

with w determine a gj* on A. Hence there are two pairs of generators
of F such as we require, and / has two double generators. / is of the

type VI (B).

The (1,1) correspondence between A and F clearly gives rise to a (2, 3)

correspondence between R and R', and / can be generated by means of

this correspondence. But this is not the most general (2, 3) correspondence
between two lines

;
it must be specialised in order to give the two double

generators.

143. We can give another method of generating this surface of the

type VI (B) which leads at once to a generation for a surface of the type
VII (A).

w and a generator of F determine a space $4 ; any prime through
this meets F in the generator and in a directrix quartic E\ E meets F in

one point and A in two points. The [4] containing w and A will meet the

prime containing w and E in a solid which contains w and the two inter-

sections of E and A. Hence the line joining these two points must meet w.

The $4 containing E meets w in a line which is met by three chords of E,

one of these being already accounted for.

When we project, E gives rise to a plane quartic with three double

points ;
it passes through the point in which R' meets its plane and one

of its double points lies at the point in which R meets its plane.

Now F can be generated by means of a (1, 1) correspondence between

F and E with a united point. Hence, to generate /, we take a plane

quartic with three double points and a line R' meeting it in a point P. To

any point of R' there correspond two points of the quartic, while to any

point of the quartic corresponds one point of J?', P being a united point.



120 CHAPTER III, 143-146

But it is necessary that the two points which correspond to any point

on R' should be collinear with one of the double points. For, returning to

the surface F in [6], we have seen that the prime containing w and two

generators g and g', which meet F in a pair of points collinear with 0, also

contains K. It therefore meets E in four points ;
one on

gr,
one on g' 9 and

the two on A already mentioned. This shews on projection that, given a

point of R', the two corresponding points on the quartic are collinear with

the double point on R.

The two other double points of the quartic determine two double

generators of /.

The line joining the points in which R and R' meet the plane of the

quartic is the generator of / which lies in this plane.

This method of generation at once suggests the following for a surface

of the type VII (A).

Take a plane quartic with thr^e double points A, JB, C and a line jR,

not in the plane of the quartic, passing through A. Establish a (1, 2)

correspondence between R and the quartic, with a united point, such that

to any point of R there correspond two points of the quartic collinear with

A : this is at once secured by referring the range of points onR to the pencil

(A) of lines through A in the plane of the quartic. The point A, regarded as

a point of R, must give rise to two points of the quartic, one of which is A
itself: this is secured by making the point A on the range R correspond
to one of the tangents of the quartic at A considered as a line of the pencil

(A). There will be a second point on R which corresponds to A ;
this being

that point of the range which corresponds to the other tangent of the curve

at A considered as a line of the pencil (A). Then we have a ruled surface

/ with a directrix line which is also a generator ; through each point of R
there pass two generators lying in a plane with J?, while each plane through
R contains two generators intersecting in a point of R. There are two

double generators passing through the points B and G. This is the surface

of the type VII (A).

144. We can examine in closer detail the way in which w may be chosen

so as to give a surface of the type VII (A).

Take any two generators g and g' of F meeting F in the points G and

G', and any point on the line QQ'\ also a point X on F. Then there are

oo 1 directrix cubics passing through X and their solids K meet the solid

gg' in lines forming a regulus. GG' belongs to this regulus ;
this line arises

from the degenerate cubic consisting of F and the generator g through X.

Any line through lying in the solid gg' will meet the regulus in a second

point 0', the line of the regulus through 0' being a chord of a directrix

cubic A. There are planes through 00' meeting the solid K containing
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A in lines, and on projection from such a plane we obtain a surface / of the

type VI (B).

But suppose that we take a tangent, at 0, of the quadric surface on

which the regulus lies; and then a plane w through this tangent, con-

taining a line passing through 0, and lying in the solid gQ T. On projecting

we have a surface / with a directrix R which is also a generator.

Through w and two generators of F which meet T in two points
collinear with there passes a prime, which necessarily contains F and

(/ ;
so that through any point of R there pass two other generators which

lie in a plane with R, and/ is of the type VII (A).

145. F has oo4 quartic directrices, and w will meet the [4] containing
such a directrix in a point. There are, however, oo 2

quartic directrices such

that the [4]'s containing them meet w in lines; in fact, any line of

w lies in such a [4] ,
determined by the ^iree chords of F which meet the

line. But, in general, there is no [4] so arising which contains w entirely;

this is evident when we remember that all directrix quartics can be

obtained as residuals of prime sections of F through any fixed generator.

Let us suppose, however, that w is chosen to lie in a space S4 containing
a directrix quartic E. Then the projected surface / has a directrix line R,
the intersection of S with $4 . Since a prime through S4 meets F in E and

one generator there will be one generator of/contained in any plane passing

through R, and since any solid lying in $4 and passing through w meets

E in four points there are four generators of / passing through each point
of R. Hence / is of the type III (A).

The cubic locus in $4 formed by the chords of E is none other than the

section of J/6
3
by $4 ;

in general, w meets this locus in an ordinary non-

degenerate elliptic cubic curve, and the bitangent developable of / is non-

degenerate and of the sixth class, having a tritangent plane. The planes of

the developable form an elliptic family, since they are in (1,1) corre-

spondence with the points of the cubic curve in w. The tritangent plane

is, of course, the intersection of S with the prime wT.

But w may be chosen to pass through an axis I of E
;
the chords of E

through the points of I determining an involution on E and thus an in-

volution / of pairs of generators of F. w meets M5
3 in I and a conic S-.

We have already seen
( 130) that the bitangent planes of/ which arise

from / touch a quadric cone. The residual developable is of the fourth

class, with two ordinary tangent planes and one double tangent plane
which touch the cone also. This last plane clearly arises from the prime
wT\ the other two are determined by the chords of F which pass through
the two points of intersection of I and &.

Further, w may be chosen to contain two, and therefore three, axes

of E, say 119 12 , 1$. Then the bitangent developable of / consists of three
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quadric cones. The prime wT meets S in a plane which touches each cone.

Also the chord of F which passes through the intersection of 12 and Z3 , say,

meets a pair of generators which give on projection a common tangent

plane of the two cones which arise from Z2 and 13 ;
thus any two of the three

cones have a second common tangent plane.

146. F can be generated by placing T and E in (1, 1) correspondence
with a united point. Hence to generate this type of surface / we take a

line R and a conic which meets it, and place them in (1, 4) correspondence
with their intersection as a united point. Any plane through R contains

one generator, while through every point of R there pass four generators.

The plane of the conic contains three generators all passing through the

point in which R meets it; it is thus a tritangent plane.

But if the plane w contains an axis of E then, corresponding to each

point of j?, we have four points pf the conic as before
;
but two of these

four points form a pair of a certain involution, so that the line joining

them passes through a fixed point 0. The bitangent developable of /
breaks up into two parts.

The pencil of lines through in the plane of the conic is related

to the range of points on R, and the planes joining the rays of the pencil

to the corresponding points on R touch a quadric cone with vertex 0,

which touches the plane of the conic. Hence the bitangent developable
breaks up into this cone and a developable of the fourth class having the

plane of the conic for a double tangent plane.
The joins of the sets of an involution of sets of four points on a conic

are known to touch a curve of the third class. In this degenerate case the

curve will consist of the point and a conic, and two tangents of this last

conic will pass through O. This shews that the quadric cone and the de-

velopable of the fourth class have two other common tangent planes.

Now suppose that the plane w contains three axes of E. Any solid

through w meets the cubic locus of chords of E in a four-nodal cubic surface,

the nodes being the four points in which the solid meets E. The three axes

are the three lines on this surface other than the six edges of the tetra-

hedron formed by the nodes, and it is a well-known property of the four-

nodal cubic surface that each of these three lines meets a pair of opposite

edges of the tetrahedron. If, then, any point A is taken on E the solid

wA meets E again in three points S, C, D such that AB and CD meet

one axis, AC and ED meet another, while AD and BC meet the third.

Thus in the correspondence between R and the conic if a, 6, c, d are

the four points of the conic which correspond to some point of R we have

ab and cd belonging to one fixed involution, ac and bd belonging to a second

and ad and be belonging to a third. We thus have three points Ol9 2 > 3

forming a self-conjugate triangle in regard to the conic; these being the
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three points through which the joins of pairs of the three involutions

respectively pass. The envelope of the third class formed by the joins of

the sets of four points here degenerates into the three points Ol , 2 , 3 .

Thus the bitangent developable of/consists of three quadric cones with

vertices Ol9 2 , 3 all touching the plane 0^0^Oz . Any two of the cones

have a second common tangent plane.

This completes the determination of those surfaces / which are pro-

jections of the surface F with a directrix conic.

The surfaces in [3] derived by projection from the surface in [6]

with a directrix line

147. Take now a rational quintic ruled surface F in [6] with a

directrix line A. Any chord of F lies in a solid through A containing two

generators of F, so that the locus Jff6 of the chords of F is a five-

dimensional cone having a line-vertex and oo 2
generating solids. If we

take a directrix quartic E of F the [4] in which it lies meets M& in the

cubic locus formed by the chords of E
;
we have thus a cubic line-coneM5

3
.

No two generating solids of the line-cone can intersect, unless on the

three-dimensional locus formed by the planes through A containing the

generators of F. Since a general plane w does not meet this locus it will

meet M5
3 in a cubic curve without a double point.

Take now a general plane w of [6] not meeting F and project from w on

to a solid S. We obtain a rational quintic ruled surface / with a directrix

line R, the intersection of S with the [4] tnA. Since a prime through w and
A meets F in A and four generators there are four generators of the surface

/ which lie in any plane through R, and since a solid passing through w
and lying in the [4] w\ meets A in a point there is one generator of / passing

through any point of R. Hence / is of the type III (B).

It is seen as in 127 that the chords of F which meet w meet F in

the points of a curve C12 of order 12 and genus 4, having three double

points whose plane meets to in a line, (712 meeting each generator of F in

three points. The double curve of / is an elliptic sextic curve with a triple

point.

The locus M formed by the tangents of F is here again of the sixth

order, but it is now a line-cone with A for vertex and has oo 1
generating

solids all passing through A. It is of the sixth order, because the [4] which

contains any directrix quartic E meets M in the ruled surface formed by
the tangents of E, and this is known to be of the sixth order*.

This type of surface F contains oo4 directrix quartics E ; any one of

these is determined by four points of F, and any two intersect in three

* Cf. the footnote to 127.
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points. They can all be obtained as residuals of prime sections of F through
any fixed generator. Each curve E determines a space [4] containing it.

In genera], such a space [4] will meet w in a point, but there are oo 2 of

them meeting w in lines, one passing through each line of w. For a general

position of w no [4] will contain it entirely.

Now w may clearly be chosen to pass through an axis I of one of these

curves E, meeting M5
3 in I and a conic &. The chords of F meeting I meet

F on E itself, those meeting meet F in an elliptic curve of the eighth
order, with one double point, which meets each generator in two points.
On projecting we have a surface / of the type III (B) whose double curve
consists of a conic and a rational quartic ; this quartic has a double point

lying on the conic and meets the conic in two other points.

Further, w may be chosen to pass through an axis ^ of a quartic E
and an axis Z2 of a quartic W . It meets M<? in three lines Il9 12 , 13 , and
/3 is an axis of a quartic E" . The surface / has a double curve consisting
of three conies with a common point, any two of the conies intersecting
in one other point*.

148. F can be generated by means of a (1, 1) correspondence between
A and any of its directrix quartics E. Hence to generate the most general
surface / belonging to the type III (B) we take a line and a rational skew

quartic and place them in (1, 1) correspondence.

If, however, w contains an axis of E then E becomes on projection
a double conic of /, so that to generate this surface we take a line and
a conic in (2, 1) correspondence.

The construction of the quintic surface with a directrix line and two
double conies can be deduced from that for the quintic ruled surface with
two double conies without a directrix linef simply by making the (2, 2)

correspondence between I\ and T2 express the condition that the generators
should all meet a line. Or we can deduce a construction from that of the
dual surface ; we take a line lying in a tangent plane of a quadric cone and
place the planes through the line and the tangent planes of the cone in

(1, 4) correspondence. The four planes of the cone which correspond to any
plane through the line form pairs of three involutions.

149. Suppose now that w is chosen to lie in a space [4] with one of the
directrix quartics E. Then the projected surface/ has two directrices; R,
the intersection of S with the [4] w\, and R', the intersection of S with the

[4] wE. A prime through w and A meets F in A and four generators, and
these must meet E in four points lying in a solid through w. Also, if a
solid through w meets E in four points the four generators of F
passing through these points all meet A. Hence any plane through R

* Cf. 131. t 131.
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contains four generators of / which meet in a point of R', while through

any point of R' there pass four generators of / lying in a plane with R.

Similarly any plane through R' contains one generator of / which meets

J?, while through any point of R there passes one generator of / meeting
R'. Hence / is of the type VI (A).

Since F can be generated by a (1, 1) correspondence between A and E,
the surface / can be generated by a (1, 4) correspondence between R' and

R.

150. Any prime meets F in a rational normal quintic curve, one point
of which lies on A

;
the chords of the curve passing through this point form

a cone of the fourth order. This shews that the oo 1
planes joining A to the

generators of F form a locusM3
4 of three dimensions and the fourth order.

In general this has no point in common with a plane w. But if w does

meet a plane of M3
4 we have on projection a surface / with a directrix

line R which is also a generator.

Since a prime through w and A now meets F in three variable generators
there are three generators of / which lie in a plane through R other than

R itself. Also through any point of R there passes one generator of / other

than R. Hence / is of the type IV (B). To generate/ we take a line and

a rational quartic in S which meet, and place them in (1, 1) correspondence
without a united point.

We may choose w to meet two planes of -M3
4

. Then the surface

/ has a directrix R which is at the same time a double generator.

Any plane through R contains two generators of / other than R, while

through any point of R there passes one generator other than R. Hence

/ is of the type V (B). To generate/ we take in S a rational quartic and
a line meeting it in two points, and place them in (1, 1) correspondence
without any united points.

Further, we may choose w to meet three planes of M3
4

. Then / has a

directrix R which is also a triple generator. Any plane through R contains

one other generator, while through any point of R there passes one other

generator. Hence / is of the type VII (B). To generate / we take in S
a rational quartic and one of its trisecants, placing them in (1, 1) corre-

spondence without any united points.
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SECTION III

QUINTIC RULED SURFACES WHICH ARE NOT
RATIONAL

Elliptic quintic ruled surfaces considered as curves on Q

151. Elliptic quintic curves on Q. The elliptic curve of the fifth order is

normal in [4]*. Also we can have on a quadric in [3] an elliptic quintic curve

meeting all the generators of one system in three points and all of the other

system in two points, the curve having a double point ; it is the intersection

of the quadric with a cubic surface passing through one of its generators and

touching it in a point. Similarly we can have an elliptic quintic curve lying

on a quadric cone
;
the curve has a double point and passes through the

vertex, meeting every generator of the cone in two points other than the

vertex.

We can thus write down the following types of elliptic quintic curves

which lie on O, numbering them consecutively with the types of rational

quintic curves.

VIII. The normal elliptic quintic curve C lying in a [4] which does not

touch i.

IX. C lies in a tangent prime T touching Q in a point but does not

pass through 0.

(A) C meets every plane w through in three points and every

plane p through in two points, a chord of C passing through 0.

(B) C meets every plane w through in two points and every plane

p through O in three points, a chord of C passing through 0.

X. C lies in the tangent prime T touching fi in a point and passes

through 0, meeting every plane of fi in two points other than 0.

XI. C lies on the quadric Q in which Q is met by a space 83 through
which pass two tangent primes. C has a double point, meeting all the

generators of one system of Q in three points and all of the other system
in two points.

XII. C lies on the quadric cone in which Q is met by a space S3 which

itself touches Q in a point V. C has a double point, passes through V, and

meets every generator of the cone in two points other than V.

152. The general type of surface. Suppose that we have a normal

elliptic quintic G in [4] . The projection of G from any line on to a plane
is a quintic curve with five double points, so that any line is met by five

chords of C. Hence the chords of C form a locus F3
5 of three dimensions

and the fifth order.

* 8.
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Hence if C belongs to the type VIII any plane of ii meets the [4] con-

taining C in a line which is met by five chords of C. Hence we have a

ruled surface in [3] whose double curve is of the fifth order and whose

bitangent developable is of the fifth class.

If C is projected on to a plane from a line which meets it we obtain

a quartic with two double points, so that the line is met by two chords

other than those passing through its intersection with C. Hence C is triple

on F3
5

. If G is projected from one of its chords on to a plane we obtain an

elliptic cubic without a double point; thus there will not be any double

surface on F3
5

.

The intersection of Q with F3
5 is a surface -P2

10 on which C is a triple

curve ; this is the ruled surface formed by the chords of C which lie on Q,
three such chords passing through any point of C. The section of this

ruled surface by a solid is a curve of order 10 with five triple points;

the curve lying on a quadric and meeting every generator in five points.

Projecting from a point of this quadric on to a plane we obtain a curve

of order 10 with five triple points and two quintuple points which is

therefore of genus
36 - 15 - 20 = 1.

But this curve is representative of the double curve and bitangent

developable of the surface in [3]; hence the double curve is an elliptic

quintic curve, while the planes of the bitangent developable form an

elliptic family.
If we take an elliptic quintic curve in ordinary space then, on pro-

jecting it from a point of itself on to a plane, we obtain a quartic with two
double points ;

hence there are two trisecants of the curve passing through

any point of it, assuming that the curve itself has not a double point.

The surface is, in fact, generated by the trisecants of an elliptic quintic

curve without a double point*.

153. Suppose now that C belongs to the type IX (A). The point

represents a line R which is a directrix of the ruled surface.

An arbitrary plane p meets T in a line which is met by five chords of

G. The plane w through this line joins it to and contains three points
and therefore three chords of C. There are two other chords meeting the

line. Hence the double curve of the corresponding ruled surface consists

of the line R counted three times and a conic. R and the conic intersect,

their point of intersection being represented on fi by the to-plane through
the chord of C which passes through 0.

An arbitrary plane w meets T in a line, and the plane p through this

line contains two points and therefore one chord of C. Four other chords

* See the reference to Zeuthen in 89.
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of meet the line. Hence the bitangent developable consists of the planes

throughRand a developable of class four. There is a plane of this developable

passing through R\ it is represented on ii by the p-plane which contains

the chord of C passing through 0.

154. The ruled surface formed by the chords of C which lie on 1 must

clearly break up into two parts; one will consist of the chords joined to

by p-planes and the other of the chords joined to by tu-planes.

The chords of C which lie in p-planes join the pairs of an ordinary
rational involution on C\ hence they form a cubic ruled surface*. The

plane p which passes through the directrix of this surface represents the

plane of the double conic. Then the chords of C which lie in tu-planes

must form a ruled surface of order seven with C for a double curve.

We now take the section of this composite ruled surface by a solid

lying in T\ the solid meets Q in a quadric, and we have on this quadric
a cubic curve meeting every generator of one system in two points and every

generator of the other system in one point, together with a septimic curve

meeting every generator of the first system in three points and every

generator of the other system in four points. This septimic has five double

points through which the cubic passes. The cubic is rational but the septimic
is elliptic, for on projecting it from a point of the quadric on to a plane we
obtain a plane curve of order seven with one quadruple point, one triple

point and five double points, and therefore of genus

15 -6-3-5=1.
Two points of C which lie in a p-plane through represent two

generators of the ruled surface whose plane passes through R and whose

point of intersection lies on the double conic ; the conic is a rational curve

and the pencil of planes through R is a rational family. But R regarded
as a triple line must be considered an elliptic curve, while the planes of the

developable of the fourth class form an elliptic family.

If we apply a general result for the number of intersections of two curves

lying on the same quadricf we find that the cubic and septimic intersect

in eleven points; ten of these are accounted for by the five double points

on the septimic, the other arises from the chord of G passing through 0.

155. If G is of the type IX (B) we have a ruled surface with a directrix

line R
; through every point of R there pass two generators, while every

plane through R contains three generators. The double curve consists of

* See the footnote to 19.

f If there are two curves on a quadric of which one meets all generators of one

system in x points and all of the other system in y points, while for the second curve
the corresponding numbers are x' and y', the number of intersections of the two
curves is xy' + x'y.
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the line R and an elliptic quartic curve which meets B\ the bitangent

developable consists of the planes through .R counted three times together
with the tangent planes of a quadric cone, one tangent plane of this cone

passing through R.

This surface can be generated by taking an elliptic quartic curve and a

line R meeting it in a point ;
the generators of the surface are those chords

of the curve which meet JR.

156. Suppose now that C is of the type X. Then the ruled surface has

a directrix line R which is itself a generator ; through each point of R there

pass two generators other than JR, while each plane through R contains

two generators other than R.

Any plane of Q meets T in a line and the plane of the opposite system

through this line joins it to 0; this contains three points and therefore

three chords of (7, so that two other chojds will meet the line. Hence the

double curve consists of R counted three times and a conic, while the

bitangent developable will consist of the planes through jR counted three

times together with the tangent planes of a quadric cone. The conic will

meet R and a tangent plane of the cone will pass through R.

The ruled surface formed by the chords of C which lie on Q here breaks

up into two cubic ruled surfaces and the elliptic quartic cone projecting
C from O.

157. Now let C be of the type XI. There are two tangent primes
of Q, through S3 ,

which touch it in points O and O'. These represent
two lines jR and R' which are both directrices of the ruled surface. C has

a double point P which represents a double generator G.

Suppose that the generators of Q which are trisecants of C lie in the

tu-planes through O and the p-planes through 0'. Then the generators of the

other system will lie in the /o-planes through and the ro-planes through 0'.

Through any point of R there pass three generators of the surface which
lie in a plane through R'

; any plane through R' contains three generators

meeting in a point of R. Any plane through R contains two generators

meeting in a point of R' 9 while through any point of R' there pass two

generators lying in a plane through R.

Any plane of 1 meets S3 in a point of Q. C has five apparent double

points, but the five chords which can be drawn from a point of Q consist

of the trisecant generator through the point counted three times, the

other generator through the point, and the line to the double point.
The double curve of the ruled surface consists of R' and O together

with R counted three times; the bitangent developable consists of the

planes through R and together with those through R' counted three

times.
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158. Finally, suppose that C is of the type XII. Then the ruled surface

has a directrix E which is itself a generator; through any point of R there

pass two generators other than R which lie in a plane with R ; any plane

through R contains two generators which intersect in a point of R.

C has five apparent double points. But if G is projected from a point

of the cone on to a plane we obtain an elliptic quintic with a double

point, and a triple point at which two branches touch. Hence the five

chords of C which pass through a point of the cone consist of the line to

the double point P, and the generator counted four times.

The double curve of the ruled surface thus consists of the double

generator G, together with the directrix R counted four times
;
the bitangent

developable consists of the planes through (?, and the planes through R
counted four times.

A plane section of the surface is an elliptic quintic curve with a double

point on G and a triple point, at which two branches touch, on R.

159. We have now obtained six different types of elliptic quintic ruled

surfaces in [3]; these are exhibited in tabular form on p. 305.

Elliptic quintic ruled surfaces in [3] considered as projections of

normal surfaces in higher space

160. A ruled surface of the fifth order which belongs to a space [6]

is rational, its prime sections being rational normal quintic curves.

Suppose now that we have a ruled surface of the fifth order belonging
to a space [5]. If the surface is elliptic a prime through one of its

generators meets it again in an elliptic quartic curve, unless the surface

is a cone. The elliptic quartic curve lies in a [3]; through this [3]

there passes a pencil of primes. The surface must be contained in one

of these primes, since otherwise each prime of the pencil would contain

a generator of the surface, which would then be rational*. Hence an

elliptic quintic ruled surface which is not a cone belongs to a space of

dimension 3 or 4.

Suppose now that we have an elliptic quintic ruled surface in [3]; a

quadric which contains one of its generators g will meet it again in a curve

G9 of order 9. This curve meets each generator of the surface in twojaoints,
and those two points where it meets g are points of contact of the quadric
and the ruled surface. The quadric can be chosen so that it does not touch

the ruled surface elsewhere, so that the only double points of Cg will be

on the double curve of the ruled surface. Hencef (79 will be of genus 6.

* The generators would be in (1, 1) correspondence with the primes of a pencil
and therefore with the points of a line,

t 17.
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Now a curve C9 of genus 5 in [3] is the projection* of a normal curve

of order 9 and genus 5 in [4]. The generators of the ruled surface in [3]

join pairs of points of an elliptic involution on <79
5

;
these are the

projections of the joins of pairs of points of an elliptic involution on the

normal curve, and these joins are generators of an elliptic ruled surface in [4] .

Since we have on this ruled surface a curve of order 9 and genus 5 meeting
each generator in two points the surface must be of order f 5 ;

the elliptic

quintic ruled surface in [3] is then the projection of this elliptic quintic
ruled surface in [4] . Hence we have the result : the elliptic quintic ruled

surface is normal in [4] ;
and any elliptic quintic ruled surface in [3] can be

obtained as the projection of a normal surface in [4] .

We now consider the normal elliptic quintic ruled surfaces F of [4].

We find that there are two types of surface, on one of which no two

generators intersect, while on the other the generators intersect each other

in pairs. By projection we obtain from the first surface two of the types
of elliptic quintic ruled surfaces which we have just obtained in [3]; the

other four types of surfaces in [3] are obtained by projection from the normal

surface with a double line.

161. Suppose then that we have, in [4] ,
an elliptic quintic ruled surface

F, of which no two generators lie in a plane. The section of F by a solid

will be a direqArix (i.e. a curve meeting each generator of the surface in

one point) together with, perhaps, a certain number of generators. But
since the directrix must be an elliptic curve it cannot be a line or a conic,

so that no three generators of F can lie in the same solid.

x Any two generators of F determine a solid which must meet F further

in a plafiie cubic curve without a double point ;
we have oo 2 solids determined

by the pairs of generators of F, while through the plane of any cubic curve

on F there pass oo 1 solids each meeting F again in two generators. We
have therefore oo 1 cubic directrices on F\ these will be the directrices of

minimum order and there will be a finite number of them passing through

any point of F.

Every cubic curve lies in a solid with any fixed generator g of F\ to

obtain then the cubic curves passing through any point P of F we have

to take those solids which contain the plane gP and meet F in another

generator. The number of such solids is clearly the number of remaining
intersections of the plane gP with F. Now any plane a through g meets

F in three points not on g ; for a solid through a meets F again in an

elliptic quartic curve which meets a in four points, one of these four points
is on g and the other three give isolated intersections of a with F. Hence
the plane gP meets F in two further points, so that through P there pass
two of the cubic curves.

* 8. f By the formula of 17.

9-2
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We have then the following result : the normal elliptic quintic ruled surface

F without double points has, as directrices of minimum order, oo1
plane

elliptic cubic curves; through each point of F there pass two of these curves.

Any two of the cubic curves are put into (1,1) correspondence by the

generators of F; this correspondence must have a united point*, so that

any two of the cubic curves intersect. We notice that, in the (1,1) corre-

spondence between any two of the cubic curves, three collinear points of

one curve do not correspond to three collinear points of the other
;
for if

they did we should have three generators of F lying in the same solid.

The planes of the cubic curves form a locus W3 of three dimensions.

The section of this locus by a solid consists of the trisecants of the elliptic

quintic curve in which the solid meets F, and is therefore an elliptic quintic

ruled surface f- Hence Wz is a locus W3
5 of the fifth order. It is elliptic

when considered as a family of oo 1
planes; the planes of W3

5 are in (1, 1)

correspondence with the generators of F, since, if any cubic curve of F is

taken, there is one plane of TF3
5
passing through each point of it. The point

of intersection of two planes of W is the intersection of the two cubic

curves which they contain and therefore lies on F
;
F is a double surface

on TF3
5

.

162. Now project F from a point on to a [3] 2. The lines joining

to the points of F meet S in the points of an elliptic quintic ruled surface

/, while the planes joining to the generators of F meet S in the generators

of/.
A solid through meets F in an elliptic quintic curve; this has five

apparent double points, or five of its chords pass through 0. Hence the

double curve of / is of the fifth order, a plane section of / being an elliptic

quintic curve with five double points.

The class of the bitangent developable of / is the number of solids

which contain a given line through and also two generators of F. Siich

a solid meets F further in a cubic curve, whose plane must then meet the

line through 0. Hence the class of the bitangent developable of / is equal
to the order of TT3

6
;
we have a bitangent developable of the fifth class.

We have a surface in [3] of the type VIII.

Since F is generated by two elliptic cubic curves in (1, 1) correspondence
with a united point, / is also generated by two elliptic cubic curves (whose

planes both lie in S) in (1, 1) correspondence with a united point.

163. This surface / is the most general type of elliptic quintic ruled

surface in [3] and has been obtained by projecting F from a point of

general position in [4] . But suppose now that for is taken a point of JT3
6

.

* 19. t 152.
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Then the plane w of TT3
5 in which lies meets S in a line R which is a

directrix of/. Since any line of w passing through meets F in three points

there are three generators of / passing through each point of R, and, since

any solid through w meets F in two generators, there are two generators

of / lying in any plane through R. Hence we have a surface / of the type
IX (A).

We can generate F by establishing a (1, 1) correspondence between the

cubic curve in w and another cubic directrix, there being a united point.

Hence / is generated by means of a (1, 3) correspondence, with a united

point, between a line R and an elliptic cubic curve.

These two types of surfaces are the only ones which can be obtained

by projection from the normal surface F which we have been considering.

164. We suppose now that we have, in [4], a normal elliptic quintic

ruled surface F, two of whose generators jjitersect. A solid containing the

plane of these two generators meets F further in an elliptic cubic curve ;

we thus obtain oo 1 directrix cubic curves. Now the plane of any one of

these cubic curves F meets the plane of the two intersecting generators in

a line; this line meets F in three points, one on each of the generators.

Thus there is a point X in which the plane of the two generators meets F
and which does not lie on either of tKem. Then there is a solid containing
the plane of the two generators and also the generator through X\ the

residual intersection with F will be a directrix curve of order 2, and, since

the surface is elliptic, this will be a double line A. Hence, if there are two

generators of F which intersect, all the generators of F intersect one

another in pairs, and the locus of the points of intersection is a line A.

The solid which we have just considered, containing a pair of inter-

secting generators and the generator through X, meets F in these three

generators together with A
;
hence the point X is the only point of F which

lies in the plane of the two intersecting generators and not on either of

the generators themselves. But each of the oo 1 directrix cubics of F meets

this plane in a point which does not lie on either generator ;
hence all the

cubic curves pass through X. And, since the same argument may be

applied to any pair of intersecting generators, the plane of every pair of

intersecting generators passes through X.

We have then, in [4], a normal elliptic quintic ruled surface F with a

double line A; this surface contains oo 1
plane elliptic cubic curves all passing

through the same point X, while through a general point ofF there passes one

of the cubic curves.

The surface is generated by a line A and an elliptic cubic curve in (1, 2)

correspondence .

We may of course also generate the surface by means of a (1, 1) corre-

spondence between two of its directrix cubics, X being a united point.
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Now if three collinear points are taken on one of the cubics the three

generators all meet A and therefore lie in the same solid; they therefore

meet any other one of the directrix cubics in three collinear points, so that

the correspondence between any two of the cubic curves is part of a pro-

jectivity between their planes. This kind of (1, 1) correspondence between

two elliptic cubics will be called special. This explains clearly the difference

between the two types of normal surface F. If we take, in [4], two elliptic

cubic curves with an intersection X and place them in (1, 1) correspondence,

then the lines joining pairs of corresponding points generate an elliptic

quintic ruled surface F. In general, F is of the former type and has no

double point, but if the correspondence is special the surface is of the type
which we are now considering and has a double line A. The pairs of inter-

secting generators meet either of the cubic curves in pairs of points collinear

with X.

The plane containing any cujpic curve of F meets the plane containing

any pair of intersecting generators in a line through X ; the planes con-

taining two cubic curves do not meet, except in X, and the planes con-

taining two pairs of intersecting generators do not meet, except in X.

Hence we have the two systems of planes of a quadric point-cone with

vertex X. There is a generator through X meeting A, these forming to-

gether a degenerate cubic curve of F
;
the plane TTO containing them is met

in a line throughX by any plane containing a pair of intersecting generators.

The planes joining A to the generators of F form an elliptic line-cone;

this cone is of the third order, a prime section being the cubic cone of lines

projecting an elliptic quintic curve from a double point. The plane TTO

belongs to this cone ;
in fact the plane TTO and the surface F form together the

complete intersection of this cubic line-cone with the quadric point-cone.

165. Let us now project F from a .point 0, of general position in [4],

on to a solid 2. The plane OX meets S in a line R which is a directrix of

the projected surface /; through each point of R there pass two generators

of/. Also, since any solid through the plane OX meets F in three generators,

any plane through R contains three generators of /. Thus / is of the type
IX (B).

To generate / we take, in S, a line R and an elliptic cubic, and place
them in (1, 2) correspondence.

166. Now let us specialise the position of 0, so that it lies on the cubic

line-cone containing F. Then lies in a plane containing A and a generator,
so that this plane meets S in a line R which is a directrix and also a

generator of/. Through any point of R there pass two generators of / other

than R itself. Any solid through O and A meets F in three generators, one

of which is the fixed generator lying in the plane OX. Hence any plane
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through R contains two generators of F other than R itself. Thus / is of

the type X.

To generate/we take a lineR and an elliptic cubic curve ; R and the cubic

intersect and we place them in (1, 2) correspondence without a united point.

Now let us take to lie on the quadric point-cone containing F ;
then

it lies in a plane -n containing a directrix cubic of F and also in a plane TT'

containing a pair of intersecting generators of F.

The projected surface / will have two directrices ; R, the intersection of

2 with the plane joining to the double line, and R', the intersection of

S with TT. We have also a double generator, the intersection of S with TT'.

A prime through the plane joining to the double line meets TT in a

line passing through and F in three generators which meet this line.

Thus a plane through R contains three generators of / which meet in a

point of R'. Also a prime through TT meets the double line in a point and

contains the two generators of F which intersect there. Thus a plane

through R' contains two generators of / which meet in a point of R.

This surface / is of the type XI. It can be generated by means of a

(2, 3) correspondence between R' and JB, but this is not the most general

(2, 3) correspondence between two lines; it must be specialised to give the

double generator.

Now let us choose in the plane TTO . The plane TTO meets S in a line R
which is a directrix and also a generator of /. Also the line OX meets the

double line of F, and the plane of the two generators of F intersecting
in this point passes through OX. Hence / has a double generator.

Through any point of the double line of F there pass two generators ;

and the plane of these two generators, which passes through X, meets TTO

in a line. Hence through any point of R there pass two generators of /,

other than R which is itself a generator, and the plane of these two generators
contains R. This surface / is of the type XII.

To generate this last type of surface we take a line and an elliptic

cubic which have a point of intersection and place them in (1,2) corre-

spondence without a united point. But the two points of the cubic curve

which correspond to a point of the line must be collinear with the point
in which the line meets the curve. The double generator passes through
this point and lies in the plane of the cubic.

The quintic ruled surface of genus 2

167. If we have a quintic ruled surface of genus 2 in a space [3], its

generators will be represented by the points of a quintic curve C of genus 2

lying on the quadric fi in [5] . Now a quintic curve of genus 2 is necessarily
contained in a space $3*, so that we have two possibilities.

* 8.
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XIII. C lies on the quadric Q in which i is met by a space S3 through
which pass two tangent primes. G meets every generator of Q of one system
in three points and every generator of the other system in two points.

XIV. C lies on a quadric cone in which Q is met by an $3 which touches

it in a point F. C passes through V and meets every generator of the

cone in two points other than F.

If there are two tangent primes through S3 touching Q in and 0'

then these two points represent lines R and R' of the original space [3]

which are both directrices of the ruled surface. Each generator of Q is the

intersection of a plane of (I through O with a plane of the opposite system

through 0'. Suppose that the generators of Q which are trisecants of C
lie in the nj-planes through and the p-planes through 0'\ the other

generators will lie in the ro-planes through 0' and the p-planes through 0.

Through every point of R there pass three generators lying in a plane

through R', while through any pqjnt of jR' there pass two generators lying

in a plane through R.

The curve C has four apparent double points, four of its chords passing

through any point of S3 . But if this point lies on Q three of the chords

coalesce in the trisecant generator through the point, C projecting into

a plane quintic curve with a triple point and a double point. The double

curve of the ruled surface consists of the line R' together with the line R
counted three times.

Similarly the bitangent developable consists of the planes through R'

together with those through .R counted three times.

This is the surface generated by the most general (2, 3) correspondence
between two lines R and R'.

If $3 touches ii in a point F then this represents a line R which is a

directrix and also a generator of the ruled surface. Through each generator
on the cone in which S3 meets fi there passes a plane of each system of },

and the two planes lie in the tangent prime of Q at F. Hence through any
point of R there pass two generators of the ruled surface which lie in a

plane with R.

The curve C has four apparent double points, but the four chords of

C which pass through any point of the cone all coincide with the generator

through the point ; the projection of the curve from this point on to a plane
of $3 is a quintic curve with a triple point at which two of the branches

touch each other.

The double curve of the ruled surface is the line R counted four times,

while the bitangent developable consists of the planes through R counted

four times.

168. Since a quintic curve of genus 2 is necessarily contained in [3]

a quintic ruled surface whose prime sections are of genus 2 is necessarily
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contained in [4]. But those surfaces belonging to [4] are cones*, so that

the surface is normal in [3] and the question of projection from higher

space does not arise.

The surface cannot contain a directrix line which is not a multiple line,

nor a conic, nor a cubic.

Consider the surface with two directrices R and R'. A plane through
a generator meets the surface* again in a quartic curve with one double

point, this double point being on R. The quartic meets the generator again
on R' and also in the point of contact of the plane with the surface. We
thus obtain oo 2

plane quartic curves of genus 2 on the surface.

Through two general points of the surface there pass three of these

curves, for the line joining the two points meets the surface again in three

further points, and there are planes through the first two points and

the generator through any one of these last three points. Two of the

quartics intersect in three points on Jhe line of intersection of their

planes.

169. We can generate the surface by means of a (1, 2) correspondence
between a line R' and a plane quartic with one double point P. The

quartic must pass through P', the point in which R' meets its plane, and
P' must be a united point for the correspondence.

The points of R' will give rise to the pairs of the gj- on the curve, and

these are collinear with Pf. The points of the range on R' are related

projectively to the rays of the pencil through P ;
the point P' of the range

corresponding to the ray PP' of the pencil. The planes joining the corre-

sponding elements will therefore all pass through a line R which passes

through P%. Through any point of R' there pass two generators of

the surface which lie in a plane through JR, while any plane through R'

contains three generators meeting in a point of jR. The line PP' is a

generator.
To obtain the surface with one directrix we have only to make P and

P' coincide. We take a plane quartic with one double point P and
a line R passing through P; we then place the line and curve in (1, 2)

correspondence, P being one of the two points on the quartic which corre-

* If the surface were not a cone a [3] through a generator would meet it further

in a quartic curve of genus 2. This is a plane curve, and we have an argument similar

to that of 160.

t There can only exist one g2
l on a curve of genus 2 ; it is the canonical series of

the curve, and for a plane quartic with one double point P it is cut out by the lines

through P.

t If the point P' did not correspond to the ray PP' then the planes joining

corresponding elements would touch a quadric cone.
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spond to P regarded as a point of the line. This is at once secured by
referring the range of points on E to the pencil of lines through P, so that

the point P of the range corresponds to one of the tangents of the curve

at P. The other tangent of the curve at P will correspond to some other

point of E, and the line E is a generator as well as a directrix. Through any

point of E there pass two generators (other than E itself) which lie in a

plane through E. The generator of the surface which lies in the plane of

the quartic curve is one of the tangents at the double point.



CHAPTER IV

SEXTIC RULED SURFACES

SECTION I

RATIONAL SEXTIC RULED SURFACES

170. We shall in this chapter enumerate completely the different kinds

of sextic ruled surfaces in [3] . So far as is known, no serious attempt has

been made to solve this problem before, but if we employ the two powerful
methods which we have already used in classifying the quintic ruled surfaces

it should be possible to arrive at a solution.

In the first place we regard the generators of the ruled surface as the

points of a sextic curve on a quadric Q, i*i [5] ;
in the second place we regard

the ruled surface as the projection of a normal ruled surface in higher

space. We have up to the present pursued these two lines of investigation

separately ; we shall also pursue them separately for the ruled surfaces of

the sixth order which are not rational, but since the ruled surfaces of the

sixth order which are rational are so numerous we shall for these surfaces

pursue the two lines of investigation concurrently, all the information

concerning one particular type of surface being then collected together.

The rational sextic curves which lie on quadrics

171. All rational sextic curves can be obtained by projection from

the normal curve in [6] . As we are only considering curves which lie on

a quadric Q in [5] this normal curve does not enter directly into our work,
but we can always resort to it in order to obtain properties of the actual

curves that we are using.

We then divide the rational sextic curves C on Q into eight classes :

I. C is contained in [5] .

II. C is contained in a [4] which does not touch Q.

III. C lies in a tangent prime T of 1 but does not pass through 0,

the point of contact of ii and I7
.

IV. C lies in T and passes through 0.

V. G lies in T and has a double point at O.

VI. C lies in T and has a triple point at 0.

VII. C lies in a [3] meeting Q in an ordinary quadric surface.

VIII. C lies in a [3] meeting Q in a quadric cone.

We now give a more complete classification of these curves C as follows :

I. (A) G is contained in [5] and has no double point.

(B) G is contained in [5] and has a double point.
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II. (A) G is contained in [4] and has no singularity.

(B) C is contained in [4] and has a double point.

(C) C is contained in [4] and has two double points.

(D) C is contained in [4] and has a triple point.

III. (A) C is

(B) C is

(C) C is t34p2> three chords of C passing through O.

(D) C is t02 /o4 , three chords of G passing through O.

(E) C is tu4 />2 with a double point, two chords of C passing through 0.

(F) G is tu2p4 with a double point, two chords of G passing through 0.

(G) O is tu4 />2 with two double points, a chord of C passing through 0.

(H) C is w2pi with two double points, a chord of C passing through 0.

(I) C is w3p3 , four chords of C passing through 0.

(J) C is ta3p3 with a double point, three chords of C passing

through 0.

(K) G is G73 />3 with two double points, two chords of C passing

through 0.

(L) C is w3p3 with a triple point, a chord of C passing through O.

TV. (A) Ci

(B) (7 is

(C) (7 is Ow3p2 ,
two trisecants of (7 passing through O.

(D) G is Ow2p3 ,
two trisecants of C passing through 0.

(E) C is Ow3p2 with a double point, a trisecant of C passing through 0.

(F) C is Ow2p3 with a double point, a trisecant of G passing through O.

(G) G is Ow3p2 with two double points.

(H) (7 is Ow2p3 with two double points.

V. (A) CisO2w3pl .

(B) Gis02w1p3 .

(C) (7 is 2t&2 />2 ;
there being a line through meeting G in two

further points.

(D) C is 2w2p2 with another double point besides 0.

VI. (A) CisO*w2pl .

(B) CisO*wlp2 .

VII. (A) (7 is the intersection of a quadric and a quintic surface passing

through four generators of the same system; it meets all

generators of this system in five points and all of the other

system in one point.

(B) C is the intersection of a quadric with a quartic surface touching
it in three points and containing two generators of the same

* This notation is self-explanatory: "(7 is W&PI" means "C meets every plane
m of O through in five points and every plane p of O through in one point.

"

Similarly, in V (D), "C is O2^/^" means "(7 has a double point at and meets

every plane of 11 through in two points other than O."
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system; it meets all generators of this system in four points

and all of the other system in two points, having three double

points.

(C) C is the intersection of a quadric with a cubic surface touching
it in four points; it meets every generator of the quadric in

three points and has four double points.

VIII. (A) C is the intersection of a quadric cone with a cubic surface

having a node at the vertex of the cone
; it has a quadruple

point at the vertex and meets each generator of the cone in one

point other than the vertex.

(B) C is the intersection of a quadric cone with a cubic surface

passing through the vertex of the cone and touching the cone

three times ;
it has a double point at the vertex and three other

double points, meeting each generator of the cone in two points
other than the vertex. *

(C) C is the intersection of a quadric cone with a cubic surface

touching it in four points. It meets each generator of the cone

in three points and has four double points.

We have thus divided the rational sextic curves C which He on a quadric
} in [5] into thirty-eight classes, and these will form a basis for the

classification of the rational sextic ruled surfaces in [3] .

172. All these rational sextic curves can of course be obtained by projection
from the rational normal sextic in [6] . To obtain, for example, the four classes

in II we project the normal curve (a) from an arbitrary line in [6] , (b) from a line

meeting one of its chords, (c) from a line meeting two of its chords, and (d) from
a line in one of its trisecant planes.

A prime of [6] meets the normal curve in six points ;
let us take three chords

of the curve joining three pairs of these points. Any other chord of the curve
meets the prime in a point through which there passes a plane meeting the first

three chords*. Projecting from a line in this plane we obtain in [4] a rational

sextic with four concurrent chords. This proves the existence of the type III (I).

Similarly, all the other curves C can be obtained by suitable projections*)* .

Surfaces without either a directrix line or a multiple generator

173. Suppose that we have on 1 a curve C of the type I (A). The chords

of C form a three-dimensional locus, and, since the projection of C
from a plane is a plane sextic with ten double points, there will be ten chords

of C meeting an arbitrary plane: Thus the chords of C form a locus M3
10

.

* Given three arbitrary lines in [5] there is just one plane through an arbitrary

point of [5] meeting the three lines. If O is the point and a, 6, c the lines the plane
is the intersection of the three [4]'s Obc, Oca, Oab.

t For example, to obtain the curve of IV (C) and IV (D) which has two tri-

secants intersecting in a point of itself, we take two chords of the normal curve and
a plane through a point of the curve meeting both these chords. Then projecting
from a line in this plane we have the curve in [4] as required. And so on for other

types.
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is a quadruple curve on M3
10

,
and there is also a double curve.

In particular a general plane of ii is met by ten chords of (7; hence

represents a rational sextic ruled surface in [3] whose double curve (710 is

of order 10 and whose bitangent developable E1Q is of class 10*.

Through any point of G there pass four chords which lie entirely

upon }; these chords form a ruled surface J^
20 of order 20, the inter-

section of ii and M3
10

. They set up on C a (4, 4) correspondence of

valency 2, so thatf there are twenty-four points of C for which two of the

four chords which lie on ft coincide. AlsoJ there are eight tangents of

G lying on }. If C' is a prime section of JK2
20 we have a correspondence

between G and C' for which

a = 2, a' = 4, p = 0, 77
= 24, ,'

= 8,

so that Cf/
is of genus 3. Hence the double curve is (710

3 of genus 3 and the

bitangent developable is Ew* of genus 3*.

There are eight trisecant planes of C which lie entirely on J||; these

are in fact four planes of each system. Hence (710
3 has four triple points

and E1Q
3 four triple planes. These latter are tritangent planes of the ruled

surface, each meeting it in three generators and a rational plane cubic.

Through each of the triple points of <710
3 there pass three lines

meeting (710
3 in two further points ; these are generators of the ruled surface.

This is the most general type of rational sextic ruled surface in [3] .

174. Consider now, in [7], the most general rational sextic ruled

surface F\ this surface contains oo 1 directrix cubic curves^}. It also contains

oo 3 directrix quartic curves; these can all be obtained by means of primes

through any two fixed generators^}. Taking a pencil of primes through the

two generators we obtain a pencil of quartic curves; these curves have

two common points the remaining intersections of F with the [5] which

is the base of the pencil of primes**.

We have a system of oo 3
primes through the solid determined by any

two fixed generators of F, and the different systems are projectively related

to one another when we make those primes which contain the same directrix

quartic of F correspond to one another. If we take three fixed pairs of

generators of F, the [4]'s which contain the directrix quartics are deter-

mined as the intersections of corresponding primes of three projectively
related triply infinite systems. A section by an arbitrary solid 8 gives
three projectivities in $; corresponding planes of these projectivities

meet, in general, in a point, so that through a general point of S, and
hence also through a general point of [7], there passes just one [4] which

contains a directrix quartic of F.

* 33. t 13. t 32.

II
35.

1| 45. ** 46.
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Further, the chords of F are determined as the intersections of three

corresponding [5]'s of the three projectively related systems. If we take

a pencil of primes belonging to one system then we have corresponding

pencils of primes belonging to the other two systems; the [5]'s which are

the bases of the pencils meet in a line which is a chord of F. The oo4 chords

of F are all given in this way. Hence the points of intersection of an

arbitrary solid S with chords of F are the points of concurrence of three

corresponding lines in three projectivities between the planes of S. Such

points lie on* a curve &6
3 of order 6 and genus 3.

Hence the chords of F form a locusM5
6 of five dimensions and the sixth

order; they meet an arbitrary solid S in a curve B-6
3 of genus 3.

Suppose that we consider one of the oo5 quintic curves of F\ it is

contained in a space S5 . Then no chord of F, which is not also a chord of

the quintic curve, can meet $5 except in a point of the quintic curve
;
for

we cannot have a prime containing the qu**itic curve and also two generators.
Hence the locus, of three dimensions, in which S5 meets the locus of five

dimensions formed by the chords of F, is simply the locus formed by the

chords of the quintic curve. Hence we again findf that the locus of chords

of F is of the sixth order, and meets an arbitrary solid in a curve of genus 3.

This argument can also be applied to tangents ofF
;
the four-dimensional

locus formed by the tangents of F meets S5 in the surface formed by the

tangents of the quintic curve. Hence the tangents of F form an M of

the eighth order; the section of this by an arbitrary [4] is a rational curve.

A directrix cubic A of F is determined by a prime through any three

fixed generators, so that the solids K containing the curves A are deter-

mined as the intersections of four corresponding primes belonging to four

projectively related pencils of primes. The four-dimensional locus formed

by the solids K meets an arbitrary [4] in a curve which is the locus of the

intersection of corresponding solids of four projectively related pencils of

solids, and this is a rational quartic curve J. Hence the solids K form a locus

M of the fourth order, and an arbitrary solid 8 will be met by four of

them.

The [4] containing any directrix quartic of F is the base of a doubly
infinite system of primes, each prime of the system containing two generators
of F. If any directrix cubic A is taken the directrix quartic will meet it in

one point ;
so that the primes of the doubly infinite system meet the solid

K containing A in the star of planes which projects the chords of A from
a fixed point of itself. Now the star of planes which projects the chords of

A from any point of itself is projectively related to the star of planes
which projects the chords of A from any other point of itself, planes of the

* Schur, Math. Ann. 18 (1881), 16.

t Cf. 95.

t Veronese, Math. Ann. 19 (1882), 219.



144 CHAPTER IV, 174

two stars corresponding when they contain the same chord of A. Hence

the system of primes containing any directrix quartic of F is projectively

related to the system of primes containing any other directrix quartic of

F, primes of the two systems corresponding when they contain the same

pair of generators of F.

Hence, taking any four fixed directrix quartics of F, we may say that

the solids K' containing the pairs of generators of F are determined as the

intersections of corresponding primes of four projectively related doubly
infinite systems. If we consider the section by an arbitrary [4] we
obtain four projectively related systems of solids, each system having a

line as base. These are known to generate, by means of the intersections of

corresponding solids, a sextic surface whose curve sections are of genus 3,

and which has ten lines on it*
;
there being ten sets of corresponding solids

which have a line in common instead of a point.

The solids K' thus form a lo^us M5
6 of five dimensions and the sixth

order; it is of course the same locus M as that formed by the chords

of F. Of the oo 2 solids K' there are ten which meet any given [4] in

lines.

Let us now project F from an arbitrary solid S, which does not meet

it, on to a [3] S ;
we obtain a surface /. The chords of F meet 8 in the

points of a curve &6
3

. A prime through 8 meets F in a rational normal

sextic curve, of which there are ten chords meeting 8 ;
hence those chords

of F which meet 8 meet F in the points of a curve C^ of order 20. Then,
on projection, <720 becomes the double curve <710

3 of /; (710
3 is of genus 3

since it is in (1, 1) correspondence with &6
3

.

There are eight tangents of F meeting 8, so that the (1,2) corre-

spondence between &6
3 and C& has eight branch points, and Zeuthen's

formula shews that On is a curve C^9 of genus 9. Since a [5] determined

by 8 and a generator of F meets F again in four points f the curve Cn*

must meet each generator of F in four points; it must therefore have

twelve double pointsj. These will lie three in each of four planes meeting
8 in lines, and the double curve (710

3 of / will thus have four triple points.

If we apply Zeuthen's formula to the (1, 4) correspondence between a

directrix curve of F and C^ we find that there are twenty-four generators
of F touching Cyf\ thus there must be twenty-four generators of/touching
its double curve.

The class of the bitangent developable of / is the number of primes
which contain a given [4] through 8 and also two generators of jP; it is

therefore the number of solids Kf which meet a given [4] through 8 in lines.

We have seen that this number is ten, so that the bitangent developable
of / must be of class 10. It is of genus 3, since its planes are in (1, 1)

* Veronese, Math. Ann. 19 (1882), 232. White, Proc. Camb. Phil. Soc. 21 (1923),
223. t 46. J 17.
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correspondence with the points of &6
3

;
we have then a bitangent develop-

able J710
8

. The number of tritangent planes of / is the number of primes

through S which contain three generators of F\ such a prime meets F
further in a directrix cubic A. Then the solid K containing A will meet

S, and we have already seen that there are four such solids K. Hence /has
four tritangent planes.

Since F is generated by a (1, 1) correspondence between two directrix

cubics, / is generated by taking two twisted cubics in S and placing them
in (1, 1) correspondence. We can take either or both of these cubics to

be a rational plane cubic instead of a twisted cubic.

Note 1. Algebraically: take two cubics in [7]; let the coordinates of the

points of one be (0
3

,

2
, 0, 1, 0, 0, 0, 0) and the coordinates of the points of the

other (0, 0, 0, 0,
3

,

2
, 0, 1). Then the general rational sextic ruled surface is

given in terms of the parameters A and by (0
3
,

2
, 0, 1, A03

, A02 , A0, A). Its

equations are >
.&Q */! A>2 "& *'& *e

#1 *2 *3 *5 *6 *7

and it has oo 1 directrix cubics A given by A = const. The oo 1 solids K containing

these cubics generate the M = = -? =
, while the chords of F generate

*4 *5 *6 *7
the M5

6

*0 *1 *4 *5

X^ X% XQ XQ

*2 *3 *6 *7

-0.

The equations of the solid K' determined by the generators =
X and

=
2 are

*0
-

01 + 2) *1 + #1 2*2
= *1

- (l + 2) #2

= *4
-

(01 + 2) *5 + 0102*6 = *5
-

(01 + 2) *6 + 0102*7 = <>>

and the equations of the tangent solid along the generator are

2x3 = Xt- 20x5 + 2#6
- x6

- 20#6 + d*x7 - 0.

Note 2. It is, of course, essential to our work that we should investigate all

the possible positions which the solid S may occupy in regard to F, and the

curve &6
3 in which S meets Jf5

6 will break up in many different ways. When we
have chosen S to occupy a certain position we shall state the orders and genera
of the component curves of&8

3
,
and also the number of their mutual intersections ;

we shall not give the proofs of these statements.

The way in which &6
3 can break up into separate curves can be seen by

making use of the properties of the cubic surface. When &6
3 is generated by

four projective stars of planes with vertices 1, 2, 3, 4 it lies on both the cubic

surfaces Fz and J^4 ,
where jP3 is the cubic surface generated by the stars 4, 1, 2

andF4 the cubic surface generated by the stars 1, 2, 3. Now, if two corresponding
lines of the stars 1 and 2 intersect, this intersection is on both F3 and F^ but is

not (in general) on &6
3

. Hence &6
3
is the residual intersection of two cubic surfaces

with a cubic curve in common.
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Suppose now that we represent one of the cubic surfaces, F3 say, in the usual

way upon a plane. There are six sets of corresponding planes of the stars 1, 2, 3

which meet in lines al9 az , 3 , 4 ,
a5 , 6 instead of only in points ;

these lines are

represented byfundamental points A lt A2 ,
A 3 , A^ A 5 ,

A 6 in the plane and form
one-half of a double-six on F3 . The cubic curve generated by the stars 1 and 2

has these six lines as chords, it is represented on the plane by a quintic with

nodes at the fundamental points A. Since the complete intersection of F3 with
another cubic surface is represented on the plane by a curve of order 9 with

triple points at the points A, the curve 6
3 must be represented by a quartic

curve through the points A. Hence, in order to find the possible ways in which
S-6

8 may break up, we have simply to consider how a plane quartic, with six

fixed points, may break up.

Suppose, for example, that J>6
3 breaks up into a line and a quintic curve.

The line may be one of the six lines a, or one of the six lines b belonging to the

other half of the double-six, or one of the fifteen lines c not belonging to the

double-six. If it is a line a we have in the plane a quartic with a double point
at a point A; hence, on J^3 ,

a curve -&5
2 with a as a chord. If it is a line b

(represented by a conic through hVe points A) we have in the plane a conic

through one of the points A ; hence, on F3 ,
a curve &6 with b as its quadrisecant.

If it is a line c (represented by a line joining two points ^4) we have in the plane a

cubic curve through four points A ; hence, on F39 a curve Og
1 with c for a trisecant.

And so on if #6
3 contains as part of itself a conic or cubic curve, or if it breaks

up into more than two parts.

175. If we consider a rational normal sextic in [6], and take any g2
l

on it, the chords joining the pairs of points form a rational quintic ruled

surface with a directrix conic F, F not meeting the curve. If we then

project from a point in the plane of F on to a [5] we obtain a rational

sextic (7, and a gj- giving chords of C which are generators of a rational

quintic ruled surface with a double line. There are in [5] oo 20
quadric

fourfolds; of these there are oo 7
containing C, and of these latter oo4

contain the quintic ruled surface. Let us take one of these last quadrics
to be H.

The generators of the quintic surface are projected from the double

line by planes forming a three-dimensional cubic line-cone; since it con-

tains the quintic surface its residual intersection with ti must be a plane.

Hence 1 contains a plane joining the double line to a generator of the

surface. Any general plane of Q of the same system as this meets the

surface in two points, while a plane of the opposite system meets the

surface in three points.

The chords of G which lie on Q form the quintic ruled surface together
with a ruled surface jR2

15
;
this latter meets planes of one system of ii in

eight points and planes of the other system in seven points every plane of

2 being met by ten chords of (7. C is a triple curve on JS2
15

.

The quintic ruled surface gives a (1, 1) correspondence on (7, while the

surface -Ba
15
gives a (3, 3) correspondence, both these correspondences being
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symmetrical. It follows, on using Brill's formula (cf. 14, 15), that R2
5

and jR2
15 have three common generators.

Of the eight tangents of G which lie on ii two belong to the quintic

ruled surface and the remaining six to J?2
15

- There are twelve points of G
at which two generators of J?2

15 coincide. Hence, if C' is a prime section

of J?2
15 we have, for the correspondence between G and C",

a = 2, a' = 3, p = 0, 7?
= 12, if

= 6,

so that C" is an elliptic curve.

Suppose, for definiteness, that the plane of Cl which contains the double

line and one of the generators of the quintic surface is a /o-plane. Then the

points of G represent the generators of a ruled surface in [3] whose double

curve is C2+ C8
l and bitangent developable E^+ E?

1
. The fact that

the two ruled surfaces on 1 have three common generators shews that

G2 and C8
l have three common points, while E3 and E^ have three common

planes.
*

Take any one of the four p-planes of fi which are trisecant to (7, meeting
G in P, Q, R say. Assume for the moment that no one of QR, RP, PQ is a

generator of the quintic surface. Then through each of P, Q, R there pass

generators of this surface which all meet the double line
;
and the plane PQR,

together with the p-plane through the double line, determines a [4] meeting
the quintic surface in the double line and four generators, which is im-

possible. Hence one of QR, RP, PQ must be a generator of the quintic

surface, and similarly for each of the other trisecant p-planes. Hence E7
l

has four double planes which are also planes of E3 ; the two developables

having three other planes in common.
Also it will be seen when this surface is obtained by projection that C2

passes through two double points of C^
1 and meets it in three further points ;

GQ
l has also two triple points.
We might, on the other hand, have taken the plane of Q which

contains the double line and a generator of the quintic ruled surface to be

a ta-plane. We should then have obtained in [3] a ruled surface with a

double curve C9 +O7
l and bitangent developable E^-\-E^. CJ* has four

double points through which C3 passes, the curves having three other

intersections. E^ has two double planes which are also planes of E29 the

two developables having three other planes in common ; Es
l has also two

triple planes.

176. On the normal surface F in [7] there are oo 3
quartics E. An in-

volution of pairs of generators of F gives rise to a g2
l on each of these

quartics, and thus to a cubic ruled surface through each of them. Let us

then choose S to pass through the directrix line A of a cubic ruled surface

formed by chords of one of these quartics E . There are two tangents of E
belonging to this cubic surface.
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A prime through S meets F in a rational normal sextic, ten of whose

chords meet S] but two of these chords are generators of the cubic ruled

surface. Hence the chords of F which meet S meet F in E and a curve

(716 meeting each generator of F in three points. E and (716 have ten

intersections*.

S meets M5
6 in A and an elliptic quintic b^

1 of which A is a trisecant.

Through the three intersections of A and ^5
X there pass chords of F which

are chords both of E and C16 ;
thus six of the intersections of <716 with E

are accounted for. Let A be another intersection of these two curves.

Through A there passes a chord AB of E meeting A and a chord AC of

(716 meeting &$
l

. Then the chord EG of F must also meet flg
1
, so that (716

passes through B and has a double point at C. There remains a further

pair of intersections of E and C16 ,
these are associated in the same way

with a double point on C16 . There are six tangents of (716 which meet 9-g
1

;

hence it is of genus 4. It must then have eight double points. Two of these

are already accounted for; the six others lie three in each of two planes
which meet S in lines.

Thus when we project from S on to 2 we obtain a ruled surface/ whose

double curve is C2+ CQ
l

; (72 being the projection of E and Cs
l the projection

of (716 . C8
l has three simple points and two double points on <72 , and has

also two triple points.

Since F can be generated by means of a (1, 1) correspondence between

E and a directrix cubic A with a united point, to generate / we take in

S a conic and a twisted cubic in (1, 2) correspondence with a united

point. The pairs of points of the cubic which correspond to the points of

the conic form a g2
l

,
so that their joins form a regulus; hence the planes of

the pairs of generators which intersect in the points of the conic will formf
a cubic developable E3 (since there is a united point). This is part of the

bitangent developable of /. The other part is an E7
l

;
it is formed by the

planes of pairs of generators which intersect in points of the double curve

177. A prime section of F is a rational normal sextic
;
an involution of

pairs of generators of F gives a g2
l on this sextic, and the chords joining

the pairs of this g2
l form a rational quintic ruled surface with a directrix

conic F, F not meeting the sextic. Choose then the solid AS to pass through
the plane of T.

A prime through S meets F in a rational normal sextic, ten of whose
chords meet S

; but three of these belong to the quintic ruled surface. Thus
the chords of F meeting 8 meet F in the prime section <76 and a curve (714

meeting each generator of F in three points. CQ and Cu meet in fourteen

points.
* Cf. the last footnote to 97. t 22 -
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S meets M6
6 in F and an elliptic quartic S^

1
having three intersections

with F. Through these three points pass chords of F which are chords both

of CQ and (714 ; this accounts for six intersections of (76 and (714 . The other

eight fall into four pairs, and with each pair is associated a double point
of (714 . Since Cu has six tangents which meet D^

1 it is of genus 4, and this

shews that it has exactly four double points.

On projection from S on to S we obtain a ruled surface / whose double

curve is Cf

3 4-C
r

7
1

; <73 is the projection of CB , while C7
l is the projection

of Cu . (73 passes through the four double points of C7
l and also meets it in

three other points.

Since F can be generated by a (1, 1) correspondence between (76 and
a directrix cubic A, there being three united points, / can be generated by
two twisted cubics in (1, 2) correspondence with three united points. The

pairs of points of the second cubic corresponding to the points of the first

form a gz
l and their joins form a regulusf hence the planes of the pairs of

generators which pass through the points of the first cubic are (because
of the united points) the tangent planes of a quadric cone E2 . This is

part of the bitangent developable of the surface
; the remaining part is an

178. On the rational normal sextic curve in [6] there are oo 2 involu-

tions 02
1

. Each of these gives rise to a quintic ruled surface with a directrix

conic
;
and these conigs lie in oo 2

planes. Let us suppose that two of these

planes intersect in a point not on either of their conies. Projecting from

such a point on to a [5] we obtain a rational sextic C and two quintic

ruled surfaces containing it, each with a double line. There is a quadric
1 containing these two ruled surfaces.

The chords of C which lie on 2 form two quintic ruled surfaces JS2
5 and

$2
5

,
and a ruled surface i?2

10 on which C is a double curve. jR2
5 and $2

5 have

one common generator; J?2
10 has two generators in common with each

of JZ2
5 an(i $2

5
- The prime sections of jR2

10 are rational curves.

For either of the quintic surfaces there is a plane of fi passing through
its double line and containing one of its generators.

First, suppose that both these planes are p-planes. Then we have in [3]

a ruled surface whose double curve is Cf

2+ Z>2+Cf

6 and bitangent de-

velopable E3 + F3 -f JS?4 . Each of the four p-planes of Q which is trisecant

to G must contain a generator of J?2
5 and a generator of S2

5
. Hence

there are four planes common to all the devel'opables U3 , F<f and jE74 ;
E3

Q

and JP3 have a further plane in common, while Ef has two further planes
in common with each of them. It will be seen that (72 passes through two
double points and two simple points of <76 , as also does D2 ;

<76 has four

double points, while (72 and Z)2 have one intersection.
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If, on the other hand, both the planes of i are sj-planes we have a

ruled surface in [3] whose double curve is C3
Q+D3 + C4 and bitangent

developable E2+ F2^EQ
Q

. There are four points common to all the curves

G3 , #3 and (74 ; <73 and D3 have one other intersection, while <74 meets

each of them in two further points. JS6 has four double planes ;
two of these

are also planes of E2 and the other two of F2 \
EB has two further planes

in common with E2 and two with F2 ,
while E2 and F2 have a common

plane.

But further : one of the planes of Q may be a />-plane, while the other

is a ay-plane. We then have in [3] a ruled surface whose double curve is

G2+C3 +Cd and bitangent developable E

179. Take two directrix quartics E and E' on the normal surface F in

[7]; they have two intersections. Through these intersections there pass
two generators of F\ let us take two involutions of generators which

both include this pair. Then we have two cubic ruled surfaces each with a

directrix line; one line A lies in the [4] containing E, while the other X' lies

in the [4] containing E'. Both A and A' meet the chord of F which joins

the intersections of E and E'', and we choose the involutions so that they
meet this chord in the same point*.

Take a solid S containing A and X
7 and project from S on to S. A

prime through S meets F in a rational normal sextic
;
there are ten chords

of this curve meeting S, including two chords of E and two chords of E'
;

thus the chords of F which meet S meet F in E, E' and a curve C12

meeting every generator in two points. C12 meets each of E and E' in

eight points.

8 meetsM5
6 in A, X' and a rational quartic &4 having A and A' as chords.

Through the intersections of A and #4 there pass lines which are chords

both of E and <7J2 ;
the other four intersections of E and G12 fall into two

pairs with each of which is associated a double point of G12 . We can thus

obtain four double points on <712 . There are four tangents of C12 meeting &4 ,

and the (1,2) correspondence between &4 and G12 shews that C12 is elliptic,

whereupon Segre's formula shews that it has exactly four double points.

Thus we obtain in S a ruled surface/ with a double curve C2+D2+ (76 .

C2 and D2 have one intersection ; <76 has four double points, two of which

are on C2 and the other two on D2 , while it has two simple intersections

with each of C2 and D2 .

Since F can be generated by placing E and E/
in (1, 1) correspondence

with two united points we can generate / by taking two conies C2 and Da

with one intersection, placing them in (2, 2) correspondence with a doubly
united point. The lines joining the pairs of points of one conic which corre-

spond to the points of the other touch a conic; hence the planes joining
* See the footnotes to 131.
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the points of either conic to the pairs of points on the other which corre-

spond to them form a developable of the third class which is part of

the bitangent developable of the surface. We thus have a bitangent

developable J53 + F3
Q + Ef.

180. Two chords of F determine a [3]; through this [3] there pass
oo 3

primes meeting F in rational normal sextics through four fixed points.

On any one of these curves we can regard the two chords as determining
an involution, we thus have a quintic ruled surface containing the chords.

We can choose the prime so that the directrix conic of the quintic surface

meets these chords in assigned points.

Now take a directrix quartic, three of its chords I, m, n and their

transversal, meeting them in L, M, N. We can regard I and m as deter-

mining an involution of pairs of generators on F and a quintic ruled surface

whose directrix conic F passes through L and M
; similarly, we have

another surface whose directrix conic F' passes through L and N, the two

surfaces having a common generator through L. Let 8 be the solid con-

taining the planes of F and F'.

A prime through 8 meets 1*
in a rational sextic curve, ten of whose

chords meet /S; of these ten chords three meet F and three meet F'. Those

chords of F which meet 8 meet F in two prime sections and a curve C8

meeting every generator in two points and each prime section in eight

points.

8 meets M6
6 in F, I" and a conic &2 meeting each of F and F' in two

points. There are four tangents of Gs meeting &2 ,
so that C8 is elliptic and

has no double points. The chords of F through the intersections of F and 2

are common chords of C8 and one of the prime sections
;
there are four other

intersections of C8 with this section to be accounted for. Similarly we
obtain four intersections of C8 with the other prime section. Also there are

four points common to the two prime sections other than the two on the

chord through L. These three sets of four points are associated with one

another
; they fall into four triads, each triad includes a point of each set

and projects into a single point of S.

On projection we have in S a ruled surface / whose double curve is

#3 +D3 + <74 ; there are four points common to all the curves (73 , D3 and

4; #3 and D3 have one further intersection, while <74 meets each of

them in two further points.

To generate this surface / we take two twisted cubics <73 and Z>3 with

five common points, placing them in (2, 2) correspondence with four

ordinary united points and one doubly united point. The joins of the

pairs of points of one cubic which correspond to the points of the other

generate a rational quartic ruled surface, so that the planes joining the

points of either cubic to the pairs of points of the other which correspond
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to them touch a quadric cone (because of the five united points). We
have a bitangent developable

181. Take now a prime section (76 of F\ an involution of pairs of

generators gives chords of CB
Q
forming a quintic ruled surface with a directrix

conic F. Take any point A of F
;
the chord of F through A meets it in two

points through which pass oo1 directrix quartics. Take one of these quartics

E and an involution of pairs of generators of F such that the resulting

cubic ruled surface formed by chords of E has its directrix line A passing

through A, the chord of (76 through A being common to this surface and
the quintic surface. Then choose S to be the solid containing A and F.

The chords of F which meet S meet F in E, (76 and a curve 1Q meeting

every generator of F in two points. S meets M in F, A and a twisted

cubic 9-3 which meets each of F and A in two points. There are four tangents
of <710 meeting S^ so that GIQ is elliptic and has consequently two double

points.

<710 meets E in six points and <76 in ten points ; four of the intersections

with E are accounted for by the chords of F through the points common
to &3 and A and four of the intersections with (76 by the chords of F through
the points common to &3 and F. Four further intersections with <76 are

associated in pairs with the two double points of (710 ; the two remaining
ones are associated with the two remaining intersections with E and with

the two intersections of E and CQ which do not lie on the chord through A.

Hence on projection we have in S a ruled surface / whose double curve

is C2+ C^+ G5
Q

. <76 has two double points which lie on <73 ;
it meets <73

in four further points through two of which C2 also passes, while C2 and (73

have one other intersection.

Since F is generated by a (1, 1) correspondence between (76 and E
with four united points, to generate/ we take in S a conic G2 and a twisted

cubic G3
Q with three intersections, placing them in (2, 2) correspondence

with two ordinary united points and one doubly united point. The joins

of the pairs of points of the conic which correspond to the points of the

cubic touch another conic; we thus obtain a quadric cone as part of the

bitangent developable. The points of the conic give pairs of points of the

cubic whose joins form a quartic ruled surface, and we thus obtain a

developable of the third class. Thus the bitangent developable of the

surface is E3 +E2+ E5 .

This surface is not strictly self-dual; the planes of the quadric cone

are not formed by the generators which intersect in the points of G2 but

by those which intersect in the points of <73 .

182. All the ruled surfaces in [3] so far obtained are such that their

generators are represented by the points of a curve C on 1 which belongs
to the type I (A). Let us now suppose that we have a curve C of the
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type II (A); since it lies in a [4] the generators of the corresponding
ruled surface in [3] belong to a linear complex. The chords of G form an
M3

10
, so that any plane of 2 meets the [4] containing C in a line which is

met by ten chords of C. It is shewn precisely as in 173 that the chords

of C lying on Q, form a ruled surface JK2
20 whose prime sections are of genus

3
; hence the ruled surface in [3] has a double curve (710

3 and a bitangent

developable JS?10
3

.

C has four trisecants*: these also lie on fi. Thus C^3 has four triple

points; through each of these points there pass three generators of the

surface, and these lie in a plane which is a triple plane of Ew*.

Since any surface whose generators belong to a linear complex is

necessarily self-dual there is no need to seek for the other types of surfaces

/ when C is of the type II (A).

183. Given a rational sextic C in [5] we can always make some of the

oo7
quadrics containing it contain also one of its quadrisecant planes. Then

the curve C represents a ruled surface in [3] for which either four generators

pass through a point or else four generators lie in a plane. The quadrisecant

plane of C counts for four among the trisecant planes of C which lie on

1
; we shall have this quadrisecant plane belonging to one system and four

trisecant planes belonging to the opposite system.
Take four points, one on each of four generators of the normal surface

F
9 and take S to meet the solid determined by these four points in a plane.

If we project from S we have in S a surface / with four concurrent

generators. The chords of F which meet S meet F in a curve C^ with triple

points at each of the four selected points, so that the surface has a double

curve C710
3 with a sextuple point. To generate / take a plane quartic with

a triple point and a twisted cubic passing through the triple point and

having one other intersection with the quartic; place them in (1, 1)

correspondence with this last intersection as a united point.

To obtain the surface with a quadritangent plane we must project the

normal surface with a directrix conic F. The chords of this surface also

form an M5
6

, meeting an arbitrary solid S in a curve &6
3

, while the tangents
form an M4

8
f. The quadritangent plane of the surface / is the intersection

* If we take a rational normal sextic in [6] there are four of its trisecant planes

meeting an arbitrary line. If, for instance, the curve is given by
Xti \ X-t

* Xn I 3?q I X A I XK I Xa sss I 1

the trisecant planes form the quartic primal

#2 X3 #4 X5

f If we set up a correspondence between the points B and C of F, the points
B and C corresponding when the [5] containing S and the tangent of a given directrix
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of S with the [6] ST ;
to generate / we take a conic and a rational skew

quartic in (1, 1) correspondence.
Since no two quadrisecant planes of a rational sextic in [5] can intersect

we cannot have two quadrisecant planes of the same system on Q. But

it is possible to have two quadrisecant planes on fit of different systems ;

then there will be no trisecant planes of C on 12
; the ruled surface in [3]

has four concurrent generators and four coplanar generators. This is also

obtained by projection from the normal surface with a directrix conic F.

Surfaces with a multiple generator but without a directrix line

184. Suppose now that we have a curve C on Q of the type I (B) ;
G lies in

[5] and has a double point P. Correspondingly we shall have in [3] a rational

sextic ruled surface with a double generator G. The chords of C form an

M3
9 on which G is a quadruple ourve and P a sextuple point ;

the quartic

cone formed by joining P to the other points pf C is a double surface on

M. Any plane of ii is met by nine fiords of C\ hence, apart from the

double generator, the surface in [3] has a double curve of the ninth order

and a bitangent developable of the ninth class.

The chords of C lying on Q form a ruled surface B2
18 of order 18, the

intersection of Q andM3
9

. Through any point of C there pass four generators
of -R2

18
,
an(i there are twenty-four points of C at which two of these

coincide. These, however, include the point P counted four times*. Also

there are eight tangents of C lying on O. Hence, for the correspondence
between C and a prime section C' of 7?2

18
,
we have

a = 2, a' = 4, p = 0, 77
- 20, 77'

= 8,

and Zeuthen's formula gives p' = 2. Hence the ruled surface has a double

curve G+G9
2 and a bitangent developable G + E9

2
.

The plane of the two tangents of C at P belongs to J/3
9
f, so that it

meets Cl in two lines which are generators of R2
18

. The planes w through
these lines represent intersections of (79

2 and G, while the planes p through
them represent planes of E9

2
passing through G.

There are two chords PQ, PR of C which pass through P and lie on 2.

quartic E, at the point on the generator of F through B, meets the plane of T on the

tangent at C, we have a (6, 2) correspondence. The eight coincidences give eight

tangent solids of F which meet 8. Cf. also the footnote to 127.
* Cf. 265 below.

t This is seen at once whenM3
9 is regarded as the projection of the M3

10 formed

by the chords of a rational normal sextic. The tangent [3] of M3
10 at a point P

contains the tangents of the normal curve at the two points where the chord

through P meets it; M8
10 has the same tangent [3] at all points of a chord

of the curve. The coordinates of a point of M3
10 are given parametrically by

(0
6 + *#

8
,

5 + K<p, 0* + jc#
4
,

3 + K^
3
, 6* + *</>*, + K<I>, I+K); and it is easily seen that

the tangent solid at this point does not depend on K.
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The planes of Q, through these lines are to be regarded as trisecant planes

of C\ thus we have two double points of (79
2 on G and two double planes of

E9
2
through G. There will be two other trisecant planes of C belonging to

each system of planes on ii ; hence <79
2 has two triple points, and J579

2 has

two triple planes.

If we project (79
2 on to a plane from one of its double points we obtain

a curve (77
2 with a quadruple point (the intersection of the plane with G)

and two triple points, and therefore with one other double point. There is

thus one line through either double point of <79
2 which meets it in two

further points, and this must be a generator of the surface. We thus have

the two generators which meet G and are represented on 1 by the points

Q and B.

185. Consider again the normal surfaceF in [7], and take two generators

g and g' ;
let S contain a line I in the solid gg'. Then the projected surface

/ has a double generator 6r, the intersection of S with the [5] Sgg'.

The directrix cubics A of F meet g and g' in related ranges ; hence the

solids K meet the solid gg' in the lines of a regulus. There are two lines of

this regulus meeting I, so that S meets two further solids K. Hence the

surface / has two tritangent planes which do not pass through G.

S meets M5
6 in I and a curve &5

2 which has I for a chord. The chords of

F which meet S meet F in g, g', and a curve (718 meeting every generator
of F in four points. Since there are eight tangents of (718 which meet &5

2

it is of genus 7 and therefore has eight double points. The chords of F
which pass through the intersections of I and &5

2 are chords of (718 ;
we

thus account for two intersections of Cls with each of g and g'. One of

the other intersections of <718 and g is associated with one of its other

intersections with g' and with one of its double points ; similarly, for the

remaining pair of intersections. The other six double points of C1S lie three

in each of two planes which meet S in lines.

Hence on projection we have a surface / whose double curve is G+ Gg
2

.

C9
2 has two double points and two ordinary points on G\ it has also two

triple points.

To generate this surface we take two twisted cubics in (1, 1) corre-

spondence, the correspondence being specialised to give the double

generator.

186. On a rational normal sextic there are oo 1 involutions which con-

tain, as a pair of corresponding points, the ends of a given chord
;
each of

these gives rise to a quintic ruled surface of which the chord is agenerator.
On projecting from a point of the chord on to a [5] each of these surfaces



166 CHAPTER IV, 186-188

is projected into a quartic ruled surface, one of whose generators passes

through the double point P of the projected curve.

There are oo8
quadric fourfolds containing Cf

, and oo 5 of these contain

such a quartic surface*. Take one of these latter to be }. The planes of

the conies on the quartic surface form a F3
3

; fJ meets this in the quartic

surface and in two of its planes, these belonging to opposite systems on 1.

The quartic surface meets a general plane of i in two points.

The chords of G which lie on 3 form this quartic ruled surface JS2
4 and

a ruled surface B2
U which has C as a triple curve. There are two chords

PQ, PR of C which pass throughP and lie on 2
; these are double generators

of 122
14

,
and there is one other generator of j?2

14
passing through P. There

are twelve points of C at which two of the three generators of jR2
14

coincidef ;
there are two tangents of C belonging to J?2

4 and six belonging
to J?2

14
- Considering then the correspondence between C and a prime

section C' of jR2
14 we have ^

a = 2, a' = 3, p = 0, 77
= 12, 7?'

= 6,

whence p'=l. R2
14t meets a general plane of ii in seven points; thus we

have in [3] a ruled surface whose double curve is given by C2 + G+ C7
! and

bitangent developable by E2 4- + E7
l

.

J?2
4 and J?2

14 have two common generators J.

If we take any of the four trisecant planes (two of either system) of

C which lie on 1 there is a plane of ti of the same system meeting jR2
4 in

a conic. Then, considering the intersection of J?2
4 with the [4] containing

the two planes, we must conclude that the trisecant plane of C contains

a generator of JR2
4

. G passes through two double points of C7
l and meets

it in a further point, while also meeting C2 . Also C2 passes through two
double points of C7

l
,
while meeting it in two further points: there are

exactly similar statements for the bitangent developable.

187. Take an involution of pairs of generators on the normal surface

* It is sufficient to make one of the quadrics through C contain three generators
of the quartic surface in order that it should contain the whole of it.

t These coincidences do not include P. If we regard P as two points Pl and P2

on different branches of C there are three generators PiP2 , PiQ* P\R of -^2
14
through

Pl and three others P2Pi> P^Qt P^R through P2 . Thus corresponding to the point of

C on either branch at P we have three distinct points.
This may be contrasted with 24 and with 184 above and 265 below.

J Not three, as is apparently given by Brill's formula; this includes a false

coincidence at P. The tangents of C at P determine a plane containing a generator
of 1?2

4 and a generator of i?2
14

, which do not of course coincide. This discrepancy is

further illustrated by considering the projections of two quintic surfaces, determined

by involutions on the normal curve; projecting from a point of their common
generator we have two g2

va on C giving two quartic surfaces without a common
generator.
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F, thus obtaining, by means of a directrix quartic E, a cubic ruled surface

with a directrix line A. Let g, g' be a pair of generators belonging to the

involution, and take a line I lying in the solid gg' and passing through the

point where A meets it. Then project from a solid S containing I and A.

8 meets M6
8 in I, A and an elliptic quartic &4

X which meets I and has A as

a chord.

The chords of F which meet 8 meet F in g, g', E and a curve <714

meeting each generator in three points and E in eight points. Since there

are six tangents of (714 meeting S^
1 it is of genus 4, so that* it must have

four double points. The chords of F passing through the intersections of

A and ^ account for four intersections of (714
4 with E\ the remaining

intersections fall into two pairs, with each of which is associated a double

point of <714
4

. The other double points of <714
4 are associated with pairs of

intersections of (714
4 with g and g' ; the remaining pair of these intersections

is joined by the chord of F which passes*through the common point of I

and V-
Hence on projection the surface / has a double curve (72 + + (77

X
; C7

l

has two double points and two simple points on C2 ,
two double points and

one simple point on G
;
G meets G2 .

To generate this surface we take a conic and a cubic in (1, 2) corre-

spondence with a united point; the correspondence being so determined

that one point of the conic gives rise to the pair of points of the cubic col-

linear with it. The joins of the pairs of points on the cubic form a regulus,

two lines of which pass through the corresponding points of the conic ;
thus

the planes joining the points of the conic to the pairs of points of the cubic

which correspond to them are the tangent planes of a quadric cone. The
surface has a bitangent developable

188. Let us take two involutions on the rational normal sextic and

project on to a [5] from a point of their common chord. Then we obtain a

curve C with a double point P and two quartic ruled surfaces containing

C\ there are oo 2
quadrics containing both these surfaces R and $2

4
; let

us take one of these to be ii. The plane of the tangents to G at P meets ft

in two lines which are generators of jR2
4 and S2

4
respectively.

The chords of C which lie on Q form the two ruled surfaces J?2
4

> $2* an^

a third ruled surface J?2
10 on which C is a double curve. There are four

tangents of G belonging to jR2
10 and there are four points of C at which the

two generators of J?2
10 coincide

;
this is sufficient to shew that the prime

sections of JB2
10 are rational curves. J?2

10 meets the planes of 1 in five

points. Thus the points of C represent the generators of a ruled surface

in [3] whose double curve is C2+D2+G+ (76 and bitangent developable
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jR2
10 has two generators in common with each of J?2

4 and $a
4

, but these

two surfaces themselves have not a common generator. Each trisecant

plane of C which lies on } contains both a generator of jR2
4 and a generator

of $2
4

. Hence C2 and Z>2 have two intersections through both of which (76

passes, <76 meeting each of them in two further points. meets both

G2 and D2 ,
and passes through two double points of <75 . There are exactly

similar statements for the bitangent developable.

189. Take two involutions of pairs of generators on the normal surface

1\ One of these determines, by means of a directrix quartic E, a cubic

ruled surface with a directrix line A; the other similarly determines, by
means of a directrix quartic W ,

a cubic ruled surface with a directrix line

A'. Let us project from the solid S containing A and A'.

Let g, g' be the pair of generators common to the two involutions.

S contains the line I joining the points where the solid gg' is met by A and

A'. It meets M6
6 in I, A, A

7 and a cubic &3 having A and A' as chords.

The chords of F which meet S meet F in g, g', E, W , and a curve (710

which meets every generator in two points. Since there are four tangents
of (710 meeting &3 it is an elliptic curve and has two double points ;

these

are associated with its intersections with g and g'. On projection we obtain

a ruled surface with a double curve exactly as in the last article.

To generate such a surface we take two conies and place them in (2, 2)

correspondence with two united points, the correspondencebeing specialised

to give the double generator. The joins of the pairs of points of either

conic which correspond to the points of the other touch another conic,

and the planes joining the points of one of the conies to the pairs of points

of the other which correspond to them are the tangent planes of a quadric
cone. The bitangent developable of the surface thus includes two develop-
ables of the second class; it is E2+ F2+ G+ JE75 .

190. The three types of surfaces so far obtained in this section are all

self-dual, and, in fact, there are particular cases of surfaces of these types
which belong to a linear complex and are represented on fi by curves G of

the type II (B).

A rational sextic in [4] with a double point P has two trisecants*;

its chords form a locus M3
9 on which G is quadruple, the trisecants

triple and P sextuple. Any quadric threefold containing C contains also

its trisecants, and any line on this quadric is met by nine chords of C.

The chords of C which lie on the quadric form a ruled surface jR2
18 whose

* The trisecant planes of a rational normal sextic form an M5
4 on which the

chords of the curve are a double locus M8
10

. Hence a line meeting a chord of the
curve meets two trisecant planes not containing the chord.
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prime sections are of genus 2, precisely as in 184. If we regard
the quadric as a prime section of } we have in [3] a ruled surface

whose generators belong to a linear complex, the double curve is given by
G+ C9

* and the bitangent developable by G+E9
2

. C9
2 has two triple

points; at either of these there intersect three generators of the ruled

surface, these lying in a plane which is a triple plane of E9
2

. G meets G9
2

and lies in planes of E9
2
just as before.

There are oo 2
quadrics containing (7; the base of this net of quadrics

consists of C and the two trisecants.

If we take in [5] a rational sextic with a double point there are oo 1

involutions on the curve containing the pair of points at the double point ;

each of these gives a quartic ruled surface. Projecting from a point in the

plane of a conic of one of these surfaces we obtain in [4] a rational sextic

C, with a double point P, lying on a quartic ruled surface which has a

double line; this double line is itself a chord of C. There are oo 1
quadrics

containing this ruled surface, and if one of these is regarded as a prime
section of Q, we obtain in [3] a ruled surface whose double curve is

Ca+G + C?
1 and bitangent developable E2 -f G+ E7

l
; but now its generators

belong to a linear complex.

Again, we can project from a point of [5] which is common to two planes

meeting two different quartic surfaces in conies. We have then two quartic
ruled surfaces containing the curve C in [4] ;

each of these has a double line

which is a chord of G. There is a quadric containing C and both these ruled

surfaces, and if this is regarded as a prime section of Q we have in [3] a

ruled surface whose generators belong to a linear complex, the double curve

being <72+ D2+ G + <75 and the bitangent developable E2+F2+ G + E5
Q

.

191. Take an involution of pairs of points on a rational normal sextic

in [6] and project on to a [5] from a point of a chord which does not join

a pair of the involution. The joins of the pairs of the involution form a

rational normal quintic ruled surface through any two points of which

there passes a cubic curve
;
hence on projection we have a curve C with

a double point P and a quintic ruled surface with a double point P; there

is on this surface a plane cubic curve with a double point at P.

There are quadrics containing this ruled surface. Such a quadric fl

necessarily contains the plane of the cubic curve
;
this plane and the quintic

surface form the complete intersection of 2 and the cubic cone which

projects the surface from P. The surface meets all planes of Q of the same

system as this one in two points, all planes of Q of the opposite system in

three points.

There are two chords PQ, PR of G which pass through P and lie on Q ;

these are generators of the quintic surface jR2
5

. The chords of C which lie
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on Q generate this surface JR2
5 and a surface E2

13 on which C is a triple

curve ; this latter surface meets all planes of i of one system in seven points

and all planes of the other system in six points. PQ and PR are generators

of jR2
13

, while J?2
13 and JS2

5 have three other common generators. There are

also two generators of E2
13

passing through P and lying in the plane of the

two tangents to C at P.

There are eight points of C other than P at which two of the three

generators of jR2
13

coincide, and there are six tangents of C which are

generators of jR2
13

. We thus find that the prime sections of JS2
13 are rational

curves.

A trisecant plane of C which lies on fl contains three generators of

.R2
13

if it is of the opposite system to the plane of the cubic on <R2
5

, but if

of the same system it must contain a generator of J?2
6

.

Suppose that the plane cubic on J?2
5 lies in a p-plane of Q. Then in

[3] we have a ruled surface whsise double curve is (72 -f 0+ C7 . G lies in

the plane of <72 and C7 passes through the intersections of G and (72 ; C7

meets G in two other points and <72 in three other points, having two triple

points. The bitangent developable is E^+ G+ EJ*. J576 has two double

planes which are planes of E3
Q

;
it has two planes through G in common

with E3 and three further planes in common with JE73 ;
it has also two other

planes through G.

Similarly, if the plane cubic on J?2
5 ties *n a ra-plane of fi we obtain

the dual surface in [3] ; the double curve is C^-f G+ <76 and the bitangent

developable 7

192. Take on the normal surface F in [7] an involution of pairs of

generators ;
then a directrix quartic E gives rise to a cubic ruled surface

with a directrix line A. Choose $ to contain A and to meet the solid con-

taining a pair of generators g, g' in a line I
; g, g' not being a pair of the

involution. Then the [6] E8 contains g and g', so that the surface / has a

double generator lying in the plane of a double conic.

S meets M5
6 in A, I and a rational quartic &4 having A for a trisecant

and I for a chord.

The chords of F meeting 8 meet F in g, g', E and a curve <714 meeting

every generator in three points. There are six tangents of (714 meeting &4 ,

so that it is a (714
2 with six double points ; these double points lie three in

each of two planes meeting 8 in lines. (714
2 has eight intersections with E]

six of these are accounted for by the chords of F which pass through the

points where A meets &4 , the other two are the points of E which corre-

spond in the involution to its intersections with g and g'.

Thus on projection we obtain a surface / whose double curve is

C2+G +(77 ;
G lies in the plane of C2 and (77 passes through the two
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points where it meets (72 ; (77 meets O in two other points and <7a in three

other points, and has two triple points.

To generate this surface we take a conic and a twisted cubic in (1, 2)

correspondence with a united point. The cubic meets the plane of the conic

in two other points ;
the points of the conic which correspond to these are

to be those two points in which it meets the line joining them. The planes
which join the points of the conic to the pairs of corresponding points on

the cubic form a developable of the third class J5?3 ; the bitangent develop-
able of the surface is E3

193. If we take a prime section CB of F, an involution of pairs of

generators gives a quintic ruled surface with a directrix conic P. A
solid S through the plane of T meets M5

6 in P and an elliptic quartic

&4
1
having three intersections with P. This quartic will meet the plane

of P in a fourth point, and through this point there passes a transversal

to two generators g, g' of F (not forming a pair of the involution). Let

us take a line I through this point and lying in the solid gg', and then

choose 8 to contain P and I. 8 meets M5
6 further in a twisted cubic $3

meeting P in three points and I in two points.

The chords of F meeting 8 meet F in Ce , g, g' and a curve (712 meeting

every generator in three points ; there are six tangents of (712 meeting S-3 ,

so that it is a (712
2

,
and has two double points. It meets (76 in twelve

points: six of these arise from the three chords of F through the inter-

sections of &3 and P
;
four more are associated as two pairs with the double

points of C(

12
2

, while the remaining two are the points of (7e which corre-

spond in the involution to its intersections with g and g'.

Thus on projection the surface / has a double curve <73 + -f (76 ;
G is

a chord of (73 and (76 passes through their two intersections, meeting G
in two further points and <73 in three further points. Also C6 has two
double points on (73 .

To generate this surface we take two twisted cubics in (1, 2) corre-

spondence with three united points. The cubics have a common chord;

to the points in which this meets the second cubic correspond those in

which it meets the first. The planes joining the points of the first cubic to

the pairs of points which correspond to them on the second cubic are the

tangent planes of a quadric cone. The bitangent developable of the surface

is

194. We now pass on to consider curves on fi of the type II (C) ;
C is

contained in a [4] and has two double points P and Q. These represent two
double generators G and H of the surface in [3]. The chords of C form a

locus -M3
8
, there being eight of them meeting an arbitrary line in [4] .
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If we regard a quadric threefold containing C as a prime section of

fl, every plane of 1 meets the [4] containing C in a line which is met by
eight chords of C. Hence the ruled surface in [3] has a double curve

G+H+ CS and a bitangent developable G+H+ES .

The chords of C lying on Q form a ruled surface J?2
16

(the intersection

of ii and -M3
8
) on which C is a quadruple curve. There are apparently

twenty-four points of C at which two of the four generators of Jf?2
16

coincide,

but these includeP and Q, each counted four times. There are eight tangents
of C which lie on Q, so that we have a correspondence between C and a

prime section C' of 7?2
16 for which

a =:2, a' = 4, p=0, r?=16, 7?'= 8,

whence p'=l, and we have a double curve G + H+ Cs
l and a bitangent

developable G+H+ E^.
There are two chords PJf, PY of C which pass through P and lie on

5
;
these are double generators of J?2

16
. There are two other generators of

B2
U

passing through P ; they lie in the plane containing the two tangents
of C at P. Cg

1 has two double points on G and meets it in two further

points; E^ has two double planes and also two simple planes through G.

Similarly for H.

195. Consider again the normal surface F in [7]; let us take a line I

lying in the solid containing a pair of generators g, g' and a line m lying

in the solid containing another pair of generators h, li'. Choose S to be

the solid Im: the projected surface in S has two double generators G and

H; the intersections of S with the [5]'s Sgg' and Shh' respectively.

The chords of F meeting S meet F in the four generators g, g', h, li' and

a curve (716 meeting each generator in four points. S meets M5
6 in I, m and

an elliptic quartic -B^
1
having I and m as chords. Since there are eight

tangents of CIQ meeting &/ it is a C^5
,
which has four double points.

The chords of F passing through the intersections of / and &4
1 meet F in

points common to (716
5 and g or g' ;

the other four intersections of Cu6 with

g and g' are associated in pairs with two of the double points of <716
5

.

Hence on projection we obtain a surface / whose double curve is

G+H+ Cz
1

; Cg
1 has two double points on G and two double points on

jfiT, meeting each of G and H in two further points. The surface is generated

by a (1, 1) correspondence between two twisted cubics, the correspondence

being specialised to give the double generators.

196. If the quadric containing C is also made to contain the line PQ
we have a particular ruled surface for which the double generators G and

H intersect. Their point of intersection is a quadruple point of C^ which

meets each of them in two further points ;
the plane containing them is a

quadruple plane of EQ
l

,
which has two further planes passing through each

of them.
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In order to obtain this surface by projection we take the normal surface

in [7] with a directrix conic F ; take a line I in the solid determined by a pair

of generators g, g' and a line m in the solid determined by another pair of

generators h, h'. Then project from the solid 8 containing I and m. We
have on projection a surface with two coplanar double generators; their

plane meets the surface further in a conic and is the intersection of with

the [6] containing 8, g, g' y h, h' and F.

To generate this surface we take a conic and a rational skew quartic
in (1, 1) correspondence; the points in which the plane of the conic meets

the quartic fall into two pairs, and the pair of points of the conic corre-

sponding to either of these pairs is given by the intersections of the conic

with the line joining the pair.

197. Let us project a rational normal sextic in [6] from a point on one

of its chords. We obtain a rational sextic in [5] with a double point P.

A quintic ruled surface which contains the chord of the normal curve gives
on projection a quartic ruled surface with oo 1 directrix conies; each of

these conies meets the projected curve twice, one of them passing

through P.

Now let us project this curve on to a [4]; the point of projection is to

be chosen in the plane of one of the conies of the quartic surface and also

on the chord of the curve which lies in that plane. We obtain in [4]

a rational sextic G with two double points P and Q\ there is a quartic
ruled surface containing the curve, with a double line passing through Q.

There are oo 3
quadrics containing (7, so that there are oo 1

containing
the quartic ruled surface ; let us regard one of these latter quadrics as a

prime section of 1.

The chords of C which lie on Q form the quartic surface R and a ruled

surface Jft2
12 on which C is a triple curve. Through P there pass two chords

of (7, PX and PY, which lie on ii; these are double generators of E2
12

.

Similarly we have QZ and QT, but these are common generators of JR2
4

and jR2
12

- The plane of the tangents to G at P meets ii in a generator of

/?2
4 and a generator of -R2

12
; the plane of the tangents to C at Q meets 1

in two generators of 7J2
12

.

The twelve points of G at which two generators of jR2
12 coincide include

Q counted four times, so that there are eight other points. There are six

tangents of G belonging to J?2
12

, so that we can deduce that the prime
sections of J22

12 are rational curves. We have thus in [3] a ruled surface

whose double curve is G+H+ <72 -f <76 and bitangent developable
G+H+ E2+ EB

Q
. H lies in the plane of (72 ;

<76 passes through the inter-

sections of H with (72 and meets // in two further points ;
G2 and (76 have

two further intersections. meets <72 ;
it passes through two double points

of <76 and meets GB in one further point.
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198. Take an involution of pairs of generators of F\ we then have,

through any directrix quartic E, a cubic ruled surface with a directrix line

A. Take a line I meeting A and lying in the solid containing the pair of

generators g, g' ; this being a pair of the involution. There is a point of the

plane IX which is not on either of the lines I or A and through which passes
a chord of F*', we can then take a line m through this point which lies in

the solid containing a pair of generators h, h' (not belonging to the involu-

tion). Let us project from the solid 8 containing A, I and m.

S meets M5
* in I, A, m and a cubic &3 meeting Z and having A and m as

chords. The chords of F which meet S meet F in g, g', h, h', E and a

curve (712 which meets every generator in three points ;
since there are six

tangents of <712 meeting &3 it is a <712
2 and therefore has two double

points. <712
2 has six intersections with E\ four of these are accounted for

by the chords of F passing through the intersections of A and &3 . The

other two are associated with ttte points where E is met by the generators
which are paired with h and h' in the involution and with points in which

<712
2 meets h and h'. The remaining intersections of (712

2 with h and h' are

accounted for by the chords of F passing through the intersections of m
and &3 . There is also a chord of F passing through the point common to

I and &3 ,
this accounts for an intersection of (712

2 with each of g and g' ;

the other intersections of <712
2 with these generators are associated with its

double points. We thus obtain in S a surface with a double curve precisely

as in the last article.

To generate this surface .we take a conic and a twisted cubic in (1, 2)

correspondence with a united point. The points of the conic which corre-

spond to the other two points in which the cubic meets its plane are the

intersections of the conic with the line joining these points. Also there is

a point of the conic for which the pair of corresponding points on the

cubic consists of the ends of the chord through this point. The planes of

the pairs of generators which intersect in the points of the conic are the

tangent planes of a quadric cone. Hence the bitangent developable is

199. Given any chord of a rational normal sextic there are oo 1
quintic

ruled surfaces which contain it. Through each point of the chord there pass
oo 1 cubic curves on each of these ruled surfaces, and each cubic curve

meets the normal sextic in two points. From any point on any chord of

the curve we can obtain any other chord of the curve; given any two
chords of the curve, through any point of either we have a cubic curve

meeting the other in its two intersections with the curve. It will be

possible to choose the pair of chords and the points on them so that the

* Cf. 187.
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solids containing the two cubic curves have a plane in common. Then

project on to a [4] from the line joining the points in which the cubic

curves meet the chords. We obtain a rational sextic C with two double

points P and Q. There are two quartic ruled surfaces composed of

chords of (7, each of these surfaces having a double line
;
one double line

passes through P and the other through Q, and the two double lines

intersect.

There are oo 1
quadric threefolds containing each ruled surface; these

two systems are both contained in the system of oo 2
quadrics which contain

G and the intersection of the double lines of the two surfaces. Hence there

is a quadric containing both the ruled surfaces
;
let us regard this quadric

as a prime section of fi.

The chords of G which lie on Q form three ruled surfaces
;
a ruled surface

J?2
8 on which C is a double curve, a quartic ruled surface R with a double

line through P and a quartic ruled surface $2
4 with a double line through

Q. The two chords PX, PY of (7, which pass through P and lie on Q, are

common generators of B2
8 and J?2

4
, while the plane of the two tangents of

C at P meets ii in two lines, one of which is a generator of JK2
8 and the other

of $2
4

. Similarly, the two chords QZ, QT of G which pass through Q and
lie on Q, are common generators of JR2

8 and 2
4

, while the plane of the two

tangents of G at Q meets Q in two lines, one of which is a generator of J52
8

and the other of /?2
4

. There is another generator common to B2
8 and ^2

4

and another common to J?2
8 and $2

4
;
1Z2

4 and $2
4 also have a generator in

common. There are four points of C at which the two generators of B2
B

coincide, while there are four tangents of C which are generators of J?2
8

;

whence the prime sections of R2
8 are rational curves.

We thus have in [3] a ruled surface whose double curve is +H + C2

+D2+ C74 and bitangent developable G+H+ E2+ F2+Ei.
The plane of C2 contains G ; <74 passes through the intersections of G2

and G, meeting each of G and G2 once further. The plane of D2 contains //;

C^ passes through the intersections of D2 and H, meeting each of H and
D2 once further. C2 and D2 have one intersection. There are similar state-

ments for the bitangent developable.

200. Take two pairs of generators g, g' and A, h' of the normal surface

F in [7] . An involution containing the pair gg' gives an axis A of a directrix

quartic E, while another involution containing the pair M' gives an axis

p of another directrix quartic E'. We take the common pair of the two

involutions to be the generators through the two intersections of E and E'

and take A and p, to intersect in a point of the common chord of E and E'.

The [5] Xugg' meets the [5] X^Mi' in a [3] S\ S contains a line I in the

[3] gg' and a line m in the [3] hh'. We project from 8 on to S. S meets
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M6
6 in the four lines A, /*, I, m and a conic &2 which meets each of these lines

once. I meets A and m meets
//,.

The chords of F which meet 8 meet F in g, g', h, h', E, W and a curve

CQ meeting every generator in two points. There are four tangents of CQ

meeting 2 so that it is an elliptic curve without double points. It meets

E in four points ; two of these are accounted for by the chord of F passing

through the intersection of &2 an<i ^'> the others are associated with the

points in which E is met by the generators corresponding to h and h' in

the first involution and with intersections of CB with h and h'. Similarly

for the intersections of Cs with E'. On projection we have in S a surface

whose double curve is G +H -f- C2+D2 4- G4 precisely as in the last article.

To generate this surface we place two conies (72 and D2 in (2, 2) corre-

spondence with a doubly united point. To the other point in which 672

meets the plane of D2 correspond a pair of points of D2 collinear with it,

and to the second point in which Z>2 meets the plane of C2 correspond a

pair of points of (72 collinear with it. The planes joining the points of either

conic to the pairs of points of the other conic which correspond to them are

the tangent planes of a quadric cone. We thus have a bitangent develop-
able G + H+ E2

201. We now consider the curve C on ii of the type II (D); we have

a rational sextic in [4] with a triple point P the projection of a normal

sextic from a line in one of its trisecant planes. The chords of C form a locus

M3
7 on which C is a quadruple curve and P a sextuple point.

The chords of C which lie on fi form a ruled surface R2
U

,
the inter-

section of Q withM3
7

;
there are no lines through P lying on ti and meeting

G again but there are six generators of B2
U

passing through P, viz. the

lines in which Q is met by the three planes containing the pairs of tangents
of C at P.

There are apparently twenty-four points of C at which two of the four

generators of jR2
14

coincide; but these include P counted twelve times*.

There are eight tangents of C which are generators of Jf?2
14

, and we deduce

that the prime sections of R2
U are rational curves. We have in [3] a ruled

surface whose double curve is 36? + (77 and bitangent developable 36? + E7
Q

;

the triple generator 6? being represented on li by the point P. G meets 677

in six points, while six planes of EJ* pass through G.

202. Take now the normal surface F in [7], and let S be chosen to lie

in the [5] containing three generators gl9 g2 , g$. The solids containing the

pairs of generators g2g3 , g3gl} g^g2 meet 8 in lines Z1? Z2 , Z3 respectively. The

projected surface has a triple generator G, the intersection of S with the

[5] containing 8, g^g^g*.
* There are three different branches of C passing through P.
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The curves A meet gl9 </2 , gB in related ranges, so that the solids K
containing them meet the [5] containing the three generators in the planes
of a F3

3
. Thus 8 meets the M formed by the solids K in a cubic curve &3 ;

it meets M in &3 , Z1? Z2 , ^3> and 15 2 , ^3 are chords of &3 .

The chords of F which meet S meet F in the generators gl9 g2 , g3

each counted twice and in a curve Cu meeting each generator of F four

times. There are eight tangents of (714 meeting &3 ,
so that it is a (714

3 and
has no double points. A chord of F through an intersection of &3 and lt

meets F in two points on (714
3

,
one of which is on </2 arid the other on g3 .

Hence on projection we have a surface / with a double curve 3G+ (77 ;

G meets <77 in six points.

To generate this surface we take two rational plane cubics in (1, 1)

correspondence, there being three pairs of corresponding points on the

line of intersection of their planes.

Surfaces with a directrix line which is not a generator

203. Consider on 1 a curve C of the type III (A) ;
it lies in the tangent

prime at a point 0, meeting every plane w through in five points and every

plane /> through in one point. Then we have in [3] a ruled surface with

a directrix line R\ through every point of R there pass five generators,
while any plane through R contains one generator.

Any plane p of Q, meets the tangent prime at in a line, and the plane
w containing this line joins it to 0; all the ten chords of C meeting the

line are contained in this plane w. Thus the double curve of the ruled surface

in [3] is its directrix R counted ten times.

A plane w of ii meets the tangent prime at in a line which is met by
ten chords of C. The chords of C lying on 1 form a ruled surface, and the

genus of the prime sections of the ruled surface is found to be three as

in former instances. Hence the surface in [3] has a bitangent developable

^io
3

-

The four trisecants of C are all joined to by to-planes; the p-planes

through these trisecants represent four planes which are triple planes of

j710
3 and tritangent planes of the ruled surface.

Dually, for a curve C of the type III (B), we have a double curve (710
3

with four triple points and a bitangent developable 10JB.

204. To obtain the first of these surfaces by projection, we take the

normal surface F in [7] and project from a solid 8 which lies in a [5]

containing a rational quintic curve of F (there are oo6 such curves on F).
Then the [5] meets S in a line R which is a directrix of/; through any point
of R there pass five generators, while any plane through R contains one

generator. The only chords of F which meet S are those of the quintic



168 CHAPTER IV, 204-207

curve, we thus have a &6
3 in S. These chords meet F in the quintic curve

counted four times, four of them passing through each point of the curve.

To generate / we take a twisted cubic and one of its chords, placing

them in (5, 1) correspondence with two united points.

To obtain the second surface we must project the normal surface in

[7] which has a directrix line A. Projecting on to S from a solid 8 we obtain

a surface/ with a directrix line J? the intersection of S with the [5] $A;

through each point of R there passes one generator, while every plane

through R contains five generators. To generate / we take a line and a

rational quintic in (1, 1) correspondence.
The chords of this surface F also form an M5

6
meeting S in a &6

3
. Also

the tangent solids of F meet an arbitrary [5] in the tangents of a rational

normal quintic, so that they form an M. We have on F a curve C^9
,

eight of whose tangents meet &6
3

;
it has twelve double points which lie

three in each of four planes which meet S in lines. Thus the double curve of

the projected surface is a (710
3 with four triple points.

205. Take now a curve C on fi of the type III (C). The p-planes through
O cut out a 02

1 on (7; of the eight tangents of C which lie on Q two lie

in /3-planes and the other six in oj-planes. We find that the ruled surface

in [3] has a double curve 6jR + (74 and a bitangent developable jR-f-J579
x

.

R is a trisecant of (74 ;
its three intersections with 4 are represented on Q,

bythe tu-planes which contain the chords of C passing through 0. Similarly,

E9
l has three planes passing through R. Also EQ

l has four triple planes ;

these are represented on Q by the p-planes through the four trisecants

of C, which are all joined to by tu-planes.

To obtain this surface by projection we choose the solid S to meet a

[4] containing a directrix quartic E of the normal surface F in a plane.

Then the [5] containing S and E meets S in a directrix R of /; through

any point of R there pass four generators, while any plane through R
contains two generators.

The chords of E meet 8 in an elliptic cubic S^
1

,
there are three of the

chords passing through each point of E. The chords of F meet S in ^3
1

and a twisted cubic &3 meeting 9-g
1 in three points. These chords meet

F in E counted three times and a rational curve (78 meeting each generator
of F once only ;

there are six tangents of E meeting ftg
1 and two tangents

of <78 meeting &3 . (78 has six intersections with E', these are ac-

counted for by the three chords of F through the intersections of $3
l

and &3 . Hence, on projection, the double curve of /is 6R + C^, R being
a trisecant of (74 . The surface has four tritangent planes since S meets

four of the solids K.

To generate / we take a line and a twisted cubic with one intersection,

placing them in (1, 4) correspondence with a united point.
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206. When C is of the type III (D) we have in [3] a ruled surface

whose double curve is R + Cg
1 and bitangent developable 6JR-fJE74 ;

R is

a trisecant of C9
l

,
which has four triple points, and there are three planes

of J5?4 passing through R.

To obtain this surface by projection we take the normal surface F in

[7] which has a directrix conic F, and project from a solid S which meets

the plane of F in a point 0. Then the [5] $F meets S in a line R which

is a directrix of/; through any point of R there pass two generators, while

any plane through R contains four generators.
The chords of F form anM5

6 on which the plane of F is a triple plane*,
and8 meetsM5

* in an elliptic sextic fy,
1 with a triple point at 0. The chords

which meet S meet F in F and a curve <718 meeting every generator of F in

three points ; there are two tangents of F passing through and six tangents
of C18 meeting S^

1
. Thus C1B is of genus 4, and has twelve double points ;

these lie three in each of four planes, each plane meeting 8 in a line. C18

has six intersections with F, these lie on three lines through 0.

Hence on projection we have in S a ruled surface / whose double curve

is JR-f C9
l

\ Cg
l has four triple points and meets R three times.

This surface /is generated by a line and a rational quartic in (1, 2)

correspondence. The joins of the pairs of points of the quartic which

correspond to the points of the line form a cubic ruled surface; thus we
have a developable of the fourth class formed by the bitangent planes of

the surface which do not pass through R. There are three planes of this

developable passing through R since there are three generators of the cubic

ruled surface meeting R.

207. Any prime section <76 of F meets F in two points; let us take a

02
1 on CQ

Q
containing this pair of points; then we have a quintic ruled

surface with a directrix conic y meeting the plane of F in a point 0. Let

us choose S to contain y. Then S meets M$* in y and a rational quartic $4

having a double point at 0, &4 meeting y in two other points.

* The equations of F can bo put in the form

and the chords form the MB
6

XQ X

Xl X2

X1

= 0.

A plane meeting the plane of F meets M5
6 in three further points, since

-

has three solutions in a: 0: y other than a = jB
= 0.
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The chords of F which meet 8 meet F in T, (76 and a curve <712 meeting
each generator in two points. There are two tangents of T passing through
O and two tangents of Ce

Q
meeting y ; so that there are four tangents of

C12 meeting &4 . Hence C12 is an elliptic curve and has four double points.

(712 meets C6 in twelve points; four of these are accounted for by the

chords of F through the two intersections (other than 0) of y and &4 ; the

rest are associated in pairs with the double points of (7la .

On projection we have in a surface / whose double curve is

R + Ct + (76 . <76 has four double points, through all of which <73 passes;

these two curves have two other intersections. R meets (73 once and GB

twice.

The surface is generated by a line R and a twisted cubic (73 with one

intersection, these being in (2, 2) correspondence with a doubly united

point. The pairs of points of the cubic corresponding to the points on the

line give chords of the cubic which form a quartic ruled surface, one

generator of this surface meeting the line in the point which gives rise to

it. Hence the bitangent planes of the surface which do not pass through
R form a rational developable JS?4 , three of whose planes pass through R.

We have also the dual surface whose double curve is 6J? + Cf

4 and

bitangent developable R -f -K3 + J576 . To generate this we take a line

R and a twisted cubic in (1, 4) correspondence with a united point; but

now the
gr4

x on the cubic is such that each of its sets is made up of

two pairs of an involution. The planes joining R to the pairs of points
of this involution give the developable E3 9

one of whose planes passes

through R.

208. Consider now a normal sextic ruled surface F in [7] and two of

its prime sections. Suppose that we have an involution of pairs of generators
of F, thus obtaining a quintic ruled surface through one prime section,

while another involution of pairs of generators gives similarly a quintic
ruled surface through the other prime section. Let us suppose further

that the directrix conies of these two quintic surfaces have two inter-

sections
;
in what circumstances can the solid S containing the planes of

these two conies be chosen as a solid from which we can project F
ontoS?

The restriction on 8 is that it must not meet F ; hence we immediately
conclude that the two involutions must be different and that the solid

containing the pair of generators common to them necessarily passes

through one of the two intersections of the conies. Through the other

intersection there will pass two chords of F, so that the four generators
of F so determined all meet the same plane and lie in a [6] . Hence F has

a directrix conic T, the plane of T being that of the two chords through 0,
and S meets the plane of F in 0.
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Taking then the normal surface with a directrix conic F let us choose

S in this way; it meets the plane of F in and contains two conies y
and S which pass through O and have another intersection. S meets M5

6

further in a third conic &2 ,
which also passes through and meets y and

8 each in one other point. The chords of F meeting S meet F in F and

three prime sections
;
on projection we have a surface / whose double curve

consists of a directrix R and three twisted cubics
;
R meets all the twisted

cubics which have four points in common, any two of them having a

further intersection. The bitangent developable is again 6R + E^
Q

.

We have also the dual surface whose double curve is R+ C\ the

bitangent developable consisting of the pencil of planes through R and

three cubic developables. This is also generated by a line R and a twisted

cubic in (1,4) correspondence with a united point; but now the gj- on the

cubic is such that each of its sets is made up of pairs of three different

involutions. If a^a^a^a^ typifies a set of the g^ then a^a^, a3a4 are pairs of

one involution; a^g, a2a4 are pairs of another and a1a4 ,
a2a3 are pairs of

a third. The planes joining the points of R to the pairs of any involution

which correspond to them form a cubic developable with a plane passing

through R.

209. We now consider a curve C of the type III (E) ;
two of its chords

pass through and it has a double point P ;
it meets every ID-plane through

in four points and every p-plane through in two points. The p-planes
cut out a 02

1 on C, the two points on the different branches of C at P
forming a pair of this

gr2
1

. Hence the chords of C lying in the p-planes form

a quartic ruled surface. An arbitrary plane p meets the [4] containing G
in a line and the m-plane containing this line joins it to 0; this contains

six chords of C meeting the line; the other three are generators of the

quartic ruled surface. We thus have in [3] a double curve 6J? + O+ C3 .

There is a generator of the quartic ruled surface through P 9 and the two

chords of C passing through are also generators of this surface; hence

CZ
Q meets G once and R twice.

The chords of C which lie in the tn-planes form a ruled surface JBa
14 on

which C is a triple curve, there are six tangents of C which are generators
of this surface. There are twelve points of C at which two of the three

generators of R2
U coincide (these do not include P) so that the prime

sections of J?2
14 are elliptic curves. An arbitrary plane w meets the [4]

containing C in a line ;
one chord of C meeting this line is contained in the

p-plane joining it to 0, the other eight are all generators of jR2
14

. Hence
the surface in [3] has a bitangent developable R+ G-\-Es

l
.

The two chords of C which lie on Q and pass through P are double

generators of -R2
14

5
there is another generator of jR2

14
passing through P.

Hence O lies in two double planes and one ordinary plane of EJ-.
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Also R is an axis of EB
lm

,
the two planes of EB

*
through R are repre-

sented on 1 by the p-planes containing the two chords of C which pass

through 0. Again, the two trisecants of C are joined to by tu-planes, so

that Es
* has two triple planes represented on Q by the p-planes through

these trisecants.

210. To obtain this last surface by projection we choose S to meet the

[4] containing a directrix quartic E of the general normal surface F in a

plane ;
the chords of E meet this plane in an elliptic cubic &3

1
. But further,

S is so chosen that it lies in a [5] with a pair of generators g, g'\ the

chord of E, joining the points where it is met by g and g', meets &3
1

. S
meets the solid containing g and g' in a line I meeting &3

1
. It meets M5

6

in Og
1

,
I and a conic &2 > meeting I once and &3

1 twice. The chords of

F which meet S meet F in the quartic E counted three times, g, g' and a

prime section C76 . The intersections of C6 with g aiid g' lie on the chord of

F through the intersection of I and &2 ;
the four intersections of <76 and E

lie in pairs on the chords of F through the intersections of &3
1 and &2 .

Hence on projection we have a surface with a double curve 6.R-I- 0+ 3

precisely as in the last article.

To generate / we take a line R and a twisted cubic in (1, 4) corre-

spondence with a united point; one of the points of the line gives rise to

four points of the cubic which include the two intersections of the cubic

with the chord G through it.

211. If we have on 1 a curve C of the type III (F) we have in [3] a

ruled surface whose double curve is R -f G 4- C'g
1 and bitangent developable

6J?+ G+ EZ. R and intersect
; C'g

1 has two triple points, it has also two

double points which lie on G, G meeting it in a further point ;
R is a chord

of C'g
1

. There is a plane of E3 passing through G and there are two planes
of J53 passing through JR.

In order to obtain this surface by projection we take the normal surface

F with a directrix conic F, and project from a solid S which meets the plane
of F in a point O. But here S is further chosen to lie in a [5] with two

generators gr, gr' of F. Since this [5] is not to be the same as the [5] through
S and F the two points in which F is met by g and g' must lie on a line

through 0. The solid gg' meets S in a line I passing through 0.

S meets M 6
6 in I and an elliptic quintic &5

1 with a double point at
9

&5
1
meeting I again. The chords of F which meet 8 meet F in F, g, g'

and (7
lfl , where (716 meets every generator in three points. There are

six tangents of CIB meeting &5
l

, so that it is of genus 4; it has eight
double points. Six of these double points lie three in each of two planes
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meeting 8 in lines ; if A is either of the others then we have two chords

AB and AC of (716 meeting &5
1

;
the chord BC meets Z, B being on g and

C on g'. Thus we account for two intersections of <716 with each of g

and 0' ;
the remaining pair is given by the chord of F through the inter-

section of I and &5
1

. (716 meets F in four points which lie on two lines through
0. Hence on projection we have in S a surface / with a double curve

R -f + Cy as required.

To generate / we take a line and a rational quartic in (1, 2) corre-

spondence ;
one point of the line giving rise to a pair of points of the quartic

collinear with it. The joins of the pairs of points on the quartic form a cubic

ruled surface, one generator of which passes through the point of the line

which gives rise to it
;
hence the bitangent planes of the surface which do

not pass through the line or the double generator form a developable of

the third class J573 ,
two of whose planes pass through the line. We have a

bitangent developable 6R + + E3 .

212. Take a point in the plane of F; then a line I passing through
and lying in the solid which contains a pair of generators g, g

/

meeting F
in a pair of points collinear with 0; then a conic 2 passing through 0,

this being the directrix conic of the quintic ruled surface determined by an

involution on a prime section CB
Q of F. Project on to 2 from the solid 8

containing I and &2 .

8 meets M in Z, &2 and a twisted cubic &3 ;
&3 passes through O

9

meeting I once again and &2 twice again. The chords of F meeting 8
meet F in F, g, g', CB and an elliptic curve Cf

10
1
, four of whose tangents

meet &3 ;
Clo

l
meeting every generator in two points. It meets F twice

and (7 ten times, having two double points.

A pair of intersections of CV with g and g' are given by the chord of

F through the intersection (other than 0) of I and &3 ;
the other pair is

associated with the intersections of (76 with g and g' and with two inter-

sections of C6 with CjQ
1

. Four other intersections of (76 and CV are given

by the chords of F passing through the two intersections (other than 0)
of &2 and $3 ;

the remaining four are associated in pairs with the two double

points of Clo
l

.

Hence on projection we have a surface / with a double curve

R + G + (73
o + <75o. a meets each of G, (73 and <75 ;

C? is a chord of <73 and

Cg passes through their two intersections, meeting G in one other point;

Cg has two double points through each of which (73 passes, C3
Q and <75

having two further intersections.

The surface is generated by a line R and a twisted cubic (73 in (2, 2)

correspondence with a doubly united point; one point of the line giving
rise to the intersections of (73 with the chord which passes through it.
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The lines joining the pairs of points of the cubic form a quartic ruled

surface, there being two generators of this surface passing through points

of the line which give rise to them. Hence the bitangent planes of the

surface which do not pass through R or 6? form a developable EB ,
two of

whose planes pass through R. We have thus a bitangent developable

6jB-j-6?+ jB3 ;
two planes of E^ passing through R and one through G,

while R and O are co-planar.

We have also the dual surface whose double curve is 6JS -f $+ (73 and

bitangent developable R+ G+ EZ
Q+ -E 5 . To generate this surface we take

a line R and a twisted cubic in (1, 4) correspondence with a united

point, one of the points of the line giving rise to four points of the cubic

which include the two intersections of the cubic with the chord 6 through
it. But here the g^ on the cubic is such that each of its sets consists of two

sets of an involution (which does not contain the extremities of this chord

as a pair of corresponding points). The joins of the pairs of the involution

give a regulus, and there is a (1, 2) correspondence between the points of

R and the lines of this regulus, there being one united element. We thus

have a developable J573 , two of whose planes pass through G and one

through R.

213. Now take S to meet the plane of F in a point and to contain

an axis A of a directrix quartic E. The lines through in the plane of F
determine an involution of pairs of generators of F, while the generators
of the cubic ruled surface having A for its directrix determine another.

If g, g' is the pair of generators common to these two involutions the solid

gg
r meets 8 in a line I passing through and meeting A.

S meets M5
* in A, I and a rational quartic &4 which has a double point

at and meets A twice. The chords of F meeting S meet F in E, F, g, g' ,

and an elliptic curve Cl2
l
, four of whose tangents meet fr4 ;

C12
! meets

every generator in two points. It has four double points, and meets F
in four points (collinear with in pairs) and E in eight points. Four of

these intersections with E are given by the chords of F through the two

intersections of A and &4 ; the remaining four are associated in pairs with

two of the double points of C^1
. The other two double points are associated

with the intersections of Cf

32
1 with g and g'.

Thus on projection from 8 we have in S a surface / whose double

curve is R+ G+ C2+ CB . R meets G and is a chord of (76 , while G and
<72 intersect. CJ> has four double points, two of which are on G\ the other

two are on (72 ,
which meets (76 in two other points.

To generate / we take a line R and a conic (72 in (2, 2) correspondence ;

to a branch point of the correspondence on R there corresponds a branch

point of the correspondence on C2 and the line G joining these points is a
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double generator. The joins of the pairs of points of C2 which correspond
to the points of R touch another conic; there are two tangents of this

latter passing through the point in which R meets the plane of <72 . Hence

those bitangent planes of the surface which do not pass through R or O

give a developable 2?3 ,
two of whose planes pass throughR and one through

O. The bitangent developable is 6J2+ O+ EB .

There is also the dual surface whose double curve is 6JB-f G+C3

and bitangent developable R+G + E^+ EJ*. To generate this surface we
take a line R and a twisted cubic in (1, 4) correspondence with a united

point ; one of the points of R gives rise to a set of four points on the cubic

which includes its intersections with the chord through this point of R.

And here the g^ on the cubic is such that each of its sets consists of two

pairs of points of an involution, which includes the intersections of the

cubic with the chord just mentioned as a pair of corresponding points.

The joins of the pairs of the involution give a regulus and there is a (1, 2)

correspondence with two united elements between the points of R and the

lines of this regulus. We thus have a quadric cone with one of its tangent

planes passing through the double generator.

214. Take again the normal surface F with a directrix conic in [7], and

an involution of pairs of generators giving a quintic ruled surface through
a prime section (76 ;

the directrix conic &2 f ^his surface meeting the plane
of F in a point O. It is possible to take a solid S through &2 which also

contains an axis A of a directrix quartic E, where A meets &2 , and a line I

through O, meeting A, which lies in a solid containing a pair of generators

jr, g' of F.

S meets M5
* in Z, A, &2 and another conic < 2 passing through 0\ <f>2

meeting &2 again and also meeting A. The chords of F meeting S meet
F in F, (/, g', E, (76 and another prime section D6 . It is easily seen

how the mutual intersections of these curves arise; so that on projection
we have a surface whose double curve is R+ G+Cz+ C^-t-DJ*. R meets

(?, (73 and 7)3 , while G meets C2 and passes through two intersections

of 3 and D3 . There are two points common to all of <72 ,
<73 ,

7)3 ; C2

meeting each of (73 and Z>3 in one further point; also there is one more
intersection of Cf

3 and Z>3 . We have again a bitangent developable

The dual surface has a double curve 6J?+ G+ C3 and a bitangent de-

velopable R+ G -f E2 -f Es + F3 . It is generated by a line R and a twisted

cubic in (1, 4) correspondence with a united point; one of the points of R
giving rise to four points of the cubic which include the two intersections

of the cubic with the chord G through it. Here, however, the g on the

cubic is such that each of its sets consists of two pairs of points of three
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different involutions*. One of the involutions contains the ends of the

chord G as a pair of corresponding points ;
this gives a developable E2 with

a plane passing through O. Each of the other two involutions gives a

developable of the third class with two planes through and one through

JfZ, and we get the same two planes through for each of these two de-

velopables.

215. Take now a curve C of the type III (G) with two double points

P and Q ;
it meets every to-plane through in four points and every />-plane

through in two points, a chord of C passing through 0. The p-planes
cut out a

grg
1 n G which includes the pairs of points on the two branches

of C at P and on the two branches of C at Q. Hence the chords of C lying
in the />-planes form a cubic ruled surface JS2

3
t' The chords of G lying

in the tu-planes through form a ruled surface U2
13 on which G is

a triple curve, there being six tangents of C which are generators of J?2
13

.

There are twelve points of C at which two of the three generators of J22
13

coincide (these do not include P or Q) ; so that the prime sections of JK2
13

are elliptic curves.

A /o-plane of fi meets the [4] containing C in a line, and the m-plane

through this line joins it to O and contains six chords of (7. The two other

chords meeting the line are generators of JS2
3

, and we have in [3] a ruled

surface whose double curve is 6R+ Q+H+C2 . There are generators

of J?2
3
passing through P and Q, and the chord of C through is also a

generator of J?2
3

. Hence (72 meets G, H , R each in one point. G and H
both meet R.

A ta-plane of Q meets the [4] containing C in a line, and the p-plane

through this line joins it to and contains a chord of C. The other seven

chords meeting the line are generators of jR2
13

. We have then for the bi-

tangent developable of the surface JfZ + G +H + E^. The two chords of

C which pass through P and lie on Q are double generators of JS2
13

, which

has also another generator passing through P. Hence there are two double

planes and a simple plane of E7
l
passing through G. Likewise there are

two double planes and a simple plane of E7
l
passing through H] there is

also a plane of E7
l
passing through R, represented on Q by the /o-plane

which contains the chord of G passing through 0.

216. We now obtain this surface by projection. We take the general
normal surface F in [7] with oo 1 directrix cubics A and choose the solid 8
to meet the [4] containing a directrix quartic E in a plane. We also

suppose that there are two pairs of generators g, g' and h, h' such that each

* Cf. 208.

f The projection of a quintic ruled surface in [6] from a line meeting two of its

generators*
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pair lies in a [5] with S. The solid gg
f meets 8 in a line I and the solid

hh' meets 8 in a line m. The chords of E meet 8 in the points of a plane
cubic &3

1
, and as we assume that the [5] containing 8 and E does not

contain a generator of F the two lines I and m must meet &3
1

. 8 meets

M6
6 in frg

1
, 1, m and a line A, which is a transversal of I and ra, meeting &3

1
.

The chords of F meeting 8 meet F in E counted three times, g, g', h, h'

and another directrix quartic E'. Hencfc we have on projection a surface

/ with a double curve 6J?+ G+H+ C2 ;
C2 meeting G, H and R, while (?

and # both meet R.

To generate / we take a line R and a twisted cubic in (1, 4) corre-

spondence with a united point. There are two points of R giving rise to

sets of four points on the cubic which include the two intersections of the

cubic with the chords, G and H, which pass through the respective points.

217. We have in [3] the dual surface whose double curve is

R + G+H+ C f

7
1 and bitangent developable 6R+ G+H+ E2 . G and // meet

R, while there is a plane of E2 passing through each of 6?, H and R. C^
has two double points and one ordinary point on each of G and H and it

also meets R.

To obtain this surface by projection we take the normal surface F with

a directrix conic F. Take two pairs of generators </, g
f and h, h', and let

the chords of T determined by these pairs of generators meet in 0. Take
a line I through O lying in the solid gg' and a line m through O lying in the

solid Hhf
;
then project from a solid 8 containing I and m.

S meets M5
6 in I, m and an elliptic quartic &4

1
passing through and

meeting each of I and w in a further point. The chords of F meeting 8
meet F in F, g, g', h, h' and (714 , this latter curve meeting every generator
in three points. There are six tangents of (714 meeting S^

1
, so that it is of

genus 4; hence it has four double points. Cu meets F in two points
collinear with O ; the chord of F through the intersection of I and fl^

1 other

than O passes through intersections of (714 with g and g' ;
the remaining

intersections of (714 with g and g' are associated in pairs with two of its

double points. Similarly for its intersections with h and h''.

Hence on projection we have a surface with a double curve

R+ G+H+ Cy
1
precisely as required.

To generate this surface we take a line and a rational quartic in (1, 2)

correspondence; two points of the line give rise to pairs of points of the

quartic whose joins respectively pass through them. The joins of the pairs
of points of the quartic form a cubic ruled surface, two of whose generators
meet the line in the points which give rise to them; there is one other

generator of the cubic ruled surface meeting the line. Hence the planes

joining the points of the line to the pairs of points of the quartic which
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correspond to them touch a quadric cone one of whose tangent planes

passes through the line. There is also a tangent plane through each of the

double generators. We have a bitangent developable 6JK + G+H + E2 .

218. Consider again the surface F with a directrix conic, and take two

involutions of pairs of generators ;
the first of these gives a pencil of lines

in the plane of T passing through a point 0, while the second, by means
of any directrix quartic E, gives a cubic ruled surface with a directrix line

A. There is a pair of generators gr, g' common to the two involutions
;
the

solid containing them meets A and passes through 0. Take a solid 8

containing and A; it meets the solid gg' in a line I passing through
and meeting A

; further, we choose S to meet the solid containing another

pair of generators in a line m passing through 0.

8 meets M5
6 in I, m, A and a twisted cubic &3 passing through ; &3

meets m again and meets A twice. The chords of F meeting 8 meet F
in T, g, g', h, h', E and an elliptic curve CV four of whose tangents meet

*3- CV meets every generator in two points and has two double points ;

it meets F in two points collinear with 0, and E in six points. Four of these

intersections with E are accounted for by the two chords of F through the

intersections of A and &3 ;
either of the others is associated with an inter-

section of E with h or h' and with an intersection of C f

10
1 with h' or h

respectively. The other intersections of CV with h and h' are on the chord

of F through the intersection (other than 0) of m and &3 ;
the intersections

of CV with g and g' are associated in pairs with the double points.

Hence on projection from 8 we obtain a surface / with a double curve

R + G+H+ C2+C5
Q

. R meets G, H and <75 . H is a chord of C2 ,
and CB

Q

passes through their intersections meeting H in one other point and <72 in

two other points. G meets <72 and passes through two double points

of Of.
The surface is generated by a line R and a conic <72 in (2, 2) correspon-

dence. To the point in whichR meets the plane of C2 corresponds a pair of

points on (72 whose join H passes through this point, while there are

mutually corresponding double points on R and (72 . The joins of the pairs

of points of (72 which correspond to the points of R touch another conic
;

the planes joining the points of R to these pairs of points touch a quadric
cone with a tangent plane passing through each of R, G and H. The

bitangent developable is 6J2+ G+H+E2 .

There is also in [3] the surface dual to this one whose double curve isgiven

by GR + G+ H+CZ and bitangent developable by R+ G+H+E2+ E&.
This surface is generated by a line R and a twisted cubic in (1, 4) corre-

spondence as in 216; there are two points of R giving rise to sets of four

points on the cubic which include the two intersections of the cubic with
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the chords G and H passing through these points. But here the g^ on the

cubic is such that each of its sets consists of two pairs of an involution,

which includes as a pair of corresponding points the intersections of the

cubic with either G or H, say with G. The joins of the pairs of this involu-

tion form a regulus, and the planes joining the points of R to the corre-

sponding pairs of the involution touch a quadric cone which has one

tangent plane through G and two tangent planes through H.

219. Take an involution of pairs of generators on the normal surface

F with a directrix conic F, and let this give a quintic ruled surface, through
a prime section (76 of F, whose directrix conic &2 meets the plane of F in

a point 0. Then we can choose a solid S to contain &2 >
to meet the solid

containing a pair of generators g, g' in a line I through and to meet the

solid containing another pair of generators h, h' in a line m through 0.

Of course neither of the pairs g, g', h, h' need belong to the involution.

S meets M6
6 in I, m, 2 and a conic

<f>2 which meets I and m each once and
&2 twice.

The chords of F meeting S meet F in F, g, g', h, h', (7e and an elliptic

curve (7s
1 four of whose tangents meet <f>2

. This curve meets every generator
of F twice and has no double points. Og

1 does not meet F, but it meets

CQ
Q in eight points; four of these are given by the two chords of F

through the intersections of &2 and < 2 . The other intersections of C8
l and

(76 are associated with the intersections of (76 with g, g' 9 h, h' and with

intersections of C^
1 with g', g, h', h (one with each). The other intersections

of Cg
1 with these four generators are given by the chords of F through the

intersections of < 2 with I and m.

We thus have in S a surface/whose double curve isB+ G+H -j- (73 + (74 .

R meets G, H and (73 . G and H are chords of (73 ; G^ passes through the

four intersections, meeting each of G and H in one other point and (73 in

two other points.

To generate this surface we take a line R and a twisted cubic (73 in

(2, 2) correspondence with a doubly united point; there are two points
of R which give rise to pairs of points of G3

Q on the chords G and H which

pass through them. The pairs of points of <73 which correspond to the

points of R are joined by lines forming a quartic ruled surface; the planes

joining the points of R to these lines touch a quadric cone, there being

tangent planes of this cone through G, H and R. We have a bitangent

developable 6R + G+H+ E2 .

We have also the dual surface whose double curve is 6R + G+ H+ C2

and bitangent developable R 4- G 4-H+E3
Q+ J54 . To generate this surface

we take a line R and a twisted cubic in (1, 4) correspondence giving
two double generators G and H as in 216; but here the gj- on the
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cubic is such that each of its sets consists of two pairs of an involution,

which does not contain the pair of intersections of the cubic with either

O or H as a pair of corresponding points. The pairs of points of this

involution give lines forming a regulus; there is thus set up a (1, 2) corre-

spondence between the points of R and the lines of this regulus, and the

planes joining the points of R to the lines of the regulus give (because of

the united point) the developable $3, which has a plane passing through
R and two planes through each of and H.

220. Take the surface F with a directrix conic F, and any two of its

directrix quartics E and E'. Take an axis A of E and an axis p of E', these

intersecting on the common chord of E and E'. Then choose a solid 8

containing A and
\L and meeting the plane of F in a point 0. S also

contains a line I, passing through O and meeting A, which lies in the solid

containing a pair of generators g, g'', and a line m, passing through and

meeting /it,
which lies in the solid containing a pair of generators h, W.

S meets Jf6
6 in I, m, A, p, and a conic &2 passing through and meeting

A and p,.
The chords of F meeting S meet F in E, E', F, 0, g', h, h' and a

prime section (76 . On projection from S we have in 21 a surface whose

double curve is R+ C2+D2+ O+ H+ C3
Q

. R meets G, H and C3 . C2 meets

G and has H for a chord, Cs passing through the intersections ofH with C2

and meeting C2 again. Z>2 meets H and has O for a chord, C3
Q
passing

through the intersections of G with Z)2 and meeting Z>2 again. C2 and D2

have one intersection.

There is also the dual surface whose double curve is 6R + G+ H+C$
and bitangent developable R+ E2+ F^+0+H+ E3 . This is generated

by a line R and a twisted cubic in (1, 4) correspondence as in 216, but

here the g on the cubic is such that each of its sets consists of two

pairs of points of three different involutions. One of these involutions

contains the pair of points in which G meets the cubic; the regulus

arising from this involution gives, when taken with J?, the developable
E2 which has a plane through G and two planes through H . Similarly
another of the involutions contains the pair of points in which // meets

the cubic ; we have then the developable F2 with a plane through H and

two planes through G. The third involution does not contain the extremities

either of G or of H ; we thus have the developable JE73 with a plane through
R and two planes through each of G and H. The planes of E3

Q
through G

are the same as the planes of F2 through G, and the planes of JE73 through H
are the same as the planes of E2 through H.

221. We now proceed to consider the curve C of the type III (I) on ft
;

it meets every plane of ft through O in three points and has four of its

chords passing through O. The chords of C which lie in either system of
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planes form a ruled surface -R2
10 on which C is a double curve, and there

are four tangents of O which are generators of this ruled surface. Also

there are four points of G at which the two generators of the ruled surface

coincide; and the prime sections of .B2
10 are rational curves.

Any plane of fi meets the [4] containing O in a line, and the plane of

the opposite system through this line joins it to O and contains three chords

of (7; there are seven other chords of C meeting the line. Hence we have in

[3] a ruled surface whose double curve is 3JB+ (77 and bitangent developable
3JR +E7 . G7 meets R in four points ;

these are represented on Q by the

ta-planes through the four chords of G which pass through ; similarly E7

has four planes passing through jR.

Of the four trisecants of C two lie in ta-planes and two in p-planes;
C7 has two triple points and E7 two triple planes. The section of jR2

10 by
a solid is a rational curve of order 10 lying on a quadric; it meets all

generators of one system in three points and all of the other system in

seven points, having six double points and two triple points.

222. In order to obtain this surface by projection we take in [7] the

normal surface F with oo 1 directrix cubics and project from a solid 8 which

meets the solid K containing one of these cubics A in a line I. Then 8
meets the M formed by the solids K in two further points

* so that the

surface / in S has two tritangent planes not passing through its directrix.

Its directrix is the line B in which 2 is met by the [5] containing 8 and K ;

through any point of R there pass three generators of F, while any plane

through R contains three generators of F.

8 meets M5
6 in I and a rational quintic &6 of which I is the quadri-

secant. There are two chords of A passing through any point of it and

meeting I, while there are four tangents of A meeting I. Hence the chords

of F meeting 8 meet F in A counted twice and an elliptic curve C^1
, four of

whose tangents meet &5 . Cu* meets every generator of F in two points
and has six double points. It meets A in eight points; these lie two on

each of the four chords of F through the intersections of I and $5 . The
six double points lie three in each of two planes which meet 8 in lines.

Hence on projection we have a surface with a double curve 3R + C7 ;

G7 has two triple points and meets R four times.

This surface is generated by a line R and a twisted cubic in (1, 3)

correspondence.

223. We now pass to the curve C on Q of the type III (J) ; the chords

of C which lie in either system of planes include one trisecant and four

tangents and form a ruled surface JS2
9 whose prime sections are rational

* A [5] through S meets Mf in a quartic ruled surface, and any solid through
a generator of this surface meets it in two other points.
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curves. The ruled surface R2
9 has C as a double curve, the trisecant as a

triple generator and also a double generator passing through the double

point of C.

We have in [3] a surface whose double curve is 3R+ G+C6 and

bitangent developable 3i?-f 6r+ J5?6 . C6 has a triple point and meets R
three times ;

it has a double point on G and meets G in one other point.

Similarly for J76 . R and G intersect.

To obtain the surface by projection we choose the solid 8 to meet the

solid K containing a directrix cubic A of F in a line I and also to meet the

solid containing a pair of generators g, g' in a line ra. Since 8 is not to

meet F, I and m must intersect, the chord of A through their intersection

meeting A in its intersections with g and g'. The curves A meet g and

g' in related ranges whose joins form a regulus; this meets m in two

points, including its intersection with I. Hence there is only one solid K
meeting S in a point not on I or m

;
so that the projected surface has one

tritangent plane passing neither through its directrix nor its double

generator.

8 meets M5
6 in I, m and a rational quartic &4 meeting m and having I

as a trisecant. The chords of F meeting 8 meet F in A counted twice, g, g'

and an elliptic curve (712
1 four of whose tangents meet &4 . Cl2

l meets

every generator of F in two points and 'has four double points. It meets

A in six points which lie two on each of the chords of F which pass

through the three intersections of I and S-4 . The chord through the inter-

section of m and #4 gives intersections of C^1 with g and g' ; the line joining

the other pair of intersections does not meet &4 but gives two chords of

F which do so, these intersecting in a double point of Cf

12
1

. The remaining
three double points of C12

l lie in a plane passing through a trisecant of &4 .

Hence on projection we have a surface with a double curve 3JS + G+ (76 ,

precisely as required.

To generate this surface take a line R and a twisted cubic in (1, 3)

correspondence ;
one point of R giving rise to a triad of points on the cubic

which include the two intersections with the chord G through the point.

224. When is of the type III (K) the chords which lie in either system
of planes include four tangents and form a ruled surface J?2

8
;
this has C for

a double curve and has two double generators, one through each double

point of C; there is one other generator through each of these double

points. The prime sections of Rz
8 are rational curves. We have in [3]

a ruled surface whose double curve is SJZ + O-f H+C& and bitangent

developable 3JfJ+ G +H+ JS5 . <76 has a double point and a simple point
on G, while E5 has a double plane and a simple plane through G\ and

similarly for H. R meets G and H. Also R is a chord of (76 ;
the two

points of intersection are represented on Q by the m-planes which contain
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the two chords of G passing through 0. Similarly there are two planes of

j^6 passing through R.

To obtain this surface by projection take a line I in a solid containing
a directrix cubic A of the normal surface F. Through a given point A of

I there passes a chord of A ; through the intersections of A with this chord

we have a pair of generators g, g' of F, and we can take a line m through
A lying in the solid containing these two generators. Similarly we have a

line n meeting I in a point B and lying in the solid containing a pair of

generators h, h' of F. Then take 8 to be the solid containing Z, m and n.

8 meets M6
6 in Z, m, n and a cubic &3 which meets m and n and has I for

a chord.

The chords of F meeting S meet F in A counted twice, gr, gr', h, h' and

an elliptic curve C^1
,
four of whose tangents meet S-3 . CV meets every

generator of F in two points and has two double points. C1Q
l meets A in

four points ;
these are on the chords of F through the two intersections of

I and 8-3. The chord of F through the intersection of m and &3 accounts

for an intersection of Gwl with each of g and g' ;
the other pair of inter-

sections is associated with a double point of C^1
. Similarly for the inter-

sections with h and li'.

Hence on projection we have a surface with a double curve as required.

To generate this surface we take a line R and a twisted cubic in (1, 3)

correspondence ; there are two points of R for which the corresponding
triad of points on the cubic contains the two intersections with the chord

through the point.

225. When G is of the type III (L) the chords which lie in either system
of planes form a ruled surface R2

7 on which C is a double curve
;
the prime

sections of JB2
7 are rational curves. The triple point P of G represents a

triple generator G of the ruled surface in [3] ;
the ruled surface R2

7 has

three generators passing through P.

The ruled surface in [3] has a double curve 3B+3Q+Cf and a bi-

tangent developable 3JK + 3#+ jEJ4 . (74 meets R and has for a trisecant,

while R and G intersect. JS74 has one plane passing through R and three

planes passing through G.

The [5] containing three generators gr, g', g" of the normal surface F
meets the solid containing one of its directrix cubics A in a plane ; take

8 to lie in the [5] and meet the plane in a line Z. The solids g'g", g"g, gg'

meet 8 in lines m, ra', m" which all meet Z. 8 meets M6
6 in Z, ra, ra', m"

and a conic &2 meeting these four lines each in one point. There are two

chords ofF through any point of gr, g', g" or A which meet 8 ;
hence the chords

of F meeting 8 meet F in A, gr, gr', g" each counted twice and an elliptic

curve CB
l four of whose tangents meet &2 - ^V meets every generator of

F in two points and has no double points.
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On projection we have a surface with a double curve 3JS+ 36?+ (74 as

required.

The cubics of F meet g, g', g" in related ranges; hence the solids K
meet the [5] containing these generators in planes of a F3

3
. S meets the

M formed by these solids K in I and the conic &2 > the projected surface

/ contains oo 1
plane cubics whose planes pass through G\ these cubics have

double points at those intersections of the planes with Cf

4 which are not

onO.
The surface is generated by a line R and a rational plane cubic in (1, 3)

correspondence; to the point in which R meets the plane of the cubic

correspond three points of the cubic collinear with it.

Surfaces with a directrix line which is also a generator

226. Take a curve C on 1 of the type IV (A) ;
it gives in [3] a ruled

surface with a directrix line R which is also a generator ; through any point
of jR there pass four other generators, while any plane through R contains

one other generator. Thus the double curve is the line JR counted ten

times, while the bitangent developable consists of the pencil of planes

through R and a developable of the ninth class. The four trisecants of G
are all contained in ra-planes, so that this last developable has four triple

planes represented on i by the p-planes through the trisecants. The

developable will then necessarily be elliptic. We have a double curve 1(XR

and a bitangent developable R + Eg
1
, where EQ

l has four triple planes.

There are three planes of E9
*
passing through R ;

there is a i3-plane through
the tangent of C at 0, and these three planes of E^ are represented on i

by the />-planes which contain the three chords' of C joining to the other

three intersections of C with the tu-plane through its tangent at O.

To obtain this surface by projection we choose S to lie in the [5]

determined by a directrix quartic E and a generator g of the normal surface.

This [5] meets S in a line R which is a directrix and also a generator of /;

through any point of R there pass four other generators, while any plane

through R contains one other generator. The surface has four tritangent

planes since S meets four of the solids K . It is generated by a line and a

twisted cubic with two intersections placed in (1,4) correspondence with

one united point.

227. Dually, when C is of the type IV (B), we have in [3] a ruled

surface whose double curve is R+ C9
l and bitangent developable 10JZ; C9

l

has R for a trisecant and has four triple points.

To obtain this surface by projection we take the normal surface F in

[7] which has a directrix line A, and then choose S to meet the plane con-

taining A and some generator g in a point O. The [5] joining S to A

also contains g, and meets S in a line R which is a directrix and also a



SEXTIC RULED SURFACES 185

generator of /; through any point of R there passes one other generator,
while any plane through E contains four other generators.

The Jf6 containing the chords of F is made up of the oo 2 solids joining

A to the pairs of generators of F, and meets an arbitrary [5] in the chords

of a rational normal quintic c6 . Hence* the chords of F form an J/6
6

which meets an arbitrary solid 8 in a sextic curve 9-e
3 of genus 3. Since

the quintic curve c5 is a triple curve on the locus of its chords, any plane

joining A to a generator is a triple plane on M5
6

. We thus have oo1
planes

through A forming an M3
5 which is a triple locus on Mf.

The tangent solids of F all pass through A and meet the [5] in the

tangents of c5 ; they thus form a locus Jkf4
8

,
there being eight of them which

meet an arbitrary solid S. If, however, a line in [5] meets c6 there are only
six further tangents of cs meeting the line; so that if 8 meets a plane of

M3
5 in a point there are only six tangent solids of F meeting 8 in points

other than 0.

Thus the solid 8 from which we are to project meetsM5
6 in an ellipticf

sextic &6
1 with a triple point at 0. The chords of F meeting 8 meet F in A,

g and a curve (718 ;
since there are six tangents of (718 meeting Se

1 ** *s f

genus 4. It meets every generator of F in three points and A in three points,

and has twelve double points. These lie three in each of four planes con-

taining trisecants of &$*. The intersections of <718 with g are in perspective
from with its intersections with A.

Hence on projection we have a surface / with a double curve B + CV;
C9

l has R for a trisecant and has four triple points.

The surface is generated by a line R and a rational quintic with one

intersection, these being placed in (1, 1) correspondence without a united

point.

228. Suppose now, still considering the normal surface with a directrix

line, that we take the directrix conic &2 ^ a quintic ruled surface determined

by an involution on a prime section CQ
Q of F. There is a generator of the

quintic ruled surface passing through the intersection of A and <76 ; this

meets &2 *n a point and (76 again on a generator g of F. Thus lies in

* Cf. 95. If F is generated by a (1, 1) correspondence between A and one of its

directrix quintic curves (there are oo 5 such curves on F) its equations can be written

and the equations of M6
6 are

0.

t If we take a plane through a point of a rational quintic curve in [4], it

meets the locus F3
fl of 95 in a sextic curve with a triple point at this point.

This sextic curve has double points at the six remaining intersections of the plane
with FJ, so that it is an elliptic curve.
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the plane containing A and g ;
so that if 8 is chosen to contain &2 ^ auto-

matically meets the plane containing A and g in a point of &2

S meets M5
6 in &2 an(i a rational quartic &4 having a double point

at and meeting &2 in two other points. The chords of F which meet S
meet F in A, g, (76 and an elliptic curve Cf

12
1

, four of whose tangents meet

&4 ; Cw1 meets every generator of F in two points and A in two points,

and has four double points. Its intersections with A are joined by lines

through to its intersections with g. It meets (76 in twelve points; four

of these are given by the chords of F through the two intersections (other

than O) of &2 and #4; the remaining ones fall into four pairs associated

with the four double points of C^1
.

On projection we have a surface / with a double curve JR + (73 -|-C'6 .

R meets (73 and is a chord of (76 ; (76 has four double points through all

of which (73 passes, and it meets (73 in two other points.

The surface is generated by a line R and a twisted cubic (73 in (2, 1)

correspondence with a united point.

We have also in [3] the dual surface whose double curve is 1(XR and

bitangent developable R + E^+ EJ*. This is generated by a line R and a

twisted cubic placed in (1, 4) correspondence with one united point, R
being a chord of the cubic; but here the g^ on the cubic is such that

each of its sets consists of two pairs of an involution. The joins of pairs

of this involution form a regulus, and we have a (1, 2) correspondence
between the points of R and the lines of this regulus ; hence, because of

the united point, the planes joining the points of R to the corresponding
lines of the regulus form a developable J 3 ,

one of whose planes passes

through R.

229. We have seen that the directrix conies of all the quintic ruled

surfaces given by involutions on prime sections of F necessarily meet one

of the planes of M. Let us enquire whether we can project from a solid

S containing two of these conies i>2 and </>2 . &2 meets the plane containing
A and a generator g in a point ; hence, since the directrix R of the surface

in S is to be a simple and not a double generator of /, < 2 must meet the

same plane in a point. Moreover, since S is not to meet F, &2 and < 2 must

meet this plane in the same point 0. &2 and
cf>2 have a second inter-

section through which passes a common generator of the two quintic

ruled surfaces to which they belong.
S meets Jf5

8 in 2 ,
< 2 and a third conic

i/r2 passing through and

meeting each of &2 and < 2 in one further point. The chords of F meeting
S meet F in A, g and three prime sections JB6 , (76 ,

D6 . Projecting
from S we obtain in S a surface with a double curve R + jB3 + (73 + Z>3 .

R meets each cubic in one point ;
there are four points common to all the

cubics, while any two of them have one further intersection.
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There is also in [3] the dual surface whose double curve is WR
and bitangent developable -R 4- JE73 + F3

Q+ (?3 . To generate this we take

a line R and a twisted cubic meeting it in two points and place them
in (1, 4) correspondence with one united point; but here the g^ on the

cubic is such that each of its sets is made up of two pairs of three different

involutions. Any one of the involutions gives oo1 chords of the cubic

forming a regulus, and there is thus a (1, 2) correspondence between the

points of R and the lines of this regulus. We thus have, because of the

united point, three developables of the third class, each of which has a

plane passing through R.

230. Take now a curve C on fi of the type IV (C). The p-planes through
O cut out a g2

l on C, so that the ruled surface which is formed by those

chords of C lying in the p-planes and not passing through is rational.

There are six tangents of C, other than that at 0, which lie on i*; of

these two are in p-planes and four in ta-planes. Those chords of C which

lie in tu-planes and do not pass through form a ruled surface on which

G is a double curve, and there are four points of C at which the two

generators of this ruled surface coincide. The prime sections of this ruled

surface are rational curves f.

A general plane p of ft meets the [4] containing C in a line
;
the tn-plane

through this line joins it to and contains six chords of (7; there are

four other chords of C meeting the line. Hence the double curve of the

ruled surface in [3] is 6R-\-C^
Q

. R is a trisecant of (74 ; two of the

intersections are represented on 1 by the cj-planes through the two tri-

secants of G which pass through 0, the remaining one is represented on Q,

by the ta-plane through that chord of G which lies in the p-plane containing
the tangent of G at 0.

A general ])lane w of Q meets the [4] containing G in a line; the

p-plane through this line joins it to and contains three chords of C]
there are seven other chords of G meeting the line. Hence the bitangent

developable of the surface in [3] is 3JS + E7
Q

. There are four planes of E7
Q

passing through R\ two of these are represented on Q by the p-planes

through the two trisecants of G which pass through 0, the other two are

represented by the two p-planes through those chords of G which join

to the other intersections with G of the tu-plane through the tangent of G
at O. The two trisecants of C which do not pass through are joined to

O by tn-planes ;
the p-planes through these trisecants represent two triple

planes of E7 .

* For there are six tangents of a rational quintic in [3] which lie on a quadric

containing the curve.

f Such a prime section is a curve of order 10 lying on a quadric in [3]; it meets

all generators of one system in seven points and all of the other in three points,

having two triple points and six double points.
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231. To obtain this surface by projection we take the normal surface

in [7] with oo 1 directrix cubics and choose 8 to meet the [4] determined

by a directrix cubic A and a generator g in a plane. Then this [4] and S
determine a [5] through S which meets S in a line J?, R being a directrix

and also a generator of the projected surface /. Through any point of R
there pass three other generators, while any plane through R contains

two other generators.

S meets the solid containing A in a line I. The [4] containing g and A
meets S in a plane through Z, and A is projected from g on to this plane
into a conic &2 meeting I twice ; through any point of &2 there passes a line

meeting A and g. Then S meets M6
6 in Z, &2 and a twisted cubic &3 which

meets &2 once and I twice. Through any point of g there pass three lines

meeting &2 and A; through any point of A there pass two of its chords

meeting I and one line meeting g and ^2 . Thus the chords of F meeting S
meet F in A and g each counted three times and in a rational curve (78

meeting every generator once. (78 meets A in five points; four of these

are accounted for by the chords of F through the intersections of I and &3 ;

the other lies, with the intersection of C8 with g, on the chord through the

intersection of &2 and &3 .

Hence on projection we have in S a surface with a double curve

6JR+ <74 ; C
f

4 having R for a trisecant.

To generate this surface we take a line R and a twisted cubic with one

intersection, placing them in (1, 3) correspondence without a united point.

Each point of R gives a triad of points on the cubic, the plane of the triad

meeting R in another point; we have thus a (1, 1) correspondence between

the points of R, there being one triad having its plane passing through

any point of R *
;
there are two coincidences, or two triads whose planes

pass through the corresponding points on R. These give the two triple

planes of E7
Q

. There are four planes of E7 passing through jR
;
two of these

arise from the triad of points containing the intersection of R with the

cubic. The pencil of planes through R gives a g^ on the cubic, and this has

two sets belonging to the g3
l
given by the triadsf ; these give the other two

planes of jE?7 through R.

The tritangent planes of / are at once obtained from the projection ;
S

meets theM formed by the solids K in I and two other points J, the solids

K through these other points project from S into the two tritangent planes

of/.
The primes through the [5] containing S and A since they all contain

the generator g give pairs of generators of F which give a g2
l on A ; the

joins of the pairs of this g2
l are lines of a regulus, and there are two of

* There is one of these planes passing through any point of S; the equation of
the plane is expressible linearly in terms of a parameter.

f Of. the footnote to 134. t Cf. 222.
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these joins meeting I. Thus on projection there are two points of R such

that, at either of these points, the plane of the pair of intersecting generators

passes through B. This is of course clear from the representation on fi
;

the points are represented by the 07-planes containing the two trisecants

of C which pass through 0. If, however, it happened that one of these pairs

of points on A gave a pair of generators whose solid met 8 in a line, the

projected surface would have a double generator and G would be of the

type IV (E) ; similarly we might have two double generators, C being of

the type IV (G).

232. The dual of the surface which we have been considering arises

when C is of the type IV (D) ;
the double curve is 3B+ C7 ,

(7
7 having two

triple points and having R as a quadrisecant ;
the bitangent developable

is 6JB+ j&4 , there being three planes of E^ passing through E.

To obtain this surface by projection take the normal surface F in [7]

with a directrix conic F, and take S to lie in a [5] containing F and a

generator g, 8 meeting the plane of F in a point 0. Then the [5] meets S
in a line R which is a directrix and also a generator of/; through any point

of R there pass two other generators, while any plane through R contains

three other generators.

The [3] containing g and F meets S in a line I passing through ;

through each point of I there passes a line meeting g and F. S meets M5
6

in I and a rational quintic &B which has a double point at and meets

/ in two other points.

Through any point of g there pass two lines meeting both I and F,

while through any point of F we have one line meeting Z and g and also

the line joining the point to 0. Thus the chords of F which meet S meet F
in F and g, each counted twice, together with an elliptic curve C^1

, four*
of whose tangents meet ft6 . This curve meets every generator of F in two

points and F in six points ;
of these intersections with F four are collinear

with in pairs, the other two being associated with the intersections of g

with C^1
. Cul has six double points; these lie three in each of two

planes meeting S in lines.

Hence the projected surface has a double curve 3R+ C7 ;
C

7
Q has two

triple points and has R as a quadrisecant.

The surface is generated by a line R and a rational twisted quartic

with one intersection, these being placed in (1, 2) correspondence without

a united point. The pairs of points on the quartic corresponding to the

points of R give a cubic ruled surface; thus the bitangent planes of the

ruled surface other than those through R form a rational developable of

the fourth class, which itself has three planes passing through R.

* The tangent solid of F along g meets I.
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233. Suppose now that C is of the type IV (E) ;
the double point P

represents a double generator Q of the ruled surface in [3]. The chords of

C lying in either system of planes and not passing through form a rational

ruled surface *.

An arbitrary plane p of fi meets the [4] containing C in a line and the

plane w through this line joins it to 0; this plane contains six chords of

(7, and there are three others meeting the line. Hence the surface has a

double curve SR + G+C^ . R and intersect, while R is a chord of <73 .

(73 also meets 0.

An arbitrary plane w of ii meets the [4] containing G in a line and the

plane p through this line joins it to 0; this plane contains three chords of

C, and there are six others meeting the line. Hence the surface has a

bitangent developable 3R+ G -j- EQ ;
there are three planes of J76 passing

through R, while EQ has a double plane and an ordinary plane passing

through G. The trisecant of C which does not pass through is joined to

by a tu-plane; the p-plane containing this trisecant represents a triple

plane of E6 .

234. To obtain this surface by projection take a directrix cubic A on

the normal surface and a line I in the solid containing A. Then take a pair

of generators h, In! of F which meet A at its intersections with one of its

chords which meet Z, and take a line m meeting I and lying in the solid

containing h and h'. Then choose 8 to pass through I and m and lie in a

[5] containing A and a generator g. We have as before a conic &2 whose

plane passes through I, and S meets M5
6 in /, m, #2 an(l a conic

<f>2 meeting
each of /, m, &2 in one point. The chords of F meeting S meet .P in A and

g both counted three times, h, h' and a prime section (76 . On projection

we have a double curve 6.8+ G+ C3
Q as required.

The projected surface has a tritangent plane, S meeting Jf4
4 in one

point not on I or m.

This surface is generated by a line R and a twisted cubic (73 in (2, 3)

correspondence ;
R is a chord of Cz , there being one doubly united point

and one ordinary united point. The correspondence is such that to one of

the branch-points on R there corresponds one of the branch-points on C3 ;

the line joining these points is the double generator G.

* The chords of C which lie in the p-planes and do not pass through form a
rational quartic ruled surface; they join the pairs of a g2

l on C which includes the

pair of points on the two branches at P.
The chords of C which lie in the z?-planes and do not pass through O form a

ruled surface of order 9; a prime section of this is a curve of order 9 lying on a

quadric, meeting all generators of one system in three points and all of the other

system in six points. It has one triple point and seven double points.
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235. When C is of the type IV (F) we have a double curve 3.R + O+ (76

and a bitangent developable 6JK + O+ E.3 .

Consider now the normal surface with a directrix conic F
;
take a point

in the plane of F and a line m through lying in the solid containing a

pair of generators h, In! . Choose S to pass through m and also to lie in a

[5] with F and a generator g. We have as before a line Z in S passing through

;
8 meetsM5

6 in I, m and a rational quartic &4 passing through O, meeting
m once again and I twice again.

The chords of F which meet S meet F in F and g both counted twice,

h, li' and an elliptic curve C12
l
meeting every generator in two points and

having four double points. Three of these lie in a plane containing a tri-

secant of 4 , the other being associated with intersections of C12
l with

h and h'
;
the remaining intersections of C12

l with h and h' lie on the chord

of F passing through the intersection of m and $4 other than 0. Two of

the four intersections of C12
l with F are collinear with

;
the other two are

associated with the intersections of C12
! with gr, lying with them on the

two chords of F which pass through the two intersections (other than 0)
of I and 9-4 .

Thus the projected surface has a double curve 3R + G -f (76 ; R is a tri-

secant of C^ while (76 meets G and has also a double point on G. R and G
intersect and (76 has a triple point.

This surface is generated by a line R and a rational skew quartic in

(1, 2) correspondence; there is one intersection but no united point. The

correspondence is specialised to give the double generator ;
one of the points

of R gives rise to a pair of points of the quartic collinear with it. The joins

of the pairs of points of the quartic form a cubic ruled surface and the

planes joining the points of R to the corresponding pairs form a developable
E3 with two planes passing through R and one through G. The bitangent

developable is 6R + G+ E3 .

236. When C is of the type IV (G) the double curve of the ruled surface

is GR + G+H+ C2 and the bitangent developable 3R+G+H+E5
Q

. G
and H meet R, while C2 meets each of JB, G and H. There are two planes
of E5 passing through R, while through G there pass a double plane and

a simple plane of E&
Q

,
as also through H.

To obtain the surface by projection we choose the solid S to lie in a

[5] containing a directrix cubic A and a generator g of F, there being two

pairs of generators g'', g" and h', h" whose solids meet S in lines m and n.

S meets the solid containing A in a line I which meets m and n
;
it meets

the [4] containing g and A in a plane through I, and A is projected from g
into a conic &2 in this plane. Then 8 meets Jf6

6 in I, m, n, &2 and a line A

which meets m, n and &2 . The chords of F meeting 8 meet F in F and g
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both counted three times, g', 0", h' 9 li" and a directrix quartic E ;
the double

curve of the projected surface is precisely as given above.

The surface is generated by a line R and a twisted cubic which meets it,

these being in (1, 3) correspondence without a united point; the corre-

spondence is specialised to give the two double generators. Or it can

be generated by R and (72 in (2, 3) correspondence with a united point,

there being two pairs of corresponding double elements.

237. When G is of the type IV (H) the double curve of the ruled

surface is 3JK+ G+H+ <75 and the bitangent developable 61? + G+H+ E 2 .

R meets both G and H
;
O5 has two double points, one of which lies on

and the other on H, each of these lines meeting C6
Q in a further point. R is

a chord of <75 . There is one plane of E2 passing through each of R, G, H.

To obtain this surface by projection take in [7] the normal surface F
with a directrix conic F. Take a point in the plane of F and two lines

m and n passing through 0, m lying in the solid containing a pair of gene-
rators g', q" and n lying in the solid containing a pair of generators h'

9 h".

Then choose S to contain m and n and to lie in a [5] with F and a generator

g. The solid gT meets S in a line / through ;
and 8 meets M5

6 in I, m, n

and a twisted cubic &3 meeting m and n and having I as a chord.

The chords of F meeting 8 meet F in F and g each counted twice,

?'> g", h', h" and an elliptic curve CV meeting every generator of F twice

and having two double points. These double points lie one in each of the

solids q'g" and h'h" and are thus associated with intersections of Gln
l with

these generators ;
the remaining intersections of C^1 with these generators

are given by the chords of F through the points in which &3 meets m and

n. Cwl meets F in two points ;
these are associated with its intersections

with g and lie on the chords of F through the intersections of I and &3 .

On projection we have a double curve as above described.

The surface is generated by a line R and a rational skew quartic in

(1, 2) correspondence; R meets the quartic, but there is no united point.

The correspondence is specialised to give the double generators ;
there are

two points on R which give pairs of points of the quartic collinear with

them. The joins of the pairs of points of the quartic form a cubic ruled

surface, and the planes joining the points of R to the pairs of points of

the quartic which correspond to them touch a quadric cone. There is a

tangent plane of this cone passing through R and one through each double

generator.

238. We now pass to curves G on ii of the type V. When is of the

type V (A) we have a ruled surface in [3] with a directrix line R which is

also a double generator; through any point of R there pass three other
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generators, while any plane through R contains one other generator. It is

clear how to obtain such a surface by projection; we take S to meet the

solid K containing a directrix cubic A of the normal surface F in a line I,

and so that S lies in the [5] containing A and two generators g and h.

Then this [5] meets S in the line R.

The surface is generated by a twisted cubic and one of its chords in

(3, 1) correspondence without any united point.

An arbitrary plane/) of Q meets the [4] containing C in a line; this

line is joined to by a zu-plane which contains all the chords of C meeting
the line

;
the double curve of the surface is thus the line R counted ten times.

An arbitrary plane w of Q meets the [4] containing C in a line, and the

plane p through this line joins it to 0. If C is projected on to a plane from

this line we obtain a rational sextic with a triple point and therefore with

seven other double points. Hence there are seven chords of C which meet

the line and do not lie in the plane joining the line to O. Hence the ruled

surface has a bitangent developable 3R + E7 . The chords of C which lie in

tu-planes and do not pass through O form a ruled surface whose prime
sections are rational curves*, so that E7 is a rational developableE7 . There

are four planes of E7
Q
passing through R\ the ro-plane through either

tangent of C at O meets C in two points other than O, and the p-planes

containing the chords joining to these points represent two planes of E7

which pass through R.

G has two trisecants ; these are joined to by ra-planes, and the p-planes

through them represent two triple planes of E
7 .

239. The dual surface, represented on fi by a curve C of the type V (B),

has a double curve 3R + C7
Q and a bitangent developable IOR. .R is a

quadrisecant of (77 ,
which has two triple points.

This surface is obtained by projection from the normal surface with a

directrix line A; S must be chosen to meet the plane containing A and a

generator g in a point X and to meet the plane containing A and another

generator h in a point Y. Then the [5] containing S and A also contains g
and h, and meets S in a line R which is a directrix and also a double

generator of /. Through any point of R there passes one other generator,
while any plane through R contains three other generators.

The line XY is on the M^ formed by the chords of F\ through every

point of XY there passes a transversal to g and h. 8 meets M5
6 in X Y and

a rational quintic &5 with double points at X and Y.

* There are four points of C at which the two generators of this ruled surface

coincide and also four tangents of O, other than that at O, lying in z<r-planes (this

being the number of tangents of a rational quartic which lie on a quadric containing
it). A prime section of the ruled surface is a curve of order ten lying on a quadric
surface, meeting all generators of one system in three points and all of the other

system in seven points ; it has six double points and two triple points.

K 13
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Through any point of A there pass lines through X and Y meeting g
and h respectively ; through any point of g there passes a transversal to

h and XY and also a line through X meeting A; through any point of h

there passes a transversal to g and XY and also a line through Y meeting
A

; thus the chords of F which meet S meet F in the lines A, g, h each counted

twice and an elliptic curve Cul
(four of whose tangents meet &5 ) meeting

every generator of F in two points and A in four points. This curve has

six double points, and these lie three in each of two planes containing
trisecants of ft6 . Hence the double curve of / is 3R+ C7 \

R is a quadri-
secant of C7 , which has two triple points.

The surface is generated by a rational quintifc and one of its chords in

1,1) correspondence without a united point.

240. Suppose now that C is of the type V (C) ;
we have a line R which

is a directrix and also a double generator of the ruled surface ; through any

point of E there pass two other generators, while any plane through R
contains two other generators. The chords of C which lie in either system
of planes and do not pass through join pairs of points of a g^

1 and form

a rational quintic ruled surface.

An arbitrary plane of fi meefos the [4] containing C in a line, and the

plane of the opposite system through this line joins it to 0; there are

four chords of G which meet the line and do not lie in this plane. Hence
the double curve of the ruled surface is 6J?-f(74 and the bitangent de-

velopable 6J? + jE4 .

R is a trisecant of C
;
the ca-plane containing the line through which

meets G in two further points represents one of the three intersections.

The p-plane through either tangent of C at O meets G in another point,

and the tn-plane containing the line joining this point to represents one

of the other intersections.

Similarly there are three planes of Jf 4 passing through R.

241. To obtain this surface by projection we take the normal surface

which has a directrix conic F, and choose S to lie in a [5] containing F and

two generators g and h. Then S meets the plane of F in a point 0, and the

[5] meets S in the line JR. The [4] containing F, g and h meets 8 in a plane

passing through and the solids gh, gT, AF meet 8 in three lines Z, m, n
which lie in this plane, m and n passing through 0. S meets M in Z, m, n
and a twisted cubic which passes through and meets m and n again.

Through any point of F there pass a transversal to g and m, a transversal

to h and n and a line to
; through any point of g there pass two trans-

versals to F and m and a transversal to h and /; through any point of h

there pass two transversals to F and n and one transversal to g and I.

Hence the chords of F which meet 8 meet F in F, g and h each counted
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three times and a rational curve (78 meeting each generator once and F
four times. Two of these intersections with F are collinear with 0; the

other two lie on the chords of F through the other intersections of &3 with

m and n and are associated with the intersections of (78 with g and h.

Hence on projection we have a double curve 6jR+ (74 , R being a tri-

secant of (74 .

The surface is generated by a rational skew quartic and one of its chords

placed in (2, 1) correspondence without any united point. The joins of the

pairs of points of the quartic form a cubic ruled surface, so that the planes

joining the points of the chord to the pairs of points of the quartic which

correspond to them form a developable J54 with three planes passing

through R.

242. The pencil of primes through the [5] containing S, F, g and h cuts

out an involution of pairs of generators on F. There is one pair of this

involution meeting F in a pair of points collinear with ; these are in fact

two intersections of <78 with F.

Now it may happen that the solid containing this pair of generators
meets 8 in a line p through 0; in this case the projected surface has

a double generator and corresponds to a curve C of the type V (D). S
meets M&

6 in Z, m, n, p and a conic o>2 meeting m, n and p. On F we have

F, g, h each counted three times and the new pair of generators k, k'

together with a prime section (76 .

The surface is generated by a rational skew quartic and one of its

chords R placed in (2, 1) correspondence without any united point; but

here the correspondence must be specialised to give the double generator 6r,

one pair of points of the quartic having their join G meeting R in the point
which gives rise to them. The joins of the pairs of points of the quartic
form a cubic ruled surface, and we thus obtain a developable E3 with two

planes passing through R and one through G. The bitangent developable
of the surface is 6.R+ G+ Es .

The properties of the surface are also easily deduced from those of the

curve on Q. The double curve is

243. We now suppose that C is of the type VI (A) ;
the chords of C

in the tu-planes which do not pass through O form a rational quintic ruled

surface. An arbitrary plane p meets the [4] containing C in a line and
the plane w containing this line joins it to 0; there are no chords of C
meeting the line other than those which lie in this tu-plane. Thus the double

curve of the ruled surface is 10JS. An arbitrary plane w of ii meets the [.4]

containing C in a line
;
there are four chords of C meeting this line which

do not lie in the p-plane joining it to 0. Hence the bitangent developable
of the surface is 6.B+E.

13-2
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The CD-plane through any one of the three tangents of C at meets G

again in another point; the p-plane containing the line joining this point
to represents a plane of jE74 which passes through B. Thus there are

three planes of JE?4 passing through R.

To obtain this surface by projection we take the normal surface with a

directrix conic F and choose 8 to lie in the [5] determined by F and three

generators g, h, k. Then this [5] meets S in a line R which is a directrix and

also a triple generator of F
; through any point of R there pass two other

generators, while any plane through R contains one other generator. 8
meets M$* in three lines I, m, n passing through the point in which it

meets the plane of F and in three other lines A, fi 9 v, where A meets m and

n, fi meets n and Z, and v meets I and m. The double curve of the projected
surface is 10J?; the chords of F meeting 8 meet F in F, g, h and k, each

counted four times.

The surface is generated by a rational skew quartic and a line R in

(2, 1) correspondence; R is a trisecant of the quartic but there are no

united points. The joins of the pairs of points of the quartic form a cubic

ruled surface, and the planes joining the points of R to the pairs of points
of the quartic which correspond to them give a developable jE74 ,

three of

whose planes pass through R.

244. When is of the type VI (B) we have the surface dual to this
;

the double curve is 6J? + (74 , whereR is a trisecant of (74 ,
and the bitangent

developable is 10JJ.

To obtain this surface by projection take the normal surface with a

directrix line A
;
choose 8 to meet the plane containing A and a generator

g in a point X, the plane containing A and a generator h in a point Y and

the plane containing A and a generator k in a point Z. Then there is a [5]

containing S, A, g, h, k which meets S in a line R which is a directrix and also

a triple generator of the surface. Through any point of R there passes one

other generator, while any plane through R contains two other generators.

S meets M5
6 in the lines YZ, ZX, X Y and a rational cubic &3 passing

through X, Y and Z. The chords of F which meet S meet F in A, g> h, k,

each counted three times and in a rational curve <78 meeting each generator
once and A three times, there being two tangents of <78 meeting &3 . On

projection we have a double curve 6JR+ (74 ,
where R is a trisecant of C^.

The surface is generated by a rational skew quintic and one of its tri-

secants in (1, 1) correspondence without any united point.

Surfaces whose generators belong to a linear congruence

245. Suppose now that C is of the type VII (A) ; through the solid

containing the quadric surface on which C lies there pass two tangent
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primes of 1, touching it in and 0'
;
these represent two lines R and R' in

[3] which are directrices of the ruled surface. Through any point of one of

these (say R) there pass five generators lying in a plane through R'. Hence

the double curve of the ruled surface is 1(XR and the bitangent developable
is WR'.

To obtain this surface by projection take the normal surface F with a

directrix line A and project from a solid S lying in a [5] which contains

one of its directrix quintics. Then this [5] meets S in a line R, while

the [5] through 8 and A meets S in a line R'\ R and JR' are directrices

of /; through any point of R there pass five generators lying in a plane

through R'.

The surface is generated by two lines R and R' in (1, 5) correspondence.
The solid 8 meetsM5

* in the curve &6
3 in which it is met by the chords

of the directrix quintic; the chords of F which meet 8 meet F in the

directrix quintic counted four times.

246. When C is of the type VII (B) the ruled surface has two directrices

R and R' and three double generators G, H, K. Through any point of R
there pass four generators lying in a plane through R', while through

any point of R' there pass two generators lying in a plane through R.

The double curve is 6R + G+H+ K+ R' and bitangent developable is

To obtain this surface by projection we take the normal surface with a

directrix conic F
;
take 8 to meet the plane of F in a point and to contain

a plane TT which lies in a [4] containing a directrix quartic E. Then the

three double generators arise automatically, there being three pairs of

generators whose solids meet 8 in lines Z, m, n passing through and

meeting TT*. 8 meets Jf5
6 in I, m, n and a plane cubic 9-g

1
lying in TT and

passing through the intersections of TT with Z, m, n.

The surface is generated by a (2, 4) correspondence between R and R'

specialised to give the three double generators.
The chords of F meeting 8 meet F in E counted three times, g, g*', ft, h',

k, k' and F.

247. In type VII (C) the ruled surface has two directrices R and R/ and

four double generators G, H, J, K . Through any point of each directrix there

pass three generators lying in a plane through the other. The double curve

and bitangent developable are both 3R + G+H+ J+K+ 3J2'.

*
Through IT there pass solids cutting out a g^ on E, while through there pass

lines cutting out a g2
l on F; there are three pairs of generators such that a pair meets

F in a set of the g2
l and meets E in two points of a set of the g^

1
. These are the three

pairs whose solids meet S in lines.
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Take the general surface F in [7] and project from a solid 8 containing

a line I in the solid K containing a directrix cubic A and a line V in the

solid K' containing a directrix cubic A'. Then there are four pairs of

generators whose solids meet S in lines ra, n, p, q each of which meets I

and I'. S meets M^ in I, I', m, n, p, q.

The surface is generated by two lines R and J2' in (3, 3) correspondence,
the correspondence being specialised to give the four double generators.

248. When C is of the type VIII (A) the surface has a single directrix

R which is also a quadruple generator; through any point of R there passes
one other generator. To obtain this by projection we take the normal

surface in [7] with a directrix line A and project from a solid S meeting
four planes which join A to four different generators of the surface, giving
the surface in S as required.

The surface is generated by a rational skew quintic and its quadri-

secant in (1, 1) correspondence without any united point.

The double curve and bitangent developable are both 1012.

249. When C is of the type VIII (B) the surface has a directrix R
which is also a double generator; through any point of R there pass two

other generators which are coplanar with R.

Take in [7] the normal surface with a directrix conic F, and the [4]

which contains F and two generators. Two primes through this [4]

give each two further generators of F 9
and we thus have two chords

of F which intersect in a point 0. The primes meet in a [5] containing
the plane of F and also the first two generators ;

choose S to lie in this [5]

and to pass through 0. Since there are two of the pencil of primes through
the [5] which meet F in pairs of generators whose solid passes through it

follows that all the primes of the pencil must do so, so that we have an

infinity of pairs of generators whose solids meet S in and which meet F
in pairs of points collinear with 0. Hence on projection we have the

surface required. The double curve and bitangent developable are both

1R + G+H+ K.

The surface is generated by a (2, 1) correspondence between a rational

skew quartic and one of its chords R\ the pairs of points of the quartic

lying in planes through R. The joins of these pairs of points form a cubic

ruled surface of which R is the double line. The range of points on R is thus

related to the pencil of planes through R. There is incidentally a (1, 2)

correspondence set up between the points of R\ through any point of R
there pass two chords of the quartic (other than R), while any plane through
R gives another chord of the quartic meeting it. There will be three coin-

cidences in this correspondence, thus shewing the existence of the double

generators G, H, K.
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250. When C is of the type VIII (C) we have a surface with a directrix

jR; through any point of R there pass three generators which lie in a plane

through It. There are four double generators; the double curve and bi-

tangent developable are 6R + G+H+ J+ K.

Take a directrix cubic A of the normal surface F, and two primes

through it. Each meets F further in three generators, giving thus two

triads of points on A whose planes meet in a line 1. Take S to pass through
I and to lie in the [5] common to the two primes. Then the pencil of primes

through the [5] is such that any one of the primes meets F in A and three

generators, these generators meeting A in a triad of points whose plane

passes through I. On projection we have the surface required.

The surface is generated by a line and a twisted cubic in (1, 3) corre-

spondence; the triads of points on the cubic being those cut out by the

planes through the line. We thus have a (1, 3) correspondence between

the points of the line; there are four coincidences, thus shewing the

existence of the four double generators.

251. On pp. 306-308 we give tables of the different types of rational

ruled surfaces of the sixth order in [3] (not including developable sur-

faces). There are eighty-one different types altogether. We have already

obtained sixty-seven of these; the remaining ones will be obtained in

Chapter VI.

SECTION II

ELLIPTIC SEXTIC RULED SURFACES

252. We first obtain the different types of elliptic sextic ruled surfaces

in [3] by means of elliptic sextic curves on O
;
afterwards we obtain them

as the projections of normal surfaces in [5].

In the first investigation we shall need to use the properties of certain

ruled surfaces formed by chords of an elliptic sextic curve. The elliptic

sextic curve is normal in [5]*, all elliptic sextic curves being obtainable as

the projections of curves in [5] . On the normal curve there are oo 1 linear

series of pairs of points, the chords joining the pairs of points of such a

linear series form a rational quartic ruled surface with, in general, oo1

directrix conies, each conic meeting the curve in two points f. To each of

these ruled surfaces there belong four tangents of the curve.

* 8.

f Segre, "Sur les transformations des courbes elliptiques," Math. Ann. 27 (1886),
296. Of the oo * series g2

l there are nine for which the quartic ruled surface has a
directrix line.
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Elliptic sextic curves which lie on quadrics

253. We can at once divide the elliptic sextic curves C which lie on a

quadric Q in [5] into the following seven classes :

I. The normal curve in [5],

II. The curve C is contained in a [4].

III. C is contained in a tangent prime T of ii but does not pass through
the point of contact of Q and T.

IV. C is contained in T and passes through 0.

V. C is contained in T and has a double point at O.

VI. C lies on the quadric in which i is met by a [3] .

VII. C lies on a quadric cone in which 1 is met by a [3] which touches it.

When C is contained in a space [4] it may or may not have a double

point; if it has not a double point it has two trisecant chords*.

We have two kinds of elliptic sextic curves on a quadric in [3] :

(A) The intersection with a quartic surface passing through two

generators of the same system and touching the quadric twice. This curve

meets all generators of one system in four points and all of the other

system in two points; it has two double points.

(B) The intersection with a cubic surface touching the quadric in

three poiAts ;
this curve meets each generator of the quadric in three points

and has three double points.

Also we have on a quadric cone :

(A) The intersection with a cubic surface passing through the vertex

and touching the cone twice; this curve has a double point at the vertex

and also two other double points ;
it meets every generator of the cone in

two points other than the vertex.

(B) The intersection with a cubic surface touching the cone three

times; this curve has three double points and meets every generator in

three points.

254. We must not overlook the fact that there can exist on a quadric
an elliptic sextic curve with a triple point. It is true that such a curve

does not lie on a quadric in general, but if the tangents at the triple point
are co-planar it will do so, the quadric being then determined by having to

touch at the triple point the plane of the three tangents and to pass through
six arbitrary points of the curve. The curve meets every generator of the

quadric in three points, and we can also have such a curve lying on a

quadric cone.

The quintic ruled surface formed by the trisecants of the curve f breaks

up into the quadric counted twice and the plane of the tangents at the

triple point.
* Berzolari, Palermo Rend. 9 (1895), 195; Castelnuovo, ibid. 3 (1889), 28.

t 89-
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To obtain such a curve in [3] we must project the normal curve in [5]

from a line in a trisecant plane; the three tangents of the curve at the

points where it is met by the trisecant plane lying in a [4] . The existence

of such planes is at once clear on using elliptic arguments for points of the

curve; there are oo 2
such, four passing through any chord of the curve.

Thus the curve in [3] exists for all values of the modulus.

We also have a curve in [4] such that the tangents at the three points
where it is met by a trisecant lie in a [3].

255. We are now in a position to give the following more detailed

classification of the elliptic sextic curves C on a quadric ti in [5] . The
abbreviations t&a />4 ,

Ow3pz> e^-> are explained in the footnote to 171.

I. C is a normal curve on fl.

II. (A) C lies in a [4] which does not touch fi, and has no double point.

II. (B) C lies in a [4] which does not touch fi, and has a double point.

III. C lies in a tangent prime T but does not pass through 0, the point
of contact of fi and T.

(A) C is c72 /o4 with two chords through 0.

(B) C is tfj4p2 with two chords through O.

(C) C is m2pi with a chord through and with a double point.

(D) G is tu4p2 with a chord through and with a double point.

(E) C is tu3 /o3 with three chords through 0.

(F) C is tu3 />3 with two chords through and with a double point.

IV. C lies in a tangent prime T and passes through O.

(A) C is Ow2pa with a trisecant through 0.

(B) C is Ow3p2 with a trisecant through 0.

(C) G is Ow2p3 with a double point.

(D) C is Ow3p2 with a double point.

These four types can be written down at once because when C, which

lies on the quadric point-cone with vertex in which T meets Q, is pro-

jected from O on to a solid in T it becomes an elliptic quintic curve lying

on a quadric*. Similarly the curves under III must give elliptic sextics

when thus projected f.

V. C lies in a tangent prime T and has a double point at 0. It will

meet every plane of Q passing through in two points other than 0.

VI. C lies in a [3] through which two tangent primes of ii pass ;
it

thus lies on an ordinary quadric surface.

(A) C meets all generators of one system in four points and all of

the other system in two points, having two double points.

(B) C meets every generator in three points and has three double

points.

(C) G meets every generator in three points and has a triple point.

* Of. 151. t Cf. 253.
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VII. G lies in a [3] which touches Q, and therefore on a quadric cone
with vertex V.

(A) C has a double point at V and also two other double points,

meeting every generator in two points other than F.

(B) C has three double points and meets every generator in three

points.

(C) C has a triple point and meets every generator in three points.

Surfaces whose generators do not belong to a linear complex

256. If we have a normal elliptic sextic curve C in [5] the projection of C
from a plane on to a plane is an elliptic sextic curve with nine double points,
while the projection from a plane meeting C is an elliptic quintic curve
with five double points. Hence the chords of C form a locus M3

9 of three

dimensions and the ninth order, on which C is a quadruple curve. C has
no quadrisecant planes, because an elliptic quartic in [3] has no double

points, so that there is no double surface on M3
9

.

If there is a quadric Q passing through C every plane of 1 is met by
nine chords of C, so that in the most general type of elliptic sextic ruled

surface in [3] the double curve (79 is of order nine and the bitangent
developable E9 of class 9*.

There are four trisecant planes of C which lie on Q f ;
there are, in fact,

two of these belonging to each system of planes on ii. Hence <79 has two

triple points and E9 two triple planes.
The chords of C which lie on 1 form a ruled surface J?2

18 of order 18,
the intersection of Q and M3

9
; there are four such chords passing through

any point of C. A prime section C' of JB2
18 is in (1, 1) correspondence with

G9 and E*%.
In the (a, a') correspondence between C and C' determined by the

condition that two points correspond when the line joining them is a chord
of C we have a= 2 and a' = 4. The number

77' of branch points of this

correspondence on C' is the number of tangents of C which lie on Q,
so that

77'
=

12||. Through each point of C there pass four of its chords
which lie on fi

; the number
77

of branch points of the correspondence on
C is the number of points of C for which two of these four generators of

J?2
18 coincide. But if, through a point P of C, we have the four chords PA,

PS, PC, PD lying on ii, the points A, B, C, D are a set of points on an

elliptic curve of a (4, 4) correspondence of valency 2. Hence 77= 24^.
Zeuthen's formula then shews that p' = 4**.

Hence the most general elliptic sextic ruled surface in [3] has a double
curve (79

4 and a bitangent developable Ef.

* 33. t 35. t 33.

II
32.

If 14. ** 16.
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257. Consider now a quartic ruled surface, with oo 1 directrix conies,

containing the curve ; each generator of this surface is a chord of the curve,

while each directrix conic meets it in two points.

There are oo 20
quadrics in [5], and of these there are oo 8

containing
the curve C of order six and genus 1

;
a quadric meeting C in twelve general

points necessarily containing it entirely*. If, in addition, the quadric is

made to contain three generators of the quartic surface it will contain the

whole of the surface, so that we have oo5 such quadrics f. This quadric
contains the planes of two directrix conies of the surface J ;

the oo 1
planes

form a F3
3 which is met by the quadric in two of the planes and in the

quartic surface. The planes are of opposite systems on the quadric.
The ruled surface formed by the chords of C which lie on 1 now breaks

up into this quartic surface and a ruled surface of the fourteenth order on
which C is a triple curve. Every plane of ii meets the quartic surface in

two points and therefore the other surface in seven points. We thus obtain

in [3] an elliptic sextic ruled surface whose double curve consists of a conic

and a curve of the seventh order and whose bitangent developable consists

of a quadric cone and a developable of the seventh class.

Through any point PofC there pass four of its chords which lie entirely

on ii
; one of these PQ is a generator of the quartic ruled surface, while the

other three PX, PY, PZ are generators of the ruled surface of order 14.

Since the set of points P-4-Q and also the set 2P+ Q +X + Y+ Z vary
in two linear series for different positions of P on C so does the set

P+X + Y + Z. The generators of the ruled surface of order 14 thus set up
on G a (3, 3) correspondence of valency 1, so that there are sixteen points

of C at which two of the three generators of this ruled surface coincide.

Again, of the twelve tangents of G which lie on Q there are four be-

lojiging to the quartic; there must then be eight belonging to the ruled

surface of order 14.

Considering then the correspondence between C and the curve C' in

which the ruled surface of order 14 is met by a [4] we have

a=2, a'=3, 39= 1, r?=16, i?'= 8
>

whence p' = 3, so that G' is of genus 3.

Thus we have in ordinary space a ruled surface whose double curve

is <72 +(77
3 and bitangent developable 1?2+ J5?7

3
.

The generators of the quartic surface set up on C a (1, 1) correspondence
of valency 1, while those of the ruled surface of order 14 set up a (3, 3)

* The intersections of an elliptic curve with a primal are such that any one of

them is determined by the rest.

t That there are six linearly independent quadrics containing the quartic ruled

surface follows at once when its equations are written in the form

X/Y => Y/Z - X'jY' - Y'jZ'.

% Of. 91.
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correspondence of valency 1
;
these correspondences are both symmetrical

and have therefore two common pairs of points, which means simply that

there are two chords of G generators of both ruled surfaces*. This shews

that C2 and <77
3 intersect in two points.

258. There are oo 1
quartic ruled surfaces arising from the oo 1

</21>s on

(7; we have thus oo 2
conies, lying in planes, on these surfaces. We may call

these planes secant planes of M^\ they meet Jf3
9 in conies, whereas an

ordinary plane meets M3
9 in nine points. There are oo 2 secant planes; they

form a locus of four dimensions. We can use arguments for these planes

similar to those used in 91.

Take any one of the secant planes and the conic F therein meeting C
in X and Y; take any point P in the plane and let PX, PY meet F again
in X.' and Y'. Then there are chords of C passing through X' and Y', and

these joined to X and Y respectively give the two trisecant planes of C
which pass through P.

Hence we conclude that if there is a secant plane passing through a

point P it must intersect both the trisecant planes of C through P in lines,

provided that P is not on the conic in the secant plane.

259. Take a trisecant plane of C lying on ii, and suppose for the moment
that none of the three chords of C which it contains is a generator of the

quartic ruled surface. Then there are three generators of the quartic ruled

surface passing one through each of the points in which the trisecant plane
meets C. The secant plane which belongs to the same system of planes on

Q as that to which the trisecant plane belongs meets the trisecant plane in a

point and the quartic ruled surface in a conic
;
we thus have a [4] meeting

the quartic ruled surface in a conic and three generators, which is impossible.

We therefore conclude that the trisecant plane contains a generator of the

quartic ruled surface. Incidentally, it must meet the other secant plane
on Q in a line.

Suppose now that Q contains the planes wl9 w2 , pl9 p2 trisecant to C
and also the secant planes WQ and p . Then WQ meets pl and />2 in lines,

while pQ meets Wi and w2 in lines.

Now pQ represents the plane of the double conic C2 . Hence <77
3 has two

double points on C2 as well as the two simple points already mentioned;

they are represented on fi by the planes wl and w2 . The plane of C2 meets

the sextic ruled surface in (72 counted twice and in two generators (these

generators being represented on O by the two points in which C is met by
Po) ;

these intersect in a point of Cf, and all the seven intersections of (77
3

with the plane of C2 are thus accounted for. The generators of the surface

are trisecant to Cf

7
3

.
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The two points in which p meets C lie one in w1 and the other in w2 .

The projection of (77
3 on to a plane from one of its double points is a

quintic with three double points. Thus there are two lines through the

double point of (77
3 each of which meets (77

3 in two further points, and these

are generators of the surface
;
the third generator through this point lies

in the plane of (72 .

There are similar statements for the developable 1?7
3 and the planes

Pl>P2'

260. Of the oo5
quadrics containing C and one secant plane (and there-

fore two) there are oo 1 which contain another (and therefore still another)
secant plane. Then the ruled surface formed by the chords of C which lie

on Q breaks up into two quartic surfaces and a ruled surface of order ten

of which two generators pass through any point of C. By the same

argument as in 257, there are eight points of C for which these two

generators coincide, and each ruled surface contains four tangents of C.

Any plane of ii is met by two generators of each quartic surface and

by five generators of the other surface
;
we have thus in ordinary space a

sextic ruled surface whose double curve is C2+D2+C5 and bitangent

developable E2+F2+E5 .

Taking a section of the ruled surface of order ten by a [4] we have a curve

C' of order ten, and for the correspondence between C and 0'

=2, '=2, p=l, ij=8, 7?'= 4,

whence p' 2, and C' is of genus 2.

Thus for the double curve of the ruled surface we have (72 -f-Z>2 -f-C
f

6
2

and for the bitangent developable E2+F2+ Ef>

2
.

Each quartic surface sets up on C a (1, 1) correspondence of valency 1,

while the ruled surface of order ten sets up a (2, 2) correspondence of

valency zero. This shews that, all these correspondences being symmetrical,
there are no generators common to the two quartic surfaces, while each

quartic surface has two generators in common with the ruled surface of

order ten. Hence (75
2 has two simple intersections with each of C2 and Z>2 ,

while J575
2 has two simple planes in common with each of E2 and F2 .

261. Suppose that the quadric 1 has wl9 m2 , pl9 p2 for trisecant planes

of C and also contains the secant planes tn , /o > WQ> PQ- Then the two

intersections of tu with C will lie one on pv
and the other on p2 ,

t

vrith

similar statements for the other secant planes.

We conclude that C2 and D2 have two intersections each of which lies

on (76
2

. The plane of either (72 or D2 meets the ruled surface in the double

conic and two generators whose point of intersection lies on (76
2

. All the

intersections of (76
2 with these planes are thus accounted for. The generators

are chords of (76
2

.
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The three generators through one of the two triple points consist of

one in the plane of C2 ,
one in the plane of J52 and the trisecant of (76

2
.

The trisecants of C&
2 form a quadric surface; the intersection of this with

the sextic surface consists of the two particular trisecants just mentioned and

the curve <75
2 counted twice.

Surfaces whose generators belong to a linear complex which

is not special

262. Suppose that we have on } an elliptic sextic curve G contained

in a prime which does not touch ii. The curve has two trisecants, and

these lie on Q. We have in [3] correspondingly an elliptic sextic ruled

surface with a double curve of order nine which has two triple points at

each of which the three generators are co-planar ; by the same argument
as in 256 the double curve is a (79

4 of genus 4.

Let us obtain this genus in another way.
The chords of C form a locus M^ on which the two trisecants are triple

lines and C is a quadruple curve. Since any chord of C is met by two* chords,

other than those which pass through its intersections with (7, there is a double

surface F2 on J/3 .

The order of F2 is the number of double points of a plane section of Jlf3
9

.

The genus of such a plane section can be calculated by an application of

Zeuthen's formula, and the number of its double points is thereby determined.

Take any plane section c of J/3
9

, and consider the correspondence between C
and c, points of the two curves corresponding when the line joining them is

a chord of C. The correspondence is a (2, 5) correspondence; for through
each point of c there passes a chord of C and through each point of C there

pass five of its chords which meet c, these lying in the solid determined by the

point of C and the plane of c. The number of branch-points of the correspondence
on c is the number of tangents of C which meet c; this number is 12 the

order of the surface formed by the tangents of C. If P is a branch-point of the

correspondence on C then two of the five chords of C which pass through P
arid meet c must coincide, so that the solid PC must touch G at a point other

than P. The tangent of C at this other point must be one of the 12 tangents
of C which meet c, so that the correspondence has 48 branch-points on C. Thus

a = 2, a' = 5, p = l, 77
= 48, if

= 12,

and Zeuthen's formula gives p' = 10. A plane curve of order nine and genus 10

has 18 double points; hence the double surface on M3
9 is a surface .F2

18 of

order 18. It can be shewn that C is a double curve on F2
18

;
the section of M3

9

by, for example, a quadrisecant plane of C consists of six chords of C together
with a cubic having a double point and passing through the four points of C
in the plane. Thus F2

18 meets ii in C counted twice, the trisecants counted
three times and a residual curve of order 18.

Hence the chords of C which lie on 2 form a ruled surface of order 18

(the intersection of Q and M3
9
)
on which C is a quadruple curve and the two

trisecants are triple generators, there being also a double curve of order 18.

The section of this ruled surface by a solid is a curve of order 18 lying on a

* The projection of C from a chord on to a plane is an elliptic quartic curve with
two double points.
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quadric and meeting each generator in nine points ;
it has six quadruple points,

two triple points, and eighteen double points. Thus its genus is

136 - 72 - 36 - 6 - 18 = 4,

so that C9
4 and E are also of genus 4.

263. If we project a normal elliptic sextic curve on to a [4] from a

point lying in a secant plane this secant plane meets [4] in a line which

intersects the two trisecants of the projected curve C
; through any point

of the line pass two chords of C, and all these chords form a quartic ruled

surface.

There are oo 14
quadrics in [4]; hence there are oo 2

passing through C,

which will incidentally contain the two trisecants, and oo 1 of these contain

the quartic ruled surface.

If we consider one of these quadrics as a section of Q by the [4] con-

taining (7, the points of C represent the generators of an elliptic sextic ruled

surface in [3] whose double curve is C^+ C?
3
exactly as in 257; (77

3 has

two double points and two simple points on C2 . Similarly for the bi-

tangent developable E2+ Ef.

264. Given a g^ on the normal elliptic sextic curve the joins of pairs

of points form a quartic ruled surface with oo 1 directrix conies each meeting
the curve in two points ;

but these pairs of points on the conies themselves

form a g2
l

, they are cut out by [4]'s passing through two generators of the

quartic surface. Given two points on the curve, that g is determined in

which they form a pair ;
but there are four series g2

l
giving rise to quartic

ruled surfaces such that this pair of points lies on a conic of the surface
;

this last statement is at once clear on using elliptic arguments.
The planes of the directrix conies of a quartic ruled surface form a locus

F3
3

,
and in [5] two loci F3

3 without a common surface meet in a curve

of order nine. It is therefore clear that there are points not lying on the

elliptic curve, or on any of its chords, through which there pass two secant

planes. If we project from such a point on to a [4] the two secant planes
meet [4] in lines, each of which meets both the trisecants of the projected
curve C ; through any point of either line there pass two chords of (7, and all

such chords form a quartic ruled surface on which the line is a double line.

Of the oo 2
quadrics passing through C there is one containing both

the quartic ruled surfaces; regarding this as a prime section of Q the

points of C represent the generators of an elliptic sextic ruled surface in

ordinary space whose double curve is C2+D2+ C&
2 and bitangent develop-

able E2+F2+ E^ exactly as in 260. Here the generators of the surface

belong to a linear complex, and the three generators at a triple point lie in

a tritangent plane.

265. Suppose now that the curve C lying on Q is contained in a [4]

and has a double point P. Then P represents a double generator G of
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the ruled surface. The chords of C form a locus M3
8

,
and any plane on Q

meets the [4] containing C in a line meeting this locus in eight points.

Thus the ruled surface in [3] has a double curve G+ C% and a bitangent

developable G+E9 .

The chords of C lying on i form a ruled surface of order 16; there are

four of them passing through every point of (7, except that through P there

pass only two PQ, PR, while through Q and R there pass only three. The

twelve tangents of C which lie on i belong to this ruled surface. We have

on C a (4, 4) correspondence of valency 2
; there are twenty-four points of

C for which two of the four corresponding points coincide. Now these points

include P. For we regard the double point of C as lying on two distinct

branches of the curve; suppose that it is Pl regarded as a point of one

branch and P2 regarded as a point of the other. Then the tangent prime
of Q at Pl meets C twice at P1? twice at P2 , and once at each of Q and R.

Thus corresponding toPl wehaveQ+ R + 2P2 J similarly, corresponding toP2

we have Q + R + 2Pl . The pointP in fact counts for four among the twenty-
four coincidences. The points Q and R are not included, since Pl and P2

are on different branches of C. We have then twenty coincidences, which

give generators of the surface in [3] touching the double curve (78 .

Taking a section of the ruled surface we have a curve C' of order 16,

and in the correspondence between C and C'

a=2, a' =4, p=l, 77=20, 7?'= 12,

so that >'= 3, and C' is of genus 3.

The curve <78
3 has two double points and two simple points on (?*.

Through either of the double points there passes one line meeting (78 in

two other points not on O\ this is the generator, other than G, which

passes through this point; it is represented on Q, by one of the points Q, R.

We can find the genus of (78
3 and E8

* in another way.
The chords of C form a locus l/3

8 on which C is a quadruple curve; the

quartic cone projecting C from P is a double surface on M3
8

,
and P is a sextuple

point. Making use of an argument similar to that of 262, we find that there

is a double surface P2
U on J 3

8
, but this is composed of the quartic cone and a

double surface FJ. C is a simple curve on P2
7

;
a quadrisecant plane of C meets

M3
8 in six chords of G and a conic passing through the four points of G

; the

intersection of 2 and FJ consists of C and an octavic curve, while Q, meets
the quartic cone in C and two lines PQ, PR.

Hence the chords of C which lie on } form a ruled surface of order 16 with
two double generators, a double curve of order 8 and the quadruple curve G.
The section of this ruled surface by a solid is a curve of order 16 lying on a

quadric and meeting all the generators in eight points ;
it has six quadruple

points and ten double points. Its genus is therefore

105 - 56 - 36 - 10 = 3,

and therefore C8
3 and E are also of genus 3.

* Cf. 102.
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266. Let us project a normal elliptic sextic from a point on one of its

chords. We obtain a curve C with a double point P, and there are four

lines through P which are double lines of quartic ruled surfaces whose

generators join pairs of points of four g2
vs on C. Since there are oo 3

quadrics passing through C there are oo 1
containing one of these quartic

ruled surfaces.

Now regard one of these as a section of Q by a [4] . The surface formed

by the chords of C which lie on ii here breaks up into the quartic ruled

surface and a ruled surface of order 12; every plane of ti meets the [4]

containing G in a line meeting the former surface in two points and the

latter in six. Hence C represents the generators of an elliptic sextic ruled

surface in [3] contained in a linear complex ;
the double curve is <72 + G + <76

and the bitangent developable Ei+G+ E^.

The quartic surface sets up on C a (1, 1) correspondence of valency 1,

while the ruled surface of order 12 sets up a (3, 3) correspondence of

valency 1. This gives sixteen as the number of points of G at which two of

the three generators of this latter surface coincide
;
but P is counted four

times in this result.

Of the twelve tangents of C which lie on Cl four belong to the quartic
ruled surface and eight to the ruled surface of order 12. If we take the

section C' by a solid we have a curve of order 12, and for the correspondence
between G and C"

a=2, a' =3, p=I, 77=12, T/= 8,

so that p'= 2, and C' is of genus 2.

Thus the ruled surface in [3] has a double curve C2+ G + CQ
2 and a

bitangent developable E% -f G+ U6
2
.

The plane of (72 contains G, and <76 passes through the two intersections

of G and C2 ;
<76

2 also meets G in two other points*. There are two further

intersections of <76
2 and C2

There is one other generator passing through either intersection of C2

and G; this is the unique line, other than G, passing through the point,
which is trisecant to (76

2
.

There are precisely similar statements for the bitangent developable.

Surfaces with a directrix line which is not a generator

267. If G is of the type III (A) it meets every plane w of Q through
in two points and every plane p of fi through in four points; two

chords of the curve passing through O. An arbitrary plane p of Q meets

T in a line, and the tu-plane through this line joins it to O. This contains

one chord of the curve ;
there are eight others meeting the line. We thus

* For this statement cf. 102.

E 14
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have in [3] a ruled surface with a directrix line JR; through any point of

R there pass two generators, while any plane through R contains four

generators ;
the double curve is R -f- GB .

The pairs of points of C which lie in the tu-planes through form a g2
l

,

and so the chords of G in these planes form a quartic ruled surface. The

p-planes through cut out on C sets of a g\ they thus set up a (3, 3)

correspondence on C of valency 1, and there are sixteen points of G for

which two of the three corresponding points coincide.

The curve C is touched by four tu-planes and eight p-planes ;
each of

these last planes contains two of the sixteen points just mentioned. The

ruled surface formed by the chords of C which lie in the p-planes is of order

14; take C', a section of it by a [3], Then for the correspondence between

G and C'

a=2, a'=3, p=l, 77=16, V= 8,

so that p' 3, and C' is of genus 3.

Thus the double curve is R+ <78
3

. The generators of the ruled surface

meet R and are trisecants of (78
3

. Since G has two trisecants (78
3 has

two triple points; R is a chord of (78
3
, the points in which it meets <78

3

being represented on Q by the tn-planes containing the two chords of G

through 0.

Any plane w of Q meets T in a line, and the plane p through this line

joins it to 0. This contains four points and therefore six chords of (7; there

are three other chords meeting the line. Thus the bitangent developable
of the surface is 6J2 + U3 ; the planes of E3

Q are the planes of the pairs of

generators which intersect in the points of J2, and two of these planes

pass through R, being represented on f1 by the p-planes containing the two
chords of C through 0.

When C is of the type III (B) we have similarly a double curve 6J? -f (73

and a bitangent developable R+ EQ
B

. R is a chord of <73 ; EQ
3 has two triple

planes and two of its planes pass through JR. Through any point of R there

pass four generators, while any plane through R contains two generators.

268. Consider again a normal elliptic sextic in [5] and a g thereon.

We have a quartic ruled surface, and the planes of the directrix conies of

this form a F3
3

. Now project on to a [4] from a point of this F3
3 which is

not on a chord of the curve. The projection of F3
3 is a quadric point-cone*

and (7, the projected curve, lies on this cone, meeting all the planes of one

system in two points and all of the other system in four points ; but each

of these sets of four points consists of two pairs of the same g2*.

We can then regard this quadric point-cone as the section of Q by a

tangent prime T 9 and G is evidently of the type III (A) or III (B).

* 99.
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Consider for definiteness a curve C of the type III (A). The four points
in which G is met by a p-plane form two pairs of the same g^ ; hence the

chords of C which lie in p-planes now form a quartic ruled surface Qp
and

a ruled surface J?2
10 of order ten on which C is a double curve ; the chords

of C in zu-planes form as before a quartic ruled surface Qw . The trisecants

of C are generators of Qp
and double generators of .K2

10
. The surface R2

W

sets up on C a symmetrical (2, 2) correspondence of valency zero, and we
can deduce that jR2

10 and Qp
have two common generators.

The number of points of G at which the two generators of JK2
10 coincide

is eight ; also, of the twelve tangents of C which lie on fli four belong to

Qw9 four to Qp
and four to J22

10
. Hence, considering the correspondence

between G and a section G/
of Rz

w by a solid,

a=2, a'=2, p=l, 77=8, ^= 4,

so that ^/= 2.

A plane p of Q meets T in a line ;
the nine chords of G meeting this line

consist of the chord in the plane w joining the line to O, of two generators
of Q p

and six of jR2
10

. Thus the ruled surface has a double curve R -f <72+ G$
2

;

(76
2 has two double points through both of which G2 passes, while (76

2 and
<72 have two further simple intersections. (76

2 meets R in two points, but

R and (72 do not meet. The bitangent developable is still 6JB -fE3 .

Similarly, if G is of the type III (B) we have in [3] an elliptic sextic

ruled surface whose double curve is given by 6J2-f (73 and bitangent

developable by R 4- E2+ E<? ;
there are properties of this developable dual

to those already given for the double curve of the ruled surface just

mentioned.

269. There are still more special examples of surfaces in [3] belonging
to the types III (A) and III (B).

Consider again the elliptic normal sextic curve in [5], We can have

sets of four points a, a', /?, /?' upon the curve such that a and a! form a

pair of a g including also the pair /?/?', while the pairs ]8 and a'/?' belong
to a second gra

1 *- Consider the quartic surface formed by the first g\
the second g^ gives an involution of pairs of generators on this surface

;

the joins of pairs of points in which these pairs of lines meet any directrix

conic of the surface thus pass through a fixed point. In fact the solids

determined by the sets of four points such as a, a', )3, j8

r

(such a set being
determined by one point) have a line in common lying on the F3

3 formed

by the planes of the directrix conies.

* We take the elliptic arguments so that

a + a' = c, + j3'
=

C, a + j3
= c + Jw, a' + 0'

= c 4- Ja>,

where <o is a period of the elliptic functions. Any three of these congruences involve

the fourth.

14-2
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Let us then project on to a [4] from a point of this line. We obtain an

elliptic sextic curve lying on a quadric point-cone, meeting all planes of

one system in four points and all of the other system in two points; but

the sets of four points are such that, if a, a', j8, /}' is one of them, the

pairs aa' and j8/J' belong to one jr,
1

, while the pairs a/J and a'/J' belong to

another.

Suppose, for definiteness, that C is of the type III (A). The chords of

C lying in the ^-planes through form as before a quartic ruled surface

Qw ;
those which lie in the />-planes throughOiorm two quartic ruled surfaces

Qp
and Qp

and a sextic ruled surface jR2
6

. The trisecants of C are generators
of each of the three surfaces Qp9 Qp , JR2

e
. The surface R gives on C a (1, 1)

correspondence of valency 1, so that this surface has two generators in

common with each of the surfaces Qp , Qp
as well as the trisecants.

An arbitrary plane p meets T in a line; this meets Qp
in two points,

Qp
in two points, jR2

6 in four points and is met by the chord of C lying in

the cj-plane joining it to O. Also it is easily seen that the surface jR2
6 is

elliptic.

We have thus in [3] a surface whose double curve is R+ C2+ D2+ C^ ;

(72 andD2 have two intersections through each of which C^
1
passes, while

C^ meets each conic in two other points. R is a chord of C^. The plane
of either conic meets the surface in this conic counted twice and a pair of

generators which intersect on R.

The bitangent developable is again QR+E3 .

Similarly we have a surface reciprocal to this when C is of the

type III (B).

270. If C is of the type III (C) it meets every plane w of Q through
in two points and every plane p of fi through in four points ;

it has a

double point P and one of its chords passes through 0.

An arbitrary plane p of Q, meets T in a line
;
the plane joining this line

to P meets ft again in a second line passing through P. The plane w joining
the line to contains one chord of C, and there are seven others meeting
the line. Hence we have in [3] a ruled surface with a double generator G\
the double curve is R+ G+ C7 .

The chords of C which lie in the cr-planes through form a quartic
ruled surface Q^ , while those which lie in the />-planes through form a

ruled surface J?2
12 of order 12 on which C is a triple curve. The generators

of R2
12 set up on C a symmetrical (3, 3) correspondence of valency 1

;
this

shews that there are sixteen points of C at which two of the three generators
of R2

12 coincide. Through P there pass two chords PQ, PR of C which lie on

Q
;
the pointP is not included among the sixteen coincidences. To the point

PI on one branch of C there correspond three distinct points Q, R y P2 ,
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while to the point P2 on the other branch there correspond three distinct

points Q 9 jR, P! .

G is touched by four tu-planes and eight p-planes through O. Taking
a section C' of J?2

12
by a solid we have, for the correspondence between

G and G',

a=2, a'=3, jp=l, ^=16, rf^S,

so that p'= 3, and C' is of genus 3. Hence the double curve is R + + (77
3

.

The plane of the two tangents of C at P meets the cj-plane through
OP in a generator of Q^ and the p-plane through OP in a generator of R2

IZ
.

The plane w through this generator of J?a
12

represents a point of inter-

section of (77
3 and G. <77

3 has also two double points on G\ these are

represented on Q, by the ta-planes through the two double generators of

#2
12

, PQ and PR.
R and G intersect. Also <77

3 meets R, the point of intersection

being represented on Q by the to-plane which contains the chord of C
through 0.

An arbitrary plane w of Q meets T in a line ; the plane p through this

line joins it to and contains six chords of C\ there are two other chords

of C meeting the line. Hence the ruled surface has a bitangent developable
6R + G+ E2 . There is a plane of E2 passing through R ;

it is represented on
fi by the p-plane containing the chord of C passing through 0.

Similarly, when C is of the type III (D) we have a double curve

6J? + G+ G2 and a bitangent developable R+ + E7*. R and G intersect ;

C2 meets R. J5?7
3 has two double planes and one ordinary plane passing

through G and one ordinary plane passing through R.

27 1. Consider again a normal elliptic sextic curve in [5]. Through any
one of its chords there pass four secant planes; consider any one of these

and the oo 1 others belonging to the same quartic ruled surface and forming
a F3

3
. Projecting from a point of the chord on to a [4] we have an elliptic

sextic curve C with a double point and lying on a quadric point-cone ;
it

meets all the planes of one system in two points and all of the other system
in four points. Regarding the cone as a section of Q by a tangent prime
T we have clearly a curve C of one of the types III (C) and III (D) ;

but

here the four points of G in a plane of the cone consist of two pairs of the

same gj.

Suppose then that C is of the type III (C). The chords of G lying in the

tn-planes form a quartic ruled surface Qm , while those lying in the p-planes
form a quartic ruled surface Q

ft together with a ruled surface jR2
8 of order

eight on which G is a double curve.

An arbitrary plane p meets T in a line
; this line is met by one generator

of Q^ , two of Qp
and five of J22

8
. Hence the ruled surface in [3] has a double

curve
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The surface jR2
8 sets up on C a symmetrical (2, 2) correspondence of

valency zero. jR2
8 and Qp

have two common generators. Also there are

eight points of C at which the two generators of R coincide, and of the

twelve tangents of C which lie on the point-cone four belong to Qm , four

to Qp
and four to JB2

8
. Thus, if C' is the section of R2

*
by a solid, we have

a correspondence between C and C" for which

a=2, a'=2, p=I, 77=8, ^=4,
so that p'= 2 and C" is of genus 2.

Hence the double curve of the ruled surface is B+ G+ C2+ (76
2

. The

plane of C2 contains 0, while C5
2
passes through their two intersections.

(76
2 meets G in a third point and meets R in one point.

The bitangent developable is still 6R + G+ E2 .

Similarly, when C is of the type III (D) we have in [3] an elliptic sextic

ruled surface whose double curve is 6.B+ + C2 and bitangent developable

272. If C is of the type III (E) it meets every plane of Q through
in three points and has three chords passing through 0. We have a sur-

face in [3] with a double curve 3jR + (7 and a bitangent developable

The planes of either system of ii which pass through cut out a g^ on

(7, this has six double points ;
of the twelve tangents of C which lie on fi

there are six in each system of planes. The chords of C which lie in either

system of planes through form a ruled surface jR2
9

,
of order nine, on which

C is a double curve; we have thus a (2, 2) correspondence of valency 1 on

(7, so that there are six points of C at which the two generators of R2
9

coincide. Then, taking a section (7' of -R2
9

,
there is a correspondence

between C and C' for which

a=2, '=2, p=l 9 77=6, i,'=6f

so that p'= 1, and C' is of genus 1. Hence C6 is an elliptic curve C^ and

EQ is an E6
l

.

Of the two trisecants of C one is joined to by a ra-plane and the other

by a p-plane. The p-plane through the first of these trisecants represents
a triple plane of EJ-, while the ta-plane through the second trisecant

represents a triple point of CJ*.

R is a trisecant of Cg
1

;
the three points in which it meets GB

l are

represented by the tu-planes through those three chords of C which pass

through 0. Similarly there are three planes of EJ- passing through R.

273. If C is of the type III (F) it meets every plane of ti passing

through in three points; two of its chords pass through and it has a



SEXTIC RULED SURFACES 215

double point P. We now have a surface whose double curve is 3R + G+ C5

and bitangent developable 3JK+ G+E5 .

The chords of C which lie in either system of planes of the cone form

a ruled surface R2
8 on which C is a double curve. The planes of either

system cut out a g3
l on C\ there are six points of C at which the two

generators of R2
B coincide. Of the twelve tangents of C which lie on Q

there are six in either system of planes. Taking then a section C' of JB2
8

we have for the correspondence between C and C'

a=2, a'=2, 2>=1, 77=6, i/ =6,

whence _p'
=

1, so that C' is of genus 1. Hence we have a double curve

3R + G+ <75
X and bitangent developable 3# + G+E&

1
.

Since there are two chords of C passing through there are two points
of R at which two of the three generators which meet there lie in a plane
with R. These two points are intersections of R and C^

1
;
the planes are

planes of E^ passing through R.

There are two chords of C passing through P and lying on fi; one is

joined to by a plane w and the other by a plane p. Cf

5
1 has a double

point and a simple point on G; E^ has a double plane and a simple plane

through G.

Surfaces with a directrix line which is also a generator

274. If G is of the type IV (A) it passes through 0, meeting every

plane w of Q through in two points other than and every plane p
of Q through in three points other than ;

one of its trisecants passes

through 0.

An arbitrary plane p meets T in a line
;
the plane w through this line

passes through and contains three points and therefore three chords of

G\ there are six further chords meeting the line. Thus the surface in

[3] has a double curve 3J? + (76 ; similarly it has a bitangent developable

To obtain a representation of (76 we consider a section of the ruled

surface formed by the chords of G which lie in p-planes through and do

not pass through 0. There are ten tangents of C lying on Q, this being
the number of tangents of an elliptic quintic curve on a quadric which
lie on the quadric. The planes w cut out a g2

l on C (exclusive of O) and
thus four tangents of C lie in ta-planes; the remaining six lie in />-planes.

These p-planes cut out a g3
l on G which is a symmetrical (2, 2) corre-

spondence of valency 1
;
there are thus six points of C for which the two

corresponding points of the gj* coincide.

If then C' denotes a section of the ruled surface formed by the chords
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of C which lie in the />-planes and do not pass through we have for the

correspondence between C and C'

a=2, a'=2, p=l, 77=6, 7?'= 6,

so that 2/= 1, and C' is of genus 1.

Thus the double curve is 3J2+ G9
l

.

Similarly the bitangent developable is 6R+ -273 ;
the chords of C which lie

in ro-planes and do not pass through form a rational quartic ruled surface.

The second trisecant of C is joined to by a p-plane; this represents
a tritangent plane of the surface which passes through R and contains

three generators concurrent in a triple point of (76
1

.

.R is itself a generator; through any point of Jt there pass two other

generators, and there is one point of R at which these lie in a plane through
R. This point ofR is onCB

l
; R is in fact a trisecant of CJ-, the other generators

being ordinary chords. There are two planes of U3 passing through jR.

Similarly, if C is of the type IV (B) we have a surface in [3] whose

double curve is 6J?+ C3 and bitangent developable 3jR + E^.

275. If C is of the type IV (C) it passes through 0, meeting every

in-plane of Q through in two points other than and every p-plane of

Q through in three points other than 0, and has a double point P.

An arbitrary plane p of fl meets T in a line
;
the plane w through this

line joins it to and contains three points and therefore three chords of

C. There are five further chords of C meeting the line
;
so that the double

curve of the surface in [3] is 3j? + G+ C5 . Similarly the bitangent developable
is 6jR -f + J572 . Just as in the last article we find that C5 is an elliptic curve

<V.
There are two chords of G which pass through P and lie on Q

;
one of

these is PO; let the other be PQ. The plane POQ is a p-plane. R and G
intersect; their plane contains the generator represented by Q. C5

l has

a double point at the intersection of this generator with G and meets G
in one other point. R is a chord of C^

1
. The p-plane through the tangent

of C at meets C in two other points ;
the ta-planes which contain the

chords of C joining these two points to represent the two points of

intersection of JR and C5
l

.

Similarly, when C is of the type IV (D) we have in [3] a surface whose

double curve is 612 -f(?+ <72 and bitangent developable 3.R + G+ E^.

276. If C is of the type V it has a double point at and meets every

plane of Q passing through in two points other than 0. An arbitrary

plane of 1 meets T in a line and the plane of the opposite system through
this line joins it to 0; this contains three chords of C and there are

three others meeting it, the projection of C from the line being a plane
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sextic with a quadruple point and three double points. Hence the surface

has a double curve 612+ Cf

3 and a bitangent developable 6fi + E3 ;
(73 and

Ez are rational as being represented by the pairs of two series gj on C.

R is not only a directrix but also a double generator; it is a chord of C
and an axis of E9 .

Surfaces whose generators belong to a linear congruence

277. If C belongs to any of the types VI it has two directrices R and R'.

In the type VI (A) we have two double generators 6 andH
;
the double

curve is 6.B + G+H+ R' and the bitangent developable R+G+H+ R'.

In the type VI (B) we have three double generators (?, H and J ; the

double curve is 3R + G+H+J+ 3.R' and the bitangent developable

In the type VI (C) we have a triple generator O\ the double curve is

3R+ 3(?+ 3#' and the bitangent developable 3J?-f 3#+ 3R'.

If C belongs to any of the types VII there is a single directrix R.

In the type VII (A) R is a double generator and there are also two

other double generators G and H\ the double curve is 7J? + 6r+J?, which

gives also the bitangent developable. The curve C is projected from a

point of the cone into a plane sextic having two double points and a

quadruple point with only three distinct tangents.
In the type VII (B) we have a double curve and bitangent developable

6R+G+H+J. The curve C is projected from a point of the cone into a

plane sextic with three double points and a triple point at which all the

branches touch.

In the type VII (C) we have a double curve and bitangent developable

6.R-f- 3$; the curve G is projected from a point of the cone into a plane
sextic with an ordinary triple point and a triple point at which all the

branches touch.

The normal elliptic ruled surfaces of a given order n

278. In order to carry out the next steps in our investigation we require
a knowledge of the properties of the normal elliptic ruled surfaces of the

sixth order. We will then take this opportunity of obtaining some of the

most fundamental properties of the normal elliptic ruled surfaces of any
order n] in particular, we shall investigate how many different types of

surfaces there are which are projectively distinct from one another, and

give some account of the curves which lie upon them. We shall also obtain

methods for generating the surfaces by correspondences between two

curves. The results are due originally to Segre*.
* See his paper, "Ricerche sulle rigate ellittiche di qualunque ordine," Atti

Torino, 21 (1886), 868.
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If we have an elliptic ruled surface of order n which is not a cone then,

as is seen by an argument precisely similar to that used for a quintic surface

in 160, the surface belongs to a space of dimension n I at most. If the

surface is contained in a space of dimension less than n 1 then we take

a quadric through one of its generators; this quadric meets the surface

again in a curve of order 2n 1 and genus n which, just as in 160, is the

projection of a normal curve in [n 1]. We thus prove, just as for quintic

surfaces, that an elliptic ruled surface of order n is normal in [n 1]; and

any elliptic ruled surface of order n which belongs to a space of dimension

less than nl is the projection of a normal surface in [n 1].

279. Consider now a normal elliptic ruled surface F in [n 1], We
shall suppose that F is not a cone, that it does not break up into separate

surfaces, and that it is not contained in a space of dimension less than n 1.

Any space which is contained in [n 1] and meets F in an infinite

number of points may contain only a number of generators of F, or else

a number of generators together with a directrix curve of F] it cannot

contain two directrix curves of F for then it would contain the surface

entirely.

If we have on F a curve of order v<n\ this curve is contained in a

space of dimension less than or equal to n 2
;
it is therefore a directrix

curve of F and is elliptic. Also a curve of order n 1 must be a directrix

curve of F and therefore elliptic ; for if it met the generators of F in more

than one point it would belong to [^1] and be a rational normal curve,

and Zeuthen's formula shews that we cannot have a (1, k) correspondence
between an elliptic curve and a rational curve. Hence every curve on F of

order v<nl is an elliptic curve and meets each generator in one point.

A directrix curve of F of order v cannot be contained in a space of

dimension less than v 1. For if it were contained in a space [v 2]

this space, together with n v I arbitrary generators, would determine

a space [n 3] meeting F in a composite curve of order nl. Then the

pencil of primes through [n 3] would give the generators of F, which is

impossible since F is not rational. Hence every curve of F of order v<nl
is an elliptic normal curve. This same argument shews that a curve of order

v<n 1 cannot be contained in a space [V 2] when it is composite, i.e.

consists of a directrix curve and a certain number of generators. It is true

in this case also that the curve belongs to a space \y 1] and not to a space
of higher dimension; for if it consists of \L generators and an elliptic normal

curve of order v p this latter lies in a [v //, 1] and this, together with

the p generators, determines a [v 1] containing the whole of the composite
curve. Hence any curve of F of order v<n 1, whether simple or com-

posite, belongs to a space [v 1],
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We cannot have on F two directrix curves Cv , Cy of orders v and v'

such that v+ v'<n. For Cv is contained in a space 8V ^ 1
and Cy is contained

in a space #*_,, so that F is contained in a space [v l + i/ 1 + 1] or

[v+ i/ 1]. Hence, since J?
7

is not contained in a space of less dimension

than n1, v+ v'>n. Hence, if F contains a curve of order less than \n it

is the only such curve and is the minimum directrix.

Similarly, if we have two curves <?, Cn _ v on the surface, the sum of

whose orders is n, they cannot intersect. For two spaces 8V _ 19 8n , v ^ l
with

a common point are contained in a space [n 2], and a prime cannot

contain two directrix curves of F.

280. In any space [n1] we can at once construct a normal elliptic

surface F, and indeed several types of surfaces. For take two spaces Sm_l

and Sn_m_l which do not intersect; in /Sm_1 take a normal elliptic curve of

order m and in 8n_m_l a normal elliptic curve of order n m, these two

curves having the same modulus. Then a (1, 1) correspondence between the

two curves gives an elliptic ruled surface F of order n. If m is not equal
to \n we can take the curve of order m to be the minimum directrix;

clearly two surfaces F whose minimum directrices are not of the same

order cannot be projectively equivalent, and two surfaces F whose

minimum directrices are of the same order but have not the same modulus

cannot be projectively equivalent.
If n is even and we choose m=\n the surface has two minimum

directrices. In this case, since the two curves between which there is

a (1, 1) correspondence are of the same order, we can obtain a special

type of surface by making the correspondence belong to a projectivity*
between the two spaces 8^n^ and /S^n_j containing the curves. Then,
if a space [\n 2] meets the first curve in \n points, the generators

through these points meet the second curve in \n points which also lie in

a space [\n 2] ; hence these \n generators are contained in a space [n 3] .

Then, through this [n 3], we have a pencil of primes cutting out oo 1

curves of order \n on F\ hence this particular surface has oo 1 minimum
directrices of order \n, and through any point of F there passes one of them.

Let us then divide the surfaces F into three classes, according to the

order m of their minimum directrices :

/ x w-

(a) m< ^,

,, x
n

(b) m=2>

(c) w>|.
* In other words, the (1, 1) correspondence between the two elliptic curves is

special. Cf. 164.



220 CHAPTER IV, 280-282

We prove that all surfaces of class (a) are generated by a (1, 1) corre-

spondence between two elliptic normal curves of orders m and n m such

as we have already mentioned. We prove also that the surfaces of class (6)

are those already considered, one with two minimum directrices and the

other with oo 1 minimum directrices ;
as well as a third type of surface with

only one minimum directrix. We prove further that in class (c) we have

only one type of surface that for which n is odd and m= \ (n+ 1); this

being the most general type of surface of odd order n. For all surfaces F,

These are the only possible types of elliptic normal ruled surfaces for

which no two generators intersect.

281. Let us consider now a surface of the class (a); there is on the

surface a minimum directrix y
m

, where m< \n. There can be no curve on

the surface of order less than n m ;
we prove that the surface contains an

infinity of curves of order n m.

If there is on F a curve Cn_m then any prime containing it must meet

F further in m generators, and these will meet y
m in m associated points*.

Conversely, any set of m associated points of y
w is contained in an [m 2],

and any curve Cn_m is contained in an [n m 1]; hence there is a prime

containing any Cn_m and any set of m generators which meet y
m in as-

sociated points. Hence, in order to obtain all the curves Cn_m on F, it

will be sufficient to consider the system of primes which contain the

generators of F passing through any given set of associated points of y
w

.

Let us take a set of associated points of y
w

, they lie in an [m 2];

thus the m generators which pass through them belong to a [2m 2].

They cannot belong to a space [2m 3]; for we should then have a

[2m 2] containing y
m and these m generators, i.e. a composite curve of

F of order 2m lying in a [2m 2] ,
and this we have seen to be impossible

if 2m< n. Hence, through this set of m fixed generators of F there passes
a linear system of oo n

~2m
primes, so that we have on F a linear system of

oo n
~2m curves Cn_m \ through n 2m points of general position on F there

passes one of the curves Cn_m .

To make this statement quite accurate we must verify that the curve

Cn-m> which is the remaining part of the intersection of F with a prime

containing the m fixed generators, does not break up. If it does break up
it must consist of y

m and n 2m generators, so that we have a prime

containing y
m

, the m fixed generators, and n 2m other generators. But

y
m

, the m fixed generators, and n~2m I other generators arbitrarily

chosen, determine a prime which contains them; hence the remaining

* When we have an elliptic normal curve of order a in [s 1] then the set of s

points in which it is met by any prime [s 2] is called a set of associated points.
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generator in which the prime meets F is determined by the choice of the

n~ 2m 1 arbitrary generators. This proves that the prime which contains

the m fixed generators and n 2m arbitrary points of F meets F in a curve

Gn-m which does not break up. Through n 2m 1 arbitrary points of

F there pass oo 1 curves Cn_m forming a pencil, all these curves having also

one other point in common.
The surface F can be generated by a (1, 1) correspondence between y

m

and any one of the curves Cn_m .

If, in particular, m=\(n 1), we have a surface of, odd order with a

single minimum directrix of order \(n 1); there are on this surface oo 1

curves of order \(n+ 1), which all pass through the same point.

282. Consider now surfaces F of the class (6); the surface is of even

order n, and there is on it a minimum directrix y
m of order m= \n. We

enquire whether there are other directrices of this same order. Just as for

surfaces of the class (a) such a curve is given by a prime containing a set

of m fixed generators which meet y
m in a set of m associated points.

Such a set of generators lies, as before, in a space [2m 2]; but we
cannot now assert that they do not lie in a [2m 3] . However, they

certainly cannot lie in a [2m 4] ;
for then we should have a [2m 3] or

[n 3] containing the composite curve of order n formed by these generators
and y

w
.

If the m generators do lie in an [n 3] then this [n 3] is the base of

a pencil of primes; these primes give on F oo 1 curves Cm of order \n, one

such curve passing through any given point of F. A set of generators which

meets any one of these curves in associated points meets any other Cm in

associated points also; the surface is that generated by a special (1, 1)

correspondence between two normal elliptic curves of the same order.

In general the m generators do not lie in an [n 3] ; they lie then in a

prime, which meets F again in a curve Cm of order \n. The surface has then

two minimum directrices
;
a prime through either of them meets F further

in m generators, these generators meeting the other minimum directrix

in a set of associated points. This is the most general surface of even order

n, and is generated by a (1, 1) correspondence between two elliptic normal

curves of the same order. This correspondence is not special.

When we take a set of m generators through associated points of y
w

it may happen that the prime which they determine contains y
m itself.

If this happens for one set of associated points of y
w it must happen for

all sets, and we have a surface F with one minimum directrix of order

m=\n. Any m 1 generators of F determine an [ft 3]; through this

there pass the primes of a pencil, giving thus oo 1 curves C$n+1 on F. Each
of these curves meets y

w in one point ;
for the prime meets y

m in m points
of which m 1 are on the generators that we have chosen, the remaining
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one being on C^n+l . The prime containing y
m and the generators through a

set of associated points of y
m meets a curve C^n+1 inm+ 1 associated points,

these including its intersection with y
m

. Hence we have the generation of

a surface of this type. We take in [n 1] two spaces \\n 1] and \\ri\\

these have a common point 0. In [|n 1] we take a normal elliptic

curve of order \n and in \\ri] we take a normal elliptic curve of order

\n+ 1
;
these curves must have the same modulus and must both pass

through 0. We then place the curves in (1, 1) correspondence with as

a united point. The correspondence must be such that any set of \n points

of the second curve, which correspond to a set of \n associated points of

the first curve, forms, together with 0, a set of \n+ 1 associated points.

283. Just as for rational ruled surfaces we investigated the curves of

lowest order on the surface by considering primes which contained the

greatest possible number of generators, so we can proceed for the elliptic

ruled surfaces.

If n is even we take \n 1 generators ;
these determine an [n 3] which

is the base of a pencil of primes. We have thus on the surface oo 1 curves

of order \n+ 1; any two of these curves have two intersections, and these

two intersections must be in [n 3] . All the oo1 curves of order \n+ 1

pass through these two points, and the prime containing [n 3] and the

generator through either of these points meets the surface further in a curve

of order \n. Hence, if m is the order of the minimum directrix on a surface

of even order n, m< \n.

Similarly, if n is odd we take \(n 1) generators, so determining a

prime [n 2]. This meets the surface further in a curve of order \ (n+ 1).

Hence, if m is the order of the minimum directrix on a surface of odd order

n, m<$(n+l).
This proves that the only surfaces belonging to the class (c) are those

for which n is odd and m= \ (n+ I).

284. If we consider now a surface belonging to the class (c), for which

w= \ (n+ 1), any curve Om on it belongs to a space [m 1] . Such a curve

determines, together with anym 2 fixed generators of F, a prime [2m 3].

This prime meets F in one other generator; hence, in order to obtain all

the curves Cm on F, it is sufficient to consider the sections of F by primes

through m 2 fixed generators and one variable generator.
Now m 2 fixed generators of F belong to a [2m 5]; they cannot be

contained in a [2m 6], for then they would lie, together with a Cm , in

the same [2m 6+m 1 (m 3)] or [n 3], and no simple or composite
curve of F of order m 2 +m=% 1 can lie in an [n 3] . Moreover, the

[2m 5] containing thesem 2 fixed generators does not contain any other

generators.
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This space [2m 5] and any other generator of F determine a prime

[2m 3], and this prime meets F in a curve Gm . We have thus on jPoo 1

curves Cm ; since, from the way in which we have obtained them, they are

in (1, 1) correspondence with the generators of F, they form an elliptic

family.

Any two of the curves Cm have one intersection. For consider the prime
section of F formed by one curve Cm ,

the m 2 fixed generators, and one

other generator. Any other curve of order m meets this prime in m points,

of which m 2 are on the fixed generators and one on the other generator ;

the remaining intersection is then on Cm .

Hence, to generate this most general surface F of odd order, we take

two elliptic curves of the same order m and the same modulus, and place
them in (1, 1) correspondence with a united point.

If this correspondence is special, then a set of m 1 points on one of the

curves which forms, with the united point, an associated set of points gives, on
the other curve, a corresponding set of m 1 points which also forms, with the

united point, an associated set of points. Thus the m I generators lie in a

[2m 4] or [n 3] . Then the pencil of primes through [n 3] gives on F oo 1

curves of order m, and these must all meet [n 3] in the same point, since they
all meet it in one point which is not on any of the ra 1 generators. The

generator through this point lies in a prime with [n 3] , and this prime gives
a curve of order m 1 on F. Hence, when we generate the most general surface

of odd order 2m 1 in the way described, the correspondence between the two
curves must not be special.

285. If we take k generators of the elliptic normal surface F in [ft 1]

then, to whatever class the surface may belong, a space [n 3] containing
these generators meets F, in general, in these generators and a number of

isolated points. In order that this may be true it is necessary that the

space to which the k generators belong should not contain a directrix

curve of F, and this is certainly always true when k<m, the order of the

minimum directrix. A prime through [n 3] meets F in a curve of order

n k, and, of the n k intersections of this curve with [n 3], k lie on

the generators, while the remaining n 2k give isolated intersections of

[n 3] with F. Thus, if k< m, any Sn_3 containing k generators of F meets

F again in n 2k isolated points.

286. In order to find, for the surface of class (c), how many curves Cm
pass through a given point P of F, we have to obtain those primes which

contain P and m 2 fixed generators, and which also contain another

generator of F. Now the m 2 fixed generators and P determine a [2m 4]

or [n 3] ,
and this, as we have just proved, meets F in two other points

Q and Q'. Then the prime which contains [n 3] and the generator through

Q meets F in a Cm passing through P, and we have a second Cm passing
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through P if we take the prime which contains [n 3] and the generator

through Q'. Hence through any point of F there pass two of the minimum
directrices.

The following result can also be obtained by arguments similar to those

just used. An elliptic ruled surface of order n with a minimum directrix of

order m contains ao 2l*~ n
elliptic curves of order p,, for all values of fifor which

n> p,>n m. Through 2fjL
n points of general position on the surface there

pass two of the curves. The only exception is for the surface of class (b) with

oo 1 minimum directrices, when /x= \n+ 1.

287. Suppose now that we have in [n 1] a normal elliptic ruled surface

F of order n, on which two generators intersect. If we project from their

point of intersection on to an [n 2] we obtain an elliptic ruled surface of

order n 2, which is therefore a cone. Hence on F we have a line passing

through the intersection of the two generators and meeting all the other

generators. Since the surface F is not rational this line A must be a double

line. Through every point of A there must pass two generators of F] for

otherwise A would be a directrix and also a generator, one variable generator

passing through each point of A, or else A would be a double generator. In

the first case F would be rational and in the second case a prime section of

F would be a curve Cn^ in [n 2], the curve having a double point, which

means again that F is rational. We have then a surface F with a double

line A; A is a double directrix, through each point of it there pass two

generators of F.

Such a surface cannot contain a directrix curve of order v<n 2; for,

since such a curve is contained in [v 1], the [v + 1] containing this curve

and A would contain the whole of F. But there is an infinity of curves of

order n 2 on F\ such curves are all obtained by means of primes through
two fixed intersecting generators, so that there are oo 71-4 such curves. Thus

the surface F is generated by a (1, 2) correspondence between a line A and
an elliptic normal curve of order n 2. The curves of order n 2 on F
form a linear system ; through n 4 points of general position on F there

passes one such curve. But any two of the curves intersect in n 4 points,

and through such a set of n 4 points there passes a pencil of the curves.

The normal surfaces in [5] with directrix cubic curves

288. We now proceed to study the elliptic sextic ruled surfaces in [3]

as projections of normal surfaces in higher space. All elliptic sextic ruled

surfaces are projections of normal surfaces in [5]. We project the normal
surface F from a line I which does not meet it on to a [3] S, and we thus

obtain one of the surfaces /. The planes joining I to the points of F meet
S in the points of /, while the solids joining I to the generators of F meet S
in the generators of F.
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The general surface F has two elliptic plane cubic curves I\ and F2 on

it and can be generated by means of a non-special (1,1) correspondence
between Fx and F2*.

The tangents of F form a four-dimensional locus
;
this can be regarded

as the locus of oo 3
lines, oo 2

planes or oo 1 solids f; these oo 1 solids are, in

fact, determined by the pairs of tangents of Tl and F2 at corresponding

points. Thus any two tangent solids of F have a line in common meeting
the planes of Fa and Fa .

We can set up a correspondence between the points B and C of F2 by
saying that B and C shall correspond when the solid which is determined

by I and the tangent to Fj at the point A on the generator through B meets

the plane of F2 on the tangent at C. In this way we have a (6, 6) corre-

spondence of valency zero, the six points C which correspond to a given

point B lying on a conic. Now if a point B coincides with one of its corre-

sponding points C there is a [4] through I containing the tangents of Fx

and F2 at A and B, and conversely. When this is so the solid containing
the tangents to Fx and F2 at a pair of corresponding points meets I.

There are therefore twelve such solids; or the locus of tangents of F is

an M^.

289. Through a general point P of the space [5] there passes a unique
line meeting the planes of Tl and F2J ;

let the points of meeting be 1 and
O2 . There is a finite number of chords of F passing through P||; let one

of these meet F in X and Y.

The solid through O^O^P and the generator of F which passes through
X meets F further in at least five points, namely, Y, two points of F! and
two points of F2 . We therefore conclude ^f that this solid contains also the

generator of F which passes through Y. The lines through 3 in the plane
of F2 cut out a gj- on that curve ; the generators of F through a set of this

(/3
1 meet Fx in three points forming also a set of a g3

l
;
and corresponding

to each chord of F passing through P there are two of the three points of a

set collinear with Ol . Now the lines through Ol in the plane of TI cut out

a second g^ on that curve, and there are just three pairs of points on F
a

which are common to two linear series g8
1.**

Hence there are three chords ofF passing through a general point P of the

space [5].

Through any two points X, Y of F there pass two directrix quartic

* 282. f 51.

{ This line is the intersection of the solid containing O and I\ with the solid

containing O and F2 .

II
Cf. 62. If 285.

** Cf. the footnote to 134.

E 15
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curves Ql and Q2*. Through any point P of XY there passes a second chord

PXl Y! of Ql and a second chord PX2 Y2 of Q2 \ thus the existence of one

chord of F through P at once implies the existence of three. The four

points Xl9 Yl9 X2 ,
Y2 lie on another directrix quartic curve.

290. Elliptic sextic ruled surfaces in [4] . If we project from P on to a

[4] we see that a general elliptic sextic ruled surface in [4] has three double

points; it contains two plane cubic curves and three plane quartic curves.

Each of the plane quartics has double points at two of the double points

of the surface.

If P } instead of occupying a general position, is at the vertex of a

quadric cone which contains a directrix quartic Q (there are four such

positions of P possible for each directrix quartic, and the locus of such

positions will be a surface) we obtain in [4] an elliptic sextic ruled surface

with a double conic. It can be obtained by taking two planes in [4] and then

a conic in one of the planes and an elliptic cubic curve in the other, both

these curves passing through the intersection of the planes; a (1, 2) corre-

spondence between the conic and the cubic with a united point gives the

surface.

If P is taken to lie in the plane of I\ or the plane of T2 we obtain in [4]

an elliptic sextic ruled surface with a triple line. The surface is given by a

(1, 3) correspondence between a line and an elliptic plane cubic, the line

not meeting the plane of the cubic curve.

291. We have seen that there are three chords of F passing through a

general point of [5], If the point is such that two of the three chords

coincide it will have to lie on some primal F4 . Instead of having three

chords PXY, PXl Y1 and PX2 Y2 we shall have only two chords PXY and

PXQ F , and one of the two directrix quartics through XQ and Y is such that

its tangents at X and YQ intersect. Conversely, if we take two points XQ

and Y on a directrix quartic of F such that the tangents of the quartic
at these two points intersect f, then, if any point is taken on XQ YQ ,

there is

no other chord of the quartic passing through it, the projection of the

quartic from this point on to a plane having a tacnode. There is another

directrix quartic of F passing through XQ and YQ and there will be a second

chord of this second quartic passing through any point on XQ Y . Thus

any point on XQ Y is such that only two chords of F pass through it. F4

can therefore be defined as the locus of chords of F such as XQ YQ .

We shall now examine some of the properties of F4 which will be of

use in the sequel, and this affords an opportunity of introducing an idea

* 286.

f Each tangent of the quartic is met by four others.
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of which we have not availed ourselves before namely, we can regard
the normal surface F as the projection of another normal surface, in space

of one higher dimension, from a point of itself; the order of this other normal

surface being one higher than that of F.

292. Take a general normal elliptic ruled surface FQ of the seventh

order in [6] . There are on this surface oo 1
elliptic quartic curves

; through

any point of F there pass two of these curves, while any two of the curves

have one intersection*. The chords of F form in [6] a primal M5 whose
order is the number of its intersection with an arbitrary line. But the

projection of F from this line is an elliptic ruled surface of the seventh

order in [4] which is known, by a general result f, to have seven double

points. Hence the chords of FQ form an M5
7

. Now the projection of F
on to [4] from a line meeting it is an elliptic sextic ruled surface, which

we have seen to have three double points. Hence such a line meets three

chords of FQ in points other than that in which it meets F . Thus F is a

quadruple surface on M5
7

.

A general chord of F does not meet any others, because the projection
of FQ from the chord is an elliptic quintic ruled surface in [4] which has

no double points. But if the chord of FQ meets it in two points which are

on the same directrix quartic there passes a second chord of F through

every point of the first chord; the projection from the chord now gives the

elliptic quintic ruled surface in [4] with a double line J. Thus through any
point which lies in a solid containing a directrix quartic of F there pass
two chords of ^

;
these solids, of which there are oo 1

,
form a locus M

which is a double locus on M5
7

. It can be shewn that if there is any point,
not on F itself, through which there pass two chords of F

,
then the inter-

sections of these chords with F are four points lying on the same directrix

quartic of F . Thus M4 is the only double locus on M5
7

.

To find the order of M4 we take a prime section
;
this gives the quadri-

secant planes of an elliptic curve C7
l of the seventh order in [5] . There are

* 284, 286.

f A ruled surface of order n and genus p in [4] has \ (n 2) (n 3) 3p double

points. See Tanturri, Atti Torino, 35 (1900), 441. Some of our former work gives

particular cases of this general result. For n = 4 and p = wo see that a rational ruled

quartic surface in [4] has one double point and therefore that there is one chord of

a rational normal quartic ruled surface passing through a general point of [5] ( 81).
For n -= 5 and p = the rational quintic ruled surface in [4] has three double points
and the chords of the normal surface in [6] form anM5

3
( 124). For n = 5 and p = 1

the elliptic quintic ruled surface in [4] has no double points ( 160). For n = 6 and
p = the rational sextic ruled surface in [4] has six double points and the chords
of the normal surface form an M5

6
( 174). For n 6 and p = 1 the elliptic sextic

ruled surface in [4] has three double points and there are three chords of the normal
surface through a point of [5] ( 289).

t 164.

15-2
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oo l such planes, two passing through each point of the curve*; they form

an Ms which is a prime section of Jf4 ,
and the order of M3 is simply the

number of quadrisecant planes of C,
1 which meet a general plane of [5].

But this number is 7, as is seen on making use of a general result due to

Giambellif- Thus we have an Jf3
7 on which C^ is a double curve, and so

the solids containing the directrix quartics of F form an Jf4
7 on which

FQ is a double surface.

Now let us project .F from a point of itself on to [5] ; we obtain the

normal elliptic sextic ruled surface F.

A plane through meets MJ in five points other than 0; it meets

M5
7 in a curve of the seventh order with a quadruple point at and these

five points for double points ;
this curve of the seventh order will then be

of genus 4. The plane meets [5] in a line, and the fact that any line through
O in the plane meets the curve again in three points corresponds to the fact

that there are three chords of F passing through each point of the line in

which the plane meets [5] . Now the lines through give a pencil of oo 1

sets of three points upon a curve of genus 4
;
thus there are, by a result

originally due to Riemann, 2 (3 + 4 1) or twelve positions of the line for

which two of the three ^points coincide
;
which is the same as saying that

twelve tangents can be drawn to the curve from the quadruple point.

Hence, given any line in [5] there are twelve points on it such that two of

the three chords of F, which pass through any one of them, coincide.

Hence the locus F4 of such points is of order 12; we denote it by F4
12

.

It must not be confused with Jf4
12

, the locus of tangents of F.

293. There are two directrix quartics of FQ passing through 0\ these

give on projection the cubics l\ and F2 on F. The directrix quartics of F
which do not pass through give oo 1 of the directrix quartics on F\ there

are oo 2
elliptic quintic curves on F which pass through and these give

on projection oo 2
elliptic quartic curves on F.

Consider now a point U of [5] which is the vertex of a quadric cone

containing a directrix quartic of F. In general, this quartic is the pro-

jection of a directrix quintic of FQ which passes through ; then the line

OU meets oo 1 chords of this quintic and so lies on M. It meets MJ in

one point other than 0%. Then a plane through OU meets Jf6
7 in OU

* For the projection of C7,
1 from a point of itself on to a [4] is an elliptic sextic

curve having two trisecants (cf. 253).

t Memorie Torino (2), 59 (1909), 489.

J Each quartic on FQ meets the quintic in two points; the [3] containing the

quartic meets the [4] containing tjie quintic in the line joining the two points. We
have thus on the quintic a symmetrical (2, 2) correspondence; two points of the

quintic corresponding when they lie on the same directrix quartic of .F . The chords
of the quintic meeting OU generate a cubic ruled surface and give a symmetrical
(1,1) correspondence. Both these symmetrical correspondences are of valency one
and they have one common pair of points, the quintic being elliptic.



SEXTIC RULED SURFACES 229

and a sextic curve
;
this sextic has a triple point at and double points at

those four points in which the plane meets M4
7 and which themselves do

not lie on OU. It is therefore of genus 3 and ten tangents can be drawn
to it from the triple point. Hence, if in [5] we take a line I which passes

through the vertex U of a quadric cone containing a directrix quartic of

F, the line will only meet F4
12 in ten points other than U.

A similar argument can be used when the quartic on F is the projection
of a quartic on F which does not pass through 0; the same result is

obtained.

Thus the vertices of the quadric cones which contain the directrix

quartics of F are double points on F4
12

;
the locus of the vertices will be a

double surface on F4
12

.

The point U is a quadruple point of M4
12

, since there are four tangents
of F passing through it.

Take now a line through lying in the solid containing one of the two

directrix quartics of F which pass through 0. This line lies onM and any
plane through the line will meet M in four further points*. This same

plane meets Jf5
7 in the line, counted doubly, and a quintic curve; this

quintic curve has a double point at and four other double points. It is

therefore elliptic, and six tangents can be drawn to it from its double

point. Hence, if we take a line I meeting the plane of one of the cubic

curves on F it will only meet F4
12 in six points other than its intersection

with the plane ;
or the planes of I\ and F2 are sextuple planes on F4

12
*

The planes of I\ and F2 are also sextuple planes on Jf4
12

; through a

general point of either plane there pass six tangents of F.

Through any point of F4
12 there pass two chords XT and XQ YQ of F.

The two quartic curves of F which pass through X and Y coincide, while

one of those through XQ and Y is such that its tangents at XQ and Y
intersect; the other quartic through XQ and Y is the same as the one

through X and Y. Now consider a line I which lies in the [3] determined

by two generators g and g' of F
;
there are twelve points of F4

12 on I and

through each of these there passes a transversal to g and g'. We now enquire
how many of these twelve transversals give a pair of points X and Y on g

and g' ;
the remaining ones will give pairs of points X and Y .

Consider the quartics of F passing through a point of g ;
there are oo 1

of them and any two intersect in one further point. They thus form an

elliptic family, since each curve may be put into correspondence with its

second intersection with a fixed curve of the family. Now we can regard
this family as oo 1

pairs of curves, since if any point is taken on g' there

are two and only two curves of the family passing through it. Thus these

* A solid through meets M4
7 in an elliptic curve of the seventh order with a

double point at ; but if the solid contains a line through on MJ it meets it further

in an elliptic sextic curve which meets the line in and in one other point.
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pairs, associated with the points of g', form a rational family; there are

therefore four double elements, just as a g2
l on an elliptic curve has four

double points. Hence, given a point X on g there are four points Y on

g' such that the two quartics of F which pass through X and Y coincide.

Now we can set up a correspondence between the points P and Q of g',

saying that the points P and Q correspond when the two directrix quartics

through P and Q' coincide, Q' being the intersection of g with the trans-

versal to g and / from Q. We have thus a (4, 4) correspondence, and there-

fore eight coincidences. Hence there are eight pairs of points X and Y on g

and (/' such that XY meets I and the two directrix quartics of F which

pass through X and Y coincide.

This argument must be slightly modified if I meets the plane of one of

the curves I\, F2 . Suppose that I meets the plane of Tl in a point 0, we
have a line through meeting g in a point A and g

/
in a point A', A and

A' being the intersections of I\ with g and g'. Then through A and a given

point of g' there passes only one directrix quartic of F, the other being
the degenerate one consisting of Fj and g'. Hence the four points of g',

which are such that the two directrix quartics which are determined by
A and any one of them coincide, must all be at the point A' . In the

correspondence between the points P and Q of g', when P is at A' the four

corresponding points Q are also at A'. Hence A' counts four times among
the eight points of g' for which P coincides with one of its corresponding

points Q. There are four further coincidences.

We have then the following: if a line I is taken to meet the plane of

one of the directrix cubics of F in a point and to lie in the solid containing
a pair of generators g, g' of F (which will meet the cubic in a pair of points
collinear with 0) I will meet F4

12 in six points other than ;
if the trans-

versals are drawn from these points to g and g', four of them give pairs of

points X, Y on g, g', while the remaining two give pairs of points XQ ,
YQ .

294. Take now a line I of general position in [5] and project F from I

on to a [3] S. A prime through I meets F in an elliptic sextic curve of

which nine chords meet 1. Thus the chords of F which meet I meet F in

a curve <718 of order 18. Since the solid containing I and an arbitrary

generator of F meets F further in four points*, C1Q meets each generator in

four points.

Thus after projection we obtain in a general elliptic ruled surface

/ of the sixth order with a double curve Cg of the ninth order meeting each

generator in four points. (79 is the projection of <718 from I.

Now there is a (3, 1) correspondence between the points of (79 and the

points of Z, two points corresponding when the line joining them is a chord

* 285.
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of F, and the twelve points in which I meets F4
12 are branch-points of the

correspondence. Then Zeuthen's formula shews that (79 is a curve <79
4 of

genus 4. Further, there is a (1, 2) correspondence between (79
4 and (718 ,

and the correspondence has twelve branch-points on (79
4

, these arising

from the twelve intersections of I with M4
12 or the twelve points of I which

lie on tangents of F. A second application of Zeuthen's formula now shews

that <718 is a curve <718
13 of genus 13. Since <718

13 meets each generator of

F in four points it is of genus 19 a;, where x is the number of its double

points*. Thus (718
13 has six double points. Let A be one of these. Then

there are two chords AB and AC of <718
13
passing through A and meeting l\

this forces the chord EG to meet I also, and B and C are double points
of (718

13
. Thus the six double points lie in two planes passing through Z, each

plane containing three of them. On projecting we have two triple points
on <79

4
.

The (1, 4) correspondence between Fx and <718
13 shews that there are

twenty-four generators of F touching <718
13

;
hence there are also twenty-

four generators of /touching (79
4

(cf. 256).

The prime determined by I and the plane of I\ contains three generators
of F, as also does that determined by I and the plane of F2 . Thus / has two

tritangent planes.

/is generated by two elliptic cubics in (1, 1) correspondence.

295. There are oo 2 directrix quartic curves on F, and through any two

points of F there pass two of these. There are four quadric cones through

any such curve, and we may specialise the position of I so that it passes

through the vertex U of a quadric cone containing a directrix quartic C^
1

.

The chords of F which meet I now meet F in the points of C^ and a

curve Cu which meets every generator of F in three points; when we

project from I on to S we obtain a surface / whose double curve is

C,+ C7 .

Since U is a double point on F4
12 there are ten branch-points of the

(3, 1) correspondence between C7 and Z; hence C7 is a (77
3

. The (1, 2) corre-

spondence between (77
3 and (714 only has eight Branch-points since U is a

quadruple point on F4
12

; hence (714 is a (714
9

.

(714
9 meets each generator in three points and is therefore of genus

1 1 x, where x is the number of its double points ;
it has therefore two

double points A and B. Through A there pass two chords AA' and AA"
of Cj4

9 both meeting l\A'A" will then also meet I, and C passes through
A' and A". Similarly we have two intersections B' and B" of C^ and

Cug
. There are in all eight intersections of C^ and C14

9
f, the other four lie

* 17 supra.

f Take a [4] through C4
*

; it meets <714
9 in fourteen points and F in Ct

l and two

generators. Since C14
9 meets each of these generators three times it will have to

meet C^
1
eight times.
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in pairs on two lines through U. Hence, projecting on to S, (77
3 has two

double points and two simple points on C2 (cf. 259).

The (1, 3) correspondence between Fj and C14
9 shews that there are

sixteen generators of F touching (714
9

;
there must then be sixteen generators

of /touching <77
3

(cf. 257).

This surface is generated by a conic and an elliptic cubic in (1, 2)

correspondence with a united point. The pairs of points of the cubic corre-

sponding to the points of the conic form a g2
l and are therefore collinear

with a fixed point* of the curve. Since one of these lines passes through
the point of the conic which gives rise to it the planes joining the points
of the conic to the pairs of corresponding points on the cubic touch a

quadric cone; this is part of the bitangent developable of the surface.

296. We may further choose I to join the vertex U of a quadric cone

containing a directrix quartic C^ to the vertex F of a quadric cone con-

taining a directrix quartic DJ-. C^ and D^ have two intersections X and

Y. The chords of F which meet I meet F in C^
1

, ZV and a curve (710 which

meets each generator of F in two points. Thus on projection we have a

surface / with a double curve C2 +D2 4- <75 .

U and V are both double points of F4
12

,
so that I meets F4

12 in eight

other points which are the branch-points of the (3, 1) correspondence
between <75 and Z. Hence <75 is a <75

2
. Sinc5*Z7 and F are quadruple points

of Jf4
12 there are four branch-points of the (1, 2) correspondence between

G&
2 and (710 so that (710 is a C10

5
. There are eight generators of F touching

(710
5 and eight generators of / touching (75

2
.

The curve <710
5

, meeting each generator in two points, has no double

points. The lines XU and XV meet (74
X and D^ again in points U'

and F', the line TJ'V meets I and U' and V must lie on (710
5

;
we have

similarly U" on C^
1 and Cw5 and V" on D4

l and <710
5
arising from Y. There

are in all six intersections of (710
5 with C^

1 or DJ- ;
the remaining four will

lie on two lines through U or F respectively. Thus, on projection, C2 and

Z)2 have two intersections through which (76
2
passes; (75

2 has two other

intersections with each conic (cf. 261).

To generate this surface take two conies in (2, 2) correspondence with

two united points P and Q ;
to P regarded as a point of one conic correspond

two points of the other conic one of which is P, and similarly for Q.

The lines joining the pairs of points of one conic which correspond to

the points of the other touch a conic; the planes joining these lines to

* If we use elliptic arguments for the points of the cubic curve it is known that
a 02

1 is given by a + =
c, where a and are the arguments for a pair of points of

the gj and c is a constant; different values of c give oo l
g2
va on the curve. If then

we take the point of the curve whose elliptic argument is y = c we have a + ft + y=
and each pair of the gj- is collinear with y:
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the points of the other conic from which they arise touch a quadric cone,

two lines passing through the points which give rise to them. Thus this

surface has two quadric cones belonging to its bitangent developable.

297. Take now I to lie in the solid determined by a pair of generators

g, g' of F. A prime through I meets this solid in a plane containing a

transversal of I, g, g' ;
it meets F in an elliptic sextic curve which meets

g and g' at their intersections with the transversal and which has eight

other chords that meet 1. Hence the chords of F which meet I meet F
in

gr, g' and a curve <716 of order 16; this last curve meets each generator
of F in four points.

The solid gg'l meets F further in two points X and Y. Through X there

passes a transversal of g and I and also a transversal of g' and I, so that

X is a double point of (716 . Similarly Y is a double point of (716 . Associated

with X we have intersections of (716 with each of g and g', namely, the

points in which g and g' are met by the plane XL Similarly the plane Yl

meets g and g' in points which lie on (716 . The remaining points of inter-

section of (716 with g and g', two on each generator, lie on two transversals

of I, g, g' . Hence when we project from I on to S we obtain a surface / with

a double generator G and a double curve CQ , C8 having two double points

and two simple points on (cf. 265).

There are twelve points on I for which two of the three chords of F
which pass through them coincide ; we have seen * that for eight of the

twelve points the two chords of (716 coincide, while for the remaining four

points it is a chord of (716 which coincides with the transversal to g and g'.

Thus there are eight branch-points of the (2, 1) correspondence between CQ

and I, so that (78 is a (78
3

. There are twelve tangents of (716 meeting I so that

the (1, 2) correspondence between Gs
3 and (716 has twelve branch-points

and C1B is a C^11
. It has only the two double points X and Y.

There are twenty generators of F touching C16
n as is seen at once by

the application of Zeuthen's formula to the (1, 4) correspondence between

rx and CV1
;
there will then be twenty generators of / touching (78

3
(cf.

265).

/is generated by two elliptic plane cubics in (1, 1) correspondence, the

correspondence being specialised to give the double generator.

298. Take the two generators g and g' of F; the solid which they
determine meets F in two further points X and Y. Take CJ-, one of the

two directrix quartics through X and 7, meeting g in Z and g' in Z'.

Then the four points X YZZ' must be coplanar, since the solid gg' cannot

contain C^
1

.

* 8 293.
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Through X there passes a transversal of g and g'\ but the only lines

which are trisecant to F are those lying in the planes of its directrix cubics,

hence we may say that X is on I\ and Y on F2 .

The lines XZ and YZ' meet in a point U\ by suitably selecting the

points where g and g' meet I\ we can cause U to be the vertex of a quadric
cone through C^

1
.

This being done, take a line / through U which lies in the solid gg'.

The chords of F which meet I meet F in g, g', C^
1 and a curve <712 meeting

each generator of F in three points. Through X there passes a transversal

of g' and I meeting g' in X' say, and the lines XZ and X'Z will meet /;

<712 must pass through X' and X. Similarly, we have a point Y' on g\ (712

will pass through Y' and Y.

Thus on projecting from I we have in S a surface/ whose double curve

consists of a conic, a double generator meeting the conic in two points and

a sextic curve C6 passing through these two points (cf . 266). CQ meets the

double generator in two further points, these are projections of pairs of

intersections of C12 with g and g'.

There are ten points of F4
12 on /, other than U\ six of these give

rise to coincidences of the two chords of (712 which pass through them,
while the remaining four give a coincidence of a chord of C12 with a trans-

versal of g and g'. Thus the (2, 1) correspondence between (76 and I has six

branch-points, so that Ce is a <76
2

. There are eight tangents of (712 meeting
I so that the (1, 2) correspondence between Cg

2 and <712 has eight branch-

points and <712 is a (712
7

. It has no double points, and it touches twelve

generators of F.

This surface / is generated by a (2, 1) correspondence between an

elliptic cubic and a conic with one united point. The conic is part of the

double curve. If P is the united point of the correspondence the plane of

the cubic meets that of the conic in a line through P ;
this line will meet

the cubic again in two points P', P" and the conic in one point Q\ the

points P' and P" must be the two points of the cubic which correspond to

the point Q of the conic.

The pairs of points of the cubic which correspond to the points of the

conic form a g on the curve
; thus these pairs must be on lines through a

fixed point of the curve, in fact through P. One of them PP'P" passes

through its corresponding point Q 9 so that the planes joining the points
of the conic to the corresponding pairs of points on the cubic touch a

quadric cone which is part of the bitangent developable of the surface.

299. We shall now suppose the position of I to be specialised so that

I lies in a solid K' containing a directrix quartic Cf

4
1 of F. Then the pro-

jected surface / has a directrix line JK, the intersection of S and K '. Any
plane in K' passing through I meets C^ in four points, while a prime through
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K' meets F further in two generators ; hence through any point of R there

pass four generators, while any plane through E contains two generators,
and /is of the type III (B).

A prime through I meets F in an elliptic sextic curve, nine of whose
chords meet l\ but this sextic has four intersections with C which lie in

a plane through I, and six of the nine chords arise from these. Through any
point of C^ there pass three of its chords meeting I. Hence the chords of

F which meet I meet F in the curve C^ counted three times and in a
curve <76 . This curve meets each generator of F in one. point; for the solid

determined by I and the generator meets F in four further points of which
three are on C^

1
. Thus we have an elliptic curve C^

1
, and since there are

eight tangents of (74
X
meeting I there are four tangents of C^ meeting I,

and its projection from I is a twisted cubic C3
Q

.

To generate this surface we take a line and an elliptic cubic curve,

placing them in (1, 4) correspondence with a united point. The sets of four

points on the cubic curve which correspond to the points of the line R
form a

gr4
l

; they can therefore be cut out by conies through two fixed points
P19 P2 of the curve and two other fixed points Qx and Q2 in the plane of

the curve. One conic is the line pair dQ2 ,
P1P2 , and this gives rise to

a tritangent plane of the surface passing through Q Q^. The plane of the

cubic curve is a second tritangent plane of the surface. Since a g^ and a

I/2
1 on an elliptic curve have two pairs of points in common* there are two

planes passing through R which also belong to that part of the bitangent

developable other than the planes through R\ these join points of R to

pairs of points on the cubic.

300. It may happen, however, that the g^ on the cubic curve is such
that each of its sets of four points consists of two pairs of a g2

l
; this will

happen if I passes through the vertex of a quadric cone containing C^
1

.

We can see this geometrically thus : take two points Px , P2 of the cubic,
the line joining them meeting the curve again in P3 . Then take Q and Q2

on a line through P3 so that they separate P3 and its polar line in regard
to the cubic harmonically. Then the conies through P1? P2 , Ql9 Q2 cut out
on the curve a g^ whose sets of four points consist each of two sets of the

g2
l
given by the lines through P3 . The polar line of P3 in regard to the cubic

curve is also the polar of P3 in regard to all the conies.

The planes joining the points of R to the corresponding pairs of the

02
1 touch a quadric cone with vertex P3 (since there is a united point).

This, as well as the planes of the pencil R, is part of the bitangent develop-
able of the surface. The remaining part has two double planes, one is the

plane of the cubic and the other passes through QiQ% ; these also touch the

quadric cone.

* Cf. the footnote to 134.
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301. Now we may further suppose that I passes through the vertices

of two quadric cones containing CJ-. To generate the projected surface in

we now take a line and an elliptic cubic in (1, 4) correspondence; but
if S, T, 17, V are the four points of the cubic corresponding to a point of

the line the pairs ST, UV must belong to one jr,
1 and the pairs SU 9 TV to

another g2\ The existence of such sets of points on the cubic curve is clear.

For take any point X of the curve and draw from X two tangents touching
the curve in Y and Z. If a line is drawn through Y meeting the curve again
in S and T and ZS, ZT meet the curve again in J7, V then 7, U, V are

collinear* and the sets of four points 8, T, U, V vary in a series such as

we require ; different sets of the series are given by the different lines Y8T
through Y. There are now two quadric cones belonging to the bitangent

developable of the surface.

302. The pencil of [4]'s through the solid K' containing C meet
F further in pairs of generators ;

the solids determined by these pairs of

generators meet K' in planes forming a developable. In general, no plane
of this developable will contain a given line in K' ; but we can choose I

to lie in one of the planes. Then the projected surface / will have a double

generator and will be of the type III (D). The chords of F which meet
I now meet F in CJ- counted three times, g, g' and another directrix

quartic D.
To generate this surface we again take a line and an elliptic cubic in

(1, 4) correspondence with a united point P, but the correspondence must
be specialised so that two of the three points of the cubic which correspond
to P and do not coincide with it are collinear with it.

303. There is certainly a plane of the developable passing through the

vertex of a quadric cone containing CJ- ; hence we can take / to pass through
it also. Then the g on the elliptic cubic curve is such that each of its sets

of four points consists of two sets of a gj, and the surface has a quadric cone
as part of its bitangent developable.

304. Now let us take I to meet the plane of I\ in a point 0. A prime
passing through I meets F in an elliptic sextic curve with a trisecant

through 0; there are six chords of this curve, besides the trisecant,
which meet 1. Hence the chords of F which meet I meet F in I\
counted twice and a curve (712 . The curve C12 meets each generator of

F in two points, as is seen at once by considering the solid through I and
the generator.

* This follows from the fact that all cubic curves through eight points of a plane
have a ninth point in common.
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We have, on projection from Z, a surface / with a directrix line B, the

intersection of S with the solid ZI\. Through any point of R there pass

three generators, while any plane through R contains three generators;

/ is of the type III (E). It has a double curve (76 , the projection of C12 .

The point is a sextuple point on F4
12

, 1 having six other intersections

with F4
12

. Hence the (3, 1) correspondence between Ce and I has six

branch-points, so that (76 is a C6
l

. is also a sextuple point on JSf4
12

,
there

being six tangents of 1^ passing through and six other tangents of F
meeting l\ hence the (1, 2) correspondence between CJ- and (712 has six

branch-points and (712 is a <712
4

.

Since (712
4 meets each generator of F twice it must have three double

points. These will lie in a plane through I and give on projection a triple

point of C^
1

. Also (712
4 meets I\ in six points lying two on each of three

lines through 0, so that R is a trisecant of C(

6
1

. CJ- has a triple point not

lying on R.

This surface is generated by a line and an elliptic cubic in (1, 3) corre-

spondence.

305. Suppose now that Z, as well as meeting the plane of I\ in a point

0, lies in a solid containing a pair of generators of F. Then the chords

of F which meet I meet F in g, g', I\ counted twice and a curve (710 which

meets every generator of F in two points. The solid gg' meets F further in

a point X of I\ and a point Y of F2 ; Cw has a double point at 7, and

meets Fj in four points lying two on each of two lines through 0.

We thus have on projection a surface / whose double curve is

37?+ (?+ <75 ; (75 has a double point on G and meets it in one other point,

and meets R in two points. R and G intersect (cf. 273).

The line I meets F4
12 in six points other than 0\ we have seen (cf. the

end of 293) that four of these six points are branch-points of the (2, 1)

correspondence between <75 and I, so that <75 is an elliptic curve G6
l

. There

are six tangents of rx passing through 0, so that there are six other

tangents of F meeting l\ the (1, 2) correspondence between C^ and Cf

10 has

six branch-points. Thus CIQ is a (710
4

. It has the one double point T.

To generate this surface we again take a line and an elliptic cubic in

(1, 3) correspondence; but the correspondence must be specialised to give
the double generator.

306. Choosing again I to meet the plane of I\ in a point we can

further secure that the solid ZI\ contains a generator g of F. Then the pro-

jected surface / has a directrix R the intersection of this solid with 2
which is also a generator; through any point of R there pass three other

generators, while any plane through R contains two other generators.
Thus /is of the type IV (B).

A prime through I meets F in an elliptic sextio curve; there is a tri-
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secant of this curve meeting I and the plane containing I and the trisecant

meets the curve in another point. There are three chords of the curve

which meet I and do not lie in this quadrisecant plane.

Thus the points of F which lie on chords meeting I and not on g or I\

lie on a curve CB of the sixth order. This is an elliptic curve C^
1
meeting

each generator of F in one point.

To generate the surface in we take a line and an elliptic cubic in

(1, 3) correspondence; they have a point of intersection, but it is not a

united point.

307. Take now a pair of generators g, g' of F and let the [4] determined

by g, g' and F! meet F further in a generator h. Then the two solids gg'

and Tjh have a plane of intersection; let us project F from a line I in this

plane which does not meet the surface.

The solid ITJi meets S in a line R which is a directrix and also a

generator of /; through any point of E there pass three other generators,

while any plane through R contains two other generators ; there is also

a double generator the intersection of S with the solid Igg'. Thus / is of

the type IV (D).

A prime through / meets F in an elliptic sextic curve ;
there is a trisecant

of this curve meeting I, while the plane of I and the trisecant meets the

curve in a fourth point. There is another chord of the curve meeting I, g

and g'. There are two other chords of the curve meeting Z, and the points
of F, not on g, g' 9 h or I\ ,

whichl ie on chords of F meeting I are on an

elliptic quartic directrix C^
1

. This projects into a conic meeting R\ the

double curve of F is 6J2 + G + C2 .

To generate/we take a line and an elliptic cubic in (1, 3) correspondence,
the correspondence being specialised to give a double generator. The line

meets the cubic but there is no united point. Or we may take a line and
a conic in (2, 3) correspondence with a united point, specialising to obtain

the double generator.

308. Now suppose that I meets the plane of Fx in a point Ol and the

plane of F2 in a point 2 . Then the projected surface has two directrices R
and R', and through any point of either of these pass three generators meeting
the other. The lines in the plane of F2 through 2 meet F2 in sets of a gB

l
,

and the generators of F through these sets of points meet Fx
in the sets

of a jTj
1

. There is a second g^ on F! cut out by lines through Ol9 and since

two series g3
l on an elliptic curve have three pairs of points in common we

conclude that there are three pairs of generators of F which determine

solids containing L The surface / has then three double generators it is

of the type VI (B).

To generate / we take two lines in (3, 3) correspondence; the corre-

spondence being specialised to give three double generators.
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309. There is in [5] an elliptic sextic ruled surface F with only one

directrix cubic F; any three generators which meet F in three collinear

points lie in a [4] containing F and conversely any [4] containing F meets

F again in three generators which meet F in three collinear points*.

Now project this surface on to a solid S from a line I meeting the plane
of F in a point 0. The solid IT meets S in a line R which is a directrix of

the projected surface/; through any point of R there pass three generators
of / lying in a plane through R. Thus / is of the type VII (B).

To generate the surface we take a line and an elliptic quartic in (1, 3)

correspondence with a united point P, the three points of the quartic

which correspond to a point of the line lying in a plane through the line.

The pencil of planes through the line is related to the range of points on

the line; to the point P corresponds the plane through the line and the

tangent at P.

To a point of the line corresponds a plane through the line meeting the

quartic in three points other than P; these three points are joined by
three chords meeting the line. Conversely, through any point of the line

pass two chords of the quartic, and the planes determined by these and the

line give two corresponding points on the line. Thus we have a (2, 3)

correspondence between the points of the line
; but P counts twice among

the five coincidences. There are thus three double generators of/.

310. There exists also in [5] an elliptic sextic ruled surface F with oo 1

directrix cubics on it. Then the solid determined by any two generators
contains a third*.

Take such a solid containing three generators </, g', g". The planes of

the cubic curves meet this solid in transversals of g, g', g", i.e. in lines of

a regulus. An arbitrary line I in the solid will thus meet the planes of two
of the cubic curves. The planes of the cubic curves form a F3

3
t-

Projecting from I on to S we have a surface / with two directrices and

a triple generator; through any point of either directrix there pass three

generators meeting the other. To generate it we take a (3, 3) correspondence
between two lines specialised to give the triple generator; the surface is

of the type VI (C).

If, however, I is chosen to touch the quadric surface determined by the

regulus the projected surface will have a triple generator and a single

directrix R
; through any point of R there pass three generators lying in a

plane through R. The surface is of the type VII (C). To generate this

surface we take a line and an elliptic cubic in (1, 3) correspondence; to

any point of the line correspond the three intersections of the cubic

* 282.

I The locus formed by the 00 1
planes which meet three lines in [5] in related

ranges of points.
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with a plane through the line. The plane of the cubic contains the triple

generator.

The normal surface in [5] with a double line

311. There exists in [5] a normal elliptic sextic ruled surface F with

a double line A; through every point of A there pass two generators of F*.

The tangent solids of F all pass through A and meet an arbitrary [3] in

the tangent lines of an elliptic quartic curve. We have thus oo1 solids

forming a line-cone Jf4
8

, so that there are eight tangents of F meeting an

arbitrary line /.

There is on F a linear system of oo 2 directrix quartic curves; through
two general points of F there passes one of these curves, while any two of

them intersect in two points through which there passes a pencil of the

curves*.

There is a finite number of chords of F passing through a general point
of [5]; it is at once seen that this number is 2, for if we take one chord of

F through a general point of [5] there is a directrix quartic (and in general

only one) passing through its two intersections with F, and there will be

a second chord of this quartic passing through the point of the first chord

with which we started.

There are points of [5] for which the two chords of F coincide; the

locus of such points is a primal F4 . To study this primal F4 we regard
F as the projection of a normal elliptic ruled surface FQ of the seventh

order in [6] from a point of itself. F4 can be also defined as the locus

of the chords of F which are such that the tangents to the directrix

quartic, which passes through the two intersections of the chord with F
at these two points, intersect.

312. If we take the general ruled surface of the seventh order in [6]

we cannot obtain, as a projection, the sextic surface with a double line.

But there is in [6] a normal elliptic ruled surface F of the seventh order

having an elliptic cubic curve as a directrix f; if we project this on to

[5] from a point O of the cubic curve y we obtain the sextic ruled surface

F with a double line.

The chords of FQ form an M5
7 on which F is a quadruple surface and y

a quintuple curve.

There is on FQ a pencil of elliptic quartic curves with a common point
of intersection! ;

the cubic y taken with the generator gr through this

intersection belongs to the pencil of curves. If F *s projected from a

general point of itself we obtain the general elliptic sextic ruled surface

which has two directrix cubic curves; one of these is the projection of y
and the other the projection of that quartic curve of FQ which passes

* 287. f 281.
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through the centre of projection. If F is projected from the point common
to the pencil of quartics we obtain the sextic surface with oo 1 cubic curves;

if F is projected from a point of g we obtain the sextic surface with only
one cubic curve. If, however, we project from a point of y we obtain

the sextic surface F with a double line.

The locus of the solids which contain the quartic curves on FQ is a F4
3

,

the projection on to [5] from the point common to all the solids being the

F3
3 formed by the planes of the oo 1 cubic curves on the resulting sextic

surface *. This is a double locus onM5
7

; it contains jP
, but F is not a double

surface on F4
3

.

A plane through a point of y meets M&
7 in a curve of the seventh

order with a quintuple point at O. It meets F4
3 in two points other than

0, which are double points of the curve. The curve is therefore of genus 3,

and eight tangents can be drawn to it from the quintuple point.

Hence, given an elliptic ruled surface F of the sixth order in [5] which

has a double line A, the primal which is the locus of points of [5] which are

such that the two chords of F which pass through them coincide is F4
8 of

order eight.

313. The oo 1
quartic curves on F give after projection a pencil of

quartics on F; this pencil on F has two base-points, one the projection of

the single base-point of the pencil on FQ and the other the intersection of

the [5] containing F with the generator of F through 0. But, in general,
a quartic curve on F is the projection of a quintic curve on FQ which passes

through O\ on F there are oo 3
quintic curves, such that through three

general points of F there pass two of themf. Thus through we have oo 2

quintic curves on F giving after projection oo 2
quartic curves on F.

If U is the vertex of a quadric cone containing a directrix quartic
of F, the line OU meets oo 1 chords of F and lies on Jf5

7
,
the quartic

being regarded as the projection of a quintic of FQ which passes through 0.

The line OU does not meet F4
3
except in 0\ thus a plane through OU meets

M5
7 further in a sextic curve having a quadruple point at and two double

points. This curve is of genus 2 and six tangents can be drawn to it from O.

Hence if in [5] we take a line I passing through the vertex of a quadric
cone which contains a directrix quartic of F this line will only meet F4

8

in six points other than U\ so that U is a double point on F4
8

. The same
result holds when the quartic on F is the projection of a quartic on F .

The point U is a quadruple point on the locus M formed by the tan-

gents of F, since four tangents of the quartic curve pass through U.

The solids joining y to the generators of F are, like the solids containing
the quartic curves of FQ9 double solids on MB

7
. If then we take a line

passing through O and lying in one of these solids it is a double line on
* 310. t 286.

E 16
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M6
7

;
a plane through it meets M6

7 further in a quintic curve with a triple

point at 0. This curve has also two double points at the intersections, other

than 9
of the plane with F4

3
. It is therefore of genus 1 and four tangents

can be drawn to it from its triple point. Hence if in [5] we take a line which

meets the plane containing A and a generator of F it will only meet F4
8 in

four points other than its intersection with the plane. Hence the planes

joining A to the generators of F are quadruple planes on F4
8

.

314. Let us consider now the projection of F from a line I of general

position on to a solid S. The projection of A is a line R\ through any point
of R there pass two generators of the projected surface /, while any plane of

2 passing through R, being the intersection of S with a [4] through A and Z,

contains four generators of /. This shews that / belongs to the type III (A).

A [4] through I meets F in an elliptic sextic curve with a double point ;

there are eight chords of this curve which meet 1. Hence the chords of F
which meet I meet F in the points of a curve (716 of order 16.

Take any generator g of F\ there is a generator g' which meets it.

The [4] determined by I and the plane gg' meets F further in a quartic

curve which meets each generator of F in one point ;
the solid gl meets

this curve in three points not on g. We thence conclude that the solid

determined by I and any generator of F meets F in three further points.

Whence also the curve (7
lfl
meets each generator of F in three points, and

therefore the line A in four points. These four intersections with A consist

in fact of two double points*.
Hence / has a double curve Cs meeting each generator in three points,

as well as a double directrix R. The chords of F which meet I meet 2 in

the points of (78 ,
so that there is a (2, 1) correspondence between the points

of (78 and the points of I. The eight intersections of I with F4
8 are the

branch-points of the correspondence, so that, by Zeuthen's formula, we
have a (78

3 of genus 3. Further, there is a (1, 2) correspondence between

the points of (78
3 and the points of C1B ;

this also has eight branch-points,
since I meets M in eight points. Hence we have a (716

9
.

Since (716
9 meets each generator of F in three points it must, by Segre's

formula for the genus of a curve on a ruled surface, have six double points

which are not double points of F. These double points lie three in each of

two planes through /, so that (78
3 has two triple points.

The (1, 3) correspondence between a directrix quartic of F and C1B
9

* The planes of pairs of intersecting generators of F are projected from A by
solids forming a quadric line-cone; there are two of these solids meeting L The pairs
of generators contained in these solids meet A in its intersections with Cle ; C18 has

double points at both these points. The plane of the two tangents, at either of these

double points, of Cw meets L The points project into the two intersections of R and
C8*; the two generators of / which pass through either of these points lie in a plane

through R, this plane also containing the tangent of (78
8

.
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shews that Cf

16
9 touches sixteen generators of F\ whence also (78

3 touches

sixteen generators of/ (cf. 267).

To generate this surface we take in S a line R and an elliptic quartic
in (1, 2) correspondence. The pairs of points of the quartic which corre-

spond to the points of R give the lines of a regulus ; neither of the two lines

of the regulus which meet R must do so in the point of R which gives rise

to it. The planes joining the points of R to the pairs of points of the

quartic which correspond to them give a developable E3
Q which has two

planes passing through R ;
this is part of the bitangent developable of /.

315. Now assume that I, instead of being of general position, passes

through the vertex U of a quadric cone containing a directrix quartic

C^
1 of F. Then the chords of F which meet I meet F in C^

1 and in a

curve C12 meeting each generator of F in two points and having two double

points on A. After projection we have a surface / whose double curve is

Since U is a double point of F4
8 there are six branch-points in the

(2, 1) correspondence between (76 and Z; thus (76 is a (76
2

. Then the (1, 2)

correspondence between C6
2 and <712 has four branch-points, since there are

four tangents of Cf

4
1
passing through U and therefore four tangents of (712

meeting Z. Hence (712 is a (712
5

. It touches eight generators of F.

Since (712
5 meets every generator of F in two points it must have two

double points, X and Y, not on A. Through X there pass two chords XX/

and XX" of <712
5 which meet Z; X' and X" are on G^ and X'X" passes

through /7, and similarly for Y' and Y". (712
5 meets C^ in four further

points lying on two lines through U. Thus (76
2 has two double points and

two simple points on C2 (cf. 268).

To generate this surface we take a line and a conic in (2, 2) correspon-
dence. The pairs of points of the conic which correspond to the points of

the line are such that their joins touch another conic; the planes joining

the points of the line to their corresponding pairs on the conic form a cubic

developable which is part of the bitangent developable of the surface.

There are two planes of this developable passing through the line.

316. Now suppose that I passes through the vertex U of a quadric cone

containing a directrix quartic CJ- and through the vertex V of a quadric
cone containing a directrix quartic D^. The chords of F which meet I

meet F in C^
1

, DJ- and a curve Cg
1
meeting each generator of F once and

having two double points on A.

CJ- and Dtl intersect in two points X, Y. UX and UY meet C^
1
again

on (7s
1

, while VX and VY meet D again on C^. Thus the projected surface

has a double curve R + C2+D2+ C^-9 <72 and Z>2 have two intersections

through which CJ- passes, while C meets R in two points. CB
! meets each

of C^ and D^ in six points of which two are already specified; thus CJ- has

16-2



244 CHAPTER IV, 316-319

two intersections with each of C2 and J92 other than those already mentioned

(cf . 269). The surface is generated by the lines which meet <72 , As an(* #

317. The planes of the pairs of generators which intersect in the points

of A form a three-dimensional locus. Let us choose I to meet a plane of

this locus say the plane which contains two generators g and g' of F.

Then projecting from I on to we have a surface / with a directrix line

R through every point of which there pass two generators, while a plane

throughR contains four generators ;
but here there is also a double generator

and/ is of the type III (C).

Consider the chords of F which meet 1. A prime through I meets F in

an elliptic sextic curve with a double point ; there are eight chords of this

curve meeting I, but one of these is in the plane gg'. There are seven others,

so that the chords of F which meet I meet F in g, g' and a curve Cu of

order 14. (714 meets each generator of F in three points.

The [4] Igg'X meets F further in two generators. Hence the solid Igg'

meets F further in two points X and Y . Through X there pass transversals

to I and g and to I and g', so that X is a double point of (714 ; similarly for

r. Cu has a double point on A.

After projection we obtain a surface / whose double curve is E+ G+ C1 ;

J2 and G intersect, (77 has two double points and one ordinary point on G
and meets R in one point (cf. 270).

There are eight branch-points in the (2, 1) correspondence between

C7 and I so that C7 is a C7
3

;
also there are eight branch-points in the (1,2)

correspondence between (77
3 and (714 so that <714 is a (714

9
. It has then just

the three double points mentioned. It is touched by sixteen generators of F.

To generate this surface we take a line and an elliptic quartic and place
them in (1, 2) correspondence. The correspondence must, however, be

specialised to give the double generator ;
the pairs of points of the quartic

which correspond to the points of the line form a g2
l and the lines joining

them form a regulus ; one of the points in which the regulus meets the line

must lie on the corresponding line of the regulus. The planes joining the

points of the line to the corresponding elements of the regulus touch a

quadric cone which is part of the bitangent developable of the surface.

There is one tangent plane of the quadric cone passing through the line.

318. Now suppose that I not only meets the plane gg' but also passes

through the vertex U of a quadric cone which contains a directrix quartic

C^ of F. Then C^
1 will meet g and g' and pass through X and 7, the line

UX meeting g and the line UY meeting g'. There is a [4] containing C^
1

,

g and g'. The chords of F which meet I now meet F in g, g', CJ* and a

curve C1Q meeting every generator of F in two points. (710 passes through
X and F; it has a double point on A.
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Thus on projection we have a surface / with a double curve

B + + C2+ C& \
the plane of <72 contains O and <75 passes through their

two intersections. C2 and (75 have two other intersections, these arise

from the four points of intersection, other than X and Y, of C^ and (710 .

C5 has a further intersection with G and meets B (cf. 271).

Since U is a double point of F4
8 there are six branch-points in the (2, 1)

correspondence between (75 and Z; hence <75 is a <75
2

. As there are four

tangents of (74
L
passing through U there are four tangents of (710 meeting

I
;
thus the (1,2) correspondence between <76

2 and <710 has four branch-points,
so that <710 is a <710

5
. It has no double points other than the one on A, and

touches eight generators of F.

To generate this surface we take a line and a conic in (2, 2) corre-

spondence ;
but the correspondence must be specialised to give the double

generator, to the point of the line in the plane of the conic must correspond
two points of the conic collinear with it. Then the planes joining the points
of the line to the pairs of points of the conic which correspond to them
touch a quadric cone which is part of the bitangent developable of the surface.

319. The planes which project the generators from A form a quartic
line-cone of three dimensions. Let us choose Z to meet a plane of this cone,

the plane joining A to a generator g. Then the solid IXg meets S in a line

R which is a directrix and also a generator of the projected surface /; any

plane through R contains three other generators, while through any point
of R there pass two other generators. Thus/ is of the type IV (A).

Any prime through I meets F in an elliptic sextic curve with a double

point, the plane of I and this double point meeting the curve again. There

are six other chords of the curve meeting I. Hence the points of inter-

section of F, other than g and A, with its chords which meet Z lie on a curve

C12 . By considering the intersection of F with a [4] through the solid

determined by I and an arbitrary generator we see that (712 meets each

generator of F in two points ;
it will then have four intersections with A,

in fact it has a double point on A and meets it in two other points.

The plane \g is a quadruple plane of F4
8

,
so that there are only four

branch-points in the (2, 1) correspondence between C6 and I; thus C6 is an

elliptic curve CQ
l

. There are six* tangents of (712 meeting Z, so that the (1, 2)

correspondence between CB
l and C12 has six branch-points; whence (712 is

a <712
4

. It touches six generators of F.

Since <712
4 meets each generator of F in two points it must have three

double points not on A; these lie in a plane through Z and give rise on pro-

jection to a triple point of CJ-.

To generate this surface we take in S a line and an elliptic quartic in

* The number of tangents of an elliptic quartic in [3] meeting a line which meets
the curve.
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(1, 2) correspondence; they have a point of intersection but it is not a

united point. The pairs of points of the quartic which correspond to the

points of the line form a g2
l and the lines joining the pairs form a regulus.

When we join the points of the line to the corresponding lines of the regulus

we have a developable of the third class which is part of the bitangent

developable of the surface. This developable has two planes passing through
the line.

320. Now let us choose Z to meet the plane of two intersecting

generators g and g' and also to meet the plane through A and a generator
h. The solid IXh meets S in a line R which is a directrix and also a

generator of/; through any point of R there pass two further generators,

while any plane through R contains three further generators. Also the

surface has a double generator the intersection of with the solid Igg'.

A [4] through I meets F in an elliptic sextic curve with a double point,

the plane through this point and I meeting the curve again. Also there is

a chord of the curve meeting g, g' and I. There are five further chords

of the curve meeting t. Hence the points of F other than g, g', h which lie

on chords of F meeting I are on a curve (710 . <710 meets each generator
in two points and has two intersections with A. The solid Igg' meets F in

two further points, one of which is on A; through the other there pass
transversals to I and g and to I and g', so that it is a double point of (710 .

The projected surface/ is of the type IV (C) and has a double curve

3JR 4- G -f <76 . R meets G and is a chord of C5 ; (75 has a double point on

G and meets it in one other point (cf. 275).

The plane Xh being a quadruple plane on F4
8 the (2, 1) correspondence

between C5 and I has only four branch-points ;
thus (75 is an elliptic curve

Cg
1

. There are six tangents of <710 meeting /, so that the (1, 2) corre-

spondence between C^
1 and CIQ has six branch-points ;

whence (710 is a 6y

10
4

.

It has only one double point and touches six generators of F.

To generate this surface we take a line and an elliptic quartic in (I, 2)

correspondence. The correspondence must, however, be specialised to give
the double generator; one of the points of the line gives rise to the two

intersections of the quartic with one of its chords through that point. The
line meets the quartic, but there is no united point. The planes joining the

points of the line to the pairs of points of the quartic which correspond to

them now touch a quadric cone, which is part of the bitangent developable
of the surface. There is one tangent plane of the cone passing through the line.

321. If we choose I to lie in the solid through A' and a pair of inter-

secting generators g and g' this solid meets S in a line R which is a directrix

and also a double generator of/; through any point of R there pass two
further generators, while any plane through R contains two further

generators, so that / is of the type V.
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To generate / we take an elliptic quartic and one of its chords and

place them in (2, 1) correspondence without any united points. The pairs

of points of the quartic corresponding to the points of the line give the

lines of a regulus and the planes joining the points of the line to the

corresponding pairs of points on the quartic form a cubic developable E^
which is part of the bitangent developable of the surface, two planes of

E3 passing through the line.

322. The directrix quartics of F are all given by primes through two

fixed intersecting generators. It is thus clear that an arbitrary line I does

not lie in a solid with any one of these quartic curves. Let us, however,
choose I to lie in a solid K' containing a directrix quartic.

Then the projected surface / has two directrices ; R, the intersection of

andK', and R', the intersection of S with the solid IX. Through any point
of R there pass four generators of/ all meeting R', while through any point
of R' there pass two generators of / meeting R. The pairs of intersecting

generators of F give planes meeting K' in the lines of a regulus ; I meets

two of these lines so that / has two double generators. Thus / is of the

type VI (A).

To generate this surface we take two lines R and R' in (2, 4) corre-

spondence, the correspondence being specialised to give two double

generators.

323. The quadric line-cone which projects the oo 1
pairs of intersecting

generators of F from A has another system of generating solids
;
each solid

of this other system contains two generators of F which do not intersect.

If we now choose I to lie in one of these latter solids we have on pro-

jection a surface with a directrix R which is also a double generator;

through any point of R there pass two generators lying in a plane through
R. The surface /is of the type VII (A).

To generate the surface we take in [3] an elliptic quartic and one of its

chords. These determine a quadric surface; we place the quartic and the

line in (2, 1) correspondence without united points so that the two points
of the quartic corresponding to any point of the line are on the same

generator of the quadric, this generator belonging to the opposite system
to the line. The range of points on the line is related projectively to the

system of generators which meet the line. There are two generators of the

quadric which meet the line in the points which correspond to them;
these are the two double generators of the sextic surface.

324. A table shewing the different types of elliptic sextic ruled surfaces

in ordinary space is given on p. 309. There are thirty-four different types.
We have already obtained twenty-eight of them

; the others will be found

at the end of Chapter VI.
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SECTION III

SEXTIC RULED SURFACES WHICH ARE NEITHER
RATIONAL NOR ELLIPTIC

The normal sextic curve of genus 2

325. The sextic curve of genus 2 is normal in [4] and cannot lie in a

space of higher dimension. The pairs of points* of the g^ give oo 1 chords of

the curve forming a rational ruled surface
</>,

the order of
<f> being the number

of its generators which meet an arbitrary plane. Now the solids passing

through the plane cut out a g6
l on the curve (7, and on a curve of genus 2 a

(fo
1 and a g2

l have three pairs of common points |. Hence <f>
is a cubic ruled

surface J.

The projection of C from one of its chords on to a plane is a quartic

with one double point; thus each chord of C is met by one other chord,

and there are oo 2
quadrisecant planes of C.

The projection of C from a point of itself on to a solid is a quintic curve

of genus 2
; this lies on a quadric surface and its trisecants form a regulus

thereon. Hence those quadrisecant planes of C which pass through a point

of the curve form one system of planes of a quadric point-cone. The other

system of planes of the cone cuts out the g2
l on (7; thus the generators of

<f)
meet all the quadrisecant planes of C. These quadrisecant planes are in

fact none other than the planes of the oo 2 conies on
</>.

If we take two points P and Q of C we have two quadric point-cones with

vertices P and Q\ these have in common the quadrisecant plane through PQ
and the cubic ruled surface

</>.

There are oo 3 trisecant planes of C\ through any point of [4] there

pass oo 1 of these. Consider, in particular, a point of [4] which is the inter-

section of two chords of (7; the projection of C from such a point on to a

solid is a sextic of genus 2 with two double points. The trisecants of this

sextic form both systems of generators of a quadric surface. Hence the

trisecant planes of C which pass through an intersection of two of its chords

and do not contain either chord are the planes of a quadric point-cone.

There are oo 3
quadrics containing (7; we have noticed already oo 2

point-

cones among these. There is also a line-cone whose vertex is the directrix

of
</>.

This directrix is a chord of (7, and the quadrisecant planes containing
the pairs of points of the gz

l all contain this directrix.

326. The projection of C from a line on to a plane is a sextic with eight

double points, while the projection from a line which meets it is a quintic

with four double points. Hence the chords of (7 form a locus M3
8 on which

* There is one, and only one, g^ on a curve of genus 2.

f Cf. the footnote to 134. % Cf. the footnote to 19.
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C is a quadruple curve. There is also a double surface on M3
8

, the locus of

points (oo
2 in aggregate) through which pass two chords of C.

Let us take a plane section ofM3
8 and consider the (5, 2) correspondence

between it and <7*. There are fourteen tangents of C meeting any plane;
thus there are fourteen branch-points on the plane section of M3

8 and

fifty-six branch-points on (7. Then Zeuthen's formulaf shews that the plane
sections of MB

6 are of genus 14, and they therefore have seven double

points. There is thus on MB
* a double surface FJ of order 7.

This double surface contains the directrix of
<f>.

'It also contains C;
C is a simple curve on F2

7
9 the section of Jf3

8
by a quadrisecant plane of

C consists of six chords of C and a conic of
<f>.

There are curves C for which < degenerates into a cubic cone. The inter-

section of a cubic cone in [4] (i.e. a cone projecting a twisted cubic from a point
V outside its space) with a quadric threefold not passing through F is a normal
sextic curve of genus 2. The g is given by the generators of the cubic cone, and
there are six tangents of C passing through F. The projection of C from a point
of itself gives a quintic curve of genus 2 lying on a quadric cone.

Sextic curves of genus 2 which lie on quadrics

327. Following our usual division of the curves on a quadric Q in [5]

into different classes, we consider five classes of sextic curves of genus 2 as

follows :

I. The normal sextic C in [4] .

II. C lies on the quadric point-cone in which i is met by a tangent

prime at a point 0.

(A) C meets every tu-plane of ii through in two points and every

p-plane of fi through in four points, a chord of C passing through 0.

(B) C meets every tu-plane of fi through in four points and every

/>-plane of Q through in two points, a chord of C passing through 0.

(C) G meets every plane of ii through in three points, two chords

of C passing through 0.

III. C again lies in a tangent prime of i but now passes through the

point of contact 0.

(A) C meets every to-plane of Q through in two points other than

and every p-plane of ii through in three points other than 0.

(B) C meets every tu-plane of ii through in three points other than

and every p-plane of 1 through in two points other than 0.

IV. C lies on a quadric surface in a [3] through which pass two tangent

primes of Q.

(A) C meets the generators of one system each in two points and the

generators of the other system each in four points, and has a double point.

* Cf. 262. t 16.
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(B) C meets the generators of both systems each in three points,

and has two double points.

V. C lies on a quadric cone; the section of Q by a [3] which touches it.

(A) C has a double point at the vertex and one other double point,

meeting every generator in two points other than the vertex.

(B) C meets every generator in three points and has two double

points.

328. We have in fact already met with the classes I, II and III in

325. Regarding G as the normal curve in [4] we can have non-specialised

quadrics containing it, from which arises I. The quadric point-cones which

project the surface
<f>
from points of itself not on C give II (A) and II (B),

while those projecting it from points on C give III (A) and III (B). The

quadric point-cones which have their vertices at intersections of two chords

of C occur in the type II (C).

The sextic ruled surfaces in [3] whose plane sections are

curves of genus 2

329. We regard a non-degenerate quadric containing the normal curve

C as a prime section of a quadric O in [5]. Then G will represent the

generators of a ruled surface in [3] belonging to a linear complex.

Through any point of C there pass four of its chords which lie on ii ;
the

chords of C lying on Q, form a ruled surface of order 16 the intersection

of Q andM3
8 on which G is a quadruple curve. The complete intersection

of Q and FJ is of order 14; it consists of C and a curve of order eight. Thus

the ruled surface of order 16 has a quadruple curve of order six and a double

curve of order eight. A section of this ruled surface by a solid will be a curve

of order 16 with six quadruple points and eight double points, the curve

lying on a quadric and meeting each generator in eight points. Projecting
this curve into a plane curve of order 15 we see that its genus is

91-2.21-6.6-8=5,
so that the double curve and bitangent developable of the ruled surface in

[3] are also of genus 5.

Any plane of Q meets the [4] containing G in a line which is met by
eight chords of C ;

hence the double curve of the ruled surface is <78
5 and

the bitangent developable E8
5

.

There are no triple points or tritangent planes because C has no

trisecants.

This ruled surface in [3] of the sixth order and with plane sections of

genus 2 cannot contain any directrix lines, conies or cubic curves unless

they are multiple curves. But there are on the surface oo 1
plane quartics

of genus 2 each with a double point, these being the intersections of the

surface with those planes which contain two intersecting generators.
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There is a finite number of these curves passing through a general point
A of the surface; this number is simply the number of planes of the

bitangent developable which pass through A and do not contain the

generator through A. But of the eight planes of E passing through A
there are four which contain the generator; hence there are four plane

quartics passing through a general point of the surface.

330. Suppose now that C is of the type II (A) ;
we regard the quadric

cone containing G as the section of 1 by a tangent prime. Then we have

in [3] a sextic ruled surface with a directrix line R\ through any point of

R there pass two generators, while any plane through B contains four

generators.

The chords of G lying in the tu-planes join the pairs of the g^\ they
form the cubic ruled surface

<j>.
The chords lying in the p-planes there-

fore form a ruled surface of order 13 on which C is a triple curve. The
intersection of F2

7 with the quadric point-cone is made up of (7, the directrix

of
<f>,

and a curve of order seven which is a double curve on the latter ruled

surface. The section of
<f> by an arbitrary solid is a twisted cubic lying

on a quadric; the other ruled surface gives a curve of order 13 lying on

a quadric, meeting all generators of one system in seven points and all

of the other system in six points; the curve has six triple points and

seven double points. This curve is of genus

66-21-15-18-7=5.
Hence the chords of C lying in the tu-planes form a rational cubic ruled

surface
<f>
and those lying in the /o-planes form a ruled surface of order 13,

the genus of whose prime sections is 5.

Any arbitrary plane p of 1 meets the [4] containing G in a line and the

plane w containing this line joins it to 0\ there are seven other chords

of C meeting the line, all of them belonging to the ruled surface of order 13.

Hence the double curve of the ruled surface in [3] is R -f <77
5

; R and

(77
5 have one intersection, represented on Q by the plane w which contains

the chord of C passing through 0. Also the bitangent developable is

6jR + E2 , there being a plane of E2 containing R.

Similarly, when C is of the type II (B) we have a double curve 6R+ C2

and a bitangent developable jR+U7
5

; C2 has one intersection with R, while

E7
5 has one plane passing through R.

331. If C is of the type II (C) we have in [3] a ruled surface with a

directrix line R through any point of which there pass three generators,
while any plane through R contains three generators.

The chords of C lying in either system of planes form a ruled surface of

order eight on which C is a double curve, and there will be no other double

curve. A prime section of this surface gives a curve of order eight lying on a
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quadric, meeting all generators of one system in three points and all of the

other system in five points, the curve having six double points. The genus
of such a curve is 21 3 10 6 = 2

An arbitrary plane of ii meets the [4] containing C in a line, and the

plane of the opposite system through this line joins it to 0. This contains

three chords of C\ there are five others meeting the line.

Hence the double curve of the ruled surface in [3] is SJfZ-fC's
2 and

the bitangent developable is 3R -f E5
2

. C&
2 has two intersections with R

represented on ii by the ta-planes containing the two chords of C which

pass through ; Eb
2 has two planes passing through R represented by the

/>-planes through the same two chords of C.

332. Let C be of the type III (A). Then we have in [3] a ruled surface

with a directrix line R which is also a generator ; through any point of R
there pass two other generators, while any plane through R contains three

other generators.
The tn-planes cut out the g^ on C. The ruled surface formed by the

chords of C which lie on fi here splits up into three parts : the quintic cone

of genus 2 projecting G from 0, the rational cubic ruled surface
<f>

and a

ruled surface of ordereightformed by the chords lying in the /o-planes and not

passing through 0; the prime sections of this latter surface are of genus 2

as in 331.

An arbitrary plane p meets the [4] containing C in a line
;
the plane w

through this line joins it to and contains three chords of C. There

are five other chords of G meeting the line and all belonging to the ruled

surface of order eight. Hence the double curve of the ruled surface in [3] is

3J2 -i- (76
2

. R and (76
2 have two intersections : taking that set of the g3

l

cut out by the p-planes which contains 0, these intersections are repre-

sented on Q by the tn-planes containing the chords of C which join to

the two other points of the set.

An arbitrary plane w meets the [4] containing C in a line
;
the plane p

through this line joins it to and contains six chords of C. There are

two other chords of C meeting the line, both belonging to
<f>.

Hence the

bitangent developable of the ruled surface in [3] is 6R+ E2 . There is one

plane of E2 passing through R : taking the set of the g^ containing 0, this

plane is represented on 1 by the />-plane containing the chord joining the

pair of points.

Similarly, if C is of the type III (B) we have in [3] a ruled surface with

a double curve 6R+ C2 and a bitangent developable 3R+E5
2

. R and C2

have one intersection, while there are two planes of E6
2
passing through jR.

333. In type IV we have two directrices R and R'.

In IV (A) the double curve is GR + Gj-R' and bitangent developable
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JB-f 6?+ 6JR'. Through any point of R pass four generators lying in a plane

through B' 9 while through any point of R' pass two generators lying in a

plane through R.

In IV (B) the double curve is 3.R+ 6?+H+ 3J2' and bitangent develop-
able 3R+ G+ H+3R'. Through any point of either directrix pass three

generators in a plane through the other.

In type V we have a single directrix R.

In V (A) this is also a double generator ;
the double curve is 1R -f G and

bitangent developable 1R + G\ the plane section is a sextic curve with a

double point and a quadruple point at which two of the four branches have

the same tangent.
In V (B) the double curve and bitangent developable are 6R + G+ H.

Through any point of R there pass three generators all lying in a plane

through jR. The plane sections are sextic curves with two double points and
a triple point at which all three branches have the same tangent.

334. The ten different types of sextic ruled surfaces in [3] which we
have obtained are shewn in tabular form on p. 310.

A sextic rilled surface in [4] whose prime sections are curves of

genus 2, and the ruled surfaces in [3] derived from it by projection

335. Take in [4] a plane and a line R which do not intersect. Take in

the plane a quartic with one double pointP ;
then relate the range of points

on R to the pencil of lines through P ;
each of these lines meets the quartic

in two further points, and if these pairs are joined to the corresponding

points on R the joining lines generate a ruled surface on which If is a

double line and P a double point. The ruled surface is of the sixth order

and its prime sections are of genus 2*.

The plane of the two generators intersecting in a point of R necessarily

passes through P; we have thus oo 1
planes through P. These planes, as

joining the points of a range to lines of a related pencil, generate a

quadric point-cone, with vertex P, containing the ruled surface. The plane
PR is a plane of the opposite system of this cone.

A solid through the plane of two intersecting generators meets the

surface further in a plane quartic with a double point at P; we have thus

oo 1
plane quartics. Through any one of these quartics there pass oo 1 solids

joining it to the points of 7?, each meeting the surface in two intersecting

generators. The planes of these oo 1
quartics are the opposite system of

* The genus of the prime sections is the same as the genus of the plane quartic.
The order of the surface is 1.2 + 4.1 = 6; there being a (1, 2) correspondence
between the line and the quartic; cf. 19.

This surface in [4] is mentioned by C. V. Hanumanta Rao, Proc. Lond. Math. Soc.

(2), 19 (1919), 249.
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planes of the quadric point-cone. Through any point of the surface there

passes one of the quartic curves.

336. Now project this surface F from a point on to a [3] S. A solid

through meets F in a sextic curve of genus 2 with a double point on R *
;

there are seven chords of this curve passing through 0. There are oo 1

chords of F passing through and they meet F in a curve Cu of order 14.

Since a plane through a generator g of F meets F in three further pointsf
the curve <714 meets each generator of F in three points.

A solid through which contains P meets F in a sextic curve of genus 2

with two double pointsj, one at P and one on R. There are six chords of

this curve passing through 0. We conclude that <714 has a double point
at P. It has also a double point on R.

We can now|| calculate that <714 is of genus 14.

On projecting from we obtain in S a ruled surface whose double

curve consists of a directrix and a curve of the seventh order meeting each

generator in three points. This curve is in (1, 2) correspondence with (714

and its genus can be calculated by Zeuthen's formula when we know the

number of branch-points of the correspondence, i.e. the number of tangents
of C714 which pass through 0.

Now the tangent solids ^f of F all pass through JB; there are ten of

these solids passing through any point of [4], since a plane quartic of

genus 2 is of class ten. Hence there will be ten tangents of (714 passing

through 0. Whence the double curve of the projected surface is of genus 5.

Hence on projection we have a surface of the type II (A) with a double

curve R+ <77
5

. R and <77
5 have one intersection

;
the tangent of <77

5 at this

point lies in the plane containing R and the two generators of the surface

which intersect there.

To generate the surface in S we take a line and a plane quartic with one

double point, placing them in (1, 2) correspondence. The bitangent planes
of the surface which do not pass through the line join the points of a range

* This curve has oo 1
quadrisecants; it lies on a quadric, meeting all generators

of one system in four points and all of the other system in two points.

t The solid through the plane and the generator which intersects g meets F -

further in one of the plane quartics; this has three intersections with the plane
which do not lie on g.

J This curve lies on a quadric cone with vertex P, meeting every generator in

two points other than P.
The solids joining R to the pairs of intersecting generators of F form a pencil

of solids through the plane RP; there will be one of them passing through 0. The

point of R which is the intersection of the two generators contained in this solid is

a double point of Cu .

||
See 17. Observe that no deduction is made for the double points of <714 ; this

is because the double points of C14 are also double points of the ruled surface.

H See 51.
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to the lines of a related pencil and therefore touch a quadric cone. There

is one tangent plane of this cone passing through the line, viz. the plane

joining the line to the double point of the quartic curve.

337. We have projected the surface F from a general point of [4];

we now proceed to consider the surfaces obtained in S by choosing special

positions of the centre of projection 0. Let us then choose to lie on the

M3
4 formed by the planes joining R to the generators of F, i.e. lies in the

plane containing R and a generator g. Then on projection we have in S
a surface / with a directrix line R which is also a generator. Through
any point of R there pass two other generators, while any plane through
R contains three other generators. Hence / belongs to the type III (A).

A prime through meets F in a sextic of genus 2 with a double point
on R, and the line joining to the double point meets the curve again in

a point on g. There are five other chords of this curve passing through 0,

so that the chords of F passing through meet F in a curve <710 of order

ten. The plane joining an arbitrary generator of F to meets g, and meets

F only in two further points; hence every generator of F meets (710 twice.

<710 has a double point at P but no other double points, and is of genus 7.

R meets (710 in two distinct points; the lines joining these points to meet
(710 again in its intersections with g.

From a point on a plane quartic of genus 2 we can draw eight tangents to

the curve, so that there are eight tangents of Cw passing through 0. This

shews that the projection of (710 is a quintic curve of genus 2.

Hence the surface / has a double curve 3R+ <76
2

. R and <75
2 have two

intersections.

To generate this type of surface in S we take a plane quartic with one

double point and a line which meets it, placing the line and the curve in

(1, 2) correspondence without a united point. The bitangent planes of the

surface which do not contain the line touch a quadric cone, one of whose

tangent planes contains the line.

338. Let us now choose to lie on the quadric point-cone containing F.

Then lies in the plane of two intersecting generators and also in the plane
of a directrix quartic of F. This latter plane will meet S in a directrix R' of

the projected surface, while we have as before a directrix R. Through any
point of R there pass two generators, while through any point of R' there

pass four generators. The projected surface has a double generator and
is of the type IV (A).

To generate this surface we place two lines R and R' in (4, 2) corre-

spondence, the correspondence being specialised to give the double

generator.
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Now let us further specialise the position of and choose it in the plane
PR I this plane contains two generators of F. Any solid through this plane
meets F further in two generators intersecting in a point of R. Hence on

projection we obtain in S a surface / with a directrix line R which is also

a double generator, any plane throughR meeting /further in two generators
which intersect on R: / is of the type V (A). The other double generator
is the intersection of S with the other plane of the point-cone containing 0.

To generate this surface we take a plane quartic with a double point
P and a line R passing through P; we then set up a (1, 2) correspondence
between E and the curve without any united point. There is a double

generator passing through P and lying in the plane of the quartic.

The sextic ruled surfaces of genus 2 which are normal in [3]

339. Although we have not obtained all the surfaces in [3] as projec-

tions of this surface F in [4], we cannot construct any other ruled surfaces

in [4] which are of the sixth order and have prime sections of genus 2.

We thus meet abruptly the fact that the normal space for a ruled surface is

not uniquely determined by its order and the genus of its prime sections. The
normal space is uniquely determined for rational and elliptic ruled surfaces

of all orders, but for ruled surfaces of given order, whose sections are of

genus greater than or equal to 2, there are different normal spaces.

We have obtained ten different kinds of sextic ruled surfaces in [3]

whose plane sections are of genus 2
;
of these four can be obtained as the

projections of a single normal surface in [4] , but the other six are normal

in the space [3] itself. On these latter surfaces the plane sections form a

complete linear system of curves
; such a system of curves is not contained

in any linear system, of greater freedom, of curves of the same order.

340. For those surfaces which are not obtainable by projection from

[4] we here give methods of generation.

To obtain a surface of the type I we take two plane quartics of genus 2

and place them in (1, 1) correspondence with two united points, the curves

having the same moduli. It is clear that the plane of either curve is met in

eight points by the double curve of the ruled surface so generated. The
other curve meets this plane in two points which are not united points;

through either of these points passes a generator of the surface to the

corresponding point on the first curve, this meets the first curve in three

further points which are points of the double curve. We thus have six

points of the double curve ; to these must be added the double point of the

quartic and the intersection of the two generators.
For a surface of the type II (B) we take a line and a conic with one

intersection and place them in (2, 4) correspondence with a doubly united
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point. Through any point of the line pass four generators, while any plane

through the line contains two generators.
For a surface of the type II (C) we take a line and a plane quartic of

genus 2, placing them in (1, 3) correspondence with a united point.

Through any point of the line there pass three generators, while any plane

through the line contains three generators. The double curve of the ruled

surface so generated (apart from the triple line) meets the plane of the

quartic in five points; through the united point there pass two lines to

corresponding points on the quartic, these meet the quartic each in two
other points which are points of the double curve. We have thus four points
of the double curve, and to these must be added the double point of the

quartic.

For a surface of the type III (B) we take a line and a conic with one

intersection, placing them in (2, 3) correspondence with a united point.

The ruled surface has the line as a generator, through any point of the line

pass three other generators, while any plane through the line contains two

other generators.
A surface of the type IV (B) is generated by two lines in (3, 3) corre-

spondence, the correspondence being specialised to give two double

generators.
To obtain a surface of the type V (B) we take a line and a plane quartic

of genus 2 with one intersection, placing them in (1, 3) correspondence
with a united point and so that the triads of points on the quartic corre-

sponding to the points of the line are all collinear with the united point.

This is secured by relating the range of points on the line to the pencil of

lines through the united point; the united point considered as a point of

the range corresponding to the tangent to the quartic. This tangent is a

double generator of the ruled surface ; there is a second double generator

passing through the double point of the quartic.

341. If, on a ruled surface in space of any number of dimensions, we
have a curve of order v and genus TT meeting each generator in two points,

and having no double points which are not also double points of the ruled

surface, then
v -7r= n-2p+ 1,

where n is the order and p the genus of the ruled surface. If the curve, of

order v and genus TT, is the projection of a normal curve in higher space,
the ruled surface is also the projection of a normal ruled surface in higher

space
*

; we have already made use of this idea to obtain the normal space
for elliptic ruled surfaces.

If the ruled surface is a sextic ruled surface whose prime sections are

of genus 2 we have
v TT-= 3

* Cf. Segre, Math. Ann. 34 (1889), 1.

E 17
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so that the curve is certainly normal in [3] if v> 2ir 2, i.e. if TT< 5 and
v < 8. Hence, if a ruled surface in [3] , of order 6 and genus 2, is the projection

of a normal ruled surface in [4] ,
there cannot be on the surface a curve of order

less than eight (and of genus less than 5) meeting each generator in two points.

If we attempt to obtain such a curve, e.g. by means of a quadric con-

taining at least five generators, the attempt is bound to fail. If the surface

has a directrix R the quadric must not contain R, for then the residual

curve of intersection would not meet each generator twice.

The sextic ruled surfaces whose plane sections are of genus

greater than 2

342. A sextic ruled surface in [4] whose prime sections are of genus 3

is necessarily a cone *
;
thus such a ruled surface is normal in [3] and the

question of projection from higher space will not arise, nor will it arise

a fortiori for the surfaces with prime sections of genus greater than 3. It

remains then to consider such surfaces as curves on the quadric Q.

The sextic curve of genus 3 is necessarily contained in [3], so that the

sextic ruled surface will have two directrices distinct or coincident. Now
the sextic curves of genus 3 lying on a quadric surface are of two kinds :

(A) the curve meets all generators of one system in four points and all

of the other system in two points ;

(B) the curve meets every generator in three points and has a double

point.

In the first case we have a ruled surface with a fourfold directrix and

a double directrix ; the double curve is 6/2 + R' and the bitangent develop-
able is R + 6J?'. The surface is generated by two lines R and Rf placed in

(2, 4) correspondence.
In the second case we have a ruled surface with two triple directrices

and a double generator ;
the double curve and bitangent developable are

both 3J? + -I- 3jR'. The surface is generated by two lines R and R' in (3, 3)

correspondence, the correspondence being specialised to give the double

generator.
In either case the two directrices may coincide. We can have on a

quadric cone:

(A) a curve with a double point at the vertex, meeting every generator
in two other points ;

(B) a curve meeting every generator in three points and having a double

point.

In (A) the double curve and bitangent developable are both 7R ;
the

directrix itself being a double generator. Through any point of R there

pass two other generators lying in a plane through R. The surface is

* Cf. 160.
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generated by a line and a plane quintic in (1, 2) correspondence with a

united point, the quintic having a triple point on R.

In (B) the double curve and the bitangent developable are both

6R -f O ; through any point of R there pass three generators lying in a plane

through R. To generate this surface we take a line and a plane quartic
without double points and place them in (1, 3) correspondence with a

united point, the three points of the quartic which correspond to any point
of the line lying on a line through the united point. The tangent to the

quartic at this point is a double generator of the surface.

343. On a quadric in [3] we can have a sextic of genus 4; this is the

complete intersection of the quadric with a cubic surface and meets every

generator in three points. We can thus have in [3] a sextic ruled surface

with plane sections of genus 4; the surface has two directrices R and R',

through any point of either there pass three generators lying in a plane

through the other. The double curve and bitangent developable are both

3R+ 3R'. The surface is generated by two lines R and R' in (3, 3) corre-

spondence.
Here also we can have a surface for which the two directrices coincide ;

this is represented by the sextic curve which is the intersection of a cubic

surface and a quadric cone. The double curve and bitangent developable
are both 6R ; through any point of R there pass three generators lying in a

plane through R.

The surface is generated by a plane quintic with a tacnode and a line

passing through the tacnode, these being in (3, 1) correspondence with a

doubly united point. The three points of the quintic corresponding to any
point of the line are collinear with the tacnode, and the tangent at the

tacnode is a generator of the ruled surface.

17-2



CHAPTER V

DEVELOPABLE SURFACES

Introduction

344. We have already mentioned the construct in three-dimensional

space which is known as a developable*. It is formed by a singly infinite

system of planes and can thus be regarded as the dual of a twisted curve
;

for this reason many properties of developables have been known for

a long time. The class of the developable is the number of its planes which

pass through an arbitrary point.

We may regard the developable in another way. Just as the line

joining two points of a curve is called a chord of the curve, so the line of

intersection of two planes of a developable is called an axis of the de-

velopable. As the two points of the curve tend to coincide, the chord tends

to a limiting position called a tangent of the curve, so, when the two planes
of the developable tend to coincide, the axis tends to a limiting position

called a generator of the developable. Just as there is a tangent at every

point of the curve, so there is a generator in every plane of the developable,

leaving aside for the moment the consideration of possible singular planes.
We have thus oo 1

generators forming a developable surface. It then appears
that a developable surface is merely a particular case of a ruled surface ;

except for a finite number of generators which are torsal the tangent planes
to a ruled surface are different for different points of the same generator,
but on a developable surface all the generators are torsal with the same

tangent plane at different points of the same generator. We shall in future

use the same term developable to denote either the singly infinite system
of planes or the surface formed by the generators.

Further, just as we derive osculating planes of a curve, so we can derive

a singly infinite system of points forming a curve F on the developable.
If we consider the generator g in the plane a, then the limiting position of

the point of intersection of g with another plane /?
of the developable, as

j8 approaches a, is a point of F. The generators of the developable touch F
and the planes of the developable osculate F; F is called the "edge of

regression" or the "cuspidal edge" of the developable.

Every developable is formed by the osculating planes of some curve F,

and conversely the osculating planes of every curve F form a developable.

Any numerical relation connecting singularities of a developable gives
another numerical relation connecting corresponding singularities of a

* See e.g. 21.
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twisted curve and vice versa] these relations have been well known since

Cayley's generalisation of Pliicker's formulae for plane curves to curves in

space *.

345. If we project a twisted curve F on to a plane from an arbitrary

point we obtain a plane curve, and every osculating plane of F passing

through gives on the plane a tangent at a point of inflection on the

plane curve
;
the number of these is equal to the class of the developable

formed by the osculating planes of F. If lies on a tangent of F the plane
curve loses two of these inflections and acquires a cusp.

The section of a developable by an arbitrary plane w gives a system
of lines enveloping a curve

;
this curve is the locus of points in which w is

met by the generators of the developable and has cusps at the points where

w meets the cuspidal edge. If, however, w contains a generator the curve

loses two of these cusps and acquires an inflection; this inflection is at

the point of contact of the generator in w with the cuspidal edge and the

generator is itself the inflectional tangent. If there are r generators of the

developable meeting an arbitrary line in space, the section by a plane w
containing a generator is a curve of order r 1

;
this will meet the generator

in r 4 points other than the inflection. Thus given a skew curve F of

which r tangents meet an arbitrary line any one tangent is met by r 4

others. We say that F is of rank r.

We have then on a developable surface not only a cuspidal edge but

a nodal curve
;
this nodal curve meets every generator in r 4 points if

r is the order of the surface. Any plane through a generator meets the

surface further in a curve of order r 1 passing through these r 4 points

(which are fixed for all positions of the plane) and having an inflection at the

point of contact of the generator with the cuspidal edge ; but when the plane
is the tangent plane the residual intersection will only be of order r 2

;
it

passes through the r 4 points in which the generator meets the nodal curve

and touches the generator at its point of contact with the cuspidal edge.

346. Suppose that we have in [3] a curve F of order n and genus p ;

then it can be proved, either by means of a correspondence between the

planes of a pencil or by projecting F on to a plane and using Pliicker's

equations, that the rank of F is r= 2n + 2p 2. A reduction may have to

be made for certain singularities of F
;
in particular we must subtract 1 for

each cusp.
The curves that we shall meet with will have three kinds of singularities :

(a) cusps, or stationary points;

(6) inflections, or points at which the tangent is stationary;

(c) points at which the osculating plane is stationary.

The last two types of singularity do not affect the rank of the curve; so

*
Papers, 8 (1871), 72.
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that for a curve of order n and genus p the rank is r=2n+ 2p 2 *,

where K is the number of cusps of the curve.

The tangents at the inflections are stationary generators of the develop-

able of which F is the cuspidal edge ;
a plane meets the developable in a

curve having cusps not only at the intersections of the plane with F but also

at the intersections of the plane with the tangents to F at its inflections.

Each tangent of F is met by r 4 other tangents, so that we have a nodal

curve on the developable. Hence the double curve of the developable

surface may consist of three parts : the cuspidal edge, the nodal curve and

the tangents at the inflections of the cuspidal edge. Similarly the bitangent

developable may also consist of three parts: the original developable itself,

the nodal developable and the pencils of planes through the inflectional

tangents of the cuspidal edge.

347. The simplest curve in [3] is the twisted cubic
;
the tangents of this

form a developable surface of the fourth order and no other curve can give

a developable of so low an order. For a developable of the fifth order the

only possible cuspidal edge is the rational quartic with one cusp*. For a

developable of the sixth order the cuspidal edge must be such that

and there are three possible curves :

(a) A rational quartic,

(6) A rational quintic with two cusps,

(c) A rational sextic with four cusps.

Thus all developables of the sixth order are rational, and the cuspidal

edge lies on a quadric surface.

It may be remarked in passing that for an elliptic curve of order n with

K cusps the order of the developable of tangents is 2n K. Thus the lowest

order possible for an elliptic developable is eight, this developable being
formed by the tangents of the curve of intersection of two quadrics. Hence

all developables of order less than eight are rational, or, to use Cayley's

expression, planar developablesf.

348. The expression r=2n+2p-2-K
for the rank of a curve of order n and genus p with K cusps is true whatever

the dimension m of the space in which the curve lies
;
it gives the number

of tangents of the curve which meet an arbitrary [m 2] of general position.

If the cuspidal edge F of a developable in [3] is not normal we can

consider a normal curve F ,
in higher space, of which F is the projection;

the developable surface formed by the tangents of F is then the projection
* The number of cusps of a rational curve of order n in [3] cannot exceed the

integral part of (n
-

3); Veronese, Math. Ann. 19 (1882), 209.

f Cf. Schwarz, "De superficiebus in planum explicabilibus primorum septem
ordinum," Journal fur Math. 64 (1865), 1.
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of the developable surface formed by the tangents of F ,
the centre of

projection meeting as many tangents of F as there are cusps of F.

Since a rational quartic in [3] is the projection of a normal rational

quartic in [4] it follows that the developable of tangents of a rational

quartic in [3] is the projection of the developable of tangents of a normal

rational quartic in [4]. By selecting different positions for the point of

projection in [4] we are able to obtain different types of developable
surfaces of the sixth order in [3], while if we take the point of projection

to lie on a tangent of the normal curve we obtain in [3] the developable
of the fifth order formed by the tangents of a rational quartic with a cusp.

A very complete investigation of the properties of a rational quartic in

[3] as derived by projection from the normal curve is given by Marietta*.

When, however, he is examining the details of the nodal curves of some sextic

developables he simply obtains the results by geometry in three dimensions ;

we shall try to obtain all our results systematically by projection.

For a normal rational quartic curve C in [4] the order, or the number of

points of G which lie in an arbitrary solid, is 4. The first rank, or the number
of tangents of C which meet an arbitrary plane, is 6

;
the second rank, or

the number of osculating planes of C which meet an arbitrary line, is 6;

the class, or third rank, or the number of osculating solids of C which pass

through an arbitrary point, is 4. These numbers are well known|. If then

we take the section by a solid of the surface formed by the tangents
of C we obtain a rational curve of the sixth order with cusps at the

four points where S meets C. The tangents of this curve are the lines in

which S meets the osculating planes of C, and they form a developable
surface of the sixth order. By selecting different positions of the cutting
solid S we obtain different types of sextic developables in ordinary space.

We shall give subsequently a complete list of the developables of

the sixth order with their double curves, bitangent developables and

cuspidal edges. Of the ten different classes which we finally obtain all but

one are obtainable from the rational normal quartic curve by projection and
section. The surfaces have been considered by Chasles, Schwarz and Cayley ;

but no complete account of them seems to have been published.
*

We must mention, for completeness, two other methods of studying

developables, although we shall not pursue these lines of investigation here.

The generators of a developable form a ruled surface which may be

the projection of a normal ruled surface, not itself developable, in higher

space. For example : all developable surfaces of the sixth order are rational

and can therefore be obtained by projection from the normal rational

sextic ruled surfaces in [7].

The planes of a developable may be the projections of a system of

* Annali di Matematica (3), 8 (1903), 97-128.

t See e.g. Clifford, Collected Papers (London, 1882), 314.
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planes, in higher space, forming a three-dimensional locus. For example :

a rational developable of class n can always be obtained by projection

from a rational normal locus, of order n, of oo 1
planes in \n+ 2].

349. We know how to represent the generators of a ruled surface of

order n and genus p in [3] by the points of a curve C of order n and genus

p lying on a quadric primal 1 in [5] . There are 2 (n + 2p 2) torsal

generators of the ruled surface*, giving 2 (n + 2p 2) points of C at

which the tangents lie on Q. Hence, since every generator of a developable

surface is a torsal generator, the generators of a developable in [3] are

represented on O by a curve C all of whose tangents also lie on }.

Suppose that we have a curve (7, of order n, genus p and with k cusps,

lying on a quadric primal Q in space of any number of dimensions. Then

the number of tangents of C which lie on D is found at once by considering

the section of the figure by a prime II. For the surface formed by the

tangents of C meets II in a curve C", of order 2n 4- 2p 2 k, which has

cusps at the n points of intersection of C with II. These cusps are all on

the section o> of 1 by II, so that C' and o> have

2(2n + *2p-2-k)-2n=2(n+2p-2)- 2k

further intersections.

The tangent of C which passes through any one of these further inter-

sections of C' and cu lies entirely on ii, since it meets it in two points at its

point of contact with C and in one point where it meets o>. Conversely,
a tangent of G which lies on i"2 must pass through one of these further

intersections of C' and aj
;
it does not pass through a cusp of C', since the

choice of II is arbitrary. Hence the number of tangents of C which lie on

1 is 2 (n + 2p - 2)
- 2fc.

350. In order to obtain the properties of developable surfaces in [3]

we shall make use of properties of curves on a quadric 1 in [5], these

curves being such that all their tangents also lie on Q. We first obtain

the number of osculating planes of such a curve which lie on ii.

Let us suppose that Q is a quadric primal in space of any number of

dimensions, and that on Q there lies a curve (7, of order n, genus p and

having k cusps, whose tangents all lie on 2. The tangents of C form a

surface, and the tangent planes of this surface at the different points of a

tangent of C all coincide with the corresponding osculating plane of C.

But, if we have a surface on a quadric, the tangent plane of the surface

at any point is contained in the tangent prime of the quadric at the

same point. Hence the tangent primes of Q, at the different points of a

tangent of <7, all contain the osculating plane of C. Thus each osculating

plane of C touches Q at every point of the tangent of C, and if it should meet
Q in any points which are not on this tangent it will lie on 1 completely.

* Cf. 32.
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Consider now the section by a prime II. The surface formed by the

tangents of C meets II, as before, in a curve C" of order 2n + 2p 2 k,

but this curve now lies entirely upon co. Hence, by the result just proved,
the number of tangents of C' lying on a) is

2 {(2n + 2p - 2 - k) + 2p - 2}
- 2n = 2 (n + 4p - 4)

-
2Jfc,

since C' has n cusps and is of genus p.

Now the tangents of C' are the lines in which II is met by the osculating

planes of C. Hence, if a tangent of C" lies on o>, the corresponding osculating

plane of C will lie on }, and conversely. Therefore the number of osculating

planes* of C which lie on Q is 2 (n + 4^> 4) 2k.

351. If fi is in [5] the points of C represent the generators of a

developable in [3]; these generators all touch a curve F. A point P of

G represents a generator g of the developable; through the tangent of

C Sit P there pass two planes of Q, one of each system. The point of [3]

which is represented on Q by the ta-plane is the point of contact of g and

F, while the plane of [3] which is represented on ii by the /o-plane is the

corresponding osculating plane of F.

A cusp of F is represented on Q, by a ra-plane which osculates C, and a

stationary osculating plane of F is represented on ti by a /o-plane which

osculates C. The tangent at an inflection of F is represented on fi by a

cusp of C.

Suppose that F has K cusps and K stationary osculating planes ;
then

the number of osculating planes of C which lie on Q must be K -f K . But,

by the Cayley-Pliicker formulae for a twisted curve,

K + K
' = 2 (n + 4p - 4)

- 2f
,

where F is of order n, genus p and has i inflections. But C is of order

n,, genus p and has i cusps ;
thus the number of osculating planes of C

which lie on 1 is in agreement with that given by 350.

352. If we have a quadric primal 1 in space of any number of

iimensions, and on it a curve C whose tangents also lie on Q, then the

tangent primes of i at the different points of the tangent of C at a point
P all contain the osculating plane of C at P. The tangent prime of ii at

P itself contains the osculating solid of C at P, and so meets C in only
^ 4 other points, if n is the order of C. We have then, corresponding to

jach point P of C, a set of n 4 points which are the intersections of C,

)ther than P itself, with the tangent prime of fl at P; if we have a

Doint P such that one of the set of n 4 points is P itself, the osculating
)lane of C will lie on Q. The tangent prime of Q at a point P of C meets (7,

n general, in four points at P; if it should happen to meet G in five points
it P then the osculating plane of G at P lies on Qf.

* Of. Baker, Proc. Edin. Math. Soc. (2), 1 (1927), 19.

t Baker, loc. cit.
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The developable surface of the fourth order

353. The tangents of a twisted cubic in [3] form a developable surface

of the fourth order. The section by an arbitrary plane is a rational plane
quartic with three cusps. A plane through a tangent of the cubic curve

meets the curve in one further point ; the section of the developable consists

of the tangent and a rational plane cubic. This cubic has an inflection with
the generator of the developable as the inflectional tangent, and has a cusp
at the remaining intersection of the plane with the twisted cubic. An
osculating plane of the twisted cubic meets the developable in the tangent
counted twice and a conic, the conic touching the tangent at its point of

contact with the cubic curve.

No two tangents of the cubic can intersect.

Given a quartic curve C in [4] there is one quadric Q which contains
C and all its tangents ; if Q is regarded as a prime section of fi the points
of C represent the generators of a developable of the fourth order in [3] .

The tangents of a twisted cubic belong to a linear complex.
Any three tangents of C have one transversal

;
this transversal must lie

on Q and Q can, in fact, be defined as the locus of transversals of triads of

tangents of C. The tangents of C form a developable surface lying on Q\
this is of the sixth order and meets every line of Q in three points. A plane p
of Q meets the [4] containing Q in a line which is met by three tangents of

C
;
this means that there are three points of the cuspidal edge of the develop-

able in an arbitrary plane of [3] . A plane w of Q meets the [4] containing
Q in a line which is met by three tangents of C\ this means that there are

three planes of the developable passing through an arbitrary point of [3].

The fact that any three osculating planes of a twisted cubic meet in a point
coplanar with their points of osculation is quite clear on the quadric }. Take
three tangents tl9 t2 , 3 of C\ then the planes pl9 p2 , p3 of ti passing through them
represent three arbitrary osculating planes of the twisted cubic. The point of
intersection of these three planes is represented on 1 by the unique plane w
which meets each of the planes pl9 p2 , p3 in lines, and this is clearly the plane w
which contains the transversal tQ of ^ ,

t2 , 3 . Then the plane pQ through tQ meets
the four planes m , wl9 m2 , w3 all in lines and so represents a plane passing
through the three points where the planes osculate the twisted cubic and also

through the point of intersection of the three osculating planes ; w , w2 , t&3 are
the tjj-planes of Q which contain ^ , t2 ,

t3 .

354. There is a result due to Brill and Nother* which states that the
curves of order n and genus p in [r] depend upon

*
(
r + 1)

-
(P
~

1) (r
-

3)

parameters, provided that

n > r + rp
r

* Brill and Nother, Math. Ann. 7 (1874), 308. Nother, Journal fur Math 93
(1882), 281. Segre, Math. Ann. 30 (1887), 207.
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Thus in [4] there are oo 21 rational normal quartic curves. Through each

of these curves there passes a quadric containing the curve and all its

tangents; hence, since there are only oo 14
quadrics in [4], there must be,

on any given quadric in [4], oo 7 rational normal quartic curves all of whose

tangents also lie on the quadric. Hence, given a quadric primal i in [5],

there are oo 5
prime sections Q on each of which there are oo 7 of these

quartic curves. Hence there must be oo12 developable surfaces of the fourth

order in ordinary space.
This is also seen at once since a developable surface is completely

determined by its cuspidal edge, and Brill and Nother's result shews that

there are oo12 twisted cubics in [3]* .

The developable surface of the fifth order

355. The developable surface of the fifth order is formed by the tangents
of a rational quartic curve, in a [3] S, having a cusp. Each tangent is met

by one other tangent.
The quartic curve F is the projection of a normal curve C in [4] from

a point on one of its tangents. The tangent touches C in a point P and
meets S in the cusp K of F. The developable surface of the sixth order

formed by the tangents of C is projected, from 0, into the developable
surface of the fifth order formed by the tangents of F.

The tangent solid of Q at contains the osculating plane of C at P,
and therefore meets C in one other point P'. The osculating solidf of C
at P' passes through O and meets in a plane which has four-point contact

with F at the point W which is the projection of P'. Thus there is a point
W of F at which the osculating plane is stationary. The intersection of Q
with its tangent solid at is an ordinary quadric cone

;
the line OP is a

generator of this cone, the tangent plane of the cone along this generator

being the osculating plane of C at P. This plane meets S in the cuspidal

tangent of F at K. The quadric cone also has OP' as a generator. Hence
the intersection of with this quadric cone is a conic touching the cuspidal

tangent of F at K and passing through W. The tangent of this conic at W
lies in the stationary osculating plane of F.

This conic is the nodal curve of the developable surface of the fifth

order, for every generator of the quadric cone on Q meets three tangents
of C, and therefore meets two tangents other than OP. Conversely, every

* For this particular result see also Reye, Die Oeometrie der Lage (2) (Stuttgart,

1907), 200.

t If any point of [4] is taken there are four osculating solids of C passing through
it; the four points in which they osculate C are the intersections of C with the polar
solid of the point in regard to Q (Clifford, Papers, 312-313). For a point O on Q the

polar solid is the tangent solid at ; if O is on the tangent at a point P of C the four

points of intersection of the solid with C consist of P counted three times and P'.

The osculating solids of C are the tangent solids of Q at the points of C.
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line through meeting two further tangents of C must lie on Q and there*

fore in its tangent solid at 0.

The pairs of tangents of C which meet the lines of Q passing through
touch C in pairs of points belonging to an involution. The double points

of this involution are P and P'. The joins of the pairs of points form a

cubic ruled surface*, and the solids which contain the pairs of tangents
of C are the tangent solids of this ruled surface; they touch a quadric

line-cone whose vertex is the directrix of the surface, this directrix passing

through 0. But these solids meet 2 in planes, each of which contains two

tangents of F; hence the nodal developable consists of the tangent planes
of a quadric cone. The osculating planes of F at K and W are tangent

planes of this cone. The generators of the cone are the intersections of S
with the planes joining to the generators of the cubic ruled surface; the

tangent of F at W is a generator of the cone, and there is a generator

passing through K.

356. Given a rational normal quintic curve C in [5] there are three

linearly independent quadric fourfolds which contain C and all its tangents.

There are oo9
linearly independent quadrics containing (7, and each such

quadric contains six tangents of C. The tangents of C form a developable
surface of order eight on which C is a cuspidal curve

;
if then a quadric is

made to contain C and seven tangents it will necessarily contain the

developable surface. Thus of the oo9 quadrics containing C there are oo 2

containing all its tangents.

Conversely, given a quadric Q in [5] there exist rational normal quintic

curves on it such that all their tangents also lie on 2. The rational normal

quintic curves C in [5] are oo32 in aggregate, whereas quadrics are oo 20 in

aggregate; hence, as there are for each curve oo 2
quadrics containing

its tangents, there must be on a given quadric oo 14 curves C all of whose

tangents also lie on the quadric.

357. Suppose then that we have on the quadric Q in [5] a normal

rational quintic curve C all of whose tangents also lie on ii. If the points

of ii represent the lines of a space $3 the points of C represent the generators
of a developable surface of the fifth order.

The tangents of C form a developable surface R2
* of the eighth order

lying on 1
;
hence the ruled surface formed by the chords of C which lie

on Q, in all of order 12, breaks up into jR2
8 and a quartic ruled surface .R2

4
.

There is onef generator of B2
4
through each point of (7, and JR2

4
is formed

by the joins of pairs of an involution on C. This involution has two double

points x and y\ the tangents of C at x and y are common generators of J?2
4

and Jf?2
8

.

* See the footnote to 19. t See 352.
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The tangent prime of 12 at any point P of C meets G in four points at

P and in another point P'
9
the line PP/

is the generator of JZ2
4
through P.

The tangent prime of ii at P' meets C four times at P', the remaining
intersection of C with this tangent prime being P. But at x or y the tangent

prime of Q has five intersections with C and does not meet it elsewhere
;

the osculating planes of G at x and y lie on i*. We must then regard these

as the two trisecant planes of C lying on Q
; they are of opposite systems')*.

The tangent plane of R at a point P of C is the plane containing the

tangent of C at P and the generator PP' of jR2
4

. Thus at x or y the tangent

plane of J?2
4 is the osculating plane of (7. The plane of the directrix conic

of .K2
4

, which passes through x, thus meets Q in the directrix conic and also

in its tangent at x, and so lies on ii entirely; similarly the plane of the

directrix conic of J?2
4 which passes through y also lies on 1 entirely. The

planes of the conies on jR2
4 form a F3

3 whose complete intersection with 1

consists of JS2
4 and these two planes.

Suppose then that Q, contains wx (the osculating plane of C at x), p y (the

osculating plane of C at y) 9 p x (the plane of the directrix conic of J?2
4 which

passes through x) and wy (the plane of the directrix conic of J?2
4 which

passes through y). The osculating plane of C at x or y must be of the

opposite system to the plane of the directrix conic of Jf?2
4
passing through

that point since they have in common a tangent of this conic.

Any plane of Q of general position meets E2
B in four points and JB2

4 in

two points. The developable surface in $3 is formed by the tangents of a

rational quartic F of which there are four osculating planes passing through
an arbitrary point of S3 . F has a cusp, represented on 1 by mx ,

and a

stationary osculating plane represented on 1 by p y . The nodal curve is a

conic whose plane is represented on Q by p x and the nodal developable is

a quadric cone whose vertex is represented on ti by w y .

358. We have seen that on a quadric Q, in [5] there are oo 14 rational

normal quintic curves all of whose tangents lie on fi. In other words the

quintic developables in /S3 are oo 14 in aggregate. This can be verified in

other ways. For rational quartics in S3 are oo 16 in aggregate and two con-

ditions are necessary for such a curve to have a cusp. If, for example, the

curve is regarded as the projection of a normal curve in [4], the point of

projection must lie on the surface formed by the tangents of the normal

curve, and this imposes two conditions on the point. Hence rational

quartics in $3 which have cusps are oo 14 in aggregate, and since a develop-
able is completely determined by its cuspidal edge the result is verified.

Again, any rational quartic in $3 which has a cusp is the intersection

of a pencil of quadrics having stationary contact. Now the quadrics in

SB are oo9 in aggregate, so that pencils of quadrics are oo 16 in aggregate,

* Cf. 350. t Cf. 88.
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just as there are oo 16 lines in [9]. Then pencils of quadrics which touch

are oo 15
, while pencils of quadrics having stationary contact are oo 14

; two

conditions being necessary for two quadrics to have stationary contact*.

The projections of the developable formed by the tangents of a

normal rational quartic curve

359. Any surface in [4] can be projected from a point on to a solid

S. There are oo 1 chords of the surface passing through 9 and these form

a cone of lines meeting the surface in a curvef. Two points of this curve

which are collinear with may be called associated points ; the tangents
to the curve at a pair of associated points intersect, their plane passing

through ;
the osculating planes of the curve at a pair of associated points

have a line in common, the solid containing them passing through 0.

We can of course project ruled surfaces in this way.

Consider, in particular, the developable formed by the tangents of a

curve C in [4] ;
we have a cone of lines through 0, each line meeting two

generators of the developable. These lines meet the developable in points

lying on a certain curve
;
the points of this curve lie on the tangents of C,

while the tangents of the curve lie in the osculating solids of C.

360. Consider now a rational normal quartic curve C in [4] ;
its tangents

form a rational developable F of order '6. There are oo5
quadric threefolds

containing (7, each of these containing four tangents of C
;
there is a unique

quadric Q containing F. Let us project F on to a solid S from a point 0.

There are oo 1 chords of F passing through 0\ a solid through meets

F in a rational sextic with four cusps and six apparent double points;

thus the chords of F passing through meet F in a curve (712 of order 12.

The plane joining to a tangent of C is met by two other tangents ;
for

the projection of C from one of its tangents on to a plane is a conic, and
there are two tangents of this conic passing through any point of the plane.

Hence (712 meets every generator of F in two points.

361. There are four points of C for which the osculating solids contain

; these are, in fact, the intersections of C with the polar solid of in regard
to Q%. Take one of these points W, and the tangent w of C at W.

The projection of C from w on to a plane is a conic
;
the osculating solid

at W meets the plane in a tangent of the conic passing through the pro-

* Salmon, Geometry of Three Dimensions, 1 (Dublin, 1914), 208.

The quintic developable is studied algebraically by Cayley, Papers, 1 (1850), 491 ;

2 (1864), 275 and 618; Schwarz, Journal fur Math. 64 (1865), 4-9; Dino, Oiornale di

Matematiche (1), 3 (1865), 100 and 133. For geometrical treatment see Chasles,

Comptes Rendus, 54 (1862), 322 and 719; Cremona, ibid. 604-608; d'Ovidio, Giorn.

di Mat. (1), 3 (1865), 107, 184 and 214.

t Lines through a point of [4] are oo 3 and one condition is necessary for a line

to meet a surface in [4]. t See the footnote to 355.
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jection of 0; there is one other tangent passing through the projection of

0. Hence the plane wO only meets one tangent of C other than w ; suppose
that it meets this other tangent in a point A. Then OA meets w in a point

jB, and A and B are a pair of associated points on (712 . The tangents of C12

at A and B intersect and they both lie in the osculating solid of C at W.

This osculating solid of C is the tangent solid of Q at W ; it meets Q in

a quadric cone whose vertex is W and of which WA and WB are generators.

The osculating plane of C at W is common to the tangent solids of Q at

all the points of w and touches the cone along w*. The solid meets F in

w counted three times and in a cubic curve lying on the cone
;
this cubic

touches w at Wf and passes through A. There is one chord of this cubic

passing through 0, and we thus have two points of <712 ;
the solid meets C12

also in A and jB, touching it at each of these points ;
the remaining inter-

sections of the solid with (712 consist simply of W counted six times. The
six chords of <712 lying in the osculating solid at W consist of the chord of

the cubic, the line OAB counted twice and the line OW counted three

times. This solid meets S in an osculating plane of the nodal curve.

Thus on projection we have in S a rational quartic curve C4 ;
the

tangents of (74 form a developable of the sixth order with a nodal curve CQ

of the sixth order. There are four points Wl ,
W2 , W3 , W4 of C4 at which

the osculating plane is stationary; the nodal curve passes through these

four points and has there the same osculating planes as (74 . The tangent
of (74 at any one of these points meets <76 in one further point, the corre-

sponding stationary plane touching C6 at this pointf.
%

362. There are four planes through which contain tangents of C and
meet C again J. Consider then a plane through containing a tangent t

which touches C in B and meeting C again in a point S. There are no

tangents of C meeting this plane other than t and the tangent at S. OS
meets tin a point T and is a stationary generator of the cone of chords of

F
;
it will meet S in a point which is a cusp of the nodal curve (76 . S and T

are the only points of C12 in the plane Ot.

Consider the solid joining to the osculating plane of C at B. It

meets Q in a quadric cone whose vertex is somewhere on t, while it meets

F in t counted twice and a rational quartic, this quartic touching t at B
and having a cusp at S. There are two chords of this quartic passing through
O\ the remaining four chords of <712 which lie in the solid must then all

coincide with OST. The plane in which the solid meets S will thus have four

intersections with the nodal curve at its cusp, and is therefore the osculating

plane of the nodal curve there.

* Cf. Baker, Principles of Geometry, 4 (Cambridge, 1925), 38. Also 350 above.

t Cf. Cremona, Annali di Matematica (1), 4 (1861), 92.

j The trisecant planes of C passing through O cut out a gj- on (7, being one system
of planes of a quadric point-cone. This gB

l has four double points.
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Hence (74 has four tangents which touch it in points Bl9 J32 , J33 ,
J34 and

meet it again in points 8l9 S%, S3 , $4 . The nodal curve (76 has four cusps
at the points S; the osculating plane of (7e at a point 8 osculating (74 at

the corresponding point B.

363. In the preceding work we have projected from a general point
of the [4] containing (7. Suppose now that we specialise the position of

so that it lies on the quadric Q. Then the polar solid of in regard to Q
passes through 0, being the tangent solid of Q at 0. Hence we obtain in S
a rational quartic (74 whose four points of superosculation W19 W2 ,

WZ9

W are coplanar.

Any line of Q is met by three tangents of (7, and in fact Q may be defined

as the locus of transversals of triads of tangents of C. Thus the tangents of

<74 intersect in threes in the points of a conic *
;
this conic is the intersection

of S with the quadric cone in which Q is met by its tangent solid at 0,

and it passes through Wl9 Wz ,
W3 , TF4 .

Hence we have a developable whose nodal curve degenerates into a

triple conic; this conic meets the cuspidal edge in the four (coplanar)

points at which its osculating plane is stationary.

364. Now let us choose to lie in an osculating plane a of C
;
a contains

a tangent t of C touching it at a point T- It is common to the tangent
solids of Q at all the points of t, and every line in a touches both Q and F
at the point where it meets t.

* A solid through meets F in a rational sextic with four cusps ;
there is

a tangent of this curve passing through 0, viz. the line in which the solid

meets a. Then there must be five chords of the curve passing through ;

so that the chords of F through give on F a curve (710 of order 10, and

the nodal curve of the developable in S is a curve (76 of the fifth order.

The polar solid of O in regard to Q contains t and therefore meets C in

two other points. Hence when G is projected on to S from it becomes a

rational quartic <74 with an inflection / and two points Wi ,
Wz at which

the osculating plane is stationary. There are only two planes through
which contain tangents of C and meet it againf, so that there are two

tangents of (74 which touch it at points Bl9 B2 and meet it again in points

S19 S2 .

By repeating previous arguments we see that the nodal curve <76 passes

through Wl and W2 and has there the same osculating planes as C4 .

Further, <75 meets C4 in Sl and 82 ;
<75 has, in fact, cusps at /St and S2 ,

the

osculating planes of C5 at these points osculating <74 in B and JB2 .

* See R. A. Roberts, "Unicursal Twisted Quartics," Proc. Land. Math. Soc. (1),

14 (1883), 22, and Marietta, Annali di Matematica (3), 8 (1903), 109.

t The j/3
1
given by the trisecant planes through O includes a set for which all

the three points coincide; this triple point counts for two double points. In general,
an wi-ple point of a grn

1 counts for m 1 double points.
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365. If we consider now any solid belonging to the pencil of solids

through a, it meets Q in a quadric cone whose vertex lies on t and which

touches a along its generator t. The same solid meets F in a quartic having
a cusp (at the one intersection other than T of the solid with C) and

touching t at T. There are two chords of this quartic passing through 0;
the other three chords of Clo which lie in this solid will all coincide with

OT. Thus the nodal curve (75 of the developable in S passes through /,

and any plane of the pencil determined by the inflectional tangent of (74

at / meets (76 in three points at /.

Similarly we can shew that a plane through / which does not contain

the inflectional tangent of (74 meets (75 in only one point there; a solid

containing OT but not t meets F in a rational sextic with four cusps, one

of which is at T, the cuspidal tangent of this curve at T passing through 0.

Thus we conclude that C5 has an inflection at / with the same inflectional

tangent as (74 .

366. We now choose O to be the intersection of two osculating planes
of C*. Then on projection we have in S a rational quartic (74 with two
inflections / and J. The developable of tangents has a nodal curve Z>4

which is also a quartic; D4 has inflections at / and J with the same in-

flectional tangents as (74 .

367. Finally, let us choose to lie on a chord XY of C. The chords

of C form a locus M3
3

, and through any point of M3
3 there pass two lines

lying on it which are not chords of C. Such lines we shall call axes of C.

The chords of C which meet an axis form a cubic ruled surfacef.

Through there pass two axes m and n of C. The cubic ruled sur-

faces determined by m and n have the chord X Y as a common generator,
and the solid which contains the tangents of C at X and Y touches both

the cubic ruled surfaces along this generator and contains m and n. When
we project from O on to S we obtain a rational quartic (74 with a double

point ;
the lines m and n meet S in points A and B which are the vertices of

quadric cones containing (74 , A andB both lying in the plane of the tangents
at the double point.

Now take one of the axes through 0, say m. Then through any point
of m there passes a chord of C which is a generator of the cubic ruled

surface containing m. The solid containing the two tangents of C at the

points where this chord meets it is the tangent solid of the ruled surface

along this generator ;
it therefore contains m. Hence there is a transversal

from O to these two tangents.

* The locus of intersections of pairs of osculating planes of C is a quartic surface.

See 368.

t See Segre, "Sulle variet& cubiche dello spazio a quattro dimension!," Memorie
Torino (2), 39 (1889); in particular p. 35.

E 18
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Thus either cubic ruled surface gives a cone through formed by
chords of the developable of tangents of G\ the nodal curve of the develop-
able in S breaks up into two parts.

There are two tangents of C meeting m\ these touch C in two points,

the osculating solids at which contain m. There are generators of the cone

through which meet C in these two points.

The line XY is a stationary generator of the cone, meeting a pair of

tangents of C at the points where they themselves touch C. The tangent

plane of the cone along this stationary generator will lie in the solid

joining to the osculating plane of C at X and also in the solid joining

to the osculating plane of C at Y.

Now the line m is not a generator of the cone of chords through
which it determines; but nevertheless it meets two tangents of C. Hence

it must be a generator of the cone of chords determined by n. The

tangent plane of this latter cone along m is the intersection of the two

solids joining to the planes which osculate C at the points where it

is touched by the two tangents meeting m; but these are none other

than the osculating solids of C at these two points. Thus we have in

an inflection on the nodal curve.

Thus the developable of tangents of <74 has a nodal curve consisting of

two plane cubics C3 and D3*. Each of these cubics has a cusp at the double

point of <74 , the cuspidal tangent being for each of them the intersection

of the two osculating planes of (74 at this point. <73 meets (74 also in two

points Wt , W2 , at each of which the osculating plane of <74 is stationary.

Similarly Z)3 meets <74 also in two points W3 , W^ , at each of which the

osculating plane of <74 is stationary. C3 has an inflection at B, the inflec-

tional tangent being the intersection of the osculating planes of <74 at IF3

and TF4 , while JD3 has an inflection at A, the inflectional tangent being
the intersection of the osculating planes of (74 at W and WJ\.

The tangent solids of a cubic ruled surface in [4] all pass through its

directrix; they meet any solid in the tangent planes of a quadric cone.

Thus the two quadric cones with vertices A and B which contain <74 belong
to the bitangent developable of the surface.

The sections of the locus formed by the osculating planes

of a normal rational quartic curve

368. Instead of projecting the points of C from a point (which
does not lie on a tangent of C) we can take the sections of the osculating

solids of G by a solid S (which does not contain an osculating plane

* Cf. Chasles, Comptes Rendus, 54 (1862), 718.

t Cf. Brambilla, Rendiconti della Reale Ace. di Scienze Fid. e Mat. di Napoli, 24

(1885), 294.
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of C). These sections are planes which osculate a rational sextic (76 with

four cusps, and the tangents of this curve, which are the lines in which

the osculating planes of G meet S, form a developable of the sixth order.

The cusps of <76 are the four points K19 K2 ,
Kz ,

K in which S meets C.

The nodal curve of this developable in S is given by pairs of non-

consecutive intersecting osculating planes of G
;
hence its order is equal to

the number of points of an arbitrary plane through which pass two

osculating planes but not a tangent of G. The osculating planes meet the

arbitrary plane in the points of a rational sextic with six cusps at the

points where the plane is met by tangents of G; this curve has four double

points. Hence there are four points of a given plane at which two distinct

osculating planes of G intersect, so that the developable in S has a nodal

curve (74 of the fourth order.

369. If a plane meets G in a point K then there are four tangents of

C which meet the plane in points other than K\ for when G is projected
from K on to a solid it becomes a twisted cubic, of which there are four

tangents meeting an arbitrary line.

Also, if a line meets C in a point K it is met by three osculating planes
of C in points other than K

;
for when C is projected from the line on to a

plane it becomes a rational cubic which has three inflections.

Thus a piano which meets G in a point K is met by the osculating

planes of C in the points of a rational sextic curve with a triple point at

K and four cusps. This curve will have three other double points. We
deduce that the nodal curve (74 of the developable meets the cuspidal edge

GQ in its four cusps K19 K2 , K^, K^.
But we can prove more than this, for the curves C4 and CQ have the

same osculating planes at Kl9 K29 j^3 , K^. The osculating plane of (76 at

K! is the intersection of S with the osculating solid of C at Kt . This solid

meets the developable F formed by the tangents of C in the tangent at

KI counted three times and a twisted cubic touching this tangent at Kx
*

;

the osculating plane of C at K^ being also the osculating plane of this cubic

curve. Then the plane of intersection of the osculating solid with meets

this osculating plane in a line p ;
it meets the other osculating planes of C

in the points of a rational quartic with three cusps, one of these cusps is

at KI and p is the cuspidal tangent there. The remaining intersection of

p with the quartic curve is the only point of the plane in which two
distinct osculating planes of G intersect. Hence the plane osculates (74 as

well as (76 .

370. Instead of choosing S to be a general solid we can choose it to be

a tangent solid of the quadric Q. Then the tangents of G meet S in the

* Cf. 361.

18-2
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points of a rational sextic curve (7e which has four cusps and lies on a

quadric cone. It meets every generator of the cone in three points; the

tangent planes of the cone are tritangent planes of the developable.

371. Now choose S to contain a tangent t of C\ it meets C in two

other points Kl9 Kz . Then the tangents of G other than t meet S in

the points of a rational quintic curve (76 with cusps at K and K2 . The

osculating planes of C meet S in the tangents of <76 , so that t will be a

stationary tangent of C6 . <76 then has an inflection at /, the point of

contact of t with (7, t being the inflectional tangent.

Using similar arguments to those above we find that the tangents of

C5 form a developable surface with a nodal quartic curve C\ C^ passes

through K! and K2 and has at these points the same osculating planes as (75 .

Any line meeting a tangent of C will meet four other osculating planes

of (7; for when C is projected from the line on to a plane we obtain a

rational quartic, with one cusp and two double points, which has four

inflections. Hence a plane through t meets the locus formed by the oscu-

lating planes of C in t counted twice and a rational quartic with cusps at

the two other points in which the plane is met by tangents of (7*. This

quartic will have one other double point.

Hence any plane of passing through t meets <74 in only one point

not on t. In fact <74 has an inflection at / with t as the inflectional tangent.

372. If we take S to be the solid containing the tangents at two points

/ and J of C it meets the developable of tangents further in a rational

quartic curve <74 with inflections at / and J. The tangents of <74 form

a developable of the sixth order; this has a nodal curve which is also a

quartic, having the same two inflections and inflectional tangents as C4 .

We obtain the same surface as in 366.

373. Finally, choose S to contain the plane in which two osculating
solids of C intersect. Then the developable is formed by the tangents of a

rational sextic with four cusps and a plane which osculates it in two

different points. It is the dual of the developable formed by the tangents
of a rational quartic with a double point.

We have already seen (in 368) that the locus of the intersections of

pairs of osculating planes of G is a quartic surface. If we project the

quartic C on to a plane from a line which lies in one of its osculating planes
we obtain a plane quartic with a triple point, the three branches at the

triple point having a common tangent which meets the curve in four

points there. This tangent is the line of intersection of the plane with the

* Cf. 360.
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osculating solid of C. Such a plane quartic has two inflections*, so that

a line lying in an osculating plane of C meets two other osculating planes

of C, or the osculating planes of C meet the quartic surface in conies.

Consider now an involution of pairs of points on C\ the lines joining the

pairs form a cubic ruled surface, and the tangent solids of this cubic ruled

surface envelop a quadric line-cone. Now, if we reciprocate in regard to

the quadric Q which contains the tangents of C, a tangent solid of the ruled

surface, as containing two tangents of (7, becomes the point of intersection

of two osculating planes of (7, and the quadric line-cone becomes a conic.

Hence, if we take any involution of pairs of points on (7, the pairs of

osculating planes at these points intersect in the points of a conic. Hence,
since there are oo 2 involutions on C, the quartic surface has oo 2 conies

upon it. The locus of intersections of pairs of osculating planes of C is

therefore a projection of Veronese's surfacef.

The conies in which two different osculating planes of C meet the

quartic surface have one intersection, this being the intersection of the

two osculating planes. The plane of the two tangents to the conies at their

intersection is the tangent plane of the surface
;
it is in fact the plane of

intersection of the two corresponding osculating solids of (7, an osculating

solid of G containing the tangent planes of the surface at all the points of

the conic in the osculating plane. Now every solid through a tangent

plane of the surface meets it in two conies J. Hence S meets the surface

in two conies; these make up the nodal curve of the developable. The

conies have one intersection
;
this lies in the plane which osculates the

sextic at two different points. Each conic passes through two of the cusps
of the sextic.

If the curve C is given by

XQ-.XI.XI.XZ.XI
= 4 :03 :02 :0:1,

then the osculating planes at the two points whose parameters are and <

intersect in the point

PP, I0<f> (0 + <), J (0
2 + 40< + <

2
), J (0 + </>),

1.

If either or
<f>

is constant the locus of this point is a conic.

The coordinates of the point may be written, putting + <f>
= x and

so that prime sections of the surface are represented by conies in a plane. The
surface is of the fourth order.

* The Hessian of the quartic is made up of the tangent at the triple point, counted
four times, and two other lines through the triple point; the remaining intersections

of these two lines with the curve are the two inflections.

f A surface, in space of any number of dimensions, which contains oo 2
conies,

is the surface of Veronese or one of its projections; see Bertini, Geometria proiettiva

degli iperspazi (Messina, 1923), 393.

t Cf. Bertini, ibid. 412.
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If there is a relation ax + by + c = we obtain the points of a conic on the

surface, so that the intersections of osculating planes at pairs of points of an
involution lie on a conic.

The tangent plane to the surface is the plane of the three points

V, W (0 + <), * (0
2 + 4ty + <

2
), } (0 + #), 1

;

20+*, & (26 + </>), $(6 + 2<f>), i, 0;

20V, 40(0 + 2^), i(20 + <), 1, 0;

and is therefore common to the two solids

0% = 0,

which are the osculating solids of (7 at the points whose parameters are and
</>.

Any solid containing a tangent plane of the surface therefore has an equation

A (# 4CUTJ -f 6a2#2 4a3#3 + a4a-4)

+ ft (afc
- 4*i + 6^2

- 4^3 + %) = 0;

and if we substitute in this equation the coordinates of the point on the surface

we obtain
A (e

_
a)2 ^ _

a)2 + ^ (Q
_ ^ ^ _ ^ _ Qj

which splits up into factors

(8
-

a)
-

a) ft (0
-

JS) (^
-

j8)
= 0.

Hence any solid through a tangent plane meets the surface in two curves,
each curve being given by a relation of the form

a6(f> + b (0 + (f>) + c =
between and

<f>.
The curves are therefore conies.

The developables of the sixth order considered as curves on fl

374. If we have a rational developable of the sixth order in [3] its

generators are represented by the points of a rational sextic curve C lying

on the quadric Q, in [5], all the tangents of C also lying on Q. If, for the

moment, we assume that the edge of regression F has no inflections, C will

have no cusps.

In [5] the rational sextics C are oo 38 in aggregate*, while the quadrics
1 are oo 20 in aggregate. Since each sextic lies on oo 7

quadrics we deduce

that each quadric contains oo 25 sextics.

Now if one of the sextic curves lies on a quadric there are eight of

its tangents which lie on the quadric|; the tangents form a surface of

order ten on which the curve is cuspidal, and the eight tangents, taken

with the curve C counted twice, make up the complete intersection of the

surface with the quadric. If a quadric contains C and nine of its tangents
it will contain all the tangents. Given the curve G there will not, in

general, be a quadric containing C and all its tangents.
But on any given quadric ii there will be oo 25"9 or oo 16 curves C all of

whose tangents lie on ii. There are thus oo 36 curves G such that quadrics
can be taken to contain all their tangents, and a rational sextic curve in

* 354. t 349.
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[5] will have to satisfy two conditions in order that all its tangents should

lie on a quadric.
We conclude that in [3] the aggregate of rational sextic developables

without stationary generators is oo 16
. This is in accordance with what we

should expect, a developable in [3] being completely defined by its cuspidal

edge. For rational quartics in [3] are oo 16
; rational quintics with two cusps

are oo 20~2' 2= oo 16 and rational sextics with four cusps are oo 24-4 ' 2^^ 16
.

375. Suppose then that on the quadric Q in [5] we have a curve C
whose tangents also lie on ii; C being rational, of the sixth order and

without cusps. No plane of [5] can be met by more than six tangents of

C*, so that there are three possibilities:

(a) Every tu-plane of Q meets six tangents of C, while every /o-plane

of D meets four tangents of C.

(b) Every plane of fi meets five tangents of C.

(c) Every tu-plane of 1 meets four tangents of C, while every p-

plane of Q meets six tangents of C.

In any case there are four osculating planes of C lying on iif.

If we project C from one of its osculating planes on to some other plane
we obtain a rational plane cubic

;
this will have a double point, and, for

certain particular osculating planes of (7, it may have a cusp. But no

osculating plane of C can be met by more than one tangent of G, other

than the one which it contains. From this we can conclude that in (a) the

four osculating planes of G which lie on fi are all p-planes, and that in (c)

they are all to-planes.

If a rational sextic curve lies on } there are eight of its trisecant planes

lying on fij; thus, besides the four osculating planes of G which lie on

fi there must be four other trisecant planes of C also lying on {}.

376. When G is in class (a) the cuspidal edge of the developable is a

rational quartic F with four stationary osculating planes; these are

represented on D by the four /o-planes which osculate C. The four other

planes of Q which are trisecant to C will all be tu-planes ;
each of these in

fact contains a tangent of G and meets C in a further point : they represent
the four points in which F is met by its own tangents.

The chords of C form a locus M3
10 of three dimensions and the tenth

order; there being ten chords of G meeting an arbitrary plane of [5].

The chords of G which lie on Q form a ruled surface which is the inter-

section of Q and Jf3
10

;
this consists in fact of two surfaces, that formed

by the tangents of G and another ruled surface J?2
10 f order ten meeting

every cj-plane of i in four points and every p-plane of i in six points.
The tangent prime of i at any point of G meets G four times

||
at this

* For we cannot have a rational plane soxtic with more than six cusps. See the

reference to Veronese in 347. f 350. J 35.
||

352.



280 CHAPTER V, 376-379

point, and in two other points ;
the chords to these other points are generators

of JK2
10

. Thus C is a double curve on JS2
10

. The generators of S2
W set up a

symmetrical (2, 2) correspondence on C\ there are four of them which

touch C, and these are precisely the tangents of C at the points where

its osculating planes lie on Q
;
the tangent prime of C at one of these points

only meets G in one other point*.

The pairs of intersections of C with those of its chords which generate
JS2

10
represent pairs of intersecting tangents of F ;

the locus of these points
of intersection is a nodal curve on the developable ;

its points are repre-

sented on } by the ro-planes through the generators of E2
W and it is thus

of the sixth order. It has four cusps ;
these are represented on Q by those

four cj-planes which contain tangents of C and meet C again. The four

cusps of the nodal curve are at the four points where F is met by its own

tangents. Also the nodal curve meets F in the four points where its

osculating plane is stationary; these four points are represented on } by
the ta-planes through the tangents of C at the four points where its oscu-

lating plane lies on Q.

The /o-planes through the generators of B2
10

represent planes of pairs

of intersecting tangents of F; these envelop a nodal developable of the

fourth class to which belong the four stationary osculating planes of F.

When C is in class (c) we have similarly a developable whose cuspidal

edge F is a sextic curve with four cusps; the cusps are represented on ii

by the four aj-planes which osculate C. The nodal curve is of the fourth

order passing through the cusps of F.

377. When C is in class (6) the four planes of Q, which osculate C
belong two to each system. The developable is thus formed by the tangents
of a rational quintic curve F which has two cusps and two stationary

osculating planes.

There are four other planes trisecant to C which lie on li; these will

also be two of each system, and each of them contains a tangent of C and
meets C in another point. The two ci-planes represent points in which F
is met by its own tangents, while the two p-planes represent osculating

planes of F which contain other tangents.

The chords of C which lie on Q again form a ruled surface jR2
10 on which

G is a double curve, but now there are five generators of the surface meeting

every plane of D. The tangents of (7, at those four points at which the

osculating planes lie on Q, are generators of JR2
10

,
as also are those chords

of C which lie in the four other trisecant planes.

The tn-planes through the generators of J?2
10

represent the points of a

nodal curve ;
this curve is of the fifth order and passes through the cusps of

F, and it has cusps at the two points where F is met by its own tangents.

* 352.
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The p-planes through the generators of JS2
10

represent planes each of

which contains two intersecting tangents of F; these envelop a nodal

developable of the fifth class. The stationary osculating planes of F belong
to this developable, and the two planes which osculate F, and also touch

it, are stationary planes of the developable.
The tangents of F here form a developable which we did not obtain by

the methods of projection and section in [4] .

378. We now suppose that we have a rational sextic curve C in [5] with

one cusp the projection of a rational normal sextic from a point on one of

its tangents. The tangents of C form a surface of order nine and any quadric

containing C contains six of its tangents *. Any quadric through Cwhich con-
tains seven of its tangents must containthem all, and as there are oo 8

quadrics

containing G there will be oo 1
quadrics containing C and all its tangents.

Four conditions are necessary for a curve in [5] to have a cusp ; if, for

example, the curve is regarded as the projection of a curve in [6] without

singularities the point of projection must lie on the two-dimensional locus

formed by the tangents. There will thus be oo 34 rational sextic curves in

[5] which have cusps. There are oo 20
quadrics in [5]; oo8 of these contain

a given rational sextic with a cusp. Thus on any given quadric Q, in [5]

there are oo 22 rational sextic curves which have cusps and oo 15 of these

curves are such that all their tangents lie on fi. The cuspidal edge F of the

developable represented by G has an inflection corresponding to the cusp
of C

;
in the next paragraphs we shall see that F is either a rational quartic

with an inflection or a rational quintic with two cusps and an inflection.

In either case the aggregate of curves F is oo 15
;
two conditions are necessary

for F to have a cusp, one condition for it to have an inflection.

379. Suppose then that we have on the quadric Q in [5] a rational

sextic curve G with a cusp K. The tangents of C form a surface of order

nine, and as no plane can be met by more than five tangents of (7f there

are two possibilities.

(a) Every tu-plane of 1 is met by five tangents of G and every p-plane

by four tangents of C.

(b) Every tu-plane of i is met by four tangents of C and every

p-plane by five tangents of C.

In either case there are two osculating planes of C lying on fij.

If G is projected from one of its osculating planes (other than that at

the cusp) on to another plane we obtain a plane cubic with a cusp. Hence
no osculating plane of C can be met by any tangent of C other than the

one which it contains. This is sufficient to shew that the two osculating

planes of C which lie on li are both p-planes in (a) and both m-planes in (b).

* 349.

f Just as in 375 ; we cannot have a rational plane sextic with more than six cusps.

t 350.
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380. Suppose, to fix ideas, that C is of the type (a). The chords of C
form a locus M3

9 of three dimensions and of order nine; there are nine

chords of C meeting an arbitrary plane of [5] . The osculating plane of C
at K belongs to M3

9
; for if we regard C as the projection of a rational

normal sextic from a point on one of its tangents the osculating solid of

G at the point of contact of this tangent touches the M3
10 formed by the

chords all along this tangent.
The points of C represent the generators of a developable in [3] whose

cuspidal edge F is a rational quartic with an inflection. F has two station-

ary osculating planes ;
these are represented on i by the two p-planes which

osculate (7.

The intersection of Q and M3
9 consists of the surface formed by the

tangents of C and of a ruled surface B2
g
consisting of chords of C which

lie on fi. This latter surface meets every tu-plane of Q in four points and

every p-plane of Q, in five points. It has two generators passing through K ;

these are the cuspidal tangent of C and the other line in which the osculat-

ing plane of C at K meets Q. The generators of JR2
9 set up a symmetrical

(2, 2) correspondence on G\ the four coincidences include K counted twice,

so that we have two other tangents of C which are generators of J?2
9

,
these

being the two tangents which touch C at the points where its osculating

planes lie on Q.

The tu-planes through the generators of J?2
9
represent the points of the

nodal curve of the developable in [3], This curve is then of the fifth order

and meets F in the two points at which its osculating plane is stationary,

and also in its inflection.

There are two zn-planes of ti which pass through tangents of C and meet

C again; these represent the two points in which F is met by its own

tangents. These points are cusps on the nodal curve.

The p-planes through the generators of JS2
9
represent planes of [3] which

envelop a nodal developable. This developable is of the fourth class and

the two stationary osculating planes of F belong to it, as also does the

osculating plane of F at its inflection.

381. When C is of the type (b) we have a surface dual to the one just

discussed. The cuspidal edge F is now of the fifth order having two cusps
and an inflection; the two cusps are represented on Q by the t3-planes

which osculate C, the inflection by the nj-plane through the cuspidal

tangent of C.

The nodal curve is of the fourth order passing through the cusps and
the inflection of F. The nodal developable is of the fifth class ; the osculating

planes of F at its cusps and inflection belong to this developable. There are

two planes of F which both osculate and touch it; these are stationary

planes of the nodal developable.
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382. Suppose now that we have in [4] a rational sextic with two

cusps the projection of a rational normal sextic from a line meeting two
of its tangents. There are oo 3

quadric threefolds containing the curve, and

each of these contains four of its tangents. There will not, in general, be a

quadric containing all the tangents of the curve.

The rational sextics in [4] are oo 31 in aggregate*, and as three con-

ditions are necessary for a curve in [4] to have a cusp the rational sextics

C which have two cusps are oo 25 in aggregate. The aggregate of quadrics
in [4] is oo 14

, while there are oo 3
quadrics through each curve C\ hence each

quadric contains oo 14 curves C. If a quadric should contain five tangents
of C as well as G itself it necessarily contains all the tangents ;

thus on any
given quadric there will be oo9 curves G all of whose tangents also lie on

the quadric.

Thus in [4] we have oo 23 curves G such that there are quadrics which

contain all their tangents ; hence a general rational sextic in [4] with two

cusps must be specialised twice in order that a quadric should contain all

its tangents.

383. Suppose now that we have a quadric in [4] and a rational

sextic curve C with two cusps Kly K2 whose tangents all lie on the quadric.
The tangents form a ruled surface of order eight ;

since no line on the quadric
can meet more than four tangents of C every line on the quadric must
meet precisely four tangents of C.

Now regard the quadric as a prime section of Q. Then the points of

G represent the generators of a developable surface in [3]; the edge of

regression T being of the fourth order and having two inflections. The

tangents of F belong to a linear complex.
The chords of G form a locus M3

8
,
there being eight of them meeting

an arbitrary line of [4] . The osculating planes of C at K^ and K2 belong to

this locus. The quadric meets this locus in the surface formed by the tan-

gents of C and in a ruled surface jR2
8 also of order eight ;

this surface also

meets every line on Q in four points and there are two of its generators

passing through any point of C. The cuspidal tangents belong also to this

surface ;
there is one other generator of jR2

8
through each cusp, the other

line in which the osculating plane there meets the quadric.
The ta-planes through the generators of R2

&
represent points of the nodal

curve of the developable; this passes through the inflections of F and is

also of the fourth order. We also have a nodal developable of the fourth

class.

384. One condition is necessary for a curve in [3] to have an inflection ;

if the curve is regarded as the projection of a curve in [4] the point of

projection is constrained to lie on the three-dimensional locus formed by
* 364.
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the osculating planes. Thus there are in [3] oo 18-2=oo 14 curves of the

fourth order with two inflections.

On the other hand, given a quadric 1 in [5] it has oo5 prime sections,

and on each of these there lie oo9 rational sextic curves G which have two

cusps, and are such that all their tangents lie on the quadric. Hence we

have oo 14 curves C on Q in agreement with the former result.

The classification of the developable surfaces

385. We now give a table of the different developables of the sixth

order in [3] . In [4] there is only one developable of the sixth order that

formed by the tangents of a normal rational quartic curve. We have

obtained ten different types of surfaces in [3] ;
in the first column of the

table we give the double curve, in the second the bitangent developable
and in the third a description of the cuspidal edge. Gn denotes a curve

of order n, En a developable of class n and T or T' a stationary generator.

Dn is also used for a curve, Fn for a developable when necessary. All

curves and developables which occur are rational.

When a bar is placed over a part of the double curve it means that the

points in which a plane meets this curve are cusps and not ordinary double

points on the plane section. Similarly, when a bar is placed over a part of

the bitangent developable it means that the planes of this part which pass

through a point are stationary planes and not ordinary double planes of the

enveloping cone.

There are no developables of the sixth order in spaces of higher dimen-

sion than 4.

Double curve Bitangent
developable

Cuspidal edge

3C2

J04 + f + Es

E4 + T + T' + J

Rational quartic

Rational quintic with two cusps

Rational sextic with four cusps

Rational quartic whose four stationary

osculating planes have their points of

contact coplanar

Rational sextic with four cusps, the oscu-

lating planes at the cusps being con-

current

Rational quartic with a double point

Rational sextic with four cusps and a

doubly osculating plane

Rational quartic with an inflection

Rational quintic with two cusps and an
inflection

Rational quartic with two inflections
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386. We can give another table shewing the singularities of the cuspidal

edges of these developables. We shall denote the order of a curve by n,

the rank by r, the class by n'', the number of cusps by /c, the number of

inflections by i and the number of stationary osculating planes by K'.

Also let h denote the number of apparent double points and 8 the number
of actual double points ;

8' the number of doubly osculating planes and Jif

the number of lines in any given plane which are intersections of two

osculating planes of the curve. Also let b be the number of planes through

any point which are bitangent to the curve and V the order of the nodal

curve of the developable.
Then we can give the following table ; we omit the developables (4) and

(5) because the table would not distinguish them from (1) and (2).



CHAPTER VI

SEXTIC RULED SURFACES (CONTINUED)

Further types of rational sextic ruled surfaces

387. The developable surface of the fourth order has for its cuspidal

edge a twisted cubic; it has no nodal curve. It is a particular case of the

general rational quartic ruled surface which has a twisted cubic for its

double curve.

The developable surface of the fifth order has for its cuspidal edge a

rational quartic with a cusp ;
its nodal curve is a conic passing through the

cusp of the quartic and meeting it in two other points. It is a particular

case of the rational quintic ruled surface whose double curve breaks up
into a rational quartic and a conic

;
the quartic has a double point through

which the conic passes and the two curves have two other intersections

(cf. 92 and 130).

When we turn to the developable surfaces of the sixth order we at

once notice the fact that, except for the two developables that we have

numbered (6) and (7), we have not obtained any rational sextic ruled sur-

faces of which they are special cases. The developable (6) has two nodal

plane cubics and, for its cuspidal edge, a rational quartic with a double

point; it is a particular case of the rational sextic ruled surface whose

double curve consists of two twisted cubics and a rational quartic (cf . 180).

The developable (7) has two nodal conies and, for its cuspidal edge, a

rational sextic with four cusps; it is a particular case of the rational sextic

ruled surface whose double curve consists of two conies and a rational sextic

with four double points (cf. 179).

This leads us to suspect that there still remain types of rational sextic

ruled surfaces other than the sixty-seven types we have already obtained.

For example: the existence of the first developable, whose cuspidal edge
is a rational quartic and nodal curve a rational sextic, leads us to expect
a type of rational sextic ruled surface whose double curve consists of a

rational quartic and a rational sextic, and we have not yet obtained such

a surface. Since the generators of the developable are tangents of the

cuspidal edge and chords of the double curve we expect the generators
of the ruled surface to meet each part of the double curve in two points.

This last remark gives the clue to the discovery of these further types
of surfaces. For if we consider the double curve of any type of rational

sextic ruled surface that we have obtained, and omit any double generators
that may occur, the remainder of the double curve consists of a number of
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components of which all, with at most one exception, are directrices,

meeting each generator in one point. The solid S from which we project

the normal surface meets an infinity of chords of one or more directrix

curves of the normal surface.

388. Let us then take a curve meeting each generator of the normal

surface F in two points, the surface having oo 1 directrix cubic curves.

We take first an elliptic curve C^
1 of order eight ; such a curve is given by a

quadric primal containing four generators of F. The chords joining pairs

of points of a rational involution on CQ
l form a rational sextic ruled surface

with, in general, oo 1 directrix cubic curves each meeting Cs
l
twice; but

there are 16 involutions for which the sextic ruled surface has a directrix

conic*, this conic not meeting CQ
l

. Let us choose 8 to contain the plane of

such a conic &2 ;
it meets the locus M5

Q formed by the chords of F in &2

and a rational quartic &4 having four intersections with &2 . The chords of

F which meet fr4 include four tangents and meet F in the points of an

elliptic curve C^1
;
C12

l meets each generator twice and has four double

points. The two chords of F which pass through any one of these double

points and meet $4 meet F again in intersections of C^1 and Cg
1

; this

accounts for eight of the sixteen intersections of the two curves. The re-

maining eight lie in pairs on the chords of F which pass through the four

intersections of &2 an(i #4-

Hence, projecting from S, we obtain a surface / in [3] whose double

curve is (74 + <76 . <76 has four double points through all of which 64

passes, and the two curves have four other intersections.

If we project F from the plane of fr2 on to a [4] we obtain a rational sextic

ruled surface with a rational normal quartic double curve. The generators of the

surface are chords of the curve, through each point of the curve there pass two
of them. The surface is the intersection of the cubic primal formed by the

chords of the curve with a quadric containing the curve.

389. The involution on Cg
1 sets up a symmetrical (2, 2) correspondence

between the generators of F. There are four generators g of F for which

the two corresponding generators coincide; these are the four generators

g which touch Cf

8
1

. There are four generators of / touching (74 and four

touching <76 .

The (2, 2) correspondence between the generators of F gives a (2, 2)

correspondence on any directrix cubic of F ; the chords of the cubic which

join pairs of corresponding points form a rational quartic ruled surface.

Hence the planes which are determined by those pairs of generators of /
which meet in the points of (74 are the projections, from S, of the solids of

an Jf4
8

. Each solid of Jf4
8 is determined by two corresponding lines in a

(1, 1) correspondence, without united elements, between the generators
of two rational quartic ruled surfaces. The projection of Jlf4

8 from the solid

*
Segre, Math. Ann. 27 (1886), 296.
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S
9 which contains a conic &2 meeting each solid of -M4

8
, is a rational de-

velopable EB of the sixth class. This is part of the bitangent developable

The solids which contain the directrix cubics of F form a locus J/4
4

;

there are four of them which meet S. The [6] containing S and any one of

these four solids meets the space on to which we are projecting in a tri-

tangent plane of/. It meets S in a directrix cubic A and in three generators ;

it contains eight points of Cg
1

, two on each generator and two on A. Now
the pairs of points in which Cs

l
is met by the directrix cubics of F are the

pairs of a g2
1

9 and two g2
l 's on an elliptic curve cannot have a common

pair of points. Hence the chord of C^ which joins its intersections with A
does not meet <9"2 . The eight points of CB

l which lie in the [6] are joined in

pairs by four lines which meet &2 ; the [6] meets the space on to which we
are projecting in a plane which is a plane of E^ and a double plane of EB .

390. We now choose the solid S to contain &2 and also to meet the

solid containing a pair g, g' of generators of F in a line L It can be shewn

that Z must meet the plane of &2 in a point O of &2 itself, and that the chord

of CV through meets F on the generators g and g' . S meets M^ in &2 ,

Z and a twisted cubic &8 which meets I once and &2 three times.

The chords of F which meet 8 meet F in Cg
1

, g, g' and an elliptic curve

C1Q
l

;
there are four tangents of C10

l
meeting &3 , and it meets each generator

of -F in two points. C10
l has two double points.

Let OAA' be the chord of F through 0, meeting g in A and g' in A 1

.

<78
2
passes through A and A' \

let it meet g and g' again in B and B r

respectively. We have chords BC, B'C' of CB
l
meeting &2 and chords BD 1

,

B'D meeting Z; D' is on g' and D on g. The lines CD' and C'D are chords

of ClQ
l and meet &3 ; the other intersections of C1Q

l with g and g' lie on the

chord of F which passes through the intersection of I and $3 . There are

three pairs of intersections of Cs
l and Cwl collinear with the three inter-

sections of &2 and &8 ; there are four other intersections of Cg
1 and C^1

,

these are associated in pairs with the two double points of GV-
The projected surface / has a double curve (74 + O + C&. G is a

trisecant of (74 , <76 passing through two of their intersections. <76 has two

double points; (74 passes through both these double points, as well as

meeting (76 in three further points which do not lie on 0.

The locus J/4
8 now meets S in the conic &2 and the line Z; the planes of

the pairs of generators of / which intersect in the points of (74 form a

developable E& of the fifth class. The bitangent developable of / is

E5 + G + jB4 . The solid S meets four solids which contain directrix

cubics of F\ two of these four meet S in points on Z. Thus/ has two tri-

tangent planes which do not pass through G\ these are planes of J574 and

double planes of JEfB .
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391. We can further choose S to contain &2 , a line I lying in the solid

containing a pair of generators g, g' of F and a line m lying in the solid

containing a pair of generators h, h r

of F. I and m meet &2 . $ meets Jf5
6

in &2 , I, m and a conic < 2 ; <f>2 meets I and m and meets &2 twice.

The chords of F which meet S meet J? in Cg
1

, 0, 0', A, h' and an elliptic

curve jDg
1

; ZV meets each generator of F twice and has four of its tangents

meeting < 2 . Cg
1 and Dg1 have eight intersections.

The projected surface / has two double generators, its double curve

being <74 + G -f H + Z>4 . (74 and Z>4 have two intersections on G, two
on H 9 and two others. G and # are trisecants both of (74 and D4 . The

bitangent developable is J?4 -f- G + H + ^4 .

392. A curve of order ten which meets each generator of F twice is

elliptic provided that it has two double points. Let us then consider such a

curve C^o
1

;
it can be given by a quadric containing two generators of F

and touching F twice.

The joins of the pairs of points of a rational involution on C^1 form an

octavic ruled surface ;
in general this surface has oo 1 directrix quartic curves,

but there are 25 involutions for which the resulting surface has a directrix

cubic. The curve C^1 is the projection of a normal curve in [9] from a line

meeting two of its chords. An involution on an elliptic curve is determined

when one of its pairs of points has been assigned; the normal curve is

projected from a line which meets two chords joining pairs of points of

the same involution. This involution gives an octavic ruled surface which

is projected into the sextic surface F.

We choose the solid S, from which F is to be projected, to contain the

directrix cubic ^3 of the ruled surface determined by one of the 25 special
involutions. S meets Jtf6

6 in &3 and a second twisted cubic < 3 , the two
curves having four intersections. There are four tangents of C^1

meeting
#3; the chords of F which meet S meet F in C^1 and a second elliptic

curve X^xo
1

. There are four tangents of D1Q
l
meeting < 3 ; it meets each

generator of F in two points and has two double points. CV and D-^
have sixteen intersections ; eight of these are collinear in pairs with the four

intersections of &3 and <^3 , the remaining eight fall into four pairs associated

with the two double points of C^1 and the two double points of D1Q
l

.

The double curve of the projected surface / is <75 -f D5 . Each of C6

and Z>6 has two double points through which the other passes, and the

two curves have four further intersections.

The bitangent developable is E6 -f J^5 . Either part of this developable
is the projection of a locus J/4

8 from a solid S which contains a cubic curve

meeting all the solids of Jf4
8

.

We can also obtain surfaces in [3], with double curves and bitangent

developables as above, by projection from the normal surface with a

directrix conic. A surface whose double curve is (75 + D5 can be obtained

E 19
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by projection from the normal surface with a directrix line; we have a

bitangent developable 10JR and a double curve <75 + J56 .

393. The sextic ruled surface whose double curve is 64 + (76 is

generated by a symmetrical (2, 2) correspondence* on a rational quartic

(74 . If we specialise this correspondence so that the two points corre-

sponding to some point P of the curve are the points Q and R where the

curve is met by its trisecant through P, the surface has a double generator
and its double curve is CJ+Q+ C5 ; C5 passes through Q and JR. We can

specialise the correspondence further and obtain two double generators.

We cannot specialise the correspondence still further in this way| without it

degenerating into the g3
l cut out by the trisecants of the curve; the sextic

ruled surface would then degenerate into a quadric counted three times.

If we have a rational quintic (75 in [3], with two double points, and

set up on the curve a symmetrical (2, 2) correspondence in which the

two points on the different branches at either double point of C^ corre-

spond to one another, the chords joining pairs of corresponding points

generate a sextic. ruled surface whose double curve is C5 -f J55 . This is

the projection of the ruled surface of order eight, generated by a sym-
metrical (2, 2) correspondence on a rational normal quintic curve in [5],

from a line meeting two of its generators.

394. We now give the representation of these ruled surfaces as curves

on 1. Through each point of a rational sextic curve C on 2 there pass four

of its chords which lie on ii
; the chords of C which lie on fi set up a sym-

metrical (4, 4) correspondence on (7. It is characteristic of the types of

ruled surfaces that we have just obtained that this correspondence de-

generates into the sum of two symmetrical (2, 2) correspondences.

Suppose that C has no double points. The joins of corresponding points
in a symmetrical (2, 2) correspondence on C form a ruled surface of order

ten; the ruled surface 7?2
20 formed by the chords of C which lie on i

(cf. 173) here breaks up into two ruled surfaces J?2
10 and S2

W
, both of

order ten and both rational.

Suppose that PQE is a trisecant plane of C which lies on Q. Then the

chords QR, HP, PQ of C cannot all belong to the same ruled surface, for

then the symmetrical (2, 2) correspondence would be an involution of

sets of three points^, and we should have oo 1 trisecant planes of C lying
on Q. Hence two of the three chords must belong to one of the two ruled

surfaces, the other chord belonging to the other ruled surface. The double

curve of the ruled surface in [3] breaks up into two parts; one of these

parts has its points in (1, 1) correspondence with the generators of Jf?2
10

,

* See footnote to 19.

f The symmetrical (2, 2) correspondence and the g3
l
given by the trisecants

have four common pairs of points and no more. See 15.

J Cf. Baker, Principles of Geometry, 2 (Cambridge 1922), 136-6,
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the other has its points in (1, 1) correspondence with the generators of

$2
10

. At each of the four triple points of the sextic ruled surface there is one

part of the double curve which has a double point. Similarly each tri-

tangent plane of the surface is a double plane of one of the two parts of the

bitangent developable.
The surfaces jR2

10 an(i $2
10 have four common generators ;

the two parts
of the double curve have four intersections other than at triple points of

the ruled surface while the two parts of the bitangent developable have in

common four planes which are not tritangent planes of the ruled surface.

Neither of the ruled surfaces JR2
10 &nd S2

W can meet a plane of ti in

more than six points. Suppose, first, that JB2
10 meets every t&-plane of Q

in four points and every />-plane of i in six points ; then, since each plane
of ii is met by ten chords of (7, /S2

10 meets every tzr-plane of fi in six points
and every />-plane of 1 in four points. The surface in [3] has a double curve

4 + Ce and a bitangent developable EQ + E^. The four ta-planes of fi

which are trisecant to C contain each two generators of S2
l and one

generator of -R2
10

;
Ce

Q has four double points through each of which C4

passes. Also jB6 has four double planes, these being also planes of E.
It may also happen that both J?2

10 and S2
IQ meet every plane of ii in

five points. Then the surface in [3] has a double curve <76 + Z>5 and a bi-

tangent developable E5
Q + F5 .

395. Suppose now that G has a double point P; and that the points of

C on the two different branches at P are corresponding points in both the

symmetrical (2, 2) correspondences. These correspondences give rise to

two rational ruled surfaces JS2
9 and $2

9
, both of the ninth order. Each of

these surfaces must meet the planes of one system each in four points and
the planes of the opposite system each in five points ; each plane of fit is met

by four generators of one surface and five of the other. The corresponding
ruled surface in [3] has a double curve C5 -f- 6 + (74 and a bitangent

developable Ef + G + E&
Q

.

The plane of the two tangents of C at P meets } in two lines which are

common generators of jR2
9 and S2

9
; the two surfaces have two other com-

mon generators and each surface has a third generator passing through P.

There are four trisecant planes of C lying on 1, two being oj-planes and two

p-planes. Thus C5 has two double points through each of which C^ passes;
the curves have two intersections on G in addition to two further inter-

sections, and is a trisecant of both curves. There are similar statements

for the bitangent developable.
We can suppose also that C lies in [4] and has two double points P

and Q\ and that the points of G on the two different branches at either

double point are corresponding points in both symmetrical (2, 2) corre-

spondences. These correspondences give rise to two rational ruled surfaces

19-2
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jR2
8 and /S2

8
, both of the eighth order. Each of these surfaces meets every

plane of fi in four points on the line in which it meets the [4] contain-

ing C9 and the corresponding ruled surface in [3] has a double curve

Cf + O + H + D4 and a bitangent developable J 4 4- G 4- H + FJ.
There are two common generators of jR2

8 and S2
6 in the plane containing

the tangents of C at P, and there is a third generator of each surface

through P; similarly for Q. There are no other common generators of

jR2
8 and S2

B other than the two at P and the two at Q, and there are no

trisecants of C. Hence (74 and Z>4 have two intersections on and two

intersections on U
;
O and H are trisecants both of <74 and of D4 .

396. There are two types of rational sextic ruled surfaces which were

overlooked in the first section of Chapter IV; we will obtain them now.

Take the rational normal sextic ruled surface F in [7] which has oo 1

directrix cubic curves, and on this surface two directrix quartics E and E 1

.

These quartic curves have two intersections, and we consider two in-

volutions of pairs of generators of F, the generators through the two

intersections of E and E' forming a pair of both involutions. The first

involution determines a cubic ruled surface containing E and the second

determines similarly a cubic ruled surface containing E
1

; these two cubic

ruled surfaces have directrices A and A' respectively, and we choose the

two involutions so that A and A' intersect on the common chord of E and E' .

We take, further, a pair of generators g, g' which belong to the first in-

volution and a line I meeting A and lying in the solid gg'. We then project

F on to a [3] 2 from the solid 8 determined by A, A' and Z.

8 meets M5
* in A, A', I and a twisted cubic #3 which meets I and A

and has A' as a chord. The chords of F which meet S meet F in E, E', g, g
r

and an elliptic curve C^1 of which four tangents meet &3 ; C
f

10
1 meets each

generator in two points and has two double points, and meets each of

E and E' in six points.

Two of the intersections of C10
l with E are on the chord of F which

passes through the intersection of A and &3 ;
the remaining four are

associated in pairs with the two double points of C^1
. The chord of F which

passes through the intersection of #3 and I accounts for an intersection of

CV with each of g and g' ; the remaining intersections of C10
l with g and g'

are associated with the intersections of E' with g' and g (respectively) and

with two of the intersections of E 1 and ClQ
l

. The remaining intersections

of E f and C1Q
l are collinear in pairs with the two intersections of A' and S^.

We obtain, on projection, a surface / in S whose double curve is

C2 + D2 + G + C6 . G is a chord of D2 and <75 passes through their inter-

sections, meeting D2 in two other points and O in one other point. Cg has

two double points through each of which C2 passes; C2 meets (76 in one

other point and meets O and D2 each in one point.
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The surface is generated by a (2, 2) correspondence between two conies

C2 and Z>2 with a common point, this being a doubly united point. The

correspondence is to be specialised to give the double generator; to the

second intersection of C2 with the plane of D2 there corresponds a pair of

points of D2 collinear with it. The planes of the pairs of generators which

intersect in the points of C2 envelop a quadric cone E2 \ the planes of the

pairs of generators which intersect in the points of D2 envelop a cubic

developable E3 . There are two planes of E3 and one plane of E2 passing

through O. The bitangent developable of the surface is E2 + E3 + G + JE/4 .

397. There is also a surface dual to the one just mentioned; the double

curve of this surface will be C2 + C3
Q + 6 -f <74 ,

the bitangent developable
E2 + F2 + G + E5

Q
.

To obtain this surface by projection we consider, on the normal surface

F with oo 1 directrix cubic curves, a directrix quartic E and a prime section

CB i
these have four intersections. We then consider two involutions on F\

the first of these determines, by means of E, a cubic ruled surface with a

directrix line A, and the second determines, by means of C6 , a quintic
ruled surface with a directrix conic F. We choose the involutions so that

A and F meet on a chord of F which joins two of the intersections of E and
C6 . We can determine a solid 8 which not only contains A and F but also

a line /, meeting A, which lies in the solid determined by a pair of generators

g, g' belonging to the first involution. We project F from 8 on to S.

8 meets M$* in A, Z, F and a conic A meeting F twice and I and A each

once. The chords of F which meet 8 meet F in E, g, g' ,
C6

Q and an elliptic

curve C8
l of which four tangents meet A ; (78

X meets each generator in two

points, has no double points, and meets E in four points and (76 in eight

points.

Two of the intersections of Cs
l with E are on the chord of F which

passes through the intersection of A and A; the remaining two are as-

sociated with those two intersections of E and Cf

e which do not lie on the

chord of F passing through the intersection of A and F and with two of the

intersections of CQ
l and C6

Q
. There are two other intersections of C8

l and
(76 associated with the intersections of <76 with g and g' and with inter-

sections of Cg
1 with g' and g (respectively). The other intersections of C8

l

with g
f and g lie on the chord of F through the intersection of A and Z,

while the four remaining intersections of CJ- and <76 are collinear in pairs
with the two intersections of F and A.

We obtain, on projection, a surface / in 2 whose double curve is

^2 + OB + G- + <74 . C2 and C* have three intersections through two of

which Cf

4 passes; (74 meets C2 in one other point and Cf

3 in four other

points. joins two of these four points ;
it meets C again and also meets C2 .

The surface is generated by a (2, 2) correspondence between a conic C2
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and a twisted cubic 63; the curves have three intersections one of which

is a doubly united point, the other two being ordinary united points.

The correspondence is specialised to give the double generator; there is a

point of C2 to which correspond the two points in which C3
Q is met by the

chord passing through the point. The planes joining the points of C2 to

the pairs of points of C3 which correspond to them touch a quadric cone

E2 , while the planes joining the points of (73 to the pairs of points of C2

which correspond to them touch a quadric cone F2 . The bitangent develop-
able is E2 + F2 + O + E6 . There are two planes of F2 and one plane of

E2 passing through 0.

398. We now shew how the two surfaces which we have just obtained

are represented as rational sextic curves C on the quadric Q in [5]. Since the

surfaces are not self-dual their generators cannot belong to a linear com-

plex; hence C actually belongs to [5] and is not contained in a space of

lower dimension. C has a double point P representing the double generator
O.

C is the projection of a rational normal sextic curve from a point on

one of its chords. The chords which join the pairs of points of an involution

on a rational normal sextic curve form a rational normal quintic ruled

surface with a directrix conic ;
we take two such involutions and project

from a point on a chord belonging to one of them. We obtain a curve C,

with a double point P, in [5] ;
we have, containing (7, a quartic ruled surface

and a quintic ruled surface with a common generator. Of the oo 20
quadrics

in [5] there are oo 8 which contain C\ of these oo 8 there are oo 3
containing

the quintic ruled surface, oo 5
containing the quartic ruled surface, and oo 1

containing both surfaces. We take one of these last quadrics to be fi.

There is, on the quintic surface, a plane cubic curve with a double

point at P (cf. 191); the plane of this curve lies on }. Every plane of i

of the same system as this meets two generators of the quintic surface;

every plane of the opposite system meets three generators of the quintic

surface. The quartic ruled surface meets every plane of 1 in two points.

The chords of C which lie on i form the quartic ruled surface jR2
4

,
the

quintic ruled surface J?2
5

,
and a rational ruled surface E2

9 of order nine on

which C is a double curve. The plane of the two tangents of C atP meets 1

in two lines one of which is a generator of R2
* and ^he other of jR2

9
. There

are two generators of jR2
6
passing through P; these are also generators of

R2
*

;
JR2

5 and R2
9 have two other common generators while R2

* and jR2
9 have

one common generator. R2
* and Jf?2

5 have one common generator. A plane of

1 which belongs to the same system as the plane of the cubic curve on
R2

5 is met by five generators of J?2
9

; a plane of the opposite system is met

by four generators of JB2
9

.

Suppose that the plane cubic on J?2
5 lies in a p-plane of fi. Then the



SEXTIC RULED SURFACES 296

surface in [3] has a double curve C2 + D2 + G + G5 and a bitangent de-

velopable E% + EB
Q + + Ef. If, on the other hand, the plane cubic on

JR2
5 lies in a ta-plane of 1 the surface has a double curve C2 + C3 + G + C4

and a bitangent developable E2 + F2 + G + J5?6 .

Sextic ruled surfaces with a triple curve

399. One of the developables of the sixth order which we have obtained

has a triple conic ; in order to obtain a sextic ruled surface with a triple

curve by projection we must choose, for the centre of projection, a space
which is met in lines by oo1 trisecant planes of the normal surface.

Consider a prime section <76 of the rational normal sextic ruled surface

F in [7] which has oo 1 directrix cubics. Let us consider the planes which

contain the triads of points which form sets of a g3
l on (76 ; they form a

three-dimensional locus whose order is the number of planes which meet

an arbitrary solid, II say, in the prime which contains C6 . Now the tri-

secant planes of CQ are the intersections of corresponding primes of four

projectively related triply infinite systems* ; to obtain the planes which

contain the sets of a g%
1 we consider four corresponding pencils of primes

belonging to the four systems. The solid II meets these pencils in four

projectively related pencils of planes; and it is a well-known result that

there are four points which are intersections of corresponding planes of the

four pencils")*. Hence the planes which contain the sets of a g3
l on CQ

Q form

a three-dimensional quartic locus F3
4

.

This locus F3
4 is normal in [6] ;

it can be generated by the planes which

join triads of corresponding points of two lines and a conic, projectively
related to each otherJ. It therefore contains the quadric surface Q deter-

mined by the projective relation between the lines; there is a generator
of Q in each plane of F3

4
. We select the solid S which contains Q as the

centre of projection, and project F from S on to a [3] S.

400. The curve CQ does not meet Q ; the chords of <76 which lie in the

planes of F3
4 form a ruled surface of order ten which meets Q in a rational

quartic curve &4 , the generators of Q which lie in the planes of F3
4
being

the trisecants of 3-4 . Since the g3
l on (76 has four double points there are

four tangents of C6 which meet &4 . The solid 8 meets the locus M5
6

formed by the chords of F in 0-4 and a conic i>2 , &2 meeting &4 in four

* The bases of the four systems may be taken to be any four fixed trisecant planes
of C6 .

f If
I-L , 12 , 13 , 4 denote the axes of the four pencils, the two pencils whose axes are

12 and 13 generate, by means of the lines of intersection of corresponding planes, a

regulus. This regulus contains the cubic curve generated by the pencils Zx , 12 , 13 and
also that generated by the pencils Z2 , 1B , J4 ; these two cubic curves have four inter-

sections.

J Segre, Atti Torino, 21 (1885), 95.
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points. The chords of F which meet 8 meet F in the curve (76 counted

twice (since two of them pass through each point of (76 )
and an elliptic

curve Cg
1

, four of whose tangents meet -&2 , meeting each generator twice.

The eight intersections of CB
l and (76 are collinear in pairs with the four

intersections of &2 and 9*4 .

On projection we obtain a surface/in S whose double curve is 3(72 + C^ ,

C2 and (74 having foiir intersections. The surface is generated by a conic

C2 and a twisted cubic in (1, 3) correspondence with three united points.

The planes of pairs of generators which intersect in the points of C2

envelop a developable E\ the bitangent developable of the surface is

#4 + #6 .

The surface is also generated by the chords of (74 which meet C2 .

There is also a dual surface whose double curve is C^ + (76 and

bitangent developable 3E2 + J54 .

401. We can choose the gj- on (76 so that 8 meets Jf5
6 in &4 and two

lines Z and m
;
these lines are chords of &4 and intersect. They are axes of

two directrix quartics E and E', the common chord of E and W passing

through the intersection of Z and m. On projection from S we obtain a

surface / whose double curve 3B2 + C2 + D2 consists of a triple conic and

two double conies ;
C2 and D2 have one intersection and each of them meets

B2 in two points. The surface is generated by two conies, B2 and (72 ,
in

(2, 3) correspondence with two doubly united points. The planes of the

pairs of generators which intersect in the points of C2 or D2 envelop a

developable of the third class. The bitangent developable of the surface

is EJ> + 3 + F3 .

The surface is generated by the lines which meet the three conies.

There is also a dual surface whose double curve is <74 + Cg + D3 and

bitangent developable 3E2 + F2 + 2 .

402. The planes which contain the triads of points of a g3
l on a rational

sextic curve C in [5] form a locus v3
4 which is the projection of the normal

locus F3
4 formed by the planes containing the triads of points of a g3

l

on the normal curve. We obtain different types of loci v3
4
according as to

the position we select for the point of projection; the only locus v3
4 which

lies on a non-degenerate quadric 1 of [5] is obtained by projecting F3
4

from a point which lies in the solid containing the quadric Q. We thus

obtain a locus v3
4 with a double plane, the oo1

generating planes of v3
4

meeting this double plane in the tangents of a conic.

The generating planes of v3
4 are all of the same system on the quadric 2,

the double plane being of the opposite system. If the points of ii represent
the lines of [3] then the points of C represent the generators of a rational

sextic ruled surface /. If the double plane of v3
4 is a /o-plane / has a triple
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conic C2 whose plane is represented on ii by this /o-plane. If the double

plane of v3
4 is a in-plane / has as tritangent planes the tangent planes of a

quadric cone E2 whose vertex is represented on ii by the tu-plane.

403. The four types of sextic ruled surfaces that we have just obtained

can be derived by projection either from the normal surface with oo1

directrix cubics or from the normal surface with a directrix conic F. On
the latter surface (76 and F have two intersections; these belong, in

general, to different sets of the g^ on <76 .

We now proceed to consider the particular case when the two inter-

sections, % and a2 say> f Ce an(l F belong to the same set of the g3
l

;
the

third point of this set is some other point b on (76 . The line a^a2 meets the

quadric Q on F3
4

,
so that we are projecting from a solid S which meets the

plane of F in a point 0. Moreover, the [5] ST contains the plane a^a2 6, and
therefore also the generator gQ of F which passes through b. Hence the

projected surface/ has a directrix line R which is itself a generator ; through

any point of R there pass two other generators while any plane through
R contains three other generators.

The generators which meet (76 in the sets of the g3
l
give also sets of

a g3
l on F

;
since a g3

l and a g2
l on F have two common pairs of points there

is one pair of points, other than ax and a2 ,
which belong to a set of the

03
1 on F and have their join passing through 0. The two generators g and g'

of F which pass through this pair of points lie in a solid which meets 8
in a line I passing through 0. 8 meets Jf5

6 in I, m and &4 , where ra is the

line of intersection of S with the solid F<7 and &4 is the quartic curve on

Q. Z, m and S-4 all pass through 0.

The chords of F which meet S meet F in (76 , F and gG each counted

twice, and in g and g'. On projection from S we obtain a surface / whose

double curve is 3R + G + 3<72 ;
R and C2 have one intersection and G

meets both R and C2 .

The surface is generated by a line R and a conic C2 in (3, 2) correspon-
dence with a doubly united point ;

the correspondence must be specialised

to give the double generator. The joins of the pairs of points of C2 which

correspond to the points of R envelop a rational curve of class three, one

point of R lying on the tangent of the curve to which it gives rise. Hence
the planes of the pairs of generators which intersect in the points of R
touch a developable E3 which has two planes passing through R and one

through 0. The bitangent developable of / is 6R + + Ej>.

There is also a dual surface whose double curve is 6R -f- G + C3 and

bitangent developable 3jR + G + 3E2 .

404. In order to obtain a rational sextic ruled surface/in [3] which has

an infinity of tritangent planes we must project the normal surface F,
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in [7], which contains oo1 directrix cubics from a solid 8 which meets every

solid K that contains one of the directrix cubics.

The solids K form* a locus Mf. This locus has oo8 linear directrices,

one of these passing through any given point of the locus ; it can in fact be

generated by a projectivity between any two of its solids K, the lines

which join corresponding points of the two solids being the directrices.

The generators of F are themselves directrices of J/4
4

; the cubic curves in

which the two solids K meet F correspond to each other in the projectivity.

Suppose now that we project F on to a [3] S from a solid 8 which con-

tains a directrix d of J/4
4

. Each point of d lies in a solid K, and through it

there passes a chord of the corresponding cubic curve on F. These chords

all meet F on the same pair of generatorst g and g', and d lies in the solid

gg' . Hence on projection we obtain a surface F, with a double generator Cr,

whose bitangent developable is G+ 3JE73 ; the solids K when projected from

8 become the osculating planes of a twisted cubic. The double curve of

the surface is G + C9*.

There is also the dual surface whose double curve is G + SC^ and

bitangent developable G -f E9
2

. We take a curve of order nine lying on

the normal surface and meeting each generator in two points ;
this curve

is of genus 2, and the planes which contain the sets of a g3
l on the curve

form a locus F3
5

. There is a quadricJ Q which has a generator in each plane
of F3

6
, and we project from the solid 8 which contains Q. The chords of

the curve which lie in the planes of F3
5 form a ruled surface of order

fourteen
, meeting Q in a curve of order five which is trisecant to the

generators of Q which lie in the planes of F3
5

. This quintic curve forms part
of the intersection of 8 with the locus M^ formed by the chords of the

ruled surface
; the residual intersection is a line which lies in a solid con-

taining a pair of generators of the ruled surface.

In order to obtain by projection the surfaces which have as tritangent

planes the tangent planes of a quadric cone we project from a solid 8
which contains a directrix conic of Jf4

4
.

405. We have seen that the surface which is generated by means of a

(3, 2) correspondence, with a doubly united point, between a line R and
a conic C2 is a rational sextic ruled surface, provided the correspondence

*
p. 143'supra.

f Each directrix ofM4
4 lies in a solid containing two generators of F. Each solid

which contains two generators of F meets M4
4 in a quadric surface, on which lie oo *

directrices of M.
% There are two types of locus F3

5
; a locus of the first type is generated by means

of two lines and a cubic curve, a locus of the second type by a line and two conies.

We are concerned with a locus of the first type here. F8
5 is normal in [7].

The ruled surface is generated by the joins of pairs of corresponding points in a

symmetrical (2, 2) correspondence of valency 1 on a curve of genus 2. See the footnote
to 19.
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is specialised to give a double generator. If the correspondence is not

specialised to give a double generator the resulting ruled surface is elliptic.

We therefore proceed to enquire whether we can obtain an elliptic sextic

ruled surface with a triple conic by projection; the surface must be the

projection of a normal surface in [5] from a line I which lies in oo1 of its

trisecant planes. The triple conic must be the projection from I of the

section of the surface by a prime through Z, there being oo 1 trisecant planes
of this prime section passing through I and forming a quadric line-cone.

Suppose we have an elliptic normal sextic curve in [5]; through a

point of general position there pass two of its trisecant planes. There are

four Veronese surfaces containing the curve*, and through a point of any
of these surfaces there pass not two but an infinity of trisecant planes of

the curve. The surfaces may be defined by this property. The tangent

planes of any one of the Veronese surfaces form a cubic primal, and the

four cubic primals so obtained belong to a pencil whose base is the Jf3
9

formed by the chords of the curve. The four cubic primals together form

the locus of points which are such that the two trisecant planes of the curve

which pass through them coincide f.

Take now a point on one of the Veronese surfaces. The oo 1 trisecant

planes of the sextic which pass through meet the Veronese surface in

conies
;
if the sextic is projected from on to a [4] it becomes a curve lying

on a cubic ruled surface, meeting every generator in three points. The

tangent plane IT of the Veronese surface at meets all the trisecant planes

through O in lines
; the projection from any point of TT on to a [4] gives an

elliptic sextic curve such that oo 1 of its trisecant planes pass through a line.

The trisecant planes through O form a cubic cone
;
so that, after projection

from a point of TT, we obtain oo 1 trisecant planes of an elliptic sextic curve

in [4] which generate a quadric line-cone.

The chords of the normal curve which lie in the trisecant planes

through meet TT in the points of a cubic curve
;
we can either project from

a general point of TT or from a point of this cubic curve.

406. Suppose first that we project from a general point of TT. We
obtain, in [4], an elliptic sextic curve with only one trisecant; there are oo 1

trisecant planes of this curve all passing through a line, this line being
met also by the trisecant. We therefore consider a prime section C^ of the

normal surface F which has only one directrix cubic F. We have on Cg
1

a g^
1 cut out by trisecant planes through a line l\ the three points of inter-

section of CQ
l and F lie on a line meeting I in a point 0. The chords of F

* Rosati, Rend. 1st. Lomb. (2), 35 (1902), 407.

t There are four quadric cones which contain an elliptic quartic curve in [3] ;

the two chords of the curve which pass through a point of any of the cones

coincide. There is an analogous result for a normal elliptic curve of any even order ;

that for the sextic is as above.
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which meet I meet F in CQ
l and F each counted twice ;

on projection we
obtain a surface with a triple directrix line R and a triple conic C2 . The

double curve is 3-R 4- 3(72 ;
R and C2 intersect. The surface is generated by

a (3, 3) correspondence between R and <72 with a trebly united point; to

the point of intersection regarded as a point of either curve there corre-

spond three points of the other curve which all coincide with it. The

triads of points of <72 which correspond to the points of R are such that

their joins envelop an elliptic curve of the sixth class
;
the tangent of (72

at the united point is a stationary tangent of this envelope, which has

three other tangents passing through the point. The bitangent developable
of the surface is 3R -f E^ y

there being three planes of E^ passing through R.

407. If we project from a point of -n which lies on a chord of the normal

curve we obtain an elliptic sextic curve with a double point in [4]. There is

on this curve a g3
l cut out by the planes of a quadric line-cone

;
the two

points on the different branches at the double point belong to the same set

of the g3
l and the line joining them to the remaining point of the set meets

the vertex of the line-cone. We therefore consider a prime section CQ
l of

the normal surface F with a double line A. CQ
l has a double point; the

plane joining this to the vertex I of the line-cone meets CQ
l
again, and the

generator g through this other intersection lies in the solid ZA. We obtain,

on projection from Z, a surface in [3] with a directrix line R which is itself

a generator ; through each point of R there pass two other generators while

each plane through jR contains three other generators. R is the projection
of g and A; there is also a triple conic (72 ,

the projection of Cf

6
1

. R and (72

have one intersection; the surface is generated by a (3, 2) correspondence,
with a doubly united point, between R and Cf

2 . The joins of the pairs of

points of <72 which correspond to the points of R form a rational envelope
of the third class, one of whose tangents passes through the point of R
which gives rise to it. The planes which contain the pairs of generators
which intersect in the points of R therefore form a developable E3 two
of whose planes pass through R. The bitangent developable of the surface

is 6JB + EB .

408. If we project the normal elliptic surface F which has oo 1 directrix

cubic curves from a line Z we obtain a surface / in [3] which has oo 1
tri-

tangent planes. The planes of the cubic curves on the normal surface form

a locus F3
S

,
and are projected into the planes of a developable of class

three, there being three of them which pass through an arbitrary point of

[3]. Hence we obtain a surface whose bitangent developable is 3J 3 . The
double curve is <79

4
.

The dual surface whose double curve is 3Cf

3 is obtained by projection
from the normal surface which has two directrix cubic curves; the bi-
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tangent developable is J579
4

. This surface is generated by a symmetrical

(3, 3) correspondence between the points of a twisted cubic C3
Q

.

When we represent these surfaces on Q we obtain an elliptic sextic

curve with oo 1 trisecant planes on 2; these planes are all of the same

system, two of them passing through any point of the curve. They form

a three-dimensional sextic locus with a double Veronese surface.

When we project the surface F which contains oo 1 directrix cubics

from a line which meets one of the planes which contain the cubic curves

we obtain a surface/which has as tritangent planes the tangent planes of a

quadric cone. These planes are the projections of the planes of a locus F3
3

from a line I which meets one of them.

In general the line Z, meeting the plane of a directrix cubic F, is not

such that the solid which joins it to the plane of F contains also a generator
of F. The chords of F which meet I meet F in F counted twice and a curve

(712
2

,
six of whose tangents meet Z, meeting each generator in two points.

The projected surface has a double curve 3R + CQ
I an(^ a bitangent develop-

able 3R + 3E2 ,
R being the projection of F.

If we choose I to lie in the solid which contains F and a generator g
then the chords of F which meet Z meet F in F and g each counted three

times and a prime section CB
l

. We obtain a surface / with a directrix R
which is also a generator. The double curve is 6.B + <73 and the bitangent

developable 3R + 3JS72 .

409. The following three surfaces were overlooked in the third section

of Chapter IV.

The chords of a normal sextic curve G of genus 2 in [4] which lie on a

quadric containing C set up on C a symmetrical (4, 4) correspondence.
If this breaks up into the sum of two (2, 2) correspondences we have in

[3] a ruled surface, normal in [3], whose double curve is C^
1 + D^ and

bitangent developable E^ + F^. C^
1 and DJ- have four common points ;

E^ and F^ have four common planes.

Suppose that we take a prime section <76
2 of the normal surface F

( 335)

which lies on a cubic cone* and project F on to a [3] from the vertex O
of this cone. There are two tangents of (76

2
through 0\ the remaining

chords of F through meet F in a curve (78
5
having two intersections with

each generator, eight tangents of <78
5
passing through 0. We obtain in [3]

a surface whose double curve is B+ C^
1 + C4

l and bitangent developable
6jR + E2 ;

it is generated by a (2, 2) correspondence between R and Ca
l

with a doubly united point. C^ meets C^
1 four times but does not meet R.

There is also the dual surface, normal in [3], whose double curve is

6.B + <72 and bitangent developable R + EJ- + EJ*.

* The intersection of an elliptic cubic cone with a cubic surface containing
three of its generators and touching it is a <76

2 with a double point.



TABLES SHEWING THE DIFFERENT TYPES
OF RULED SURFACES IN [3] UP TO AND IN-

CLUDING THOSE OF THE SIXTH ORDER

We give here a set of tables shewing the different kinds of ruled surfaces

in [3] that we have studied. In the first two columns of a table we give
the double curve and bitangent developable of the surface, following the

model of the table at the end of Cremona's paper on quartic ruled surfaces.

The symbols Bn
p

, Cn
p

, Dn
p denote curves of order n and genus p, while

En
p

,
Fn

p
, Gn

p denote developables of class n and genus p. R is used for a

directrix, O and H for generators.

We shall not give here the developable surfaces, since a table of these

is on p. 284.

Cubic Ruled Surfaces

The cubic ruled surfaces are of only two kinds, both are rational and

are projections of a normal surface F in [4] with a directrix line A. They
can be exhibited as follows :

Quartic Ruled Surfaces

When we consider quartic ruled surfaces there are ten rational surfaces

and two elliptic surfaces. Of the ten rational surfaces six are projections

of the normal surface in [5] with directrix conies, while the remaining
four are projections of the normal surface in [5] with a directrix

line.

We give also in the table the type of rational quartic C on } from which

any rational ruled quartic surface arises (the list of these curves C is found

in 58) and also the numbers attached to the surfaces by Cremona and

Cayley. The last two surfaces in the table are elliptic.
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Quintic Ruled Surfaces

Of quintic ruled surfaces in [3] there are twenty-four kinds of rational

surfaces, six kinds of elliptic surfaces, and two surfaces whose plane
sections are of genus 2.

Of the rational surfaces seventeen are projections of the normal surface

in [6] with a directrix conic and seven are projections of the normal surface

in [6] with a directrix line.

For the purpose of classifying the rational quintic surfaces we dis-

tinguished nineteen different types of rational quintic curves C on ii. We
give the type of curve corresponding to each surface (a list of the curves

is given in 85) and also the number associated with the surface by
Schwarz*.

The table is divided into four sections by horizontal lines drawn across

it. The surfaces in the first section have not a directrix line
;
those in the

second section have a directrix line which is not a generator ; those in the

third section have a directrix line which is also a generator, while those in

the fourth section are surfaces whose generators belong to a linear con-

gruence.

* Journal fur Math. 67 (1867), 57.
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To classify the elliptic quintic ruled surfaces in [3] we divided the

elliptic quintic curves C on Q into six classes (151). Of the six types
of surface two are projections of the normal surface with directrix cubic

curves, while four are projections of the normal surface with a double

line.

We have the following table :

There are only two types of quintic ruled surface in [3] whofee plane
sections are of genus 2; they are not projections of quintic surfaces in

higher space. They are given by

20
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Sextic Ruled Surfaces

Proceeding now to the sextic ruled surfaces we have eighty-three kinds

of rational surfaces, thirty-four kinds of elliptic surfaces, thirteen kinds of

surfaces whose plane sections are of genus 2, four kinds of surfaces whose

plane sections are of genus 3 and two kinds of surfaces whose plane
sections are of genus 4.

As a basis for the classification of the rational surfaces we have thirty-

eight types of rational curves C on Q ( 171).

Corresponding to curves C of types I and II we have twenty-seven
different kinds of ruled surfaces; twelve of these are without multiple

generators. We have the following table:

Double curve Bitangent developable

Type of

curve C
on Q

CO i 7") i f^
3 ~r -L's T- O4

O/" | /Hfdt/ 2 + G4

352 4-^2 + ^2

Ct +Ca + Da

E3 + F

E3
<>

Ee

I (A) II (A)
I (A)
I (A)
I (A)
I (A)
I (A)
I (A)
I (A)
I (A)
I (A)
I (A)
I (A)

C,+ G

G

3G + <77

3 + G + EJ

E3 +G + j

G + H +V
o + G + H + FS

SG

I(B) II (B)

I(B) II (B)

I(B) II (B)

KB)

II (C)
II (C)
II (C)
II (C)
II (D)
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The remaining types of curves G on Q give rise to fifty-six kinds of

surfaces; each of these surfaces is the projection of a unique surface in [7],

twenty-seven are projections of the normal surface with directrix cubic

curves, twenty are projections of the normal surface with a directrix conic

and nine are projections of the normal surface with a directrix line. They
are exhibited in the following table. The table is divided into three sections

;

the surfaces in the first section have a directrix line which is not itself a

generator, those 'in the second section have a directrix line which is also

a generator and those in the third section are such that their generators

belong to a linear congruence.

Double curve Bitangent developable
Type of

curve O
on SI

Order of

minimum
directrix

on normal
surface F

IOR
WR
<V

Of + Df
QR + cy
6R + Cy

R + B3 + cy + z>3
&R + G + cy
6R + G + cy
&R + G + cy
6.R + G + cy
.R + G + CV

.R + C? + C*2 + Cy
j? + G + cy + Os

6R + G\ H
a

+Ct

6R+G + H + Ct

QR + G + H + cl
R + G + H + C,

1

3R + (

BR + G-
3R + G + 1

3R+ 3G

cy
+ cy
-c/

10J?

10J2

6R
6R
6J?

fi + 0-f

6J? + G + E3

QR + G + Ea

6R + G + Ea

QR + G + E3

R + G + H +
R+ G + H + ,

;+^5

6R+G + H + Ea

6R + G + H + E2

6R + G + H + Es
d Z> i /Hf 117 i E1

OxC -f- Or H- rL + zl/2
O D i Z/^
Ojtt -p J^'j

3R + G + E9

3R + G + H + E6

3R + 3G + Et

III (A)
III (A)
III (B)

III(B)
III (C)
III (C)
III (C)
III (D)
III (D)
III (D)
III (E)
III (E)
III (E)
III (E)
III (F)
III (F)
III (F)
III (F)
III (G)
III (G)
III (G)
III (G)
III (H)
III (H)
III (H)
III (H)
III (I)

HI (J)
III (K)
III (L)

3

3

1

1

3

3

3

2
2
2

3

3

3

3

2
2

2
2

3

3

3

3
2

2

2
2

3

3

3

3
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Of the thirty-four types of elliptic sextic ruled surfaces in [3] sixteen

are projections of the general normal surface which has two directrix cubic

curves and eleven are projections of the normal surface with a double line.

Five types are projections of the normal surface withoo 1
plane cubics on

it (denoted in the table by 3^) and the two remaining types are the projec-
tions of the normal surface with only one cubic curve on it (denoted in

the table by 3J.

There are twenty different types of elliptic sextic curves C on Q
(255).

The table of the elliptic sextic ruled surfaces is divided into four

sections by horizontal lines drawn across it. The surfaces in the first

section have not a directrix line ; those in the second section have a directrix
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line which is not itself a generator ;
those in the third section have a directrix

line which is also a generator; those in the fourth section belong to a linear

congruence.

20-3
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We give now the list of the sextic ruled surfaces in [3] whose plane

sections are of genus 2, classified according to their double curves and

bitangent developables.

Double curve

C.B + G + R'

3R + G + H+3R'
1R + G

6R + G + H

Bitangent developable

E

3R
R + G+QR'
+ G + H+3R'
1R + G

6R + G + H

Type of

curve C
on Q

I

I

II (A)*
II (A)*
II (B)
II (B)
II (C)

III (A)*
III (B)
IV (A)*
IV (B)

V(A)*
V(B)

The list of curves G on 1 of order 6 and genus 2 is found in 327.

The five surfaces marked with an asterisk are the projections of a

normal surface in [4], but the others are not the projections of a sextic

ruled surface in higher space, and are themselves normal.

For surfaces whose plane sections are of genus 3 we have

and for surfaces whose plane sections are of genus 4



NOTE

THE INTERSECTIONS OF TWO CURVES ON A
RULED SURFACE

1. Suppose that we have in space [r] a ruled surface of order n and on

this surface two curves of orders m and m'. A curve will meet all the

generators of the surface in the same number of points ; suppose then that

the curve of order m meets each generator in k points and that the curve

of order ra' meets each generator in k' points. We wish to find an expres-

sion for the number of intersections of the two curves.

In the first instance we shall assume that each curve is a simple curve

on the ruled surface ;
this means that through each point of a curve, with

possibly a finite number of exceptions, there passes only one generator of

the surface.

Take then an arbitrary [r 2] ;
this will meet the surface in n points.

We establish a correspondence between primes P and P' passing through
this [r 2]; two primes P and P' correspond when P joins [r 2] to a

point of the first curve and P' joins [r 2] to a point of the second

curve, these two points being on the same generator of the surface. Then

any prime P meets the curve of order m in m points through each of which

there passes a generator of the surface, so that we have ra&' corresponding

primes P'. Similarly, given a prime P', we have m'k corresponding primes
P. Hence, by Chasles' principle of correspondence, there will be mk'+ m'k

coincidences of pairs of corresponding primes.
The prime joining [r~2] to an intersection of the two curves clearly

counts among these coincidences. But there are also other coincidences;

for [r2] meets the surface in n points, and the prime joining [r 2] to

the generator of the surface through any one of these points contains k

points of the first curve and k' points of the second curve, all on this same

generator. This prime in fact counts W times among the coincidences.

There are no other coincidences than those already mentioned.

Hence we conclude that, if i is the number of intersections of the two

curves*, mjfc
/ + m/

fc ^ i

or i = mk' + m'k

For example, if we consider two prime sections we have m = m' = n
and k = k' = 1, so that they have n intersections. These are, of course,

the n points in which the [r 2] common to the primes meets the surface.

*
Segre, Rom. Ace. Lincei Rend. (4), 3a

(1887), 3.
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We have assumed implicitly in the above proof that none of the inter-

sections of the two curves is a multiple point on the ruled surface ; for if

one of the i points is at an intersection of two or more generators of the

ruled surface we should have to count it more than once among the co-

incidences, although both the curves might only have simple points there.

In such a case the number i given by the formula would have to be modified.

2. Let us consider now the intersections of two multiple curves on a

ruled surface. We take as before a ruled surface of order n in [r] and on it

two curves of orders m and ra', meeting each generator of the surface in

k and k' points respectively. But now the curves are of multiplicities s and

s' upon the surface ; through a general point of the curve of order m there

pass s generators, while through a general point of the curve of order m'
there pass s' generators. The preceding is the particular case of this when
s = *' = 1.

We set up just as before a correspondence between the primes P and

P' of a pencil; but now to any given prime P there will correspond msk'

primes P', while to any given prime P' there will correspond m's'k primes
P. We thus have

coincidences of pairs of corresponding primes which are to be accounted

for by intersections of the two curves.

The question then remains to be answered,
"How many times does each

intersection count among this number of coincidences ?
" and at first sight

it seems as though the answer cannot be given without some difficulty.

There may be points of the first curve through which there pass more than

s generators of the surface just as there may be points of the second curve

through which there pass more than s' generators of the surface. It seems

as though we ought to know the number of generators which meet at any
given intersection of the two curves before we can tell how many times

this intersection should count among the coincidences, and we may have

to know more than this.

3. It will help to explain some of the difficulties if we illustrate them

by one or two examples.

(A) Suppose that we take a line and a conic with one intersection and

place them in (2, 2) correspondence with a doubly united point. The

joining lines will then generate a ruled surface of the fourth order on which

the line and the conic are double curves. For the line m = 1, s = 2, & = 1,

while for the conic m' = 2, s' = 2, k' = 1, and n = 4. Hence

msk' 4- m's'k nkk' = 2,

and the single intersection is counted twice.

(B) If we consider the number of intersections of a prime section and
a double curve the formula for the number of coincidences gives twice the
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order of the double curve, whereas the number of intersections is actually

equal to the order of the double curve. Each intersection then must be

counted twice.

(C) Let us take a rational quartic with a double point and
%

a conic

which passes through the double point and meets the quartic in two other

points. Then the chords of the quartic which meet the conic generate a

quintic ruled surface on which the two curves are double curves. The

double point of the quartic curve is, in fact, a triple point of the ruled

surface, there being three generators passing through this point.

Then for the quartic

m = 4, s=2, Ic = 2,

and for the conic m/ ^ 2? s
, ^ 2>

, ^ ^
while n - 5. Hence ^/ + mVA. _ nW ^ 6

But the number of actual intersections of the two curves is four, if we count

the double point as two intersections, and the relation between the number
of intersections and the number of coincidences does not seem clear without

further investigation.

Now it is known, from the general theory of ruled surfaces, that on this

quintic ruled surface there is a simple conic; through each point of this

conic not on the double curve there passes one generator of the surface, while

each generator (with three exceptions) meets the conic in one point. Then
for this conic m"= 2, s"= 1, k"= 1, so that, considering the two conies,

mV&" + m"s"V - nk'k" 1.

It certainly cannot be maintained that any coincidence has been counted

twice in this result, and there is in fact precisely one intersection of the

two conies. Hence in this particular case the formula gives the correct

result without modification.

Also m"s"k + msk" - nk"k = 2,

which is also correct; the simple conic does, in fact, meet the double

quartic in two points.

But if we were to calculate the number of intersections of either the

double conic or the double quartic with a plane section we should get
twice the correct result, as in (B).

Thus it appears that when we have two curves of given multiplicities
on a ruled surface we cannot, without further examination, state the number
of times that each intersection counts among the coincidences. We cer-

tainly cannot for two double curves, or for a double curve and a simple
curve.

4. It may be that the ruled surface which we are considering is the

projection of a normal ruled surface in higher space. When this is so it
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may happen further that the curves of orders m and w' and multiplicities

s and s' are the projections of simple curves of orders ms and mV on the

normal surface. Then, since the order of the surface and the number of

points in which a curve meets a generator are unaltered by projection, the

formula
f
- _ ^^ + mVfc _ nW

gives the number of intersections of these two simple curves on the normal

surface*. Thus if an intersection of the multiple curves is the projection

of only one of the intersections of the simple curves it will count only once

among the coincidences; if, however, it is the projection of two inter-

sections of the simple curves it will count twice, and so on.

We can thus clearly explain the fact that the formula, when applied
to a prime section and a double curve, gives twice the correct number of

intersections. We assume that the surface in [r] is the projection of a

normal surface of the same order in [R] from a space [R r 1] not

meeting this normal surface. Then we suppose that the double curve of

the surface in [r] is the projection from [R r 1] of a simple curve C
on the normal surface; there will be oo 1 chords of C meeting [R r 1],

each of these chords being joined to [R r 1] by an \E r] meeting

[r] in a point of the double curve. A prime section of the surface in [r] is

joined to [R r 1] by a space [R 1] which gives the corresponding

prime section S of the normal surface; then through any intersection of

8 and C there must pass a chord meeting [R r 1]; the other inter-

section of this chord with C then necessarily lies also on S. Hence each

intersection of the double curve and the prime section on the surface in

[r] is the projection of two intersections of S and C.

5. It will be advisable now to elaborate at some length the account of

the curves on the quintic surface in our third example ;
the whole theory

of the quintic ruled surfaces has been fully investigated, and this process
of elaboration will throw much light on more general examples*)*.

We had a rational quartic <74 with a double point and a conic <72 passing

through this double point and meeting <74 in two other points. The quintic
ruled surface formed by the chords of (74 which meet <72 has both (74 and
(72 for double curves ;

it is rational since its plane sections have six double

points. It can therefore be regarded as the projection of a normal quintic
ruled surface F in [6] .

The centre of projection will be a plane w. The surface F will have a
directrix conic P, and the projection of F from w gives the simple conic ca

on the projected surface. The surface F has oo4 directrix quartic curves

lying on it, and we choose w to contain an axis p of one of these quartics
E

( 130).

* By 1. t See 130.
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It is known that the chords of F form a locus M5
3 of five dimensions

and the third order; thus w will meet this locus in the line p and a conic

9-. Through every point of p there passes a chord of E, while through

every point of & there passes a chord of F\ for different points of & the

different chords of F trace out on F a curve C8 of the eighth order meeting
each generator in two points. It can be proved that CQ has one double

point A. Through A there will then pass two chords AB and AC of Gs

which both meet &
;
the line EG is then also a chord of F meeting w, its

intersection with w lies on p, and B and C lie on E as "well as on Cs . Also

through the intersections of p and & there pass lines which are common
chords of E and C8 .

When we project from w on to a solid the curve E becomes a conic C2

and the curve C8 becomes a quartic <74 ;
both C2 and <74 are double curves

on the projected surface. The solid through w containing A, B, C meets

the solid on to which we are projecting in a point which lies on C2 and is

a double point on (74 , this being the projection of two intersections, viz.

B and (7, of E and Cs . C2 and (74 have two other intersections each of which

is the projection of two intersections of E and C8 .

We now see clearly how to reckon the intersections of C2 and (74 ;
the

double point of <74 lies on C2 and counts twice among the coincidences,

while each other intersection of C2 and (74 counts twice among the coin-

cidences. The curves <78 and E on the normal surface have six intersections

and no more.

The curve E, meeting each generator of F in one point, will meet the

conic F in one point, while the curve C8 , meeting each generator of F in

two points, will meet F in two points. Through the intersection of F and
E there passes a chord of E meeting p, but the other intersection of this

chord with E is not on F nor does the solid through w which contains it

meet F again. Hence, on the quintic surface in [3], the double conic O2

and the simple conic c2 have one intersection, and this is the projection
of the single intersection of F and E. Similarly the double quartic (74 meets

the simple" conic c2 in two points each of which is the projection of one

intersection of F and Cs .

If, however, we were to consider intersections of either <74 or C2 with

a plane section each would be the projection of two intersections of G8 or

E with a prime section of F. The prime would contain w, two chords of E
meeting p and four chords of C8 meeting &.

6. It is usual to assume that a general ruled surface has no singularities

unless it lies in three or four-dimensional space ;
a ruled surface in [4] will

have a finite number of double points, while a ruled surface in [3] has a

double curve with a finite number of triple points which are also triple

points of the ruled surface. This is, of course, a statement which is only
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true in very general instances; we can have many ruled surfaces with

multiple curves in any space. For example, if a curve of order n lies on a

quadric then the chords of the curve which lie on the quadric form a ruled

surface on which the curve is a multiple curve of multiplicity n 2. Also

any ruled surface generated by any correspondence other than a (1, 1)

correspondence between two curves has necessarily one or both of the

curves as multiple curves.

Let us, however, for the present confine our attention to surfaces in [3]

with only double curves. It may happen, as in the case of the quintic ruled

surface which we have been discussing, that the double curve is composite,

consisting of two or more parts. We shall examine in detail how the

intersections of two of these parts are given in the expression

msk' -f m's'k nkk'.

7. Suppose that the surface/in [3] is the projection of a normal surface

F in [r] from a space [r 4] not meeting F. Then a point of the double

curve of / is the intersection with [3] of an [r 3] containing [r 4] and

meeting F in two points ; the chord of F joining these two points will meet

[r 4]. There are, in fact, oo 1 chords of F meeting [r 4]; of the oo 2(r~1)

lines in [r] there are oo 2r"5
meeting [r 4] and r 3 conditions are

necessary for one of these to meet F. The curve in which these chords of

F meet [r 4] (if r > 4) is in birational correspondence with the double

curve of /.

If the double curve of / has a triple point we shall have an [r 3]

containing [r 4] and meeting F in three points ;
thus we have a trisecant

plane of F meeting [r 4] in a line. Of the oo 3 <r~ 2)
planes of [r] there are

oo 3 (r~4) meeting [r 4] ,
and r 4 conditions are necessary for one of

these to meet F. We thus expect/ to have a finite number of triple points.

In general, F will not have any trisecant lines, and, even if it had, none of

them would meet a general [r 4] .

The chords of F meeting [r 4] will then meet F in the points of a

curve. If a trisecant plane meets F in points A, B, C and also meets

[r 4] in a line the chords EC, CA, AB will all meet [r 4] so that the

curve on F has double points at each of A, B, C.

If now the double curve of / is composite this curve on F will also be

composite. It is then at once clear that if the two parts of the double curve

on f have an intersection which is a simple point on both of them and not a

triple point of f then this intersection is the projection of two distinct inter-

sections of the corresponding curves on F, the common chord of the two
curves meeting [r 4] .

It remains to consider the intersection of the two parts at a triple

point of /. Suppose that the first component of the double curve has a
double point here, then the second component will only have a simple
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point. Then, the triple point being the intersection of [3] with an [r 3]

meeting F in three points A, B, O, the first component of the curve on
F will have a double point at one of these points, say A, and pass through
the other two, while the second component passes through B and ?. Thus
the intersection of the two curves at the triple point off is the projection of two

intersections B and C of the corresponding curves on F. The quintic ruled

surface in 5 is an example of this.

On the other hand, it may happen that both components of the double

curve pass simply through the triple point, there being a third component
also passing through the triple point. When this happens the three com-

ponents must be projections of three curves on F one of which passes

through B and G, another through C and A and another through A and
B. Then the intersection of the two components is the projection of only one

intersection of the two corresponding curves on F.

We can then state the following rule.

Suppose that we Jiave on a ruled surface f, in [3] ,
two double curves of

orders m and m' meeting each generator in k and k' points respectively. Then
the mutual intersections of the two curves are of three possible kinds:

I. A simple intersection at a point which is not a triple point of the ruled

surface.

II. An intersection at a triple point of the ruled surface, one curve having
a double point and the other a simple point.

III. An intersection at a triple point of the ruled surface, both curves

having only simple points.

Then, if we count each intersection under I or II as two intersections and
each intersection under III as one intersection, the total number of inter-

sections so obtained will be

2 (mk
f + m'k)

- nW
ivhere n is the order of the surface.

Both the quartic and quintic ruled surfaces in the examples in 3

illustrate this rule.

8. An abundance of other examples could be given to illustrate the

rule
;
we give only a few :

(A) Take three conies circumscribing the triangles of three faces of a

tetrahedron. Then the lines which meet all three conies form a quintic
ruled surface on which the conies are double curves

;
the point common to

the three conies is a triple point of the ruled surface. Then, for any pair
of the conies, m = m' = 2, s = s' = 2, k = k' = 1, while n = 5, so that

msk' + m's'k nkk' 3,

the intersection of the two conies at the triple point only counting once in

this result, while the other intersection counts twice.

(B) Let us take an elliptic quartic curve and a line meeting it once.
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Then the chords of the curve which meet the line form a ruled surface of

the fifth order on which the line and the curve are both double. For the

curve m = 4 and k = 2, while for the line m' = 1 and k' = 1. Thus, since

n = 5, 5 (mk
f + m'k) nkk' = 2; the single intersection counting twice.

(C) If we take a conic G2 and a twisted cubic and place them in (1, 2)

correspondence with a united point we obtain a ruled surface of the sixth

order on which G2 is a double curve. The surface has also a double curve

(78 of the eighth order meeting each of its generators in three points ;
<78 has

two triple points. It has also two double points through which G2 passes

and has three simple intersections with G2 (cf. 175, 176). n = 6.

For C8 m = 8, s = 2, k = 3.

For C2 m' = 2, s' = 2, V = 1.

msk' -f m's'k - Tifcfc' = 10 = 2 . 2 + 3 . 2.

(D) Take two twisted cubics and place them in (1, 2) correspondence
with three united points. Then the joins of corresponding points give a ruled

surface of the sixth order on which one of the cubics (73 is a double curve.

On this surface there is also a double curve C7 meeting each generator in

three points. C1 has four double points through all of which (73 passes;

it has also three simple intersections with (73 (cf. 175, 177). n = 6.

For <77 ra = 7, s = 2, k = 3.

For (78 m' =3, s' = 2, V = 1.

msk' + m's'k nkk' = 14 = 4 . 2 + 3 . 2.

(E) Take two conies C2 and D2 with one intersection and place them
in (2, 2) correspondence with a doubly united point. Then the joins of

pairs of corresponding points form a ruled surface of the sixth order on

which C2 and D2 are both double curves. There is also on this surface a

double curve (76 of the sixth order meeting each generator in two points.

This curve has four double points, two of which are on G2 and two on Z>2 ,

while it has two simple intersections with each of G2 andD2 (cf . 178, 179).

n= 6.

For <76 m = 6, s = 2, k = 2.

For <72 m' =2, s' = 2, V = 1.

For D2 m" = 2, s" =2, *"=-!.

mVfc" + m'V'fc' - Tifc'fc" =2 = 2.1,

m'V'fe + msfc" - rc&"& =8=2.2+2.2,
msk' + m's'k - nkk' =8=2.2 + 2.2.

(F) Take two twisted cubics <73 andD3 with five intersections and place
them in (2, 2) correspondence with four ordinary united points and one

doubly united point. Then the joins of pairs of corresponding points

generate a ruled surface of the sixth order on which <73 and D3 are double
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curves. There is further on this surface a quartic double curve G4 meeting
each generator in two points ; this passes through the four ordinary united

points of the correspondence and meets each cubic in two other points (cf .

178, 180). n = 6.
N

For tf4 m = 4, 5=2, k = 2.

For C3 m' = 3, s' = 2, V = 1.

For D3 m" = 3, s" =2, W = 1.

my&" + w'V'Jfc' - rcfc'fc" -6 = 2.1 + 4,

ra'Y'fc + msfc" - nk"k =8=2.2+4,
rasfc' + raY& - nkk' =8=2.2 + 4.

(G) Take a conic (72 and a twisted cubic C3 which has three intersections

with the conic. Then place these in (2, 2) correspondence with two ordinary
united points and one doubly united point. Then the joins of pairs of

corresponding points form a ruled surface of the sixth order on which C2

and G3 are double curves. On this surface there is also a double curve (75

of the fifth order which meets each generator in two points and passes

through the two ordinary united points of the correspondence. C6 has

two double points through which C3 passes ;
it has two intersections with

C3 other than these double points and the united points already men-

tioned. Also it has two intersections with C2 other than these united points

(cf. 181).' n = 6.

For (76 m = 5, 5=2, k = 2.

For C3 m' =3, s' = 2, k' = 1.

For <72 w" = 2, s" = 2, 4" = 1.

roV*" + w'V'Jfc' - nk'k" =4=2.1 + 2,

m'Y'fc + msk" - nk"k =6=2.2+2,
msk' + m's'k - nkk' =10 =2. 2+2. 2 + 2.

9. At a triple point of the ruled surface there are three generators

meeting ;
we may have part of the double curve with a triple point, or one

part with a double point and another part with a simple point, or three

parts all with simple points. In any case we have three distinct branches

of the double curve; let Pl9 P2 ,
P3 be points of the different branches at

the triple point. Then we can regard the three generators of the surface

which pass through the triple point as the lines P%Ps, P^Pi, and PiP2 ]

each generator joining the points on two of the branches of the curve. This

statement is obscure without further elucidation ; but is made much clearer

when the triple point is regarded as the projection of three different points
of the normal surface, at each of which the curve which projects into the
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double curve has a double point. It can also be elucidated in another way
by regarding the generators as points of a curve on a quadric in [5]*.

Suppose then that at the triple point we have two parts of the double

curve, one having a double point PiP2 and the other a simple point P3 .

Then given an arbitrary line the plane joining it to P counts for two among
the coincidences; for it joins the point P3 of the second curve to the point

P! of the first on the same generator P^P^ and also joins the point P3 of

the second curve to the point P2 of the first on the generator P2P3 .

If, however, there are three parts of the double curve each passing

simply through P they have there simple points PJ , P2 , P3 . If we consider

intersections of the first two curves, the plane joining an arbitrary line ibo

P only counts once among the coincidences, as joining the point Px of the

first curve to the point P2 of the second on the same generator.

But if two parts of the double curve intersect at a point which is not

a triple point of the ruled surface the plane joining an arbitrary line to this

intersection counts for two among the coincidences as joining the line to

an intersection of the curves which lies on two different generators.

10. We know that we can represent the generators of a ruled surface

/ of order n in [3] by the points of a curve C of order n on a quadric fourfold

1 in [5] . Thus we can enquire how the intersections of different parts of

the double curve of /are represented on ti. The points of the double curve

of /are in (1, 1) correspondence with the chords of C which lie on Q; these

chords form a ruled surface B2 .

If there is a triple point on / we shall have a plane of }, representing
this point, which is trisecant to C

;
the points of the plane representing all

the lines of [3] which pass through the triple point. Then the three points

X, Y, Z in which this plane meets C represent the three generators of /
which pass through the triple point; while the three lines YZ

9 ZX, XY
which are all generators of the ruled surface formed by the chords of C
lying on i are all, in the (1, 1) correspondence between the generators of

R2 and the points of the double curve, in correspondence with the triple

point of the double curve.

If the double curve of / breaks up into component parts then B2 will

have to break up into corresponding component ruled surfaces. If two

parts of the double curve both pass through a triple point then the corre-

sponding ruled surfaces will have to have generators in the same plane of

ii which is trisecant to (7; if, however, two parts of the double curve both

pass through a point which is not a triple point of the surface the corre-

sponding ruled surfaces on i must have a common generator. For the

points of the double curve are in correspondence with the generators of

jR2 , and the same point cannot be in correspondence with two different

* See 10 below.
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generators unless these lie in a plane which lies on ti and is trisecant to

(7*. Thus we see that there is a sharp distinction to be drawn between the

intersections of two double curves on the surface according as the inter-

sections do or do not lie at triple points of the surface.

If, at a triple point of the ruled surface, one part of the double curve

has a double point and another a simple point then, in the corresponding
trisecant plane XYZ of C, two of the three chords are generators of one

ruled surface, while the remaining chord is a generator of another. If,

however, three different parts of the double curve of / pass through the

triple point then the three chords YZ, ZX, XY of C belong to three different

ruled surfaces.

Also we now obtain a new aspect of the statement made above that

at a triple point P of the ruled surface where we have three points Pt , P2 >

P3 on three different branches of the double curve, we regard the generators
as the lines P2P3 ,

P3Pi, PiP2 . The points Pt ,
P2 , P3 of the double curve

are represented by the generators YZ, ZX, XY respectively of JK2 ,
and to

say that one generator is the line P2P3 and does not (strictly) pass through

P! is the same as saying that X lies on ZX and XY but not on YZ.

11. Suppose now that we have on a ruled surface / in a space [r] a

double curve and a triple curve. We shall assume that this surface is the

projection of a normal ruled surface F of the same order in a space [JR]; the

centre of projection being a space [R r 1] which does not meet F.

Then there will be oo 1 trisecant planes of F which meet [R r 1] in

lines; the spaces [R r] containing [R r 1] and these planes meeting

[r] in the points of the triple curve on /. Also there will be oo 1 chords of

F which meet [R r 1]; the spaces [E r] containing [R r 1] and
these chords meeting [r] in the points of the double curve on /.

If Qi> Q*> Qa denote the three intersections of F with one of its trisecant

planes which meets [R r 1] in a line, then the points Q describe a

curve on F whose order is three times that of the triple curve on /, and
which meets each generator of F in the same number of points as the triple

curve on / meets the generators of /. Also, if PI , P2 denote the two inter-

sections of F with one of its chords which meets [R r 1] in a point
then the points P describe a curve on F whose order is twice that of the

double curve on/ and which meets each generator of F in the same number
of points as the double curve on / meets the generators of /.

Now an intersection of the double curve and the triple curve on / is

joined to [.R r 1] by an [JB r] which contains two points P and three

points Q on F. Unless, then, we are to have a quadrisecant solid of F
meeting [R r 1] in a plane, two of the points Q must coincide with

the points P, and the intersection on/ will be the projection of two inter-

* We may here refer to 66, 92 and 100.
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sections of the corresponding curves, on F. There are two possibilities in

which a quadrisecant solid of F could meet [B r - 1] in a plane; either

the intersection of the two curves on / could be a multiple point on one or

both of them or a third multiple curve on / might pass through this same

point.

We can therefore state the following :

// on a ruled surface f we have a double curve of order m meeting each

generator in k points and a triple curve of order m' meeting each generator in

k' points and if all their intersections are simple points on both curves, and if,

further, none of their intersections lies on a third multiple curve off, then the

number of these intersections is

(2mk' + Sm'k - nkk') ,

where n is the order of the surface. In obtaining this we have assumed that

the multiple curves are projections of simple curves on a normal surface.

And similarly we have the following :

// on a ruled surface f we have a curve of order m and multiplicity s

meeting each generator in k points and also a curve of order m' and multiplicity

s' meeting each generator in k' points, and if all their intersections are simple

points on both curves, and if, further, none of their intersections lies on a third

multiple curve off, then the number of these intersections is

(msk' + m's'k - nkk'} ,

5o

where n is the order of the surface and SQ is the smaller of s and s'. The result

holds if s = s' = SQ .

12. We can illustrate these last statements by examples:

(A) If we take a line R and a conic and place them in (1, 3) corre-

spondence the joins of pairs of corresponding points will generate a ruled

surface of the fifth order on which R is a triple line. This surface has also

a double curve
;
this is a twisted cubic (73 which has R for a chord. A plane

through R meets the conic in two points and contains two generators of

the surface; their intersection is a point of <73 (cf. 139, 140). n = 5.

For C3 m = 3, s = 2, 4=1.

For m/ =
1, s' = 3, lc' = 1.

msk' -f m's'k - nkk' =4=2.2.
The ruled surface is rational, the plane sections being quintic curves

each with a triple point and three double points. It can therefore be

obtained by projection from a rational normal quintic ruled surface F in

[6] . We project from a plane w 9 and for this particular surface we choose

w to meet a solid K containing a directrix cubic A of the normal surface
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in a line p*. Then the pencil of planes through p in K gives a system of

trisecant planes of F which all meet the centre of projection in lines (in

this case the same line). The plane w meets Jf6
3
, the locus of the chords of

F, in p and a conic &. Through each point of & passes a chord of jF, and

these chords will meet F in the points of a rational sextic curve <76 meeting
each generator of F once. Then Ce and A have four intersections, these

being the points of F on the two chords which pass through the inter-

sections of p and &.

Each intersection of jR and <73 is the projection of two intersections of

A and <76 .

The conic which we put in correspondence with R is a simple conic on

the surface; it does not meet R but it meets C3 three times.

For the conic m" = 2, a" = 1, k" = 1,

so that m'V'f + mVfc" - nlc'k" = 0,

ra'V'i; + mslc" - nick" = 3.

The three intersections of the conic with O3 are the projections of three

distinct intersections of <76 and the directrix conic of the normal surface.

(B) If we take a line R and a twisted cubic in (1, 3) correspondence
the joins of pairs of corresponding points form a ruled surface of the sixth

order on which R is a triple line. This surface has also a double curve C7

of the seventh order which meets every generator in two points and R in

four points (cf. 222). n = 6.

For <77 m = 7, s = 2, k = 2.

For R m' = 1, s
f = 3, V = 1.

+ mYfc - nkk' =8=2.4.
The ruled surface is rational and is obtained by projection from a

normal surface in [7]. The normal surface has oo 1 directrix cubic curves on

it; we project from a solid S meeting the solid K containing one of these

cubic curves in a line p. The chords of F meeting 8 do so in p and a rational

quintic &6 of which p is the quadrisecant. The chords of F through the

intersections ofp and
-9-5 give four pairs of points on F\ each of these pairs

of points projects into one intersection of R and O7 .

(C) Finally, we will give an example in which the conditions required
do not hold, there being three different multiple curves on a ruled surface

with points common to all of them.

Let us take a rational quintic curve C in [4] ;
this has a trisecant chord

t meeting it in three points P, Q, S. Suppose that we have a quadric Q
containing C; this quadric will also contain t.

* There are oo a curves A on F with corresponding solids K. These solids K
generate the M6

8 formed by the chords of F, and a general plane of [6] will not meet

any of them in a line.



324 . INTERSECTIONS OF TWO CURVES ON RULED SURFACE

Then the chords of C which lie on fl form a ruled surface of order 12

on which C and t are both triple curves. There is also on this surface a

double curve of the sixth order meeting each generator in one point and

passingfthrough P, Q and R*. n = 12.

For C m = 5, s = 3, k = 2.

For the double curve

m' = 6, s' = 2, V = 1.

ws&' + m's'k nick' =15.

The number of intersections of C with the sextic curve other than P,

Q, R is known to be six, and each of these will be counted twice according
to our rule. Hence the three intersections which are on t are only counted once.

We have here an example in which a triple curve and a double curve

intersect, three of their intersections being on another triple curve of the

ruled surface. It appears that these last three intersections of the triple

curve and the double curve only give rise to one coincidence each.

The ruled surface can be skewn to be elliptic ; it can therefore be ob-

tained by projection from an elliptic ruled surface of order 12 in [11]; the

centre of projection is a [6] not meeting the surface.

* See 96.
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