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DIAGRAM METHOD FOR 3-FOLDS AND

ITS APPLICATION TO KÄHLER CONE AND

PICARD NUMBER OF CALABI-YAU 3-FOLDS. I

Viacheslav V. Nikulin1

Abstract. We prove the general diagram method theorem valid for the quite large
class of 3-folds with Q-factorial singularities (see Basic Theorems 1.3.2 and 3.2 and

also Theorem 2.2.6). This gives the generalization of our results about Fano 3-folds

with Q-factorial terminal singularities (Preprint alg-geom/9311007).
As an application, we get the following result about 3-dimensional Calabi-Yau

manifolds X: Assume that the Picard number ρ(X) > 40. Then one of two cases

(i) or (ii) holds: (i) There exists a small extremal ray on X. (ii) There exists a nef

element h such that h3 = 0 (thus, the nef cone NEF (X) and the cubic intersection

hypersurface WX have a common point; here, we don’t claim that h is rational!).
As a corollary, we get: Let X be a 3-dimensional Calabi-Yau manifold. Assume

that the nef cone NEF (X) is finite polyhedral and X does not have a small extremal

ray. Then there exists a rational nef element h with h3 = 0 if ρ(X) > 40.
To prove these results on Calabi-Yau manifolds, we also use one result by V.V.

Shokurov on the length of divisorial extremal rays (see Appendix by V.V. Shokurov).

Thus, one should consider the results about Calabi-Yau 3-folds above as our common
results with V.V. Shokurov.

We also discuss generalization of results above to so called Q-factorial models
of Calabi-Yau 3-folds, which sometimes permits to involve non-polyhedral case and

small extremal rays to the game.

With Appendix by Vyacheslav V. Shokurov:
Anticanonical Boundedness for Curves.

0. Introduction

We consider algebraic projective varieties over the field C of complex numbers.
In our paper [N8], we developed for Fano 3-folds X with terminal Q-factorial

singularities so called Diagram Method (for divisorial case). As an application, we
proved that if Picard number ρ(X) > 7, then X either has a small extremal ray or
a nef rational element h with h3 = 0.

Here, we generalize this method for arbitrary 3-folds (also for divisorial case). It
was very surprising for us that this is possible. See Basic Theorems 1.3.2 and 3.2.

As an application, we use this method for Calabi-Yau manifolds. We refer to
very important papers of P.M.H. Wilson [W1], [W2] about terminology and basic
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2 VIACHESLAV V. NIKULIN

results on Calabi-Yau 3-folds we have to use (we cite these results in Section 4.1).
Using one result of V.V. Shokurov about length of divisorial extremal rays for log-
terminal situation (see Appendix by V.V. Shokurov), we get the following result
which one should consider as a common result of the author and V.V. Shokurov:

Theorem 0.1 (by the author and V.V. Shokurov). Let X be a 3-dimensional
Calabi-Yau manifold and the Picard number ρ(X) > 40.

Then one of two cases (i) or (ii) below holds:
(i) There exists a small extremal ray on X.
(ii) There exists a nef element h such that h3 = 0 (thus, the nef cone NEF (X)

and the cubic intersection hypersurface WX have a common point; here, we don’t
claim that h is rational!).

As a corollary, we get

Theorem 0.1’ (by the author and V.V. Shokurov). Let X be a 3-dimensional
Calabi-Yau manifold. Assume that the nef cone NEF (X) (equivalently, Mori cone
NE(X)) is finite polyhedral and X does not have a small extremal ray.

Then there exists a rational nef element h with h3 = 0 if ρ(X) > 40.

Proof. See Theorems 4.3.1 and 4.3.1’ for more exact statements and the proof.

It seems that existence of a nef rational element h with h3 = 0 is very important
for Calabi-Yau 3-folds. See [D-Gro], [Gro], [Gra], [Hu], [O], [W1], [W2], [W3]. By

I.I. Piatetsky-Shapiro and I.R. Shafarevich [PS̆-S̆], an algebraic K3 surface has a
nef rational element with the square zero if its Picard number ≥ 5. See Sect. 6
where we discuss these results and their connection with our results.

In Sect. 5 we consider one possibility to extend our results for cases when
either Mori cone NE(X) is not finite polyhedral or X has small extremal rays. It
is connected with considering of so called Q-factorial models Y of a Calabi-Yau
manifold X which one gets as a sequence of contractions of divisorial extremal
rays and flops in small extremal rays. These models have Q-factorial canonical
singularities, and we can apply Diagram Method to these models obtaining results
similar to Theorems 0.1 and 0.1’ (with replacing of the constant 40 by another
constant). For some very special class of Q-factorial models (we name them very
good) we prove results similar to Theorems 0.1 and 0.1’ (with the constant 163
instead 40). See Theorem 5.5 and Corollaries 5.6 and 5.9. We conjecture that
analogs of Theorems 0.1 and 0.1’ are valid for arbitrary Q-factorial models (one
should replace 40 by another absolute constant). See Conjecture 5.3.

In particular, this preprint contains results we announced in [N10].
I am grateful to I. Dolgachev, A. Grassi, M. Gross, M. Reid, D. Morrison, V.V.

Shokurov for useful discussions. I am grateful to Professor I.R. Shafarevich for his
support of these my studies.

1. One effective variant of the

diagram method for the divisorial case

1.1. Reminding. First, we recall one combinatorial result of [N8].
Let X be a projective algebraic variety with Q-factorial singularities over an

algebraically closed field. Let N1(X) be the R-linear space generated by all algebraic
curves on X by the numerical equivalence, and let N1(X) be the R-linear space
generated by all Cartier (or Weil) divisors on X by the numerical equivalence. Linear
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spaces N1(X) and N1(X) are dual to one another by the intersection pairing. Let
NE(X) be a convex cone in N1(X) generated by all effective curves on X . Let
NE(X) be the closure of the cone NE(X) in N1(X). It is called Mori cone (or
polyhedron) of X . A non-zero element x ∈ N1(X) is called nef if x ·NE(X) ≥ 0.
Let NEF (X) be the set of all nef elements of X and the zero. It is the convex
cone in N1(X) dual to Mori cone NE(X). A ray R ⊂ NE(X) with origin 0 is
called extremal if from C1 ∈ NE(X), C2 ∈ NE(X) and C1 +C2 ∈ R it follows that
C1 ∈ R and C2 ∈ R.

We consider a condition (i) for a set R of extremal rays on X.

(i) If R ∈ R, then all curves C ∈ R fill out an irreducible divisor D(R) on X.
We call this extremal ray divisorial.

In this case, we can correspond to R (and subsets of R) an oriented graph G(R)
in the following way: Two different rays R1 and R2 are joined by an arrow R1R2

with the beginning in R1 and the end in R2 if R1 ·D(R2) > 0. Here and in what
follows, for an extremal ray R and a divisor D we write R ·D > 0 if r ·D > 0 for
r ∈ R and r 6= 0. (The same for the symbols ≤, ≥ and <.)

A set E of extremal rays is called extremal if it is contained in a face of NE(X).
Equivalently, there exists a nef element H ∈ N1(X) such that E ·H = 0. Evidently,
a subset of an extremal set is extremal too.

We consider the following condition (ii) for extremal sets E of extremal rays.

(ii) An extremal set E = {R1, ..., Rn} satisfies the condition (i), and for any real
numbers m1 ≥ 0, ...., mn ≥ 0 which are not all equal to 0, there exists a ray Rj ∈ E
such that Rj · (m1D(R1) + m2D(R2) + ... + mnD(Rn)) < 0. In particular, the
effective divisor m1D(R1) + m2D(R2) + ... + mnD(Rn) is not nef .

A set L of extremal rays is called E-set (extremal in a different sense) if the L
is not extremal but every proper subset of L is extremal. Thus, L is a minimal
non-extremal set of extremal rays. Evidently, an E-set L contains at least two
elements.

We consider the following condition (iii) for E-sets L.

(iii) Any proper subset of an E-set L = {Q1, ..., Qm} satisfies the condition (ii),
and there exists a non-zero effective nef divisor D(L) = a1D(Q1)+a2D(Q2)+ ...+
amD(Qm).

We have the following statement:

Lemma 1.1.1. An E-set L satisfying the condition (iii) is connected in the follow-
ing sense: For any decomposition L = L1

∐
L2, where L1 and L2 are non-empty,

there exists an arrow Q1Q2 such that Q1 ∈ L1 and Q2 ∈ L2.

If L and M are two different E-sets satisfying the condition (iii), then there
exists an arrow LM where L ∈ L and M ∈M.

Proof. See [N8, Lemma 1.1].

Let NEF (X) = NE(X)∗ ⊂ N1(X) be the cone of nef elements of X and
M(X) = NEF (X)/R+ its projectivization. We use usual relations of orthogonal-
ity between subsets of M(X) and NE(X). So, for U ⊂ M(X) and V ⊂ NE(X)
we write U ⊥ V if x ·y = 0 for any R+x ∈ U and any y ∈ V . Thus, for U ⊂M(X),
V ⊂ NE(X) we denote

U⊥ = {y ∈ NE(X) | U ⊥ y}, V ⊥ = {x ∈M(X) | x ⊥ V }.
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A subset γ ⊂M(X) is called a face ofM(X) if there exists a non-zero element
r ∈ NE(X) such that γ = r⊥. Similarly, a subset α ⊂ NE(X) is called a face of
NE(X) if there exists a non-zero element h ∈M(X) such that α = h⊥.

A convex set is called a closed polyhedron (equivalently, finite polyhedral) if it is a
convex hull of a finite set of points. A convex closed polyhedron is called simplicial
if all its proper faces are simplexes. A convex closed polyhedron is called simple
(equivalently, it has simplicial angles) if it is dual to a simplicial one. In other
words, any its face of codimension k is contained exactly in k faces of the highest
dimension. Evidently,M(X) is simple if the Mori cone NE(X) is polyhedral (has
a finite set of extremal rays) and is simplicial (all proper faces of NE(X) are cones
over simplexes). Evidently, the last property is equivalent to the fact that any
extremal set of extremal rays on X is linear independent.

Let A, B are two vertices of an oriented graph G. The distance ρ(A, B) in G is
a length (the number of links) of a shortest oriented path of the graph G with the
beginning in A and the end in B. The distance is +∞ if this path does not exist.
The diameter diam G of an oriented graph G is the maximum distance between
ordered pairs of its vertices. By the Lemma 1.1.1, the diameter of an E-set is a
finite number if this set satisfies the condition (iii).

We have the following

Theorem 1.1.2. Let X be a projective algebraic variety with Q-factorial singular-
ities and dim X ≥ 2. Let us suppose thatM(X) is closed and simple (equivalently,
Mori cone NE(X) is a finite polyhedral simplicial cone).

Assume that all extremal ray on X are divisorial (satisfies the condition (i)
above), each extremal subset of extremal rays satisfies the condition (ii), and each
E-set of extremal rays satisfies the condition (iii). Assume that there are some
constants d, C1, C2 such that the conditions (a) and (b) below hold:

(a)
diam G(L) ≤ d.

for any E-set of extremal rays on X.
(b)

♯{(R1, R2) ∈ E × E | 1 ≤ ρ(R1, R2) ≤ d} ≤ C1♯E ;

and
♯{(R1, R2) ∈ E × E | d + 1 ≤ ρ(R1, R2) ≤ 2d + 1} ≤ C2♯E .

for any extremal set E of extremal rays on X.
Then dim N1(X) = dim NE(X) ≤ (16/3)C1 + 4C2 + 6.

Proof. This is a particular case of [N8, Theorem 1.2].

1.2. General results on divisorial extremal rays for 3-folds.
In fact, the most part of results here was contained in [N8].
We restrict considering normal projective 3-folds X with Q-factorial singularities.
Let R be an extremal ray of Mori polyhedron NE(X) of X . A morphism f :

X → Y on a normal projective variety Y is called the contraction of the ray R if for
an irreducible curve C of X the image f(C) is a point iff C ∈ R. The contraction f
is defined by a linear system H on X (H gives the nef element of N1(X), which we
denote by H also). It follows that an irreducible curve C is contracted iff C ·H = 0.
We assume that the contraction f has properties: f∗OX = OY and the sequence

(1-2-1) 0→ RR→ N1(X)→ N1(Y )→ 0
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is exact where the arrow N1(X) → N1(Y ) is f∗. An extremal ray R is called
contractible if there exists its contraction f with these properties.

The number κ(R) = dim Y is called Kodaira dimension of the contractible ex-
tremal ray R.

We recall (see above) that a subset γ of NE(X) is called a face if there exists a
non-zero nef element r ∈ NE(X) such that γ = r⊥. A face γ of NE(X) is called
contractible if there exists a morphism f : X → Y on a normal projective variety
Y such that f∗γ = 0, f∗OX = OY and f contracts curves lying in γ only. The
κ(γ) = dimY is called Kodaira dimension of γ.

Let H be a general nef element orthogonal to a face γ of Mori polyhedron.
Numerical Kodaira dimension of γ is defined by the formula

κnum(γ) =





3, if H3 > 0;

2, if H3 = 0 and H2 6≡ 0;

1, if H2 ≡ 0.

It is obvious that for a contractible face γ we have κnum(γ) ≥ κ(γ). In particular,
κnum(γ) = κ(γ) for a contractible face γ of Kodaira dimension κ(γ) = 3.

We will use the following statement which (in different variants) is standard:

Proposition 1.2.1. Let X be a projective 3-fold with Q-factorial singularities,
D1, ..., Dm irreducible divisors on X and f : X → Y a surjective morphism such
that dimX = dimY and dim f(Di) < dim Di. Let y ∈ f(D1) ∩ ... ∩ f(Dm).

Then there are a1 > 0, ..., am > 0 and an open U , y ∈ U ⊂ f(D1)∪ ...∪f(Dm),
such that

C · (a1D1 + ... + amDm) < 0

if a curve C ⊂ D1 ∪ ... ∪Dm belongs to a non-trivial algebraic family of curves on
D1 ∪ ... ∪Dm and f(C) = point ∈ U .

Proof. See Proposition 2.2.6 in [N8]

By this Proposition, we have

Lemma 1.2.2. Let R be a contractible extremal ray of Kodaira dimension 3 and
f : X → Y its contraction.

Then there are three possibilities:
(I) All curves C ∈ R fill an irreducible Weil divisor D(R), the contraction f

contracts D(R) in a point and R ·D(R) < 0.
(II) All curves C ∈ R fill an irreducible Weil divisor D(R), the contraction f

contracts D(R) on an irreducible curve and R ·D(R) < 0.
(III) (small extremal ray) All curves C ∈ R give a finite set of irreducible curves

and the contraction f contracts these curves in points.

Proof. Assume that some curves of R fill an irreducible divisor D. Then R ·D < 0,
by Proposition 1.2.1. Suppose that C ∈ R and D does not contain C. It follows
that R ·D ≥ 0. We get a contradiction. It follows the Lemma.

According to the Lemma 1.2.2, we say that an extremal ray R has the type (I),
(II) or (III) (small) if it is contractible of Kodaira dimension 3 and the statements
(I), (II) or (III) respectively hold. Extremal rays of the type (I) and (II) we also
call divisorial.
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For a divisor D on X let

NE(X, D) = (image NE(D)) ⊂ NE(X).

Lemma 1.2.3. Let R be a divisorial extremal ray of the type (I).
Then NE(X, D(R)) is the ray NE(X, D(R)) = R.
Let R be a divisorial extremal ray of the type (II), and f its contraction.
Then NE(X, D(R)) is an angle NE(X, D(R)) = R +R+S with edges R and S,

where f∗R
+S = R+(f(D)).

Proof. This follows at once from the exact sequence (1-2-1).

Using Lemma 1.2.3, we get Lemmas 1.2.4 and 1.2.5 below.

Lemma 1.2.4. Let R1 and R2 are two different extremal rays of the type (II) such
that the divisors D(R1) = D(R2).

Then for D = D(R1) = D(R2) we have:

NE(X, D) = R1 + R2.

In particular, do not exist three different extremal rays of the type (II) such that
their divisors are coincided.

If for two different extremal rays R1, R2 of the type (II), D(R1) = D(R2) (thus,
we have the case of the Lemma 1.2.4 above), we say that the set {R1, R2} of
extremal rays has the type B2.

Lemma 1.2.5. The divisors D(R1) and D(R2) of two different extremal rays of
the type (I) do not intersect one another.

The divisors of an extremal ray of the type (I) and a pair of the type B2 do not
intersect one another.

The divisors of two different pairs of the type B2 do not intersect one another.

The next Lemma was proved in [N8, Theorem 2.3.3], but we give the proof since
this statement is very important.

Lemma 1.2.6. Suppose that a pair {R1, R2} has the type B2. Then

NE(X, D(R1)) = NE(X, D(R2)) = R1 + R2

is a 2-dimensional face of Mori polyhedron of the numerical Kodaira dimension 3
and such that (R1 + R2)

⊥ is a face of the NEF (X) of the codimension 2.

Proof. Since the rays R1, R2 are extremal of Kodaira dimension 3, there are nef
elements H1, H2 such that H1·R1 = H2·R2 = 0, H1

3 > 0, H2
3 > 0. Let 0 6= C1 ∈ R1

and 0 6= C2 ∈ R2. Let D be a divisor of the rays R1 and R2. Let us consider a map

(1-2-2) (H1, H2)→ H =

= (−D · C2)(H2 · C1)H1 + (−D · C1)(H1 · C2)H2 + (H2 · C1)(H1 · C2)D.

For a fixed H1, we get a linear map H2 → H of the set of nef elements H2

orthogonal to R2 into the set of nef elements H orthogonal to R1 and R2. This
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map has a one dimensional kernel, generated by (−D · C2)H1 + (H1 · C2)D. It
follows that R1 + R2 is a 2-dimensional face of NE(X).

For a general nef element H = a1H1 + a2H2 + bD orthogonal to this face,
where a1, a2, b > 0, we have H3 = (a1H1 + a2H2 + bD)3 ≥ (a1H1 + a2H2 + bD)2 ·
(a1H1 + a2H2) = (a1H1 + a2H2 + bD) · (a1H1 + a2H2 + bD) · (a1H1 + a2H2) ≥
(a1H1+a2H2)

2 ·(a1H1+a2H2+bD) ≥ (a1H1+a2H2)
3 > 0, since a1H1+a2H2+bD

and a1H1+a2H2 are nef . It follows that the face R1+R2 has the numerical Kodaira
dimension 3.

The last statement follows from construction.

By Proposition 1.2.1, we have

Lemma 1.2.7. Let E = {R1, ..., Rn} be a set of divisorial extremal rays of the type
(I) or (II) on X and the E is contained in a face of NE(X) of Kodaira dimension
3,

Then there are real a1, ..., an such that

(1-2-3) Ri · (a1D(R1) + · · ·anD(Rn)) < 0

for all Ri ∈ E .
It follows that E is linear independent if all divisors D(R1), ..., D(Rn) are differ-

ent.

Proof. We only need proving the last statement. Let us assume that we have a
linear dependence condition c1R1 + · · · csRs + cs+1Rs+1 + · · ·+ cnRn = 0. We can
suppose that c1, ..., cs are positive and cs+1, ..., cn are non-positive. By (1-2-3) and
our condition,

(c1R1 + · · ·+ csRs) · (a1D(R1) + ·+ asD(Rs)) < 0

and

(cs+1Rs+1 + · · ·+ cnRs) · (a1D(R1) + ·+ asD(Rs)) ≤ 0.

We get the contradiction.

We have the following inverse statement based on standard arguments connected
with Perron-Frobenius Theorem.

Lemma 1.2.8. We have the following inverse statement to the previous one: Let
E = {R1, ..., Rn} be a set of divisorial extremal rays of the type (I) or (II) on X and
all divisors D(R1), ..., D(Rn) are different. Assume that there are positive a1, ..., an

such that

Ri · (a1D(R1) + · · ·anD(Rn)) < 0

for all Ri ∈ E .
Then for any b1 ≥ 0, ..., bn ≥ 0 which are not all equal to 0, there exists 1 ≤ j ≤ n

such that

Rj · (b1D(R1) + · · ·+ bnD(Rn)) < 0.

For each 1 ≤ k ≤ n, there are non-negative u1k, ..., unk such that Rk · (u1kD(R1) +
· · · + unkD(Rn)) < 0 and Rj · (u1kD(R1) + · · · + unkD(Rn)) = 0 if j 6= k and
1 ≤ j ≤ n. It particular, the E is linear independent.
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Proof. We can find λ > 0 such that λai ≥ bi for all 1 ≤ i ≤ n and one of these
inequalities is equality. Suppose that λaj = bj for 1 ≤ j ≤ n. Then

Rj · (b1D(R1) + · · ·+ bnD(Rn)) = Rj · λ(a1D(R1) + · · ·+ anD(Rn))

+ Rj · ((b1 − λa1)D(R1) + · · ·+ (bn − λan)D(Rn)) < 0.

Evidently, Ri · (a1D(R1) + · · ·an−1D(Rn−1)) < 0 for 1 ≤ i ≤ n − 1. Let
us choose generators ri ∈ Ri. Since ri · D(Rn) ≥ 0 for 1 ≤ i ≤ n − 1, using
induction, we can find u1 ≥ 0, ..., un−1 ≥ 0 such that −ri ·D(Rn) = ri · (u1D(R1)+
· · ·un−1D(Rn−1)) for all 1 ≤ i ≤ n−1. Thus, u1D(R1)+· · ·un−1D(Rn−1)+D(Rn)
is orthogonal to R1, ..., Rn−1. By the statement proved above, then Rn ·(u1D(R1)+
· · ·un−1D(Rn−1) + D(Rn)) < 0.

This finished the proof.

Using Lemma 1.2.8, we get

Lemma 1.2.9. Let E = {R1, ..., Rn} be a set of divisorial extremal rays of the type
(I) or (II) on X and all divisors D(R1), ..., D(Rn) are different. Assume that there
are positive a1, ..., an such that

Ri · (a1D(R1) + · · ·+ anD(Rn)) < 0

for all Ri ∈ E . Let us additionally suppose that C · D(Ri) ≥ 0 for any curve
C ⊂ D(Ri), C /∈ Ri and all 1 ≤ i ≤ n.

Then R1 + · · · + Rn is a face of the dimension n (thus, it is a cone over n-
dimensional simplex) and of the numerical Kodaira dimension 3 of NE(X) and
such that (R1 + · · ·+ Rn)⊥ is a face of the cone NEF (X) of the codimension n.

Proof. Let H be a nef element on X . By Lemma 1.2.8, there are non-negative linear

functions b1(H), ..., bn(H) such that H ′ = H +
∑i=n

i=1 bi(H)D(Ri) is orthogonal to
R1, ..., Rn. By additional condition, H ′ is nef . The map H → H ′ gives a linear
map from the set of nef elements on X to the set of nef elements orthogonal to
R1, ..., Rn. This map has n-dimensional kernel generated by D(R1), ..., D(Rn). If
follows that the extremal rays R1, ..., Rn belong to a face of NE(X) of dimension
≤ n. By Lemma 1.2.8, R1, ..., Rn are linear independent. If follows that R1, ..., Rn

belong to a face γ of NE(X) of the dimension n. By induction, we can suppose
that any n− 1-element subset of {R1, ..., Rn} generates a face of NE(X) which is
a cone over n− 1-dimensional simplex. It follows that the γ = R1 + · · ·+Rn is a
cone over n-dimensional simplex.

Like above, one can prove that (H ′)3 ≥ H3 > 0 for an ample H. Thus, the
face R1 + · · · + Rn has Kodaira dimension 3. We get the last property by the
construction.

Using Perron-Frobenius Theorem, we get

Lemma 1.2.10. Let {R1, ..., Rn} be a set of divisorial extremal rays of the type
(I) or (II) and with different divisors D(R1), ..., D(Rn). Let us suppose that any
its proper subset satisfies conditions of Lemma 1.2.8 but the set {R1, ..., Rn} itself
does not.

Then there exist positive a1, ..., an such that

(1-2-4) Ri · (a1D(R1) + · · ·+ anD(Rn)) ≥ 0
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for all 1 ≤ i ≤ n. Additionally, we have one of cases:
(a) Ri ·(a1D(R1)+ · · ·+anD(Rn)) = 0 for all 1 ≤ i ≤ n. Then the set of positive

(a1, ..., an) with the property (1-2-4), is defined uniquely up to multiplication on
λ > 0.

(b) There exists 1 ≤ j ≤ n such that the inequality (1-2-4) is strong for this j:

Rj · (a1D(R1) + · · ·+ anD(Rn)) > 0.

Proof. Let us suppose that after changing numeration, for some 1 ≤ m < n, we
have Ri · D(Rj) = 0 for all 1 ≤ i ≤ m < j ≤ n. By our condition, we can find
a1 > 0, ..., am > 0 and am+1 > 0, ..., an > 0 such that

Ri · (a1D(R1) + · · ·+ amD(Rm)) < 0

for all 1 ≤ i ≤ m, and

Rj · (am+1D(Rm+1) + · · ·+ anD(Rn)) < 0

for all m + 1 ≤ j ≤ n. Evidently, for small ǫ > 0, we then have

Rk · ǫ(a1D(R1) + · · ·+ amD(Rm)) + (am+1D(Rm+1) + · · ·+ anD(Rn)) < 0

for all 1 ≤ k ≤ n. We get the contradiction.
Thus, the subdivision above is impossible. Then, by Perron–Frobenius Theorem,

there are positive a1, ..., an with the property (1-2-4) above.
Assume that we have the case (a). Let us suppose that there are positive b1, ..., bn

such that Ri · (b1D(R1) + · · ·+ bnD(Rn)) ≥ 0 for all 1 ≤ i ≤ n. There exists λ > 0
such that bi − λai ≥ 0 and one of these inequalities is equality. Then

Ri · (b1D(R1) + · · ·+ bnD(Rn)) =

λRi · (a1D(R1) + · · ·+ anD(Rn)) + Ri · ((b1 − λa1)D(R1) + · · ·+ (bn − λan)D(Rn)) ≥ 0.

for all 1 ≤ i ≤ n. If at least one bi − λai > 0, we then get a contradiction with
Lemma 1.2.8.

From Lemma 1.2.10, we get

Lemma 1.2.11. Let {R1, ..., Rn} be a set of divisorial extremal rays of the type
(I) or (II) and with different divisors D(R1), ..., D(Rn). Let us suppose that any
its proper subset satisfies the condition of Lemma 1.2.8 but the set {R1, ..., Rn}
itself does not. Let us additionally suppose that C · D(Ri) ≥ 0 for any curve
C ⊂ D(Ri), C /∈ Ri and all 1 ≤ i ≤ n.

Then, in notation of Lemma 1.2.10, the element H = a1D(R1) + · · ·+ anD(Rn)
is nef . The set {R1, ..., Rn} is not contained in a face of NE(X) of Kodaira
dimension 3. For the case (a) of Lemma 1.2.10, the set {R1, ..., Rn} is extremal.

Proof. By additional condition, the H is nef . The set {R1, ..., Rn} is not contained
in a face of NE(X) of Kodaira dimension 3 by Proposition 1.2.1 and Lemma 1.2.8.

If we have the case (a) of Lemma 1.2.10, then {R1, ..., Rn} is contained in the
face of NE(X) orthogonal to H. This finishes the proof.

As a particular case, we get
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Lemma 1.2.12. Assume that all finite polyhedral faces γ of NE(X) with the prop-
erty codim γ⊥ = dim γ are contractible and their numerical Kodaira dimension is
equal to Kodaira dimension (here the γ⊥ is the corresponding face of NEF (X)).
Let L = {R1, ..., Rn} be an E-set of divisorial extremal rays of the type (I) or (II).
Let us additionally suppose that C ·D(Ri) ≥ 0 for any curve C ⊂ D(Ri), C /∈ Ri

and all 1 ≤ i ≤ n.
Then there are non-negative a1, ..., an which are not all equal to zero such that

a1D(R1) + · · ·+ anD(Rn) is nef

Proof. By Proposition 1.2.1 and Lemma 1.2.9, there exists a minimal subset L′ ⊂ L
such that for L′ conditions of the Lemma 1.2.11 hold. By Lemma 1.2.11, we get
the statement.

Using Theorem 1.1.2 and Lemmas above, we get

Theorem 1.2.13. Let X be a projective 3-fold with Q-factorial singularities. Let
us suppose that Mori cone NE(X) is finite polyhedral and any its face has Kodaira
dimension 3. Assume that all extremal rays on X are divisorial of the type (I) or
(II) and X does not have a pair of extremal rays of the type B2.

Then extremal and E-sets of extremal rays on X satisfy the conditions (i), (ii)
and (iii) of Section 1.1, and any proper face of NE(X) is a cone over simplex.

Assume that there are some constants d, C1, C2 such that the conditions (a) and
(b) below hold:

(a)

diam G(L) ≤ d

for any E-set L of extremal rays on X.
(b)

♯{(R1, R2) ∈ E × E | 1 ≤ ρ(R1, R2) ≤ d} ≤ C1♯E ;

and

♯{(R1, R2) ∈ E × E | d + 1 ≤ ρ(R1, R2) ≤ 2d + 1} ≤ C2♯E .

for any extremal set E of extremal rays on X (here we use distance in the graph
G(E)).

Then we have the inequality:

dim N1(X) = dim NE(X) ≤ (16/3)C1 + 4C2 + 6.

1.3. Basic Theorem.

Definition 1.3.1. We say that an algebraic 3-fold X belongs to the class LT if
X has Q-factorial singularities; each face γ of NE(X) generated by a finite set
of divisorial extremal rays of the type (I) or (II) and with the property dim γ =
codim γ⊥ for the face γ⊥ of NEF (X), and of numerical Kodaira dimension 3
is contractible and has Kodaira dimension 3; the contraction of any sequence of
extremal rays of the type (I) or (II) starting from X gives a 3-fold with Q-factorial
singularities and with the properties above.

For a 3-fold X from the class LT we say that it has constants q(X), d(X), C1(X),
C2(X) if we have:

#E ≤ q(X)
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for any extremal set E of Kodaira dimension 3 (i.e. E is contained in a face of
NE(X) of Kodaira dimension 3) of extremal rays the type (II) such that the graph
G(E) is full (i.e. any two rays R1, R2 ∈ E are joint by both arrows R1R2 and R2R1);
the diameter

diam G(L) ≤ d(X)

for any E-set L of extremal rays of the type (I) or (II) such that any proper subset
of L is extremal of Kodaira dimension 3 and L has the property (iii) of Sect. 1.1;

♯{(R1, R2) ∈ E × E | 1 ≤ ρ(R1, R2) ≤ d(X)} ≤ C1(X)♯E ;

and

♯{(R1, R2) ∈ E × E | d(X) + 1 ≤ ρ(R1, R2) ≤ 2d(X) + 1} ≤ C2(X)♯E .

for any extremal set E of Kodaira dimension 3 of extremal rays of the type (I) or
(II) with different divisors.

We want to prove the following basic result:

Basic Theorem 1.3.2. Let X be a 3-fold from the class LT . We assume that
Mori cone NE(X) is finite polyhedral and the conditions (A) and (B) below hold:

(A) The NE(X) does not have a face of Kodaira dimension 1 or 2;

(B) The NE(X) does not have a small extremal ray (i.e. all extremal rays on
X are divisorial of the type (I) or (II)).

Then we have the following statements about X with the constants q(X), d(X),
C1(X), C2(X) above:

(1) The X does not have a pair of extremal rays of the type B2 and Mori cone
NE(X) is simplicial;

(2) The number of extremal rays of the type (I) on X is not greater than q(X);
(3) The ρ(X) = dim N1(X) ≤ (16/3)C1(X) + 4C2(X) + 6.

Proof. Let us prove (1). We need the following analog of [N8, Lemma 2.5.7].

Lemma 1.3.3. Let X be a 3-fold from the class LT and Mori cone NE(X) is
finite polyhedral.

Let E be the set of all extremal rays of a proper face [E ] of NE(X). Let

{R11, R12} ∪ ... ∪ {Rt1, Rt2}

be a set of different pairs of extremal rays of the type B2. Assume that R·D(Ri1) = 0
for all R ∈ E and all i, 1 ≤ i ≤ t.

Then there are extremal rays Q1, ..., Qr such that the following statements hold:
(a) r ≤ t;
(b) For any i, 1 ≤ i ≤ r, there exists j, 1 ≤ j ≤ t, such that Qi ·D(Rj1) > 0 (in

particular, Qi is different from extremal rays of pairs of extremal rays {Ru1, Ru2}
of the type B2);

(c) For any j, 1 ≤ j ≤ t, there exists an extremal ray Qi, 1 ≤ i ≤ r, such that

Qi ·D(Rj1) > 0;
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(d) The set E ∪ {Q1, ..., Qr} is extremal, and extremal rays {Q1, ..., Qr} are lin-
early independent.

Proof. If t = 0, we can take r = 0. Thus, we assume that t ≥ 1.
Since Rij ·D(Rij) < 0, 1 ≤ i ≤ t, 1 ≤ j ≤ 2, the set E does not contain the rays

Rij . Let H be a general nef element orthogonal to [E ]. Since t ≥ 1, there exists a >
0 such that H ′ = H +aD(R11) is nef and H ′ is orthogonal to E and one of the rays
R11, R12. Let this ray be R11. Then the set E ∪{R11} is extremal and is contained
in a (proper) face of NE(X). It follows, dim[E ] < dim[E ∪ {R11}] < dim NE(X),
and dim[E ] < dim NE(X) − 1. Let us consider a linear subspace V (E) ⊂ N1(X)
generated by all extremal rays E . By our condition, V (E) is a linear envelope of
the face [E ] of NE(X).

Let us consider the factorization map π : N1(X) → N1(X)/V (E). Since the
cone NE(X) is polyhedral, the cone π(NE(X)) is generated by images of extremal
rays T such that the set E ∪ {T} is contained in a face [E ∪ {T}] of NE(X) of
the dimension dim[E ] + 1. In particular, since dim[E ] < dim N1(X) − 1, the face
[E ∪ {T}] is proper, and the set E ∪ {T} is extremal.

There exists a curve C on X such that C · D(R11) > 0. This curve C (as any
element x ∈ NE(X)) is a linear combination of extremal rays T with non-negative
coefficients and extremal rays from E with real coefficients. We have R ·D(R11) = 0
for any extremal ray R ∈ E . Thus, there exists an extremal ray T above such that
T · D(R11) > 0. It follows that T is different from extremal rays of pairs of the
type B2. We take Q1 = T . By our construction, the set E ∪ {Q1} is extremal. If
Q1 ·D(Rj1) > 0 for any j such that 1 ≤ j ≤ t, then r = 1, and the set {Q1} gives
the set we were looking for. Otherwise, there exists a minimal j such that 2 ≤ j ≤ t
and Q1 ·D(Rj1) = 0. Then we replace E by the set E1 of all extremal rays in the
face [E ∪ {Q1}] of the dimension dim[E1] = dim[E ] + 1, and the set

{R11, R12} ∪ ... ∪ {Rt1, Rt2}

by
{Rj1, Rj2 | 1 ≤ j ≤ t, Q1 ·D(Rj1) = 0},

and repeat this procedure.

Also, we need the following Lemma:

Lemma 1.3.4. Let X be a 3-fold from the class LT and Mori cone NE(X) is
polyhedral. Assume that extremal rays on X have the type (I) or (II). Let R11, R12

be a pair of extremal rays of the type B2 on X and ρ(X) ≥ 3.
Then there exists an extremal ray R on X such that R does not belong to a

pair of extremal rays of the type B2 and the sets {R11, R} and {R12, R} generate
2-dimensional faces of NE(X).

Proof. Let R21, R22 be another pair of extremal rays of the type B2. By Lemmas
1.2.5 and 1.2.6, the extremal rays R11, R12 generate a 2-dimensional face of NE(X)
and divisors D(R11) and D(R21) are disjoint (have empty intersection). Applying
Lemma 1.3.3 to E = {R11, R12} and the set {{R21, R22}} of pairs of the type B2,
we find an extremal ray Q such that Q ·D(R21) > 0. It follows that D(Q)∩D(R21)
is a non-empty curve C. By Lemma 1.2.5, the Q has the type (II). By Lemma 1.2.6,
NE(X, D(R21)) = R21 + R22 is a 2-dimensional face of NE(X). By Lemma 1.2.3,
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then the 2-dimensional angle NE(X, D(Q)) = Q +R+C. Since NE(X, D(R11)) =
R11 +R12 is another 2-dimensional face of NE(X) which does not have a common
ray with R21 +R22, the angle NE(X, D(Q)) does not have a common ray with the
angle NE(X, D(R11). Thus, D(Q)∩D(R11) = ∅. By Lemma 1.2.5, the Q does not
belong to a pair of the type B2.

Let H be a general nef element orthogonal to the 2-dimensional face R11 +R12.
Then there exists α > 0 such that the nef element H ′ = H + αD(Q) is orthogonal
to the set of extremal rays R11, R12, Q. If an extremal ray R is different from these
three extremal rays, evidently, H ′ ·R > 0 since all extremal rays on X are divisorial
and Q does not belong to a pair of the type B2. It follows that R21 + R22 + Q is a
simplicial 3-dimensional face of NE(X). It follows that Q is the extremal ray we
are looking for.

Thus, we can suppose that the pair R11, R12 is the only pair of extremal rays of
the type B2 on X .

If there exists an extremal ray Q such that D(Q)∩D(R11) = ∅, like above, Q is
the required extremal ray. Thus, we can suppose that any extremal ray Q which
is different from R11, R12, has the property D(Q) ∩ D(R11) 6= ∅. In particular,
D(R11) ∩D(Q) is a non-empty curve.

Since NE(X) is polyhedral, there exists an extremal ray Q1 /∈ {R11, R12} such
that R11 + Q1 is a 2-dimensional face of NE(X). If Q1 + R12 is a 2-dimensional
face of NE(X), the Q1 is the desired extremal ray. Thus, we can suppose that
Q1 +R12 is not a 2-dimensional face of NE(X). Similarly, we can find an extremal
ray Q2 /∈ {R11, R12} such that R12 + Q2 is a 2-dimensional face of NE(X) but
R11 + Q2 is not. Then Q1 6= Q2. We recall that besides, we suppose that C1 =
D(R11) ∩D(Q1) and C2 = D(R11) ∩D(Q2) are non-empty curves.

We will normalize the generator C ∈ T of a divisorial extremal ray T by the
condition C ·D(T ) = −2.

Let rij be the generator of Rij and qi of Qi. Let t = q1 · D(R11) and t1 =
r11 ·D(Q1) and t2 = r12 ·D(Q1).

Since R11 + Q1 is a 2-dimensional face of NE(X) and all faces of NE(X) have
Kodaira dimension 3, by Proposition 1.2.1, there are positive a1, a2 such that r11 ·
(a1D(R11) + a2D(Q1)) = −2a1 + t1a2 < 0 and q1 · (a1D(R11) + a2D(Q1)) =
ta1 − 2a2 < 0. Thus, tt1 < 4. We claim that t1 < t2. Let us assume that t2 ≤ t1.
By inequality above, tt2 < 4. Let H be a general nef element orthogonal to R12.
Then

H ′ = H + ((H · q1)/(2− (tt2)/2))((t2/2)D(R11) + D(Q1))

is a nef element which is orthogonal to extremal rays R12, Q1 only. We very use
here the inequality t2 ≤ t1 to check that R11 · H

′ > 0. Thus, R12 + Q1 is a 2-
dimensional face of NE(X). We get a contradiction. Thus, we have proved the
claim: t1 < t2.

Let us consider the curve C1 = D(R11) ∩ D(Q1). Then C1 = u1r11 + u2r12.
Let r11 · r12 = m (equivalently, the m is the degree of the maps f11 | r12 : r12 →
f11(D(R11)) and f12 | r11 : r11 → f12(D(R12)) where f11 and f12 are the contrac-
tions of R11 and R12 respectively). Then

(t2 : t1) = (r12 ·D(Q1) : r11 ·D(Q1)) = (r12 · C1 : r11 · C1) = (u1m : u2m).

Thus,

(1-2-5) C1 = u1r11 + u2r12, (u1 : u2) = (t2 : t1), t2 > t1.
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Similarly, for Q2 we introduce s1 = r11 ·D(Q2), s2 = r12 ·D(Q2) where s2 < s1.
And we have for C2 = D(R11) ∩D(Q2):

(1-2-6) C2 = v1r11 + v2r12, (v1 : v2) = (s2 : s1), s2 < s1.

By (1-2-5) and (1-2-6), C1 · D(Q2) = u1s1 + u2s≥u1s1 > 0, Thus, divisors
D(Q1) and D(Q2) have a common curve. It follows that 2-dimensional angles
NE(X, D(Q1)) = R+C1 + Q1 and NE(X, D(Q2)) = R+C2 + Q2 should have a
common ray. By (1-2-5) and (1-2-6), we then get that rays R11, R12, Q1, Q2 generate
a 3-dimensional space V , and are extremal rays of the 3-dimensional polyhedral
convex cone NE(X)∩ V with 2-dimensional faces R11 + R12, R11 + Q1, R12 + Q2.
Besides, angles R+C1 + Q1 and R+C2 + Q2 have a common ray. One should draw
the picture to see a contradiction with (1-2-5) and (1-2-6). This finishes the proof
of Lemma.

Now we can prove the statement (1). Thus, suppose that X satisfies the con-
ditions of Theorem and has a pair {R11, R12} of the type B2. By Lemma 1.3.4,
we can find an extremal ray Q which does not belong to a pair of extremal rays
of the type B2 and Q + R11, Q + R12 are 2-dimensional faces of NE(X). Let
us contract the extremal ray Q. By our conditions, we get a 3-fold X ′ from the
class LT , without small extremal rays, with polyhedral NE(X ′), and the image of
the pair R11, R12 of the type B2 will be a pair of the type B2 again. Thus, using
the Lemma 1.3.4 ρ(X) − 2 times, we get a 3-fold Y which satisfies the condition
of the Theorem, has ρ(Y ) = 2, and has a pair of extremal rays {R11, R12} of the
type B2. Then evidently NE(Y ) = R11 + R12. We have R11 · D(R11) < 0 and
R12 ·D(R12) < 0. Thus, any curve of Y has negative intersection with the effective
divisor D(R11) = D(R12). We get the contradiction.

This proves the statement (1).

Now let us prove (2): X does not have more than q(X) extremal rays of the type
(I).

By Proposition 1.2.1 and Lemma 1.2.5, divisors of different extremal rays of the
type (I) do not have a common point and their number is finite. By Lemma 1.2.9,
the set of extremal rays of the type (I) generates a simplicial face of NE(X) of
Kodaira dimension 3. Let

{R1, ..., Rs}

be the hole set of extremal rays of the type (I) on X . We should prove that
s ≤ q(X).

We say that two divisorial extremal rays are joint (more formally: divisorially
joint) if their divisors have a common point. It defines connected components of a
set of divisorial extremal rays.

Let E be a maximal extremal set of extremal rays on X containing the set
{R1, ..., Rs} and such that each connected component of E contains at least one
of extremal rays R1, ..., Rs. Let T be a connected component of the E . Assume
that T has two different extremal rays Ri, Rj from R1, ..., Rs. After contracting
all extremal rays of T different from Ri, Rj, we get a 3-fold Y from the class LT ,
and images of extremal rays Ri, Rj give different extremal rays of the type (I) on
Y such that their divisors are not disjoint. We get the contradiction with Lemma
1.2.5.
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Thus, E has exactly s connected components T1, ..., Ts such that Ti contains the
extremal ray Ri. Evidently, the maximal E does exist.

By Proposition 1.2.1, for 1 ≤ i ≤ s, there exists an effective divisor D(Ti) which
is a linear combination of divisors of rays from Ti with positive coefficients and
R ·D(Ti) < 0 for any R ∈ Ti. Evidently, the contraction of Ti contracts all Ti to a
point. Thus, any curve of divisors of Ti belongs to the sum of extremal rays of Ti

with positive coefficients. Thus, for this curve C we also have C ·D(Ti) < 0. Using
the divisors D(Ti), similarly to Lemma 1.3.4, we can find extremal rays

{Q1, ..., Qr}

with properties:
(a) r ≤ s;
(b) For any i, 1 ≤ i ≤ r, there exists j, 1 ≤ j ≤ t, such that Qi ·D(Tj) > 0 (in

particular, Qi is different from extremal rays of E and does not have the type (I));
(c) For any j, 1 ≤ j ≤ s, there exists an extremal ray Qi, 1 ≤ i ≤ r, such that

Qi ·D(Tj) > 0;

(d) The set {Q1, ..., Qr} of extremal rays is extremal.
By our conditions, all extremal rays on X are divisorial. Thus, by (b), the

extremal rays Q1, ..., Qr have the type (II).
Let us take the ray Qi, and let Qi · D(Tj) > 0. By Lemma 1.2.9, the set Tj

generates a simplicial face γj of NE(X). We have mentioned above that each

curve of divisors of rays from Tj belongs to this face. It follows that NE(X, D(Qi))
is a 2-dimensional angle bounded by the ray Qi and a ray from the face γj since the
divisor D(Qi) evidently has a common curve with one of divisors D(R), R ∈ Tj .
Since any two sets from T1, ..., Ts do not have a common extremal ray, the faces
γ1, ..., γs do not have a common ray (not necessarily extremal). It follows that the
angle NE(X, D(Qi)) does not have a common ray with the face γk for k 6= j. Thus,
the divisor D(Qi) does not have a common point with divisors of rays Tk. It follows
that r = s and we can choose numeration Q1, ..., Qs such that Qi ·D(Ti) > 0 but
D(Qi) do not have a common point with divisors of extremal rays Tj if j 6= i.

Let us fix i, 1 ≤ i ≤ s. By our construction, the set E ∪ {Qi} has connected
components

T1, ..., Ti−1, Ti ∪ {Qi}, Ti+1, ..., Ts.

By definition of E , then the E ∪ {Qi} is not extremal. Thus, it contains an E-set
(minimal non-extremal) Li which contains Qi. By Lemmas 1.2.12 and 1.1.1, the Li

is connected. Thus, {Qi} ⊂ Li ⊂ Ti ∪ {Qi}. Let us consider the sets L1, ...,Ls. By
Lemma 1.1.1, the Li,Lj are joint by arrows in both directions. By our construction,
it follows that Qi, Qj are joint by arrows QiQj and QjQi for any 1 ≤ i < j ≤ s.
Thus, s ≤ q(X) because the set {Q1, ..., Qs} is extremal.

This finishes the proof of the statement (2).
From the (1) and Theorem 1.2.13, the statement (3) follows. This finishes the

proof of Basic Theorem 1.3.2.

In fact, Basic Theorem 1.3.2 is the generalization of similar theorem about Fano
3-folds with terminal Q-factorial singularities proved in [N8]. We will apply Basic
Theorem 1.3.2 to Calabi-Yau 3-fold in Section 3.
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To apply Theorem 1.3.2, one should work with extremal and E-sets of extremal
rays of the type (I) or (II). For Fano 3-folds this is done in [N8]. The next Section
2 is, in fact, devoted to generalization of this part of [N8] for 3-folds from the class
LT (see Theorem 2.2.6). Roughly speaking, we should reduce the problem to sets
of divisorial extremal rays which have non-single arrows only. The last case is very
similar to surfaces.

2. Sets of divisorial extremal rays

2.1. Special divisorial extremal rays.

Here we continue geometrical study started in Section 1.2 of configurations of
divisorial extremal rays of the types (I) or (II) for 3-folds.

Let T be a set of divisorial extremal rays of the types (I) or (II). We recall (see
Section 1.1) that we correspond to T a graph G(T ) as follows: we draw an arrow
R1R2 from R1 to R2 if R1 ·D(R2) > 0. We draw an extremal ray of the type (I)
(respectively (II)) as a black (respectively white) vertex. A pair of the type B2 we
draw as a pair of white vertices connected by a dotted line. For this pair {R1, R2}
we have D(R1) = D(R2) and R1 ·D(R1) < 0, R2 ·D(R1) < 0. Thus, two divisorial
extremal rays R1, R2 give one of pictures of Figure 1. One should consider a single
arrow R1R2 (thus, R1 ·D(R2) > 0, but R2 ·D(R1) = 0) as a ”weak orthogonality”
of extremal rays. They are completely orthogonal (are not joint by arrows) if their
divisors do not have a common point: this follows from Lemma 1.2.2.

R1 R2

©
R1

©
R2

R1

R2 ©
R1

−−−−→ ©
R2

R1 R2

©
R1

−−−→←−−− ©
R2

R1

R2 ©
R1

– – – – ©
R2

R1 R2

•
R1

©
R2
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R1 R2

•
R1

−−−→←−−− ©
R2

R1 R2

•
R1

•
R2

Figure 1.

Definition 2.1.1. We say that extremal rays Q1, Q2, ..., Qm, m ≥ 2, define the
configuration Cm if all these extremal rays have the type (II), extremal rays Q2, ..., Qm

are divisorially disjoint (intersection of any two divisors D(Q2), D(Q3), ..., D(Qm)
is empty) and QiQ1 is a single arrow (thus, Qi ·D(Q1) > 0, Q1 ·D(Qi) = 0) for
all i = 2, ..., m.

The following Lemma was proved in [N8]. Since it is important, we give the
proof.

Lemma 2.1.2. Assume that divisorial extremal rays Q1, Q2, ..., Qm define the
cofiguration of the type Cm, m ≥ 2. Then Qi does not belong to a pair of the
type B2 and NE(X, D(Qi)) = Q1 + Qi is the 2-dimensional face of the numerical
Kodaira dimension 3 of Mori polyhedron for any 2 ≤ i ≤ m.

Besides, Q1 + Q2 + · · · + Qm is m-dimensional face of NE(X) of numerical
Kodaira dimension 3 and such that the face (Q1 + Q2 + · · · + Qm)⊥ of NEF (X)
has codimension m.

Proof. Let 2 ≤ i ≤ m. Evidently, the curve D(Qi) ∩ D(Q1) belongs to Q1. By
Lemma 1.2.3, it follows that NE(X, D(Qi)) = Q1 + Qi. If Qi belongs to a pair of
the type B2, the angle Q1 + Qi contains another extremal ray (different from Q1

and Qi), which is impossible.
Let H be a nef element orthogonal to the ray Q1. Let 0 6= Ci ∈ Qi. Let us

consider a map

(2-1-1) H → H ′ = H +

m∑

i=2

(−(H ·Ci)/(Ci ·D(Qi)))D(Qi).

It is a linear map of the set of nef elements H orthogonal to Q1 into the set of
nef elements H ′ orthogonal to the rays Q1, Q2, ..., Qm. Here the element H ′ is
nef because C ∈ Q1 + Qi for any curve C ⊂ D(Qi) if 2 ≤ i ≤ m. The kernel of
the map (2-1-1) has the dimension m − 1. It follows that the rays Q1, Q2, ..., Qm

belong to a face of NE(X) of a dimension ≤ m. On the other hand, multiplying
rays Q1, ..., Qm on the divisors D(Q1), ..., D(Qm), one can see very easily that the
rays Q1, ..., Qm are linearly independent. Thus, they generate a m-dimensional face
of NE(X). Let us show that this face is Q1 + Q2 + ... + Qm. To prove this, we
show that every m− 1 subset of E is contained in a face of NE(X) of a dimension
≤ m− 1.
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If this subset contains the ray Q1, this subset has the type Cm−1. By induction,
we can suppose that this subset belongs to a face of NE(X) of the dimension m−1.
Let us consider the subset {Q2, Q3, ..., Qm}. Let H be an ample element of X . For
the element H, the map (2-1-1) gives an element H ′ which is orthogonal to the rays
Q2, ..., Qm, but is not orthogonal to the ray Q1. It follows that the set {Q2, ..., Qm}
belongs to a face of the Mori polyhedron of the dimension < m. Like above (see
the proof of Lemma 1.2.6), one can see that for a general H orthogonal to Q1 the
element H ′ has (H ′)3 ≥ H3 > 0.

The last property follows from the construction.

We use the next statement quite often:

Lemma 2.1.3. Let X be a 3-fold from the class LT (see Definition 1.3.1). Let R
be a divisorial extremal ray of the type (II), and D1, D2 are two different irreducible
Weil divisors different from D(R).

Then the curve D1 ∩D2 does not belong to R.

Proof. Let f : X → X ′ be the contraction of the ray R. If D1 ∩ D2 belongs to
R, then intersection of Weil divisors f(D1) and f(D2) is zero-dimensional. It is
impossible if X ′ is Q-factorial.

We denote by PC the projectivization of a cone C with the beginning at zero.
Let R be an extremal ray of the type (II). By Lemma 1.2.3, the projectivization
PNE(X, D(R)) is an interval with one of its endpoints PR.

Considering lines generated by these intervals we use the following well-known
and elementary

Proposition 2.1.4. Let S be a set of lines such that any two lines of S have a
common point.

Then there are two cases:
(a) There exists a 2-dimensional plane Π such that each line of S belongs to Π.
(b) There exists a point P which belongs to each line of S.
The Π and P are unique if S has at least two different lines.

Applying this statement, we get

Lemma 2.1.5. Let S be a set of divisorial extremal rays of the type (I) or (II)
such that divisors D(Ri), D(Rj) have a common point for any two extremal rays
from S (equivalently, Ri and Rj are connected by non-single, single arrow or dotted
line). Let us suppose that S contains at least 3 elements. Then S has one of the
following types:

(a) dim[S] = 3;
(b) Angles NE(X, D(Ri)), Ri ∈ S, have a common ray (not necessarily ex-

tremal) Q.

Let P be a set of divisorial extremal rays. We say that P is divisorially connected
if there does not exist a decomposition P = P1 ∪ P2 such that both P1 and P2 are
non-empty and for any R ∈ P1 and any Q ∈ P2 divisors D(R) and D(Q) do
not have a common point. It defines divisorially connected components of a set of
extremal rays. Also, we can say what does it mean that two sets P1 and P2 of
divisorial extremal rays are divisorially joint: this means that there exist extremal
rays Q1 ∈ P1 and Q2 ∈ P2 such that divisors D(Q1) and D(Q2) have a common
point (in particular, this divisors or even extremal rays Q1, Q2 may coincide).
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Definition 2.1.6. A divisorial extremal ray R is called special if R satisfies one of
conditions:

(1) R has the type (I);
(2) R belongs to a pair of extremal rays of the type B2;
(3) There exists an extremal ray Q such that exactly one pair RQ or QR is an

arrow: thus, either R ·D(Q) > 0 and Q ·D(R) = 0 or Q ·D(R) > 0 and R ·D(Q) = 0
(equivalently, the set {R, Q} has the type C2).

We have the following description of the special set:

Theorem 2.1.7. Assume that a 3-fold X belongs to the class LT .
Then the set of special divisorial extremal rays is finite. Its divisorially connected

component is one of the following :
A1: One extremal ray Q of the type (I).
B2: Two different extremal rays Q11, Q12 of the type (II) with the same divisor

D(Q11) = D(Q12). Then Q11+Q12 is the 2-dimensional face of NE(X) of Kodaira
dimension 3.

Cn, n ≥ 2: n extremal rays Q1, ..., Qn of the type (II), such that divisors
D(Q2), ..., D(Qn) do not have a common point, and Qi and Q1 are joint by the
single arrow QiQ1 . For this case, Q1 + · · · + Qn is the n-dimensional face of
NE(X) of Kodaira dimension 3.

B2Cn, n ≥ 1: n + 1 extremal rays {Q11, Q2, ..., Qn, Q12} of the type (II), such
that Q1 = Q12, ..., Qn define the configuration Cn (in notation above), and Q11, Q12

is the pair of the type B2. The extremal rays Qi, Q12 are connected by non-single
arrows for i ≥ 2. For this case, Q11 + · · ·+ Qn is the face of NE(X) of dimension
n and Kodaira dimension 3, and Q11 + Q12 is the 2-dimensional face of NE(X) of
Kodaira dimension 3.

T3 (triangle): Three extremal rays Q1, Q2, Q3 of the type (II) connected by sin-
gle arrows Q1Q2, Q2Q3 and non-single arrows Q1Q3 and Q3Q1. For this case,
NE(X, D(Q1)) = Q1 + Q2 and NE(X, D(Q2)) = Q2 + Q3 are 2-dimensional
faces of NE(X) of Kodaira dimension 3. And NE(X, D(Q3)) = T + Q3 where
T ⊂ NE(X, D(Q1)) = Q1 + Q2.

T′
3 (special triangle): Three extremal rays Q1, Q2, Q3 of the type (II) connected

by single arrows Q1Q2, Q2Q3 and Q3Q1. For this case, NE(X, D(Q1)) = Q1+Q2,
NE(X, D(Q2)) = Q2 + Q3 and NE(X, D(Q3)) = Q3 + Q1 are 2-dimensional faces
of NE(X) of Kodaira dimension 3.

Proof. Assume that extremal rays Q1, Q2 of the type (II) are joint by the single
arrow Q1Q2, and extremal rays R1, R2 of the type (II) are joint by the single arrow
R1R2. Let us suppose that the sets {Q1, Q2} and {R1, R2} are divisorially joint.
We consider possible cases below.

Suppose that Q1, R1 are divisorially disjoint.
If Q2 = R2, we get the configuration C3. We prove that the only case is possible.
Assume that Q2 6= R2. Since the curve D(R1) ∩D(R2) belongs to R2, we have

R2 ·D(Q1) = 0 (because D(R1) ∩D(Q1) = ∅). Similarly, Q2 ·D(R1) = 0.
Let us suppose that D(Q2) = D(R2) = D. Then any curve of the divisor D

belongs to R2 + Q2 by Lemma 1.2.4. Since Q2 ·D(R1) = R2 ·D(R1) = 0, divisors
D(R2) and D(R1) do not have a common curve. We get a contradiction, because,
R1R2 is an arrow.

Thus, we can suppose that D(Q2) 6= D(R2).
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Let us suppose that R1Q2 is an arrow. We have proved that Q2R1 is not an ar-
row. It follows that the divisor D(R1) contains curves of 3 extremal rays: R1, R2, Q2

which is impossible. Thus, R1Q2 and Q2R1 are not arrows. It follows that divisors
D(R1) and D(Q2) are disjoint. Similarly, the divisors D(R2) and D(Q1) are dis-
joint. Since the curve D(R1) ∩D(R2) belongs to R2, we get that R2 ·D(Q2) = 0.
Similarly, Q2 ·D(R2) = 0. It follows that divisors D(R2) and D(Q2) are divisorially
disjoint. It follows that sets {R1, R2} and {Q1, Q2} are divisorially disjoint. We
get a contradiction.

Thus, we proved that if the rays Q1 and R1 are divisorially disjoint, then Q2 =
R2, and we have the configuration C3.

Now, assume that Q1 and R1 are divisorially joint. Then, D(Q1) ∩ D(R1) is
non-empty.

If D(Q1) = D(R1), evidently, sets {Q1, Q2} and {R1, R2} are equal because the
divisor D(Q1) = D(R1) cannot contain 3 extremal rays by Lemma 1.2.3.

Thus, we assume that D(Q1) ∩D(R1) is a non-empty curve. By Lemma 2.1.2,
NE(X, D(Q1)) = Q1 + Q2 and NE(X, D(R1)) = R1 + R2 are 2-dimensional faces
of NE(X). It follows that faces Q1 + Q2 and R1 + R2 have a common extremal
ray.

Thus, sets {Q1, Q2} and {R1, R2} have a common extremal ray.

Assume that Q2 = R1 (the case Q1 = R2 is similar). We denote Q3 = R2. Thus,
we have 3 extremal rays Q1, Q2, Q3 where Q1, Q2 are joint by a single arrow Q1Q2

and Q2, Q3 are joint by a single arrow Q2Q3. The curve D(Q1) ∩D(Q2) belongs
to the ray Q2 and Q2 ·D(Q3) > 0. it follows that divisors D(Q1) and D(Q3) have
a non-empty common curve. The extremal rays Q1 and Q3 cannot be joint by a
single arrow Q1Q3 since then D(Q1) contains curves of 3 different extremal rays
Q1, Q2, Q3. Thus, the extremal rays Q1, Q3 are joint either by non-single arrows
Q1Q3 and Q3Q1 or by the single arrow Q3Q1. Thus, we get cases T3 and T′

3.

Now suppose that Q2 = R2. We denote R1 = Q3. Thus, we have 3 extremal
rays Q1, Q2, Q3 such that Q1, Q2 are joint by a single arrow Q1Q2, and Q3, Q2 are
joint by a single arrow Q3Q2. If Q1 and Q3 are divisorially disjoint, we get the case
C3.

Suppose that D(Q1)∩D(Q3) is a non-empty curve. By Lemma 2.1.2, NE(X, D(Q1)) =
Q1 + Q2 and NE(X, D(Q3)) = Q3 + Q2 are 2-dimensional faces of NE(X). The
set of common points of this faces is the extremal ray Q2. It follows that the curve
D(Q1) ∩D(Q3) belongs to the ray Q2. By Lemma 2.1.3, this is impossible.

Thus, we had proved that divisors D(Q1) and D(Q3) do not have a common
point.

As a result, we have proved that any configuration of two single arrows which
are divisorially joint satisfies the statement of Theorem. Thus this is either C3 or
T3 or T′

3.

Suppose that there exists a single arrow R1R2 which is divisorially joint with a
configuration T3 or T′

3 of extremal rays and different from arrows of this configura-
tions. By the result above, the set {R1, R2} has a common extremal ray with both
sets {Q1, Q2} and {Q2, Q3}. Thus, either Q2 = R1 or Q2 = R2. If Q2 = R1, the di-
visor D(R1) contains 3 extremal rays: R1, R2, Q3 which is impossible. If Q2 = R2,
then R1, R2, Q3 give a configuration T3 or T′

3. Then the angle NE(X, D(Q3)) has
a side which simultaneously is a ray of the Q1 + Q2 and R1 + Q2. Thus, this side
is Q2. Then D(Q2) = D(Q3) which is impossible.
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From above, it follows that a divisorially connected component S of a finite non-
empty configuration of single arrows of extremal rays of the type (II) has the type
either Cn, n ≥ 2 or T3 of T′

3. Using Lemma 2.1.2, one can easily see that if an
extremal ray Q of this connected component S belongs to a pair Q, R of the type
B2, then S has the type Cn, n ≥ 2 and Q = Q1 in notation of Theorem. Thus,
S ∪ {R} gives rise a configuration of the type B2Cn.

Now suppose that we have two sets {Q1, Q2} and {R11, R12} of extremal rays
such that Q1Q2 is a single arrow and R11R12 is a dotted line, and this two sets are
divisorially joint. If these two sets have a common extremal ray, then they give a
configuration B2C2 since above considerations.

Thus, let us assume that these two sets do not have a common extremal ray. By
Lemmas 2.1.2 and 1.2.6, NE(X, D(Q1)) = Q1 + Q2 and NE(X, D(R11)) = R11 +
R12 are 2-dimensional faces of NE(X). It follows that if divisors D(Q1), D(R11)
have a common point, then sets {Q1, Q2} and {R11, R12} have a common extremal
ray. But we assume that this is not the case. Thus, we can suppose that divisors
D(Q1) and D(R11) do not have a common point. The curve D(Q1)∩D(Q2) belongs
to the ray Q2. Since D(Q1) ∩D(R11) = ∅, then Q2 ·D(R11) = 0. Thus, R11Q2 is
a single arrow. This is impossible by Lemma 2.1.2. Thus, we get a contradiction.

Thus, we proved that a finite configuration of single arrows and dotted lines has
divisorially connected components of the type B2, Cn, B2Cn, T3, T

′
3 of Theorem.

Now let R be an extremal ray of the type (I). Let Q1Q2 be a single arrow.
If D(Q1) ∩ D(R) is non-empty, then D(Q1) contains 3 extremal rays Q1, Q2 and
R which is impossible. The curve D(Q1) ∩ D(Q2) belongs to Q2. From above,
Q2 · D(R) = 0. Thus, RQ2 is a single arrow which is impossible for an extremal
ray R of the type (I). Thus, {R} and {Q1, Q2} are divisorially disjoint.

By Lemma 1.2.5 and considerations above, we proved that any finite set of special
extremal rays has connected components of the Theorem. Let us suppose that this
set S has n extremal rays. We claim that then n ≤ 2ρ(X) where ρ(X) = dimN1(X).
From the description of connected components of S, for any connected component
Si of S with mi elements there exists at least max{1, mi−1} ≥ mi/2 extremal rays
with disjoint divisors. Since any extremal ray R ∈ S has R ·D(R) < 0, it follows
the inequality above.

All other statements of Theorem follow from Lemmas 1.2.6 and 2.1.2.

This finishes the proof of Theorem.

Now let us consider a divisorial extremal ray S which is not a special one but the
divisor D(S) has a common point with the divisor of one of special divisorial ex-
tremal rays. Thus, S is joint by non-single arrows with a special divisorial extremal
ray. These extremal rays also look very specially. We describe them below.

Theorem 2.1.8. Let X be a 3-fold from the class LT . Let S be a non-special
divisorial extremal ray of X. Let ZS be the set of special divisorial extremal rays
which are divisorially joint with S (by definition, S has the type (II) and is joint
by non-single arrows with all extremal rays from ZS). Assume that ZS 6= ∅.

Then ZS is contained in one of divisorially connected components C = CS of
the set of special extremal rays, and depending to their types of Theorem 2.1.7, we
have the following description for ZS ⊂ CS :

(A1(S)) CS has the type A1, ZS = Q;

(C
(1)
n (S)) CS has the type Cn, ZS = {Qi}, for one of i > 1;
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(C
(2)
2 (S)) CS has the type C2, ZS = {Q1, Q2};

(B2Cn(S)) CS has the type B2Cn, n > 1, ZS = {Qi} for one of i > 1;
(B2(S)) CS has the type B2, ZS = {Q11, Q12}.
We remark that it follows that CS cannot have the type T3 and T′

3.

Proof. We consider one case only. Similarly, one can consider all other cases.
Let us assume that S is divisorially joint with a divisorially connected component

of the type Cn, n ≥ 2, of the set of special extremal rays. Thus, D(S) has a common
curve with one of divisors D(Qi), i = 1, ..., n (we use notation of Theorem 2.1.7).

Let us suppose that D(S) has a common curve with the divisor D(Q1). Then S
and Q1 are joint by non-single arrows. Thus, Q1 ·D(S) > 0. Since D(Qi)∩D(Q1)
belongs to Q1, we get that D(S) has a common curve with all divisors D(Qi),
i = 2, ..., n, too. By Lemma 2.1.2, NE(X, D(Qi)) = Q1 + Qi is a 2-dimensional
face of NE(X). We then get that the 2-dimensional angle NE(X, D(S)) has the
second side (different from S) which belongs to the face Q1 + Qi, i = 2, ..., n. If
n > 2, we then get that the second side of NE(X, D(S)) is generated by the curve
D(S) ∩ D(Qi) which belongs to Q1. This is impossible by Lemma 2.1.3. Thus,

n = 2, and we get the case C
(2)
2 (S).

Now, assume that S is not divisorially joint with Q1, thus D(S) ∩ D(Q1) = ∅.
Then D(S)∩D(Qi) is not empty for one of i > 1. Then, like above, NE(X, D(S))
is a 2-dimensional angle with the second side generated by the curve D(S)∩D(Qi)
which belongs to the 2-dimensional face NE(X, D(Qi)) = Qi +Q1 of NE(X). This
curve cannot belong to Q1 since D(S) ∩D(Q1) = ∅. Thus, the second side of the
angle NE(X, D(S)) is the ray of the Qi + Q1 different from Q1. It follows that
the extremal ray Qi, i = 2, ..., n, such that D(S) ∩D(Qi) 6= ∅ is unique. Thus, we

get the case C
(1)
n (S) if we additionally prove that S is divisorially disjoint with all

special extremal rays different from Q1, ..., Qn.
By Theorem 2.1.7, any special extremal ray Q of the type (II) together with

another special extremal ray Q′ of the same component of the set of special extremal
rays generate a 2-dimensional face Q+Q′ of NE(X), and this 2-dimensional face is
either NE(X, D(Q)) or NE(X, D(Q′)) (for the extremal ray Q of the type (I), one
should use that NE(X, D(Q)) = Q). Using this property, like above, one can see
that D(S)∩D(Q) is empty for any special extremal ray Q different from extremal
rays Q1, ..., Qn above. One can similarly consider cases when S is divisorially joint
with other types of connected components of the set of special extremal rays.

Now, we have the following description for cases when S 6= S′ but ZS ∩ZS′ 6= ∅.
These cases are very rare.

Theorem 2.1.9. Let X be a 3-fold from the class LT . Let S, S′ are non-special
divisorial extremal rays such that ZS ∩ ZS′ 6= ∅.

Then S = S′ except cases below (in notation of Theorems 2.1.7 and 2.1.8):
(1) Case CS = CS′ = C2, ZS = ZS′ = {Q1, Q2}, S, S′ are joint by non-single

arrows, dim [Q1, Q2, S, S′] = 3.
(2) Case CS = CS′ = C2, ZS = {Q1, Q2}, ZS′ = {Q2}, S, S′ are joint by

non-single arrows, dim [Q1, Q2, S, S′] = 3.
(3) Case CS = CS′ = B2, ZS = ZS′ = {Q11, Q12}, S, S′ are joint by non-single

arrows, dim [Q11, Q12, S, S′] = 3
(4) Case CS = CS′ = B2, ZS = ZS′ = {Q11, Q12}, S, S′ are joint by non-single

arrows, there exists a ray T ⊂ Q11 + Q12 such that NE(X, D(S)) = T + S and
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NE(X, D(S′)) = T + S′.

Proof. Let S′ 6= S but ZS′ ∩ZS 6= ∅. Using Theorem 2.1.8, we consider all possible
cases (we use notation of Theorems 2.1.8 and 2.1.7).

The case (A1(S)), ZS = ZS′ = {Q}. First, remark that D(S) ∩D(S′) 6= ∅ since
D(S), D(S′) both have non-empty intersection with D(Q) and Q · D(S) > 0 and
Q · D(S′) > 0. Besides, NE(X, D(S)) = S + Q and NE(X, D(S′)) = S′ + Q are
2-dimensional angles with the common edge Q. If the curve D(S) ∩ D(S′) has a
component which does not belong to Q, then one of this angles is contained in
another one which is impossible since S and S′ are different extremal rays. Thus,
the curve D(S)∩D(S′) belongs to the extremal ray Q. This is impossible by Lemma
2.1.3.

The case (C
(1)
n (S)), CS has the type Cn, ZS = ZS′ = {Qi}, for one of i > 1.

Let C = D(S) ∩ D(Qi). We have C · D(Q1) = 0 because D(S) ∩ D(Q1) = ∅.
Besides, C ∈ Qi + Q1 and Qi · D(Q1) > 0, Q1 · D(Q1) < 0. Thus, the ray
R+C ⊂ Qi + Q1 is defined uniquely by the property R+C ·D(Q1) = 0.

Now assume that S 6= S′ and ZS′ = ZS = {Qi}. Like above, D(S′)∩D(Qi) = C′

and R+C′ = R+C. By Lemma 2.1.2, NE(X, D(Qi)) = Qi +Q1 is a 2-dimensional
face of NE(X). It follows that NE(X, D(S)) = R+C + S and NE(X, D(S′)) =
R+C + S′. If the curve D(S) ∩ D(S′) has a component which does not belong
to D(Qi), we then get that one of angles NE(X, D(S)), NE(X, D(S′)) contains
another, which is impossible since S, S′ are different extremal rays of NE(X). Let
us consider the contraction f : X → X ′ of the extremal ray Qi. Then the curve
C = f(D(S))∩f(D(S′)) belongs to the extremal ray f(Q1) of X ′. This is impossible
by Lemma 2.1.3.

The case (C
(2)
2 (S)), CS has the type C2, ZS = {Q1, Q2}. For this case, D(S) ∩

D(Q1) contains a component which does not belong to Q1 (otherwise, SQ1 is a sin-
gle arrow). It follows that the 2-dimensional angles NE(X, D(S)) and NE(X, D(Q1))
have a common ray different from the edge Q1 of the NE(X, D(Q1)). Besides, the
curve D(S) ∩ D(Q2) is not empty (since SQ2 is arrow). Thus, the 2-dimensional
angle NE(X, D(S)) has a common ray with the angle NE(X, D(Q2)). It follows
that the angle NE(X, D(S)) is contained in the 3-dimensional space V generated by
angles NE(X, D(Q1)) and NE(X, D(Q2)) with the common edge Q1. The same is
valid for any S′ with ZS′ = ZS = {Q1, Q2}. This gives the case (1) of the Theorem.

By Theorem 2.3.8, ZS′ = {Q2} if ZS′ ∩ ZS 6= ∅ and ZS′ 6= ZS . Let C′ =
D(S′) ∩ D(Q2). Since NE(X, D(Q2)) = Q2 + Q1, C′ ∈ Q2 + Q1. Since Q2 ·
D(S) > 0, Q1 · D(S) > 0, it then follows that C′ · D(S) > 0 and D(S′) ∩
D(S) 6= ∅. Thus, angles NE(X, D(S)) and NE(X, D(S′)) have a common ray.
If NE(X, D(S)) ∩ NE(X, D(S′)) = R+C′, like above, considering the contrac-
tion of the extremal ray Q2, we get the contradiction with Lemma 2.1.3. Thus,
NE(X, D(S))∩NE(X, D(S′)) contains a ray which is different from R+C′. It fol-
lows that the angle NE(X, D(S′)) is contained in the 3-dimensional space V above
containing extremal rays Q1, Q2, S. This gives the case (2) of the Theorem.

The case (B2Cn(S)), CS has the type B2Cn, n > 1, ZS = ZS′ = {Qi} for one of
i > 1. Like above for the case Cn, this case is impossible for S 6= S′.

The case (B2(S)), CS has the type B2, ZS = {Q11, Q12}: By Lemma 1.2.4,
NE(X, D(Q11)) = Q11 + Q12 is a face of NE(X). It follows that NE(X, D(S)) =
T +S where T is a ray of the angle Q11 +Q12. Let S′ be another extremal ray with
ZS′ = {Q11, Q12}. Since Q11 ·D(S′) > 0, Q12 ·D(S′) > 0, we have T ·D(S′) > 0. It
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follows that S, S′ are connected by non-single arrows. Applying Lemma 2.1.5, we
get cases (3) and (4) of the Theorem. This finishes the proof.

2.2. Extremal and E-sets of divisorial extremal rays.
We want to apply results of Section 2.1 to describe extremal and E-sets of

extremal rays of the type (I) and (II) for 3-folds of the class LT . But it is important
for future studies considering more general elliptic, connected parabolic and Lanner
subsets of divisorial extremal rays which had in fact appeared in Section 1.2.

Definition 2.2.1. Let E = {R1, ..., Rn} be a set of extremal rays of the type (I)
or (II). Then E is called elliptic if there are a1 > 0, ..., an > 0 such that

Ri · (a1D(R1) + · · ·+ anD(Rn)) < 0

for all 1 ≤ i ≤ n.

Definition 2.2.2. Let P = {R1, ..., Rn} be a set of extremal rays of the type (I)
or (II). Then P is called connected parabolic if each proper subset of P is elliptic
and there are a1 > 0, ..., an > 0 such that

Ri · (a1D(R1) + · · ·+ anD(Rn)) = 0

for all 1 ≤ i ≤ n.
A set Q of extremal rays of the type (I) or (II) is called parabolic if each diviso-

rially connected component of Q is connected parabolic.

Definition 2.2.3. Let L = {R1, ..., Rn} be a set of extremal rays of the type (I) or
(II). Then L is called Lanner (respectively, quasi-Lanner) if each proper subset of L
is elliptic (respectively, either elliptic or parabolic) and there are a1 > 0, ..., an > 0
such that

Ri · (a1D(R1) + · · ·+ anD(Rn)) ≥ 0

for all 1 ≤ i ≤ n and there exists j, 1 ≤ j ≤ n, such that

Rj · (a1D(R1) + · · ·anD(Rn)) > 0.

The following statement will be useful.

Proposition 2.2.4. Let E = {R1, ..., Rn} be a set of extremal rays of the type (I)
or (II) with different divisors D(R1), ..., D(Rn). Then E is elliptic if and only if for
any non-negative b1, ..., bn not all equal to 0 there exists Ri, 1 ≤ i ≤ n, such that

Ri · (a1D(R1) + · · ·+ anD(Rn)) < 0.

Proof. If E is elliptic, then E satisfies the condition above by Lemma 1.2.10.
Now assume that E satisfies the condition of Proposition. If E is not elliptic,

there exists a minimal non-elliptic subset E ′ ⊂ E . The subset E ′ is not empty since
any one element subset of E is elliptic. Let E ′ = {R1, ..., Rt} where 1 ≤ t ≤ n. By
Lemma 1.2.10, there are positive c1, ..., ct such that

Ri · (c1D(R1) + · · ·+ ctD(Rt)) ≥ 0

for any 1 ≤ i ≤ t. The same inequality is evidently true for t + 1 ≤ i ≤ n. We get
a contradiction with the condition of Proposition.
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Definition 2.2.5. A sequence

C = {R1, ..., Rn},

n ≥ 1, of extremal rays of the type (I) or (II) is called chain if Ri, Rj are divisorially
disjoint for j − i > 1, and RiRi+1 is a non-single arrow (thus, Ri+1Ri is an arrow
too) for any 1 ≤ i < n. Extremal rays R1, Rn are called terminal for the chain.

Theorem 2.2.6. Let X be a 3-fold from the class LT . Let T be a divisorially
connected set of extremal rays of the type (I) or (II) such that any proper subset of
T is elliptic. (In particular, this is valid if either T itself is elliptic or is contained in
a face of NE(X) of Kodaira dimension 3 or T is connected parabolic or Lanner or
T is an E-set such that each proper subset of T is contained in a face of NE(X) of
Kodaira dimension 3). Let us assume that each two extremal rays of T are different
from a pair of the type B2. Then T has one of the types :

(A) All extremal rays of T have the type (II) and T does not have a single arrow.
(B) T = {R} ∪ C1 ∪ ... ∪ Ck has only extremal rays of the type (II), where

C1 = {R11, ..., R1n1
}, C2 = {R21, ..., R2n2

}, ..., Ck = {Rk1, ..., Rknk
}

are divisorially disjoint to one another chains, and all arrows between R and ex-
tremal rays of these chains are single arrows Rj1R, j = 1, ..., k; besides each ex-
tremal ray of the chains C1, ..., Ck does not belong to a pair of the type B2.

(C) T = {R1, R2, R3, ..., Rn}, n ≥ 3, where all extremal rays of T have the
type (II) and R2R1 is a single arrow, R1R2, R2R1 and R2R3, R3R2 are non-single
arrows, R3, ..., Rn is a chain such that R4, ..., Rn are divisorially disjoint with ex-
tremal rays R1 and R2; besides, each extremal ray R1, R2, R3, ..., Rn does not belong
to a pair of the type B2.

(D) T = {R1, R2, ..., Ri, ..., Rn} is a chain such that R1 has the type (I), and Ri

has the type (II) for all i > 1; besides, each extremal ray R1, R2, ..., Rn does not
belong to a pair of the type B2.

(E) T = {Q1, Q2, Q3} has type of triangle: thus, Q1Q2 and Q2Q3 are single ar-
rows, and Q1Q3, Q3Q1 are non-single arrows; besides, each extremal ray Q1, Q2, Q3

does not belong to a pair of the type B2.
(E’) T = {Q1, Q2, Q3} has type of special triangle: thus, Q1Q2, Q2Q3, Q3Q1

are single arrows; besides, each extremal ray Q1, Q2, Q3 does not belong to a pair
of the type B2.

Moreover, for the case (B), the T is contained in a face of NE(X) of Kodaira
dimension 3. Thus, the case (B) is impossible when T is not contained in a face of
NE(X) of Kodaira dimension 3.

Proof. If T does not have an extremal ray of the type (I) and a single arrow, we
get the case (A).

Thus, we can suppose that T has either an extremal ray of the type (I) or a
single arrow.

Let T1 be the set which contains all extremal rays of the type (I) and all extremal
rays of single arrows of T . If T = T1, then T1 is divisorially connected, and by
Theorem 2.1.7, we get one of following cases: (B) with one element chains, (D)
with one extremal ray R1, (E) or (E’).

Let us suppose that T 6= T1. By Theorem 2.1.7, T1 has divisorially connected
components of the types A1, Cn, T3 or T′ . Since T is divisorially connected, for
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each connected component of T1 there exists an extremal rays Q ∈ T −T1 such that
Q is joined by non-single arrows with an extremal ray of this connected component.
By Theorem 2.1.8, then this connected component should have the type A1 or Cn.
It follows that all connected components of T1 have the type A1 or Cn, and T1 has
a connected component of one of these types.

We consider induction on #T . For #T = 1, 2 the statement is clear. Let us
suppose that #T = n > 2. We consider several cases.

Let us suppose that there exists an extremal ray R ∈ T of the type (I). Let
Q ∈ T and Q 6= R. We claim that then Q + R is a 2-dimensional face of Kodaira
dimension 3 of NE(X). At first, suppose that D(R) ∩D(Q) = ∅. Let H be a nef
element orthogonal to Q (the set of these elements H defines a face of codimension
one in NEF (X) by the exact sequence (1-2-1)). There exists a linear function
α(H) ≥ 0 such that the map H → H ′ = H + α(H)D(R) is linear with one-
dimensional kernel, and H ′ is orthogonal to extremal rays Q and R. The H ′ is
evidently nef since R has the type (I) and C ∈ R for any curve C ⊂ D(R). Thus,
Q+R is a 2-dimensional face of NE(X), and, by construction, the face (Q+R)⊥ of
NEF (X) has codimension 2. Evidently, (H ′)3 ≥ H3 > 0 (see the proof of Lemma
1.2.6). Thus, by definition of the class LT , this face has Kodaira dimension 3.
(Further, we will not be so formal, and just show that the corresponding face α
of NE(X) has numerical Kodaira dimension 3; automatically, by our construction,
it will have the property codim α⊥ = dim α and will have Kodaira dimension
3 by definition of the class LT ). Now, suppose that D(Q) ∩ D(R) 6= ∅. Since
#T = n > 2, the set {Q, R} is elliptic. Thus, there are positive a1, a2 such that
Q·(a1D(Q)+a2D(R)) < 0, R·(a1D(Q)+a2D(R)) < 0. Let H be an ample element.
By Lemma 2.1.8, there are positive c1, c2 such that H ′ = H + c1D(Q) + c2D(R) is
orthogonal to both Q, R. Since R has the type (I) and D(Q) ∩D(R) 6= ∅, we then
get NE(X, D(Q)) = Q + R. It follows that H ′ · C ≥ 0 for any curve C. Thus, H ′

is nef . Evidently, H ′ is orthogonal to extremal rays Q, R only and H ′ ≥ H3 > 0.
It follows that Q + R is a face of dimension 2 and Kodaira dimension 3 of NE(X).
Thus, we proved that Q + R is a 2-dimensional face of NE(X) for any Q ∈ T and
Q 6= R.

Let us consider the contraction f : X → X ′ of the extremal ray R. Then the
image f(Q) is an extremal ray of X ′ for Q 6= R since the claim we proved above.
Evidently, if D(Q) ∩ D(R) = ∅, the extremal ray f(Q) has the same type ((I) or
(II)) as Q. If D(Q) ∩ D(R) 6= ∅, the f(Q) has the type (I). By Theorem 2.1.9,
the extremal ray Q with this property is unique. Since T is connected, the Q does
exist. By the projection formula and Proposition 2.2.4, any proper subset of the set
f(T ) = f(T − {R}) is elliptic. It follows that the set f(T ) has the same properties
as T but has one element less. By induction, we then get that f(T ) has the type
(D). Considering preimages, one can easily see that then T has the same type (D)
and has desirable properties.

Now, assume that R2R1 is a single arrow for R2, R1 ∈ T . At first, let us suppose
that there does not exist Q ∈ T such that Q is joined by non-single arrows with
the terminal R1 of the arrow R2R1. Thus, R1 ·D(Q) = 0 for all Q ∈ T, Q 6= R1.
By Lemma 2.1.2, NE(X, D(R2)) = R1 + R2 is a 2-dimensional face of NE(X) of
Kodaira dimension 3. It follows that NE(X, D(Q)) = P + Q, P ⊂ R1 + R2 for
an extremal ray Q which is joined by non-single arrows with R2. By Lemma 2.1.9,
this extremal ray Q is unique if it does exist. Then, like above, we can prove that
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R2, Q generate a 2-dimensional face R2 + Q of Kodaira dimension 3 of NE(X) for
each Q ∈ T, Q 6= R2 (for Q = R1, this follows from Lemma 2.1.2). Let us consider
the contraction f : X → X ′ of the extremal ray R2. Then f(Q) is a divisorial
extremal ray of X ′ for Q ∈ T, Q 6= R2. If there exists Q such that QR2 is a
non-single arrow, then f(Q)f(R1) is evidently a single arrow because Q and R1 are
divisorially disjoint by Lemma 2.1.8. If there does not exist Q such that QR2 is a
non-single arrow then there exists an extremal ray S ∈ T such that SR1 is a single
arrow and S is divisorially disjoint with R2. This follows from Lemmas 2.1.7, 2.1.8
and conditions on T above (otherwise, T = {R2, R1}). Then f(S)f(R1) is a single
arrow. Thus, the image f(T ) is a divisorially connected set of extremal rays of
the type (I) and (II) which contains a single arrow and like for the case above any
proper subset of f(T ) is elliptic. By induction, the f(T ) has the type (B) and only
the extremal ray f(R1) may belong to a pair of the type B2. One can see easily
using our construction, that then T has also the type (B) and only R1 may belong
to a pair of the type B2.

Now we consider the case when R2R1 is a single arrow for R2, R1 ∈ T and there

exists R3 ∈ T such that R3R1, R1R3 are non-single arrows. This is the case C
(2)
2 (R3)

of Theorem 2.1.8. By Theorem 2.1.8, then R3R2, R2R3 are non-single arrows and
R2R1 is the only single arrow in T with the terminal R1.

Since #T ≥ 3 and any proper subset of T is elliptic, there are a2 > 0, a3 > 0
such that R2 · (a2D(R2) + a3D(R3)) < 0 and R3 · (a2D(R2) + a3D(R3)) < 0. Let
H be an ample element. By Lemma 1.2.8, there exist b2 > 0, b3 > 0 such that
H ′ = H + b2D(R2) + b3D(R3) is orthogonal to both R2, R3. By Lemma 2.1.2,
NE(X, D(R2)) = R1 + R2. It follows that C · H ′ ≥ 0 for any curve C ⊂ D(R2).
We have D(R2)∩D(R3) is a non-empty curve. By Lemma 2.1.2 NE(X, D(R2)) =
R1 + R2 is a face of NE(X). It follows that NE(X, D(R3)) = S + R3 where S
is a ray of R1 + R2. If follows that C · H ′ ≥ 0 for any curve C ∈ D(R3). This
implies that H ′ is nef and only extremal rays R2, R3 are orthogonal to H ′. Besides,
like above, (H ′)3 ≥ H3 > 0. Thus, R2 + R3 is a 2-dimensional face of NE(X) of
Kodaira dimension 3.

As we have mentioned above, NE(X, D(R3)) = S + R3, where S ∈ R1 + R2.
Here S 6= R1 since otherwise, R3R1 is a single arrow. We have D(R3)∩D(R1) 6= ∅.
Since R2 + R3 is a face of NE(X), it follows that NE(X, D(R1)) ⊂ R1 + R2 + R3.
Then, like above, we can see that R1 + R3 is a 2-dimensional face of NE(X) of
Kodaira dimension 3. By Theorems 2.1.7 and 2.1.8, each extremal ray R1, R2, R3

does not belong to a pair of the type B2.

If T = {R1, R2, R3}, we get the case (C).

Suppose that T contains an extremal ray Q different from R1, R2, R3. By condi-
tion, then {R1, R2, R3} is elliptic. As we have seen, NE(X, D(R1)), NE(X, D(R2)), NE(X, D(R3))
are contained in R1 + R2 + R3. Then like above (using Proposition 1.2.1 and Lem-
mas 1.2.8 and 1.2.9), we can prove that R1 + R2 + R3 is a 3-dimensional face of
Kodaira dimension 3 of NE(X).

Let Q ∈ T is different from R1, R2, R3. Since R1 + R2 + R3 is a face of NE(X),
by statements (1) and (2) of Lemma 2.1.9, the Q is divisorially disjoint with R1 and
R2. Then, like above, using that NE(X, D(R1)) ⊂ R1+R2 +R3, we can prove that
R1 + Q is a 2-dimensional face of Kodaira dimension 3 of NE(X). For Q = R2, R3

we have proven the same above. Thus, this statement valid for any Q ∈ T different
from R1. Let us consider the contraction f : X → X ′ of R1. By the statement
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above, f(Q) is a divisorial extremal ray for any Q ∈ T, Q 6= R1. Evidently, f(R2)
has the type (I). Thus, considering T ′ = f(T ) we get the case we had considered
above which gives rise the type (D) of Theorem. Thus, T ′ has the type (D). One
can easily see that then T has the type (C) and each extremal ray of T does not
belong to a pair of the type B2.

Let us prove the last statement. Thus, we consider T which has the type (B).
We use induction on #T . For #T = 2, the statement follows from Lemma 2.1.2. If
#T > 2, let us consider the contraction f : X → X ′ of the extremal ray R11 which
we had used above when we considered this case. Then T ′ = f(T ) has the type (B)
again and has the same properties as T but #T ′ = n− 1. By induction, T ′ = f(T )
is contained in a face of Kodaira dimension 3 of NE(X ′). Then, evidently, T is
also contained in a face of Kodaira dimension 3 of NE(X). This finishes the proof.

In Sect. 5, we will need another property of divisorial extremal rays which shows
importance of quasi-Lanner sets of divisorial extremal rays.

Definition 2.2.7. A set S = {Q1, ..., Qk} of divisorial extremal rays is called
semi-elliptic if for any non-negative a1, ..., ak there exists j, 1 ≤ j ≤ k, such that

Qj · (a1D(Q1) + · · ·+ akD(Qk)) ≤ 0.

In particular, by Lemma 1.2.8, an elliptic set of divisorial extremal rays is semi-
elliptic.

Proposition 2.2.8. Let L = {R1, ..., Rn} be a set of extremal rays of the type
(I) or (II) with different divisors D(R1), ..., D(Rn). Assume that L is not semi-
elliptic, i. e. there are a1, ..., an such that Ri · (a1D(R1) + · · · + anD(Rn)) ≥ 0
for all 1 ≤ i ≤ n, and one of these inequalities is strict. Assume that any proper
subset of L is semi-elliptic (i. e. L is minimal non semi-elliptic). Then L is quasi-
Lanner (see Definition 2.2.3). Besides, any proper subset of L either is elliptic or
is connected parabolic with ♯L− 1 elements.

Proof. We use Proposition 2.2.4 as the equivalent definition of an elliptic set of
divisorial extremal rays.

If any proper subset L′ ⊂ L is elliptic, then the set L is Lanner and is then
quasi-Lanner.

Assume that L contains a semi-elliptic subset L′ which is not elliptic. We should
prove that then L′ is connected parabolic and ♯L′ = ♯L − 1. Let P be a minimal
semi-elliptic and not elliptic subset of L′. Then any proper subset of P is elliptic
(use Proposition 2.2.4). It follows that P is connected parabolic.

Let R ∈ L−P. Assume that there exists an arrow from R to (an element of) P.
Let P = {Q1, ..., Qr} and for some positive c1, ..., cr we have P · (c1D(Q1) + · · ·+
crD(Qr)) = 0. Then for sufficiently big λ > 0 we evidently have R · (λ(c1D(Q1) +
· · · + crD(Qr)) + D(R)) > 0 and P · (c1D(Q1) + · · · + crD(Qr)) + D(R)) ≥ 0.
Thus {R} ∪ P is not semi-elliptic. Since L is minimal non semi-elliptic, we get
L = {R} ∪ P and L′ = P is connected parabolic with ♯L− 1 elements.

Thus, we can suppose that there is not an arrow from L − P to P. If L − P is
not elliptic, arguing similarly, we can find a connected parabolic subset P ′ ⊂ L−P.
Moreover, P, P ′ are divisorially disjoint to one another and there is not an arrow
from L − (P ∪ P ′) to P ∪ P ′. Continuing these considerations, we prove that L
is a disjoint union of connected parabolic subsets P1, ...,Pm and an elliptic subset
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E such that connected parabolic subsets P1, ...,Pm are divisorially disjoint to one
another and there does not exist an arrow from E to connected parabolic subsets
P1, ...,Pm. If follows that L is semi-elliptic. We get a contradiction. This finishes
the proof.

From our proof we also get

Proposition 2.2.9. Let S be a set of extremal rays of the type (I) or (II) with
different divisors. Then S is semi-elliptic if and only if S is a disjoint union of
connected parabolic subsets P1, ...,Pm and an elliptic subset E such that parabolic
subsets P1, ...,Pm are divisorially disjoint to one another and there does not exist
an arrow from any element of E to any parabolic subset P1, ...,Pm.

3. A refined variant of the Diagram Method.
Here we want to prove a more strong variant of the Diagram Method Theorem

which uses results of both Sections 1 and 2. This variant will be useful below for
Calabi-Yau 3-folds.

We study 3-folds X from the class LT with conditions (a), (b) and (c) below:
(a) X has a finite polyhedral Mori cone NE(X);
(b) X does not have a small extremal ray;
(c) NE(X) does not have a face of numerical Kodaira dimension 1 or 2.
From (b) and (c), it follows that all extremal rays of X are divisorial of the type

(I) or (II).
Using Theorem 2.2.6, we define analogous constants to the constants d(X),

C1(X), C2(X) of Definition 1.3.1.

Definition 3.1. We introduce some invariants of X .
Invariants k, l, l2 are numbers of divisorially connected components of the types

A1, Ck, k ≥ 2, C2 respectively of the set of all special divisorial extremal rays on
X . See Theorem 2.1.7.

The invariants

n(X)D = max
F∈(D)

♯F − 1; n(X)C = max
F∈(C)

♯F − 1;

n(X)A = max
F∈(A)

♯F − 1; d(X)A = max
F∈(A)

diam G(F ).

Here F ∈ (A) (respectively F ∈ (C) or F ∈ (D)) means that F runs through all
E-sets of the type (A) (respectively (C) or (D)) of Theorem 2.2.6 such that any
proper subset of F is extremal of Kodaira dimension 3 and F satisfies the condition
(iii) of Sect. 1.1 (in particular, F is Lanner). These invariants are analogous to the
invariant d(X) of Definition 1.3.1.

Let S be a set of divisorial extremal rays. We denote as S′ the subset of S which
one gets by removing all extremal rays of the type (I) and all extremal rays of the
type (II) which are ends of single arrows of X (i.e. this extremal ray belongs to a
component of the type Ck of the set of all special extremal rays on X and is the end
of a single arrow of this component). We define a symmetric distance ρA(R1, R2)
in S by the formula

ρA(R1, R2) =





0, if R1 = R2,

ρ(R1, R2)S′ , if {R1, R2} ⊂ S′,

+∞, otherwise.
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Here ρ(R1, R2)S′ denotes the ordinary distance in the graph G(S′) using oriented
paths. The set S′ does not have single arrows. Thus, ρA(R1, R2) is symmetric.

The invariant C(X)A is defined by the condition:

♯{{R1, R2} ⊂ E − E0 | 1 ≤ ρA(R1, R2) ≤ 2d(X)A + 1} ≤ C(X)A♯(E − E0)

for any extremal set E of the Kodaira dimension 3 of divisorial extremal rays on X
and any its divisorially connected subset E0 ⊂ E of extremal rays of the type (II).

We have the following refinement of Basic Theorem 1.3.2.

Basic Theorem 3.2. Let X be a 3-fold from the class LT and X satisfies condi-
tions (a), (b) and (c) above. Then we have assertions (1), (2) and (3) below:

(1) X does not have a pair of extremal rays of the type B2 and the Mori cone
NE(X) is simplicial. Thus, by Theorem 2.1.7, each divisorially connected compo-
nent of the set of all special divisorial extremal rays has the type A1, Cn, T3 or
T′

3.
(2) If the set of all special divisorial extremal rays on X has k divisorially con-

nected components of the type A1 and l connected components of types Cn1
, ..., Cnl

respectively, then

k + (n1 − 1) + ... + (nl − 1) ≤ q(X)

(see Definition 1.3.1 for the invariant q(X)). Besides, if there exists a connected
component of the type T3 or T

′
3, then every extremal ray of X belongs to this

connected component and the Picard number ρ(X) = 3 (in particular, k = l = 0).
(3) We have the inequality:

ρ(X) = dim N1(X) ≤ kn(X)D + l2 max {n(X)C , n(X)A}+ 8C(X)A + 6

≤ q(X) max{n(X)D, n(X)C, n(X)A}+ 8C(X)A + 6.

Proof. (1) follows from the statement (1) of Basic Theorem 1.3.2 and Theorem
2.1.7.

To prove second part of (2), we use the following Lemmas which are important
as itself (in fact, they are contained in Section 1) and follow from the statement
(1), Lemma 1.2.8, Lemma 1.1.1 and Theorem 1.2.13.

Lemma 3.3. Let X be a 3-fold from the class LT and X satisfies the conditions
(a), (b) and (c) above. Let T = {R1, ..., Rn} be a set of extremal rays of X. Then

(i) If T is extremal, there are positive a1, ..., an such that Ri · (a1D(R1) + ... +
anD(Rn)) < 0 for all 1 ≤ i ≤ n, and for any non-negative b1, ..., bn which are not all
equal to zero there exists i, 1 ≤ i ≤ n, such that Ri · (b1D(R1)+ ...+bnD(Rn)) < 0.

(ii) If T is not extremal, then T contains an E-subset L and there are non-
negative c1, ..., cn which are not all equal to zero such that c1D(R1)+ ...+ cnD(Rn)
is nef .

Lemma 3.4. Let X be a 3-fold from the class LT and X satisfies the conditions
(a), (b) and (c) above. Let T1 = {R1, ..., Rn} and T2 = {Q1, ..., Qm} are two sets
of extremal rays on X such that Ri ·D(Qj) = 0 for all 1 ≤ i ≤ n and all 1 ≤ j ≤ m
(equivalently, there does not exist an arrow from T1 to T2). Then either T1 or T2

is extremal.
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If T1 ∪ T2 is the set of all extremal rays on X and T2 6= ∅, then T1 is extremal
and T2 is not extremal.

Proof. We explain only the last statement. Let us suppose that T2 is extremal. By
condition and Lemma 3.3, there are positive a1, ...am such that R · (a1D(Q1)+ ...+
amD(Qm)) ≤ 0 for any extremal ray R ∈ T1 ∪ T2. By condition, T1 ∪ T2 is the set
of all extremal rays on X . It follows that, C · (a1D(Q1) + ... + amD(Qm)) ≤ 0 for
any curve C on X . Evidently, this is absurd. Thus, T2 is not extremal. By Lemma
3.3, there are non-negative c1, ..., cm such that D(Q) = c1D(Q1) + ... + cmD(Qm)
is nef . By condition, T1 ·D(Q) = 0. It follows that T1 is extremal.

From the last statement of Lemma 3.4, it follows

Lemma 3.5. Let X be a 3-fold from the class LT and X satisfies the conditions
(a), (b) and (c) above. Then the set of all extremal rays on X is divisorially
connected and is not extremal.

Now, let us prove the statement (2) of Theorem 3.2. Assume that the set of
special extremal rays has a connected component P of the type T3 or T′

3. Let R be
an extremal ray and R 6∈ P . By Theorem 2.1.8, then R ·D(Q) = 0 for any extremal
ray Q ∈ P . We get a contradiction with Lemma 3.5. Thus, any extremal ray of X
belongs to P . Since P contains exactly 3 extremal rays, ρ(X) ≤ 3. By definition,
P contains extremal rays Q1, Q2, Q3 which define single arrows Q1Q2 and Q2Q3.
By Lemma 2.1.2, Q1 + Q2 and Q2 + Q3 are 2-dimensional faces of NE(X) which
are evidently different. It follows that ρ(X) > 2. Thus, ρ(X) = 3.

Let us prove first part of (2). This is similar to the proof of the statement (2)
of Basic Theorem 1.3.2. Let P1 = {R1}, ..., Pk = {Rk} are connected components
of the type A1 and S1, ..., Sl are connected components of the types Cn1

, ..., Cnl

of the set of special extremal rays on X where St = {Qt1, Qt2, ..., Qtnt
} and

Qt2Qt1, ..., Qtnt
Qt1 are single arrows.

The set of all special extremal rays on X evidently satisfies the condition (i) of
Lemma 3.3 and is then extremal. Let E be a maximal extremal set of extremal rays
on X containing the set of all special extremal rays and such that each divisorially
connected component of E contains at least one special extremal ray.

By Theorem 2.2.6, each connected component of E contains exactly one con-
nected component of the set of special extremal rays. Thus, E contains k + l
connected components E1, ..., Ek, Ek+1, ..., Ek+l. Here Ri ∈ Ei and Ei has the type
(D) for 1 ≤ i ≤ k. And Sj ⊂ Ek+j and Ek+j either has the type (B) or (C) for
1 ≤ j ≤ l. Changing numeration, we can suppose that Ek+j has the type (C) for
1 ≤ j ≤ r1 (in particular, n1 = ... = nr1

= 2) and Ek+j has the type (B) for
r1 < j ≤ l. For r1 < j ≤ l, we additionally denote as Ek+j,2, ..., Ek+j,nj

the corre-
sponding chains containing Qj2, ..., Qjnj

respectively. These chains give divisorially
connected components of Ek+j − {Qj1}.

Since E is extremal, by Lemma 3.3, there are positive a(R) for R ∈ E such that

R ·
∑

R∈E

a(R)D(R) < 0

for any R ∈ E .
Let us consider divisorially disjoint to one another sets Fv, v ∈ V , of extremal

rays which are equal to one of sets E1, ..., Ek+r or Ek+j,u, r1 < j ≤ l, 2 ≤ u ≤ nj ,
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and the corresponding divisors

D(Fv) =
∑

R∈Fv

a(R)D(R)

(here ♯V = k + (n1 − 1) + ... + (nl − 1)). One can easily see that C ·D(Fv) ≤ 0 for
any R ∈ Fv and any curve C ⊂ D(R).

Similarly to Lemma 1.3.4 and the proof of the statement (2) of Basic Theorem
1.3.2, we can find an extremal set A = {Uv | v ∈ V } containing extremal rays Uv of
the type (II) such that we have the property: Uv ·D(Fv) > 0 but Uv ·D(Fv′) = 0
for v′ 6= v. Similarly to the proof of the statement (2) of Theorem 1.3.2, one proves
that the graph G(A) is full. Thus, ♯A = ♯V = k + (n1 − 1) + ... + (nl − 1) ≤ q(X).
This finishes the proof of the statement (2) of Theorem 3.2.

Proof of (3). It is based on the following

Lemma 3.6. Let X be a 3-fold from the class LT and X satisfies conditions (a),
(b) and (c) above. Assume that ρ(X) > 3. Then there exists an extremal divisorially
connected set E0 containing only extremal rays of the type (II) and such that any
E-set L does not contain extremal rays of the type (I) and extremal rays of the type
(II) which are terminal vertices of single arrows on X (in particular, L has the type
(A) of Theorem 2.2.6) if L has at least two elements which do not belong to E0 and
L′ ∪ E0 is extremal for any proper subset L′ ⊂ L.

Besides,
♯E0 ≤ kn(X)D + l2 max {n(X)C , n(X)A}.

Proof. We numerate as R1, ..., Rk the whole set of divisorial extremal rays of the
type (I) and as Rk+1, ..., Rk+l2 the whole set of divisorial extremal rays of the type
(II) such that Rk+i, 1 ≤ i ≤ l2, belongs to a connected component of the type C2

of the set of all special extremal rays and Rk+i is the terminal vertex of the single
arrow of this component.

We construct E0 in k + l2 steps as a sequence

∅ = (E0)0 ⊂ ... ⊂ (E0)k+l2 = E0.

Here (E0)t, 1 ≤ t ≤ k + l2, has the property that there does not exist an E-set L
which contains one of extremal rays R1, ..., Rt, and L contains at least two elements
which do not belong to (E0)t, and (E0)t∪L

′ is extremal for any proper subset L′ ⊂ L.
Suppose that we have constructed (E0)t with properties above and t < k + l2.

Assume that there exists an E-set U which contains Rt+1, and U contains at least
two elements which do not belong to (E0)t, and U ′∪(E0)t is extremal for any proper
subset U ′ ⊂ U . Then we set

(E0)t+1 = (E0)t ∪ (U − {Rt+1}).

The (E0)t+1 is extremal by the conditions on (E0)t and U above. Let us suppose
that there exists an E-set L which contains Ri, 1 ≤ i ≤ t + 1, and L contains at
least two elements which do not belong to (E0)t+1, and L′ ∪ (E0)t+1 is extremal for
any proper subset L′ ⊂ L. If 1 ≤ i ≤ t, we have similar properties for (E0)t and get
the contradiction. Thus, i = t + 1. By our conditions, there exists Q ∈ L− {Rt+1}
such that Q /∈ (E0)t+1 and (E0)t+1 ∪ (L− {Q}) is extremal. Since Rt+1 ∈ L− {Q}
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and U − {Rt+1} ⊂ (E0)t+1, it follows that U ⊂ (E0)t+1 ∪ (L − {Q}) is extremal
because (E0)t+1∪(L−{Q}) is extremal. We get a contradiction since U is an E-set.
Thus, (E0)t+1 has desirable properties. Here, by construction and Theorem 2.2.6,
the set U has the type (D) if 1 ≤ t + 1 ≤ k, and the set U has the type (C) or
(A) if k < t + 1 ≤ k + l2. If there does not exist the E-set U above, we just put
(E0)t+1 = (E0)t.

By our construction, ♯E0 ≤ kn(X)D + l2 max {n(X)C, n(X)A}. By our construc-
tion, E0 is divisorially connected since any two different E-sets are connected by
arrows (by Lemma 3.4) and extremal rays R1, ..., Rk+l2 are divisorially disjoint.

Let Rk+l2+1, ..., Rk+l be terminal vertices of arrows of all components of the types
Ck, k ≥ 3. By our construction, any E-set L does not contain any of extremal rays
R1, ..., Rk+l2 if L has at least two elements which do not belong to E0 and L′ ∪ E0
is extremal for any proper subset L′ ⊂ L. We claim that we even have more: the
E-set L above does not contain any of extremal rays R1, ..., Rk+l. Actually, if the
E-set L contains Ri, k + l2 < i ≤ k + l, we get a contradiction with Theorems 2.1.8
and 2.2.6: the set L should be of the type (B), but then it is extremal and cannot
be an E-set.

Since ρ(X) > 3, by the statement (2), any terminal vertex of a single arrow on
X is one of extremal rays Rt+1, ..., Rt+l. This finishes the proof of Lemma.

We continue the proof of Theorem 3.2. Let us consider the face γ ⊂ M(X) =
NEF (X)/R+. which is orthogonal to E0. Let us consider constants C1(X)′ and
C2(X)′ which are defined by the properties:

♯{(R1, R2) ∈ (E − E0)× (E − E0) | 1 ≤ ρ(R1, R2) ≤ d(X)A} ≤ C1(X)′♯(E − E0);

and

♯{(R1, R2) ∈ (E−E0)×(E−E0) | d(X)A+1 ≤ ρ(R1, R2) ≤ 2d(X)A+1} ≤ C2(X)′♯(E−E0).

for any extremal set E which contains E0 and distance ρ in the graph G(E).
Directly applying to γ Theorem 1.2 from [N8], we get the inequality

(3-1) dim γ < (16/3)C1(X)′ + 4C2(X)′ + 6

which is less than we want.
To get the desirable estimate

(3-2) dim γ < 8C(X)A + 6,

one needs to change a little the proof of Theorem 1.2 from [N8] for our case (evi-
dently, C(X)A ≤ (C1(X)′ + C2(X)′)/2 and (3-2) implies (3-1)).

Let ∠ be an oriented (plane) angle of γ. Let R(∠) be the set of all extremal
rays of NE(X) which are orthogonal to the vertex of ∠. The set R(∠) is a disjoint
union

R(∠) = R(∠⊥) ∪ {R1(∠)} ∪ {R2(∠)}

where R(∠⊥) contains all rays orthogonal to the plane of the angle ∠, the rays
R1(∠) and R2(∠) are orthogonal to the first and second side of the oriented angle
∠, respectively. Evidently, the setR(∠) and the ordered pair of rays (R1(∠), R2(∠))
define the oriented angle ∠ uniquely. We define the weight σA(∠) by the formula



34 VIACHESLAV V. NIKULIN

(for the proof of Theorem 1.2 from [N8], the definition of the weight σ(∠) was
different):

(3-3) σA(∠) =

{
1/2, if 1 ≤ ρA(R1(∠), R2(∠)) ≤ 2d(X)A + 1,

0, if 2d(X)A + 1 < ρA(R1(∠), R2(∠)).

Similarly to the proof of Theorem 1.2 from [N8], one can check conditions of Lemma
1.4 (Vinberg’s Lemma) from [N8] for the polyhedron M = γ with the constants
C = C(X)A and D = 0. The proof even is simpler because the weight σA(∠′) of the
angle with opposite orientation is equal to σA(∠). It follows (3-2). For convenience
of a reader, we recall Vinberg’s Lemma.

Lemma 3.8. Let M be a convex simple polyhedron of a dimension n. Let C and
D are some numbers. Suppose that oriented angles (2-dimensional, plane) of M
are supplied with weights and the following conditions (1) and (2) hold:

(1) The sum of weights of all oriented angles at any vertex of M is not greater
than Cn + D.

(2) The sum of weights of all oriented angles of any 2-dimensional face of M is
at least 5− k where k is the number of vertices of the 2-dimensional face.

Then

n < 8C + 5 +

{
1 + 8D/n if n is even,

(8C + 8D)/(n− 1) if n is odd
.

In particular, for C ≥ 0 and D = 0, we have

n < 8C + 6.

Since dim γ = dim N1(X)−♯E0−1 and ♯E0 ≤ kn(X)D + l2 max {n(X)C, n(X)A},
we get the estimate dim N1(X) ≤ kn(X)D + l2 max {n(X)C, n(X)A}. By the state-
ment (2), k + l2 ≤ q(X). Thus, dim N1(X) ≤ q(X) max {n(X)D, n(X)C, n(X)A}+
8C(X)A + 6. This finishes the proof of Theorem 3.2.

Remark 3.8. Let us consider Fano 3-folds X with Q-factorial terminal singularities
and which satisfy the conditions (a), (b) and (c). Then the constants q(X) ≤ 1,
n(X)D ≤ 1, n(X)C = −1, n(X)A ≤ 1, d(X)A = 1 and C(X)A = 0 (see [N8]). Thus,
by Theorem 3.2, we get the main result of [N8]: k + (n1 − 1) + ... + (nl − 1) ≤ 1
and ρ(X) ≤ 7.

In Sects. 4 and 5, we apply Basic Theorems 1.3.2 and 3.2 to Calabi-Yau 3-folds.

4. Application to Calabi-Yau 3-folds

4.1. Reminding.
Here we recall general facts about Calabi-Yau 3-folds we shall use.
A projective algebraic 3-dimensional manifold X over C is called Calabi-Yau if

the canonical class KX = 0 and h1(X,OX) = h2(X,OX) = 0. Then N1(X) =
H2(X ;R).

It was shown by Wilson [W1] and [W2] that the nef -cone NEF (X) is locally
rational polyhedral away from the cubic intersection hypersurface

WX = {h ∈ H2(X ;R) | h3 = 0}.
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The main tool here is to use results of Kawamata [Ka1] and Shokurov [Sh] (which
generalize results of Mori [Mo1]) about ”polyhedrality” of Mori cone of algebraic
varieties with log-terminal singularities. Thus, we can speak about faces γ ⊂
NEF (X) considering only faces of the locally polyhedral cone NEF (X) away from
the cone W. Then the corresponding face γ′ = γ⊥ of Mori cone NE(X) is finite
polyhedral and dim γ′ = codim (γ′)⊥ where (γ′)⊥ = γ. Evidently, these faces γ′
are exactly finite polyhedral faces of NE(X) of numerical Kodaira dimension 3
and with the property codim (γ′)⊥ = dim γ′. It is known (see [W1], [W2], [O])
that these faces are contractible and have Kodaira dimension 3 (one should apply
theory of log-terminal extremal contractions of [Ka1] and [Sh]; in fact, one need
these results to prove the results of Wilson we mentioned above). Thus, we can
speak about extremal rays of Kodaira dimension 3 (they are orthogonal to faces of
NEF (X) of highest dimension) and extremal rays of the types (I), (II) and (III)
(small). Applying results of [Ka1] and [Sh], we get that a sequence X → X ′ of con-
tractions of divisorial extremal rays gives rise a 3-fold with Q-factorial (canonical)
singularities and X ′ inherits all properties of X we mentioned above. In particular,
we get that X and X ′ belong to the class LT .

The following fact is very important for us (see [W2] and also appendix of
Shokurov): For an extremal ray R of the type (II) of a 3-dimensional Calabi-Yau
manifold X , there exists a curve C ∈ R such that

(4-1-1) C ·D(R) = −2.

In fact, this curve C is the general fiber of the f : D(R) → f(D(R)) for the
contraction f : X → X ′ of the extremal ray R. But, we don’t need the last fact in
this paper.

Let Q be another divisorial extremal ray of X . Using this curve C ∈ R, we
correspond to the arrow RQ the weight C · D(Q). Thus, from now on, arrows of
the graph G(T ) of a set T of extremal rays of the type (II) have the corresponding
weights. We don’t show the corresponding weight only if this weight is equal to 1.

For an extremal ray R of the type (I) we choose some curve C ∈ R. This
gives rise the corresponding weights of arrows too. As was shown by Shokurov
(see Appendix), there exists a curve C ∈ R such that C · D(R) = −1,−2 or −3.
We shall use this result later. Now, we fix the choice of the C showing the weight
−k = C ·D(R) of the vertex corresponding to R. Thus, from now on, arrows and
black vertices of the graph G(T ) of any set T of extremal rays of the type (I) or
(II) are equipped by weights. For a manifold X these weights are integers.

Here we want to apply the theory we developed above for studying of 3-dimensional
Calabi-Yau manifolds.

4.2. Sets of divisorial extremal rays on Calabi-Yau manifolds.
We describe here elliptic, parabolic and Lanner (some quasi-Lanner too) sets of

extremal rays of the type (I) or (II) on Calabi–Yau 3-dimensional manifolds. By
Theorem 2.2.6, they have types (A), (B), (C), (D) or (E), (E’). By results of Section
1.2 and Theorem 2.2.6, this is enough for the description of sets of extremal rays of
the type (I) or (II) which are either extremal of Kodaira dimension 3 or are E-sets
L such that each proper subset of L is extremal of Kodaira dimension 3 and L
satisfies the condition (iii) of Sect. 1.1.

4.2.1. Sets ot the type (A).
We have the following results:
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Theorem 4.2.1.1. Let X be a 3-dimensional Calabi-Yau manifold. Let T =
{R1, ..., Rn} be a set of extremal rays of the type (II) on X such that all divisors
D(R1), ..., D(Rn) are different and the graph G(T ) does not have a single arrow
(thus, it has the type (A)) and is connected.

Then:
(a) The T is elliptic if and only if G(T ) is a Dynkin diagram of the root system

type
An,Bn,Cn,Dn,E6,E7,E8,F4,G2

of the Table 4.1.
(b) The T is parabolic if and only if G(T ) is an extended Dynkin diagram of the

root system type

Ãn, B̃n, B̃Cn, C̃n, B̃Dn, C̃Dn, D̃n, Ẽ6, Ẽ7, Ẽ8, B̃F4, C̃F4, ÃG2, G̃A2,

of the Table 4.2 where weights of vertices show the coefficients ai of Definition 2.2.2.
(c) The T is Lanner if and only if G(T ) is one of diagrams of the Table 4.3.

Proof. Applying (4-1-1), this is standard and well-known in fact.

4.2.2. Sets ot the type (B).

Theorem 4.2.2.1. Let X be a 3-dimensional Calabi-Yau manifold. Let T =
{R1, ..., Rn} be a set of extremal rays of the type (II) on X such that all divisors
D(R1), ..., D(Rn) are different and the graph G(T ) has the type (B) of Theorem
2.2.2. Thus, T = {R} ∪ C1 ∪ ... ∪ Ck, k ≥ 1, where

C1 = {R11, ..., R1n1
}, C2 = {R21, ..., R2n2

}, ..., Ck = {Rk1, ..., Rknk
}

are divisorially disjoint to one another chains, and all arrows between R and ex-
tremal rays of these chains are single arrows Rj1R, j = 1, ..., k.

Then the T cannot be parabolic or Lanner. The T is elliptic if and only if each
chain C1, ..., Ck is one of the chains

An,Bn,Cn,F4,G2

of Theorem 4.2.1.1, weights of single arrows Rj1R, j = 1, ..., k, are arbitrary natural
numbers.

Proof. If T is either elliptic, or parabolic or Lanner, the chains C1, ..., Ck are elliptic
because they give proper subsets of T . By Theorem 4.2.1.1, they have the types
An,Bn,Cn,F4 or G2. One can easily show (see the proof of Theorem 2.2.6) that
then T is elliptic for arbitrary weights of arrows Rj1R which should be natural
numbers. This finishes the proof.

4.2.3. Sets of the type (C).

Theorem 4.2.3.1. Let X be a 3-dimensional Calabi-Yau manifold. Let T =
{R1, ..., Rn} be a set of extremal rays of the type (II) on X such that all divisors
D(R1), ..., D(Rn) are different and the graph G(T ) has the type (C) of Theorem
2.2.6.

Then T is elliptic, parabolic, Lanner or quasi-Lanner if and only if G(T ) is
elliptic, parabolic, Lanner or quasi-Lanner diagram respectively of the Table 4.4
below.

Proof. The corresponding calculations are very simple using (4-1-1).

4.2.4. Sets of the type (D).
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Theorem 4.2.4.1. Let X be a 3-dimensional Calabi-Yau manifold. Let T =
{R1, ..., Rn} be a set of extremal rays of the type (I) or (II) on X such that the
graph G(T ) has the type (D) of Theorem 2.2.6.

Then T is elliptic, parabolic, Lanner or quasi-Lanner if and only if G(T ) is
elliptic, parabolic, Lanner or quasi-Lanner diagram respectively of the Table 4.5
below (we recall that the black vertex corresponds to an extremal ray of the type
(I)).

Proof. The corresponding calculations are very simple using (4-1-1). We remark
that G(T ) without the black vertex should have one of the types An, Bn, Cn, F4

or G2 by Theorem 3.2.1.1 (a).

4.2.5. Sets of the type (E).

Theorem 4.2.5.1. Let X be a 3-dimensional Calabi-Yau manifold. Let T =
{R1, R2, R3} be a set of extremal rays of the type (II) on X such that the graph
G(T ) has the type (E) (triangle or special triangle) of Theorem 2.2.6.

Then T is elliptic, parabolic, Lanner or quasi-Lanner if and only if G(T ) is
elliptic, parabolic, Lanner or quasi-Lanner diagram respectively of the Table 4.6
below.

Proof. The corresponding calculations are very simple using (4-1-1).
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An :©−−−→←−−−©−−−→←−−−© · · · © −−−→←−−−©−−−→←−−−©

Bn :©
−−−→←−−−

2 ©−−−→←−−−© · · · © −−−→←−−−©−−−→←−−−©

Cn :© 2−−−→←−−−©
−−−→←−−−© · · · © −−−→←−−−©−−−→←−−−©

Dn :

©
↑↓
©
↑↓
©

−−−→←−−− © · · · © −−−→←−−− © −−−→←−−− ©

E6 : ©
−−−→←−−− ©

−−−→←−−−©
↑↓
©

−−−→←−−− ©
−−−→←−−− ©

E7 : ©
−−−→←−−− ©

−−−→←−−−©
↑↓
©

−−−→←−−− ©
−−−→←−−− ©

−−−→←−−− ©

E8 : ©
−−−→←−−− ©

−−−→←−−−©
↑↓
©

−−−→←−−− ©
−−−→←−−− ©

−−−→←−−− ©
−−−→←−−− ©

F4 : ©−−−→←−−−© 2−−−→←−−−©
−−−→←−−−©

G2 : © 3−−−→←−−− ©

Table 4.1. Calabi–Yau elliptic diagrams without single arrows
(classical Dynkin diagrams).
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A1(a, b), ab = 4 :
2
©

a
−−−→←−−−

b

b
©

Ãn, n > 1 :

1

1

©
↑↓
·
·
·
↑↓
©

−−−−−−−→←−−−−−−−

−−−−−−−→←−−−−−−−

©
↑↓
·
·
·
↑↓
©

1

1

B̃n :
1
©

−−−→←−−−
2

2
© −−−→←−−−

2
© · · ·

2
© −−−→←−−−

2
© 2−−−→←−−−

1
©

B̃Cn :

1
©

−−−→←−−−
2

2
© −−−→←−−−

2
© · · ·

2
© −−−→←−−−

2
©
−−−→←−−−

2

2
©

C̃n :
1
©

2
−−−→←−−−

1
© −−−→←−−−

1
© · · ·

1
© −−−→←−−−

1
©
−−−→←−−−

2

1
©

B̃Dn :

1

2

1

©
↑↓
©
↑↓
©

−−−→←−−−
2
©· · ·

2
© 2−−−→←−−−

1
© C̃Dn :

1

2

1

©
↑↓
©
↑↓
©

−−−→←−−−
2
©· · ·

2
©
−−−→←−−−

2

2
©

D̃n :

1

2

1

©
↑↓
©
↑↓
©

−−−→←−−−
2
©· · ·

2
© −−−→←−−−

©
↑↓
©
↑↓
©

1

2

1

Ẽ6 :

1
© −−−→←−−−

2
© −−−→←−−−

3
©
↑↓
©
↑↓
©

2

1

−−−→←−−−
2
© −−−→←−−−

1
©

Ẽ7 :
1
© −−−→←−−−

2
© −−−→←−−−

3
© −−−→←−−−

4
©
↑↓
© 2

−−−→←−−−
3
© −−−→←−−−

2
© −−−→←−−−

1
©

Ẽ8 :
2
© −−−→←−−−

4
© −−−→←−−−

6
©
↑↓
© 3

−−−→←−−−
5
© −−−→←−−−

4
© −−−→←−−−

3
© −−−→←−−−

2
© −−−→←−−−

1
©

B̃F4 :

1
© −−−→←−−−

2
© −−−→←−−−

3
© 2−−−→←−−−

2
© −−−→←−−−

1
©

C̃F4 :

2
© −−−→←−−−

4
© 2−−−→←−−−

3
© −−−→←−−−

2
© −−−→←−−−

1
©

ÃG2 :

1
© −−−→←−−−

2
© 3−−−→←−−−

1
© G̃A2 :

1
© −−−→←−−−

2
©
−−−→←−−−

3

3
©

Table 4.2. Calabi–Yau parabolic diagrams without single arrows
(classical extended Dynkin diagrams)
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©
t12
−−−→←−−−
t21

© where t12t21 > 4.

©
t12
−−−→←−−−
t21

©
t23
−−−→←−−−
t32

© where 0 < t12t21 < 4, 0 < t23t32 < 4, t12t21 + t23t32 > 4

©

t12 րւ t21 t32 տց t23

©
t13
−−−→←−−−
t31

©

where
0 < t12t21 < 4, 0 < t23t32 < 4, 0 < t31t13 < 4,
t12t21 + t23t32 + t31t13 > 3

©

↑↓

©

2−−−→←−−−

−−−→←−−−

©

↑↓

©

©

↑↓

©

2−−−→←−−−

2−−−→←−−−

©

↑↓

©

©

↑↓

©

2−−−→←−−−

−−−→←−−−
2

©

↑↓

©

©

↑↓

©

2−−−−−−−−−→←−−−−−−−−−

−−→←−− ©−−→←−−

©

↑↓

©

Table 4.3. Calabi–Yau Lanner diagrams without single arrows
(classical Lanner diagrams).
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t21

©

↓

©

t32
տց t23

t13 րւ t31

©

Elliptic diagram where
t21t13t32 + 2t13t31 + 2t23t32 < 8;

Parabolic diagram where
t21t13t32 + 2t13t31 + 2t23t32 = 8;

Quasi-Lanner diagram where
t13t31 ≤ 4, t23t32 ≤ 4
and t21t13t32 + 2t13t31 + 2t23t32 > 8.

©
↓
©

տց

րւ
© −−−→←−−−© Elliptic diagram.

2
©
↓
©

տց

րւ
©−−−→←−−−© Parabolic diagram.

t21

©

↓

©

t32
տց t23

t13 րւ t31

©
t34
−−−→←−−−
t43

©

Quasi-Lanner diagram where
t13t31 + t34t43 ≤ 4, t23t32 + t34t43 ≤ 4,
t21t13t32 + 2t13t31 + 2t23t32 ≤ 8,
t21t13t32 + 2t13t31 + 2t23t32 + 2t34t43 > 8.

©
↓
©

տց

րւ
©−−−→←−−−©−−−→←−−−© Elliptic diagram

©
↓
©

տց

րւ
©−−−→←−−−©

t45
−−−→←−−−
t54

©
Lanner diagram
where t45t54 = 2.

2
©
↓
©

տց

րւ
©−−−→←−−−©

t45
−−−→←−−−
t54

©
Quasi-Lanner diagram
where 1 ≤ t45t54 ≤ 2.

©
↓
©

տց

րւ
©−−−→←−−−©−−−→←−−−©−−−→←−−−© Elliptic diagram.

©
↓
©

տց

րւ
©−−−→←−−−©−−−→←−−−©

t45
−−−→←−−−
t54

©
Lanner diagram
where t45t54 = 2.

©
↓
©

տց

րւ
©−−−→←−−−©−−−→←−−−©−−−→←−−−©

t45
−−−→←−−−
t54

©
Quasi-Lanner diagram
where t45t54 = 2.

Table 4.4. Calabi-Yau diagrams of the type (C).
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A•
n(k; a, b) :

−k
•

a
−−−→←−−−

b
©−−−→←−−−© · · · ©−−−→←−−−©

Elliptic diagram iff ab < k(n + 1)/n. Parabolic diagram iff ab = k(n + 1)/n.
Quasi-Lanner diagram iff kn/(n− 1) ≥ ab > k(n + 1)/n; in particular, n ≤ k + 1.
Lanner diagram iff kn/(n−1) > ab > k(n+1)/n; in particular, n ≤ 2 for 1 ≤ k ≤ 3.

B•
n(k; a, b)1 :

−k
•

a
−−−→←−−−

b
©−−−→←−−−© · · · ©−−−→←−−−© 2−−−→←−−− ©

C•
n(k; a, b)1 :

−k
•

a
−−−→←−−−

b
©−−−→←−−−© · · · ©−−−→←−−−©

−−−→←−−−
2 ©

Elliptic diagram iff ab < k. Parabolic diagram iff ab = k. Quasi-Lanner diagram
iff kn/(n− 1) ≥ ab > k; in particular, n ≤ k + 1. Lanner diagram iff kn/(n− 1) >
ab > k; in particular, n < k + 1.

B•
n(k; a, b)2 :

−k
•

a
−−−→←−−−

b
©
−−−→←−−−

2 ©−−−→←−−−© · · · ©−−−→←−−−©

C•
n(k; a, b)2 :

−k
•

a
−−−→←−−−

b
© 2−−−→←−−− ©

−−−→←−−−© · · · ©−−−→←−−−©

Elliptic diagram iff ab < 2k/n. Parabolic diagram iff ab = 2k/n. Quasi-Lanner
diagram iff 2k/(n− 1) ≥ ab > 2k/n; in particular, n ≤ 2k + 1. Lanner diagram iff
2k/(n− 1) > ab > 2k/n; in particular, n ≤ 2 for 1 ≤ k ≤ 3.

F•
4(k; a, b)1 :

−k
•

a
−−−→←−−−

b
©−−−→←−−−© 2−−−→←−−− ©

−−−→←−−−©

F•
4(k; a, b)2 :

−k
•

a
−−−→←−−−

b
©−−−→←−−−©

−−−→←−−−
2 ©−−−→←−−−©

Elliptic diagram iff ab < k/2. Parabolic diagram iff ab = k/2. Quasi-Lanner
diagram iff k ≥ ab > k/2. Lanner diagram iff k > ab > k/2.

G•
2(k; a, b)1 :

−k
•

a
−−−→←−−−

b
© 3−−−→←−−− © G•

2(k; a, b)2 :
−k
•

a
−−−→←−−−

b
©
−−−→←−−−

3 ©

Elliptic diagram iff ab < k/2. Parabolic diagram iff ab = k/2. Quasi-Lanner
diagram iff k ≥ ab > k/2. Lanner diagram iff k > ab > k/2.

Table 4.5. Calabi–Yau diagrams of the type (D)
( n is equal to the number of white vertices).
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©

t12 ր ց t23

©
t13
−−−→←−−−
t31

©

Elliptic where
t12t23t31 + 2t13t31 < 8

Parabolic where
t12t23t31 + 2t13t31 = 8

Lanner where
t13t31 < 4 and t12t23t31 + 2t13t31 > 8

Quasi-Lanner where
t13t31 ≤ 4 and t12t23t31 + 2t13t31 > 8

©

t12 ր ց t23

© ←−−−−−− ©

t31

Elliptic where
t12t23t31 < 8

Parabolic where
t12t23t31 = 8

Lanner where t12t23t31 > 8

Table 4.6: Calabi-Yau triangle and special triangle diagrams.

4.3. Basic results on Calabi-Yau 3-dimensional manifolds.
To prove our main results about Calabi-Yau 3-dimensional manifolds, we use

our results above (especially, Basic Theorems 1.3.2 and 3.2 and Theorem 2.2.6)
and the result of V.V. Shokurov about the length of extremal rays of the type (I)
on Calabi-Yau manifolds (see Appendix of V.V. Shokurov).

Theorem 4.3.1 (by the author and V.V. Shokurov). Let X be a 3-dimensional
Calabi-Yau manifold and ρ(X) > 40.

Then one of two cases (i) or (ii) below hold:
(i) There exists a small extremal ray on X.
(ii) There exists a nef element h such that h3 = 0 (thus, the nef cone NEF (X)

and the cubic intersection hypersurface WX have a common point; here, we don’t
claim that h is rational!).

Proof. Assume that X does not have a nef element h with h3 = 0. Since, by
Wilson [W1] and [W2], the NEF (X) is locally rational polyhedral awayWX , using
compactness arguments, we get that NEF (X) is rational finite polyhedral. It
follows that the NE(X) is rational finite polyhedral. Thus, Theorem 4.3.1 follows
from

Theorem 4.3.1’. Let X be a 3-dimensional Calabi-Yau manifold with the finite
rational polyhedral cone NEF (X) (equivalently, NE(X)). Let us assume that X
does not have a small extremal ray and a nef rational element h such that h3 = 0
(equivalently, all faces of NE(X) have Kodaira dimension 3). Then we have the
following statements (1), (2) and (3) about X:

(1) X does not have a pair of extremal rays of the type B2 and NE(X) is
simplicial;

(2) X has ≤ 2 extremal rays of the type (I) (more generally, k + (n1 − 1) + ... +
(nl − 1) ≤ 2 with notations of Theorem 3.1);
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(3) (by the author and V.V. Shokurov) The Picard number ρ(X) = dim N1(X) ≤
4k + 5l2 + 29 ≤ 40.

Proof. From the statement (1) of Theorem 1.3.2, the statement (1) follows.
Let E be an extremal set of Kodaira dimension 3 of extremal rays of the type

(I) or (II) on X . By Proposition 1.2.1, the E is elliptic. By Theorem 2.2.6 and
calculations of Section 4.2, the graph G(E) is one of elliptic graphs of the Tables
4.1, 4.4, 4.5, 4.6 and Theorem 4.2.2.1.

In particular, #E ≤ 2 if E contains extremal rays of the type (II) and the graph
G(E) is full (i.e. any two vertices are joined by non-single arrows). Thus, for
the constant q(X) of Basic Theorems 1.3.2 and 3.2 (see Definition 1.3.1), we have
q(X) ≤ 2. By Theorems 1.3.2, (2) and 3.2, (2) we get the statement (2).

Now let us estimate ρ(X). To demonstrate how Basic Theorems 1.3.2, (3) and
3.2, (3) do work, we first give worse estimates for ρ(X) which give these general
Theorems.

First, let us apply Theorem 1.3.2, (3).
Considering Tables 4.1, 4.4, 4.5 and 4.6, one can easily see that for d ≥ 2, we

have (where we take the distance in the graph G(E)):

♯{(R1, R2) ∈ E × E | 1 ≤ ρ(R1, R2) ≤ d} ≤ C1(d)♯E ;

and

♯{(R1, R2) ∈ E × E | d + 1 ≤ ρ(R1, R2) ≤ 2d + 1} ≤ C2(d)♯E .

where

(4-3-1) C1(d) ≤ 2d, C2(d) ≤ 2(d + 1).

Let L be an E-set on X . Since all extremal rays on X are of the type (I) or (II)
and X does not have a pair of extremal rays of the type B2, the L is Lanner by
Lemma 1.2.11. Using calculations of Section 4.2, we then get that the diameter

diam (G(L)) ≤ 4.

Here the maximum diam (G(L)) = 4 we get for the Lanner diagram with 6 vertices
of the Table 4.4 and the Lanner diagrams F•

4(k; a, b)1 and F•
4(k; a, b)2 of the type

(D) of the Table 4.5. Thus, the constant d(X) of Basic Theorem 1.3.2 has the
estimate d(X) ≤ 4. Here, for Lanner diagrams of the type (D) (Table 4.5), we use
the result of V.V. Shokurov (see Appendix): for an extremal ray R of the type (I)
on X , there exists a curve C ∈ R such that C ·D(R) = −k where 1 ≤ k ≤ 3. By (4-
3-1), we can apply Theorem 1.3.2 with the constants C1(X) = 8 and C2(X) = 10.
By Theorem 1.3.2, we get ρ(X) = dim N1(X) ≤ (16/3)C1(X) + 4C2(X) + 6 =
(16/3) ·8+4 ·10+6 = 88+2/3 < 89. Thus, Basic Theorem 1.3.2 gives the estimate

ρ(X) ≤ 88.

Now let us apply Basic Theorem 3.2, (3). Similar considerations give constants:

n(X)D ≤ 4, n(X)C ≤ 5, n(X)A ≤ 4, d(X)A ≤ 2, C(X)A ≤ 5.
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Thus, by Basic Theorem 3.2, (3),

ρ(X) ≤ 4k + 5l2 + 8 · 5 + 6 = 4k + 5l2 + 46,

and
ρ(X) ≤ 56.

(since k + l ≤ q(X) = 2).
To get the strong estimate

ρ(X) ≤ 4k + 5l2 + 30 ≤ 40,

we should change for this case the proof of the statement (3) of Basic Theorem 3.2.
We should change the definition (3-3) of the weight σA(∠) of oriented angles of γ

according to É.B. Vinberg [V1, §6, Sect. 1]. We denote this new weight as σAV (∠).
This is the following: We consider the extremal set R(∠)′ (see Definition 3.1)

and connected components of the graph G(R(∠)′). This graph contains non-single
arrows only and this connected components have types

An,Bn,Cn,Dn,E6,E7,E8,F4,G2

by Theorem 3.2.1.1, (a).
The weight σAV (∠) is non-negative. It is not equal to zero only if both extremal

rays R1(∠), R2(∠) belong to one connected component S of the graph G(R(∠)′)
and we have one of five cases below:

(I) ρA(R1(∠), R2(∠)) = 1 (i.e. R1(∠) and R2(∠) are adjoined in G(S);
(II) the connected component S contains ≤ 7 vertices;
(III) the connected component S is classical (i.e. it has the type An, Bn, Cn

or Dn) and R1(∠), R2(∠) belong to the terminal interval of the order ≤ 6 of G(S)
(for S of the type Dn, n ≥ 5, by definition, the terminal interval is a connected
subgraph of G(S) which contains a terminal vertex of S and is invariant relative to
the involution automorphism of Dn.

(IV) S has the type E8 and the pair R1(∠), R2(∠) is different from pairs of
vertices of E8 below marked by ⊗:

©
−−−→←−−− ©

−−−→←−−−©
↑↓
⊗

−−−→←−−− ©
−−−→←−−− ⊗ −−−→←−−− ©

−−−→←−−− ©

©
−−−→←−−− ©

−−−→←−−−©
↑↓
⊗

−−−→←−−− ©
−−−→←−−− ©

−−−→←−−− ⊗ −−−→←−−− ©

©
−−−→←−−− ©

−−−→←−−−©
↑↓
⊗

−−−→←−−− ©
−−−→←−−− ©

−−−→←−−− ©
−−−→←−−− ⊗

©
−−−→←−−− ©

−−−→←−−−©
↑↓
©

−−−→←−−− ⊗ −−−→←−−− ©
−−−→←−−− ©

−−−→←−−− ⊗

The weight σAV (∠) = 1 if
(V) S has ≤ 4 vertices.
In all other cases (I)–(IV) above, σAV (∠) = 1/2.
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Now we should check conditions of Vinberg’s Lemma 3.7 with the constants
C = 3 and D = 0 which gives the desirable estimate: dim γ < 30.

The proof of the condition (1) is very similar to Vinberg [V1, §6, Sect. 2] and is
not difficult.

To prove the condition (2), one should also follow to Vinberg [V1, §6, Sects.
3—12]. For our case, elliptic diagrams are only ”crystallographic”, i. e. of the
types

An,Bn,Cn,Dn,E6,E7,E8,F4,G2,

and E-sets (or Lanner diagrams) have only types of Table 4.3. One should follow
to Vinberg step by step (we should say that his considerations are long and very
delicate, and it is a hard work), and check that in fact for our ”crystallographic
case” he uses only two arguments which work for our situation: There do not exist a
configuration of extremal rays of the type (II) with one of extended Dynkin diagram
of Table 4.2, because then some linear combination of divisors of these rays gives
a nef element with zero cube. Besides, two non-extremal sets of extremal rays of
the type (I) or (II) cannot be orthogonal (Lemma 3.4).

Only for the ”non-crystallographic case”, Vinberg uses superhyperbolicity argu-
ments which probably do not work for our situation.

This finishes the proof of Theorem.

5. Q-factorial models of Calabi-Yau 3-folds.
Applying Diagram Method to an arbitrary 3-dimensional Calabi-Yau manifold

X , we have to avoid two problems: Mori cone NE(X) may not be finite polyhedral,
and X may have small extremal rays. Here we want to discuss one possibility to
avoid these problems and involve non-polyhedral case and small extremal rays to
the game.

One can make several transformations (i) and (ii) below:
(i) Contraction of a divisorial extremal ray.
(ii) Flop in a small extremal ray.
Repeating this operations, we get some 3-fold Y . The 3-fold Y still has the most

important for us properties: Y has Q-factorial (canonical) singularities and belongs
to the class LT . See Kawamata [Ka2] and Shokurov [Sh2].

Definition 5.1. A 3-fold Y one can get starting from a 3-dimensional Calabi-Yau
manifold X and repeating transformations (i) and (ii) is called a Q-factorial model
of the Calabi-Yau manifold X .

Considering Q-factorial models, we get a chance to avoid cases when either Mori
cone is not finite polyhedral or there exists a small extremal ray. If the Q-factorial
model Y has a finite polyhedral Mori cone and does not have a small extremal
ray, we can apply Diagram Method to Y to find a rational nef element h on Y
with cube 0. By the way, using the statement (1) of Basic Theorem 1.3.2, we can
prove that transformations (i) and (ii) do not make situation worse from Diagram
Method point of view.

Lemma 5.2. Let Y be a Q-factorial model such that we have properties (a), (b)
and (c) below:

(a) NE(Y ) is finite polyhedral;
(b) Y does not have a small extremal ray;
(c) Y does not have a rational nef element h with h3 = 0.
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Then, starting from Y , repeating of transformations (i) and (ii) preserves prop-
erties (a), (b) and (c).

Proof. Let us consider a contraction f : Y → Y ′ of a divisorial extremal ray R on
Y . One easily can see that Y ′ has properties (a) and (c) if Y has these properties.
Besides, if Y does not have a small extremal ray, then Y ′ has a small extremal ray
only if the divisor D(R) contains another divisorial extremal ray Q. The image of
Q then gives a small extremal ray on Y ′. Thus, R and Q define a pair of the type
B2 on Y . This is impossible by Theorem 1.3.2, (1).

If Y does not have a small extremal ray, then Y does not have a flop and one
does not have the transformation (ii).

We suggest the following

Conjecture 5.3. There are absolute constants q, d, C1, C2, nD, nC , nA, dA, CA

such that for any 3-dimensional Calabi-Yau manifold X and any its Q-factorial
model Y we have estimates q(Y ) ≤ q, d(Y ) ≤ d, C1(Y ) ≤ C1 and C2(Y ) ≤ C2

for invariants of Definition 1.3.1, and n(Y )D ≤ nD, n(Y )C ≤ nC , n(Y )A ≤ nA,
d(X)A ≤ dA and C(X)A ≤ CA for invariants of Definition 3.1.

If this conjecture does hold, applying Theorems 1.3.2 and 3.2, we get an absolute
estimate for ρ(Y ) if Y satisfies conditions (a), (b) and (c). Equivalently, if X has
a Q-factorial model Y with a finite polyhedral Mori cone, without small extremal
rays and with big ρ(Y ), then Y has a rational nef element with cube zero. One can
think that existence of rational nef element with cube 0 for a Q-factorial model Y
of X is of similar importance as for X .

Unfortunately, now we can prove Conjecture 5.3 only for very special Q-factorial
models Y .

We can consider part of results of Sect. 4, as the proof of Conjecture 5.3 for
non-singular models (i.e. for 3-dimensional Calabi-Yau manifolds).

It is possible to extend these results for more large class of models which are still
very special.

Definition 5.4. A Q-factorial model Y of a 3-dimensional Calabi-Yau manifold is
called very good if there exists a 3-dimensional Calabi-Yau manifold X and an ex-
tremal set R = {R1, ..., Rk} of divisorial extremal rays on X with different divisors
D(R1), ..., D(Rk) such that we have the following properties (i) and (ii):

(i) Y is a contraction f : X → Y of the face γ = R1 + ... + Rk of NE(X);

(ii) For any divisorial extremal ray R of Y there exists a divisorial extremal ray

R̃ of X such that R = f(R̃). This means that for the contraction fR : Y → Y ′ of

R, the composition fR · f : X → Y ′ is the contraction of the face R1 + ...+Rk + R̃.

We have

Theorem 5.5. Let Y be a very good Q-factorial model of a 3-dimensional Calabi-
Yau manifold. Then Y has constants

q(Y ) ≤ 3, d(Y ) ≤ 8, C1(Y ) ≤ 16, C2(Y ) ≤ 18,

and

n(Y )D ≤ 8, n(Y )C ≤ 9, n(Y )A ≤ 9, d(Y )A ≤ 8, C(Y )A ≤ 17.
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In particular, by Theorem 1.2.3, Y has ≤ 3 extremal rays of the type (I) and

ρ(Y ) ≤ (16/3)C1(Y ) + 4C2(Y ) + 6 < 164

if Y satisfies conditions (a), (b) and (c).

Considering preimage of the nef element on Y with cube 0, we get

Corollary 5.6. Let X be a Calabi-Yau manifold X which has a very good Q-
factorial model Y such that Y has a finite polyhedral Mori cone NE(Y ) and Y does
not have a small extremal ray.

Then X has a rational nef element h with h3 = 0 if ρ(Y ) ≥ 164.

Sketch of the proof of Theorem 5.5. We use notation of Definition 5.4. For a set
Q of divisorial extremal rays on Y , we denote f−1(Q) = {R1, ..., Rk} ∪ Q̃ where

Q̃ = {R̃ | R ∈ Q}. The set f−1(Q) is called the preimage of Q and Q̃ is called the
proper preimage of Q.

Next general statements will be very useful.

Lemma 5.7. Let E be an elliptic set of divisorial extremal rays on Y . Then f−1(E)
is elliptic.

Proof. Let E = {Q1, ..., Qt}. Since E is elliptic, there are positive a1, ..., at such
that Qj · (a1D(Q1) + · · ·+ atD(Qt)) < 0 for all 1 ≤ j ≤ t. By Lemma 1.2.2, the set
{R1, ..., Rk} is elliptic. Hence, there are positive b1, ..., bk such that Ri · (b1D(R1)+
· · ·+ bkD(Rk)) < 0 for all 1 ≤ i ≤ k. Evidently,

f∗(a1D(Q1)+ · · ·+atD(Qt)) = c1D(R1)+ · · ·+ckD(Rk)+a1D(Q̃1)+ · · ·+atD(Q̃t)

with non-negative c1, ..., ck. By projection formula,

Ri · (c1D(R1) + · · ·+ ckD(Rk) + a1D(Q̃1) + · · ·+ atD(Q̃t)) = 0

for all 1 ≤ i ≤ k, and

Q̃j · (c1D(R1) + · · ·+ ckD(Rk) + a1D(Q̃1) + · · ·+ atD(Q̃t)) =

=Qj · (a1D(Q1) + · · ·+ atD(Qt))) < 0.

It follows that for a small ǫ > 0 the divisor

D(f−1(Q)) = ǫ(b1D(R1) + · · ·+ bkD(Rk))+

+ c1D(R1) + · · ·+ ckD(Rk) + a1D(Q̃1) + · · ·+ atD(Q̃t)

has positive coefficients and has negative intersection with each element of f−1(Q).
Thus, f−1(Q) is elliptic.

Lemma 5.8. Let L be a Lanner set of divisorial extremal rays on Y . Then f−1(L)

contains a quasi-Lanner subset L′ such that L̃ ⊂ L′ and such that for any non-empty
subset U ⊂ L̃ the set {R1, ..., Rk} ∪ (L′ − U) is elliptic.

Proof. Let L = {Q1, ..., Qt}. Since L is Lanner, there are positive a1, ..., at such
that Rj ·(a1D(Q1)+· · ·+atD(Qt)) ≥ 0 for all 1 ≤ j ≤ t and one of these inequalities
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is strict. Evidently, f∗(a1D(Q1) + · · · + atD(Qt)) = b1D(R1) + · · · + bkD(Rk) +

a1D(Q̃1) + · · ·+ atD(Q̃t) where bj ≥ 0. By projection formula,

R · (b1D(R1) + · · ·+ bkD(Rk) + a1D(Q̃1) + · · ·+ atD(Q̃t)) ≥ 0

for any R ∈ f−1(L), and one of these inequalities is strict. Thus, the set f−1(L)
is not semi-elliptic. By Proposition 2.2.8, f−1(L) contains a quasi-Lanner subset
L′. Since each proper subset of L is elliptic, by Lemma 5.7 any subset of f−1(L) is

elliptic if it does not contain L̃. It follows that L̃ ⊂ L′ and {R1, ..., Rk} ∪ (L′ − U)

is elliptic if U is a non-empty subset of L̃.

Let us continue the proof of Theorem.
Let L be an E-set of divisorial extremal rays on Y such that any proper subset

of L is extremal of Kodaira dimension 3 and L satisfies the condition (iii) of Sect.

1.1. By results of Sect. 1.2, the set L is Lanner. By Lemma 5.8, L̃ ⊂ L′ where L′

is a quasi-Lanner set of divisorial extremal rays on X . Considering image of L′ by
the morphism f , one sees that

diam L ≤ diam L′.

Any proper subset of L′ is either elliptic or connected parabolic (see Proposition
2.2.8). Using Theorem 2.2.6 and description in Sect. 4 of elliptic and connected
parabolic sets of divisorial extremal rays on 3-dimensional Calabi-Yau manifolds,
one can describe possible graphs of quasi-Lanner sets of divisorial extremal rays on
X . In particular, one can see that

♯L′ ≤ 10, diam L′ ≤ 8

for any quasi-Lanner set L′ of divisorial extremal rays on a Calabi-Yau 3-dimensional
manifold X (compare with [P, Fig. 1]). It follows that n(Y )A ≤ 9 and

d(Y ) ≤ 8.

By Theorem 2.2.6, we also get n(Y )D ≤ 8 and n(Y )C ≤ 9.
Now let us consider an extremal set E of Kodaira dimension 3 of divisorial

extremal rays on Y . The set f−1(E) is also extremal of Kodaira dimension 3 and
contains R = {R1, ..., Rk}. For Q1, Q2 ∈ E we have

ρ(Q1, Q2) = ρR(Q̃1, Q̃2)

where ρ(Q1, Q2) is the distance in the oriented graph G(E) and

ρR(Q̃1, Q̃2) = min
γ

(ρ(γ)− v(γ ∩R))

where γ is an oriented path in G(f−1(E)) joining Q̃1 and Q̃2 and v(γ ∩ R) is the
number of vertices of γ which belong to R.

Using description in Sect. 4 of graphs of elliptic (in particular, extremal of
Kodaira dimension 3) sets of divisorial extremal rays on X , one obtains that q(Y ) ≤
3, C1(Y ) ≤ 16, C2(Y ) ≤ 18, C(Y ) ≤ 17. This finishes the proof.

We hope to describe more precisely quasi-Lanner sets of divisorial extremal rays
on 3-dimensional Calabi-Yau manifolds and give better estimates for Theorem 5.5
and Corollary 5.6 in more advanced variant of this preprint.

We give another interesting application of Theorem 5.5.
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Corollary 5.9. Let X be a 3-dimensional Calabi-Yau manifold and Mori cone
NE(X) is generated by a finite set of divisorial extremal rays. Let γ be a face of
nef cone NEF (X) and R(γ⊥) the set of all extremal rays orthogonal to γ. Assume
that R(γ⊥) does not contain an extremal ray which belongs to a pair of the type B2.
Then γ contains a rational nef element h with h3 = 0 if dim γ > 163.

Proof. Let R = R(γ⊥) and f : X → Y the contraction of the face γ⊥ ⊂ NE(X)
generated by R. Since R does not have pairs of extremal rays of the type B2,
the morphism f is a sequence of contractions of divisorial extremal rays which are
images of extremal rays from R. Then Y has Q-factorial singularities (canonical)
and γ = f∗(NEF (Y )). Since NE(X) is generated by a finite set of divisorial
extremal rays and R does not have an extremal ray which belongs to a pair of the
type B2, one sees that Y does not have a small extremal ray and is a very good
Q-factorial model of X with Mori cone NE(Y ) generated by a finite set of divisorial
extremal rays. If we additionally assume that NEF (Y ) (equivalently γ) does not
have a nef element with cube 0, dim γ = dim NEF (Y ) < 164 by Theorem 5.5.

At last, we mention the following conjecture by D. Morrison which is connected
with the condition (a) above on Mori cone.

Conjecture 5.10. (by D. Morrison, [Mor2]). For a Calabi-Yau manifold X, the
nef cone NEF (X) is rational finite polyhedral modulo the group Aut X of biregular
automorphisms of X. In particular, NEF (X) and Mori cone NE(X) are rational
finite polyhedral if Aut X is finite.

For example, the automorphism group Aut X of a 3-dimensional Calabi-Yau
manifold X is finite if the cubic intersection hypersurface WX is non-singular.

6. Concluding remarks.
We want to give several remarks about importance of existence of rational nef

elements with cube 0 for Calabi-Yau 3-folds.
I.I. Piatetski-Shapiro and I.R. Shafarevich [PS̆-S̆] proved that a K3 surface X

has a rational nef element h ∈ Pic X with h2 = 0 if and only if the Picard lattice
Pic X represents 0, i. e. there exists 0 6= x ∈ Pic X such that x2 = 0. In particular,
this is true if ρ(X) = dim Pic X ≥ 5. Moreover, they proved that the linear system
|h| defines the elliptic fibration |h| : X → P1 (i.e. the general fiber is an elliptic
curve) if h ∈ Pic X is nef and h2 = 0.

One can ask about similar fact for Calabi-Yau 3-folds:

Question 6.1. Does exist a rational nef element h with h3 = 0 for a 3-dimensional
Calabi-Yau manifold X if ρ(X) = dim N1(X) is sufficiently big?

Affirmative answer to this question is important because of two results below.

Theorem 6.2. (P.M.H. Wilson, [W1,(3.2)’]). Let X be a 3-dimensional Calabi-
Yau manifold and h a rational nef element with h3 = 0. Assume that h2 6≡ 0 and
h · c2(X) > 0. Then for a big N , the linear system |Nh| defines an elliptic fibration
|Nh| : X → S (i.e. S is a surface and the general fiber is an elliptic curve).

Here the condition h2 6≡ 0 is equivalent to that Ch is not a singular point of the
cubic intersection hypersurface PWX . By Y. Miyaoka [Mi], we have the inequality
NEF (X) · c2(X) ≥ 0. Thus, for the ”general case” when the cubic intersection
hypersurface PWX is non-singular and NEF (X) ·c2(X) > 0, existence of a rational
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nef element with cube 0 gives existence of an elliptic fibration. Thus, for this
”general case”, Theorems 4.3.1, 4.3.1’ and Theorem 5.5 give existence of an elliptic
fibration on Calabi-Yau manifolds under appropriate conditions. If either cubic
intersection hypersurface PWX is singular or one only has the non-strict condition
NEF (X) · c2(X) ≥ 0, Corollary 5.9 is useful to satisfy conditions of Theorem
6.2, since Corollary 5.9 gives existence of rational nef elements h with cube 0 in
”many” faces of the nef cone NEF (X). We mention that it is conjectured that
the condition h · c2(X) > 0 is not essential for the existence of the elliptic fibration
|Nh|, see [W3]. By K. Oguiso [O], the linear system |Nh| defines either elliptic or
K3 or Abelian surface fibration if |Nh| is not empty and N is big.

Existence of an elliptic fibration for a Calabi-Yau 3-fold (this Calabi-Yau 3-fold
is called elliptic ) is important because of the following result:

Theorem 6.3. (M. Gross, [Gro]). There exists a finite set of families X1 →
M1, ...,Xn →Mn of elliptic Calabi-Yau 3-folds with Q-factorial terminal singular-
ities such that each elliptic Calabi-Yau 3-fold X with Q-factorial terminal singular-
ities is birationally isomorphic to a fiber of one of these families. (Here all families
and isomorphisms preserve elliptic fiber structure.)

See also connected results by I. Dolgachev and M. Gross [D-Gro] and A. Grassi
[Gra].

Because of these Theorems 6.2. and 6.3 and results of this paper, one can
think that may be classification of Calabi-Yau 3-folds is simpler for the high Picard
number.



52 VIACHESLAV V. NIKULIN

References

[D-Gro] I. Dolgachev and M. Gross, Elliptic three-folds I: Ogg-Shafarevich theory, Preprint Ann

Arbor (1993).

[Gra] A. Grassi, Log contractions and equidimensional models of elliptic threefolds, Preprint
MSRI (1993).

[Gro] M. Gross, A finiteness theorem for elliptic Calabi-Yau three-folds, Preprint MSRI
(1993).

[Hu] B. Hunt, A bound on the Euler number of certain Calabi-Yau threefolds, J. reine und

angew. Math. 411 (1990), 137-170.

[Ka1] Yu. Kawamata, The cone of curves of algebraic varieties, Ann. of Math. 119 (1984),

no. 2, 603–633.

[Ka2] , Crepant blowing-up of 3-dimensional canonical singularities and its application

to degeneration of surfaces, Ann. of Math. 127 (1988), 93–163.

[Ka3] , Boundness of Q-Fano threefolds, Preprint (1989).

[Mi] Y. Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, Adv. St.

Pure Math. 10 (1987), 449–476.

[Mo1] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of
Math. 116 (1982), no. 2, 133–176.

[Mo2] , Flip theorem and the existence of minimal models for 3-folds, Journal of Amer.

Math. Society 1 (1988), no. 1, 117–253.

[Mo–Mu] S. Mori and S. Mukai, On Fano 3-folds with B2 ≥ 2, Algebraic varieties and Analytic

varieties (Tokyo, 1981), Adv. Studies in Pure Math., vol. 1, Kinikuniya, Tokyo, 1983,
pp. 101–129.

[Mor1] D. R. Morrison, The birational geometry and surfaces with rational double points, Math.

Ann. 271 (1985), 415-438.

[Mor2] , Compactification of moduli spaces inspired by mirror symmetry, Astérisque
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Appendix by V.V. Shokurov: Anticanonical boundedness for curves

The purpose of this note is to generalize slightly results of [K].

Theorem. Let f : X → S be a projective morphism of normal algebraic varieties
over a field of characteristic zero, and D be an effective R-divisor on X such that
KX + D is R-Cartier and divisorially log terminal near the generic points of a
subvariety E, consisting of components of the degenerate locus

Exc(f): = {x ∈ X | g is not finite at x}.

Then E is covered by a family (possibly disconnected) of effective 1-cycles {Cλ}/S
with (−KX − D.Cλ) ≤ 2n where n = dim E/S (and even < 2n if KX + D is
Kawamata log terminal in the generic points of E and X 6= E). Moreover, we could
assume that the generic 1-cycles Cλ are curves, i.e., reduced and irreducible, when
KX + D is numerically definite, and the curves Cλ with (KX + D.Cλ) < 0 (resp.
≤ 0) are rational.

The Theorem implies the following results.

Corollary 1. If, in addition, F is an R-Cartier divisor such that KX + D + F
is also divisorially log terminal near the generic points of E, D + F is effective,
and KX + D is numerically semi-negative with respect to f , then E is covered by a
family (possibly disconnected) ofCKWARD E effective 1-cycles {Cλ}/S (resp. with
the curves as generic members when KX + D + F is numerically definite) with

(F.Cλ) ≥ −2n

(resp. > −2n if KX + D + F is Kawamata log terminal in the generic points of E,
and X 6= E).

For example, let f be an extremal divisorial contraction of a normal variety
X with the exceptional Q-Cartier divisor F = E = Exc(f), and KX numerically
semi-negative for f . Then we cover F by a family of rational curves {Cλ}/S with

(F.Cλ) ≥ −2 dim X + 2.

In the low dimensional case, i.e., when dim X ≤ 3 we have a more sharp inequality
≥ − dim X. This is the best bound but it is known only in that case. (See Remark
3 below.)

Proof. According to the Theorem, take a family of 1-cycles {Cλ}/S with respect
to the second log divisor KX + D + F . Then

(−KX −D.Cλ)− (F.Cλ) = (−KX −D − F.Cλ) ≤ 2n

(resp. < 2n if KX + D + F is Kawamata log terminal in the generic points of E,
and X 6= E). But we assume that (−KX − D.Cλ) ≥ 0 which gives the required
inequality.�
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Corollary 2 ([Ko1], cf. also [K]). Let f : X → S be a projective morphism of
normal algebraic varieties over a field of characteristic zero, and D be an effective R-
divisor on X such that KX +D is R-Cartier, let H be an f -ample R-Cartier divisor
and ε > 0. Then the number of extremal contractions contR and corresponding rays
R such that KX + D is

(*) divisorially log terminal near a generic point of the degenerate fibers of contR,

and such that (KX + D + εH.R) < 0, is finite.

Thus the half-cone (KX + D.R) < 0 of the Kleiman-Mori cone NE(X/S) is
locally polyhedral when (*) holds for all extremal rays in it, including the existence
of the extremal contractions contR.

In particular, if X is normal projective with isolated singularities, and Q-Goren-
stein, we have at most finite number of extremal contractions which are negative
for KX + εH (cf. [Ko2, Th.]). Note that this does not mean that the half-cone
(KX + D.R) < 0 is always locally polyhedral. This means only, that whenever this
fails, there exists an extremal non-contracted ray R with (KX + D.R) < 0.

Proof. See [K].�

Conjecture. In the Theorem we may replace the divisorially log terminal property
near by the log canonical one in and always find a family {Cλ}/S of curves. Note
that, even in the definite case either we consider a covering of the generic points
of E, or we admit effective 1-cycles as curves Cλ for degenerations. Nevertheless in
this case we abuse terminology and say on a covering by curves.

We should have even more.

Theorem′. The Conjecture implies Corollaries 1-4 with the divisorially log ter-
minal property near replaced by the log canonical one in and effective 1-cycles by
curves.

If dim X ≤ 3 the Conjecture and the improved corollaries holds.

Heuristic Arguments. Here we deduce the Conjecture and, in particular, the
Theorem using the LMMP (the Log Minimal Model Program). Thus this proves
the Theorem and Theorem′ for dim X ≤ 3 [Sh3]. For all dimensions, a proof of
the Theorem refines [K] and [MM], and will be given later.

First, we discuss what means the log canonicity (or terminality) in a generic
point of a subvariety E ⊆ X . A generic point P is one of its irreducible components.
The log divisor KX + D is log canonical (resp. log terminal, purely log terminal,
or Kawamata log terminal) in P if KX + D possesses that property in a generic
point of P in a naive sense. A more rigorous point of view means that for the log
discrepancies ai of the divisors Ei such that the center c(Ei) = P , we have the log
canonical property ai ≥ 0 (resp. in addition, ai > 0 for such exceptional divisors
Ei of one log nonsingular resolution over a neighborhood of the generic point P ;
ai > 0 for all such exceptional divisors Ei; or ai > 0 for all such divisors Ei) [Sh2].
Note that the purely log terminal property coincides with Kawamata one if P has
codimension ≥ 2.

A property near means in a neighborhood.
We may assume that E and S are irreducible. For this add also that dim E/S =

dim E − dim f(E) if E is irreducible, and the maximum of such dimensions for
irreducible components of E in general.
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Now we reduce the Theorem to the case when S is a point, i.e., X is a projective
variety with a trivial morphism f : X → pt. . Taking a generic hyperplane section
H on S and replacing X by its inverse image f−1H, we could reduce the problem
to the case when f(E) = p is a point. Note that then n = dim E.

If S 6= p we can add a non-negative multiple of f∗H, where H is a generic
hyperplane section on S through f(E) = p, in such a way that KX + D will be
maximally log canonical in the generic point of E. This means that KX + D is log
canonical in the generic point of E, and for any ε > 0, KX + D + εf∗H is not so.
In other words, there exists a divisor F with the log discrepancy 0 and with the
center E.

In addition, if S 6= p, we may move and split D into a boundary preserving the
log canonical property along E. So, KX +D will be log canonical in a neighborhood
of the generic point of E.

If F = E is a non-exceptional divisor on X , then D has the multiplicity 1 in
E and we use the Adjunction Formula and Effectiveness [Sh2, 3.1 and 3.2.2]. This
reduces to the case when X = Eν and S = p.

Using the LMMP we can do the same in general. For this, we should replace X
by a strict log minimal model g: Y → X of a neighborhood of E with respect to
the log divisor KX +B where a boundary B has multiplicities bi = min {1, di} (cf.
[Sh2, 3.4]). According to the above perturbation of D, D = B in a neighborhood of
the generic point of E. Perhaps after an additional monoidal transform, we can also
assume that F = E is not exceptional on X : = Y . Thereafter we replace KX + D
by f∗(KX + D) = KY + D′, i.e., D is replaced by an divisor D′. D′ is effective
by a construction of log models and by the Negativity of Birational Contractions
[Sh2, 1.1]. The multiplicity of E in D is one by the construction. Here we meet one
annoyance: dim E/S may be higher than n = dim g(E)/S when E is exceptional
for a model g. However in that case we have an additional structure, namely, a
projective Iitaka morphism i = g|E: E → g(E). This means that i is a projective
contraction, and KE + DE = (KX + D)|E is numerically trivial for i. Note that
n = dim E/S = dim i(E). The divisor E itself is a projective variety with a trivial
morphism f : E → pt. . According to the Adjunction and Projection formula, the
above properties of i follows from the assumption that KX + D is maximally log
canonical in E, i.e., D has the multiplicity 1 in E. These imply also that a required
family of curves in E induces that of on a subvariety g(E) of the original X .

Take now X = E. By the construction X is again a normal, projective variety
with a trivial morphism f : X → pt. . In addition, we have an Iitaka morphism
i: X → E with respect to KX + D. Also by the construction and the Adjunction
formula KX + D is log canonical over the generic point of E. After additional
blow ups, we can assume that X is Q-factorial and KX + D is log terminal over
the generic point of E. Since D has multiplicities di > 1 only for prime divisors
Di with i(Di) 6= E, we can drop these components and suppose that KX + D is
strictly log terminal, in particular, D is a boundary on X . However, this can spoil
the Iitaka morphism i, namely, it may appear curves C in fibers of i such that
(KX +D.C) 6= 0. Nevertheless, i will be again the Iitaka morphism over the generic
point of E. This is enough and coherent to the following arguments.

So, we should cover X by a family of curves {Cλ} with (−KX − D.Cλ) ≤ 2n
where n = dim E. Since KX +D is strictly log terminal and X is projective, we can
apply the LMMP to X with the log divisor KX +D. If KX +D is nef, then we take
any family of curves {Cλ} covering X . Otherwise we have an extremal contraction
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g: X → Z. If g has the fiber type, then the generic fiber F of g intersects the generic
fiber of i in a finite set. Therefore, dim F ≤ n = dim E and we can reduce the
problem to fibers in this case. Note also that divisorial contractions and flips only
decrease the intersection (KX + D.Cλ) for the generic curve of a covering family of
X . Thus we can consider later only birational contractions.

If g is birational, we make a divisorial contraction or a flip of X . However, the
exceptional locus F of g intersects the generic fiber of i at most in a finite set.
If it does not intersect, we can make such transform and preserve birationally i.
Otherwise i(F ) = E and F is finite over the generic point of E. In this case, we use
above arguments for E = F and the induction on the dimension of X , since the
above arguments restrict the proof to a divisor. The correspondent Iitaka morphism
is induced by i.

According to the termination of the LMMP, this completes the reduction to the
case when X = E and S = p is a point. Thus X is normal and projective. After an
additional blow ups, we can assume that X is also Q-factorial. Now n = dimX , and
we should cover X by a family of curves {Cλ} with (−KX −D.Cλ) ≤ 2n. Dropping
D, and after an additional blow ups, we can assume that D = 0 and X has only
log terminal or even terminal singularities. In the last case we use the MMP.

If KX is nef, then we take any family of curves {Cλ} covering X . Otherwise we
apply the MMP. According to the termination, after a finite number of extremal
transformation we reduce to the case when X possesses a Fano fibering. Taking
the generic fiber, we get the case when X is a Fano variety having only terminal
singularities. Then the required covering family exists according to Miyaoka and
Mori [MM].

If KX + D is Kawamata log terminal in the generic points of E and X 6= E,
we could replace f∗H by an effective Cartier divisor which is numerically negative
on E, for instance, we could take a generic anti-hyperplane section of E over a
neighborhood of p = f(E). Then subsequent reductions give a stronger inequality
< 2n. �

Below in the proof of the Theorem, [MM] plays the same role. The previous
heuristic arguments can be replaced by the following refinement of [K, Lemma].
We lose some properties stated in the conjecture. This is the price of homological
methods (cf. [Sh3]).

Lemma. Let f : X → Y be a projective morphism of normal algebraic varieties over
a field of characteristic zero, H an R-Cartier divisor on X, D an effective R-divisor,
E an irreducible component of the degenerate locus Exc(f) of f , n = dim E, and
ν: Eν → E the normalization. Suppose that f is finite over the generic point of Y ,
H is nef with respect to f , KX + D is R-Cartier and divisorially log terminal near
the generic point of E and f(E) is a point. Then

(Hn−1.KX + D.E) ≥ ((ν∗H)n−1.KEν )

(and even > if H is ample and KX + D is Kawamata log terminal in the generic
point of E).

Proof. For the non-strong inequality we can use an approximation of H by Q-
Cartier ample divisors. Moreover, we prove the following polylinear inequality

(H1. ... .Hn−1.KX + D.E) ≥ (ν∗H1. ... .ν∗Hn−1.KEν )
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where all Hi’s are nef (and even > if all Hi’s are ample and KX + D is Kawamata
log terminal in the generic points of E. Since any ample R-divisor is a sum of an
ample R-divisor and an ample Q-divisor, we may assume that all ample Hi’s are
Q-Cartier and even Cartier.)

Thus as in [K], we suppose that Y is affine, Hi are very ample, and n = 1, i.e.,
we have no Hi’s and E is a curve.

Since KX + D is divisorially log terminal near the generic point of E, then
Supp D will be log nonsingular near the generic point of E unless KX +D is purely
log terminal near the generic point of E.

In the log nonsingular case D is R-divisor in the generic point of E. Then adding
some small effective Cartier divisor trivial near the generic point of E we preserve
the statement and may assume that D − εF ≥ 0 where ε > 0 and F is an effective
Cartier divisor that coincides with D near the generic point of E. This makes
KX + D Kawamata log terminal near the generic point of E and in particular
purely log terminal near the generic point of E. As a limit for ε → 0 we get the
required inequality.

Thus perturbing D we may assume also that KX + D is purely and even Kawa-
mata log terminal near the generic point of E except the case when E is a divisor,
i.e. X is a surface. The above arguments also work for the last exception.

Since we are working over a field of characteristic zero, we can replace it by C

and replace f by an analytic contraction over a small analytic neighborhood of
p = f(E) in Y .

Suppose that (KX + D.E) ≤ deg KEν . Then there exists a Cartier divisor A0

on E such that deg A0 ≥ (KX + D.E) and H0(Eν, KEν − ν∗A0) 6= 0. As in [K],
we have H0(E, ω(−A0)) 6= 0, and we can extend A0 to a Cartier divisor A on X .
Moreover, we may assume that A −KX − D is nef/Y and A is enough ample/Y
on components of Exc(f) except E. Enough means enough for vanishings below.

According to our assumptions KX + D has nonpositive log discrepancies only
for divisors F the centers of which intersects Y in finite sets.

Since A−KX−D is nef, we have R1f∗IX(A) = 0 where IX is an ideal sheaf of a
subscheme S ⊂ X which intersects E in a finite set. This is by the proof of [KMM,
1.2.5] and the Kawamata log terminality of KX +D near the generic point of E. It
is also important that D is effective,and X is normal. So, any function regular in
codimension 2 on X will be regular everywhere.

According to the construction A is enough ample on S/Y , i.e., for i ≥ 1,
Rif∗OS(A) = 0 by Serre. Therefore the exact sequence

0→ IX(A)→ OX(A)→ OS(A)→ 0

implies the vanishing R1f∗OX(A) = 0.
Now the base change gives that H1(f−1p, A|f−1p) = 0. Again the restriction

sequence
0→ J (A|f−1p)→ Of−1p(A|f−1p)→ OE(A0)→ 0

and Serre vanishing imply the vanishing H1(E, A0) = 0 and we obtain the required
inequality as in [K]. For this note that the support of the ideal sheaf J intersects
E at most in one-dimensional set E and we may choose A such that it is enough
ample/Y , i.e., H2(f−1p,J (A|f−1p)) = 0. �

Proof of the Theorem. If M = −ν∗(KX + D) is not f -nef on Eν we have a
curve C/S on Eν with (M.C) < 0. Moreover, for 1-cycle Nν(C)/S with N ≫
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0, (−KX − D.Nν(C)) = (M.NC) ≪ 0. Then it is easy to add to Nν(C) an
effective family of curves/S covering E and such that for the obtained 1-cycles
Cλ/S, (−KX −D.Cλ) < 0 ≤ 2n.

Therefore, we suppose later that M = −ν∗(KX +D) is f -nef on E. Then we can
use the arguments of [K, Proof of the Theorem 1]. The only difference that now M
is nef. Note that we can use [MM] even for a nef divisor M , because the required
inequalities are not strong. Indeed, if M is a limit of ample Q-Cartier divisors Mn

for n→∞. Then the results of [MM] for Mn gives in a limit the same for M .�

Corollary 3 (cf. [K, Th. 2]). For f : X → S and D as in the Theorem, let E be
a subvariety, consisting of components of

Exc(f): ={x ∈ X | an irreducible component of a fiber of f through x

having the dimension greater than d = dim X/S}
.

Then E is covered by a family (possibly disconnected) of effective 1-cycles {Cλ}/S
with (−KX−D.Cλ) ≤ 2(n−d) where n = dim E/S (and even < 2(n−d) if KX +D
is Kawamata log terminal in the generic points of E). Moreover, we could assume
that the generic 1-cycles Cλ are curves when KX + D is numerically definite, and
these curves Cλ with (KX + D.Cλ) < 0 (resp. ≤ 0) are rational.

Proof Take general hyperplane sections of S (cf. the Heuristic Arguments) and
then use the Theorem.�

Corollary 4. If, in addition to the Corollary 3, F is an R-Cartier divisor such
that KX + D + F is also divisorially log terminal near the generic points of E, and
KX +D is numerically semi-negative with respect to f , then E is covered by a family
(possibly disconnected) of effective 1-cycles (curves when KX + D + F numerically
definite) {Cλ}/S with

(F.Cλ) ≥ −2(n− d)

(resp. > −2(n− d) if KX + D + F is Kawamata log terminal in the generic points
of E).

Remarks. (1) Conjecturally, we my suppose that the generic members of {Cλ}/S
in the Corollaries 3 and 4 should always be curves. This is true when n− d ≤ 3.

(2) If f is a projective morphism as in the Theorem we can introduce its D-length
as the maximum of (−KX −D.Cλ) for families {Cλ}/S covering X . Of course, the
length is 0 when f is finite over the generic point of S, and by the Theorem the
length is not higher than 2n, if K + D has in generic mild singularities, where
n = dim X/S.

According to [MM], a smooth projective variety X is uniruled if and only if its
length (=0-length) is positive.

Here we could state problems for the length similar to that of for Fano indexes
and minimal discrepancies [Sh1].

(3) The estimate ≤ 2n (respectively < 2n) is essentially derived from that of
[MM] for Fano n-folds with terminal and even Q-factorial singularities. For n ≤
3 and in the nonsingular case, according to the classification of such Fanos, we
can improve the estimate up to ≤ n + 1 (cf. [M]). Since terminal singularities are
nonsingular for n ≤ 2 this gives the same improvement in general for n ≤ 2.
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So, we have the following problems here. Does the estimate ≤ 2n sharp for n ≥ 3?
If not try to find the right one. Why not n + 1?

(4) Perhaps, the proven results and the Conjecture hold in any characteristic.
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