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H3B. Ακω. Hays CCCP Math. USSR Izvestija
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SMOOTHNESS OF THE GENERAL ANTICANONICAL DIVISOR

ON A FANO 3-FOLD

UDC 513.6

V. V. S O K U R O V

Abstract . Smoothness of the general ant icanonical divisor of a F a n o 3-fold is proved.

In addi t ion, an analogous result is established for the linear system I K K where rK Ky

for some natural number r. The results obtained in the paper can be used to investigate pro-

jective imbeddings of Fano 3-folds.

Bibliography: 6 titles.

Following [4], we call a smooth complete irreducible algebraic variety V of dimension

3 over a field k which has an ample anticanonical class —Κ ν a Fano 3-fold. In [4] projective

embeddings of such varieties were considered under the following hypothesis:

HYPOTHESIS (1.14) [4]. There exist an invertible sheaf £& G Pic V and a natural

number r such that rt& — ~~KV and the linear system \£&\ contains a smooth surface Η

{the greatest such r is called the index of V).

The purpose of the present work is to show that this hypothesis is satisfied for every

Fano 3-fold over an algebraically closed field of characteristic 0. Thus all the results of [4]

where Hypothesis (1.14) is assumed remain true also without that assumption.

The question considered in this paper can be given the following more general formu-

lation. Let Κ be a complete nonsingular smooth irreducible algebraic variety of dimension

η with an ample anticanonical class —Kv. Does there exist a smooth divisor in the linear

system \-Κν\
Ί. This problem naturally arises in considering the mapping defined by the

linear system \-Kv\. The answer to this question is affirmative in the case of an algebraically

closed field k of any characteristic if η < 2 and in characteristic 0 for « < 3. In the remain-

ing cases the answer is unknown. In connection with the notion of the index of a variety

there arises also an analogous question for -K v/r G Pic V.

While writing this paper I had several useful conversations with V. A. Iskovskih, to

whom I gratefully express my indebtedness.

§1. The main result

1.1. All the algebraic varieties considered in this paper are defined over an algebraically

closed field k of characteristic zero.
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396 V. V. SOKUROV

1.2. THEOREM. Let V be aFano 3-fold, and let t& be an invertible sheaf such that

r t& — -K v for some natural r. Then in the linear system \£&\ there is a smooth surface D.

Theorem 1.2 is proved in §3 for the case r = 1, and in §4 for r> 2. §2 is devoted to

auxiliary propositions. The general plan of the proof is the following. First we prove that the

linear system \ttff\ is not composite with a pencil. Then using Bertini's theorem we bring the

general element oi\£&\ to the formD + Do with fixed partDQ and irreducible reduced mov-

able divisor D. The dimension of the space H°(V, ^ ) is known to us from [4]. On the other

hand, h°(V, 0V(D)) = h°(V, &i). The presence of fixed components or of singularities in

the general divisor D reduces the last equality to a contradiction either with the Riemann-

Roch theorem on the surface D, which resolves the singularities of A or with Lemma 2.3.

If r > 2 one shows that the base locus of | i ^ | consists of no more than a finite number of

points. Further, one uses Theorem 4.1 of [3].

§2. Auxiliary lemmas

2.1. LEMMA. // V is a Fano 3-fold, then every effective divisor D from the linear

system \-Kv\ is connected.

PROOF. According to (1.4) (i) of [4], h°(D, 0D)= 1 for D e \-Kv\. Therefore,

D is connected. •

2.2. LEMMA. Let D be an effective divisor on a K3 surface X such that some multiple

of D gives a linear system without fixed components and

Then the fixed components of D have multiplicity 1.

PROOF. By Bertini's theorem [1] we may assume that the movable components of D

have multiplicity one. We denote by Dx, . . . ,Dn the connected components of the multi-

plicity one part of the general D. Then we have the following representation of D as the

sum of effective divisors: D = EQ /),·, where Do denotes a multiple of the fixed component

of D. We need to show that DQ = 0. Let us assume the contrary: Do Φ 0. By duality and

the Riemann-Roch theorem we have

The latter, using duality and the Ramanujan vanishing theorem for a regular surface (see the

remark on page 180 in [2] ) implies that

Therefore D is connected. Consequently, by the nontriviality of Do, {Dp DQ) > 2 for η

/ > 1. Hence (Σ? £>,, DQ) > In.

Using Ramanujan's theorem and duality for the divisor Σ" Dt, we obtain

h*(x, Ox (y DX] = h° (U Dt, Ο „ ) - 1 = η - 1.
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By duality and the nontriviality of Σ" Dt (since there exists a movable part), we have

h2(X, 0Χ(Σ" D()) = 0. Consequently by the Riemann-Roch theorem

By construction, the movable part of D is contained in the components of multiplicity one.

Therefore

ft» (x, Ox Ig D\\ = hP (X, Ox (D)) = γ + 2,

whence we obtain the relation

i.e.

But (£>, £>0) > 0 because of the absence of fixed components in a multiple of the divisor D.

The latter contradicts the inequality (Σ" D{, Do) > In. •

2.3. LEMMA. Let D be an effective divisor on a K3 surface X such that some multi-

ple ID, I a natural number, gives a linear system \ID\ without base points and such that the

image of the corresponding morphism is two-dimensional. Then D can have at most one

fixed component, which is a smooth rational curve.

PROOF. The linear system |D| satisfies the assumptions of Mumford's theorem about

degeneration. Hence by duality and the Rieman-Roch theorem we have

but then by Lemma 2.2 the fixed part DQ of D has multiplicity one. Every irreducible com-

ponent of DQ is a smooth rational curve C with C2 = -2. We will show that every connected

component D'Q of Do is a tree such that at every vertex two curves meet and (D'o)
2 = -2.

The proof will proceed by induction starting with some curve C1 in DQ and adding curves

C2, . . . , Cn so that the divisor Σ" Ci should be connected and contained in D'o. The first

step of the induction is trivial. Therefore we assume that Σ" Ci is a connected tree of the

kind described above and that (Σ" C,)2 = -2. We also assume that in D'o there is a curve

Cn+1 which intersects Σ" C{; in the contrary case everything is proven. By Ramanujan's
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theorem, since Σ " + ' Ct is connected and of multiplicity one, and by the Riemann-Roch

theorem,

V c

, Οχ [^ CM = ^ J + 2 = 2 C f t CB, χ [ ^ ^ + 2 ft B+1

Then, because Σ " + 1 C,· is fixed,

This completes the induction. Let us now consider the movable part Dx of A If Dx is not

a pencil, then its general element is irreducible and reduced. Hence, again using Ramanujan's

theorem and the Riemann-Roch theorem, we obtain

Let D'o be a connected component of the fixed part. By the assumption of the lemma on

the divisor D we have (A D'o) > 0. On the other hand, (A A^) = (D1 + D'o, D'o) =

(D1, D'o) + (D'o)
2. Then (Dv D'o) > 2. The divisor Dx + A^ is connected and of multi-

plicity one. Therefore, as above,

h°(X, Ox (D1 + DO)) = ( D l +

o

D" ) 2 +2 = %- + 2+(DltDO) + Q£-,

whence h°(X, 0 χ φ γ + D'0J) > h°(X, &X{DJ). Consequently in this case D has no

fixed components. If Dl is a pencil, then \D^\ = \nE\, where \E\ is an elliptic pencil on the

K3 surface X. In this case because D is connected there must exist at least one fixed com-

ponent. We will prove that it is unique and that it is a nonsingular rational curve which is

a section of \E\. Because D is connected there exists a curve C in DQ such that C does not

lie in the fibers of \E\, i.e. C • Ε > 0. Because C + Ε is connected and of multiplicity one,

we have

h°(X, Ox (C + £)) = (C+

2

E)2 + 2 = h°(X, Ox (£)) + (C, £) + y ;

hence (C, E) = 1. Consequently C is a section. If in DQ there are two sections Cx and C2,

and n> 2, then

ή» (Χ, Οχ ( d + C, +2£)) = ( C l + C

2

2 + 2 £ ) 2 + 2 = Λ» (Χ, Οχ (2£))

- γ + - γ + 2(C1, £) + 2(C,, £) + (Clt Q - 1 > A«(X, 0χ (2Ε))
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The latter contradicts the choice of Cj and C2 from the fixed part of D. Therefore if Do has

two sections then η < 1. But \D\ = \nE + Do\ and D2 = Σψ=ι{2ηΕ, £>(''>) + {D^f > 0,

where D^ is a connected component of Do. Hence it follows that η = 1 and that there

exists a connected component D^ with (D%\ E)> 2. From this, as above in the nonpencil

case, we derive the inequality

h« (X, Ox (£ 4- D(

o°) > A» (X, Ox (£)),

which leads to a contradiction. Consequently in Do there exists exactly one section C, and

the remaining curves Do lie in the fibers. We will assume that the last set of curves is non-

empty. Then there exists a curve C' in Do extreme in some tree, i.e. (C1, DQ) = -1 and

(C\ E) = 0. Then (D, C1) = (nE + Do, C') = - 1 , which contradicts the choice of \D\. Con-

sequently C is the only fixed component of \D\ and \D\ = \nE + C\. •

REMARK. Lemma 2.3 in the case of an ample D was proved in [6].

§3. Proof of the theorem in the case r = 1

3.1. We denote by W the image of the rational map V —> pdim^-K v\ defined by the

linear system Ι~Λ^|.

3.2. LEMMA. d i m H / > 2 .

PROOF. Let the linear system \-Kv\ define a mapping onto a curve W in Pq+ \ g =

{-KyYJ2 + 1. We denote by Do the fixed component of the system \-Kv\ and by D the

general divisor of the movable part. The curve W is rational since hl(V, 0γ) = 0 (see

(1.3) in [4]). From linear normality it follows that W is a smooth rational curve of degree

g + 1 which generates Ρ ^ + ' . Therefore D ~ (g + \)E and the (projectively) one-dimensional

system \E\ defines a rational map π: V-> W =" P 1 . We have ((Do + (g + 1)E)2,-KV) =

2g — 2 from the definition of g, since ~~KV ~ Do + (g + l)E. The following relation is

evident:

(g+l)E)\ -Kv) = ((g+iyE*+(g+l)(E, D0) + (D0, -Kv),-Kv).

The movability of Ε and the ampleness of —Κ ν implies the inequalities

{E\ — Kv)^0, (Do, (-KvV)>0, (E, DO, —Kv)

lf(E2,-Kv)>0,then

2g-2=((Du+(g+l)Ey, -Kv)

The latter leads to a contradiction. Therefore (E2, -Kv) = 0. Then by the ample-

ness of -Κ v the general members of \E\ do not intersect and the linear system |£1 defines a

morphism π: V—*• W — P 1 whose fibers give |£Ί. By Lemma 2.1 every divisor in \~Ky\ is

connected. Consequently Do Φ 0 and intersects the general member of \E\ along a nontrivial

effective one-dimensional algebraic cycle. In addition,

2g - 2 = (g 4- 1) (£, Do> - Kv) + (Do, K
2

V),

where (E, Do,-Kv)>0 and (£>o, /:2

K) > 0. That means that (E, D0,-Ky)= 1 and
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(Do, K2

V) = g - 3. Then obviously (E, Kv, Kv~)- 1. This last equality together with the

ampleness oi-Kv implies that any fiber (i.e. an element of |£"|) is irreducible and reduced.

Therefore Do does not have components contained in the fibers of π. Since (E, Do, ~KV)

= 1 and -Kv is ample, it follows that Do is an irreducible reduced divisor and the fibers of

the morphism π: Do —*• W, which are irreducible and reduced curves, define a linear system

\(E, DQ)\£)0 on DQ whose elements we will call the fibers of DQ. Also, the relation

(E, DQ, ~Ky) = 1 implies the smoothness of the general point of all the fibers of Do. By the

Bertini-Zariski theorem the general fiber Ε of η is a smooth irreducible surface. The given sur-

face Ε is a del Pezzo surface of degree 1, and (E, Do) = (E, -Kv) gives an ample anticanoni-

cal class of degree 1 on Ε, (Ε, D^) = 1. Therefore there exists on DQ a pencil of irreducible

reduced curves of arithmetic genus one consisting of the fibers of Do. Consequently

On the other hand, from the long exact cohomology sequence for the triple 0

0V(-Do)^ @v^ ^Do—OwefindthatA'CZ),,, 0Do) = h2(V, 0V(-

By duality

h*(V, av(-D0))=h1(V, Ov(-(g

From the exact sequence corresponding to

it follows that

Hence, since the general member of the pencil \E\ is irreducible and reduced, we have

hl(V, 0 v(-(g + 1)E)) = g. This means that Λ'(D,,, 0DO) = S- Then because of the

above we obtain the inequality 1 > hl(DQ, &D0)
 = S- But (~Kv)

3 = 2g - 2 > 0 because

of the ampleness of -Kv. This contradiction completes the proof of the lemma. •

PROOF OF THEOREM 1.2 {case r = 1). By Lemma 3.2, dim W > 2. Then by Bertini's

theorem [1] the general element of the linear system \-Kv\ is of the form D + Do, where

Do is the fixed component of \-Kv\ and D is the movable irreducible reduced divisor nor-

mally intersecting £>0 (dim D Π Do < 1) and having singular points only at the base points

of the linear system \D\. We will resolve the points of indeterminacy of \D\ (in the Hironaka-

Zariski sense) by monodial transformations with smooth centers in the base locus. We de-

note a general resolution by σ: V—>• V. By Bertini's theorem the strict transform D of a

generic D is nonsingular and a*(D) = D + Σ™ rifEj, where E- is the surface corresponding to

the /th monoidal transformation (the strict transform on V of the /th center of blowing up).

Also D is the maximal movable part of the linear system \a*(D)\. Consequently

ha (V, Ov (D)) = h" (V, Ov (σ* (D)) = HP (V, Ov (D)) = ̂ - + 3

(the last part because of (1.3) (ii) of [4]). The canonical class of V is computed from the
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formula

where at> 1. Under blowing up a curve the canonical class changes according to the formula

K'y ~ a*(Kv) + E. In our case the blowing up is carried out only at the base curves and

points. Hence by induction we obtain ni > a,·, if o{E^) is a curve on V. Then

- Kv ~ D + σ' (Do) + ̂  (nt - «,·) Ε,·.
ί=ι

By the adjunction formula
(~ m \

Kd D, 2 (nt- a,)Et + σ'(Do) .

Let us consider on 5 the divisors F = (D, a*(D + Do)) and L = (D, D + Σ™ Οίβ{). Then

Â 2 + F ~ L. A multiple of F comes from a hyperplane section because of the ampleness of

-Kv. The sheaf &p(F) satisfies the conditions of Mumford's vanishing theorem [5],

Hl(D, 0Q(~F)) = 0, since σ* 0^{F) is ample on D. Consequently

/ι1 (D, ΟΈ (L)) = /ι1 (D, OB (/C5 - L)) = Λ1 (D, © 5 ( - F)) = 0.

Also it is obvious that h2(D, 0p(L)) = 0 since h°(D, &D(-F)) = 0, whence by the

Riemann-Roch theorem we obtain

L(L — K~)
h«(D, OS(L)) = —2- + 1 -q + Pg.

Using the zero part of the cohomology sequence corresponding to the short exact sequence

0—> ff'y—* 0~ν(Π)—+ 0Q({D,D))—* 0, we obtain the inequality

)3

h° (D, OB (L)) > Λ» (D, 0 5 ((D, D))) > l

2

W + 2.

The latter together with the previous computations gives

_(*„)» L(L-K~)

We now prove that pg - q - 1 > 0. We have L — K^ ~ F, and by (3.3)

( m \

o*(—Kv),D,D+ ^ aiEi

2 2

The left-hand side of (3.4) can be written in the form

,* (_ χ ) / m

— , D, y (m —
2 1 A

\ i=l

(3.4)
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Here σ*(-Κ ν) is the lifting of the ample divisor, and D is movable, irreducible and reduced.

Hence the left-hand side of (3.4) is obviously positive in all its terms except perhaps

(σ*(-Κ[/)/2, D, (n( — a,·) ,̂·) in the case when a(Ei) is a point of V, since in the opposite case

n. > ar But then in this case the corresponding term is equal to 0 by the projection formula.

From (3.4) we obtain the desired inequality. Let us now consider a divisor/) such that for

some smooth model of it the inequality pg - q - 1 > 0 is satisfied, and in addition let D be

chosen so general that its singularities lie only in the base locus of its complete linear system.

We resolve the singularities ofD by monoidal transformations centered in singular sets of/).

We will denote the new resolution by a: V' —*• V. Accordingly a'*(D) — D' +

Σ™ n'jE'j and Kv· ~ o'*{Kv) + Σ™ α·£^·, where aj. > 1, since this time we perform mon-

oidal transformations only in singular sets nt > d{. Therefore by the adjunction formula KD·

< 0. Consequently ρ < 1, whence because ρ — q — 1 > 0 we have ρ = \, q = 0 and

KD' = 0. This means that D' is a K3 surface. From the latter one easily concludes by

Lemma 2.1 that Do = 0 and Κν· ~ -D'. Consequently,

a"(-Kv)~D' + S atEl

We have

V, Ov. [D' + Y, hE\ = HP (V, Oy ( - Kv)) = / + 3

for the maximal movable part \D' + Σ™'β.Ε'.\ in \D' + Σ ^ ' α^-Ι, where βί < d{. For /,' =

(D'.D' + Σ™' a;.£ij) we have

h»(Dr, oD.(L1))>Λ»jD', oD>I ID·, σ

Hence, as above, using Mumford's theorem about degeneration and the Riemann-Roch

theorem we obtain the inequality

+2<:h° (D', OD. (L')) < i^ll! + 2, (3.5)

since in the last case KD· = 0, q = 0 and pg = 1. Considering the difference in the left-

hand side of the corresponding inequality analogous to (3.4), we find that it is positive,

which means that our inequality (3.5) becomes an equality. Hence the linear system \L'\ on

D' has a fixed component Σ™ (α|· - β,-Χ/̂ ·, D1). Obviously the first resolution in σ' as well as

all the others resolve an isolated quadratic singularity, i.e. α'( = 2 according to the formula

—D' ~ Κ y< for the canonical class of V. Hence, by Lemma 2.3, /3χ > 1. This means that

the first resolved singularity is movable. By the requirement that singularities should be at

the base points we obtain that β1 = 1, a\ - β1 = 1, and \D\ and \D' + Σ^1 dtE'.\ have a fixed

curve outside of Ε'(. Hence \L'\ has at least two distinct fixed curves: {Ε'χ, D') and one lying
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outside E\. The latter is impossible by Lemma 2.3. Consequently the general element D =

D'', and it is nonsingular. This completes the proof of the theorem for the case r = 1. •

§4. Proof of the theorem for r > 2

4.1. We denote by W the image of the rational map V —> p d l m i / / | defined by the

linear system \H\, where Η is an effective divisor in \i&\.

4.2. LEMMA, dim W > 2.

PROOF. Let us assume the contrary; then, as in the proof of Lemma 3.2, we obtain the

decomposition \H\ = \DQ + nE\, η = h°(V, 0V{H)) - 1, and the one-dimensional linear sys-

tem \E\ without fixed components gives a rational mapping n: V —*• W — P 1 . According to

(1.9)(ii) of [4],

" = ( r + 1 )

2

( r + g L ^ 3 + 7 > 2 ;

hence

12n 24

(r+l)(r+2) r (r -- \) (r •- 2)

for r > 2. Using the relation H3 = (H, n2E2 + nED0 + D0H), the ampleness of Η and the

absence of fixed components in \E\, we show as in the case r = 1 that (//, E2) = 0. Because

of the connectedness of the divisors in \H\ (a simple consequence of 2.1) we have (//, E, DQ)

> 1 and (H2, Do) > 1. Therefore η > Η3 > η + 1, a contradiction. •

4.3. LEMMA. For r > 2 the linear system \H\ can only have base points in the absence

of a fixed component.

PROOF. By Theorems 1.2 (r = 1) and 1.5 of [4] the general surface D of the linear

system \~KV\ is a smooth K3 surface. Let us assume that the linear system |//| has a fixed

curve. Then by the ampleness of D we obtain fixed points of the restricted system \(H, D)\D.

After restricting to D one obtains a complete linear system. The latter follows from the ex-

act cohomology sequence of the short exact sequence

since h1 (V, 0v{(\ - r)H)) = 0 by (1.9) (i) of [4]. The restricted linear system is ample.

In [6] it is shown that for every ample sheaf Sf on a K3 surface D the linear system \Jzf\

has no base points if it has no fixed components. Therefore the linear system \{H, D)\D has

a fixed component. Consequently by Lemma 2.3 the linear system \{H, D)\D = \nE + Z\,

with Ζ a fixed curve. Then either \H\ has a fixed component or \~K v\ has the fixed curve Z.

We will show that the last case is impossible. Indeed, assuming the contrary we obtain for

the restricted linear system \{~KV, D)\D on D a representation of the form \Z + n'E'\, where

E' is a fiber of the elliptic pencil \E'\ on D. Consequently rZ 4- rnE ~ Ζ + ηΈ'. Ζ is a sec-

tion of both pencils. Intersecting both sides of the last equivalence with Ε', we obtain a con-

tradiction for r ^ 2. •
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4.4. LEMMA. Let the linear system \H\ (4.1) have only fixed points and H3 < 8. Then

the general element of \H\ is smooth.

PROOF. By Bertini's theorem [1] singular points of the general surface Η can only be

among the fixed base points. If there exists a singular base point, then H3 > 8 since at that

singular point the general surfaces from \H\ have intersection index > 8. •

PROOF OF THEOREM 1.2 (case r> 2). By Lemma 4.2 and Bertini's theorem [1] the

general element of the linear system \H\ has the form D + Do, where Do is the fixed compo-

nent of \H\ and D is a movable irreducible and reduced divisor normally intersecting Do and

having singular points only at the base points of the linear system |D|, Kv ~ -rD - rD0. We

resolve by monoidal transformations the points of indeterminacy of \D\. We denote the gen-

eral resolution by σ: V —> V. The strict transform for the general divisor D, by Bertini's

theorem, will be a smooth divisor D C V, and a*(D) = D + Σ™ «,·£*,·, where Et is the surface

corresponding to the rth transform and nt> 1. We may assume that D is the maximal mov-

able part in o*(D). Hence by (1.9) (ii) of [4] we have

h°(V, Ογ (D)) = h°(V, OV{H)) = ^ + ! ) ^ + 2 ) 1
Η

12

The canonical classes that we need have the form

,-_ m

— Kv ~ rD -f- ^ (rnt — a,) £< + ro' (Do),
( = 1

and

K^ ID, (r-l)D + 2 (r/ii-OiJfi + r ]

where «(. > a( if a(£"f) is not a point of V and all a{> 1. We consider on the surface D the

following divisors:

and L=|D, D + 2
V

Then KQ+ rF~ L.

Further using the degeneration theorem as in §3 for the sheaf & ^(F), we obtain the

inequalities

( r + 1 ) ( ' + 2 ) IP + - ^ Λ» (D, O S ((A D))) = — — + 1 - 9 · (4.5)+
In contrast to §3, in (4.5) we have ρ = 0, as it is easy to check that Kfi < 0. The extreme

terms of (4.5) give the inequality

( § ) ) : 1 - q - ^ • (4-6)
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Substituting in (4.6) the expression for a*{H) = a*(D + Do) and collecting like terms, we

obtain

12 \ — I 12

.< α*(//)2, y niEt -1- σ· (D()) (4.7)

m \ -

— ί α * (//), D , V («,· — ' " '" ' - * / r ^ 1 - 1

\ ί - -1

As in §3, one proves the positivity of the left-hand side of (4.7). Therefore q = 0 and

Do = 0. The latter follows from the fact that (a*(H), D, a*(D0)) = (H, D, DQ) > 1 by the

connectedness of//. We now note that i fD o = 0 then by Lemma 4.3 \H\ has only base

points. Then by Lemma 4.4 we may assume that H3 > 8. Let d = H3 > 0 and Δ = 3 +

d - h°(V, 0 V(H)), and let g be defined by the relation 2g - 2 = {Kv + 2B)H2 =

(2 - r)H3, i.e. g = ((2 - r)d + 2/2. Knowing Λ°(Κ, ^ K(//)) from (1.9) in [4], we can

easily check that Δ < g for d = H3 > 2. Therefore, by Theorem 4.1 of [3], there are no

base points in \H\ if d > 2Δ. This inequality fails to be satisfied only for r = 2, d = 1 and

r = 3, d = 1. In our case d = H3 > 8. Consequently there are no base points in this case.

Therefore by Bertini's theorem the general member of \H\ is smooth. •

Received 27/APR/1978
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