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IV. Geometry of log flips

V.V. Shokurov ∗

October 13th, 2000/January 2nd, 2001

Flops and flips first appeared in mathematics as geometrical construc-
tions:

(1) during Fano’s modification of a 3-fold cubic into a Fano 3-fold X14 ⊂ P9

[10, Theorem 4.6.6];

(2) Atiyah’s flop: one of his first papers [3] in 1958 treated the simulta-
neous resolution of the surface ODP, and was the initial stimulus for
Brieskorn’s simultaneous resolution of Du Val singularities1;

(3) Kulikov’s perestroikas [15, Modifications in 4.2-3];

(4) Francia’s flip (see Example 3 below);

(5) Reid’s pagodas [18];

(6) semistable flips [28] [12] [22];

(7) Kawamata’s nonsingular 4-fold flip [13];

∗Partially supported by NSF grants DMS-9800807 and DMS-0100991.
1Thanks to Miles Reid for this historical remark. He added also “Possibly a little later,

Moishezon (and Hironaka) were using the same kind of thing to construct algebraic spaces
(minischemes) that were not varieties.

However, as I said in my Old Person’s View, one can trace the idea back through Zariski
and Kantor and Cremona, even as far back as papers of Beltrami in 1863 and Magnus
in 1837 referred to in Hilda Hudson’s bibliography – these papers study the standard
monoidal involution P3− → P3 given by (x, y, z, t) 7→ (1/x, 1/y, 1/z, 1/t), which flops the
6 edges of the coordinate tetrahedron”.
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(8) geometrical 4-fold flips [11]; and

(9) the Thaddeus principle [27] [5].

However in general, for higher dimensions, one can hardly imagine an effective
and explicit geometric construction (for instance, a chain of certain blow-ups
and blow-downs) for flips , even for log ones, except for very special situations
with extra structures, e.g., as in (6) (8), and for moduli spaces as in (9). On
the other hand, we hope that the log flips exist and this can be established in
a more formal and algebraic way. Recently, this was done for the log flips up
to dimension 4 [26, Corollary 1.8]. Since these flips were obtained without
the use of any classification or concrete geometry of them, it is worthwhile
in the aftermath to get some of the aforementioned geometrical facts. This
is a goal of the note which we pursue in a more general situation. For the
convenience of the reader, we put the list of notation and terminology at the
end of the letter.

Definition. A birational transform X− → X+/Z between two birational
contractions f : X → Z and f+ : X+ → Z of normal algebraic varieties is
called a (directed) D-quasi-flip/Z or, shortly, -qflip/Z, for a Weil R-divisor
D on X, when there is a semiample/Z R-Cartier divisor D+ on X+ such
that f+

∗ D
+ ∼R f∗D.

A D-qflip/Z can be given in a log form or, shortly, in lf, that is, in terms
of log structures on X/Z and X+/Z, namely, there are Weil R-divisors B
and B+ on X and X+ respectively such that:

• f+
∗ B

+ = f∗B; and

• D = K +B and D+ = KX+ +B+.

The qflip is a log one if in addition:

• B and B+ are boundaries; and

• pairs (X,B) and (X+, B+) are log canonical.

Note that up to an R-linear equivalence of D and/or D+ we can assume
that f+

∗ D
+ = f∗D in the definition. Then any D-qflip is a qflip in lf for

some B and B+ (but maybe not a log qflip). (We always take all canonical
divisors K,KX+ , etc. on modifications of X given by the same differential
form, or by the same bi-divisor [23, Example 1.1.3].) Any D-flip is a D-qflip
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with D+ as the birational transform of D. The inverse holds when X+/Z is
small and D+ is ample/Z; for example, by Monotonicity below, for any qflip
in lf, X+/Z is small if X/Z is small, −D = −(K + B) is nef/Z, and (X,B)
is terminal in codimension 2, that is, a(Y ) > 1 for any subvariety Y ⊂ X
of codimension ≥ 2 in notation below. Thus a log qflip is a log flip under
the last conditions, and with ample D+ = KX+ + B+/Z. Log qflips, with
nonsmall X+/Z and a boundary B+, are naturally induced by log flips on
the reduced part of B (cf. the proof of [26, Special termination 2.2]).

Even always assuming that the characteristic of base field k is 0, we
expect that most of the results and statements below hold without such an
assumption, e.g., the following generalizations of [14, Lemma 5-1-17] and
Monotonicity [19, (2.13.3)] – our basic tools.

Lemma. Let X− → X+/Z be a D-qflip for an R-Cartier divisor D on X
such that:

1. X/Z is a D-contraction, that is, −D is numerically ample/Z [23, Sec-
tion 5], and

2. X/Z is a nonisomorphisms.

Then
+c ≤ d+ 1

where

• d = d(X/Z) is the minimal dimension of the irreducible components of
the exceptional locus E of X/Z; and

• +c is the minimal codimension in X+ of the irreducible components of
the rational transform +E of E in X+/Z.

If E has the pure dimension d, that is, each irreducible component of E has
the dimension d, then +c can be taken as the maximal codimension.

Warning 1. In general, +E is quite different from the exceptional locus E+ =
E(X+/Z). However E+ ⊆ +E whenever X− → X+ is an isomorphism on
X \E; for instance, the latter holds for the D-flips of D-contractions but not
for all qflips.
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Remark 1. The minimal dimensions and codimensions can be replaced in the
dual form of the lemma by maximal ones, namely, c ≤ +d + 1 in its maxi-
mal form. The lemma itself, in the maximal form, is dual to its symmetric
statement c ≤ +d+ 1 in the minimal form holding for the same E and +E.

Note also that taking the minimal dimension and maximal codimension
we consider only nonempty components, in particular, such (co-)dimensions
are defined only for nonempty subvarieties. This explains Condition 2.

Proof. After a birational contraction of X+/Z given by D+ we can assume
that X+/Z is −D+-contraction; this change only increases +c.

Then the ampleness of p∗1(−D) + p∗2D
+ on X ×Z X

+/Z and [14, Proof
of Lemma 5-1-17] imply that X ×Z X

+ is divisorial over Z (see also [21,
Negativity 1.1]). Moreover, for each irreducible component Y of E and its
rational image +Y ⊆ +E ⊂ X+,

dimY + dim +Y ≥ dimY ×Z
+Y = dimX − 1.

That gives the required inequality.
The last statement for the pure d follows from the maximal case men-

tioned in Remark 1.

Monotonicity. Let (X,B)− → (X+, B+)/Z be a qflip in lf with nef −(K +
B)/Z. Then, for each prime bi-divisor P of X,

a(X+, B+, P ) ≥ a(X,B, P ).

Moreover,
a(X+, B+, P ) > a(X,B, P )

for each P with centerX P ⊆ E when −(K +B) is numerically ample/Z; the
equivalent inclusion is centerX+ P ⊆ +E.

Proof. As for [19, (2.13.3)].

Let (X/Z,B) be a log pair with a boundary B such that:

(BIR) f : X → Z is a birational contraction which we always consider
locally over some fixed point in Z; and

(WLF) the pair is a weak log canonical Fano contraction, that is, (X,B) is
log canonical, and −(K +B) is nef/Z;
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it is said to be a log canonical Fano contraction or log contraction when
−(K +X) is numerically ample/Z. Note that −(K +B) is big/Z by (BIR).
The log pairs include, in particular, the birational log contractions of LMMP
(Log Minimal Model Program), which are birational contractions X/Z of
extremal faces numerically negative/Z with respect to K + B [23, 5.1.1b].
However in this letter we do not touch fibred contractions [2].

The most fundamental questions in geometry concern dimensions . In our
situation they are

• n = dimX; and

• the minimal dimension d = d(X/Z) for the exceptional locus E of X/Z.

Other more modern numerical invariants:

• the (log) length l = l(X/Z,B) of (X/Z,B), that is the minimal −(K +
B.C) for generic curves C in the covering families of contracted locus E
(this is the exceptional locus whenever X/Z is birational, and E = X
otherwise) of X/Z; and

• the m.l.d. (minimal log discrepancy) a = a(E) = a(X,B,E) of (X,B)
in E, that is the minimal log discrepancy a(X,B, P ) at prime bi-
divisors P having the center in E; the latter means that centerX P ⊆ E.

It is known that the dimension d depends on the length [24, Theorem], and
on the singularities [4, Théorème 0]. Sometimes a more subtle interaction
occurs.

Example 1. Suppose that (X,B) has only canonical (terminal) singularities
in codimension 2, and a curve C is an irreducible component of the excep-
tional locus E of projective X/Z. Then the existence of log flips in dimen-
sion n ≥ 3 in the formal/k, or analytic category when k = C, implies that
(K + B.C) ≥ −1 (respectively, > −1). More precisely, for n ≥ 2, we can
assume just a(C) ≥ 1 (respectively > 1). In other words, this means that
the length l of the contraction is ≤ 1 (respectively < 1) whenever d = 1 and
a(C) ≥ 1 (respectively > 1). One can drop the existence of the log flip in
dimension n ≤ 4.

We verify that l ≤ 1 in the canonical case; the terminal case is similar
(cf. [7, Lemma 3.4]). Indeed, suppose that l > 1 and a(C) ≥ 1. Then over a
small neighborhood of f(C) in the classical complex topology for k = C (or
formally over arbitrary algebraically closed k), there exists a rather generic
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hyperplane section H/Z that intersects C transversely in a single point. In
addition, changing the contraction over such a neighborhood we can assume
that E = C. So, locally/Z, (X/Z,B + H) is again a log pair under (BIR)
and (WLF). Since the exceptional locus E = C is a proper subvariety in X,
the new m.l.d. a := a(X,B +H,E) = a(X,B,E) ≥ 1, too.

On the other hand, according to our assumptions, there exists a flip
X− → X+/Z with respect to K + B + H . Actually it is also the flip for
K + B and is the (−H)-flip [26, Corollary 3.4]. So, the flip transform +H
of H is the birational transform H+ of H and numerically negative/Z on
the exceptional locus E+ of the flipped contraction X+/Z. Hence E+ ⊆
+E ⊂ H+, and E+ = +E unless n = 2 with E+ = ∅ (cf. Warning 1).
Moreover, +E has the minimal codimension c+ = 2 by the lemma, and the
m.l.d. +a = a(X+, B+ + H+, +E) ≤ 1; it is enough to establish the latter
for n = 2, when it is well-known [23, Example 4.2.1]. But this contradicts to
the assumption a ≥ 1 because a < +a ≤ 1 by Monotonicity.

Remark 2. In the last paragraph we proved a little bit more. Let (X/Z,B)
be a purely log terminal pair with the reduced divisor H . Then each flip of
(X/Z,B) with a ≥ 1 gives the flip on (H/f(H), BH) where BH is given by the
adjunction. (So, then d ≥ 2 by the lemma when H ∼R −h(K+B−H), with
h ∈ R, is numerically ample and 6≡ 0/Z as in the example.) Therefore, for
a purely log terminal and canonical in codimension 2 pair (X/T,B), LMMP
with only flipping contractions (X/Z/T,B) induces LMMP on (H/f(H), BH)
(cf. the proof of [26, Special Termination 2.3]). Moreover, the same holds
for any chain of birational contractions in LMMP for (X/T,B) unless one of
them contracts a component of SuppB.

Advertisement 1. A generalization and applications of the improvement
in Remark 2 will be treated in one of the following letters.

In the 3-dimensional terminal case with B = 0, Example 1 implies the
Benveniste result [4, Théorème 0]2; now without linear systems arguments.
But it looks difficult to apply his arguments in higher dimensions; even in
dimension 4. Deformation arguments in any dimension gives the weaker

2In general the strict inequality in the theorem fails in presence of canonical singularities
along curve C, e.g., when C is obtained by the contraction along the second factor of a
surface P1×P1 in a nonsingular 3-fold X with the normal bundle π∗

1
OP1(−1)⊕π∗

2
OP1(−2)

where πi : P1 × P1 → P1 is the projection on i-th factor.
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inequality l < 2 in Example 1. In general, d > l/2 even for more difficult
singularities [24, Theorem]. On the other hand, we expect

Conjecture 1. Under conditions (BIR) and (WLF), suppose that X/Z is
projective. Then d ≥ a − 1 (> in the log Fano case), or, equivalently, d ≥
⌈a− 1⌉.

In addition, if d = ⌈a − 1⌉, E 6= ∅, and (X/Z,B) is a log contraction,
that is, X/Z is a D-contraction for D = K + B, then, for any log qflip
X− → X+/Z, the transform +E satisfies the following properties:

(CDM) +c = d+ 1;

(NSN) each irreducible component of +E of the minimal codimension d+ 1
is nonsingular as a scheme point of X+; and

(PDM) if d is the pure dimension, then +E is also of the pure codimension
d+ 1.

Moreover, for the log flip X− → X+/Z, +E = E+ is the exceptional locus
of X+/Z.

It is enough to establish the conjecture when E 6= ∅. Otherwise we put
d = −∞ and a = −∞ as it used to be.

Example 2. In particular, if X is nonsingular and B = 0 then a = n− d and
Conjecture 1 implies that d ≥ (n− 1)/2 (respectively d > (n− 1)/2. This is
Wísniewski’s inequality [29, Theorem 1.1, p. 147] in a single formula).

Perhaps there is a relation between the length l and the m.l.d. a. I am
not sure. But definitely, l/2 ≥ a− 1 does not hold always.

Example 3. Francia’s flip corresponds to the contraction, which is obtained
from the relative model Y after contraction of its plane E in [8, Section 2],
and it has a = 3/2 and l = 1/2. So, the above inequality d > l/2 is less
sharp than that of in Conjecture 1.

Conjecture 1 can be derived from the conjecture on existence of log flips
[23, Conjecture 5.1.2] and another conjecture on the m.l.d. [20, Problem 5a]:

Conjecture 2. For any (scheme) point P ∈ X the m.l.d. a(X,B, P ) ≤
codimP , with = holds only when P is nonsingular in X and B = 0 near P .
Taking hyperplane sections, it is enough to prove that a(X,B, P ) ≤ dimX
and the = case for closed points.
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Moreover, the nonsingularity of X still holds when we replace codimP
by codimP − ε with any 0 ≤ ε < 1. Equivalently, ⌈a(X,B, P )⌉ ≤ codimP
with = holds only when P is nonsingular in X.

Warning 2. In the conjecture we still assume that B is a boundary!

Conjecture 2 was proven for codimP ≤ 3 (after a Q-factorialization,
follows from [23, Corollary 3.3] with a final step by Markushevich [16, Theo-
rem 0.1]). The stronger form with ⌈ ⌉ follows from the weaker one, the
covering trick and LMMP. From LMMP, we need only the existence of
Q-factorializations. (It is expected that the next case with a(X, 0, P ) =
codimP − 1 corresponds to the higher dimensional cDV singularities; cf. [1,
Proposition 3.3].)

Since the m.l.d. measures the singularity, it is natural to expect that it
decreases under the specialization that is stated in Ambro’s conjecture [1,
Conjecture 0.2]. It implies Conjecture 2, and is proved up to dimension 3 [1,
Theorem 0.1] and for toric varieties by [1, Theorem 4.1]. The former gives
again codimP ≤ 3 and the latter gives the toric case.

Example 4. Conjecture 2 holds for toric varieties with invariant B.

Theorem. The existence of log flips in dimension n and Conjecture 2 in
dimension m implies Conjecture 1 in dimension n for any d ≤ m− 1.

Actually, log flips can be weaken to log qflips. More precisely, it is enough
to have the existence of log qflips for log contractions (X/Z,B) instead of log
flips.

Proof. According to the closing remark in Conjecture 1, we can assume that
E 6= ∅. In particular, n ≥ 2.

We can suppose also that a > 0. Otherwise, a = 0 and d ≥ 1 > −1 =
a− 1 = ⌈a− 1⌉.

Since X/Z is projective, after perturbation of B we can assume that
X/Z is a log contraction. Note that taking quite a small perturbation, which
increases B and decreases a, we preserve ⌈a− 1⌉. If the original B gave the
log contraction we do not change B.

Now we can apply the lemma. LetX− → X+/Z be a log qflip of (X/Z,B)
with a boundary B+ on X+. Then by the lemma there is an irreducible
component Y ⊆ +E such that codimY ≤ d+ 1. Hence Conjecture 2 implies
that a(X+, B+, Y ) ≤ d+ 1, and Monotonicity

a = a(X,B,E) ≤ a(X+, B+, Y ) ≤ d+ 1
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gives the required inequality.
Under additional assumptions in Conjecture 1, if codimY ≤ d then,

according to the same inequalities, a ≤ d and ⌈a − 1⌉ ≤ d − 1 < d. This
proves (CDM) because, according to these assumptions, d = ⌈a − 1⌉ or
⌈a⌉ = ⌈a(X+, B+, Y )⌉ = d + 1. So, (NSN) follows from Conjecture 2. The
last statement in the lemma implies (PDM). If X− → X+/Z is the log flip,
then E+ = +E (cf. Warning 1). Indeed, for small X/Z, the inverse transform
is the anti-flip. Otherwise a ≤ 1, d = n− 1 = ⌈a− 1⌉ ≤ 0, and n ≤ 1, which
contradicts to our assumptions.

Corollary 1. Conjecture 1 holds for the toric contractions X/Z, with only
canonical singularities and B = 0, which are numerically negative with re-
spect to K.

A more general case we consider in one of our future letters (see Advertise-
ment 2). It would be interesting to know whether the combinatorics behind
this statement were known. In particular, how important is the projectivity
in this statement (cf. Question 1)?

Proof. Immediate by Example 4 and the existence of toric flips [17, Theo-
rem 0.2]. We do not need to perturb B = 0 since K itself is numerically
negative.

Corollary 2. The theorem holds without Conjecture 2 for all d ≤ m = 2.

Proof. Immediate by [23, Corollary 3.3] and [16, Theorem 0.1].

The main inequality d ≥ a − 1 in Conjecture 1 can be established for
rather high dimensions d without flips.

Example 5. For all d ≥ (n−1)/2, Conjecture 1 follows form Conjecture 2 for
m ≤ (n+1)/2; in particular, up to n = 6 we can drop Conjecture 2. Indeed,
let Y be an irreducible component of E then a ≤ codimY ≤ (n+1)/2 ≤ d+1.
Moreover, d = ⌈a − 1⌉ only if d = (n − 1)/2, the dimension is pure and E
is nonsingular in each of its irreducible components as a scheme point; the
additional statements (CDM), (NSN) and (PDM) in Conjecture 1 hold by
the lemma and our hypothesis (cf. the proof of the theorem). Otherwise
d ≥ n/2 is integral, and ⌈a⌉ ≤ n/2 = d < d+ 1.
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Corollary 3. In dimensions n ≤ 6 one can drop Conjecture 2 in the theo-
rem.

Proof. In Example 5 it was proven for all d ≥ (n − 1)/2 because m = (n +
1)/2 ≤ (6 + 1)/2 = 7/2. For d ≤ 2 < (n − 1)/2 ≤ (6 − 1)/2 = 5/2, the
corollary was proven in Corollary 2.

Corollary 4. In dimension n ≤ 4 one can drop both conjectural hypotheses
in the theorem, namely, the existence of log flip and Conjecture 2.

Proof. Immediate by Corollary 3 because the log flips exists. The latter was
proven in [26, Corollary 1.8] when (X,B) is Kawamata log terminal. The
other log flips also exist due to [26, Special termination 2.3] and the local log
semiampleness (cf. [23, Conjecture 2.6], and see the proof of [23, Log Flip
Theorem 6.13]).

Actually, by Example 5 it is enough to consider the case with pure d = 1.
Then a ≤ 2. Indeed, otherwise after a strict log terminal resolution we
can assume that each reduced component H in B is Q-Cartier, and inter-
sects properly the curves C of E. Indeed, we can construct the log terminal
resolution/X using Kawamata log terminal flips and [26, Special termina-
tion 2.3] as in [21, Reduction 6.5] (cf. the proof of [26, Proposition 10.6]).
This is not an isomorphism only over a finite set of points in C because X is
nonsingular in the generic points of C by our assumption. This is impossible
by the Kawamata log terminal case (cf. Example 1) because C is contractible
at least in the formal or analytic category, a > 2 can only be increased after
the construction, and now the flip in C exists (see [26, Remark 1.12]).

Example 6 (Minimal contractions). Under conditions (BIR) and (WLF), sup-
pose that X/Z is projective and dimension d = ⌈a−1⌉ is pure (or maximal).
Then a log pair (X/Z,B) will be called a minimal (log) contraction (respec-
tively, when B 6= 0).

In particular, a minimal log contraction with d = a − 1 is possible only
when (X/Z,B) is a 0-log pair, that is, K + B ≡ 0/Z in our situation. This
follows from a more subtle version of > in Monotonicity under 6≡ 0/Z by [21,
Negativity 1.1], or LMMP including the log termination and our theorem.
If X/Z is projective under hypotheses of the theorem (cf. its proof) there
exists a nonidentical directed flop X− → X+/Z with the transform +E of
pure codimension and satisfying the properties (CDM), (NSN), and (PDM) of
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Conjecture 1 (perturb B by D as a negative to a polarization). In particular,
such a flop is unique when X is Q-factorial and X/Z is formally extremal ,
that is, the formal (in the formal or analytic category) relative Picard number
of X/Z is 1. Moreover, for dimension d = (n − 1)/2 = a − 1, it is expected
that (X/Z,B) is nonsingular in the irreducible components of E as scheme
points, f(E) is a closed point (take a general hyperplane section of f(E)
when dim f(E) ≥ 1), and each directed flop (qflop) X− → X+/Z should
be “symmetric”, that is, the exceptional E+ = +E of pure dimension d =
(n − 1)/2 with the nonsingular irreducible components of E+ as scheme
points (cf. Questions 1 and 2 below). The same follows from LMMP for any
projective flop (X+/Z,B) of (X/Z,B) as a composition of directed ones.

For instance, if X is nonsingular and B = 0, then it is expected that
d ≥ (n − 1)/2 (cf. Example 2). So, by Conjecture 2 (X/Z, 0) is minimal
only when d = a − 1 = (n − 1)/2 and the dimension is pure. Again by
Conjecture 2 it is expected that any directed or/and projective flop X+/Z
is nonsingular with the same number of irreducible components of E+ as
for E (the number of exceptional prime divisors over E or E+ with the log
discrepancy a = (n + 1)/2) whenever X+/Z is formally Q-factorial (in the
formal or analytic category; cf. Question 2 below). The latter should hold
for any nontrivial flop when X/Z is formally extremal. In this case the flop
is unique when it exists and will be called minimal formally extremal . The
LMMP implies that each of the directed and projective flops to X+/Z is a
composition of (formally) extremal contractions and flops; only such flops
are enough when both X and X+/Z are (formally) Q-factorial.

An elementary example with nonsingular X, B = 0, and E = Pd belongs
to the toric geometry. Its invariant divisors are (n+1)/2 = d+1 numerically
negative D−

i (intersecting E up to the linear equivalence by a negative to its
hyperplane; their intersection in X is E itself) and (n − 1)/2 + 1 = d + 1
numerically positive D+

j (intersecting E in hyperplane sections in a general
position – an anti-canonical divisor in total). The construction of such a
contraction X/Z see in [9, Example 3.12.2(iii)] with r = (n + 1)/2 = d +
1, and a1 = . . . = ar = 1. This contraction and its flop are formally or
analytically toric (cf. a conjecture after the proof of [25, Theorem 6.4])
and semistable (cf. (6)); in this situation the latter means that there exists a
nonsingular hypersurface H passing through E and ≡ 0/Z. Thus they induce
a flop on this hypersurface as in Example 7 below with E/pt. Moreover, it
is a symplectic one (cf. Question 4). Each toric contraction (X/Z,B) is
algebraically (analytically or formally) log i-symplectic for any 0 ≤ i ≤
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n = dimX with B as invariant divisor (take a general linear combination
of invariant i-forms ∧i(dzj)/zj). In our situation, we can take 3-form (3-
symplectic structure)

d(f−
1 f

+

1 )

f−
1 f

+

1

∧ (
∑

2≤i,j≤d+1

d(f−
i )d(f+

j )

f−
i f

+

j

)

where f−
i and f+

j are respectively local sections/Z ofOX(−D−
i ) andOX(−D+

j ).
Then after a generic perturbation of products f−

1 f
+

1 and f−
i f

+

j into g11, with

H = {g11 = 0} vanishing on Pd, and gij (the latter does not vanishing on Pd

at all), the 3-form

dg11

g11

∧ (
∑

2≤i,j≤d+1

d(f−
i )d(f+

j )

gij
)

induces by its residue a symplectic 2-form on H . Such flops will be called
induced toric.

Note that, according to A. Borisov (a private communication) the top
m.l.d. in dimension n for the toric isolated Q-factorial singularities P is
a(P ) = n/2 < (n + 1)/2. The latter is the mld for the minimal contraction
of nonsingular X with B = 0. Actually, for any toric isolated Q-Gorenstein
singularity P , a(P ) ≤ (n + 1)/2, and a(P ) = (n + 1)/2 only for the above
toric contraction. For such a toric singularity P ∈ Z, a toric projective
Q-factorialization X/Z is small birational, with the exceptional locus E =
f−1P , and crepant; it exists by [17, Theorem 0.2] because we can assume
that a(P ) = a(Z, 0, P ) > 1 (otherwise a(P ) ≤ 1 < (n + 1)/2 for n ≥ 2).
Thus a(P ) = a(Z, 0, P ) = a = a(X, 0, E). We can suppose also that X
is nonsingular and d ≥ 1 since otherwise, by the above Q-factorial case,
a ≤ n/2. If, in addition, it is extremal then, by Example 2, the arguments in
the proof of our Theorem, Example 4, and the existence of any D-flip (flop)
[26, Example 3.5.1], d ≥ (n−1)/2 (cf. Corollary 1), and a ≤ n−d ≤ (n+1)/2.
The case a = (n + 1)/2 is possible only when d = (n − 1)/2, and this
is a minimal contraction. Since the latter is toric and extremal, E is a
projective nonsingular toric variety with only ample invariant divisors, that
is, E = Pd (the Fano variety of the maximal index d + 1), and this is the
above contraction. Suppose now that the relative Picard number of X/Z
is 2. Then X/Z has two extremal contractions/Z (it is known in the toric
geometry, and follows from the Cone Theorem [14, Theorem 4-2-1] after a
perturbation of B = 0). They are small and, by the induction on dimension
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n, give a ≤ n/2 if one of them does not contract the exceptional locus into
a point. Thus, if a ≥ (n + 1)/2, we can assume that both are again the
above contractions of E1 = Pd 6= E2 = Pd with d = (n − 1)/2, and, by the
extremal properties of both contractions E1 ∩E2 is at most a point. Since E
is connected and all numerically negative invariant divisors on Ei/Z give Ei
in intersection, there is one of them, say Di, which is numerically positive/Z
on the other E3−i. According to the previous description D1 + D2 ≡ 0/Z,
and their intersection D1 ∩D2 gives the induction in dimension n. However,
such a contraction is impossible when n = 3. Indeed, for n = 3, there is
no invariant divisor D which is numerically negative/Z on two curves in
E, because these curves form a connected exceptional sublocus of E in D
and each of its components is a (−1)-curve. In this situation, each Ei is
an intersection of two pairwise distinct invariant divisors. So, E = E1 ∪ E2

because each invariant divisor passing through a curve of E is negative on this
curve only. This gives a contradiction because 4 invariant divisors passing
through one of curves Ei pass through the intersection point E1 ∩ E2. In
particular, we prove that a ≤ n/2 when the relative Picard number is 2. The
same holds for higher Picard numbers by the last case and the induction
when we consider a contraction of 2 dimensional face of the Kleiman-Mori
cone for X/Z. This completes our proof and explains what are the minimal
toric contractions.3

So, in dimension n = 3, Atiyah’s flops (2-3) and their contractions are
the only nonsingular toric minimal ones.

Other elementary examples of minimal semistable flops are Reid’s pago-
das and their possible higher dimensional generalizations (cf. La Torre Pen-
dante [11, 8.12]). For n ≥ 5, the induced flop on H can be different from the
toric induced (or symplectic) one. All nonsingular minimal flops and their
contractions for 3-fold are semistable (that is, their contractions Z have the
cDV type). They are absolutely extremal, that is, formally/k or analytically
when k = C, if and only if E = P1 is irreducible, and the flops are pagodas –
(1-3) (5) above. Other minimal 3-fold flops are their composite over k, e.g.,
modifications of Kulikov’s model for K3 surfaces semistable degenerations.

Question 1. Does Conjecture 1 hold for nonprojective X/Z? Or at least in
the nonsingular case of Example 6? It is interesting and nontrivial for n ≥ 4
because in dimension 3 each small X/Z is at least formally or analytically
projective.

3A. Borisov knows a pure combinatorial proof of this fact.
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Question 2. (Cf. Example 6.) What do minimal contractions of nonsingular
X with n ≥ 5 look like? Their flops? Absolutely extremal? Are they still
semistable? Their combinatorics? Is E irreducible and normal (= Pd) for
absolutely extremal contraction X/Z?

Example 7 (Almost minimal contractions). Under conditions (BIR) and (WLF),
the next important class having pure d = a is almost minimal.

Suppose also that X is nonsingular and B = 0 then, for such a contrac-
tion, d = a = n/2, and the dimension is pure, but either 0-log or non0-log
pairs (X/Z, 0) are possible, e.g., Mukai’s flop and Kawamata’s flip for n = 4.
By the theorem it is expected that f(E) ≤ 1, and f(E) is a nonsingular
curve in P ∈ f(E) only when (X/Z, 0) is locally over Z a 0-log pair with
absolutely extremal X/Z near P ; then it is expected to be a minimal nonsin-
gular contraction over the transversal hyperplane sections of f(E) through P .
The directed or projective flop is fibred. In particular, this should be a non-
singular (nonsymplectic even locally over the contraction, for example, with
Pd−1-fibration because then the lines have 2d−4+1 = 2d−3 = n−3 < n−2
parameters and this contradicts to Ran’s estimation [6, Lemma 2.3]) flop.

The case with the point f(E) is more complicated. First, suppose that
(X/Z, 0) is a non0-log pair (this is the minimal case among the non0-
contractions; cf. Question 3 below). Then in dimension 4 the MMP im-
plies that the flip X− → X+ exists, and X+/Z is nonsingular with a curve
+E = E+. The absolutely extremal components of such flips are Kawamata’s
flips (7). One can hope for a similar picture in higher dimensions.

Now suppose that f(E) = pt. is a closed point, and (X/Z, 0) is a 0-
log pair. Such contractions appear as the toric ones induced in Example 6
and also as the nonsingular birational symplectic contractions with pure
dimension ≤ n/2 for E (then the pure dimension of E is n/2 and as we
know E/pt). In these cases, for n ≥ 4, one can expect the existence of a
nontrivial nonsingular ”symmetric” direct and/or projective flop. It should
have E+ = +E of the pure dimension d = n/2 with the same number of
irreducible components as E (the number exceptional prime divisors over E
or over E+ with the log discrepancy a = n/2) in the formal or analytic case.
For instance, conjecturally the Mukai flop is the only nonsingular almost
minimal symplectic flop in dimension n = 4 (cf. Question 4 below).

But there are also singular flops. For instance, in dimension 4, an extremal
flopX− → X+/Z which transforms E = P2 into +E = E+ = P1 with a single
simple singularity having the m.l.d. = 2.

14



In dimension 2, the almost minimal contractions (X/Z, 0), which are 0-
log pairs, are the minimal resolutions of Du Val singularities P = f(E) ∈ Z.
They are always symplectic, but toric only of type A∗, and, by Example 6,
induced toric only of type A1 (correspond to the ordinary double singularity).

Question 3. Is the nonsingular non0-log pair case with d = n/2 in higher
dimensions similar to dimension n = 4? In particular, is the flip X+ always
nonsingular? E = Pd for formally or analytically extremal contractions?

Question 4. Classify the nonsingular birational almost minimal 0-log pairs
(X/Z, 0) with f(E) = pt. and their flops. In particular, such nonsingular
symplectic flops. Is any such flop induced toric when n ≥ 4 (see Example 6)?

Example 8 (More minimal contractions). A nonidentical contraction with the
m.l.d. a ≤ 1 is never minimal. For the next (terminal) segment a ∈ (1, 2], the
contraction is minimal only when d = 1 and E has only curve components
C. Moreover, X/Z is small for n ≥ 3. In particular, in dimension 3, E = C
is a curve.

Such contractions for terminal 3-folds with B = 0 appear in the MMP as
0-log pairs when a = 2 and non0-log pairs with a = (m+ 1)/m where m ≥ 2
is the index of K in E = C. So, a ≤ 3/2 in the latter case. In addition,
Francia’s flip of Example 3 corresponds to (the only one with difficulty 1)
an extremal terminal minimal log contraction (X/Z, 0) with a = 3/2 or of
the index 2; it also has the maximal length l = 1/2 among the index 2
contractions (cf. Example 1). For 3-folds with locally complete intersection
singularities, we have only 0-log pairs with terminal Gorenstein singularities
and their flops that are well-known.

Flops similar to the latter in dimension n = 4 are still not classified (even
the absolutely extremal amongst them; cf. Question 4). However flips of
some (maybe nonminimal) terminal Gorenstein contractions are explicitly
known (8); they have d = 2 by Example 1.

Advertisement 2. An opposite class of maximal contractions and its ap-
plication to the termination of log flips will be given in one of our future
letters.

List of notation and terminology

a = a(E) = a(X,B,E), the m.l.d. of (X,B) in the exceptional locus E
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a(Y ) = a(X,B, Y ), the m.l.d. (minimal log discrepancy) of (X,B) in sub-
variety Y , that is, the minimal log discrepancy a(X,B, P ) at the prime bi-
divisors P having the center in Y ; the latter means that centerX P ⊆ Y ; this
assumes that Y 6= ∅ (otherwise we can put a(Y ) = −∞; cf. Conjecture 1)

a(X,B, P ), for a prime bi-divisor P (prime divisors on some model of X
[23, p. 2668]), the log discrepancy of (X,B) or K +B at P [21, p. 98]; P is
considered here as its general or scheme point but not as a subvariety

B, a Weil R-divisor on X; usually a boundary (except for Monotonicity),
that is, all its multiplicities 0 ≤ bi ≤ 1, and K +B is R-Cartier

B+, a Weil R-divisor on X+ such that f+
∗ B

+ = f∗B; usually a boundary
(except for Monotonicity); for the log flips, the birational transform of B

(BIR), the condition on p. 4 which we assume afterwards, e.g., in Conjecture 1

+c, the minimal codimension in X+ of the irreducible components of the
rational transform +E of E in X+/Z; the codimension is pure when all the
irreducible components are of the same codimension

centerX P , for a prime bi-divisor P (prime divisors on some model of X [23,
p. 2668]), its center in X [23, p. 2669];P is considered here as a subvariety

(CDM), the property on p. 7 under additional assumptions in Conjecture 1

codimP , for a scheme point P ∈ X, its codimension dimX − dimP in X,
e.g., codimP = dimX if and only if P is a closed point in X

d = d(X/Z), the minimal dimension of the irreducible components of the
exceptional locus E of X/Z; this assumes that E 6= ∅ (otherwise we can put
d = −∞; cf. Conjecture 1); the dimension is pure when all the irreducible
components are of the same dimension

D, a Weil R-divisor D on X

D+, a semiample/Z R-Cartier divisor on X+ [23, Definition 2.5] such that
f+
∗ D

+ ∼R f∗D (see Definition on p. 2); for the log flips, D+ is the birational
transform of D [21, p. 98]

E = E(X/Z), the exceptional locus E of X/Z, that is, the union of con-
tractible curves

E+ = E(X+/Z), the exceptional locus of X+/Z; thus E means here to be
exceptional; in general, +E is quite different from the rational transform +E
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+E, the rational or complete birational transform of E in X+/Z (see +Y )

f : X → Z, a birational contraction of normal algebraic varieties over k;
sometimes we use such contractions in the analytic or formal category (cf.
Example 1), and most of the statements work in them

f+ : X+ → Z, its qflip or log flip

K,KX+, canonical divisors respectively on X and X+ given by the same
differential form, or by the same bi-divisor [23, Example 1.1.3]

l = l(X/Z,B), the (log) length of log pair (X/Z,B); see p. 5

LMMP, the log minimal model program and its conjectures [23, 5.1]

n = dimX, the dimension of X

(NSN), the property on p. 7 under additional assumptions in Conjecture 1

(PDM), the property on p. 7 under additional assumptions in Conjecture 1

pt., a closed point

(WLF), the condition on p. 4 which we assume afterwards, e.g., in Conjec-
ture 1

+Y , the rational or complete birational transform of Y in X+/Z; it is defined
for any subvariety Y ⊆ X and any rational map g : X− → Y as g(Y ) =
ψ ◦ φ−1(Y ), where

g = ψ ◦ φ−1 : X
φ
← W

ψ
→ Y

with a birational contraction φ, and independent on the decomposition

X− → X+/Z, either a D-qflip/Z, or log qflip (see Definition on p. 2), or a
log flip [23, p. 2684]

(X,B)− → (X+, B+)/Z, in Monotonicity, a qflip in lf (see Definition on p. 2)
with possibly nonboundaries B and B+

(X/Z,B), a log pair which usually satisfies (BIR) and (WLF) on p. 4

a 0-log pair is a log pair (X/Z,B) such that (X,B) is log canonical and
K +B ≡ 0/Z (cf. [26, Remark 3.27, (2)])

∼R, the R-linear equivalence [23, Definition 2.5]
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