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Abstract—To construct a resulting model in the LMMP, it is sufficient to prove the existence of
log flips and their termination for some sequences. We prove that the LMMP in dimension d−1
and the termination of terminal log flips in dimension d imply, for any log pair of dimension d,
the existence of a resulting model: a strictly log minimal model or a strictly log terminal Mori
log fibration, and imply the existence of log flips in dimension d+1. As a consequence, we prove
the existence of a resulting model of 4-fold log pairs, the existence of log flips in dimension 5,
and Geography of log models in dimension 4.
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Теперь кончаемо, бо числа не знаемо . . .

Из письма запорожских казаков турецкому султану1

This paper is mainly about the termination of flips2 but not about their existence. It shows that
under certain inductive assumptions and the termination of terminal flips, we can construct either
a log minimal model or a Mori log fibration for any log pair. This amounts to a weaker form of
the Log Minimal Model Program (LMMP) in which the termination of any sequence of log flips is
replaced by the termination of some sequences. This idea polishes the reduction to prelimiting (pl)
flips [8, 4.5 and Section 6; 12] and also appeared recently in [1] (cf. Definition 2 below). It seems
that this weaker form is sufficient for most applications of the LMMP. Up to dimension 4, we can
omit the inductive assumptions, including the termination. The results in dimension ≤ 4 indicate
that the terminal termination is much easier than the nonterminal one, e.g., the klt termination, and
does not imply automatically the latter. Moreover, we do not use any classification of singularities
for this weak LMMP in dimension ≤ 4. However, the results should not be exaggerated. They only
demonstrate that progress in the LMMP hinges upon that in termination.

We work over a base field k of characteristic 0; in some instances, k is algebraically closed or we
need to slightly change the meaning of an extremal curve (see Definition 1). We use standard facts
and notation of the LMMP, as in [4, 5, 12]. In particular, we use standard abbreviations: lt for log
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1It is difficult to preserve all flavors in a translation of this phrase and, in particular, an ambiguity of the word число
in Ukranian: Now we will conclude, for we do not know the date (number) . . . . From the reply of Zaporozhian
Cossacks to Sultan Mehmed IV of Turkey.

2Their existence was announced in C. Birkar, P. Cascini, C. Hacon, and J. McKernan, “Existence of Minimal
Models for Varieties of Log General Type,” arXiv:math.AG/0610203. Added by the author at the proofreading
stage.
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terminal; dlt for divisorially lt; klt for Kawamata lt; lc for log canonical; wlc for weakly log canonical.
Let us briefly recall some terminology and notation: a birational rational 1-contraction does not
blow up any divisor [12, Definition 3.1]; DB is the R-vector space of Weil R-divisors D supported in
SuppB with the maximal absolute value norm ‖D‖ [12, text before Definition 5.17]; an FT (Fano
type) relative variety means a relative variety X/Z for which there exists an R-boundary B such
that (X/Z,B) is a klt Fano pair; for the cone of curves, contractions on an FT X/Z, and more
details, see [6, Section 2]; K = KX denotes a canonical divisor on a variety X; LCS(X,B) is the
subvariety of nonklt points.

The LMMP means that of [11, Section 5] under the dlt condition. Flips are supposed to be klt
or dlt Q-factorial and extremal in most situations. However, the lc LMMP holds up to dimension 4,
and dimension 5 is the first one when the existence of lc (even dlt) flips is still unknown. By a
terminal log flip we mean a log flip or a divisorial contraction having only terminal points in the
flipping or exceptional locus, respectively; that is, the minimal log discrepancy (mld) for these points
is >1. Terminal termination: any sequence of terminal log flips is finite. Usually we apply this
termination to extremal and Q-factorial contractions at least near the flipping locus (cf. Caution 2
in the proof of Theorem 2).

Theorem 1. We assume the LMMP in dimension d − 1 and the termination of terminal log
flips in dimension d. Then any pair (X/Z,B) of dimension d with an R-boundary B has a resulting
model. More precisely, (X/Z,B) has either a strictly log minimal model or a strictly log terminal
Mori log fibration.

Moreover, (X/Z,B) has a strictly log minimal model if and only if its numerical log Kodaira
dimension is nonnegative [11, p. 2673], or equivalently, for lc (X,B), K + B is pseudo-effective/Z.

The LMMP can be actually replaced by the terminal termination in dimension ≤ d − 1 (cf.
Corollary 3 and its proof).

Question. However, if B is a Q-boundary, are the LMMP with Q-boundaries and the terminal
termination with Q-boundaries enough?

Addendum 1. If an initial pair (X/Z,B) of dimension d is strictly log terminal or dlt, a
resulting model can be constructed by a terminated sequence of (extremal) log flips.

Perhaps, for a more general initial pair, e.g., lc (X/Z,B), this part of the LMMP also works:
resulting models exist and Geography of log models holds in dimension d. Similarly, under the same
assumptions, directed klt flops terminate in dimension d. In what follows, we mention some of these
results without the assumptions for 4-folds; we can add to this the termination of 4-fold klt directed
flops.

Corollary 1. Under the assumptions of Theorem 1, the nonnegative numerical log Kodaira
dimension is a closed condition with respect to boundaries, or equivalently, the existence of a Mori
log fibration is an open condition on B.

To obtain the same result for the usual log Kodaira dimension, one needs semiampleness [11,
Conjecture 2.6].

Proof. By definition the numerical dimension is defined for a wlc model [11, Proposition 2.4],
and the wlc property is closed. Moreover, for a limiting boundary, a resulting model is wlc. Other-
wise, by Theorem 1 and Addendum 1, we get a Mori log fibration on a birational model, for which
the existence condition is open with respect to boundaries. �

Corollary 2. Any 4-fold pair (X/Z,B) with an R-boundary B has a resulting model. The
closed and open properties of Corollary 1 hold for 4-fold pairs.

Proof. Immediate by the LMMP up to dimension 3 [11, Theorem 5.2] and the terminal ter-
mination up to dimension 4 [13, Example 9 and Lemma 2]. �
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Note that semiampleness [11, Conjecture 2.6], special termination [13, Example 8], the Kawa-
mata–Matsuki finiteness [4, Conjecture 3.16], and [1, Theorem 2.15] improve the last result: any
sequence of log flips for a 4-fold lc pair (X/Z,B) with a pseudo-effective/Z divisor K+B terminates
(see a remark before Definition 2). Actually, semiampleness can be replaced by the effective property
of (X/Z,B) in the sense of Birkar, that is, the effectiveness of K+B up to numerical equivalence/Z.
By the special termination we can consider only klt pairs (X/Z,B). Assuming that K+B is pseudo-
effective/Z, we obtain an effective divisor E ∼R K+B/Z by the corollary and semiampleness. Thus,
the pairs (X/Z,B) and (X/Z,B + εE) with a sufficiently small real number ε > 0 have log minimal
models (Y/Z,BY ) and (Y/Z, (B + εE)Y ), and the varieties Y/Z are the same. The rank of the
homology groups H4(Y/Z, Z) is bounded for all these Y/Z due to Kawamata–Matsuki. Hence,
by [1, Theorem 2.15] for (X/Z,B + εE), any sequence of log flips terminates: after finitely many
flips, each next one blows down only curves and blows up a surface, which increases the rank of
algebraic cycles of dimension 2. The rank is bounded according to the above, since we can always
apply Addendum 1. Under the conditions of [1, Theorem 3.4], both the semiampleness conjecture
and the Kawamata–Matsuki conjecture hold according to [7, Theorem 2.1] (cf. Corollary 10 below)
and to Geography of log models (see Corollary 5 below). Actually, we can omit the Q-factorial
property of X. As in the proof of [1, Theorem 3.14], we can suppose that B ≥ A, where A is an
ample effective R-divisor. Then we apply the geography to

∑
Di = SuppB near B. The varieties

Y/Z of the log minimal models for (X/Z,B) correspond to countries near B. For the log Kodaira
dimension −∞, the log termination is more difficult and is still out of our grasp in general.

Revised Reduction. The LMMP in dimension d− 1, the termination of terminal log flips in
dimension d, and the existence of pl flips in dimension d + 1 imply the existence of klt log flips in
dimension d + 1.

We recall that the flipping contraction is assumed to be extremal and small, and the flipping
variety is assumed to be Q-factorial.

Revised Induction. The LMMP in dimension d− 1 and the termination of terminal log flips
in dimension d imply the existence of pl flips in dimension d + 1.

Actually, it is sufficient to assume the termination in the birational situation, that is, when
X → Z is a birational contraction.

In the same way as we prove it below [12, 3], we can prove that any restricted divisorial algebra
on the reduced component of a pl contraction in dimension d + 1 is finitely generated. Similarly we
can establish the existence of pl flips in dimension n with the core dimension n − s ≤ d [12, 1.1].
So, we get a “more terminal” version of the main theorem in [3].

Corollary 3. The LMMP in dimension d − 1 and the termination of terminal log flips in
dimension d imply the existence of klt log flips in dimension d + 1.

As in Revised Reduction, the flipping contraction is assumed to be extremal and small, and the
flipping variety is assumed to be Q-factorial. For d-dimensional log flips, these conditions can be
omitted.

Proof. Immediate by Revised Reduction and Revised Induction.
Notice that in dimension d we can obtain more general log flips, as in the usual reduction [12,

Theorem 1.2]. �
Corollary 4. Log flips as in Corollary 3 exist up to dimension 5.

For a different proof see [1, Theorem 4.3]. Note that for 4-fold log flips we need only the terminal
termination in dimension 3 [4, Theorem 3.5].

Proof. Immediate by the LMMP up to dimension 3 [11, Theorem 5.2] and the terminal ter-
mination up to dimension 4 [13, Example 9 and Lemma 2]. �
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Other applications are as follows.
Corollary 5 (see [11, Theorem 6.20; 4, Conjecture 2.10]). The geography conjecture holds for

relative klt 4-folds. This gives a bounded termination for D-flips of any relative FT 4-fold.
This can be established for any lc relative pair after a slight generalization of Proposition 1 and

its addenda and corollaries for lc singularities instead of dlt (see a remark after Proposition 1).
Proof. The geography can be obtained from Theorem 1 and Theorem 2 below (cf. the proof

of Corollary 3).
In the case of FT varieties, this gives a universal bound for the D-termination. �
A detailed treatment will be done elsewhere.
Corollary 6 (see [12, Theorem 3.33]). Zariski decompositions exist on relative FT 4-folds. In

particular, the divisorial algebra of any Q-divisor is finitely generated on such a variety.
Proof. Immediate by Corollary 5. �
Corollary 7. If a complete algebraic space of dimension 4 has only klt singularities and has

no rational curves over an algebraic closure of the base field, then it is projective.
Proof. We can use the methods of [10] and Addendum 1. �
Definition 1. An irreducible curve C on X/Z is called extremal if it generates an extremal

ray R = R+[C] of the Kleiman–Mori cone NE(X/Z) and has the minimal degree among the curves
in this ray (with respect to any ample divisor). We also suppose that R is contractible.

If the base field is not algebraically closed, then the contraction may be nonextremal over its
algebraic closure and we take, as an extremal curve, that of a (partial) extremal subcontraction or
a sum of conjugations of such a curve divided by the number of curves in the orbit.

If (X/Z,B) is a dlt log pair with a boundary B such that K + B has index m, then, for any
extremal curve C/Z,

(K + B,C) ∈
{ n

m

∣
∣ n ∈ Z and n ≥ −2dm

}
,

where d = dim X. This follows from the anticanonical boundedness [9, Theorem]. In particular,
(K + C,B) ≥ 1/m if (K + B,C) > 0 (cf. [11, Lemma 6.19]).

We can generalize these results to R-boundaries.
Proposition 1. Let (X/Z,B) be an lc pair with an R-boundary B. Then there exist a finite

set of real positive numbers ri and a positive integer m such that, for any extremal curve C/Z near
the generic point of which (X,B) is dlt,

(K + B,C) ∈
{∑ rini

m

∣
∣ ni ∈ Z and ni ≥ −2dm

}
,

where d = dim X.
If (X,B) is dlt everywhere, we can take any extremal curve. It is expected that actually we

can relax dlt to lc in the proposition and in its corollaries and addenda: The LMMP is sufficient
for this in dimension d [9, Conjecture and Heuristic Arguments]. More precisely, the existence of
a strictly log minimal model over any lc pair is sufficient. For this, the existence of log flips and
special termination in dimension d are enough, which follows from the LMMP in dimension d−1 by
Corollary 3, [3], and [12, Theorem 2.3]. In addition, the lc property is better than the dlt one: the
former is closed (see the example and the proof of Corollary 9 below). However, in our applications
we only need the dlt case.

Addendum 2. The numbers ri, m, and d depend on the pair (X/Z,B), but they are the same
after a (generalized) log flop outside LCS(X,B), that is, only in curves C with C ∩ LCS(X,B) = ∅.

To determine these numbers, we use the following.
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Lemma 1. Under the assumptions of Proposition 1, there exists a decomposition B =
∑

riBi,
where ri are positive real numbers and Bi are (Weil) Q-boundaries such that

(1)
∑

ri = 1;
(2) each SuppBi ⊆ SuppB;
(3) each K + Bi is a Q-Cartier divisor that has the trivial intersection (K + Bi, C) = 0 for any

curve C/Z with (K + B,C) = 0;
(4)

K + B =
∑

ri(K + Bi);

(5) each (X,Bi) is lc, LCS(X,Bi) ⊆ LCS(X,B), and (X,Bi) is dlt in the locus where (X,B)
is dlt.

The last assumption is meaningful because there exists a maximal dlt set in X and it is open:
the complement to the closure of log canonical centers that are not dlt.

Proof. The main problem here is the possible real multiplicities of B. Property (4) is immediate
by (1). To satisfy (2) and (3), we consider an affine R-space of R-divisors

D0
B =

{
D | SuppD ⊆ SuppB, and K + D satisfies the intersection condition of (3)

}
.

The last condition means that K + D is R-Cartier and (K + D,C) = 0 for any curve C/Z with
(K+B,C) = 0. This space is actually finite-dimensional and is defined over Q. More precisely, this is
a finite-dimensional R-space/Q in the finite-dimensional R-space DB of Weil R-divisors supported in
SuppB. Note for this that the R-Cartier condition gives a linear subspace over Q, and any canonical
divisor K is integral. Thus, the condition that K + D is R-Cartier gives a finite-dimensional affine
subspace over Q. Each condition (K + D,C) = 0 is also rational linear because each intersection
(K + Bi, C) = mi is rational. Finally, any D ∈ D0

B is an affine (weighted) linear combination of
Q-Cartier divisors K +Bi with Bi (not necessarily boundaries for the present) supported in SuppB.
Note that B ∈ D0

B .
On the other hand, the R-boundaries D ∈ D0

B with lc (X,D) form a convex closed rational
polyhedron [8, 1.3.2], and B belongs to this polyhedron. Any small perturbation inside the polyhe-
dron preserves the klt property outside LCS(X,B) and the dlt property of (5). Therefore, K + B
has a required decomposition (cf. Step 1 in the proof of Corollary 9 below). �

Proof of Proposition 1. The numbers ri were introduced in Lemma 1. The positive integer m
is an index for all divisors K + Bi; that is, each m(K + Bi) is Cartier. By (5) of Lemma 1 and the
anticanonical boundedness [9, Theorem], each (K + Bi, C) ≥ −2d. Thus,

(K + B,C) =
∑

ri(K + Bi, C) =
∑

ri
ni

m
,

where ni ∈ Z and ni ≥ −2dm.
Finally, we prove Addendum 2. For simplicity, we consider only usual log flops (for some

remarks about more general flops see below). By these we mean birational rational 1-contractions
X ��� X ′/Z that, just as their inverses, are indetermined only in curves C/Z with (K + B,C) = 0.
Note that the decomposition B =

∑
riBi with all its properties is preserved under log flops in

these curves [4, Definition 3.2]. The same holds for the dimension d and index m [7, 2.9.1]. The
space D0

B and the boundary polyhedron are also preserved (for small flops), or are surjective on the
corresponding space and the polyhedron for any log flop. For (5), it is enough that the log flop is
outside LCS(X,B).

A generalized log flop is a crepant modification that can blow up some exceptional divisors
with log discrepancies ≤1 and >0 outside LCS(X,B), that is, with centers not in LCS(X,B).
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Kawamata says that such a modification of log pairs is a log (K + B)-equivalence, and the pairs are
log (K +B)-equivalent. For example, it can be a crepant blowup or its composition with subsequent
log flops. Under a certain assumption (see Lemma 3 below), such a blowup exists according to the
finiteness of the set of exceptional divisors with log discrepancies ≤1 outside LCS(X,B). Then the
Q-Cartier property of K + Bi is enough on a blowup or even on a log resolution. This condition is
preserved under log flops (even generalized) because the intersection numbers can be computed on
any common resolution by the projection formula. �

Corollary 8 (on an interval; cf. [11, Lemma 6.19]). Let (X/Z,B) be an lc pair with an
R-boundary B. Then there exists a real number � > 0 such that, for any extremal curve C for
which (X,B) is dlt near the generic point of C,

either (K + B,C) ≥ � or (K + B,C) ≤ 0.

Thus, the intersection numbers (K + B,C) do not belong to the interval (0, �).
Addendum 3. The number � depends on a pair (X/Z,B), but it is the same after a (gener-

alized) log flop outside LCS(X,B).
Note that extremal curves may not be preserved under flops!
Proof. By Proposition 1, the intersection numbers (K + B,C) =

∑
rini/m with extremal

curves C/Z under the assumptions of the proposition satisfy the descending chain condition. More-
over, for any real number A the set of these numbers ≤A is finite. Thus,

� = min
{∑ rini

m
> 0

∣
∣ ni ∈ Z and ni ≥ −2dm

}

is the required positive number.
By Addendum 2 we can take the same � after any log flop outside LCS(X,B). �
Example. Let Li, i = 1, 2, 3, be three distinct lines in the plane P

2 that pass through a point P .
Then, for F = L1 + L2 + L3,

P =
{
D ∈ DF | (P2,D) is an lc pair with an R-boundary D

}

is a convex closed rational polyhedron. The face of boundaries D =
∑

biLi with
∑

bi = 2 gives
nondlt pairs (P2,D) with three exceptions (P2, F − Li), i = 1, 2, 3. Thus, the dlt property is not
closed and not convex. However, the dlt property holds exactly in (P2 \ P,D) for any interior
point D of the face.

Corollary 9 (stability of extremal rays). Let (X/Z,B) be an lc pair with an R-boundary B
and F be a reduced divisor on X. Then there exists a real number ε > 0 such that if another
R-boundary B′ ∈ DF and an extremal contractible ray R ⊂ NE(X/Z) satisfy the following :

(1) ‖B′ − B‖ < ε;
(2) K + B′ is R-Cartier, and (K + B′, R) < 0;
(3) for some extremal curve C in R, the pair (X,B) is dlt near the generic point of C, and so

is (X,B′), possibly for a different extremal curve,

then the seminegativity (K + B,R) ≤ 0 holds.
If (X,B + E) is a dlt pair with an effective R-divisor E and Supp(B + E) = F, then we can

omit condition (3).
Addendum 4. For a fixed B′, a log flop of (X/Z,B) outside LCS(X,B) in any R as in the

corollary preserves ε in the direction B′; that is, the stability holds again for any D in the segment
[BY , B′

Y ] on flopped (Y/Z,BY ), where BY and B′
Y denote the birational transforms on Y of the
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corresponding boundaries B and B′ from X. More precisely, D ∈ DFY
is an R-boundary ; the log

flop projects DF onto DFY
(some components of F are contracted), where FY denotes the birational

transform of F on Y ;

(1) ‖BY − D‖ < ε.

For any extremal contractible ray R ⊂ NE(Y/Z) such that

(2) (KY + D,R) < 0 and
(3) for some extremal curve C in R, the pair (Y,BY ) is dlt near the generic point of C, and so

is (Y,B′
Y ), possibly for a different extremal curve,

(KY + D,R) ≤ 0 holds.
Caution 1. In other directions, log flops can spoil the singularities of (Y,D).
Addendum 5. The same applies to any log flop that is a composition of log flops as in Ad-

dendum 4 and log flops with a weaker condition :

(2′) (K + B,R) = (K + B′, R) = 0.

Proof. The main idea is that the dlt property is conical.
Step 1. Choice of δ. We can suppose that B ∈ DF . There exists a real number δ > 0 such that

(3′) for any R-boundary B′ ∈ DF with R-Cartier K + B′, ‖B′ −B‖ ≤ δ, and any D in the open
ray

−−→
BB′ with ‖D − B‖ ≤ δ, D is an R-boundary and the pair (X,D) is dlt (exactly) in

the locus where so is (X,B′); in particular, (X,D) satisfies (3) for the same extremal curve
as (X,B′).

By [8, 1.3.2]
PB =

{
D ∈ DF | (X,D) is an lc pair with an R-boundary D

}

is a convex closed (rational) polyhedral cone in some δ-neighborhood of the vertex B. Unfortunately,
a similar set for the dlt property instead of the lc one may not be closed (see the example above).
However, the dlt property of (X,D) holds in the same maximal open subset of X for all D in the
interior of every face of PB . Indeed, according to the linear behavior of discrepancies with respect
to D, all D in the interior have the same support on X and the same log canonical centers in X.
Thus, a dlt resolution of (X,D) over the maximal dlt open subset in X gives the same for any other
divisor in the interior. Now we obtain (3′) from the dlt property in the interior of a (minimal) face
of PB with D = B′ ∈ PB .

By monotonicity and stability [8, 1.3.3, 1.3.4], under the last assumption in Corollary 9, the dlt
property is open and closed in PB near B. Moreover, in the definition of PB , we can replace the
lc property by the R-Cartier one near B. Then we do not need (3). Indeed, no prime component
of E passes through any log canonical center of (X,B).

Step 2. The required number is

ε =
δ

N + 1
,

where N is any positive number ≥ 2d/� and d = dim X.
Indeed, if B′ is an R-boundary and C is an extremal curve in R as in (1)–(3) of Corollary 9 but

(K + B,C) > 0, then, by Corollary 8, (K + B,C) ≥ � and

(B − B′, C) = (K + B,C) − (K + B′, C) > �.

Hence
(K + B′ + N(B′ − B), C) = (K + B′, C) + N(B′ − B,C) < −N� ≤ −2d,
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which contradicts the anticanonical boundedness [9, Theorem]. Indeed, by our choice of ε and (3′),
D = B′ + N(B′ − B) = B + (N + 1)(B′ − B) is an R-boundary, ‖B − D‖ = (N + 1)‖B′ − B‖ <
(N + 1)ε ≤ δ, and D satisfies (3′). Thus, (K + B,R) ≤ 0.

Step 3. Addenda. In both addenda we consider a log flop in R, that is, (K + B,R) = 0. Then
we can replace B′ by a maximal B′ in the direction B′, that is, by a (possibly) new boundary B′

on the ray
−−→
BB′ such that the quantity ‖B′ − B‖ = ε or is infinitely close to ε; in the former

case we need to slightly decrease ε. (Since we use the maximal absolute value norm, actually in
most directions we can take B′ with a larger Euclidean distance.) Then B′ and any D′ ∈ (B,B′]
will satisfy properties (1)–(3) of Corollary 9 and (3′) of its proof. In particular, (2) holds because
(K + B,R) = 0. The same applies to (2′) in Addenda 5.

Property (1) of D in Addendum 4 follows almost by definition. The distance in (1) is <ε and
is less than the length of [BY , B′

Y ], which may be shorter and even vanish if B′
Y = BY . If the

birational rational 1-contraction X ��� Y contracts divisors, then FY is smaller than F , and we
need to change ε to εY = ‖B′

Y ‖, which is the maximal absolute value norm with respect to the
(noncontracted) prime components of FY . (Since F has finitely many components, εY stabilizes
after finitely many log flops.) Property (3′) on Y in the direction D′

Y with δY = (N + 1)εY can be
obtained from the fact that log flips and log flops preserve or improve log singularities. Note that
log flops outside LCS(X,B) preserve klt and dlt singularities and LCS(X,B) itself. In Addendum 4,
the log flop is a log flip with respect to K + D′ if D′ �= B. Such a log flip with respect to K + D′

improves the singularities of (X,D′); actually, (3′) holds after the log flop for any D in the segment
[BY , (N + 1)B′

Y ]; D′ → D′
Y = D is a surjective projection. Thus, by Addendum 2, the constants �,

N , and d are the same, εY and δY are as above, and under the conditions (2) and (3) of Addendum 4
the required seminegativity holds. This gives the same constants for log flops with (K +D′, R) = 0.

Addendum 5 follows by induction on the composition. �
Corollary 10 (cf. [11, Corollary 6.18]). Let (X/Z,B) be a klt wlc model with big K + B/Z.

Then it has an lc model ; that is, K + B is semiample.

Proof. This is well-known when B is a Q-divisor [7, Theorem 2.1; 5, Theorem 3-1-1 and
Remark 3-1-2]. By Lemma 1 we have a decomposition B =

∑
riBi satisfying (1)–(5) of the lemma.

Moreover, if ‖Bi −B‖ < ε for a sufficiently small real number ε > 0, we can suppose that (X/Z,Bi)
is klt with big K + Bi/Z, and by Corollary 9, K + Bi is nef/Z. According to the construction of
the decomposition, we can always find boundaries Bi in the ε-neighborhood of B. Therefore, each
K + Bi is semiample/Z, and so is K + B. Moreover,

(
X/Z,B′ =

∑
r′iBi

)
with any 0 < r′i ∈ Q,∑

r′i = 1, is a klt minimal model with big K + B′ and with the same lc model as (X/Z,B); all
these models are equivalent in the sense of [11, Definition 6.1]. �

Corollary 11 (stability of wlc models). Let (X/Z,B) be a dlt wlc model with an R-bound-
ary B and F be a reduced divisor such that, near B for any B′ ∈ PB, (X,B′) is a dlt pair and
SuppB ⊆ F . Then there exists a real number ε > 0 such that, for any other R-boundary B′ ∈ DF

with ‖B′ − B‖ < ε, the following statements are equivalent :

(1) H = B′ − B is nef on any (irreducible) curve C/Z with (K + B,C) = 0;

(2) for some real number 0 < δ < ε/‖H‖, (X/Z,B + δH) is a dlt wlc model ; and
(3) for any real number 0 < δ < ε/‖H‖, (X/Z,B + δH) is a dlt wlc model.

The dlt property near B holds if there exists an effective R-divisor E such that (X,B + E) is
a dlt pair and Supp(B + E) = F .

Addendum 6. The models in statement (3) of Corollary 11 are equivalent.

Proof. We choose the same ε as in the proof of Corollary 9. By our assumption the dlt property
near B coincides with the lc one: if, in Step 1 of the proof of Corollary 9, we replace the lc condition
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by the dlt one, and even by the R-Cartier one, we obtain the same cone PB in the ε-neighborhood
of the vertex B.

(1) ⇒ (3): The nef property in (1) includes the R-Cartier property of H. By our choice of ε,
δ, and B′, D = B + δH ∈ PB, and D is an R-boundary. Thus, by the definition of PB , the pair
(X/Z,D) is a dlt pair. If it is not wlc, then K + D is not nef/Z, and by [2, Theorem 2] there exists
an extremal contractible ray R ⊂ NE(X/Z) satisfying conditions (2) and (3) of Corollary 9 with
B′ = D. Hence by the corollary (K + B,R) ≤ 0, and so (K + B,R) = 0 by the wlc property of
(X/Z,B). But then (H,R) < 0, which contradicts (1).

(3) ⇒ (2): Immediate by assumptions.

(2) ⇒ (1): Suppose that (H,C) < 0 for some (irreducible) curve C/Z with (K + B,C) = 0.
Then (K + B + δH,C) = δ(H,C) < 0, which contradicts the wlc property in (2).

The equivalence of the addendum follows from the linear property of intersections. If (K +
B + δH,C) = 0 for some δ in (3), then (K + B + δH,C) = 0 for any δ in (3). Otherwise,
(K + B + δH,C) < 0 for some δ in (3). Similarly, if (K + B + δH,C) > 0 for some δ in (3), then
(K + B + δH,C) > 0 for any δ in (3). �

Lemma 2 (convexity of equivalence). If two wlc models are equivalent, then all resulting mod-
els between them exist and are wlc equivalent to each of the two models.

For simplicity, one can assume that the models are isomorphic in codimension 1, which is enough
for our applications. To explain the more general case, one needs b-divisors and/or Geography.

Proof. Suppose that wlc models (X/Z,B) and (X/Z,B′) are equivalent; by definition we can
suppose that they have the same variety X/Z. We verify that any model (X/Z,B′′) between them,
that is, for any B′′ ∈ [B,B′], is wlc and equivalent to each of the above models; again we take the
same variety X/Z. This also gives the existence of a resulting model for (X/Z,B′′).

Indeed, for some real numbers α, β ≥ 0, α + β = 1, B′′ = αB + βB′. Let C/Z be a curve with
(K + B,C) = 0. Then (K + B′, C) = 0 because the models (X/Z,B) and (X/Z,B′) are equivalent.
Hence, by the linear property of intersection,

(K + B′′, C) = α(K + B,C) + β(K + B′, C) = 0.

Similarly, if (K + B,C) > 0, then (K + B′, C), (K + B′′, C) > 0. Thus, (X/Z,B′′) is a wlc model
equivalent to (X/Z,B) and (X/Z,B′). Notice also that (X,B′′) is lc (cf. [8, 1.3.2]) and each log
discrepancy a(E,X,B′′) = αa(E,X,B) + βa(E,X,B′). �

The following concept is a formalization of the well-known method from [8, 4.5] for reducing log
flips to pl flips, and it is extremely important in our proofs. The same concept under a different
name, directed flips, appeared in [1]. However, it is redundant there: in [1, Theorem 3.4 and
Corollaries 3.5, 3.6] any sequence of log flips terminates (see comments after Corollary 2).

Definition 2 (H-termination). Let (X/Z,B) be an lc pair and H be an R-divisor. A sequence
of log flips (not necessarily extremal)

(X1 = X/Z,B1 = B) ��� (X2 = X+
1 /Z,B2 = B+

1 ) ��� . . .

is called H-ordered if we can associate a real number λi > 0 with each flip Xi ��� Xi+1/Z so that

(1) the numbers decrease: λ1 ≥ λ2 ≥ . . . ;
(2) each flip Xi ��� Xi+1/Z is a log flop with respect to KXi + Bi + λiHi, where Hi is the

birational image of H on Xi; and
(3) each pair (Xi/Z,Bi + λiHi) is a wlc model.
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We say that the flip Xi ��� Xi+1/Z has the level λi with respect to H. So the H-termination
of a given sequence of H-ordered log flips means that it terminates, i.e., is finite.

It is clear that the termination of any sequence of nontrivial log flips implies the H-termination
for its every H-ordering. On the other hand, the H-termination for a sequence of log flips is sufficient
for its termination and allows one to construct a resulting model.

Proposition 2. For any initial klt wlc model (X/Z,B + λ1H), the H-termination implies the
existence of a resulting model for (X/Z,B), in particular, the termination of the corresponding log
flips of (X/Z,B).

Moreover, for a given initial model, an H-ordered sequence of log flips exists if the log flips exist
in dimension d = dim X.

Proof. Let Xn ��� Xn+1/Z be the last flip of level λn. By definition (Xn+1/Z,Bn+1+λnHn+1)
is a wlc model, and λ = λn > 0. If KXn+1 + Bn+1 is nef/Z, then (Xn+1/Z,Bn+1) is a wlc model, a
resulting model of (X/Z,B).

Otherwise the divisor KXn+1 + Bn+1 is not nef/Z. By induction we can suppose that
(Xn+1/Z,Bn+1 + λnHn+1) is klt (see below the proof of the existence of H-ordered flips). Thus,
by Corollary 9 with (X,B) = (Xn+1, Bn+1 + λnHn+1), either NE(Xn+1/Z) has an extremal ray R
such that (KXn+1 + Bn+1 + λnHn+1, R) = 0, (Hn+1, R) > 0, and (KXn+1 + Bn+1, R) < 0, or by
Corollary 11 there exists 0 < λn+1 < λn such that (Xn+1/Z,Bn+1 + λn+1Hn+1) is a wlc model. In
the former case, by our assumptions, R gives a Mori log fibration Xn+1 → Y/Z, a resulting model
with the boundary Bn+1 for (X/Z,B), because Hn+1 is numerically ample/Y and λn > 0. In the
latter case, we proceed as follows. We can assume that λn+1 is minimal in our construction, that
is, with nef KXn+1 + Bn+1 + λn+1Hn+1/Z; the klt property is preserved by monotonicity [8, 1.3.3].
Then we obtain a Mori log fibration as in the former case.

Now we explain how to extend the sequence of log flips if Xn ��� Xn+1 is not the last one. If the
above contraction for R is birational, it has a log flip Xn+1 ��� Xn+2 = X+

n+1/Z (possibly a divisorial
contraction). It is a log flop of the wlc model (Xn+1/Z,Bn+1 + λnHn+1) and thus satisfies (1)–(3)
of Definition 2 with λn+1 = λn. Note that it preserves the klt property of the pair. Otherwise we
consider a similar construction for a minimal λn+1 < λn as above. Again it extends the H-ordered
sequence if R corresponds to a birational contraction. Since (Xn+1, Bn+1) is lc, (Xn+1, Bn+1 +
λnHn+1) is klt, and 0 < λn+1 < λn, by monotonicity [8, 1.3.3] the pair (Xn+1, Bn+1 + λn+1Hn+1)
is klt. Any flop preserves the klt property. Hence (Xn+2, Bn+2 + λn+1Hn+2) is also klt, which
completes the induction.

Usually we include divisorial contractions in log flips. Thus, either we consider not only small
modifications as log flops, or we use the fact that, after finitely many log flips, all the next ones are
small and so are log flops. �

It is easy to give an example of a sequence of log flips that cannot be H-ordered at least for
some divisor H. Take two disjoint birational contractions one of which is positive and the other is
negative with respect to H.

In what follows, all isomorphisms of models, e.g., local ones, are induced by their birational
isomorphisms.

Theorem 2. We assume the LMMP in dimension d − 1 and the termination of terminal log
flips in dimension d. Let (Xi/Z,Bi) be a sequence of d-dimensional dlt wlc models that converges
to a dlt pair (X/Z,B) in the following sense:

(1) each Xi is isomorphic to X (and the models are isomorphic to each other ) in codimension 1;
all divisors Bi and B are finitely supported ; that is, there exists a reduced divisor F such
that B and each Bi belong to DF ;
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(2) each Xi is isomorphic to X near LCS(X,B) = S = �B� and LCS(Xi, Bi) = LCS(X,B):
there exist neighborhoods Ui of LCS(Xi, Bi) and Vi of LCS(X,B) that are isomorphic and
are identified under the birational isomorphism of (1);

(3) there exist finitely many prime b-divisors (exceptional and nonexceptional) Dj outside (pos-
sibly not disjoint from) LCS(X,B), that is, centerX Dj �⊆ LCS(X,B), that contain all
positive codiscrepancies b(Dj ,Xi, Bi) = 1 − a(Dj ,Xi, Bi) outside LCS(X,B); that is, if
centerXi Dj �⊆ LCS(X,B) and b(Dj ,Xi, Bi) > 0 for some i, then Dj is one of these b-divi-
sors;

(4) there exists a limit of b-R-divisors Bi = S +
∑

b(Dj ,Xi, Bi)Dj :

Blim = S +
∑

bjDj = S +
∑

lim
i→∞

b(Dj ,Xi, Bi)Dj ;

(5) B = Blim = S +
∑

bjDj , where the summation is only over nonexceptional Dj on X, and
B ≥ Blim, where B = S+

∑
b(Dj ,X,B)Dj is the crepant b-subboundary for (X,B) extended

in the b-divisors Dj .

Then the sequence is finite in the model sense; that is, the set of equivalence classes of models
(Xi/Z,Bi) is finite.

Notice that actually (3) implies the existence of a finite support in (1).

Corollary 12. We assume the LMMP in dimension d− 1 and the termination of terminal log
flips in dimension d. Let (Xi/Z,Bi) be a sequence of d-dimensional dlt log pairs such that

(1) each (Xi/Z,Bi) is a wlc model ;

(2) the models are isomorphic in codimension 1 and isomorphic near LCS(Xi, Bi);

(3) for some R-boundaries B and B′, each Bi ∈ [B,B′] and the models are ordered in the
segment : Bi = B + λiH, H = B′ − B, λ1 ≥ λ2 ≥ . . . , λi ∈ (0, 1]; and

(4) for some i, (Xi/Z,B) and (Xi/Z,B′) are dlt log pairs with LCS(Xi, B) = LCS(Xi, B
′) =

LCS(Xi, Bi).

Then the models stabilize: the models are equivalent for i � 0.

Note that (3) is meaningful because the Weil divisors on each model are the same by the first
statement of (2).

Proof. Step 1. Nonequivalence of models. By Lemma 2 we can suppose that the numbers λi

form an infinite sequence, λ0 = limi→∞ λi, and the models (Xi, Bi) are pairwise nonequivalent.
Otherwise the stabilization holds.

Step 2. Conditions of Theorem 2 hold for an appropriate subsequence. We can suppose i = 1
in our assumption (4). Take (X = X1/Z,B := Blim), where B := Blim = limi→∞ Bi = B + λ0H,
or λ0 = 0 for the new B. Conditions (1) and (2) of Theorem 2 hold by assumptions (2)–(4).
We can satisfy condition (3) in Theorem 2 by taking a subset of b-divisors Dj with b(Dj ,X,B) ≥ 0
and centerX Dj �⊆ LCS(X,B), or equivalently, centerX Dj ∈ X \ LCS(X,B); if Dj is also nonex-
ceptional, it is assumed that Dj is supported in SuppB or in SuppB′. The set of Dj is finite
by [11, Corollary 1.7]. Then the condition holds for (X,Bi) with all Bi sufficiently close to B by
assumptions (2) and (4), the stability of the klt property, and the continuity of log discrepancies
with respect to the multiplicities in Dj , where Bi on X is its birational transform from Xi. Hence
assumption (1) and monotonicity [4, Lemma 2.4] imply (3) in Theorem 2 for all i � 0.

Up to convergence in (4) of Theorem 2, the conditions in (5) of Theorem 2 follow from the
construction and monotonicity [4, Lemma 2.4]. Indeed, B = Blim by construction, b(Dj ,X,Bi) ≥
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b(Dj ,Xi, Bi) by the monotonicity and the wlc property of (Xi/Z,Bi). Thus,

b(Dj ,X,B) = b(Dj ,X,Blim) = lim
i→∞

b(Dj ,X,Bi) ≥ lim
i→∞

b(Dj ,Xi, Bi) = bj

and B ≥ Blim, which gives (5) of Theorem 2.
If, for a fixed Dj, b(Dj ,Xi, Bi) is not bounded from below, we can drop such Dj and take a

subsequence with limi→∞ b(Dj ,Xi, Bi) = −∞. In the bounded case, we finally have a convergent
subsequence in (4).

Now the stabilization follows from the finiteness in Theorem 2, which contradicts Step 1. �
Lemma 3 (canonical blowup). We assume the LMMP in dimension d−1 and the termination

of terminal log flips in dimension d. Let (X,B) be a klt log pair of dimension d and Z ⊂ X be a
closed subvariety of codimension ≥ 2. Then there exists a (unique under the algorithm in the proof )
crepant blowup Y → X such that

(1) Y is isomorphic to X over X \ Z;

(2) (Y,BY ) is cn in codimension ≥ 2 over Z;

(3) if, in addition, KY + B with the birational transform of the boundary B on Y is ample/X,
a blowup is unique.

Proof–construction. Step 1. Consider a log resolution (Y/X,B+) with a boundary B+ =∑
b+
j Dj consisting of codiscrepancies: b+

j = max{b(Dj ,X,B), 0}. We can suppose that the prime
components of SuppB+ are disjoint and there exist only finitely many exceptional b-divisors E/X
with b(E,X,B) ≥ 0, or equivalently with a(E,X,B) ≤ 1, by the klt property [11, Corollary 1.7].
Moreover, all b+

j < 1, and (Y,B+) is terminal in codimension ≥ 2. We use a slightly different
boundary BZ ≤ B+ on Y : 0 in all exceptional divisors/Z and B+ elsewhere.

Step 2. We apply the LMMP to (Y/X,BZ ). Log flips exist by [3, Theorem 1.1] or induction
of Corollary 3. Each flip is terminal because we never contract nonzero components E of BZ .
Indeed, this holds over Z by assumption because the corresponding boundary multiplicities are
zero. Otherwise we get a component E with P = centerX E �⊂ Z, and (X/X,B) near P is
the lc model of (Y/X,BZ), even after the divisorial contraction. This contraction decreases the
codiscrepancy and increases the discrepancy in E, which contradicts [4, Lemma 2.4]. Thus, the
termination holds by our assumptions. Since the resulting model (Y/X,BZ ) is birational/X, it is
terminal in codimension ≥ 2 and is a strictly log minimal model.

Step 3. Using semiampleness in the big klt case, we obtain the lc model (Y/X,BZ); the previous
model Y in Step 2 and this model Y are FT/X (by Step 4 below). The model satisfies (1) and (3).
Indeed, (1) follows from the uniqueness of an lc model. By construction BZ on Y is the birational
transform of B and KY + B is ample, and such a model is also unique.

Step 4. By the negativity [8, 1.1], for the crepant model (Y,BY ) of (X,B), the subboundary BY

is a boundary. It is still possible that BY have noncanonical singularities of codimension ≥ 2. Then
we can apply Steps 1 and 2 to (Y,BY ) with ZY being the union of all noncanonical centers/Z of
(Y,BY ). This process is terminated, and we finally obtain a crepant model (Y/X,BY ). Indeed,
each time the construction blows up at least one exceptional divisor E with a(E,X,B) > 0 over a
noncanonical center, and there exist only finitely many such divisors. However, in general, KY + B
may not be ample over X. The above algorithm gives a unique blowup by (3). �

Lemma 4 (D-flip). We assume the LMMP in dimension d−1 and the termination of terminal
log flips in dimension d. Let (X,B) be a klt pair of dimension d and D be a prime divisor on X
such that (X,B) is terminal in codimension ≥ 2 at D; that is, if E is an exceptional prime divisor
with a(E,X,B) ≤ 1, then centerX E �⊆ D. Then a D-flip of X/X exists [11, p. 2684].
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Proof–construction. The construction is quite standard (cf. terminalization [4, Theorem 6.5]
and Q-factorialization [4, Lemma 7.8]). By the uniqueness of D-flips, they can be constructed
locally/X [12, Corollary 3.6].

Step 1. As in Steps 1 and 2 of the proof of Lemma 3 with Z = ∅, that is, the initial BZ = B+, we
obtain a crepant blowup (Y/X,BY ) that is terminal in codimension ≥ 2 and strictly log minimal/X.
By our assumptions there are no exceptional divisors/D.

Step 2. Let D be its birational transform on Y . Now we apply the D-MMP in order to
construct a nef D/X. For a sufficiently small real number ε > 0, (Y/X,BY + εD) is terminal in
codimension ≥ 2, and the D-MMP is the LMMP for the pair. Again log flips exist. The termination
is terminal and holds: D-flips do not contract any divisor. Thus, we can suppose that D is nef/X.

Step 3. The contraction given by D or KY + BY + εD is the required model for D, a D-flip.
The contraction exists as in Step 3 of the proof of Lemma 3 because Y is FT/X. Note that the
model is small over D, because Y does not have exceptional divisors/D. On the other fibers/X,
D is trivial, and Y is isomorphic to X over X \ D. �

Main lemma. Let (X/Z,B) be a dlt pair, (X ′/Z,BX′) be its wlc model isomorphic to (X,B)
near LCS(X,B) = LCS(X ′, BX′), and X → Y/Z be an (extremal) contraction negative with respect
to K + B. Then the contraction is birational, with the exceptional locus disjoint from LCS(X,B),
and contracts only b-divisors D with b(D,X,B) > b(D,X ′, BX′).

A contracted b-divisor D has centerX D in the exceptional locus.

Proof. By our assumptions Blog
X′ = BX′ , that is, X ��� X ′ is a rational birational 1-contraction.

Thus, by [4, Proposition 2.5(ii)] (cf. [11, Proposition 2.4.1]) X → Y/Z is not fibered. In addition,
for any irreducible curve C/Z intersecting LCS(X,B), (K + B,C) ≥ (KX′ + BX′ , C ′) ≥ 0, where
C ′ is the birational image of C on X ′; the latter is well defined by our assumptions. Indeed,
the log discrepancies for prime b-divisors with centers near LCS(X,B), in particular, for centers
intersecting LCS(X,B), are the same for (X ′, BX′) and (X,B), and by monotonicity [4, Lemma 2.4]
b(Di,X,B) ≥ b(Di,X

′, BX′) for the other b-divisors Di. This and the projection formula for a
common resolution of X and X ′ imply the inequality (cf. the proof of [4, Proposition 2.5(i)]). In
particular, the exceptional locus of X/Y is disjoint from LCS(X,B).

Now for simplicity suppose that there exists a log flip (X+/Y/Z,B+) of X/Y : in our applications
we always have it. (Otherwise one can use the last statement of [4, Lemma 2.4].) Then (X ′/Z,BX′)
is also a wlc model of the divisorial contraction or of the log flip; this is the basic fact of the LMMP.
Thus, b(D,X,B) > b(D,X+, B+) ≥ b(D,X ′, BX′), or equivalently, a(D,X,B) < a(D,X+, B+) ≤
a(D,X ′, BX′) by monotonicities [4, Lemmas 3.4, 2.4]. �

Proof of Theorem 2. Taking a subsequence, we can suppose that the models (Xi/Z,Bi) are
pairwise nonequivalent. Then we need to verify that the sequence is finite.

We care only about models outside LCS(X,B). Near the LCS(X,B), the models are dlt by (2),
and we will keep this: assuming F is minimal in (1),

(6) in the proof below, all models (Y/Z,D) with an R-boundary D are isomorphic to X near
LCS(Y,D) = LCS(X,B), D ∈ DF near LCS(X,B), and thus there exists a real number
ε > 0 such that (Y,D) is dlt near LCS(X,B) if, in addition, KY + D is R-Cartier and
‖D − B′‖ < ε.

Notice also that in our construction below B, Bi, and similar R-boundaries D will have the same
reduced part: LCS(Y,D) = �D� = LCS(X,B) = S.

Step 1. Terminal limit. We construct a dlt model (X/Z,BX) such that

(7) X , X, and each Xi are isomorphic near LCS(X,B) = LCS(X,BX);
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(8) X ��� X and each X ��� Xi are birational rational 1-contractions; X blows up all Dj of (3)
with bj ≥ 0 and with centerX Dj ∩ LCS(X,B) = ∅;

(9) every R-divisor D on X that is R-Cartier near LCS(X,B) is R-Cartier everywhere on X; in
particular, each divisor D on X with SuppD ∩ LCS(X,B) = ∅ is Q-Cartier;

(10) BX ≥ Blim as b-divisors but divisors on X, that is, for multiplicities in the prime divi-
sors on X; in particular, in Dj with nonnegative multiplicities bj and with centerX Dj ∩
LCS(X,B) = ∅ (see (8)); and

(11) the pair (X,BX) is dlt and is terminal completely outside LCS(X,B) in the following sense:
a(E,X,BX) > 1, or equivalently b(E,X,BX) < 0, for each exceptional prime divisor E
with centerX E ∩ LCS(X,B) = ∅.

By Lemma 3 we can construct a slightly weaker version with properties (7) and (8) for bj > 0
by (5), because b(Dj ,X,B) ≥ bj > 0, and with (10). We apply the lemma to (X,B) with the
closed subvariety that is the union of centerX E for exceptional divisors E with a(E,X,B) < 1, or
equivalently b(E,X,B) > 0, and with centerX E ∩ LCS(X,B) = ∅, in particular, of all centerX Dj

in (8) with bj > 0.
Since X may not be Q-factorial, we slightly modify X to make it sufficiently Q-factorial and

terminal. To blow up the canonical centers lying completely outside or disjoint from LCS(X,B), we
can use an increased divisor (with the boundary outside LCS(X,B)) BX + εH , where H is a general
ample Cartier divisor passing through such centers. For a sufficiently small real number ε > 0, the
noncanonical centers of (X,BX + εH) are only the canonical centerX E’s with a(E,X,BX) = 0
and centerX E ∩ LCS(X,B) = ∅ (cf. [8, 1.3.4]). This gives (8) for bj = 0 by (5) and (11) and
preserves (7) and (10). To satisfy (9), it is enough to perform this for one divisor D that is suffi-
ciently general near LCS(X,B). Indeed, by the rationality of klt singularities, the Weil R-divisors
modulo ∼R/X \ LCS(X,B) have finitely many generators. Since the R-Cartier property defines a
linear R-subspace over Q among R-divisors, we can suppose that its generators D are Cartier near
LCS(X,B) and integral. Adding ample divisors, we can suppose that they are prime and free near
LCS(X,B) and thus by (11) do not pass through the canonical (i.e., nonterminal) centers outside
LCS(X,B) (even everywhere). We can make each D Q-Cartier one by one. According to Lemma 4,
there exists a small modification (D-flip) over X such that D is Q-Cartier on the modification. This
gives (9) and concludes the step. The dlt property of (11) near LCS(X,BX) holds by (6) and (7).

Step 2. Limit of boundaries. For each i, let B+
i be an R-boundary on X with multiplicities

max{b(D,Xi, Bi), 0} in the prime divisors D on X. We can replace (10) by a more precise version:
(10′) BX = B+

lim = S +
∑

b+
j Dj , b+

j = max{bj , 0}, as b-boundaries, including exceptional Dj

on X with the nonnegative multiplicities bj = b+
j and with centerX Dj ∩ LCS(X,B) = ∅

(cf. (3), (8), and (10) above), and 0 = b+
j for all other Dj with centerX Dj ∩LCS(X,B) = ∅

(and with bj < 0; and such Dj are possible); or, equivalently,

BX = lim
i→∞

B+
i .

By monotonicity [8, 1.3.3] property (11) is preserved; (6) and the other properties of (X/Z,BX ) are
also preserved. By (9) the R-Cartier property holds for all adjoint divisors KX +B+

i and KX +BX ;
BX = B = Blim near LCS(X,B).

In addition, by (6), (7), (9), and (11),
(11′) each (X,B+

i ) is a dlt pair terminal in the sense of (11); LCS(X,B+
i ) = LCS(X,BX) =

LCS(X,B); and B+
i = Bi near LCS(X,B).

This is true by the stability of terminal and klt singularities (cf. [8, 1.3.4]) after taking a subsequence
of models (Xi/Z,Bi) for all i � 0. The last statement in (11′) allows one to use the properties
of Bi for B+

i near LCS(X,B), e.g., (2).
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Step 3. Wlc terminal limit. We can suppose that (X/Z,BX) is a wlc model terminal in the
sense of (11). Otherwise by (11) there exists an extremal contraction X → Y/Z negative with
respect to KX + BX [2, Theorem 2]. We claim that the contraction is birational, does not contract
components D of BX with positive multiplicities, and does not touch LCS(X,B), i.e., is an isomor-
phism in a neighborhood of LCS(X,B). Indeed, such a contraction is stable for a small perturbation
of the divisor BX : for any R-boundary B′ ∈ DF+

∑
Dj

sufficiently close to BX and with R-Cartier
KX + B′, the contraction will be negative with respect to KX + B′. By (10′) and (11′), for all i � 0,
the contraction is negative with respect to KX + B+

i . By construction and definition (Xi/Z,Bi)
is a wlc model of (X/Z,B+

i ). Notice that Bi = (B+
i )logXi

because X ��� Xi is a birational rational
1-contraction by (1) and (8). Therefore, the contraction is not fibered by the main lemma; or,
equivalently, it is birational. The contraction is disjoint from LCS(X,B) by (6), (7), and the same
lemma. Finally, the contraction does not contract prime divisors D with positive multiplicities in
BX because by (10′) they are positive for B+

i with i � 0 and D = Dj with bj > 0. This is impos-
sible by the main lemma again: b(Dj ,X,B+

i ) = b(Dj ,Xi, Bi). Moreover, the contraction does not
contract Dj with bj = 0. Indeed, after such a contraction a+1 = a(Dj , Y,BY ) > a(Dj ,X,BX) = 1,
a > 0, and since the boundaries B+

Y i for all i � 0 are small perturbations of BY , it follows that
a(Dj , Y,B+

Y i) ≥ 1+a/2 for all i � 0, where BY and B+
Y i are the images of BX and B+

i , respectively,
on Y . Each (Xi/Z,Bi) is also a wlc model of (Y/Z,B+

Y i), and a(Dj ,Xi, Bi) ≥ a(Dj , Y,B+
Y i) ≥ 1+a/2

by [4, Lemma 2.4], or equivalently, b(Dj ,Xi, Bi) ≤ −a/2 and

0 = bj = lim
i→∞

b(Dj ,Xi, Bi) ≤ −a/2 < 0,

a contradiction.
Therefore, either the contraction X/Y , if it is divisorial, or otherwise its log flip preserve prop-

erties (7)–(11), (10′), and (11′) with the images of the corresponding boundaries. Note that by (9)
the divisorial extremal contraction blows down a Q-Cartier divisor disjoint from LCS(X,B) and,
in particular, preserves (9). The log flip exists by [3, Theorem 1.1] or induction of Corollary 3,
since it does not touch LCS(X,B) and thus it is klt. It preserves (9) by its extremal property
(cf. [7, 2.13.5]). Of course, property (11′) holds after taking models for all i � 0.

Since each log flip is extremal by construction and terminal by (11), the flips terminate and we
obtain a wlc (X/Z,BX ) with the required terminal property.

Caution 2. A log flip may be non-Q-factorial; that is, X may be non-Q-factorial. However,
according to the usual reduction [12, Theorem 1.2], such a log flip exists (cf. also the proof of
Corollary 3 above).

Termination may also be non-Q-factorial. We can reduce it to the usual Q-factorial terminal
termination as in the proof of special termination [4, Theorem 4.8] by taking a strictly log terminal
blowup of (X,BX); for a dlt pair, a Q-factorialization can be constructed in this way. To construct
such a model for any lc pair in dimension d, the existence of Q-factorial log flips and special
termination in this dimension are sufficient. The existence of terminal non-Q-factorial log flips
follows from the same construction and Corollary 10 (cf. the proof of Lemma 4).

Step 4. Equivalence intervals. The intervals belong to the affine space B of R-divisors on X
generated by the divisors BX and B+

i . It is a finite-dimensional subspace in the linear space of
R-divisors having the support in divisors Dj and the birational transform of F by (1), (10′), (11′),
and (6)–(8). In this affine space BX = limi→∞ B+

i . Geography of log models [11, Section 6; 4,
2.9] gives an expectation that near BX , that is, for boundaries in B close to BX , there are only
finitely many equivalence classes of wlc models satisfying (6). We prove this partially: there exists
a real number ε > 0 such that, in each direction B+

i , the wlc models are equivalent in the interval
of length ε. Of course, we can assume that each B+

i �= BX : otherwise the model (Xi/Z,Bi) is
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equivalent to (X/Z,BX ) (cf. the proof below). Hence each direction is well-defined. More precisely,
there exists an R-boundary B′

i ∈ B such that
(12) ‖B′

i − BX‖ = ε;
(13) B+

i ∈ (BX , B′
i); and

(14) all wlc models in the interval (BX , B′
i) are equivalent: for any D ∈ (BX , B′

i), D ∈ B and is
an R-boundary, �D� = S, and (Xi/Z,DXi) is a dlt wlc model equivalent to (Xi/Z,Bi) and
having nonnegative codiscrepancies b(Dj ,Xi,DXi) ≥ 0 only in the above generators Dj of
the linear space of R-divisors (see the beginning of this step), where DXi is the image of D
on Xi; D, just as B+

i , also satisfies (6); DXi , just as Bi, satisfies (2), (3), and (6).
We can suppose that the R-boundaries D ∈ B form a cone with the vertex BX in the ε-neighborhood
of BX (cf. [8, 1.3.2]). To establish (14), we use ε from Corollaries 9 and 11 under the additional
assumption
(11′′) for each R-boundary D ∈ B with ‖D−BX‖ ≤ ε, with R-Cartier KX +D, and with �D� = S,

(X,D) is a dlt pair satisfying (6) and the terminal property of (11).
This follows from the stability of terminal and klt singularities under small perturbations of
R-boundaries [8, 1.3.4].

Indeed, take D = B′
i satisfying (12), (13), and thus (11′′). Then it is an R-boundary and

by (10′) property (13) holds for all i � 0. Now we apply the LMMP to (X/Z,B+
i ). Again

by (6) as in Step 3 above, if KX + B+
i is not nef, there exists an extremal contraction negative

with respect to KX + B+
i [2, Theorem 2]. Its log flip exists by [3, Theorem 1.1] or induction of

Corollary 3. The termination holds as in Step 3 (see also Caution 2 above). As in that step all
extremal contractions are birational, disjoint from LCS(X,B), terminal, and do not contract any
prime component Dj disjoint from LCS(X,B) with b(Dj ,Xi, Bi) ≥ 0 being equal to the multiplicity
of B+

i in Dj; other divisors (even Dj) with multiplicity 0 of B+
i can be contracted. According to

the terminal termination we obtain a dlt wlc model (X i/Z,B+
i ), and (Xi/Z,Bi) is its wlc model.

They are equivalent; in particular, (X i/Z,B+
i ) is a crepant pair of (Xi/Z,Bi) and B+

i = Bi on all
divisors of Xi, in particular, on Dj blown up on X i. By Corollary 11 and its Addendum 6, the
same holds for any D in the interval (BX , B′

i) with the corresponding model (Xi/Z,DXi). The dlt
property holds near BX by (11′′) for F being the minimal reduced divisor on X supporting B. The
models are equivalent to each other by Addendum 6. Notice also that by Corollary 9 the above log
flips are log flops with respect to KX + BX . Thus, in any direction, ε is preserved by Addenda 4
and 5. By (1), (7), and (8) we can suppose that all SuppB+

i are the same. Then in the addenda
ε and δ are preserved for log flops with respect to KX + BX : the components of SuppB+

i are not
contracted (see Step 3 in the proof of Corollary 9).

To fulfill the last statement in (14), one should add some b-divisors Dj as generators of the
linear space of R-divisors, namely, all Dj with bj ≥ 0 and, in particular, those Dj that intersect
LCS(X,B).

Step 5. 1-dimensional case. If the real affine space B has dimension 1, there are at most two
intervals (BX ,±B′

i) and at most two types of models. For a higher dimension we use
Step 6. Induction, or limit of equivalence intervals. The intervals [BX , B′

i] have a convergent
subsequence liml→∞ B′

il
= B′ ∈ B. Otherwise we have finitely many intervals and models as in

Step 5. The limit B′ is also an R-boundary on X and by construction satisfies (11′′). Now we
cut the limit by an affine rational hyperplane: there exists an affine rational hyperplane B′ ⊂ B
such that it intersects (BX , B′) in Bs and the intervals (BX , B′

il
) in B+

sl . The new boundaries Bs

and B+
sl on X and the images Bsl of the latter on Xil instead of BX , B+

il
, and Bil , respectively,

satisfy the same conditions (1)–(11), (10′), and (11′) after taking a subsequence. Thus, the space
of divisors corresponding to B is a subspace of B′. (Actually we do not need (X/Z,B) and the
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corresponding properties; (X,BX := Bs) is sufficient.) Properties (1), (2), (6), (7), (9), (11), and
even (11′) are immediate by construction. In (3) we can keep the same Dj by (14). If the set
of codiscrepancies b(Dj ,Xil , Bsl) is unbounded from below for some Dj , we take a corresponding
subsequence and discard this Dj . Therefore, we can find a subsequence satisfying (4). Then (5),
even (10), (10′), and (8) hold by construction. For (10′), notice that B+

sl = Bsl for all Dj with
nonnegative multiplicities in Bsl by Step 4 and (14); we extend Bsl by 0 in other components
exceptional on Xil (cf. Step 2).

However, (X/Z,Bs) is not necessary wlc. Therefore, we apply again Step 3, etc. This completes
the induction on the dimension of B. �

Proof–construction of Theorem 1. We construct strictly log terminal resulting models
(X/Z,Bλ), Bλ = Blog +λH, for some effective R-divisor H and all λ ∈ [0, 1] and find a real number
λ0 ∈ [0, 1) such that (X/Z,Bλ) are minimal for λ ≥ λ0 and are Mori log fibrations for λ < λ0.
Thus, we get a required minimal model for λ0 = 0 and a Mori log fibration in all other cases.

Step 1. Using a Hironaka resolution, we can suppose that (X/Z,Blog) is strictly log terminal.
Step 2. Then, by special termination [12, Theorem 2.3; 13, Corollary 4], we can suppose that

in any sequence of log flips of (X/Z,Blog) (H-ordered or not), the flips are nonspecial, that is, do
not intersect LCS(X,Blog). (For λ0 = 0, this means that K + Blog is nef on LCS(X,Blog)/Z; see
Step 4 below.)

Step 3. We can add a rather ample R-boundary H =
∑

hiHi, hi �= 0, with prime divisors Hi

such that

(1) �H� = 0 and SuppH ∩ SuppBlog = ∅ in codimension 1;
(2) (X/Z,B1 = Blog + H) is a strictly log minimal model;
(3) the prime components Hi of SuppH generate the numerical classes of all divisors/Z; and
(4) the multiplicities hi of H are independent over Q(B):

∑
aihi = a and all ai, a ∈ Q(B) ⇒ all ai = 0 and a = 0,

where Q(B) = Q(Blog) ⊂ R is the field generated/Q by the multiplicities of B and Blog,
respectively.

Since Q(B) is countable (small), it is easy to find the required hi as small perturbations of the
multiplicities for a divisor H with ample K + Blog + H.

Step 4. If K + B0 is nef, then λ0 = 0, and we are done: (X/Z,B0 = Blog) is a strictly log
minimal model.

Otherwise there exists
0 < λ1 = min

{
λ | K + Bλ is nef/Z

}
.

(X/Z,Bλ1) is a strictly log minimal model too.
Step 5. H-ordered flips. As in the proof of Proposition 2, the construction terminates at

the level λ1 by a Mori log fibration, or one can find a log flip (possibly a divisorial contraction)
X1 ��� X2/Z with respect to K + B0 of level λ1. To prove the existence of a Mori log fibration
or of a flipping contraction, one can use Corollary 9. The flip exists by [3, Theorem 1.1] or in-
duction of Corollary 3. By Step 2 the log flop X1 ��� X2/Z with respect to K + Bλ1 does not
touch LCS(X,Bλ1) = LCS(X,B0) (see property (1) in Step 3). Thus, it preserves the strictly log
minimal model property of (X/Z,Bλ1), that is, (X+/Z,Bλ1) is a strictly log minimal model too.
By Corollaries 9, 11 and Addenda 4, 5, as in the proof of Proposition 2, we obtain an H-ordered
sequence of extremal log flips Xi ��� Xi+1/Z that are disjoint from LCS(Xi, Bλi

) = LCS(X,B0).
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Step 6. Termination of log flops. For each level λ > 0, the log flips are log flops with respect to
K + Bλ. We claim that there exists at most one such flop, or equivalently, at most one extremal
contractible ray R with (K + Bλ, R) = 0.

Indeed, let C be a curve/Z in R. Hence (K + Blog + λH,C) = 0. Let C ′ be another curve/Z
with (K + Blog + λH,C ′) = 0. We will verify that C ′ is also in R. By the definition of Q(B) we
have two relations

λ(H,C) = a and λ(H,C ′) = a′

with real numbers a, a′ ∈ Q(B). Moreover, by (3) and (4) a, a′ �= 0. Otherwise, a = 0, all
(Hi, C) = 0, and C ≡ 0/Z; the same holds for a′ and C ′. Therefore,

(H,C) =
a

λ
, (H,C ′) =

a′

λ

and

(H,a′C − aC ′) =
a′a

λ
− aa′

λ
= 0.

Thus, if all (Hi, a
′C − aC ′) = 0, by (3) C ′ ≡ a′C

a/Z and C ′ is in R; a′/a > 0 by the projectivity
of X/Z. Otherwise, the 1-cycle a′C − aC ′ gives a nontrivial relation/Q(B), which contradicts (4).

Step 7. Stabilization of models. The levels stabilize by Corollary 12 for (Xi/Z,Bi) = (X/Z,Bλi
);

that is, there exist only finitely many levels: λ1 ≥ λ2 ≥ . . . ≥ λn > 0. Of course, we use here a
birationally changing model X. This means that actually X depends on λ. After finitely many
log flips we can suppose that condition (2) of Corollary 12 holds. The second statement in (2)
holds by Step 2. The other conditions (1), (3), and (4) of Corollary 12 follow immediately from the
construction with B = Bλ1 and B′ = B0 in (3) and with Xi = X1 = X in (4) of the minimal model
(X/Z,Bλ1). Notice also that models with distinct levels are nonequivalent by Lemma 2. Indeed,
by the construction of λi+1 > 0 and Step 5 (see also Corollary 11 and its Addendum 6), the model
(X/Z,Bλi+1

) has an extremal ray R with (K + Bλi+1
, R) = 0 in which the model is not numerically

equivalent to (X/Z,Bλi
): (K + Bλi

, R) > 0, and thus it is not equivalent to (X/Z,Bλj
) for j ≤ i.

Finally, the last statement in the theorem follows from two facts: the numerical log Kodaira
dimension of each minimal model (X/Z,B) is ≥ 0, and this is equivalent to the pseudo-effective
property of K + B (cf. Corollary 1). �

Proof of Revised Reduction. The main idea of the reduction is to find an ordered sequence
of pl flips that, at any level, has at most one nonspecial flip of this level on each reduced component
of the boundary. Therefore, the termination of these flips amounts to the special termination and
stabilization of models. Perturbing and subtracting a divisor H, we can achieve this.

We use the proof–construction and notation from [4, § 4]. The construction of a strictly log
minimal model (V /Y,Blog

V
+ HV ) uses only pl flips and the special termination onto lc centers of

codimension ≥ 2, for which the log termination in dimension d − 1 is enough.
We use the following properties of H, an effective reduced (having only multiplicities 1) Cartier

divisor on Y :
(1) for any birational contraction τ : Y ′ → Y with normal Q-factorial variety Y ′ such that the

components of τ∗H are all prime exceptional divisors Ei of Y ′/Y and the components of
the proper transform HY ′ of H, the components of τ∗H allow one to present any numerical
class of divisors/Y [4, p. 63 of the English translation, c)]; and for such a contraction

(2) there exists a linear numerical relation between the components of τ∗H:

τ∗H = HY ′ +
∑

aiEi =
∑

Hi +
∑

aiEi ≡ 0/Y

with positive integral numbers ai; and
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(3) the support of τ∗H is the reduced part of the divisor Blog
Y ′ + HY ′ [4, p. 62 of the English

translation, a)].
Notice that in both appearances in (2) and (3), that is, in the relation and in the boundary, HY ′ is
reduced. All models in our constructions satisfy the assumption in (1) and thus properties (1)–(3).
(Moreover, in what follows, τ is an isomorphism over Y \ SuppH.)

The next part of the proof, subtracting HV , is quite different. It should be modified to use
only special termination and the terminal termination in dimension d. We can suppose as usual
(for flips) that B and Blog

V
are Q-boundaries (or, in all integral independences below, independence

should be with multiplicities of B as well; cf. Step 3, (4) in the proof of Theorem 1).

Step 1. Perturbation of H. There exist a log flop (not necessarily elementary) (V /Y,Blog

V
+HV )

and a boundary ΓHV =
∑

γiHi such that

(4) (V /Y,Blog

V
+ ΓHV ) is a strictly log minimal model; and

(5) the multiplicities γi are integrally (or rationally) independent:
∑

niγi = n and all ni, n ∈ Z ⇒ all ni = 0 and n = 0;

in particular, each 0 < γi < 1. Moreover, we need γi arbitrarily close to 1: 0 � γi < 1. Equivalently,
there exists an effective divisor Δ =

∑
δiHi with 0 < δi � 1 such that

(4′) (V /Y,Blog

V
+ HV − Δ) is a strictly log minimal model; and

(5′) the multiplicities δi are integrally independent.

Indeed, then we can take γi = 1 − δi. Actually, it is enough to construct such a model/W :

(4′′) (V /W,Blog

V
+ HV − Δ) is a strictly log minimal model,

where W/Y is an lc model of (V /Y,Blog

V
+ HV ); that is, the contraction V → W is given by

KV + Blog

V
+ HV . This and other similar models exist by the LSEPD trick [8, 4.5.2 and 10.5 of

the English translation] and Corollary 10. By construction KV + Blog

V
+ HV is ample on W/Y and

≡ 0/W , and −Δ is nef and actually semiample on V /W . Hence, for any 0 < δ � 1, KV + Blog

V
+

HV − δΔ is nef on V /Y . This gives a model in (4′) with Δ := δΔ. Indeed, KV + Blog

V
+ HV − δΔ

is nef/Y by construction. On the other hand, by construction (V ,Blog

V
+ HV ) is lc, and by (4′′)

and monotonicity [8, 1.3.3] (V ,Blog

V
) is strictly log terminal. Since SuppΔ = SuppHV , again by

monotonicity [8, 1.3.3] (V ,Blog

V
+HV −δΔ) is strictly log terminal. The multiplicities of δΔ are δδi.

They are integrally independent if δ ∈ Q. Therefore, (5′) holds.
The construction of a model in (4′′) uses induction on the number of irreducible components

of HV . If it is zero, we are done (see Step 5 below). We start by subtracting the first component
D = H1 of HV . This gives a new strictly log minimal model (V /W,Blog

V
+ HV − D). Since

KV + Blog

V
+ HV ≡ 0/W , we need to consider only log flips in the extremal rays R of NE(V /W )

with (D,R) > 0, or equivalently, to construct a log minimal model for (V ,Blog

V
+ HV − D). As in

the usual reduction, the flips are pl in dimension d + 1 and thus exist by our assumptions. The
only problem is termination. Note also that in a birational/Y situation a Mori log fibration is
impossible. By the special termination and log termination in dimension d − 1, there remains a
problem with termination in dimension d. More precisely, it is enough to consider in addition the
case of log flips on a reduced component F �= D of Blog

V
+ HV − D with (F,R) < 0. Such a

component exists by properties (2) and (3). According to the special termination, we can consider
only flips outside the reduced components of the adjoint boundary BF for Blog

V
+HV −D on F , which

consists of intersections with components of HV −D−F +
∑

Ei (see the log adjunction [8, 3.2.3]),
where

∑
Ei is the reduced part of Blog

V
. Let C be a flipped curve of one of these log flips, that is,
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C ∩ Supp(HV − D − F +
∑

Ei) = ∅ and (D,C) < 0. Let C ′ be the next flipping curve. Then
(D,C ′) > 0. By construction the support of HV and exceptional divisors/Y allow one to present any
numerical class of divisors/Y (see (1) and (3) above); in particular, this holds for any numerically
ample divisor/Y . Thus, there exists a linear combination aF + bD with real multiplicities a and b
that is ample on C and C ′. On the other hand, there exists a nontrivial (all coefficients are positive)
linear relation between the support of HV and exceptional divisors Ei/Y (see (2) and (3) above).
Hence near C and C ′ the ample divisor is given by cD with a real number c, which is impossible
by the inequalities (D,C) < 0 and (D,C ′) > 0. Therefore, two subsequent flips of this type do not
(co)exist and we get the termination. Thus, we have constructed a log pair (V /W,Blog

V
+ HV −D)

that is a strictly log minimal model over W , and let W1/W denote its lc model. Note that in
the construction each model (V ,Blog

V
+ HV − D) is strictly log terminal because the initial model

(V ,Blog

V
+ HV − D) is strictly log terminal, and the log flips preserve this.

Now by induction we can suppose that a strictly log minimal model (V /W1, B
log

V
+HV −D−Δ′)

is constructed, where Δ′ =
∑

i�=1 δ′iHi and the multiplicities 0 < δ′i � 1 are integrally independent.
Since KV +Blog

V
+HV −D ≡ 0/W1 and KV +Blog

V
+HV ≡ 0/W , by construction D = H1 ≡ 0/W1.

Hence (1)–(3) hold on all models Y ′/W1 without H1 that are obtained from V /W1 by log flops
with respect to KV + Blog

V
+ HV − D ≡ 0/W1 because H1 ≡ 0/W1 on them too by the assumption

KV + Blog

V
+ HV ≡ 0/W . This means that all numerical classes and relations are considered

over W1. In (3) we can replace τ∗H by τ∗H − H1, and the initial model (V ,Blog

V
+ HV − D) is

strictly log terminal. Therefore, a required model V /W1 exists. By construction −D is ample on
W1/W , and −D − Δ′ is nef and actually semiample on V /W1. Hence, for any 0 < δ′ � δ � 1,
−Δ = −δD − δ′(D + Δ′) is nef on V /W . This gives a model in (4′′). Indeed, KV + Blog

V
+ HV −Δ

is nef/W because KV + Blog

V
+ HV ≡ 0/W . On the other hand, by construction (V ,Blog

V
+ HV ) is

lc, and by monotonicity [8, 1.3.3] (V ,Blog

V
) is strictly log terminal. Since SuppΔ = SuppHV , again

by monotonicity [8, 1.3.3] (V ,Blog

V
+ HV − Δ) is strictly log terminal. The multiplicities of Δ are

δ1 = δ + δ′ and δi = δ′δ′i, i �= 1. We can take integrally independent δ, δ′i, i �= 1, and δ′ ∈ Q. Then
(5′) holds: δi are integrally independent.

Step 2. H-ordered flips. Set B′ = Blog

V
+ ΓHV − λmaxHV , where λmax is the maximal number λ

such that Blog

V
+ ΓHV − λHV is a boundary. It is easy to find that λmax = min{γi}, and if,

say, λmax = γ1, then B′ = Blog

V
+

∑
i�=1(γi − γ1)Hi. By construction and monotonicity [8, 1.3.3],

the pairs (V ,B′) and (V ,Blog

V
+ ΓHV = B′ + λmaxHV ) are strictly log terminal with reduced

components Ei exceptional/Y , and the second one is a log minimal model. Note also that by (5)

(5′′) the multiplicities γi − γ1, i �= 1, are integrally independent, and 0 < γi − γ1 � 1.

To construct a log flip in the reduction, we will find a strictly log minimal model of (V /Y,B′)
subtracting HV from B′ + λmaxHV as in the proof of Proposition 2. The existence of HV -ordered
log flips in this situation is more straightforward. Indeed, for each level λ ≤ λmax, we can use
log flops over an lc model W/Y of (V /Y,B′ + λHV ) and the fact that V /Y is FT/W . After
constructing a log minimal model/W , we can convert it into a log minimal model/Y as in Step 1,
or use Corollary 11 with the LSEPD trick. Note also that a Mori log fibration is impossible.

On the other hand, each flip is pl as in the usual reduction. If it is a log flip in an extremal
ray R, then by construction (KV +B′+λHV , R) = 0 and (HV , R) > 0. Hence by (2) there exists Ei

with (Ei, R) < 0, and Ei is a reduced component of B′. Since λ > 0, (V ,B′) is strictly log terminal.

Step 3. Termination of log flops. For each level λ > 0, the log flips of this level are log flops
with respect to KV + B′ + λHV . By the special termination of flips, we can suppose that after
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finitely many steps all the next flips are nonspecial on
⋃

Ej ; that is, log flips in extremal rays R
are such that, for any curve C/Y of R, C intersects only one reduced component, say E1. Actually,
C ⊂ E1, and (KV + B′ + λHV , C) = 0. We claim that there exists only one such extremal ray
for E1. Therefore, such log flips terminate.

Let C ′ ⊂ E1 be a curve/Y with (KV + B′ + λHV , C ′) = 0 and disjoint from Ei with i �= 1.
Since KV + Blog

V
is a Q-divisor, both relations can be transformed into relations for λ and the

multiplicities of B′:

λ(HV , C) +
∑

i�=1

(γi − γ1)(Hi, C) = r

and
λ(HV , C ′) +

∑

i�=1

(γi − γ1)(Hi, C
′) = r′,

where r, r′ ∈ Q. Note that (HV , C), (HV , C ′) �= 0 because otherwise we get a rational relation, which
contradicts (5′′). Indeed, if (HV , C) = 0, then all intersections (Hi, C) = 0, i �= 1, and (H1, C) = 0
too since HV =

∑
Hi. This is impossible by (1) and (3) because by construction (Ei, C) = 0,

i �= 1, and by (2) (E1, C) = 0. The same holds for C ′. Similarly we verify that C ≡ cC ′/Y with
c = (HV , C)/(HV , C ′) �= 0, i.e., with (HV , C) = c(HV , C ′).

To this end we eliminate λ and obtain one relation:

(HV , C ′)

(
∑

i�=1

(γi − γ1)(Hi, C)

)

− (HV , C)

(
∑

i�=1

(γi − γ1)(Hi, C
′)

)

= r′′

with r′′ ∈ Q. By (5′′) this is possible only if

(HV , C ′)(γi − γ1)(Hi, C) = (HV , C)(γi − γ1)(Hi, C
′).

Again by (5′′) each γi − γ1 �= 0 for i �= 1. Hence (Hi, C) = c(Hi, C
′) for i �= 1. On the other hand,

this implies that (H1, C) = c(H1, C
′) because HV =

∑
Hi. Then we can prove that (Ei, C) =

c(Ei, C
′) for all Ei. Therefore, by (1) C ≡ cC ′/Y , and we have the only possibility on E1 for a

nonspecial log flip of level λ.
Step 4. Stabilization of models. This means that the levels λmax ≥ λ1 ≥ . . . > 0 stabilize.

This follows from Corollary 12. By the special and divisorial termination, after finitely many
log flips, we can suppose that the other log flips are nonspecial and are actually log flips on the
corresponding reduced components F = Ej . Thus, conditions (1) and (2) of Corollary 12 hold for
(Xi/Z,Bi) = (F/Y,BF ), where BF is the adjoint boundary for B′ + λiHV on F = Ej . For a fixed
F = Ej , we consider only the corresponding levels λi (truncation) and models (Xi/Z,Bi). Then
condition (3) of Corollary 12 holds for the adjoint boundary B on Xi = F of the pair (V ,B′) and,
respectively, for the adjoint boundary B′ of (V ,B′ + λ1HV ). By Step 2 each (V /Y,B′ + λiHV ) is
a strictly log minimal model. Hence the construction and adjunction give (4) of Corollary 12 with
Xi corresponding to λ1. The models of F/Y are not equivalent, which implies stabilization: there
are only finitely many levels λi. Indeed, models with distinct levels are nonequivalent by Lemma 2.
By the definition of λi+1 > 0 and Step 2 (see also Corollary 11 and its Addendum 6), the model
(V /Y,B′ + λi+1HV ) has an extremal ray R with (KV + B′ + λi+1HV , R) = 0 in which the model is
not numerically equivalent to (V /Y,B′+λiHV ): (KV +B′+λiHV , R) > 0, and the ray is supported
on F = Ej. Thus, the model (Xi+1/Z,Bi+1) is not equivalent to (Xi/Z,Bi).

Step 5. Flip. We claim that the lc model (X+/Y,B+) of (V /Y,B′ + λHV ) with 0 < λ � 1 is a
required log flip. A contraction to the lc model exists again by the LSEPD trick and Corollary 10.
Since the multiplicities γi − γ1 of B′ +λHV = Blog

V
+λH1 +

∑
i�=1(λ+ γi − γ1)Hi are small and X is
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Q-factorial, the boundary B +λH1 +
∑

i�=1(λ+γi−γ1)Hi on X is klt and K +B +λH1 +
∑

i�=1(λ+
γi − γ1)Hi is numerically negative on X/Y . Notice also that (V /Y,B′ + λHV ) is a strictly log
minimal model of (X/Y,B + λH1 +

∑
i�=1(λ + γi − γ1)Hi). Thus, by monotonicity [4, Lemma 2.4],

B′ + λHV does not have reduced components and by (3) the contraction V → Y is small. Thus,
the lc model is the log flip of (X/Y,B +λH1 +

∑
i�=1(λ+ γi − γ1)Hi). Since the contraction X → Y

is extremal, its flip is unique [12, Corollary 3.6], and (X+/Y,B+) is a required log flip. �
Proof of Revised Induction. According to the methods of [12, 3] it is sufficient to establish

Theorem 7.2 from [3] in dimension d. It can be obtained from Theorems 1 and 2: the former gives
the existence of models Wi and the later gives the finiteness of models. Moreover, we can assume
that (X/Z,Δ) is a strictly log terminal pair with a birational contraction X/Z. Thus, we need both
theorems only in the birational situation, and the required terminal termination is also needed only
for birational pairs. Notice that for klt pairs their Q-factorialization can be obtained by Theorem 1
as a strictly log minimal model with boundary multiplicities 1 for the exceptional divisors; actually,
the existence of log flips and special termination in dimension d are enough. The log flips exist
by [3, Theorem 1.1] or induction in Corollary 3.

Using the LSEPD trick, we can slightly increase Δ and assume that Δ ∈ V ⊆ DF for
F = SuppΔ; and F contains all exceptional divisors of X/Z. Any Θ ∈ DF sufficiently close
to Δ is an R-boundary. Thus, (X/Z,Θ) has a strictly log minimal model (Wi/Z,ψi∗Θ), where
ψi : X ��� Wi is a birational rational 1-contraction. It is a 1-contraction by definition and mono-
tonicity [4, Lemma 2.4]. Since X/Z is birational, Mori log fibrations are impossible. (According to
the proof of Theorem 1 after Step 3, we can decompose ψi into a composition of log flips, which
gives (1) in [3, Theorem 7.2]; cf. also Proposition 2. However, this is not important for pl flips, in
particular, for [3, Corollary 7.3].) By construction (2) and (3) of [3, Theorem 7.2] hold, and for (4)
see the proof of [3, Theorem 7.2].

Thus, we need to establish the finiteness up to equivalence of models. If this does not hold, we
have a convergent sequence of R-boundaries Θi ∈ DF : limi→∞ Θi = Δ, with pairwise nonequivalent
wlc models (Xi/Z,Bi) = (Wi/Z,ψi∗Θi). This contradicts Theorem 2 (cf. the proof of Corollary 12).
For a subsequence of models, assumption (1) of Theorem 2 holds by construction and the birational
property of X/Z (still we need to construct (X/Z,B) and verify (1) for it). We construct an
appropriate model (X/Z,B) as a modification of a strictly log minimal model (W/Z,Δ). The latter
is birationally larger than Xi for a subsequence with i � 0: W ��� Xi is a birational rational
1-contraction. Indeed, we can construct it from X by a sequence of ordered log flips of (X/Z,Δ)
(see the proof of Theorem 1). By the stability of negative contractions and the main lemma we
never contract a component of Δ that is not contracted on the models Xi with all i � 0 (cf. Step 3
in the proof of Theorem 2). Since the sequence of log flips is finite, we get a required subsequence
of models (Xi/Z,Bi). Hence the model (W/Z,Δ) is between (X/Z,B) and (X/Z,BX ) in the proof
of Theorem 2, and we can construct (X/Z,BX ) as in the proof. Otherwise we consider an lc model
(W/Z,Δ), which exists by Corollary 10. It contracts all prime divisors D on X that are exceptional
on the varieties Xi with i � 0. Otherwise K + Δ is big on D/Z, and so is K + Θi with i � 0,
which contradicts the construction: each log flip or divisorial contraction of (X/Z,Θi) preserves this
property [12, Proposition 3.20]. Thus, we can construct (X/Z,B) as a crepant blowup of (W/Z,Δ)
with the same blown-up divisors D as for the models Xi/Z. This model can also be constructed
as a strictly log minimal model with multiplicities 1 for other exceptional divisors/W on an initial
model. The pair (X/Z,B) satisfies (1).

Assumption (2) is void because (X,B) and (X,Bi) are klt.
In (3) we take all boundary components of B and the exceptional divisors E with b(E,X,B) ≥ 0.

Then assumptions (4) and (5) hold for an appropriate subsequence as in Step 2 in the proof of
Corollary 12. �
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