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Abstract. Minimal log discrepancies (mld’s) are related not only to termination of
log flips [27] but also to the ascending chain condition (ACC) of some global invariants
and invariants of singularities in the Log Minimal Model Program (LMMP). In this paper,
we draw clear links between several central conjectures in the LMMP. More precisely, our
main result states that the LMMP, the ACC conjecture for mld’s and the boundedness of
canonical Mori-Fano varieties in dimensione d imply the following: the ACC conjec-
ture for a-lc thresholds, in particular, for canonical and log canonical (lc) thresholds in
dimensione d; the ACC conjecture for lc thresholds in dimensione d þ 1; and termina-
tion of log flips in dimensione d þ 1 for e¤ective lc pairs. In particular, when d ¼ 3 we
can drop the assumptions on LMMP and boundedness of canonical Mori-Fano varieties.

1. Introduction

One of the main open problems in the LMMP is the termination of log flips. Exis-
tence of log flips in the klt (hence Q-factorial dlt) case has recently been settled [6]. It is
well-known that the termination follows from two local (even formal) problems on mld’s
[27]: the ACC conjecture (see Conjecture 1.3 below), and the semicontinuity conjecture
due to Ambro [3], Conjecture 2.4. Recently, the first author [5] reduced a weaker termina-
tion in dimension d þ 1 (e.g., when the log Kodaira dimension is nonnegative), in particu-
lar, termination of log flips in the relative birational case, to the LMMP in dimension d and
the ACC conjecture for lc thresholds in dimension d þ 1 (see Conjecture 1.7) which in its
turn follows from V. Alexeev’s, and brothers’ A. and L. Borisov conjecture in dimension d

(see [20], Conjecture 3.8, and cf. Conjecture 1.2).

We use the terminology of [25], [26], [12], [15]; see also Notation and terminology be-
low. However we need certain modifications or generalizations of some well-known notions
and conjectures.

Definition 1.1 (cf. [12], Definition 1.6 (v)). A proper contraction X ! Z of normal
varieties is called a Mori-Fano fibration if the following conditions hold:
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(a) dim Z < dim X ;

(b) X has only Q-factorial lc singularities;

(c) rðX=ZÞ :¼ rðXÞ � rðZÞ ¼ 1, where rð Þ is the Picard number; and

(d) the anticanonical divisor �K ¼ �KX is ample=Z.

If Z ¼ pt: is a point, X is called a Mori-Fano variety. We say that X is a canonical

Mori-Fano variety if X has only canonical (cn) singularities.

Note that by the Kleiman projectivity criterion, any Mori-Fano fibration and variety
are projective.

Conjecture 1.2 (weak BAB). The canonical d-dimensional Mori-Fano varieties are

bounded, that is, a coarse moduli space of such varieties is well-defined and of finite type.

BAB abbreviates V. Alexeev, and brothers A. and L. Borisov. The conjecture is
a very special case of their conjecture (see [20]). Conjecture 1.2 is established in
dimensione 3 in characteristic zero [17] (the case d ¼ 2 is classical). Actually, we need
a much weaker version of this conjecture, namely, the boundedness of canonical d-
dimensional Mori-Fano varieties X such that K þ B1 0 for some boundary B A G where
G is a fixed set of real boundary multiplicities satisfying the descending chain condition
(DCC).

Conjecture 1.3 (ACC for mld’s). Suppose that GL ½0; 1� satisfies the DCC. Then the

following holds:

(ACC) The following subset of real numbers R

fmldðP;X ;BÞ j ðX ;BÞ is lc; dim X ¼ d;P A X ; and B A Gg

satisfies the ACC.

A point P can be nonclosed. Equivalently, we can consider only closed points P A X ,
and assume that dim X e d.

This conjecture is established in dimension d e 2 [1], [22], and for some special cases
in higher dimensions [7], [25], [4].

Definition 1.4 (a-lc thresholds). Let af 0 be a real number, ðX ;BÞ be a log pair, and
M be an R-Cartier divisor on X . Then the real number or þ=�y:

t ¼ thaðM;X ;BÞ :¼ supfl A R j ðX ;B þ lMÞ is a-lc in codimensionf 2g

is called the a-lc threshold of M with respect to ðX ;BÞ; for the definition of a-lc see Notation
and terminology below. In particular, if a ¼ 0 or a ¼ 1, the a-lc threshold is the lc threshold

or the cn threshold respectively. By Q-factorial thresholds we mean that we consider only
Q-factorial varieties. Similarly, we define the a-lc threshold at a point P (possibly not
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closed) if the a-lc condition in codimensionf 2 is replaced by the a-lc condition in
codimensionf 2 at P.

Remark 1.5. Note that if ae ldisðX ;BÞ < þy, and M > 0, then tf 0, sup ¼ max,
and t is a nonnegative real number (that is, not þy, cf. [12], Remark 1.4 (ii)). In this situa-
tion, either ðX ;B þ tMÞ is precisely a-lc in codimension 2, that is ldisðX ;B þ tMÞ ¼ a, or
B þ tM has a reduced component. Behaviour of thresholds in codimension 1 (at divisorial
points) is easy. However, when we consider thresholds at a point, the situation is more
complicated (see Example 1.6 or cf. the proof of Proposition 2.5).

Note that we only need the case ae 1 if dim X f 2. Indeed, ldisðX ;BÞe 1 always
when dim X f 2, and ldisðX ;BÞ ¼ þy when dim X e 1 (see Notation and terminology).

Example 1.6. The a-lc threshold at P may not be attained at P nor on the boundary.
For example: take three planes S1, S2, S3 in the space P3 passing through a line L. Take a

closed point P A L and define B ¼ 2

3
S1 þ

2

3
S2 þ

2

3
S3. L is a lc centre for ðP3;BÞ but easy

computations show that mldðP;P3;BÞ ¼ 1. On the other hand, bBc ¼ 0.

So, in general, for the a-lc threshold at a point P, either we get a lc centre passing

through P or the mld a is attained at P.

Conjecture 1.7 (ACC for a-lc thresholds). Suppose that d f 2 is a natural number,
af 0 is a real number, GH ½0; 1� satisfies the DCC and S HR is a set of nonnegative num-

bers satisfying the DCC. Then the following holds:

(ACC) The subset Ta;dðG;SÞ of RþW fþyg defined by

Ta;dðG;SÞ ¼ fthaðM;X ;BÞ j ðX ;BÞ is a-lc in codimensionf 2; dim X ¼ d;

B A G;M is an R-Cartier divisor on X ; and M A Sg

satisfies the ACC where Rþ ¼ fr A R j rf 0g; þy corresponds to the case M ¼ 0.

Moreover, the ACC holds for the similar set of a-lc thresholds at points, that is, when

thaðM;X ;BÞ is replaced by the a-lc thresholds at some point P A X (see Definition 1.4). The

latter set is larger. Thus ACC for thresholds at points implies ACC for thresholds on a

variety.

From now on, by LMMP we mean the LMMP for Q-factorial dlt pairs unless stated
otherwise. We are ready to state the main result of this paper.

Main Theorem 1.8. The LMMP, ACC for mld’s and Conjecture 1.2 in dimensione d

imply the following:

(i) ACC for a-lc thresholds in dimensione d;

(ii) ACC for lc thresholds in dimensione d þ 1; and

(iii) termination of log flips in dimensione d þ 1 for e¤ective lc pairs.
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See the proof in Section 5. For generalizations of statements (i)–(ii) in the Main The-
orem and related problems see Section 2.

Corollary 1.9. ACC for mld’s and Conjecture 1.2 for 4-folds imply:

(i) ACC for a-lc thresholds in dimension 4;

(ii) ACC for lc thresholds in dimension 5; and

(iii) termination of log flips in dimension 5 for e¤ective lc pairs.

Proof. ACC for mld’s for 4-folds implies termination of 4-fold log flips [27], Corol-
lary 5, and the LMMP in dimension 4 [26], Corollary 1.8. Thus, we are done by the Main
Theorem 1.8. r

Corollary 1.10. ACC for mld’s for 3-folds implies:

(i) ACC for a-lc thresholds in dimension 3;

(ii) ACC for lc thresholds in dimension 4; and

(iii) termination of 4-fold log flips for e¤ective lc pairs.

Proof. Immediate by Main Theorem 1.8, and by [17], [13] for Q-boundaries and [25]
in general. r

ACC for mld’s for algebraic surfaces gives a new proof of the following well-known
and new results.

Corollary 1.11. The following hold:

(i) ACC for a-lc thresholds of surfaces;

(ii) ACC for lc thresholds of 3-folds; and

(iii) termination of 3-fold log flips for e¤ective lc pairs.

Proof. Immediate by Main Theorem 1.8, and [1], [22] and [2]. r

Note that ACC for mld’s for surfaces in [22] is established for R-boundaries and with-
out using classification. Thus, for the first time, termination in (iii) is proved without clas-
sification (cf. [5], [13], [25], proof of 5.1.3 for 3-folds).

Cn thresholds and, in particular, their ACC played a crucial role in the Sarkisov
program for 3-folds [9], [18]. Another similar important invariant, the Sarkisov degree or
its inverse—the anticanonical threshold—can be included into more general ones: Fano
indices (see Corollary 2.13 below) and boundary multiplicities of log pairs in SdðglobalÞ
(see Definition 2.6 (v) and Weak finiteness 4.1). These invariants and results about them
are important in the proof of our Main Theorem and will be discussed in Sections 2–4.
Here we give a sample.
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Corollary 1.12. Let GH ½0; 1� be a DCC set. Then, there is a finite subset Gf HG
such that S0

3 ðG; globalÞ ¼ S0
3 ðGf ; globalÞ (see Definition 2.6).

In other words, the set of boundary multiplicities which occur on the following log
pairs is finite: the 3-fold proper log pairs ðX ;BÞ with B A G, K þ B1 0, ðX ;BÞ is lc but
not klt.

Proof. Immediate by Theorems 2.10 and 2.12 (vi). r

If in the corollary, the set G has only rational numbers, it implies a stronger finiteness:
there exists a positive integer n such that nðK þ BÞ@ 0 for each of the related pairs (see
[21], Corollary 1.9 and its proof 9.9). The same is expected in the nonklt case in any dimen-
sion. If in addition X is of Fano type (FT, see Notation and terminology below) and the
pair ðX ;BÞ is e-lc for some fixed e > 0, then according to general BAB [21], Conjecture 1.1,
it is expected that such pairs are bounded, in any given dimension d, e.g., by Conjecture 1.2
above for e ¼ 1.

Remark 1.13. Recently, the first author, Cascini, Hacon and McKernan [6] have an-
nounced a proof of existence of klt (hence Q-factorial dlt) log flips, existence of minimal
models for varieties of general type, and that the LMMP holds with respect to any divisor
if one starts from a dlt log Fano variety. So, in many situations in this paper, one could
remove the assumption of the LMMP. For example, if X is FT we can omit the LMMP.

Notation and terminology. In this paper, a log pair ðX=Z;BÞ consists of normal al-
gebraic varieties X , Z over a base field k of characteristic 0, e.g., k ¼ C, where X=Z is
proper, and an R-boundary B (i.e., a divisor with multiplicities in ½0; 1�) such that K þ B

is R-Cartier where K stands for the canonical divisor. Of course, some results hold or are
expected over any field, e.g., ACC for a-lc thresholds holds in Corollary 1.11 (i). When Z is
a point or X ! Z is the identity we usually drop Z.

An e¤ective log pair is a log pair ðX=Z;BÞ [5] such that K þ B1M=Z for some
R-Cartier divisor M f 0. This property is preserved under any log flip or divisorial contrac-
tion.

A projective variety X is of Fano type (FT) if there is an R-boundary B such that
ðX ;BÞ is a klt weak log Fano, i.e. �ðK þ BÞ is nef and big.

A property holds at a point P A X means that that property holds at the point P but
not necessarily in a neighbourhood of P. On the other hand, a property holds near a subset
Z LX means that that property holds in an open neighbourhood of Z.

If ðX ;BÞ is lc, then

1 � mldðP;X ;BÞ ¼ maxfmult E in BW j f ðEÞ ¼ Pg

where E runs through the prime divisors on W for any log resolution f : W ! X with a
nonempty set of such E, KW þ BW ¼ f �ðK þ BÞ, mult stands for the multiplicity function
on divisors, and P is the closure of P in X . We define

ldisðX ;BÞ ¼ minfmldðP;X ;BÞ jP A X is of codimensionf 2g
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which obviously satisfies ldisðX ;BÞe 1 if dim X f 2, and ldisðX ;BÞ ¼ þy if dim X e 1
since there is no such resolution in this case.

For af 0, we say that ðX ;BÞ is a-lc at P A X if mldðP;X ;BÞf a. This implies, in
particular, that ðX ;BÞ is lc near P [25], Corollary 1.5. We say that ðX ;BÞ is a-lc if it is
a-lc at any P A X , and we say that ðX ;BÞ is a-lc in codimensionf 2 if the same holds for
all P of codimensionf 2.

For a set GLR and an R-divisor D, the inclusion D A G means that the nonzero mul-
tiplicities of D are in G. In particular, the zero divisor is always in G.

2. ACC for mld’s and thresholds

For R-divisors on X , we have the well-known order: D1 fD2 if D1 � D2 f 0. On the
other hand, the topology and the following natural norm, the maximal absolute value norm,
are also well-known: if D ¼

P
diDi, where di A R, and Di are distinct prime divisors on X ,

set kDk ¼ maxfjdijg. In particular, limits of divisors are limits with respect to this norm.

Main Proposition 2.1. We assume the ACC for mld’s in dimension d. Let GH ½0; 1�
be a DCC set, and a > 0 be a real number. Then, there exists a real number t > 0 (depending

on d, G, and a) satisfying the following upper approx imat ion proper ty: if ðX ;BÞ and

ðX ;B 0Þ are two log pairs with a point P A X (not necessarily closed ) such that

(1) dim X ¼ d;

(2) BeB 0, kB � B 0k < t, B 0 A G;

(3) mldðP;X ;BÞf a, that is, ðX ;BÞ is a-lc at P; and

(4) ðX ;B 0Þ is lc in a neighbourhood of P;

then mldðP;X ;B 0Þf a and so ðX ;B 0Þ is also a-lc at P.

To prove the proposition we need the following general fact.

Lemma 2.2 (continuity). Suppose that the pairs ðX ;BÞ and ðX ;B 0Þ are lc in a neigh-

bourhood of a point P A X where BeB 0. Then, a 0 ¼ mldðP;X ;B 0Þ and a ¼ mldðP;X ;BÞ
are real numbersf 0, and, for any real number x in the interval ½a 0; a� there exist two real

numbers a; bf 0 such that aþ b ¼ 1, and mldðP;X ; aB þ bB 0Þ ¼ x.

Proof. This follows from the definition of mld and the linear properties of the mult
function (see Notation and terminology above). r

Proof of Main Proposition 2.1. Suppose that the proposition does not hold. Then,
there exists a sequence of positive real numbers t1 > t2 > � � � with lim

i!þy
ti ¼ 0, and a se-

quence of d-dimensional log pairs ðXi;BiÞ, i ¼ 1; 2; . . . , such that the proposition does not
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hold for ti on ðXi;BiÞ at a point Pi A Xi. In other words, there exists B 0
i A G on Xi satisfying

(2)–(4) of 2.1 with t ¼ ti, and

mldðPi;Xi;BiÞf a but mldðPi;Xi;B
0
i Þ < a:

We now construct a new sequence of d-dimensional log pairs ðTi;AiÞ and points
Qi A Ti such that ai ¼ mldðQi;Ti;AiÞ < a is strictly increasing with i and such that W, the
set of multiplicities of all boundaries Ai, satisfies the DCC.

By ACC for mld’s the set fa 0
i ¼ mldðPi;Xi;B

0
i Þg has a maximum which is less than a.

We can assume that this maximum is equal to mldðP1;X1;B
0
1Þ. Put ðT1;A1Þ ¼ ðX1;B

0
1Þ,

Q1 ¼ P1, and let a1 ¼ mldðQ1;T1;A1Þ. Note that a1 is a real numberf 0 by (4).

Suppose that we have already constructed ðTj;AjÞ for 1e j e i � 1. Since G satisfies
the DCC, we can choose tk such that there are no multiplicities of Aj, for 1e j e i � 1, in
ðr � tk; rÞ for any r A G. Now by Lemma 2.2 we can choose ðTi;AiÞ :¼ ðXk; aBk þ bB 0

kÞ, for
some a; b > 0 with aþ b ¼ 1, and Qi ¼ Pk such that

ai�1 þ a

2
< ai ¼ mldðQi;Ti;AiÞ < a:

Also by construction for every real number e > 0, almost all (except for finitely many)
multiplicities of W belong to intervals ðr � e; r� where r A G. This implies that W satisfies the
DCC because so does G. On the other hand, the set of mld’s faig does not satisfy the ACC
which contradicts the ACC for mld’s. r

Proposition 2.3. Assume the ACC for mld’s in dimension d and let a > 0 be a real

number and GH ½0; 1� a DCC set. Moreover, let t be as in the Main Proposition 2.1, and

ðX ;BÞ and ðX ;B 0Þ log pairs satisfying (1)–(4) of 2.1. Let Y ! X be an extremal divisorial

contraction such that

(1) KY þ B 0
Y þ ð1 � aÞE is R-Cartier,

where E is the exceptional reduced divisor (but not necessarily irreducible), and B 0
Y is the

birational transform of B 0 on X. Then KY þ B 0
Y þ ð1 � aÞE is antinef=X.

Example 2.4. The typical situation where one can apply Proposition 2.3 is as follows
(see also step 8 in the proof of Proposition 4.1). Let ðXi;BiÞ, i ¼ 1; 2; . . . , be a sequence of
d-dimensional klt log pairs such that

(a) a1 ¼ ldisðX1;B1Þf � � �f ai ¼ ldisðXi;BiÞf � � � > 0 with

(b) a ¼ lim
i!y

ai > 0; and

(c) B1 e � � �eBi e � � � with

(d) B ¼ lim
i!y

Bi A R where RH ½0; 1� is a fixed finite set.
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Conditions (c) and (d) mean that there exist prime divisors Di;k, k ¼ 1; . . . ; n, on each
Xi such that for every if 1 we have

Bi ¼
Pn

k¼1

bi;kDi;k;

and, for every k ¼ 1; . . . ; n,

(c 0) b1;k e � � �e bi;k e � � � with

(d 0) bk ¼ lim
i!y

bi;k A R

(cf. types in Definition 2.6 below). (Note that (c) and (d) use a slightly more general order
and topology than the one introduced at the beginning of this section.)

In particular, B ¼
P

bkDi;k approximates Bi on Xi, that is, for any t > 0,
kBi � Bk < t for all ig 0 (divisors B on Xi have the same type ðb1; . . . ; bnÞ in the sense
of Definition 2.6 below; this is why we use this ambiguous notation). Thus if we take
R ¼ fbk j k ¼ 1; . . . ; ng, for all ig 0 and for given t > 0, we satisfy all assumptions of
Main Proposition 2.1 for any ðXi;BiÞ and ðXi;BÞ with Xi, Bi, B, and Pi instead of X , B,
B 0, and P respectively, except for the R-Cartier property of KXi

þ B, and the lc property
in (4). The R-Cartier property will hold if for example X is Q-factorial. Moreover, if
a < 1, then each ai < 1 for ig 0, and there exists an extremal divisorial contraction
Yi ! Xi with an exceptional prime divisor Ei with centre equal to the closure Pi on Xi

and ai ¼ mldðPi;Xi;BiÞ ¼ aðEi;Xi;BiÞ [25], Theorem 3.1. Yi is Q-factorial too [25], Theo-
rem 3.1, and KYi

þ BYi
þ ð1 � aÞEi is R-Cartier where BYi

denotes the birational transform
of B.

Thus in the Q-factorial case and under (4), for all ig 0, ðXi;BÞ is a-lc at Pi, and
KYi

þ BYi
þ ð1 � aÞEi is antinef=Xi.

Proof of Proposition 2.3. Suppose that KY þ B 0
Y þ ð1 � aÞE is not antinef=X . Then

by property (1) of the proposition and the extremal property, it is numerically positive=X .
On the other hand,

KY þ B 0
Y þ

P�
1 � aðEi;X ;B 0Þ

�
Ei 1 0=X ;

where by Main Proposition 2.1 the discrepancy aðEi;X ;B 0Þf a for each prime component
Ei of E ¼

P
Ei. Thus the R-Cartier divisor

P�
a � aðEi;X ;B 0Þ

�
Ei ¼

�
KY þ B 0

Y þ
P�

1 � aðEi;X ;B 0Þ
�
Ei

�
�
�
KY þ B 0

Y þ ð1 � aÞE
�

is numerically negative=X . According to the negativity lemma [23], 1.1, the divisor is e¤ec-
tive and3 0, that is, for each Ei we have a � aðEi;X ;B 0Þ > 0, a contradiction. r

The following result is the big chunk of (i) in our Main Theorem 1.8, and it gives
another application of the Main Proposition when the support of B is not universally
bounded.
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Proposition 2.5. ACC for mld’s and lc thresholds in dimension d implies ACC for a-lc

thresholds in the same dimension for all af 0, in particular, for canonical thresholds.

Proof. It is enough to verify the ACC for a-lc thresholds at points. Suppose that we
have a monotonic increasing sequence ti of d-dimensional a-lc thresholds, that is, there ex-
ists a sequence ðXi;BiÞ of d-dimensional log pairs with boundaries Bi A G, points Pi A Xi,
and R-Cartier divisors Mi A S on Xi such that

(1) ðXi;BiÞ is a-lc at Pi; and

(2) ti is the a-lc threshold of Mi at Pi with respect to ðXi;BiÞ;

in particular, for each i

(3) mldðPi;Xi;Bi þ tiMiÞ ¼ a; or

(4) ti is the lc threshold of Mi with respect to ðXi;BiÞ in a neighbourhood of Pi (see
Remark 1.5 and Example 1.6).

If for infinitely many i, (4) holds, then we are done since we are assuming ACC for lc
thresholds. Thus after taking a subsequence, we can assume (3) for all i. Note that by the
lc property of ðXi;Bi þ tiMiÞ at Pi the limit t ¼ lim

i!y
ti exists because ti are bounded from

above: ti e 1=m0 where m0 ¼ minf0 < m A Sg. We can apply Main Proposition 2.1 to each
X ¼ Xi, B ¼ Bi, B 0 ¼ Bi þ tMi, and P ¼ Pi. Indeed, (1) of the proposition holds because
dim X ¼ d. The assumption (2) of the proposition follows from construction, in particular,
the multiplicities of B 0 are of the form bi; j þ tmi; j and satisfy the DCC as their components
bi; j and mi; j do. The assumption (3) of the proposition mldðP;X ;BÞf a holds by (1)
above. Finally, KX þ B 0 is R-Cartier because each Mi is R-Cartier, and the assumption (4)
of the proposition, that is, ðX ;B 0Þ is lc in a neighbourhood of P, follows from ACC for lc
thresholds. Indeed, if the lc property does not hold for ig 0, then we get an increasing set
of lc thresholds t 0i ¼ lctðMi;Xi;BiÞ near Pi for infinitely many i, such that ti e t 0i < t. This
contradicts ACC for lc thresholds. Therefore, by Main Proposition 2.1 and (3) above t ¼ ti

for all i g 0 and ti stabilizes. r

The Main Proposition 2.1 also gives some relations between di¤erent ACC versions
besides the ones for mld’s and thresholds in the introduction. Now we recall some of them.

Definition 2.6 (cf. [15], Section 18). (i) The type order B is a direct sum of R count-
ably many times, that is, the set of sequences ðb1; . . . ; bnÞ with bi A R, nf 0, and the follow-
ing order: ðb1; . . . ; bmÞ < ðb 0

1; . . . ; b
0
nÞ if either n < m or n ¼ m and each bi e b 0

i with at least
one strict inequality. The maximal element is the empty sequence with n ¼ 0.

(ii) A type of an R-divisor D ¼
P

diDi on X , where Di are distinct prime divisors on
X , is the sequence ðd1; . . . ; dnÞ of its nonzero multiplicities (in any possible ordering). We
usually do not think of D with a specific ordering of the prime components in mind, so D

can have several types. Even one can add finitely many zeros.

(iii) (cf. [15], Definition 18.3) A log pair ðX ;BÞ has maximal a-lc type ðb1; . . . ; bnÞ
near a closed subset Z LX and respectively at a point P A X (not necessarily closed) if
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B ¼
P

biDi where D1; . . . ;Dn are prime divisors, in particular, B has type ðb1; . . . ; bnÞ, and
if ðX ;BÞ is a-lc near Z and respectively at P, but ðX ;B 0Þ is not a-lc near Z and respectively
at P for any R-divisor B 0 ¼

P
b 0

i Di of type ðb 0
1; . . . ; b

0
nÞ such that K þ B 0 is R-Cartier and

B 0 > B in any neighbourhood of Z and respectively at P.

(iv) (cf. [15], 18.15.1) SdðFanoÞ is the set of types ðb1; . . . ; bnÞ such that there is a
nonsingular Fano variety X of dimension at most d and a boundary B of type ðb1; . . . ; bnÞ
such that K þ B1 0. (See Example 2.9 (1) below.)

(v) (cf. [15], 18.15.�11) SdðglobalÞ is the set of types ðb1; . . . ; bnÞ such that there is a
proper normal variety X of dimension at most d and a boundary B of type ðb1; . . . ; bnÞ
such that ðX ;BÞ is lc, and K þ B1 0. (See Example 2.9 (2) below.) We denote by
S0

d ðglobalÞ its subset with non-klt ðX ;BÞ.

(vi) (cf. [15], 18.15.2) Sa;dðlocalÞ is the set of types ðb1; . . . ; bnÞ such that there is a
pointed Q-factorial variety P A X of dimension at most d, and prime divisors D1; . . . ;Dn

on X such that B ¼
P

biDi is a boundary, and ðX ;BÞ has maximal a-lc type ðb1; . . . ; bnÞ
at P. (See Example 2.9 (3) below.) We denote by S0

a;dðlocalÞ its subset with non-klt ðX ;BÞ
near P.

(vii) (cf. [15], 18.15.�22) Sa;dðlocalÞ is the set of types ðb1; . . . ; bnÞ such that there is a
Q-factorial variety X of dimension at most d, prime divisors D1; . . . ;Dn on X , and a closed
subset Z LX such that B ¼

P
biDi is a boundary, and ðX ;BÞ has maximal a-lc type

ðb1; . . . ; bnÞ near Z. We denote by S0
a;dðlocalÞ its subset when Z is a subset of LCSðX ;BÞ,

the non-klt locus of ðX ;BÞ.

(viii) (cf. [15], 18.15.1) SdðMori-FanoÞ is the set of types ðb1; . . . ; bnÞ such that there
is a Mori-Fano variety X of dimension at most d, and a boundary B of type ðb1; . . . ; bnÞ
such that ðX ;BÞ is lc, and K þ B1 0. We denote by S0

d ðMori-FanoÞ its subset with non-
klt ðX ;BÞ.

(ix) (cf. [15], 18.15.1) SdðMori-Fano cnÞ is the set of types ðb1; . . . ; bnÞ such that there
is a cn Mori-Fano variety X of dimension at most d and a boundary B of type ðb1; . . . ; bnÞ,
and K þ B1 0.

Some of these definitions are slightly di¤erent from those in [15], 18.15. We consider
each of the above sets SdðFanoÞ; . . . ;SdðMori-Fano cnÞ as a subset of the order B. Thus it
has ordering induced from B. For a ¼ 0, we set Sd ¼ Sa;d , e.g., SdðlocalÞ ¼ S0;dðlocalÞ.
Finally, we denote by SdðG; localÞ the types in SdðlocalÞ when B A G. Similar notation for
the other sets.

Conjecture 2.7 (cf. [15], Conjecture 18.16). Each set SdðglobalÞ, S0
d ðglobalÞ,

Sa;dðlocalÞ, Sa;dðlocalÞ, S0
a;dðlocalÞ, S0

a;dðlocalÞ, SdðMori-FanoÞ, S0
d ðMori-FanoÞ,

SdðMori-Fano cnÞ, satisfies the ACC.

Remark 2.8. (1) In Definition 2.6 (vi)–(vii) the Q-factorial assumption can be re-
placed by the Q-Cartier property of the prime divisors Di (cf. Example 2.9 (3) below).

(2) Since we omit the lc assumption for ðX ;BÞ in Definition 2.6 (ix),
SdðMori-Fano cnÞ is not a subset of SdðMori-FanoÞ.
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(3) ACC for SdðMori-Fano cnÞ follows from Conjecture 1.2 in dimension d (cf. Ex-
ample 2.9 (1) below).

Example 2.9. (1) SdðFanoÞ satisfies the ACC in any dimension d by the bounded-
ness of nonsingular Fano varieties X of dimensione d [16]. Indeed, there exists a
generic curve C HX which positively intersects each prime divisor Di on X and with
bounded ð�K � CÞ: C is a generic curve section for an embedding X HPN of bounded
degree in a fixed projective space PN . Then for positive integers mi ¼ ðDi � CÞ,P

bimi ¼ ðB � CÞ ¼ ð�K � CÞ. On the other hand, for any increasing sequence of types
ðbl

1; . . . ; b
l
nl
Þ, l ¼ 1; 2; . . . , we can suppose that their sizes stabilize: nl ¼ n for all l g 0, and

each bl
i > 0. Therefore, after taking a subsequence, the multiplicities ml

i ¼ ðDl
i � CÞ stabilize

too: for each i ¼ 1; . . . ; n, ml
i ¼ mi > 0 for all l g 0. Hence the types stabilize: for each

i ¼ 1; . . . ; n, bl
i ¼ bi > 0 for all l g 0 (cf. the proof of [23], Second Termination 4.9). These

arguments show that the ACC holds for SdðFanoÞ even if we remove the assumption
bi e 1.

On the other hand, the condition on the dimension is necessary for all the sets in Con-
jecture 2.7. For example, let X ¼ Pd be the projective space of dimension d, and D a ge-
neric hypersurface in Pd of degree d þ 2. Then

KPd þ d þ 1

d þ 2
D1 0:

Thus
�
ðd þ 1Þ=ðd þ 2Þ

�
A SdðFanoÞ and obviously

S
df1

SdðFanoÞ does not satisfy the ACC.

(2) For SdðglobalÞ and SdðMori-FanoÞ, the assumption that ðX ;BÞ is lc is very im-
portant. Let Qn HPðnþ1Þ be the cone over a rational normal curve of degree n with a line
generator L. Then for a generic hyperplane section H,

�K ¼ ðn þ 2ÞL1 3L þ n � 1

n
H:

If we replace 3L by L1 þ L2 þ L3 or L1=2 þ � � � þ L6=2 with distinct generators
Li, we construct strictly increasing sequences of types

�
1; 1; 1; ðn � 1Þ=n

�
and�

1=2; 1=2; 1=2; 1=2; 1=2; 1=2; ðn � 1Þ=n
�

respectively. However, they are not in SdðglobalÞ
because

�
Qn;L1 þ L2 þ L3 þ ðn � 1ÞH=n

�
and

�
Qn;L1=2 þ � � � þ L6=2 þ ðn � 1ÞH=n

�
are

not lc (at the vertex of Qn).

(3) The Q-factorial property in Definition 2.6 (vi)–(vii) is very important, too. Let
f : Y ! X be a contraction of a nonsingular rational curve C on a nonsingular 3-fold Y ,
and D1, D2 two nonsingular prime divisors on Y with intersection only along C and with
normal crossings. Set �n ¼ C2 on D1. For any nf 2 there exists such a contraction, e.g.,
toric one. Then K þ B1 0=X for B ¼ D1 þ ðn � 2ÞD2=n. Thus we have a strictly increasing
sequence of types

�
1; ðn � 2Þ=n

�
which does not belong (entirely) to any set in Conjecture

2.7 if it satisfies the ACC. That is in Definition 2.6 (v) the proper assumption is very impor-
tant. The same types correspond to the image ðX ; f�BÞ. However it does not belong to the
sets in Definition 2.6 (vi)–(vii) because X is not Q-factorial.
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Let D3 be a divisor which transversally intersects D1, D2 in a single point (again such
a divisor exists in the toric case). Then, for B 0 ¼ D1 þ D3 þ ðn � 1Þ=nD2, K þ B 0 1 0=X ,
and ðX ; f�B

0Þ is exactly lc near P ¼ f ðCÞ: ldisðX ; f�B
0Þ ¼ 0, but ðn � 1Þ=n does not satisfy

the ACC and is not a counter example to ACC for thresholds since f�D2 is not a Q-Cartier
divisor. Similar examples can be constructed for any a instead of 0.

(4) The ACC for SdðMori-Fano cnÞ holds for d e 3 by [17]. Moreover, the bound-
ary property of B, namely that each bi e 1, and the condition rðXÞ ¼ 1 are not necessary
because canonical Fano 3-folds are bounded [17].

The main result of this section is the following.

Theorem 2.10. ACC for mld’s and lc thresholds in dimensione d imply

(i) the ACC for Sa;dðlocalÞ, Sa;dðlocalÞ, S0
a;dðlocalÞ, and S0

a;dðlocalÞ with any af 0.

The ACC for SdðMori-Fano cnÞ, the LMMP and ACC for mld’s in dimensione d

imply

(ii) the ACC for SdðglobalÞ, and SdðMori-FanoÞ;

(iii) the ACC for S0
dþ1ðMori-FanoÞ;

(iv) the ACC for Sdþ1ðlocalÞ and Sdþ1ðlocalÞ; and

(v) the ACC for lc thresholds in dimensione d þ 1.

If in addition, the LMMP holds in dimension d þ 1, then

(vi) the ACC for S0
dþ1ðglobalÞ holds.

Addendum 2.11. The ACC for SdðMori-Fano cnÞ can be replaced by Conjecture 1.2
in dimensione d (everywhere!) because the latter implies the former. (Cf. Example 2.9 (1)
and Remark 2.8 (3) above.)

Theorem 2.12. Let GH ½0; 1� be a DCC set. Then Theorem 2.10 holds when each

B A G. Moreover, then G can be assumed to be finite, that is, there exists a finite subset Gf

such that Sa;dðG; localÞ ¼ Sa;dðGf ; localÞ, SdðG; globalÞ ¼ SdðGf ; globalÞ, etc.

We also have SdðG;FanoÞ ¼ SdðGf ;FanoÞ.

Corollary 2.13 (ACC for anticanonical (ac) thresholds). Let GL ½0; 1� be a DCC set.

Assume the ACC for SdðMori-Fano cnÞ, the LMMP and ACC for mld’s in dimensione d.

Then:

(i) The ACC holds for Sa;dðglobal FTÞ where Sa;dðglobal FTÞ is the set of types

ðb1; . . . ; bnÞ such that there is a FT variety X of dimension at most d, an ample Cartier divisor

H on X , and a boundary B of type ðb1; . . . ; bnÞ such that ðX ;BÞ is lc, and K þ B þ aH 1 0;
in particular, S0;dðglobal FTÞ ¼ Sdðglobal FTÞ the subset in SdðglobalÞ corresponding to

FT varieties X.
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Moreover, there exists a finite subset Gf such that

Sa;dðG; global FTÞ ¼ Sa;dðGf ; global FTÞ:

(ii) Let S be a DCC set of positive real numbers, then the ACC holds for the subset

Aa;dðG;SÞ of Rþ ¼ fr A R j rf 0g defined by

Aa;dðG;SÞ ¼ factaðM;X ;BÞ jX is proper; dim X ¼ d;B A G; ðX ;BÞ is lc;

X is FT ;K þ B is antinef ; and M is an ample S-Cartier divisor on Xg

where t ¼ actaðM;X ;BÞ means that K þ B þ tM þ aH 1 0 for some ample Cartier divisor

H on X and tf 0, and the S-Cartier property means that M is a linear combination of ample

Cartier divisors with multiplicities in S.

(iii) The log Fano indices, that is, the maximal positive real number t such that

K þ B þ tM 1 0 for some ample Cartier divisor M, satisfies the ACC for the lc pairs

ðX ;BÞ, with FT variety X of dimensione d and B A G.

We expect that Corollary 2.13 holds when FT is omitted, that is, for a > 0, ðX ;BÞ is
just a lc Fano variety.

Remark 2.14. If rðXÞ ¼ 1, then the a-anticanonical (a-ac) threshold is well defined
for any fixed ample Cartier divisor H if K þ B þ aH is antinef. In this case, there exists a
(unique) real number t such that

K þ B þ tM þ aH 1 0

where M is an ample S-Cartier divisor and S is a set of positive real numbers. For a ¼ 0,
we get the ac threshold [12], p. 47.

In Corollary 2.13 we can suppose that a is varying in a DCC set. Then it is expected
that the corresponding threshold t in dimensione d satisfies the ACC. This is clear from
the proof of Corollary 2.13 (below).

Proof of Corollary 2.13. The case (i) follows from its counterpart in Theorem 2.10
(ii). To apply the theorem we replace the boundary B with B þ aH with an appropriate
choice of H (see proof of (ii) below). The type of B will be extended by that of aH. Since
the latter has finitely many possible multiplicities, the ACC for B is equivalent to the ACC
of extended types to which we apply Theorem 2.10. When B A G, the existence of Gf fol-
lows similarly from Theorem 2.12.

(ii) Suppose that such thresholds do not satisfy the ACC. Let W be an infinite set of
such thresholds, which satisfy the DCC. Now take any t A W. Also take X , B, H and
M 3 0 corresponding to t. Since M is S-Cartier, there are sj A S and ample Cartier divisors
Hj such that M ¼

P
j

sjHj. By anticanonical boundedness [24], tsj is bounded from above

(see also Example 2.9 (1)). By e¤ective base point freeness [14], there is h, a natural number
(not depending on X , H, Hj but depending only on the dimension d), such that hHj and hH

are free divisors and ða=hÞ; ðtsj=hÞ A ½0; 1�.
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Write M 1
P

j

ðsj=hÞH 0
j where H 0

j A jhHjj is a general member. For d f 2, a general

member H 0
j is irreducible. For d ¼ 1, the number of components in H 0

j is bounded. Thus
we can assume that

�
X ;B þ

P
j

ðtsj=hÞH 0
j þ ða=hÞH 0

�

is lc where H 0 A jhHj is a general member. In particular, the possible multiplicities of
B þ

P
j

ðtsj=hÞH 0
j þ ða=hÞH 0 satisfy the DCC. Now W is finite by Theorem 2.12 (ii), a con-

tradiction.

(iii) If S ¼ f1g and a ¼ 0, then any ample S-Cartier divisor M is just an ample
Cartier divisor and the ac threshold satisfies K þ B þ tM 1 0. Thus the possible t satisfy
the ACC by (ii). This implies the ACC for the Fano indices. r

Proof of Theorem 2.10. We will see that each statement follows from the same state-
ment under the assumption B A G for some G under the DCC. Thus Theorem 2.10 follows
from Theorem 2.12.

For (v) such a set G is given by assumptions. In the other cases, we need to verify that
each increasing sequence of types ðbl

1; . . . ; b
l
nl
Þ, l ¼ 1; 2; . . . , stabilizes. By definition of the

ordering, their sizes stabilize: nl ¼ n for all l g 0. Then for the corresponding pairs ðXl ;BlÞ,

Bl ¼
Pnl

i¼1

bl
i D

l
i A G where

G ¼ fbl
i j i ¼ 1; . . . ; n; and l ¼ 1; 2; . . .g:

Since each sequence bl
i , l ¼ 1; 2; . . . , increases, G satisfies the DCC.

Proof of Addendum 2.11. Use the boundedness as in Example 2.9 (1). r

Proof of Theorem 2.12. (i) By the inclusions

S0
a;dðG; localÞHSa;dðG; localÞ and S0

a;dðG; localÞHSa;dðG; localÞ

it is enough to prove the ACC for the ambient sets. On the other hand, by definition, for
any type ðb1; . . . ; bnÞ in Sa;dðG; localÞ and any of its components bi there exists a type
ðb 0

1; . . . ; b
0
mÞ in Sa;dðG; localÞ with a component b 0

i 0 ¼ bi: take a point P A Supp Di XZ

such that ðX ;BÞ has maximal a-lc type at P and then take the type given by those compo-
nents of B which contain P. Thus it is enough to prove the ACC for Sa;dðG; localÞ.

Let ðbl
1; . . . ; b

l
nl
Þ, l ¼ 1; 2; . . . , be an increasing sequence of types in the set

Sa;dðG; localÞ with nl f 1. Since this sequence is increasing, we can assume that there
is nf 1 such that nl ¼ n for any l. By definition, we have a sequence of pointed Q-
factorial varieties Pl A Xl of dimensione d and prime divisors Dl

1; . . . ;D
l
n on Xl such that

Bl ¼
P

bl
i D

l
i is a boundary and Pl A

Tn
i¼1

Supp Dl
i . Moreover, for each l, mldðPl ;Xl ;BlÞ ¼ a

222 Birkar and Shokurov, Mld’s vs thresholds and flips



or every Dl
i contains a lc centre of ðXl ;BlÞ passing through Pl . If the latter case happens for

every l, then ðbl
1; . . . ; b

l
nÞ satisfies the ACC by ACC for lc thresholds in dimensione d (see

the arguments below). Thus taking a subsequence we can suppose that the first case hap-
pens for every l, i.e. mldðPl ;Xl ;BlÞ ¼ a, and a > 0.

We can choose a subsequence such that the limits below exist (e.g., unique) (see Ex-
ample 2.4 above):

bi ¼ lim
l!y

bl
i for i ¼ 1; . . . ; n;

B 0
l ¼

Pn

i¼1

biD
l
i ; and R :¼ fbi j i ¼ 1; . . . ; ng:

Then for any t > 0, kBl � B 0
lk < t for all l g 0. Note that KXl

þ B 0
l is R-Cartier be-

cause Xl is Q-factorial. By ACC for lc thresholds and Main Proposition 2.1 for X ¼ Xl ,
B ¼ Bl , P ¼ Pl , and every l g 0, we can assume that ðXl ;B

0
lÞ is lc near Pl , and a-lc at Pl .

Therefore, mldðPl ;Xl ;B
0
l Þf a ¼ mldðPl ;Xl ;BlÞ.

We can derive the lc property, (4) of Main Proposition 2.1, of ðXl ;B
0
l Þ from the as-

sumptions as follows (cf. proof of Proposition 2.5). If ðXl ;B
0
l Þ is not lc near Pl for l g 0,

then (since Xl is Q-factorial), for infinitely many l there is Gl ¼
Pn

i¼1

gl
i D

l
i such that

Bl eGl eB 0
l and such that ðXl ;GlÞ has maximal 0-lc type ðgl

1; . . . ; g
l
nÞ at Pl . The set of

multiplicities of those Gl satisfies the DCC and is not finite. We can assume that fgl
1g is

not finite but increasing and that Dl
1 contains a lc centre. So, gl

1 is the lc threshold of Dl
1

with respect to ðXl ;Gl � gl
1Dl

1Þ. This contradicts ACC for lc thresholds.

Now by Monotonicity of mld’s (see [23], 1.3.3) and since B 0
l fBl , the sequence stabil-

izes: B 0
l ¼ Bl for every l g 0. This proves the ACC.

(ii) This will be established in the weak finiteness section (Proposition 4.1) modulo (v)
in dimension d which can be assumed by induction. Note that SdðglobalÞ includes
SdðMori-FanoÞ.

(iii) The ACC follows from the statement about Gf and Lemma 2.16. Let

ðXl ;BlÞ be a pair of dimensione d þ 1 for each l such that Bl ¼
Pnl

i¼1

bl
i D

l
i has a type

ðbl
1; . . . ; b

l
nl
Þ A S0

dþ1ðG;Mori-FanoÞ and such that the set of boundary multiplicities fbl
i g is

not finite. We may assume that fbl
1g is a strictly increasing sequence. By assumptions,

ðXl ;BlÞ is lc but not klt. We can take a Q-factorial dlt blow up ðYl ;BYl
Þ for ðXl ;BlÞ; this

only needs special termination of Q-factorial dlt log flips in dimensione d þ 1 which fol-
lows from the LMMP in dimensione d [6], [5], Construction 3.1. Here we have a bi-
rational morphism Yl ! Xl and KYl

þ BYl
is the crepant pullback of K þ Bl .

Suppose that Dl
1 intersects LCSðXl ;BlÞ for infinitely many l. For each such l the bi-

rational transform of Dl
1 intersects bBYl

c because all the exceptional divisors of Yl ! Xl
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are components of bBYl
c. Then using adjunction, restrict to a component Tl of bBYl

c which
intersects Dl

1. The boundary multiplicities that we get on Tl are of the type

b 0 ¼ m � 1

m
þ
P ci

m
bl

i e 1

with natural numbers m, ci [23], 3.10. It is easy to verify the following fact.

Lemma 2.15. Any set of such b 0 satisfies the DCC where bl
i A G (cf. [23], Second ter-

mination 4.9, and [15], 18.21.4). Moreover, if it is finite, then the corresponding set of bl
i is

finite.

By Theorem 2.12 in dimension d we have that the set of all possible b 0 is finite. By
Lemma 2.15, the set of bl

1 is finite. This is a contradiction. Therefore, we can assume that
Dl

1 does not intersect LCSðXl ;BlÞ for any l.

There is an extremal ray Rl on Yl such that the birational transform of Dl
1 intersects

Rl positively. If Rl is of fibre type, then by restricting to the general fibre and using induc-
tion on d we get a contradiction. So assume otherwise. The reduced part of BYl

intersects
Rl , otherwise Rl corresponds to a flipping or divisorial type extremal ray R 0

l on Xl . This is
not possible since rðXlÞ ¼ 1.

Let ðYþ
l ;Bþ

Yl
Þ be the model after operating on Rl (i.e., after a flip or divisorial con-

traction). Thus, the birational transform of Dl
1 on Yþ

l intersects the reduced part of Bþ
Yl

.
We get a contradiction as above by restricting to a component of the reduced part of Bþ

Yl
.

(iv) As noted above it is enough to verify the ACC for Sdþ1ðG; localÞ. Suppose

that there are ðXl ;BlÞ such that Bl ¼
Pnl

i¼1

bl
i D

l
i has a maximal 0-lc type ðbl

1; . . . ; b
l
nl
Þ in

Sdþ1ðG; localÞ at Pl A Xl such that these types are strictly increasing with respect to l. We
can assume that the set fbl

1g is strictly increasing. If for infinitely many l, Dl
1 contains a lc

centre of ðXl ;BlÞ of codimensione d (i.e. a lc centre which is not a closed point) passing
through Pl , then by taking hyperplane sections, we reduce the problem to dimensione d

for which we may assume that the theorem is already proved.

So, we assume that none of Dl
1 contains a lc centre of ðXl ;BlÞ of dimensionf 1 pass-

ing through Pl . Now, take a Q-factorial dlt blow up of each ðXl ;BlÞ. Then using adjunc-
tion, restrict to an appropriate exceptional divisor in the reduced part of the boundary
which intersects the birational transform of Dl

1. The exceptional divisor is complete over
Pl by the above property of lc centers. The multiplicities that we get are as in Lemma
2.15. We get a contradiction by (ii).

(v) This is proved exactly as in (iv) using induction on d (part (ii)).

(vi) The ACC follows from the statement about Gf and Lemma 2.16. Let

ðXl ;BlÞ be a pair of dimension d þ 1 for each l such that Bl ¼
Pnl

i¼1

bl
i D

l
i has a type

ðbl
1; . . . ; b

l
nl
Þ A S0

dþ1ðG; globalÞ and such that the set of boundary multiplicities fbl
i g is not

finite. We can assume that fbl
1g is a strictly increasing sequence. By assumptions, ðXl ;BlÞ is
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lc but not klt. By taking Q-factorial dlt blow ups, we may assume that ðXl ;BlÞ is Q-
factorial dlt. As in Step 3 of the proof of Proposition 4.1, run the anti-LMMP on Dl

1. After
finitely many steps, either we get a fibration or the Mori-Fano case. For the former case we
use induction on d and for the latter case use (iii).

The statement about Gf in the local cases follows from Lemma 2.16. The abridged
property for Sa;dðG; localÞ, S0

a;dðG; localÞ, Sa;dðG; localÞ, S0
a;dðG; localÞ, Sdþ1ðlocalÞ, and

Sdþ1ðlocalÞ follows from [15], Theorem 18.22. r

Lemma 2.16. Any suborder SHB satisfies the ACC if each ðb1; . . . ; bnÞ A S is in R,
that is, each bi A R, for a fixed finite set of real numbers R. Conversly, if S satisfies the ACC
and there is a DCC set G such that any ðb1; . . . ; bnÞ A S is in G, and for each ðb1; . . . ; bnÞ A S
some abridged type ðb 0

1; . . . ; b
0
n 0 Þ with bounded n 0 is in S, then there is a finite set R such that

each ðb1; . . . ; bnÞ A S is in R. Abridged means that both types have the same set of nonzero

components.

Proof. First suppose that each ðb1; . . . ; bnÞ A S is in R for a fixed finite set of real
numbers R. If S does not satisfy the ACC, then we can find a strictly increasing set of ele-
ments b1; b2; . . . in S. We can assume that they all have the same size, that is, there is n

such that bl ¼ ðbl
1; . . . ; b

l
nÞ. Since R is finite, there are only finitely many such types, a con-

tradiction.

Now suppose that we have S satisfying the ACC and the other assumptions of the
lemma. Let RHG be the set of all real numbers appearing as a component in some type in
S. It is enough to prove that R is finite. If R is not finite, then there is a strictly increasing
sequence frlgl ANHR and an infinite set of types b1; b2; . . . in S such that rl is a component
of bl . Replacing each bl by an abridged one bl ¼ ðbl

1; . . . ; b
l
n 0 Þ, we can assume that bl

1 ¼ rl .
If n 0 ¼ 1, then we get a contradiction. Otherwise, consider types ll ¼ ðbl

2; . . . ; bl
n 0 Þ and use

induction on size and the DCC property of G to get an infinite increasing subsequence of
fblgl AN. By construction it is strictly increasing. This is a contradiction, because the set
fblgl AN does not satisfy the ACC. r

3. Log twist

In this section, we introduce a construction which is crucial for us and which general-
izes (resembles) Sarkisov links of Type I and II [18], Theorem 13-1-1, and we establish its
basic properties.

Construction 3.1 (log twist). Assume the LMMP in dimension d. Let X be a d-
dimensional Mori-Fano variety, and B be a boundary such that ðX ;BÞ is klt and non-
canonical in codimensionf 2 (noncn for short), and K þ B1 0. Fix a prime exceptional
divisor E such that a :¼ 1 � e :¼ ldisðX ;BÞ ¼ aðE;X ;BÞ. Then there exists (and is unique
for the fixed E) the following transformation of X which we call a log twist:

Y ¼ Y1 d Y2 d � � � d Y 0 ¼ Yn???yf

???yf 0

X X 0

225Birkar and Shokurov, Mld’s vs thresholds and flips



where f : Y ¼ Y1 ! X is an extremal divisorial contraction with E being its exceptional
divisor, and all horizontal modifications Yi d Yiþ1, i ¼ 1; . . . ; n � 1, are extremal �E-
flips such that for the crepant boundary BY 0

(1) ðY 0;BY 0 Þ is klt, and KY 0 þ BY 0 1 0.

Moreover, f 0 : Y 0 ¼ Yn ! X 0 is either a Mori-Fano fibration with dim X 0 f 1 or an
extremal divisorial contraction of a divisor E 0 onto a Mori-Fano variety X 0 with the cre-
pant boundary BX 0 such that

(2) ðX 0;BX 0 Þ is klt, and KX 0 þ BX 0 1 0.

In addition, the following two facts hold:

(3) If D is an e¤ective divisor on Y which is antinef over X then its birational trans-
form D 0 on Y 0 is nef over X 0, and strictly positive when D3 0.

(4) Thus, if in (3) D 0 is also antinef over X 0, then D ¼ D 0 ¼ 0.

Definition 3.2 (cf. [18], Theorem 13-1-1). We say that the twist has Type I if
Y 0 ! X 0 is a fibration. Otherwise the twist has Type II.

Proof of Construction 3.1. There is an extremal divisorial contraction
f : Y ¼ Y1 ! X with E being its exceptional divisor by the LMMP assumption or by [6],
Corollary 1.4.3. Let BY be the crepant pullback of B on Y . According to our assumptions,
BY is a boundary. Moreover,

(5) a < 1 and 0 < e < 1; and

(6) ldisðY ;BY Þf ldisðX ;BÞ ¼ a.

By construction KY þ BY 1 0, and Y is Q-factorial. Now we run the LMMP starting
from Y with respect to KY þ BY � eE 1�eE. By (5) this is the same as D-MMP with re-
spect to D ¼ �E. Instead of using the LMMP assumption we could use [6], Corollary 1.3.1.
Since E is always positive on the generic member of some covering family of curves, after
finitely many flips Yi d Yiþ1, we get an extremal contraction f 0 : Y 0 ¼ Yn ! X 0 which is
not a flipping, that is, f 0 is a Mori-Fano fibration or a divisorial contraction, contracting
E 0. The first case gives a twist of Type I, and the second one gives a Type II twist.

In both cases, E is positive with respect to f 0, and so is E with respect to the flipping
contraction of each flip Yi d Yiþ1. In particular, E is a divisor on X 0 if f 0 has Type II. In
both cases, the flips are log flops with respect to KYi

þ BYi
, and all BYi

are (crepant) bound-
aries. Thus, both Type I and Type II twists satisfy property (1), and in addition, the Type II
also satisfies (2). By (6) in both cases,

(6 0) ldisðY 0;BY 0 Þf ldisðX ;BÞ ¼ a.

By construction, rðX 0Þ ¼ rðY 0Þ � 1 ¼ rðYiÞ � 1 ¼ rðY Þ � 1 ¼ rðXÞ ¼ 1, and, for
Type II, X 0 is Q-factorial. Hence, for this case, since E is not exceptional over X 0 and by
(5), �KX 0 is ample which means that X 0 is a Mori-Fano variety.
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Now let D be an e¤ective divisor on Y which is antinef/X . According to the previous
paragraph, each rðYiÞ ¼ 2. Let R1 be the extremal ray corresponding to the contraction
Y ! X , and R2 be the other extremal ray. By our assumption, D � R1 e 0. Since Df 0,
D � R2 f 0. Thus the first flip Y1 d Y2 is a �D-flip or �D-flop. Similarly, each next flip
Yi d Yiþ1 is a �Di-flip or �Di-flop where Di denotes the birational transform of D.
Therefore, D 0 :¼ Dn is nef=X 0. If D 0 is in addition antinef over X 0, then D 0 1 0=X 0 which
implies that D 0 is antinef hence D 0 ¼ 0. So, we proved (3) and (4). Uniqueness of the log
twist follows from the construction. r

Definition 3.3. A log twist is called final, if

(a) Y 0 ! X 0 is a fibration, that is, it is of Type I; or

(b) Y 0 ! X 0 is of Type II, X 0 is noncn, and ldisðX 0;BX 0 Þ ¼ 1 � e 0 where
e 0 ¼ multE 0 BY 0 ; or

(c) Y 0 ! X 0 is of Type II, and X 0 is canonical (cn for short).

Therefore, if a log twist is not final, it is of Type II with noncn X 0. Thus we can take a
log twist of ðX 0;BX 0 Þ. Moreover, we expect that a sequence of log twists:

ðX ;BÞ d ðX 0;BX 0 Þ d � � � d ðX ðiÞ;BX ðiÞ Þ d � � �ð7Þ

terminates, where each log twist is nonfinal, except possibly for the last one.

Proposition 3.4 (termination of log twists). (i) Suppose that for a sequence as in (7),
there exists a real number a0 < 1 such that

aðiÞ ¼ ldisðX ðiÞ;BX ðiÞ Þe a0ðUBDÞ

for each if 1 except possibly for the last i. Then, assuming the LMMP in dimension

d ¼ dim X , the sequence terminates un iver sa l l y with respect to a0, that is, the sequence is

finite and the number of twists in it is bounded whereas the bound depends only on a0 and d.

(ii) The ACC for mld’s near 1 with G ¼ f0g in dimension d implies (UBD) for any se-

quence as in (7), for some a0 < 1 where a0 depends only on d.

By ACC for mld’s in dimension d near 1 with G ¼ f0g, we mean that 1 is not an
upper limit in the mld spectrum (1.3) in dimension d when B ¼ 0. This is a very special
case of Conjecture 1.3.

Theorem 3.5 (cf. [19], Theorem 2.3). Assume the LMMP in dimension d for klt pairs.

Then, for any proper klt pair

�
X ;B ¼

Pn

i¼1

biDi

�
of dimension d such that K þ B1 0 we have

P
i A I

bi e
1

2
dðd þ 3Þ where I is the set of indices i for which Di is a big divisor.

Proof. We may assume that 1 A I , and that X is projective Q-factorial by taking a
projective Q-factorialisation. After running the LMMP on KX þ B � b1D1 we can assume
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that X already has a K þ B � b1D1-negative extremal ray R which defines a non-birational
contraction f : X ! Z. Note that flips preserve the sum

P
i A I

bi but divisorial contractions

may increase it because I might be extended after a divisorial contraction. If dim Z > 0, we
can use induction by restricting to the general fibre of f and using the fact that Di intersects
the general fibre for any i A I . So, we assume that Z is a point in which case I ¼ f1; . . . ; ng
and rðX Þ ¼ 1.

We can assume that Diþ1 1 aiDi with ai f 1, for any ie n � 1. Now if
Pn

i¼1

bi > 2,

then by changing the coe‰cients of B appropriately (e.g. by adding to b1 and b2 but

decreasing other coe‰cients), we can find B 0 such that

�
X ;B 0 ¼

Pn

i¼1

b 0
i Di

�
is klt,

K þ B 01 0,
Pn

i¼1

b 0
i f

Pn

i¼1

bi, and such that aðE;X ;B 0Þ < 1 for some exceptional=X prime

divisor E. Let X d X 0 be the log twist determined by E as in Construction 3.1. Let J be
the set of those indices i A f1; . . . ; ng such that Supp Di does not contain the centre CX E in
which case the birational transform of Di on Y 0 is positive over X 0 by (3) of Construction
3.1. By [15], Theorem 18.22,

P
i B J

b 0
i e d. On the other hand, if Y 0 ! X 0 is not birational we

apply induction by restricting to a general fibre and get
P
i A J

b 0
i e

1

2
ðd � 1Þðd þ 2Þ. But if

Y 0 ! X 0 is a divisorial contraction, we apply [15], Theorem 18.22 once more on X 0 to the
centre CX 0E to get

P
i A J

b 0
i e d. In any case we are done. r

In the last theorem, one can remove the LMMP assumption and use [6] instead.

Proof of Proposition 3.4. (i) Note that if a log twist is not final then (6 0) implies

a 0 ¼ ldisðX 0;BX 0 Þ ¼ ldisðY 0;BY 0 Þf ldisðX ;BÞ ¼ að6 00Þ

and

(8) for the prime divisor E 0, 1f aðE 0;X ;BÞ ¼ aðE 0;X 0;BX 0 Þ > a 0.

Similarly, for any nonfinal twist X ðiÞ d X ðiþ1Þ,

(8 0) the prime divisor Eðiþ1Þ contracted by X ðiÞ d X ðiþ1Þ satisfies

1f aðEðiþ1Þ;X ðiÞ;BX ðiÞ Þ ¼ aðEðiþ1Þ;X ðiþ1Þ;BX ðiþ1Þ Þ > aðiþ1Þ

where aðiþ1Þ ¼ ldisðX ðiþ1Þ;BX ðiþ1Þ Þ. Thus the sequence of mld’s a; a 0; . . . ; aðiÞ; . . . is increas-
ing:

ae a 0
e � � �e aðiÞ e � � � ;

or equivalently,

e ¼ 1 � af e 0 ¼ 1 � a 0
f � � �f eðiÞ ¼ 1 � aðiÞ f � � � :ð9Þ
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Let’s define the di‰culty dðiÞ of ðX ðiÞ;BX ðiÞ Þ to be the number of prime components Dk

of BX ðiÞ with bk ¼ multDk
BX ðiÞ f eðiÞ.

The di‰culty increases: for any nonfinal twist X ðiÞ d X ðiþ1Þ,

dðiþ1Þ
f dðiÞ þ 1:ð10Þ

Indeed, eðiþ1Þ e eðiÞ by (9), and by (6 00)(8 0) none of the prime boundary components Dk of
BX ðiÞ with bk ¼ 1 � aðDk;X

ðiÞ;BX ðiÞ Þf eðiÞ f eðiþ1Þ ¼ 1 � aðiþ1Þ is contracted. On the other
hand, any nonfinal twist X ðiÞ d X ðiþ1Þ blows up a new prime component with multiplicity
eðiÞ f eðiþ1Þ which adds 1 in the inequality (10).

Note now, that by Theorem 3.5 there exists a natural number N depending only on d

and a0 such that, on any Mori-Fano variety of dimension d, a boundary B has at most N

boundary components with multiplicitiesf e0 ¼ 1 � a0 > 0 if K þ B is antinef, and ðX ;BÞ
is klt.

By UBD each eðiÞ f e0 ¼ 1 � a0 for any if 1 except for the last i (if the sequence is
finite). Thus we have at most N nonfinal twists.

(ii) By the ACC we can find a0 as in UBD by putting

a0 ¼ maxfldisðX ðiÞ; 0Þ j if 1gX ½0; 1Þ

which satisfies ldisðX ðiÞ;BX ðiÞ Þe ldisðX ðiÞ; 0Þe a0 < 1 where X ðiÞ is in a sequence as in
(7). r

Addendum 3.6. Assume the LMMP and the ACC for mld’s in dimension d and let

GH ½0; 1� be a DCC set. Put Gð0Þ ¼ G and for if 1 define

GðiÞ ¼ Gði�1Þ W f1 � ldisðX ð jÞ;BX ð jÞ Þ j 0e j e i � 1g

where the pairs ðX ð jÞ;BX ð jÞ Þ come from all the possible sequences as in (7) in dimension d such

that B A G for their starting pairs ðX ;BÞ. Then, the increasing sequence

GLG 0 L � � �LGðiÞ L � � �

stabilizes, and satisfies the DCC, that is, there exists N such that

Gy ¼
S

if0

GðiÞ ¼ GðNÞ

and Gy satisfies the DCC.

Proof. By Proposition 3.4, the length of any sequence as in (7) in dimension d is
bounded by a number N. So, GðiÞ ¼ GðNÞ if i > N þ 1. Moreover, for any if 1, GðiÞ satisfies
the DCC because by induction Gði�1Þ satisfies the DCC and the set

f1 � ldisðX ð jÞ;BX ð jÞ Þ j 0e j e i � 1g
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also satisfies the DCC by ACC for mld’s where ðX ð jÞ;BX ð jÞ Þ comes from all the possible
sequences as in (7) in dimension d starting with pairs ðX ;BÞ such that B A G. Note that
here we use the full ACC conjecture not just near 1. r

Lemma 3.7. Let GH ½0; 1� be a DCC set, and Xi d X 0
i be a sequence of birational

(e.g., nonfinal) log twists in dimension d such that

(a) Bi A G; and

(b) the set of multiplicities of all boundaries Bi is infinite.

Then ACC for mld’s and lc thresholds in dimension d imply that the set of multiplicities

of all boundaries BX 0
i

is infinite too.

Proof. By our assumptions each X 0
i is a birational modification of Xi with a diviso-

rial contraction Y 0
i ! X 0

i . In particular, all crepant boundaries BY 0
i

and BX 0
i

are well de-
fined.

By the DCC of G and after taking a subsequence, we can suppose that there exists a
sequence of prime divisors Di on Xi such that the corresponding sequence of boundary mul-
tiplicities bi ¼ multDi

Bi is strictly increasing. Moreover, by Theorem 3.5 the number of
components of Bi is bounded hence we may assume that other multiplicities of prime divi-
sors Dj on Xi are increasing (not necessarily strictly).

If infinitely many members of the sequence Di are nonexceptional over X 0
i , the lemma

holds. If not, after taking a subsequence, we can suppose that each Di is contracted over
X 0

i , that is, Di ¼ E 0
i on Y 0

i , and it is numerically negative on Y 0
i over X 0

i . Thus by the
property (3) of twists, Di is numerically positive on Yi over Xi. Hence each Di contains
Pi ¼ CXi

Ei, the centre of Ei on Xi. This implies that the set of new boundary multiplicities
ei ¼ 1 � ldisðXi;BiÞ is not finite, otherwise by taking a subsequence we may assume that ei

is independent of i and now apply Proposition 2.5 with a ¼ 1 � ei to get a contradiction
(cf. Theorem 2.10 (i)). r

Addendum 3.8. We can omit ACC for lc thresholds in Lemma 3.7 if we assume the

LMMP and Conjecture 1.2 in dimension d � 1.

Proof. Clear from Theorem 2.10 (v). r

4. Weak finiteness

In this section we prove Theorem 2.12 (ii).

Proposition 4.1 (weak finiteness). Assume the LMMP and the ACC for mld’s

in dimensione d and the ACC for SdðMori-Fano cnÞ, and let GH ½0; 1� be a DCC set.

Then, SdðG; globalÞ satisfies the ACC and there is a finite subset Gf LG such that

SdðG; globalÞ ¼ SdðGf ; globalÞ.

Proof. The ACC follows from the statement about Gf and Lemma 2.16. We use in-
duction on d.
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Step 1. The case d ¼ 1 is an easy exercise. Assume d f 2 and that the theorem holds
in dimensione d � 1. Suppose that there exists a sequence of proper lc pairs ðXi;BiÞ,
i ¼ 1; 2; . . . , of dimensione d such that Bi has a type in SdðG; globalÞ, in particular,
K þ Bi 1 0, and such that the set of boundary multiplicities M ¼ fbi;kg, for boundaries
Bi ¼

P
bi;kDi;k is infinite. Since M satisfies the DCC we can assume that the sequence

bi;1, i ¼ 1; 2; . . . , is strictly increasing. Below we derive a contradiction (see Step 8).

Step 2. We can suppose that each Xi is projective Q-factorial, and, in particular, each

divisor Di;1 is Q-Cartier. By the LMMP each ðXi;BiÞ has a projective Q-factorial dlt blow
up ðYi;BYi

Þ [5], Construction 3.1. Now replace ðXi;BiÞ with ðYi;BYi
Þ. We need to extend G

by 1 since all the new components of BYi
, i.e. components which are not birational trans-

forms of the components of Bi, have coe‰cient 1.

Step 3. We can suppose that each Xi is a Mori-Fano variety. Indeed, by our
assumptions we can apply the LMMP to ðXi;B

0
i ¼ Bi � bi;1Di;1Þ. Note that

KXi
þ Bi � bi;1Di;1 1�bi;1Di;1 where bi;1 > 0. Thus Di;1 is positive on each extremal ray

in the process. In particular, the divisor Di;1 will never be contracted. At the end we get a
Mori-Fano fibration Yi ! Zi for KXi

þ Bi � bi;1Di;1 1�bi;1Di;1. So, by replacing ðXi;BiÞ
with ðYi;BYi

Þ, where BYi
is the birational transform of Bi, we may assume that we have a

Mori-Fano fibration Xi ! Zi. Note also that Di;1 is ample=Zi.

If dim Zi f 1 for infinitely many i, then by restriction to a general fibre of Xi=Zi we
get a contradiction by induction. Thus, replacing with a subsequence, we can assume that
each Zi is a point, and Xi is a Mori-Fano variety of dimension d.

Step 4. We can suppose that only finitely many varieties Xi are cn, and thus, replac-
ing by a subsequence, we can suppose that all varieties Xi are noncn. Otherwise, we can sup-
pose that each Xi is cn. Then the ACC for SdðMori-Fano cnÞ gives a contradiction.

So, replacing by a subsequence, we can suppose that each Xi has a noncn point (it
may be nonclosed) of codimensionf 2. We can assume also that each ðXi;BiÞ is klt by
Theorem 2.12 (iii). Now we can construct a log twist Xi d X 0

i as in Construction 3.1.

Step 5. We can suppose that each log twist Xi d X 0
i is final. Indeed, if it is not final,

replace ðXi;BiÞ with ðX 0
i ;BX 0

i
Þ, and take another twist, etc. According to our assumptions,

Proposition 3.4, Addendum 3.6, Theorem 2.10 (v), and Lemma 3.7, we can suppose that
each twist Xi d X 0

i is final. Let f 0
i : Y 0

i ! X 0
i be the corresponding contraction as in Con-

struction 3.1.

As in Step 1 and after taking a subsequence, we can still suppose that there exists a
sequence of prime divisors Di;1 on Xi with strictly increasing boundary multiplicities bi;1.

Step 6. Infinitely many f 0
i are divisorial contractions, that is, of Type II (see 3.2).

Otherwise infinitely many Y 0
i ! X 0

i are Mori-Fano fibrations. Then, replacing by a subse-
quence, we can assume that all of them are fibrations. On the other hand, it is impossible by
induction that infinitely many birational transforms of Di;1 on Y 0

i are strictly positive over
X 0

i , because then they intersect general fibres (cf. Step 3). Therefore, by (3) in Construction
3.1, we can assume that each Di;1 is strictly positive over Xi.
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Let Ei be the exceptional divisor of Yi ! Xi and let Pi A Xi such that CXi
Ei ¼ Pi and

ai :¼ ldisðXi;BiÞ ¼ mldðPi;Xi;BiÞ ¼ aðEi;Xi;BiÞ where CXi
Ei denotes the center of Ei on

Xi. Put ei ¼ 1 � ai. Then by ACC for mld’s and the DCC for G, the set G 0 ¼ GW feig sat-
isfies the DCC. Moreover, after taking a subsequence we may assume that the numbers ei

form a (not necessarily strict) increasing sequence. Note that the crepant boundaries BYi
on

Yi and BY 0
i

on Y 0
i belong to the set G 0.

Since Di;1 is strictly positive over Xi, Di;1 contains CXi
Ei. Then, by Proposition 2.5

the set feig is not finite, so we can suppose that ei is strictly increasing (cf. Step 8 below
and the proof of Lemma 3.7). This again gives a contradiction because, by (3) in Construc-
tion 3.1, the birational transform of each Ei on Y 0

i is positive over X 0
i .

Thus we can assume that each Y 0
i ! X 0

i is divisorial with X 0
i a Mori-Fano variety,

and some divisor E 0
i is contracted over X 0

i . Take P 0
i A X 0

i such that CX 0
i
E 0

i ¼ P 0
i and put

a 0
i ¼ aðE 0

i ;X
0

i ;BX 0
i
Þ and e 0

i ¼ 1 � a 0
i .

Step 7. We can assume that a 0
i ¼ mldðP 0

i ;X
0

i ;BX 0
i
Þ for infinitely many i, so we can

assume that this equality holds for all i. Otherwise, since the twists are final, X 0
i is canoni-

cal for infinitely many i. This is a contradiction, because such varieties are bounded (see
Step 4).

Step 8. Contradiction: M ¼ fbi;1g is finite. By the DCC of G and since the support
of Bi has a bounded number of components (Theorem 3.5), we can assume that each se-

quence bi;k, i ¼ 1; 2; . . . , is increasing with respect to i where we write Bi ¼
Pn

k¼1

bi;kDi;k. The
crepant divisors

BYi
¼

Pnþ1

k¼1

bi;kDi;k ¼ eiEi þ
Pn

k¼1

bi;kDi;k

satisfy the same property where bi;nþ1 :¼ ei. Now we define the set

R ¼ frk j k ¼ 1; 2; . . . ; n þ 1g

as the set of limits (not necessarily distinct)

rk ¼ lim
i!y

bi;k:

First suppose that a ¼ lim
i!y

ai > 0 and a 0 ¼ lim
i!y

a 0
i > 0. Let t be a positive real number con-

structed in Main Proposition 2.1. We can assume that each bi;k A ½rk � t; rk�. Hence by
Proposition 2.3 each KYi

þ Bt
Yi

is antinef over Xi, and so is its birational transform
KY 0

i
þ Bt

Y 0
i

over X 0
i . Here and for the rest of the proof, the superscript t stands for the limit,

that is, for example Bt
Yi

¼ lim
j!y

BYj
on Yi in the sense of Example 2.4. By construction

Bt
Yi
fBYi

hence (4) in Construction 3.1 and

0eBt
Yi
� BYi

1KYi
þ Bt

Yi
¼ KYi

þ BYi
þ ðBt

Yi
� BYi

Þ
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imply that Bt
Yi
� BYi

¼ 0. This means that all limits are stabilized. This contradicts the fact
that the set M is infinite and in particular the strict monotonicity of the sequence bi;1.

Now if a ¼ 0, then to get the antinef property of KYi
þ Bt

Yi
over Xi, we can use

Theorem 2.12 (iv). In fact, if KYi
þ Bt

Yi
is not antinef over Xi, then KXi

þ Ai is maximally
0-lc at some point of Xi for some Bi mAi mBt

i which contradicts Theorem 2.12 (iv). We
have a similar argument when a 0 ¼ 0. The rest of the proof is exactly as in the a; a 0 > 0
case. r

5. Proof of Main Theorem

Proof of Main Theorem 1.8. (i) By induction, we can assume ACC for lc thresholds
in dimensione d. Now we can use Proposition 2.5. (ii) This follows from Theorem 2.10
(v). (iii) We can use (ii) and the main result of [5]. r
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