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SEMISTABLE 3-FOLD FLIPS
UDC 512.7

V. V. SHOKUROV

Dedicated to Professor I. R. Shafarevich on the occasion of his seventieth birthday.

ABSTRACT. The existence of 3-fold semistable flips is proved, and the complete list of
3-fold semistable singularities is given.

This paper grew out of a course of lectures given at Moscow State University
in the spring of 1985, the early period of "perestroika". The course was designed
not only to expose Tsunoda's result [23], Theorem 1, which has been treated very
similarly to his presentation in spite of independence of our proof, but also to find
a new approach to Kulikov's theorem ([12], Theorem 1). That time we envisaged
semistable singularities that are singularities of a relative minimal model for a surface
semistable degeneration as rather special. Tempora mutantur et nos mutamur in illis.
Now we will present an opposite opinion.

We use the terminology and results of [7], [26], and [27], which are independent
of the existence of flips. In §§1-3 we consider only the analytic case. Applications
to the algebraic case are given in §§4-5. All varieties (spaces) are complex (analytic)
and normal. We assume that the reader is aware of the following notation:

f~lC for a cycle C, its proper inverse image with respect to a birational (bimero-
morphic) morphism / ;

Fn , the rational scroll with a section having the self-intersection number -n ;
indp Κ, the index of ρ e X;
Κ, a canonical divisor on a variety (space) X;
Κ γ , a canonical divisor on a variety (space) Υ; NE(X/Z; V), the relative

Kleiman-Mori cone;
l/r(ai, ... , a r f ), the type of a quotient singularity;
p(X/Z ; V), the relative Picard number;
«-curve means a nonsingular rational curve C on a surface S with the self-

intersection number C 2 = η ;
σ(Χ,ρ), the Q-factorial defect at a point p€X ([5], 1.12, [18], 3.4);
Vi(r, a; n), V2(r, a), F3, the moderate singularities ([6], 1.1).

1. SEMISTABILITY: INDUCTIVE APPROACH

All the notions below with the adjective "semistable" generalize the similar notions
for a surface semistable degeneration. They have a different flavor in [11], C3: main
but not generic.

1.1. Conventions, notation, and definitions. In the sequel, we assume that X is an
analytic 3-fold, i.e., a normal complex analytic space of dimension 3, with a canonical
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372 V. V. SHOKUROV

divisor Κ and only terminal singularities. A semistable divisor is a reduced effective
divisor D = Σ Ζ), such that

(1.1.1) All prime components D, of D are normal Q-Cartier divisors, and

(1.1.2) locally there is a resolution g: Υ —• X with a reduced divisor g*D whose
prime components are nonsingular and cross normally.

We assume also that g is projective in the following weak sense:

(1.1.3) g can be decomposed into a product g = gi ο ••• ο gN of locally projective
morphisms gj , i.e., projective in a neighborhood of each fiber, and such that

(1.1.4) for the partial resolutions G}• — g\ ο • • • ο g}•.·. γ}, -> χ, y, is an analytic 3-
fold with only terminal singularities and all prime components of GjD 's are normal
Q-Cartier divisors.

The singularities of X that belong to D will be referred to as semistable for D.
A contraction / : X -* Ζ is {numerically) semistable for D if D is semistable and

a {numerical) fiber with respect to f. The last means that D is linearly (numerically)
trivial near (respectively, on) each fiber of / . Thus, in the linearly trivial case and
in a neighborhood of any fiber of / over f{D), D is a scheme fiber for a morphism
on a nonsingular curve passing through / . If in addition Κ is nef with respect to
the contraction / , it will be called a minimal {numerically) semistable model for D.

According to (1.1.2), every point ρ e D has a resolution g: Υ —• X defined
locally at ρ, which is semistable for g*D by the Contraction Theorem (cf. Lemma
1.4 below). Partial resolutions gj and their compositions Gj are semistable too for
G'D's. The minimal number i{X, ρ, D) of prime divisors £,· c Yj, exceptional
for gj's and with gjEj = pt., needed for such resolutions g/p will be called the
depth in ρ for D. For a compact analytic subset W c D, we define the depth as

i{X,W,D)=
p€W

Soon we check that it is finite (see Corollary 1.5). Moreover, it is independent of the
choice of D (see Corollary 4.6). The definition implies also that the depth is not less
than the difficulty in a neighborhood of W ([25], 2.15).

Fix a (numerically) semistable contraction f:X—>Z and a compact analytic
subset V c f{D). Since f~lV c D ,we can also introduce the depth of X over V
for D as i{X/V, D) = i{X,f-lV,D).

1.2. Example.

(1.2.1) If X is nonsingular near D, and all A 's are nonsingular and cross normally,
then D is semistable and i{X, ρ, D) = 0 for any ρ e D. The converse holds when
every point ρ € D is Q-factorial, i.e., σ{Χ, p) = 0. Moreover, we will check
that every point ρ € D with i{X, ρ, D) = 0 has a small semistable resolution by
σ{Χ, ρ) curves CP1 (see (1.3.6) below). The next example illustrates this.

(1.2.2)(Mori) Let X and D be as in (1.2.1) above, and let / be an extremal blow-
down with respect to Κ, i.e., / is bimeromorphic, negative with respect to Κ, and
p{X/Z; V) = 1. Then i{Z, V, D) < 1 with equality only in the following two
cases:

/ is a contraction of type [14], 3.3.5 with a divisorial exceptional locus
D] = CP2 such that a unique divisor Ζ),, say D2, intersects it, and C =
D\ Π Z>2 = CP1 is a nonsingular conic on D\ with self-intersection numbers
C£ = 4 and C£2 = - 4 on Dx and D2, respectively (Figure l(a));
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(a) (b)

FIGURE 1

(c)

/ is a contraction of type [14], 3.3.5 with a divisorial exceptional locus Z>i
such that only two divisors Z),, say D2 and Dj, intersect it, C — D\ Π D2 =
CP 1 , and C = ΑηΖ>3 — CP1 are lines on D\ with self-intersection numbers
ch, = CD, = ! a n d ch2 = CD> - ~2> DinD2nD3 is a triple point of normal
crossing (Figure l(b)).

Note also that i(Z, V, D) = 0 and Ζ or, equivalently, f(D) has a singular point
ρ € V only in the following case:

/ is a contraction of type [14], 3.3.3 with a divisorial exceptional locus
D\ — CP1 χ CP1 and only one divisor D2 intersecting it, after an appropriate
renumbering; C = D\ C\D2 = CP1 is a nonsingular rational curve of bidegree
(1, 1) on D\ with self-intersection numbers C^ = 2 and Cp2 = -2 on D\
and D2 , respectively (Figure l(c)). So, ρ = g{D\) is an isolated singularity
on Ζ and is analytically equivalent to x1 + y2 + z2 + u2 = 0 with the origin
( 0 , 0 , 0 , 0 ) as ρ ([14], 3.4.3), whereas f{D) = f{D2) with a singularity
x2 + y2 + z2 = 0 at ρ . It has two Atiyah small resolutions, which contract
families of generators on Dx = CP1 χ CP 1 .

All these facts are easily derived from Mori's classification of extremal contractions
[14], 3.3. The last contraction does not stay extremal when we consider it over a small
neighborhood of ρ . Indeed, NE(X/Z; p) has two extremal rays corresponding to
contractions of generators.

(\.2.3)(Danilov, Barlow) Let ρ e X be a terminal quotient singularity of type
l/r(a, -a, 1) with a coprime to r = mapK, the index of ρ ([22], 5). Denote
by D\ and D2 the quotients of hyperplanes χ = 0 and y = 0, respectively. Then
ρ is semistable for D = £>i + D2 with i(X, ρ, D) = r - 1 and will be referred to as
of type V2{r, a) due to Kawamata ([6], 1.1.2). Such a singularity has an economical
projective resolution g: 7 - » I , which is semistable for g*D. Economical means
that all discrepancies a, for exceptional divisors is, of g belong to the interval
(0,1) or, equivalently, have the form a, = «,/r with integer 0 < n, < r. In par-
ticular, all Ei 's lie over ρ . Moreover, n, = i and 1 < i < r, after an appropriate
renumbering of Et 's.

(l.2.4)(Kawamata) A moderate singularity V\(r, a; n) with positive integers r, a,
and η such that (r, a) = 1 is the quotient of the hypersurface

xy + zr + wn = 0

for the quotient singularity of type 1 /r(a, -a, 1, 0), whereas D is the quotient of its
hyperplane section w = 0 ([6], 1.1.1) and ρ corresponds to the origin ( 0 , 0 , 0 , 0 ) .
Note that, for η = 1, we obtain again the quotient singularity l/r(a, -a, I) but with
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a different type of D. Two irreducible components of D pass through a singularity
of type Vi{r, a), and only one does so for V\ (r, a; n). The singularities appearing
in the two cases with i(Z ,V,D)-\ in (1.2.2) above are analytically equivalent to
Fi(2, 1; 1) and V2(2, 1), respectively.

It turns out that up to a Q-factorialization we have nothing else. But first we
establish the following half-inductive and half-explicit description of semistable sin-
gularities.

1.3. Theorem on semistable singularities. Let ρ e D be a semistable singularity, and
let d = #{Di\p e A } · Then

(1.3.1)1 <d<3.

(1.3.2) For d = 3, ρ is nonsingular on X and a triple point of D, or of type V-$
due to Kawamata ([6], 1.1.3), i.e., A 's passing through ρ are nonsingular and cross
normally in ρ (Figure 2(a), after an appropriate renumbering of A 's).

(1.3.3) For d = 2, ρ is Q-factorial and locally of type V2(r, a) with r = indp Κ =
i(X, ρ, D) + 1 (Figure 2(b), after an appropriate renumbering of A 's; cf. example
(1.2.3)).

(1.3.4) For d = 2 and 3, ρ is Q-factorial.

(1.3.5) For d = 1; there exists a semistable Q-factorialization, i.e., a (possibly non-
projective) small blow-up g: Υ —> X, which is semistable for g*D = g~lD and with
only Q-factorial points on Υ over ρ (Figure 2(c), after an appropriate renumbering
of Dj 's; cf. the last example in (1.2.2)). In this case, i(X,p,D) = i(Y/p, g*D).
The Q-factorialization is identical if and only if ρ is Q-factorial.

(1.3.6) Q-factorial ρ is nonsingular if and only if ρ is Gorenstein on X, i.e.,
indp Κ = 1. In this case, A 's passing through ρ are nonsingular, cross normally
near ρ and i(X, ρ, D) = 0. In addition, for d = 1, ρ is Gorenstein if and only if
it is canonical on D, or if and only if i(X, ρ, D) = 0.

(1.3.7) For Q-factorial and singular ρ, there exists a projective divisorial blow-up
g: Υ —> X having an irreducible exceptional divisor G over ρ , which is semistable
for g*D = g~lD + G, with Q-factorial Y/p, and is extremal with respect to Κ
(Figures 2(d) and 2(e), respectively, for d = 1 and 2, after an appropriate renum-
bering of A 's; cf. the first two examples in (1.2.2)). The last means that Υ has only
terminal singularities, p(Y/X; p) = 1, and Κ is numerically negative with respect
to g. Moreover, there exists a blow-up g such that i(X,p,D) = i(Y/p, g*D) + 1.
In this case, g is minimal on its nonexceptional divisors g ~ ' A , i-e., the curves
G Π g~lDi are exceptional but are not of the first kind on the minimal resolutions
of g ^ A ' s , and the discrepancy α of G is 0 < i i < 1 (cf. example (1.2.3) for
d — 2). So, birationally G appears in any resolution of ρ and gives a contribution
to the depth as well as to the difficulty of X over ρ .

In §4 we find out more, in particular, that Y/p in (1.3.7) has at most three sin-
gularities that are Q-factorial again (see Corollary 4.5). This will imply that, in
a neighborhood of D, X can be resolved in two stages: first, by making a Q-
factorialization of all singularities on D; second, by applying (1.3.7) in consecutive
order to the remaining singularities /D. However, according to the last theorem,
to resolve a semistable singularity with d = 1 we must use Q-factorializations and
divisorial blow-ups from (1.3.7) one after an other. Such extractions are trivially
extended to the whole range (X in Theorem 1.3) but as a rule are projective only for
(1.3.7). We remark that the Q-factorialization in (1.3.5) is not uniquely defined, but
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(b)
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(c)

D,*p
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FIGURE 2

(e)

is denned up to so-called flops [9] discussed later (see Corollary 3.7). The following
result somewhat clarifies the above statements and enables us to move on.

1.4. Lemma. D is Cartier with normal crossings, and Κ + D is dinsorially log
terminal, with log discrepancies equal to discrepancies of Κ for the exceptional divisors
in g*D when g is semistable.

Proof. According to definition (1.1.2), D is numerically Cartier. So, if we mimic a
proof of the Contraction Theorem, we obtain that D is Cartier. Again (1.1.2) locally
implies the log canonical property of Κ + D with required log discrepancies. By our
assumption, Κ + D is terminal outside D.

So, let ρ € X and d > 1. Take a resolution g from (1.1.2). Obviously, we
can assume that g is nontrivial over ρ. But the exceptional locus of g can be
non-pure-divisorial and, much worse, without the property of normal crossing for
g~lD + ΣΕί, where the is,· 's are exceptional divisors for g. However, by (1.1.2),

is reduced with nonsingular and normally crossing prime components. Now we check
that g~xD has no triple points or double curves over ρ and outside is, 's. Indeed,
let a point

q G g~l£>ι Π g~{D2 ΓΊ g~xD-i,

after an appropriate renumbering of D, 's, be over ρ . Then the fiber f~lp contains
a curve passing through q, but not lying on g~lD\ , because f~lp is nontrivial and
connected. Since D\ is Q-Cartier, there is an exceptional divisor Ej/Di/D with
(is, · C) < 0. So, is, passes through q , contradicting the normal crossing property
of g*D. In the remaining case when the curve

C = g-1Dlng-lD2
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lies over ρ and does not lie on £,· 's, C is exceptional over ρ with log discrepancy
0 for

(K + D{ + D2)\Dl = KDl + (D2)Dl,

where (D2)Dl is a reduced divisor passing through ρ, and with multiplicity 1 in the
subboundary

g*(KDl + (D2)Dl) = g*(K + D)\g-Wi = (KY + g*D - Σ <*iEi)\g-wl ,

where the a, 's are the discrepancies of Κ and <z, > 0 under our assumption. By
the previous fact, C intersects only two surfaces g~lDj, namely, for / - 1 and 2.
Hence, near C, for the subboundary

of g*(KDl + (D2 )/>,), C is a complete locus of log canonical singularities. But
{DiJDi passes through ρ, and all components of the above subboundary with negative
multiplicities are contracted by g in contradiction with [27], 5.7.

Therefore, g~lD has no triple points, and double curves over ρ lie on £,'s.
Besides, by the definition and monotonicity ([27], 1.3.3),

g*{K + D) = KY + g*D-J2 aiEi

is divisorially log terminal in the sense of [27], 3.1, because the effective part of the
subboundary is supported in g*D. This allows us, possibly after an additional res-
olution over a neighborhood of ρ, to make the exceptional locus g pure divisorial.
(A new g may be nonsemistable.) Thus, we establish that locally Κ + D is diviso-
rially log terminal. By [27], 3.8, this implies that D has normal crossing, and the
exceptional divisors with 0 log discrepancies lie over triple points (1.3.2) and double
curves of D. Hence Κ + D is divisorially log terminal, and a required resolution
may be done (by B58 loaded with blow-ups) over isolated points of X, where D
does not have normal crossing in the usual nonsingular sense, i.e., where X or Z>,
is singular. •

A contraction or a minimal model is numerically semistable when it is semistable.
By the Contraction Theorem, the inverse holds when -AT is nef and big with respect
to / , in particular, when Κ is numerically nonpositive with respect to / and / is
a blow-down, i.e., bimeromorphic.

Proof of (1.3.1-4) and for d > 2 (1.3.6-7). The normal crossing property of D
implies (1.3.1-2). According to Lemma 1.4 and [27], 3.2.3, for d — 2 and near ρ,
the restriction

(K + D)\Dl =(K + Di+ D2)\Dl = KDi + (D2)Dl

is purely log terminal, and the different {D2)DI = DinD2 is irreducible and nonsingu-
lar. In particular, if indp Κ = 1, then D\, D2, and X are nonsingular by [27], 3.9.2
and 3.7, respectively. In general, using the covering trick we obtain that ρ has type
l/r(a, -a, 1) with r = indp Κ. But D is Cartier, and so, near ρ, may be given as a
quotient of two planes χ = 0 and y = 0. This in view of Example (1.2.3) completes
the proof. The required blow-up g in (1.3.7) extracts an exceptional divisor with
minimal (log) discrepancy 1/r for Κ (for Κ + D). •

It is much more difficult to prove the rest of Theorem 1.3, consisting of (1.3.5-7)
for d = 1, and it will be done in §§2-3. According to Mori's classification [15], it
is easy to see that these singularities are of type (1) ([22], [5]). Indeed, they have
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an invariant hyperplane section with a Du Val singularity. But not all of (1) are
semistable (cf. Corollary 4.7 below). Now we remark that i(X, ρ, D) > 1 only
when d = 2 and ρ is singular on X, or d = 1 and ρ is singular on D (more
precisely, on the unique component Z>,· passing through p). Indeed, for d = 1, by
[27], 3.7, ρ is nonsingular on X and i(X, ρ, D) = 0, whenever ρ is nonsingular
on D (£>,·). Hence ρ with i(X, ρ, D)>\ form a discrete subset of Z). This gives

1.5. Corollary. i{X, W, D) and i{X/V, D) are finite.

Hence we can try to prove the rest of Theorem 1.3 by induction on i(X, ρ, D).
If i(X, p, D) = 0, then by definition the point ρ e D locally has a resolution
g: Υ —> X semistable for g*D with decomposition as in (1.1.3), where all gy's
have at most 1-dimensional fibers. If gN is small and Ν > 2, the composition
gN-ι ° 8N is again locally projective with at most 1-dimensional fibers. Hence we
may replace the last decomposition of g by a new one with gjv-i '·= 8N-I ° SN and
Ν :- Ν - \. So, we can assume that gN: YN —> YN-i is not small when g is not
small. But locally/ YN- ι we can replace gN by a minimal model. Indeed, the model
exists according to [14], 3.3, because of fibers of gN are at most 1-dimensional. Since
YN-I has only terminal singularities, such models are small/ YN-I · This defines a
new locally projective and small morphism gN: YN —<· YN-I • Moreover, the new YN

is nonsingular, and the new GN satisfies (1.1.4) by (1.2.2) and (1.3.4). Therefore,
after a finite number of such replacements we find a small resolution g that is
semistable for g*D. According to (1.3.4), g is nontrivial only for the interesting
case when d = 1 . So, Theorem 1.3 holds when i(X, ρ, D) - 0. Now we can
assume that

(II). Theorem 1.3 holds when i(X, ρ, D) < η for a fixed η > 0 and any choice of
X,D, and ρ eD.

We must check Theorem 1.3 or the rest of it when i{X, ρ, D) = η +1. According
to (1.1.2-3), after shrinking X to a neighborhood of ρ, we have a locally projective
resolution gN'· YN —> YN-\ and a semistable boundary GND = g*D on YN = Υ
with normal crossings of components, (1.1.2). But by definition, gN is semistable.

As above, it is natural to apply Mori's theory to the morphism gN, locally over
points

q € GN
l_iP C gN(G*ND) = G*N_XD c YN-i-

Obviously, the boundary G*ND is Cartier, numerically 0 with respect to gN, and
this holds after flipping modifications in extremal rays of ~NE(YN/YN-\ ', q) negative
for ΚγΝ . So, we may consider these modifications in the log category as modifica-
tions negative for KYfj + G*ND. It is well known that after such modifications YN
and ΚγΝ + GND remain, respectively, terminal and divisorially log terminal ([27],
1.12). The strictly terminal or log terminal property, which includes the Q-factorial
property of YN and the projectivity of gN over q, remains true also, because it
holds for the original gN • Hence, by [27], 3.8, and Lemma 1.4, GND always satis-
fies condition (1.1.1), i.e., all prime components of GND remain normal Q-Cartier
and cross normally. Moreover, we prove later that gND remains semistable, and
this is the point of the paper. This includes also a proof of existence for the required
flips, which will be referred to as semistable flips.

To give a somewhat more general statement, we consider the following situation.
Let / : X —• Ζ be a contraction numerically semistable for D, as above, and projec-
tive. Now let g: X -» Υ be a contraction of an extremal ray R c NE(X/Z; V) that
is negative with respect to Κ or, equivalently, to Κ + D. We assume also that g
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is a blow-down, i.e., bimeromorphic. We remark that g is a projective contraction
to Υ that is semistable for D, and not only numerically. In this situation we must
replace X/Z by X+/Z over a neighborhood of V. This makes a flip of g (or in the
corresponding extremal ray R) with respect to Κ (or K+D) that is a bimeromorphic
transform t οι g into g+ over Ζ , i.e., a commutative diagram

where g+ is a small blow-down numerically positive with respect to Κχ+ (or Kx+ +
t(D)). The notion of a flip here is slightly more general than the usual one ([7],
5-1-10). It means that we do not care whether g is small. But we assume only that
g+ is small, Κχ+ is Q-Cartier and ample/ Υ because X+ is a 3-fold. The terminal
property of X+ and the uniqueness of the flip are well known. And we know at
least that t(D) is Cartier satisfying (1.1.1), and it is numerically or linearly trivial
on or near each fiber of / + if the same holds respectively for / (see Lemma 1.4
and [27], 1.12, 3.8; cf. [5], 10.4-5). The most difficult part of the paper consists in
construction of such flips and a discussion of their properties, the main of which is
preservation of semistability. Note that, by [25], 2.17, such flips terminate.

Denote by Ε the exceptional locus of g. We recall that g is divisorial when
Ε contains a divisorial component over a neighborhood of V. Otherwise g is
small. Since g is extremal, if we assume that X is Q-factorial over V, i.e., over
neighborhoods of V, then, over a neighborhood of V and in the divisorial case,
Ε is an irreducible divisor, and t = g is a holomorphic contraction. Otherwise we
have an ordinary flip with small g.

1.6. Theorem on semistable blow-down. Let g be divisorial and, moreover, D\ c Ε
over a neighborhood of V, after an appropriate renumbering of Di 's. Then, over a
neighborhood of V, Ε = D\ and again Υ has only terminal singularities, g(D) is
semistable on Υ, Υ/Ζ is numerically semistable for g{D) and

with equality only if Ε = D\ is contracted to a singular and Q-factorial point g{D\) e
g(D)/V of index > 1, X is Q-factorial over this point g(D{), g is minimal in the
sense of (1.3.7), and the discrepancy of Κγ in D\ is less than 1. Moreover,

i(Y/V,g(D))<i(X/V,D)

when g(D\) is a curve, with equality if and only if X is nonsingular on Ε over a
neighborhood of V, which gives one of the contractions in Example (1.2.2).

1.7. Theorem on semistable flip. Let dim is Π D < 1 over a neighborhood of V. Then
dim Ε Π D = 1 over a neighborhood of V, and there exists a flip t: X —-> X+/Z of
g such that X+ has again only terminal singularities, g+ is semistable for t(D), f+

is numerically semistable for t(D), and

with equality only if Υ is Q-factorial at every point of g(E)/V, g is divisorial, Ε is
pure divisorial, and t — g is a holomorphic contraction to a curve that is not contained
in g{D). In particular, for small g,
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In fact, equality holds only when X is Gorenstein in E/V (see (4.10.4)).
We may treat the blow-down g in Theorem 1.6 as divisorial in the semistable

sense, and g in Theorem 1.7 as small in the semistable sense even when g is not
small in the usual sense.

We will prove Theorems 1.6-7 simultaneously with Theorem 1.3 by induction.
However, first we check that, in Theorem 1.6, Ε = A over a neighborhood of V.
Indeed, A is Q-Cartier by (1.1.1) and negative for g, hence exceptional for g.
Therefore, A contains all curves sweeping the exceptional locus Ε (by the extremal
property of g) and coincides with Ε. Moreover, this implies Theorem 1.6 except
for the assertion about equality.

Suppose now that i(X/V, D) = 0. Then, according to Lemma 1.4 and 1.3.6), for
d > 2, both D and K + D are Cartier. Hence g is divisorial. This is easily derived
from (1.3.5-6) and Mori's classification [14], 3.3 (cf. also [1]). If g has a surface
in a fiber over a neighborhood of V, then it coincides with A after an appropriate
renumbering of A 's. But Ε = A is contracted to a point by g. Since g is
semistable, there exists at least one component A intersecting A . The adjunction
formula ([27], 3.1 and 3.9) gives a Cartier divisor

•D)\Dl=KDl+\YiDi

negative on A with a reduced curve (Σ,^ι A ) D , Φ 0 as the different. The curve
lies in a nonsingular part of A by (1.3.3). Hence by [27], 3.2.3, A is a del Pezzo
surface with only canonical singularities, and the Fano index of A is greater than
1, because g is extremal. So, A is CP2 or a quadric Q. In the first case, we
have the same two possibilities for i{Y/V, g(D)) = 1 as in (1.2.2), which obviously
satisfy (1.3.7). We treat the case of the nonsingular quadric Q similarly. If Q is
singular, it is a quadric cone with a vertex ρ, and then a unique surface A;, after
an additional renumbering of A ' s , intersects A · By (1.3.5-6) for i(X, ρ, D) = 0,
there is a small resolution A: W -> X. But A~'A is nonsingular, and again by
adjunction,

is numerically trivial on a curve h~xp that does not intersect the different

h-'D,

isomorphicto CP 1 , the base of the cone. Therefore, h induces a minimal resolution,
on D\ and h~xD\ is a rational scroll ¥2 with a (-2)-curve h~lp as the negative
section, the proper inverse images of generators as fibers, and with the different as
another section. According to Nakano's criterion [16], we can contract the scroll
to a curve along fibers. Indeed, in a neighborhood of D\, D\ and Κ are linearly
equivalent to —D2 and Ai. So, in a neighborhood of A"1 A , A"1 A and Kw are
linearly equivalent to -h~lD2 and h~xDx. The contraction of the scroll g' gives a
decomposition g ο Α = ΑΌ g' (Figure 3), where A' is a small semistable resolution
of a point g (A) on Υ. Hence in this case i{Y/V, #(A^) = 0 and g ( A ) is a
non-Q-factorial point with d = 1.
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h-in /-:

8(D2)

FIGURE 3

Now consider the case when all exceptional fibers, i.e., fibers over g(E), are 1-
dimensional. For a small resolution h , as above, the composition g ο h is projective
over any point ρ in g(E)/V. I contend that the (log) canonical model coincides with
the (log) minimal model of go h and, moreover, coincides with Υ. So, g itself gives
a flip. Indeed, all fibers of g ο h are at most 1-dimensional, and, for 1-dimensional
fibers of goh , Kw+h~iD is negative at least on one curve and nonpositive on others.
Hence by (1.2.2) a minimal model is obtained by successive divisorial contractions
to curves and coincides with Υ, more precisely, within a neighborhood of ρ . The
model has a trivial semistable resolution near any such ρ and i(Y/V, g(D)) — 0.
In addition, h is the identity on Ε — Di/V. This concludes the proof of Theorems
1.6 and 1.7 for i(X/V, D) = 0.

Now we can assume that

(12). Theorem 1.6 holds when i(X/V, D) < η for fixed η > 0 and any choice of
f,g,D,and V.

(13). Theorem 1.7 holds when i(X/V, D) < η for fixed η > 0 and any choice of
f,g,D,and V.

We must check Theorems 1.6 and 1.7 for i(X/V, D) = η + 1. However, we begin
with

2. THE WEAK INDUCTION STEP FOR THEOREMS 1.6 AND 1.7

2.1. Proposition. Let f,g,D, and V be as i(X/V, D) < η + 1 in Theorem 1.7,
and suppose Theorem 1.3 holds for all points of X. Then Theorem 1.7 holds for g,
and Theorem 1.3 holds for all points of X+ with a new boundary t(D).

Here and in the sequel "Theorem 1.3 holds" means that every point ρ e D has
a semistable resolution decomposed into successive Q-factorializations (1.3.5) and
divisorial blow-ups from (1.3.7).

First, we replace / by g. Thus, we assume

(2.1.1) f = g is extremal, i.e., p(X/Z ; V) = 1.
Since the flip is unique, our statement is local over Ζ , and we can replace V by

a point ρ € f(E) Π V. We can also assume, after a Q-factorialization of X over ρ,
that

(2.1.2) X is locally ^-factorial, i.e., every point of X is Q-factorial.
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However, after both of the last changes, the extremal property of / may be lost.
But the required flip coincides with the canonical model Xcan/Z of / , for which
it is enough to construct a minimal one Xmm/Z. The fibers of / are at most
1-dimensional, and dim Ε Π D < 1 by the assumption in Theorem 1.7 and our con-
struction. So, the required modification of X/Z is as in Proposition 2.1. Hence we
need to check only the extremal case. Indeed, all the assumptions remain after such
flips, and the flips terminate by a decrease of the Picard number p(X/Z; p) and then
by a decrease of the depth i(X/p, D) (cf. the difficulty in [25], 2.17). By [27], 1.12,
Xmin/Z , as in the previous modifications of X/Z , is projective and semi-stable/ Ζ ,
and even strictly terminal/ ρ. Since Κ is numerically negative on generic fibers of
Ε over f(E), Xmin/Z and /Xcan are small. Hence Xm i n is locally Q-factorial
and χπύη/Λ-can = X+ gives a required Q-factorialization. Therefore, Theorem 1.7
holds for / and Theorem 1.3 holds for X+ with the boundary t(D). In addition
we remark that i{X+/p, D) = i{X/p, D) only if all extremal modifications are di-
visorial contractions and Xm i n = Xcan = Ζ , because the fibers of / are connected
and numerically nonpositive with respect to Κ.

Thus, we can assume V = {p} and (2.1.1-2). In particular, a fiber C = f~lp is
an irreducible curve. Possibly after shrinking to a neighborhood of ρ , we can assume

(2.1.3) Ε Π D = C. This implies that aim Ε Π D = 1. The shrinking also allows us
to assume

(2.1.4) The singularities of X and D and triple points of D belong to C. All
D[ 's and double curves of D intersect C. Moreover, C c D\ after an appropriate
renumbering of Z), 's.

The last holds because ρ e f{D) and / is semistable for D, and so C c D. By
(II) and (13), we may restrict ourselves to the condition

(2.1.5) i(X/p,D) = n + l > 1.
Since f~lp = C is a curve, property (2.1.2) implies that X is strictly (log) ter-

minal over a neighborhood of ρ e Ζ , i.e., projective and Q-factorial over such a
neighborhood. Hence Xmin = X+/Z when Ε = C (cf. [27], 1.5.5-7 and 1.7). This
is because σ(Ζ , ρ) = 1. Otherwise, / is divisorial, Xmin = X+ = Ζ, and ρ is
Q-factorial. So, we can construct the flip X+ as a minimal model Xmin/Z . We will
do it according to Mori's theory, starting from some semistablejnodel f: X -+ Ζ for
D = f* f(D). Because all flips will be semistable for flipped D, we can apply (12-3)
when the depth is not higher than η . As was explained before Theorems 1.6-7, we
have termination for such modifications. We can also obtain this using the inductive
statement (13) for depth of small contractions. Of course, X must be projective/ Ζ .
Moreover, in this section we consider only semistable and projective modifications of
X/Z . Indeed, they will be constructed by projective blow-ups from (1.3.7), and sub-
sequent flips or their inverses in the case of small contractions. This projectivity is
local/ ρ and follows from the projectivity of the composite of projective blow-ups
and the local projectivity of its composite with / ([17], 1.3).

The construction of a required starting model X/Z , as well as the proof, is on the
whole very combinatorial. We classify the possible cases by two natural invariants:
the number a of components Di intersecting C and the number b of singularities
of X on C. So, case a.b. means that C intersects a components £>, and contains
b singular points of X.

2.2. Lemma. All possible pairs (a, b) are (1,1), (1,2), (2, 1), (2, 2), and (3, 1)
{Figures 4(a), (b), (c), (d), and (e), respectively), more precisely, after an appropriate
renumbering of Di 's,
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(2.2.1) The curve C is exceptional of the first kind on a minimal resolution of A .

(2.2.2) In cases 2.1 and 2.2 the double curve A nZ>2 is irreducible, does not
coincide with C, and intersects it in one point, which is singular on X and A .

(2.2.3) In case 3.1, C coincides with the double curve Α Π D2 and has one triple
point Α Π Ζ>2 η D$, which is not singular on X.

Proof. First of all note that b > 1 by (1.3.6) in (II) and (2.1.5).
If a = 1, i.e., D = A is irreducible, then by adjunction ([27], 3.2.3 and 3.9)

KDi=(K + D)\Dl

is log terminal and numerically negative on C. So, (2.2.1) holds in this case, and
by (2.1.3) C is contracted on A to a log terminal point. The graph of exceptional
curves, for any resolution of such singularity, is a tree. Hence b < 2.

Now we may consider the case when a = 2. Then C <£ D2. Otherwise C —
Ώ\ nZ>2, C is exceptional on both surfaces D\ and Z>2 , contradicting the numerical
semistability of / : (D\ + D2 - C) = (D · C) — 0. Hence we have again a log terminal
and negative (on C) adjunction

KDl + D m =(K + Dl+ D2)\Dl =(K + D)\Dl ,

where the boundary Z^lu, is reduced and 3> C. Then, as above, C satisfies (2.2.1)
and b < 2. Moreover, by [27], 5.7, the double curve is irreducible and intersects C ,
by (2.1.4), at least in one point, which is singular. Otherwise we have a contradiction

(K-C) = (K + DC) = (KDl + D2\Di · C) > 0.

In the remaining case a > 3, and, by [27], 3.16, C c A for at most two values
of /. So, we may assume that C c D2 if we have two such values, and C <£ A for

D,

C

C

(a) (c) (e)

D,

C

(b) (d)

FIGURE 4
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/ φ 1 and 2. But if C <£ D2, then by the normal crossing property of D we have a
log terminal and negative (on C) adjunction

KDl +

with reduced boundary

which does not contain C. The components Ai#i have a common point on C .
This is a double point of the last boundary. As above, C is exceptional on D\ of
the first kind and

{K-C)=

contradicting our assumption. Hence C c D2, C = D\ η Z>2 is a double curve with

(K + Dt + D2- C) = (KDi + C - C) = deglKc + }_^^—pj \ > - 2

by [27], 3.9, where the «; are the indices of pj € C on D\. Since (K + D · C) < 0,
it follows that α = 3, and D has only one triple point and only one singular point
of X. Let g: Υ ->· X be its blow-up as in (1.3.7) (Figure 5(c)). But g~lC is
exceptional and has no singularities on both surfaces g~xD\ and g~lD2. So, by
[12], 2.1,

This implies (2.2.1), because C = CP1 . •
We start a check from the last and related cases. For this we need only the following

fact. Let g: Υ —* X be a blow-up of a Q-factorial singularity as in (1.3.7). Put

g*(K + D) = KY + eG + g~lD.

2.3. Lemma. The coefficient e is a rational number in (0, 1) and KY + eG + g~lD
is log terminal.

Proof. It is easy to see that 1 - e is a log discrepancy of Κ + D in G. This implies
the statement, by Lemma 1.4 and by (1.3.7). •

Proof of Proposition 2.1 for cases 1.1, 2.1, and 3.1. (Note that in cases 2.1 and 3.1 /
is small, since it is semistable, and {D2-C) and (D3-C) > 0, respectively.) According
to the assumption, a unique singular point has a blow-up g: Υ —> X as in (1.3.7)
(Figures 5(a), (b), and (c) for cases 1.1, 2.1, and 3.1, respectively). This extraction
corresponds to an extremal ray, say R\, in NE(F/Z; p). Since p(Y/Z; p) = 2, we
have one more extremal, say R2 . But by Lemma 2.3,

is log terminal. According to the construction, this divisor is numerically trivial on
G and negative on g~lC. So, \R.2\ = g~lC, because (G · R2) > 0. In particular,
R2 defines a small contraction.

I contend that R2 is numerically nonpositive for KY + g*D = KY + g~lD + G,
and is numerically trivial if and only if g~lC has no singularities of Υ . In case 3.1,
by Lemma 1.4, Υ is nonsingular on g~lC and we have

(KY + G + g~lD · g~lC) = (Kg-lDl +g~lC + G\g->Dl + g~lD3\g-lDl • g~xC)

= deg(AL-ic) + 2 = 0.
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(a) (b)

FIGURE 5

(c)

In cases 1.1 and 2.1, C does not belong to the boundary

of the log terminal divisor

The last is negative on the curve C, which is contracted on D\ to a pure log terminal
point with a reduced boundary (possibly empty). According to the classification of
such singularities, C intersects normally only one exceptional curve on any resolution
of the singular point of D\ on C, and has no common points with the proper inverse
image of the boundary

Like C, the curve g~lC is exceptional of the first kind because g is minimal in
the sense of (1.3.7). Hence, (KY + g*D · R2) < 0, Ky + g*D is nonpositive for fog
and negative on G. Therefore, a minimal model Xmm/Z of / or / ο g will be
small/Z (cf. [27], 1.5.6).

By the construction, (2.1.5), and (1.3.7), i(Y/p, g*D) = η . Hence, if

(Kr + g'D'R2)<0,

then, according to our inductive hypothesis, there exists a flip τ: Υ —-> Y+ in R2 •
Moreover, Y+/Z is semistable for D+ = x{g*D) with i{Y+/p, D+) < η - 1. Note
also, that, like Υ, Y+ has only one exceptional prime divisor G+ = T(G) over ρ.
Now according to the above, we start with X — Y+/Z. Using (12-3) we obtain a
minimal model Xmm/Z , which is semistable for the bimeromorphic transform O m i n

of D+, and
i{Xmialp, £>min) < i(Y+/p ,D+) + \=n.
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As was explained earlier, Xmm/Z is a flip of / . This implies our statement in this
case.

In the remaining case,

(KY + g*D-R2) = 0

and Υ is nonsingular near g"lC. Then instead of a flip we have Atiyah's flop
τ: Υ —> 7+ in R2 , since g~lC = CP1 with the normal bundle <f{-l) ®&{-\).
More precisely, if we consider the flop with the boundary configuration, in cases 1.1
and 2.1 we get (Figure 6, where D^ — x{g~iD\)) a flop of type I ([12], 4.2 and Figure
4), and (Figure 7, where Z)+ = x{g~lDi)) a flop of type II in case 3.1 ([12], 4.3 and
Figure 5). This modification does not affect the normal crossing property of g*D.
So, Y+/Z is semistable for D+ = x(g*D), and G+ = τ(<7) is a unique exceptional
prime divisor of Y+ over ρ. But i(Y+/p, D+) = i(Y/p, g*D) = n, because the
flop is symmetric! Starting again with X = Y+ we proceed with construction of a
minimal model XmiD/Z . Now note that (G-R2) > 0 and G+-C+) < 0 for a flopped
curve C+ . Hence C+ c G+ and (KY+-C+) = 0. So, the first modification of Y+/Z
is not a divisorial contraction to a point, and we can proceed as above. Eventually, we
obtain the flip X+ = Xmin/Z , which is semistable for the bimeromorphic transform
t{D) = Dmin. By (12), if the first modification 7+ —> Y++ contracts G+ ,

i(X+/p,t(D)) < i(Y++/p,D++) < i{Y+lp,D+) = n.

Otherwise, by (13),

i(X+/p, t(D)) < i{Y++/p , D++) + 1 < i(Y+/p ,D+) + l = n + l

with equality only if the exceptional locus Ε of / is divisorial, Y+ —> Y++ con-
tracts the modification E+ to a curve, and then G++ is contracted to the point ρ .
(This case, like some others below, is impossible; see (4.10.4).) •

FIGURE 6

FIGURE 7
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The remaining cases are more serious and need a more powerful prelude. For both
of these cases 1.2 and 2.2, X has two singular points χ, y e C c D\ and they are
non-Gorenstein, i.e., ind* Κ and indj, Κ > 2. (Note that in case 2.2 / is small; cf.
the beginning of the proof above.) In case 2.2 we can assume also that χ φ Di,
but y e DT. However, this time we are obliged to make successive extractions of
both singularities to remove them from C. Indeed, as above, take a partial resolution
g: Υ —> X of one of the singularities. Then again p{Y/Z ; p) = 2 and |i?2| = g~lC.
But now g~lC can have two singularities of Υ, and possibly (KY + g*D · R2) > 0.
This last reflects essentially the fact that a sum of two quantities from (0,1) can be
greater than 1. Hence we cannot perform the previous trick—flip-flop of g~lC—
and we have committed ourselves to proceed with resolution of singularities on g~lC
according to (1.3.7) under the assumption of Proposition 2.1. We can do it, because
the new singularities, i.e., singularities of Υ on the exceptional locus G, belong to
G η g~1Dl and have type (1.3.3). So, we have

2.4. Construction. The composition c: Xr's —> X of blow-ups from (1.3.7) gives a
projective extraction with exceptional surfaces E\, ... ,Er and F\, ... , Fs over χ
and y, respectively, and such that (Figure 8(a)):

(2.4.1)r and s> 1.

(2.4.2) Xr's and D\'s have no singularities on C-s.

(2.4.3) The surfaces Er, ... ,E\ (respectively, Fs, ... , F\) are successively blown
down to points of images of C's over χ (respectively, y).

(2.4.4) The contraction c is semistable for c*D = Drs w i t h

i(Xr's/p, c*D) = i(X/p ,D)-r-s = n+l-r-s,

and K\r,s + Drs + Σ-Ε; + Σ^ i s divisorially log terminal by Lemma 1.4.

D\'

«Pi

(a)

FIGURE 8

(b)
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(2.4.5) Curves ε, = D\s Π £,· = CP 1 , C · 4 = CP 1 , and φ} = D[s Π Fj = CP1 (as
well as φο = D['s Π Dr

2'
s in case 2.2) form a chain ε\, ... , er, Cr>s, (ps, ... , ψ\

(respectively, ει, ... , er, Cr's, q>s, ••• , φι, ψο), which is blown down on D\'s to
a log terminal point.

(2.4.6) The curves ε, and φ}•, j Φ0, are exceptional but not of the first kind on the
minimal resolution of D['s.

(2.4.7) (\Ji>kEi)[jCr'Sv(Uj>iFj) i s exceptional for £ + / > 1, r > A: > 0, s > / > 0
(and even for k + I > 0 in case 2.2). Moreover, the curves on this locus generate a
face of NE(Xr's/Z; p) of dimension l + r + s-k-l.

(2.4.8) Xr's and D['s have no singularities on ε, and q>j with i Φ I, r and j Φ \, s
(and even for j Φ s in case 2.2), respectively. Moreover, er and q>s have at most
one singularity whenever r > 2 and s > 2, respectively.

Here and in the sequel, objects with superscripts r, s mean their proper inverse
images looking back from X to Xr · s . As was remarked earlier, the composition c
is projective because its components are projective. According to [27], 3.8, and to
the classification of the surface log terminal singularities, (2.4.4) implies (2.4.5) and
(2.4.8). So, we need to check only (2.4.7). The following generalization of Lemma
2.3 will help us in this.

2.5. Lemma. The log divisor

c*(K + D) - KXr,s +Dr's

is divisorially log terminal with rational e, and fj e (0, 1). It is numerically trivial
on curves/χ, y and is negative on C's.

Proof. Note that —e, and —fj are discrepancies of £", and Fj , respectively, for the
log divisor Κ + D. So, by Lemma 1.4, the corresponding discrepancies 1 - e, and
1 - fj for Κ are positive, and e,, fj < 1. On the other hand, D\'s is normal, and
its intersections with E,·, Fj (as well as with Dr

2'
s in case 2.2) are generic normal.

Hence

c*(K + D)\or.. = KD[,s + Σe&i + Σ fjfj = (CID^YKD, (+Z>, η D 2 in case 2.2)

(where ô = 1 in case 2.2), and -e, and —fj are also discrepancies of ε, and q>j,
respectively, for the log divisor KDl (+Z)t Π D2 in case 2.2). Then, according to
(2.4.6) and Lemma 2.3, all e,••, /} > 0, and c*(K + D) is divisorially log terminal
by monotonicity ([27], 1.3.3) and (2.4.4). Numerical properties of c*(K + D) follow
from those of Κ + D. •

By this lemma, if r or i > 1 (cf. (2.4.1)), there is only one extremal ray R c
NE(X r >7Z;p) negative with respect to c*{K + D) and with \R\ = Cr>s (cf. the
arguments in the corresponding part of the proof of Proposition 2.1 above). This
implies (2.4.7) for k = s and I = r. In general, we can use the same reasoning
applied to a composition c: Xk'1 —* X of extractions with exceptional surfaces
Ει, ... , Ek and Fi, ... , Ft over χ and y, respectively, i.e., for r := k and s := /.

We remark that the surface interpretation of coefficients f (in the proof of Lemma
2.5) implies the monotonic property fi > fi> ·•· > fs in case 2.2. In general, this
property holds if we assume the partial resolution c to be smallest, i.e., satisfying
(2.4.4).

2.6. Lemma, ei >ei>->er and fi > fi> ••• > fs-
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Proof. It is enough to prove that f\ > f2 > •· • > fs. The same arguments are valid
for the e,'s.

Suppose that
/ i > / 2 > · · · > / / but / / < / / + , .

Then consider a composition c: Υ -> X of blow-ups/}1 with exceptional surfaces
Fi, ... , Fi+l. The log terminal divisor

c*(K + D) = KY + c~lD +

has the same coefficients fj and is numerically trivial with respect to c. According
to the construction, (F!+l · C) < 0 for the curves C c F/+l, {Fl+X · φι) > 0 for
the curve φ ι = c~lD\ nf/. So, there is an extremal ray R c NE(7/X; y) with
(F / + 1 · R) > 0, and \R\ C F,. In addition, (/) · R) > 0 for 0 < ; < / (where
F o = c-'Z)2 in case 2.2). For / > 2, using [12], 2.1, and (2.4.6), (2.4.8) we can check
that

(c~lDi • φ,) = {φ,)\ = -2- (<p,)2

c-lDl > 0,

which implies that (c~lD · R) > 0 and that

- m - (i - /
y=i ;=i 7=1

/+1
= (1 - f,)c*D - (1 - f,)c-lD - ^{fj - f,)Fj

is negative on /?. The same holds for / = 1. Indeed, when / = 1 and φι has
at most one singular point of Υ, the above arguments are valid after a resolution.
More exactly, in this case we can check that φι is movable on F\, for example,
in a linear sense. The same is always true except in one case, namely, when in a
neighborhood of y, D is irreducible, / = 1, φ\ has two singular points of Υ, and
φ\ is a (-2)-curve on the minimal resolution of c~lD. Then, by the arguments in the
proof of Lemma 2.5 and by the classification of the surface log terminal singularities
[4], y is log terminal but is not a canonical singularity on D with graph of type Df,
t > 3 (Figure 9(a) and (b)), or of exceptional types Εβ, E7 (Figure 9(c)), and φι
corresponds to the vertex at which three segments are joined. In addition, —fj 's are
discrepancies of φ, = c~lDf\Fj , j = 1,2. But this is impossible, because -f\, the
discrepancy at the vertex, is equal to or less than the nearest three discrepancies. In
the case when φ\ on the minimal resolution intersects two (—2)-curves and a chain
of (—Pi)-curves with (—pi)-curve intersecting φ\, we have discrepancies -/i/2 for
the first two curves and —f\ for the (-pi)-curve (Figure 9(a)). In the other cases
we have a finite set of opportunities and can make a direct check in each of them
(Figure 9(b-c), where the fractions are discrepancies).

Therefore, R is always negative with respect to

The corresponding blow-down Υ —> Υ' is defined over X and does not contract
F/ to a point. The last holds because Fi+i is contractible to a point. According to
our assumption, c is the smallest:

i(Y/y,c*D) = i(X,y,D)-l-l and < η - I.
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So, we can apply (12-3) to R and to the subsequent extremal rays/y. By (2.1.2) and
[27], 1.5.7, eventually we obtain X = Xmin with

i{X,y,D)<i{X,y,D)-\,

which gives a contradiction. •
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As we know, Xr>* isprojective /Z and we can apply the cone theorem. In partic-
ular, by (2.4.7) with k = r and / = s, we have an extremal ray Rc c N E ( X r ' 7 Z ; p)
with \Rc\ = Cr>s.

2.7. Construction. There is a flip Xr-S —• Xr-S+ in Rc {Figure 8(a-b)), and it
satisfies the following conditions:

(2.7.1) r and s > 1.

(2.7.2) Xr's+ is semistable for Drs+ + ΣΕΐ + Σ ^ / w i t h

i(Xr's+/p, Drs+ + ΣΕ+ + £ / ? ) = i(Xr's/p,c*D) + 1

= i{X/p ,D)-r-s+l = n + 2-r-s.

(2.7.3) Xr's+ has only terminal singularities, and

is divisorially log terminal, negative on Cr>s+ .

(2.7.4) Curves ε+ = D[>s+ Γ\ E+ = CP1 and <p+ = D\'s+ Π F / = CP1 (as well as

$?J = D['s+nDr

2'
s+ in case 2.2) form a chain ε^ , . . . , e+, <p+, ... , φ\ (respectively,

z\, ... , ε+, ?»+, ... , φ+, φ^), which is blown down on D['s+ to a log terminal

point.

(2.7.5) {{Ji>k Ef) U ( U ; > / Ff) is exceptional for any k +1 > 1, r > A: > 0, j > / > 0

(and even for k +1 > 0 in case 2.2). Moreover, C<s+ and the curves on this locus

generate a face of NE(Xr<s+/Z; p) of dimension l+r + s - k - l .

(2.7.6) KXr,,+ +Dr's+ + Σ?ίΕΐ + HfiFj~ is divisorially log terminal, negative on ε+

and ψΊ , nonpositive on all curves of Xr's+/p except C's+ , and positive on C>s+ .

(2.1.1)Xr's+ and D[s+ have no singularities on ε+ and φ+ with i Φ \, r and
j Φ 1,5 (and even for all j φ s in case 2.2), respectively. Moreover, for r > 2
and s > 2, respectively (and even s > 1 in case 2.2), ε+ and <pf have at most one
singularity, and have no singularities whenever they are curves of the first kind on
the minimal resolution of D['s+ .

(2.7.8) Xr>s+ and D['s+ have exactly one singular point of type V2(2, 1) on Cr>s+ =
E+ η F+.

Lemma 2.5 and the adjunction formula ([27], 3.1)

C*(K + D)\Dr,s = KDr,s + ̂  eiBi + ̂  fjfj

imply that C's is an exceptional curve of the first kind (cf. (2.4.6)). So, the required
flip is a composition of a monoidal transformation in C's, Atiyah's flop, and Mori's
blow-down ([14], 3.3.5) (Figure 10). More precisely, the monoidal transformation
gives a rational scroll F i / C r > i such that its negative section is a (—l)-curve in the
intersection with proper transform of D['s. Then Atiyah's flop transforms it into
CP 2 with normal bundle <fcvi(—2). The flop with boundary configuration coincides
with Kulikov's one of type II ([12], 4.3, Figure 5) (cf. Figure 7). Mori's blow-down
contracts CP 2 to a quotient singularity of type 1/2(1, - 1 , 1) ([14], 3.4.3) lying on
C's+. The rational scroll has multiplicity 1 in c*D. So, Mori's blow-down gives
a semistable resolution of this singularity, which proves (2.7.2). Other properties of
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Atiyah

Kulikov

FIGURE 10

D ^ + φ+

the flip follow from Construction 2.4 and Lemmas 1.4, 2.5. According to (2.7.3), the
flip is an antiflip with respect to

Let R+ b e a n extremal ray in NE(Xr-s+/Z; p) generated by t h e flipped curve

C>s+. By (2.7.5) wi th k = r a n d I = s - I, curves on Fs

+ generate a face of

NE(Xr's+/Z ; p) of d i m e n s i o n 2. It conta ins t h e ext remal ray R+ . So, we have one

m o r e extremal ray Rf o n this face, a n d t h e face is generated by Rj a n d Rf. By

(2.7.6), it is really extremal and, like φ+ , is negative with respect to the log divisor

Kxr.» +Dr-S+ + Y^ αΕΐ + Σ fiFt-
We have the inclusion \Rf\ C Fs

+ , and
(Ε1/" · Rf) = (F+ -Rf) = 0 for / φ r and j ^ j , s - 1, respectively.

It is easy to see also that (E+ · R+) < 0 and (Fs

+_l -R+) = 0. But {E+ · <p+) > 0,
{Fs

+_l · φ+) > 0. Of course, F+_{ and the corresponding formulas are meaningful for
5 > 2, or for 5 = 1 in case 2.2 if we take .Fo

+ = Dr

2'
s+ . Hence, Rf satisfies also the

following numerical properties:

(E+ -Rf)>0 and {Fs

+_i · Rf) > 0.

Note that, since the flip Xr>s —-> Xr's+ contracts on D\'s the exceptional curve
of the first kind C>s, the curve ε+ or φ+ cannot satisfy (2.4.6) and, moreover, this
holds almost always.

2.8 Lemma. Suppose that the exceptional curves et and φ^, j > \, are not of the

first kind on the minimal resolution of D['s+ . Then:

(2.8.1) For er> fs, s = \ , and this is possible only in case 1.2 .

(2.8.2) F o r e r < / S , r = 1 .

Proof. We check the first statement (2.8.1). The same argument proves (2.8.2). So,
let er > fs and s > 2 in case 1.2. Then, by Lemma 2.6 and (2.7.1), fs < fs^i,
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where r, s > 1 and s > 2 in case 1.2. We assume that fs-i = fo '•= I when ί = 1
in case 2.2. This is the multiplicity of FQ := Dr

2'
l in D (cf. (2.4.5), (2.7.4), and

Lemma 2.5). I contend that (^)|>, < - 3 on the minimal resolution g: D' -> D\s+ .
Indeed,

where £"' is an effective divisor on D'. So, for {<p's)
2

Di = -2, (.K -̂ · ^ ) = 0 and we
get a contradiction

0<er + fs-i-2fs< \KD, +E'

Σ βίΕ^ + V* fiW* · at• I £_^/ ·> J τ j rs

with (2.7.6). If D j ' i + does not have singularities on φ+ , using [12], 2.1, as in the
proof of Lemma 2.6, we get the inequality (<p+)2

F+ > 1. Otherwise, by (2.7.7), <p+
has at most one such singularity, and, using now [12], 2.1 after a partial resolution
(1.3.7), we get the inequality (<p's)

2

F, > 0 on the minimal resolution F' —> Fs

+ . In any
case, φ+ is movable on Fs

+ , and (D\'s+-Rf) > 0. But, according to the semistability
of Xr>s+/Z,

whence

Therefore, by the above numerical properties of

because 1 - er < 1 - fs and 1 - fs > 1 - fs-i. So,

χ^+Ο'^ + ΣΕΐ + Σ ^ ·

= (KXr,s+ +Β'·°+ + Σ eiEt +

By the adjunction formula,

+ ^ + + ( E ; + F ; ^ .cf)<o

for any curve Cf e Rf. (As we know, Cf c |i?/| c Fs

+.) This contradicts the
connectedness of the locus of log canonical singularities for



SEMISTABLE 3-FOLD FLIPS 393

in a neighborhood of C/ ([27], 5.7) when Rf is of a flipping type. So, Rf is of a
divisorial type, and the corresponding blow-down contracts Fs

+ — \Rf\ to a curve,
because C's+ φ Rf. This defines a ruling with generic fiber C/ = CP1 such that

(KF, + φ+ + (E+ + F^F* · C/) > - 2 + 1 + 1 = 0

(cf. continuation of the proof of Proposition 2.1 below). This contradicts the
above. •

In particular, (2.8.1) is possible only in case 1.2. If we permute the singularities
χ, y in this case, we obtain

2.9. Corollary. Under the assumptions of Lemma 2.8 and after an appropriate choice
of χ in case 1.2, we have r = 1 and e\ < fs.

However, according to the construction (and (2.7.4)), it is possible that one (and
only one) curve ε+ or φ+ is the exceptional curve of the first kind on the minimal
resolution of D\'s+ . Suppose first that s > 2 in case 1.2, and φ+ is such a curve.
By (2.7.7), D['s+ and Xr>s+ do not have singularities on φ+ . Using again [12], 2.1,
we can check that (Figure 1 l(a))

(D['s+ • φϊ) = (φ = - 2 - (9t)lr..+ = - K 0.

Since /?+ is positive with respect to D\'s+ , this implies that Rf is negative with
respect to D['s+ , and \Rf\ = <p+ . In this case Atiyah's flop Xr's+ —> Xr<s++ gives
us a modification Xr's++/Z (Figure ll(b)) having only terminal singularities and
semistable for Drs++ + Σ,Εϊ+ + £-F, + + with

rs++ι (Xr>s++lp, Dr

= ι (xr-s+/p,

= i{X/p, D)-r-s+l=n + 2-r-s.

(C)

FIGURE 11
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The curves on ^ + + υ / ^ + + generate a two-dimensional face of NE(,Jf ' i + + /Z; p). One
of the extremal rays of this face is generated by the flopped curve p++ = E++ nF^[.
The other ray is generated by the curves on Fs

++ and is negative for

The last assertion for C r - i + + c F s

+ + follows from (2.7.3). (Like Cr-S+, Cr>s++ has
only one terminal singularity of ΧΓ·!++ .) Hence we have an elementary blow-down

Xr,s++ _, Xr,(s-\)+ o v e r z, which contracts F++ to a point (Figure ll(c)). We
can also construct Xr>(s-i)+ a s a flip o f Xr,s for ^ e blow-down of C's UFS and
with respect to

KXr,s +Dr'S+^2 eiEi + Σ fjFj ,

or as a similar flip in the curve C's~l after the blow-down Xr's -> Xr>s~l of Fs.
Again ΛΓ >(*-')+ with £>'.(*-1)+ , Ef , and Ff satisfies the above properties (2.7.2-
7) if we take r := r and s := s - 1. Indeed, we get (2.7.3) and (2.7.6) from the
construction and the last explanations, respectively, because

is numerically trivial on the flopped curve <pf+ and

is negative on Cr<s~l. (The blow-down of Fs

++ is a small resolution from (1.3.7).)
The depth in (2.7.2) is <n + 2-r-s, and the inequality contradicts (2.4.4) by (13),
since r > 1, and we have a flop Xr's+ —-> Xr>s in C's+ . The remaining properties
follow directly from 2.7. However, we must replace (2.7.1) and (2.7.8) by the new
versions

(2.7.1) r > 1, 5 > 1 in case 1.2. So, it is possible that 5 = 0 but only in case 2.2.

(2.7.8) Xr's+ and D\'s+ have exactly one singular point of type V2 (see Example
(1.2.3)) on Cr's+.

The last follows from the construction, or from [12], 2.1 after a partial resolution
(1.3.7) of the singularity on C's+ . Indeed, C's+ = |i?+| and this is an exceptional
curve of the first kind on the minimal resolutions of £ + and Fs

+ (cf. Figure 1 l(c)).
(The singularity has type V2 by the proven part of Theorem 1.3.)

The same construction works when r > 2 and ε+ is an exceptional curve of the
first kind on the minimal resolution of D['s+ . (In case 2.2 with s = 0 we take, as
above, Fo

+ = Dr

2'
0+ .) In particular, we define an extremal ray Re c NE(Xr's+/Z ; p)

similar to Rf. This means that /?+ and Re generate a two-dimensional face of
N E ( X r ' i + / Z ; p) corresponding to curves on £+ . So, after the above modifications
and a permutation of singularities χ, y on C, we obtain:

If ε+ or φ+ is an exceptional curve of the first kind on the minimal resolution of

D['s+ , then r = 1 and ef is such a curve.

Otherwise, the exceptional curves et and q>f , j > I, are not of the first kind on
the minimal resolution of D\'s+. In this case Lemma 2.8 and Corollary 2.9 work
even for s = 0 in case 2.2. Eventually, after an appropriate choice of χ in case 1.2,
we have the final version

(2.7.1) r = 1 and s>\ in case 1.2.
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(a)

FIGURE 12

(2.8.2) e\ < fs if e+ is not an exceptional curve of the first kind on the minimal
resolution of D['s+ . (As above, fo = 1 •)

Proof of Proposition 2.1 for cases 1.2 and 2.2. First we check that

(2.10) (κχ,,,+ + Dl-S+ + E+ + J2Fjf · Re) < 0

(cf. the proof of Lemma 2.8). Next we consider the case when ε+ is an exceptional
curve of the first kind on the minimal resolution of D\ 'S+ and the latter really has
singularities on ef . Then, by (2.7.1) in the final form, (2.7.4), and the classification
of surface log terminal singularities, ε+ has exactly one such singularity q (Figure
12(a)). Using [12], 2.1 after a partial resolution (1.3.7) of q, we obtain that ef is
also an exceptional curve of the first kind on the minimal resolution of £+ . So, ε,"
is exceptional on E^ , D\'s+ is negative on ε+ , and \Re\ = ef . In addition, by [27],
3.9,

= deg

where m is the index of KD\,,+ in q.

Now we consider the case when D\'s+ does not have singularities on ef , and ε+
is an exceptional curve of the first kind on D\'s+ (Figure 12(b)). Then we have a
ruling on E+ with fiber e+ . So, (D\'s+ · ε+) = (D\'s+ · Re) = 0 and ε+ G \Re\.
Using the above arguments we obtain again

(Κχι,*+ + Dls+ + E+ + J2F+- ε+) = - Κ 0.

In the remaining cases ε+ is not an exceptional curve of the first kind on the
minimal resolution of D\ 'S+ , and e\ < fs by (2.8.2) in the last version. So, to prove
(2.10), we can use arguments similar to those in the proof of Lemma 2.8 as soon as
we check that (D\>S+ -Re) >0. Indeed, D\ 'S+ has at most ζ < 2 singular points on
ε]1", because 5 > 1 in case 1.2. (Moreover, ζ < 1 in case 2.2.) Again by [12], 2.1,
we obtain that e[ will be an (m - 1 - £)-curve and a (-w)-curve on the minimal
resolutions E[ —» Ef and D' -> D\'s+, respectively. We now assume that m > 2.
Hence ef will be movable on Ef and (D\>s+ · Re) > 0 for the case when ζ = 2
and m = 2. I contend that the latter is impossible, i.e. m > 3 when ζ = 2.
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Indeed, suppose that ζ - 2 and m = 2. In particular, (ε\)2

ο, = - 2 , and (KD> ·
e[) = 0. We denote by q,••., i = 1, 2, the singularities of Z>{ ' i + on ej1". As in the
proof of Lemma 2.8, we get a contradiction with (2.7.6):

0 < / i + 2 ( i e , ) - 2 e , < | # D ,

K
x>,s+

where E' is an effective divisor on D'. We have only to check that the multiplicity of
E' in a curve C'Jqt (/= 1, 2) intersecting (normally) ε[ is at least e\/2. Since the
resolution g is minimal, KD> is nef/ #,·, whereas C\ is a (-«,)-curve with n, > 2.
Hence it is enough to consider the case when both singularities #, are resolved only
by C\ 's; these intersect ε[ normally ([27], 3.5). Then

, ηι-2 + ei^, n2-2 + ei
t, — C.H C 2 ,

«1 «2
and the required multiplicities satisfy

«,- - 2 + ei ^ (», - 2)gi + ei _ (n, - 1) ^

n, - m ~ η, βχ ~ 2 '

because n, > 2, and 0 < e\ < 1 (see Lemma 2.5).
Thus, (2.10) holds, and by (2.7.1-2) and by inductive assumptions (12-3) we have

a semistable modification Xl-S+ —> Xl<s++ in Re when s > 1. In this case we
start with X = Xl<s++/Z .

If the modification X1 <s+ —> X1 >*++ is a flip, then i(Xl 's++/p, Dl - ί ++ + Ε++ +
Σ ^ / + ) < ί ( ^ 1 > ί + / Ρ , / ) 1 > i + + £Γ + EFj+) -l = n-s. All subsequent modifica-
tions exist, because we have only s + 1 irreducible surfaces Ef+ and F++/p. As
above, we get the required modification X+ = Xmin/Z , semistable for D+ = Dmin,
and with i(X+/p, D+) < η + 1. Indeed, if we get a modification Xmod/Z with
i(Xmod/p, Dmod) - n+1, then all modifications on the way to Xmod were divisorial,
and the surfaces Ef+ and Ff+ were blown down to points. Note that (Fs

+-Re) > 0,
and the flipped curve belongs to Fs

++ . So, the fiber of DltS++/p consists of the
curves ε++ (except for the case when ζ — 1 and ε^ — \Re\ is an exceptional curve
of the first kind on the minimal resolution of D\'s+) and <pf+, j > 1 (but case

2.2 and F,+ + Π D\'s++ are impossible, as we shall see later). These curves will be
contracted to a point on Z) m o d . Since Xmod/Z is semistable for Dmod, this means
that Xmod = Ζ = Xmin = X+. This is possible only in case 1.2 with dim Ε = 2,
and when the last modification is a blow-down of modified G = Ef+ or Fj~+ to
the point ρ. By (2.1.3), / contracts Ε on a curve f(E), that is not contained in
f{D). This completes the proof of Theorem 1.7 in the case under consideration,
and, respectively, Theorem 1.3 when i(X+/p, D+) = η + 1. Indeed, then the last
modification Xmod ~ —» Ζ is a blow-down of Gmod ~ to the point ρ, semistable for
£>mod- + Gmod- w j t h i^xmoi-jp > jymoA- + Qmod-j = n S O ) j n t n i s c a s e Theorem
1.3 holds for X+ by (12). Otherwise, i{X+/p, D+) < η and Theorem 1.3 holds by
(II).

Now we consider the case when again 5 > 1 and Re defines a divisorial blow-
down Xl>'+->Xl>'++ of E+. By (12), Xl>s++/Z is semistable for Dl>s++ + Y,Fj
with i(Xl -s++/p, Dl -s++ + έ F/+) < i(Xl 's+/p, Dx -s+ + E+ + Σ,Ff) = η + 1 - s.
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Since \R+\ = Cl's+ c Ef , the blow-down contracts Ef to a curve. A generic fiber
Ce of the corresponding ruling on E^ intersects C l i + but does not intersect ε+.
Indeed, Ce is a 0-curve on isj1" (nonsingular on Ce), and (FS

+ · Cf) = 1 (cf. the
contradiction at the end of the proof of Lemma 2.8). So, (D\'s+ · Re) = 0 and
ε^ € \Re\. (In fact, this is possible only when ζ = 0 and ε~[ is an exceptional
curve of the first kind on D\ 'S+ ; Figure 12(b).) Therefore, this time we have only s
irreducible surfaces Ff+/p and curves φ^+ (as well as F++nD\tS++ in case 2.2) on

D\ 's++/p. Hence, all subsequent modifications exist and we can proceed as above.
Our concluding case is very special: r = 1 and 5 = 0. By the final (2.7.1),

it is possible only in case 2.2. (In particular, e\ < fo — 1 automatically.) So,
D\'o+ has at most one singularity on ε+. By construction, E\ is the fiber of
Xi'0+/p . But according to (2.7.5), the curves of i?+ generate a 2-dimensional face
of N E ( X ' ' 0 + / Z ; p). Moreover, it is generated by the extremal rays Re and /?+ .
Hence

is negative on X1<0+/p, and, by (2.7.6), there exists a rational number a such that
0 < e\ < a < 1 and

is numerically trivial on C 1 ' 0 + and negative on all other irreducible curves/p. This
time we move one step back, i.e., we take a blow-up (1.3.7) in the singular point
q' e C 1 > 0 + of Xl'0+ (see the last version of (2.7.8) and Figures 13(a-b)), and then
we take Atiyah's flop in the modification of C 1 > 0 + (Figures 13(b-c)). So we obtain

d = Z 2,o+ o r x\, i+ semistable for Dmod + £ | " o d + G with

i(Xmod/p, Dmod

(see (2.7.2)), where £>m o d =

G) = n

o r = D\'X+-¥D\A+

(c)

FIGURE 13
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respectively, and G = E% or F,+ . I contend that

Kxmoi + Dmod + aEf* + aG

is numerically trivial on G and negative on all irreducible curves//; outside G.
Since a flip in a curve numerically trivial with respect to some divisor preserves the
intersections with the curve and the blow-up in a' is extremal, we have a rational
number a! such that

Kxmoi + Dmoa + aE™0* + a'G

satisfies the required properties. Moreover, a = a' is the coefficient of the different
on D\'o+ nDl'0+ c Dl

2'
0+ at the point to which C 1 · ^ is contracted on D\'o+

(Figure 13(a)). But now ej"0*1 is a (-w)-curve on the minimal resolution of D^,
where m>2, and it has at most one singularity on ε™0*1. Using again [12], 2.1, we
find that efod is an (m - 2)-curve on the minimal resolution of Ef11^ when Ef100

and D™00 have a singularity on it, and efod is an (m - l)-curve otherwise. So,
ef00 is movable on Ef100 with a fixed point. Therefore, we have an extremal ray
i ' c N E ( I m o d / Z ; p ) such that

(tfjrmod + Dmod + aE^ + aG-R')<0,

(Dmod -R')>0. This implies that (cf. the proof of Lemma 2.8)

(Kxm<* + Dmod + Ef10* + G-R')

= {Kxmai + Dmod + aE^ + aG-R') + (l- fl)(JEJnod + G-R')

= (Kxmoi + Dmod + aEf00· + aG • R') + (1 - a)(-Dmod -R')<0,

because Z>mod + Ef100 + G is numerically trivial//?. Note also that if R' is of a
divisorial type, then the corresponding blow-down Xmod -> Y/Z contracts E^ to
a curve, since Ef0* nG $ R'. But this is also impossible. Indeed, Ef"* Π Dmod =
gmod φ RI ̂  a n ( j w e | i a v e t j j e s a m e contradiction as in the proof of Lemma 2.8.
Hence R' is of a flipping type and, by (13), its flip Xmod —> Xmod+ exists. The new
modification Z m ° d + is semistable for Dmod+ + £["ο<1+ + G+ with

i(Xmod+/p, Dmod+ + Efxod+ + G+) < i(Xmod/p, Dmod + Ε™ά + G)-l=n-l.

Note also that (G · C") < 0 (in fact < 0) for irreducible curves C" CG. Otherwise,
by semistability, (Z)mod · C) or (Emod · C ) < 0, and C" = Df* Π G, Df00 Πΰ,οτ
£modnQ These curves are exceptional on Df*, D^00, and Ef"**, respectively, and
[G · C) < 0 for them. But (G · ε™οά) > 0. Therefore, by the cone theorem we can
assume that (G · R') > 0. So, for the flipped curves C C \R'\+ , (G+ · C") < 0, and
\R'\+ C G+ . This implies that again the fiber of Dmod+/p belongs to J E" o d + υ G+ .
(Actually, by connectedness ([27], 5.7) and the arguments in the proof of Lemma 2.8,
one can show that \R'\ does not intersect D™0* and D m o d . So, the flip Xmod —->
X m o d + d o e s n o t t o u c h £,mod ^ n o r t h e fiber o f βτηοά^ρ ) W e t a k e χ = ^ m o d + a n d

proceed as above. Since Ε = C in case 2.2, this is a flipping case in Proposition 2.1.
Hence one of the subsequent modifications of X = x m o d + should not be that of a
divisorial blow-down to a point, and i(X+/p, D+) < η . •

Now we are ready to prove, partially, Theorem 1.6.

2.11. Proposition. Let f, g, D, and V be as in Theorem 1.6, i(X/V, D)<n + \,
g(D\) ψ pt., and suppose Theorem 1.3 holds for all points of X. Then Theorem 1.6
holds for g, and Theorem 1.3 holds for Υ with boundary g(D).

We know that Ε - D\ . Following the statement of Proposition 2.1, we can add
the following assumptions:
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(2.11.1) / = g is extremal, and V = {p} .

(2.11.2)X is locally Q-factorial.
In the reduction to this case we must use Proposition 2.1 for flipping contractions.

Moreover, after a flip we obtain the required statements by (11-3) because all subse-
quent depths of modified X/Z will be at most η (cf. (2.12) below and its proof).
Note that in this case the image curve g(A) c g(D) contains a point/ V that is
not locally Q-factorial. The same arguments, namely (II) and (13), work after a
divisorial contraction to a curve. Thus, we may restrict ourselves to the following
conditions:

(2.11.3) Ε = A , and the fiber of D\/p consists of one irreducible curve C. In
particular, C c A , and C e \R\.

After possibly shrinking a neighborhood of C, this implies

(2.11.4) The singularities of X and D and the triple points of D belong to C.
All Di 's and double curves of D intersect C. In particular, ρ is a unique possible
singularity of Ζ.

(2.11.5) i(X/p, D) = η + 1 > 1. In particular, X has a singular point/ρ.

Proof of Proposition 2.11. So, Υ = Ζ is Q-factorial with only terminal singularities,
and, by the contraction theorem, it is semistable for g(D) = f(D). As we know,
Ε -Ό\. Directly from the definition we see also that

i(Z,p,f(D))<i(X/p,D)<n + l.

But we must check a little more, namely, the inequality

(2.12) i(Z,p,f(D))<n,

which implies Theorem 1.3 by (II). It is obvious for nonsingular ρ .
Otherwise, ρ is a Q-factorial singularity of X and /(A) with / Φ 1. Since

(D\ · C) < 0, and / is semistable for D, we have one more irreducible component
of D, say D2 , such that (D2-C) > 0. In particular, C intersects D2 and ρ e f(D2).
So, d = 8{Α|ί Φ 1} = )1{/(A)|/(A) is an irreducible component of f{D) through
p) > 1. I contend that actually d = 1. Indeed, if d > 2 at ρ, one can check
that D = D\ + D2 + A> for an appropriate renumbering of A 's. Moreover, in
contradiction with (2.11.5), X, C = D\ ΠD$, and the A 's are nonsingular, whereas
C is a 0-curve and a (-l)-curve on D\ and A3, respectively (cf. Figure 12(b)). To
prove this, one must first check that C is numerically equivalent to Cf, a generic
fiber of the ruling on D\ induced by / (cf. Figure 14(a)). Further arguments are
carried out as below (cf. (2.13)).

So, we consider later only the case with d = 1 in ρ or, equivalently, D = A + A? ·
By Lemma 1.4 and [27], 3.8, the double curve C = A n D2 is normal, whence C

£»,

C"

D2

(a)

D\

r 1

c"

FIGURE 14

D\

(b)
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is nonsingular. Thus, C <£. C by (2.11.4). This means also that the components
of C are not contained in the fibers of the ruling on Dx induced by / , and they
intersect C. This is possible only when C is irreducible as D2 (cf. the proof of
Lemma 2.8; Figure 14(a)). According to Lemma 1.4 and [27], 3.8, f{D2) is normal.
So, / induces an isomorphism D2 —> f(D2) · Hence C intersects C in a single
point q that is singular on Z>; 's, X, and maps to ρ.

We make a blow-up g: X1 —> X at q as in (1.3.7), with an exceptional divisor
E\ (Figures 14(a-b)). Let R\ c ΉΈ(Χι/Ζ; p) be the corresponding extremal ray. It
is generated by the intersection curve «i = D\ C\E\ = CP 1 , which is contracted to
the point q, log terminal for

KDl + C = (K + D)\Dl

on D[ (cf. (2.4.5) in case 2.2). Then, by the adjunction formula and [27], 3.9,

0 > (Κχι +Dl+El-ei) = (KDi + C'1 + ε, · ε,)

(2.13) = deg (Α., + (β, Π C'1) + £ ^ f t ) = - 1 + Σ ^ ^ - 1 '

where the w; are the indices of KDi at singular points #, e ei . Moreover, = - 1

is possible only when D\ is nonsingular on ει. (This implies also that D\ has at
most one singularity on ει.)

Then we can proceed as in the proof of Proposition 2J_for cases 1-3.1. Since
p(Xl/Z; p). = 2, we have one more extremal ray R2 C ΝΈ(Χι/Ζ ; ρ). Moreover,
\R2\ = C 1 , because {Ελ · C1) > 0, (Ex · ex) < 0, and (£Ί · C|) = 0 for a generic
fiber Ci of the ruling on D\ induced by fog.

Now I contend that

(2.14) (Kx, + Dl + Ει - R2) < 0

or, equivalently,

(2.15) (KD, + Cn + ει · C 1 )Di < 0.

Indeed, Cf is numerically equivalent to αε\ + bCl with integers a, b > 1. So,

whence a = 1, and ( C 1 · C % i = 0, i.e., C'1 does not intersect C 1 (Figure 14(b)).

Similarly,

- 1 = (KD> + Cn + ei · C/)^ = (KDl + C" + β ι . eOfl. + *(ΛΓΟ, + C'1 + ε, · C % , ,

whence, by (2.13), we obtain (2.15), except for the case when D\ is nonsingular on
ει, and

Cn+ei'Cl)Di = 0 .

But C 1 intersects ει . So, in the last case C 1 is an exceptional curve of the first
kind on the minimal resolution of D\. Moreover, D\ may have only canonical (Du
Val) singularities on C 1 , which is impossible by (2.11.2) and (1.3.6). Hence, D\ is
nonsingular, and C 1 crosses ει normally. Then

and
0 = (el-Cf)Dl= (ε, )2

Di+b,
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whence b — \, and ει is an exceptional curve of the first kind on D\. This contra-
dicts the fact that q is singular (or that g is minimal in the sense of (1.3.7)).

Thus, we have proved (2.14). By (1.3.7) and (2.11.5), Xl/Z is semistable for
g*D = DX +Ei with

So, according to (13), we have a flip X1 —• X1+ in i?2. Moreover, X1+/Z is
semistable too for Dl+ + E+ = {g*D)+ with

i(Xl+/p, Dl+ + E+) < i(Xl/p, g*D) - 1 = η - 1.

The proof of (2.12) can be completed by applying inductive assumptions (12-3) to
X = Xl+/Z , because X1+ has only one exceptional divisor/p (namely, E~f). Note
also that ρ is Q-factorial, whence Xmin/Z = Z (cf. [27], 1.5.7). •

3. INDUCTION STEPS

3.1. Induction step for Theorem 1.3. We will check Theorem 1.3 for a semistable
singularity with i(X, ρ, D) < η + 1.

By definition, there exists a resolution g = g\°·· · ° gjv, semistable for g*D, with
< η + 1 prime divisors £, c Yj exceptional for the components gj\ Yj —> Y/_i
(ΥΌ := X) and such that gjEt = pt. (see 1.1). Any partial resolution Gm — gi ο · · · ο
gm : Ym -» X is semistable too for G^D and with

i(y m /p, G*D) + S(Ym/X) < η + 1,

where 5{Ym/X) is the number of prime divisors £ , , exceptional for £, 's with j < m
and such that gjEt — pt. {GjEi — p).

By (1.1.2), Theorem 1.3 holds for YN (i.e., for any point on G*N). So, we can
use induction on Ν. This means that it is enough to check Theorem 1.3 for Y,_i
when it holds for Yj. However, gj may be nonprojective, even over a neighborhood
of V = Gjlp. But Theorem 1.3 is local, and gj is locally projective by (1.1.3).
Therefore, we may restrict ourselves to a partial resolution g:Y:—Yj^X:= Yj_\
such that

(3.1.1) g is projective Ip .

(3.1.2) Theorem 1.3 holds for Υ.

(3.1.3) ΥIX is semistable for g*D with

i(Y/p,g*D) + S(Y/X)<n + l.

Here, after possibly shrinking a neighborhood of ρ, δ(Υ/Χ) is the number of ex-
ceptional divisors/p . Note, that all such divisors lie in g*D. Thus, we must check
Theorem 1.3 for ρ e X.

Suppose first that Κγ or, equivalently, KY + g*D is nef/p. Then g is small,
because ρ is a terminal singularity (cf. [27], 1.5.7). By (3.1.3), it is a partial Q-
factorialization of X (nontrivial only when d = 1) with i{Y/p, g*D) > i(X, p, D).
Then Theorem 1.3 for ρ follows from that for Y/p .

Otherwise, Κγ or, equivalently, Κγ + g*D is not nef/p, and we must ap-
ply Mori's theory to g. Namely, by the cone theorem, we have an extremal ray
R c ΝΕ(7/ΛΓ; ρ), negative with respect to KY and KY + g"D. Let f: Υ -> ZfX
be the corresponding contraction with the exceptional locus E. Like ΥIX, it is
semistable for g*D and bimeromorphic. So, it corresponds to the one in Theorem
1.6 or 1.7. If i(Y/p, g*D) < η, we can apply (11-3). Namely, then there exists a



402 V. V. SHOKUROV

modification Υ —> Y+/X in R, where Y+/X is again semistable for D+ = (g*D)+

with i(Y+/p, D+) < n +1. By (12), equality in the last relation is possible only when
Ε = Ei is a component of g*D, and the modification Υ —-> Y+/X coincides with
the contraction f: Υ -* Z/X. Moreover, /(£,) = pt./p is Q-factorial of index
> 1, / is minimal in the sense of (1.3.7), and the discrepancy of Kx in Ε is less
than 1, i.e., even in this case Theorem 1.3 holds for /(£/) € Y+ = Ζ and for Y+ .
So, in any case, Y+/X satisfies (3.1-3), and we can replace Υ by it. Indeed, by
(3.1.3), i(Y/p, g*D) < η + 1, and equality holds only when f{E) φ pt. But then
we can apply Propositions 2.1 and 2.11 instead of (11-3). (Note that after one flip or
divisorial blow-down of a component of g*D to a curve, we simplify the situation:
we can replace < η + 1 in (3.1.3) by < η . Hence later (11-3) will be enough.) The
termination of modifications leads us to the above case, when Κγ + g*D is nef//?,
which completes the proof of Theorem 1.3 for ρ.

Note that (1.3.6) in 3.1 follows from (1.3.5) and (1.3.7) by Lemma 2.5 and its
proof. •

As a corollary of this, as well as Propositions 2.1, 2.11, we obtain

3.2. Induction step for Theorem 1.7. Theorem 1.7 holds when i(X/V, D) <n+\.

3.3. Induction step for Theorem 1.6 in the case of blow-downs to a curve. Theorem
1.6 holds when g{D{) is a curve, and i(X/V, D) < η + 1.

3.4. Induction step for Theorem 1.6 in the case of blow-downs to a point. We will
check here Theorem 1.6 when g{Di) = pt. and i(X/V, D) < η + 1.

As we know, Ε = D\. According to our assumption, g{D\) — pt. e g(D)/V,
g{D) is semistable on Υ, and Y/Z is at least numerically semistable for g(D) (cf.
[25], 2.9). Directly from the definition we see that i(Y/V, g(D)) < i(X/V,D) + 1,
and equality is possible only due to Ε = D\. So, we must investigate when equality
holds, and we can do it locally/pt.= g(D\). Thus we assume that

(3.4.1) / = g is extremal, and V = {p = g(Z)i) = g(E)} .
Indeed, D\, KY , and KY + g*D are negative//?. Hence we have again an ex-

tremal ray R c NE(7/Z; p), negative with respect to Dx, Κγ , and KY + g*D.
If the corresponding contraction differs from f = g: X —* Ζ — Υ, it will be small
(flipping) or a divisorial blow-down to a curve. Then by 3.2 and 3.3, respectively,
we have a modification X —> X+/Z such that X+/Z is again a semistable partial
resolution with i(X+/p, D+) < i(X/p, D) - δ, where δ = 0 or 1, and = 1 if
the modification is flipping and we have one exceptional prime divisor//? on X+

(namely, Dj1"). So, as above, after similar steps we obtain a small partial resolution
Xmin/Z that is semistable for £>min with i(XmiD/p, Dm i n) < i(X/p ,£>)<« + 1 and
i(Z, ρ, f(D)) φ i(X/p, D) + 1. Therefore, in the remaining cases we assume that
the contraction f = g: X -* Ζ — Υ corresponds to R and is extremal//?. We can
restrict ourselves also to

(3.4.2) i(X/p, D) = η + 1, and i(Z, ρ, f{D)) = n + 2.
So, i(Z, ρ, f{D)) = i(X/p, D) + 1, and we must check the required properties of

f from Proposition 1.6. Namely,

(3.4.3)/? is Q-factorial, and X is Q-factorial/ρ.

(3.4.4) / is minimal in the sense of (1.3.7).

(3.4.5)/? has index > 1, and the discrepancy of Kz in Dx is < 1.
Since / is extremal, the second part of (3.4.3) follows from the first. But if /? is

not Q-factorial, then there exists an (effective and even prime) Weil divisor S c Z
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in a neighborhood of ρ, such that 5 is not Q-Cartier. Therefore, by the contraction
theorem, its proper inverse image f~lS c X is not Q-Cartier because / is extremal.
Moreover, according to (1.3.4), f~lS is not Q-Cartier only at a finite set of points
Pi ef l i in a neighborhood of which D = D\ is irreducible. By (3.4.2) and 3.1, they
have a semistable Q-factorization. But we need something different.

3.5. Lemma. Under the assumption of Theorem 1.3, let d = 1, and suppose that ρ
has a Q-factorialization g:Y -> X semistable for g*D = g~xD with i(Y/p, g*D) =
i(X, ρ, D). Then for any Weil divisor S c X, there exists a partial Q-factorialization
h:Z-+X semistable for h*D = h~lD with i(Z/p, h*D) = i(X, ρ, D) and ample
with respect to h*S = h~lS.

Such a Q-factorialization is trivial (i.e., an isomorphism) if and only if 5 is Q-
Cartier.

Proof. The required partial Q-factorialization is a flip of id* with respect to S
([27], §1). It is unique, and it exists by [5], 6.1 (cf. [27], 2.7). It must be semistable
and have a certain depth/p, which does not affect these general results. But it is also
a flip of a complete Q-factorization g that can be reconstructed from the last. First,
we can replace S by an effective Weil divisor in a neighborhood of ρ. Second, g
is small (nontrivial when S is not Q-Cartier), and g*S is Q-Cartier. Third, if g*S
is nef Ip , then, by the contraction theorem, we can contract curves C c Y/p with
(g*S · C) = 0, which gives the required partial Q-factorialization.

Otherwise, (g*SO) < 0 for some irreducible curve//?. Since ρ is Q-Gorenstein,
{KY · C) = (KY + g*D · C) = 0. Again we have a flip in C with respect to g*S
that can be considered as a log-terminal flip with respect to Κγ + g*D + eg*S (or
KY + eg*S), where 0 < ε « 1. Note that the extremal rays of NE(Y/X; p) are
in 1 - 1 correspondence with the irreducible curves Υ/ρ, and they belong to a
prime divisor g*D because D is Cartier. So, we have the termination of such flips
([27], 4.1), and we must check only that such flips Υ —-> Y+/X are semistable for
D+ = g*D with i{Y+/p, D+) = i(Y/p, g*D) - i(X, ρ, D).

Thus, it is enough to consider the case when g is extremal or, equivalently, C
is the fiber of Y/p. According to Kollar ([9], 2.4), Υ and Y+ have the same
analytic singularities />, and pf/p, respectively. This means that there exists a 1-1
correspondence p, *-> pf, among them such that a neighborhood £/, of /?, e Υ is
isomorphic to a neighborhood t/+ of pt € Y+. I contend that in our situation
we have a little more: (*/,·, g*D) = (Uf, D+), i.e., the isomorphism [/, -> Uf
transforms g*D\Uj into D+\u+. This follows from the proof of [9], 2.4, whereas
D = (u = 0)/G in the notation of [9], pp. 17-18, for the right side (!). Indeed, in the
first case, due to Kollar, D is invariant under the induced involution. In the second
case, s = fxU is invariant under tGt~x, and the above isomorphism transforms
g*D\Ut = {s = 0)/G into D+\v+ = (s = 0)/tGr1. •

3.6. Remark. According to Corollary 4.7 with σ = 1, only the second case can
occur at the end of the last proof. Moreover, if Υ is nonsingular, then Y+ is also
nonsingular, and the corresponding flip-flop can be done with the help of Reid's
pagoda [21].

One can also prove Lemma 3.5 using the ideas of §2.

3.7. Corollary. The Q-factorialization in (1.3.5) is defined up to a flop.

Thus we have a partial Q-factorialization g: Υ —> X such that g is semistable and
is ample with respect to the proper inverse image {f°g)~lS. Hence fog: Υ —> Ζ
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is projective, after possibly shrinking a neighborhood of ρ ([17], 1.3). Moreover,
Y/Z is semistable for (fog)*D with

i(Y/p,(f° g)*D) = i(X, p, D) = n + 1.

Thus, we can proceed as above. Let R c NE(7/Z; p) be an extremal ray negative
with respect to Κγ and KY + (fog)*D. It defines a semistable and bimeromorphic
contraction h: Υ —> something/Z . If h is not a divisorial contraction to a point,
we can apply 3.2-3. Appeal to (12-3) is then made, and we obtain a contradiction
with (3.4.2): i(X, ρ, f(D)) < η + 1. So, h contracts g~lDx to a point. This is
also impossible when g is nontrivial because A is Q-Cartier, and its fibers belong
to g~xD\. By Lemma 3.5, this means that f~lS and S are Q-Cartier, which
completes the proof of (3.4.3).

3.8. Now we prove (3.4.4). More exactly, we prove that if / is not minimal in the
sense of (1.3.7), then i(Z, ρ, f{D)) <n + \, which contradicts (3.4.2).

Thus, suppose that / is not minimal, i.e., there exists a double curve of D on
A , say C — Α Π D2 after an appropriate renumbering of A 's, such that C is an
exceptional curve of the first kind on the minimal resolution of D2 . Note that d =
j{D,\i φ 1} = t){/(A)|/(A) is an irreducible component of f(D) through p) = 1 or
2, because by (3.4.2) ρ is singular, and 1 < d < 2 by (1.3.1-2). Moreover, we have
the following two opportunities, respectively after possibly shrinking a neighborhood
of ρ and renumbering Z),).

(3.8.1) D = A + D2 , and C = Α Π D2 = CP1 has at most two singular points of D2,
as well as of D\, and X (Figures 15-16(a)).

(3.8.2) D = Dx + D2 + D3, and C = Α Π D2 = CP1 has at most one singular point of
D2,Dif and X.

This easily follows from Lemma 1.4 and the classification of surface log terminal
singularities (cf. 2.4). By (1.3.3), the singularities of D2 on C coincide with these
of D\ and X. The curve C = D\C\D2 is irreducible, since / is extremal, and C,
like D2 , is ample on D\.

The subsequent considerations will run case by case, distinguished, as in the proof
of Proposition 2.1, by two natural invariants: the number a = d + 1 of components
Di and the number b of singularities of D2 , as well as those of D\ and X, on C.
So, case a.b means that D has a components Ζ),·, and C has b singular points of
D2 , as well as those of A and X. By the way, cases 2.0 and 3.0-1 will be excluded
even before an estimate of i(Z, ρ, f{D)) is found.

We begin with the situation of (3.8.1), where a = 2. The cases below are ordered
according to b = 0, 1,2.

Case 2.0. D2, as well as X and A > is nonsingular on C. So, C is an exceptional
curve of the first kind on D2 , and, by [12], 2.1,

C2

D,=-C2

D2 = \ and

i.e., C is a 1-curve on A · Since it is numerically positive on A > and A is
normal, it follows that A = CP2 with a (very ample) line C. So, A does not
have singularities of X and normally crosses D2 . But this contradicts i(X/p, D) =
η + 1 > 1 in (3.4.2).

Case 2.1. One singular point χ of D2, as well as of A and X (Figure 15(a)),
lies on C. By 3.1 and (3.4.2), we can make a blow-up g: X1 —> X at χ as in
(1.3.7), with an exceptional surface E\ (Figures 15(a-b)). Then X1, D\, D\, E\
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(b)
FIGURE 15

do not have singularities on C 1 , and, by the minimal property of g, Cl is an
exceptional curve of the first kind on D\ . In particular, (D\.Cl) = - 1 . The blow-
up corresponds to an extremal ray R\ c NE(Xl/Z; p). Since p{Xl/Z; p) = 2, we
have one more extremal ray R2 C NE(ATVZ; p) (cf. the proof of Proposition 2.1
for cases 1-3.1). Moreover, R2 is generated by C 1 because (D\ · C ) = 0 ([12],
2.1), while (D\ · Rl) > 0, and C 1 = D\ Π D\. Hence

(Kxi +Dl+Ei- C1) = (Αη + C 1 + (£, η £>}) · C1)

= deg(uTc, + (£, η £>} η £>])) = - 2 + 1 < 0,

whence
(Κχί +Dl+E1- R2) < 0.

The above implies also that \R2\ = D{, and the corresponding contraction X1 -+
Xi+/Z transforms D\ to a curve (cf. Figure 12(b)). But by construction, Xl/Z is
semistable for g*D = Dl + Ex with i(Xl/p, g*D) = η. By (12), the modification
Xl+/Z is semistable for Z>'+ + E+ with i{Xl+/p, Dl+ + Ef) < η . However, now
Xl+ has only one prime surface//? (namely, Ef , the image of E\). Therefore, we
can proceed further as in the proof of Proposition 2.1. By (12-3), we finally obtain
Ζ = X m i n /Z , which is semistable for f(D) = D m i n with i(Z, ρ, f(D)) <n+l. (In
fact, the next modification will be the last, and it will be a divisorial contraction of
Ef to the point ρ .)

Case 2.2. On C we have two singular points χ and y of D2 as well as of D\ and
X (Figure 16(a)). As above, we can make a simultaneous blow-up g: X1'1 —> X at
χ and y, with exceptional surfaces E\ and .Fi, respectively (Figures 16(a-b); cf.
Construction 2.4). Then X1 - ', D\'', Dl

2 •', E\, and F\ do not have singularities
on C1'1, and, by the minimal property of g, C1'1 is an exceptional curve of the
first kind on D\'1. Again by [12], 2.1, C 1 1 is exceptional on D\'1. In particular,
(D\'1 -C 1 · 1 ) = {D\A -C1'1) - - l _ < 0 . Lemma 2.5 implies (cf. (2.4.7)) that C 1 · 1

generates an extremal ray Rc C N E ( Z 1 > 1 / Z ; p) with \RC\ = C1·1. Hence we can
make Atiyah's flop X 1 · 1 — ->Xl>l+/Z in Rc (Figures 16(b-c); cf. Figure 7). Again
XI - 1 + /Z is semistable for Dl -1 + + E+ + F+ with

i{Xl - 1+/p, Di -1+ + E+ + F+) = i{Xl · V/J , i ) 1 · ' + Ex + Fi) = η - 1.

After this we can proceed as above. But Ζ = X m i n / Z , /(£>) = D m i n ,
and i(Z , ρ, f{D)) < η + 1. Indeed, otherwise Ζ is obtained from X1 · 1 + by three
successive blow-downs of the surfaces D\'1+ , E^ , and Ff to points that are mini-
mal in the sense of (1.3.7). Since (E+-Cl-l+) = {F+-Cl'l+) = - 1 < 0, D\-x+ must
go first, and we can accept the order £+ before Ff , possibly after a permutation of
the corresponding singularities χ and y. So, the curves φ^ = D\'l+ Π Fj+ = CP1 ,
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(a)
FIGURE 16

(c)

C 1 •1+ U φ \ , and φχ = D\'lnFi - CP 1 are exceptional. But like D11, φχ is ample
on F\ by the extremal property of its blow-down, which gives a contradiction (cf.
[27], 8.10), i.e., i(Z, ρ, f(Dj) <n + \.

In the situation (3.8.2) both cases 3.0-1 will be excluded, because then / is not
extremal, which contradicts (3.4.1) (and leads to the required inequality). For this it
is enough to check that C is not ample on D\. (Cf. the first two cases in the proof
of Proposition 2.1 for the case 1-2.2; Figures 12(a-b).)

Case 3.0. By [12], 2.1, C is a 0-curve on DX, or (C · C)D, = 0 .

Case 3.1. By [12], 2.1, after a partial resolution (1.3.7) of a unique singular point of
Z>2 on C, C is an exceptional curve of the first kind on the minimal resolution of
D\. This implies that C is exceptional on D\ or (C · C)Dl < 0.

This completes the proof of (3.4.4).

3.9. Finally, we prove (3.4.5). Again d = tt{A|* Φ 1} = ti{/(A)|/(A) is an irre-
ducible component of f(D) through p} = 1 or 2, because by (3.4.2) ρ is singular.
Moreover, if d — 2, by (1.3.3) ρ is a singularity of type V-Jj, a) with index r > 2.
It is known also that the discrepancy of Kz in D\ is 1/r. (Cf. [27], 3.9 and the
Appendix, and arguments in the proof of Lemma 2.3.) So, we may assume later that
d — 1. This means, after possibly shrinking a neighborhood of ρ and renumbering
Di,that

(3.9.1) D = Dx+ D2, and C = D\ Π D2 = CP1 has at most three singular points of
D2, as well as of D\ and X (Figures 18-20 (a) below).

The curve C = D\ Π D2 is irreducible, since / is extremal. In (3.4.5), the first
statement follows from the second. To prove the second statement we must check
only that ρ is not a canonical (Du Val) singularity of f(D2). Indeed, let a be a
discrepancy of Κχ in D\. Then as in Lemma 2.3 we obtain

where 0 < e = 1 - a < 1, and -e is the discrepancy of KDl in C. This time e > 0
because C is not an exceptional curve of the first kind on the minimal resolution
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of D2 . Thus, we must exclude the case when e = 0, or ρ is canonical on f(D2) ·
More exactly, we derive a contradiction with (3.4.3), which means the existence of
a small semistable resolution (Q-factorialization) of ρ on Ζ when ρ is a canonical
singularity of f{D2) (cf. (1.3.6) for d = 1). So, we suppose that

(3.9.2) ρ is a canonical singularity of f{D2) • In particular, C is a (-2)-curve on
the minimal resolution of D2 • Moreover, on C, D2 has only canonical singularities
with graphs A r, i.e., the exceptional curves y,· of the minimal resolution of any such
singularity are (-2)-curves, cross normally, and form a chain y\, ... ,yr. For an
appropriate renumbering of y,, only γι crosses the proper inverse image of C on the
resolution, and crosses normally. The discrepancies of C and y, for Kf^D) are 0.

Subsequent considerations will run case by case, distinguished by one natural in-
variant: the number b of singularities of D2 , as well as that of D\ and X, on C.
So, case b means that C has b singular points of D2, as well as of D\ and X.
By the way, case 0 will be excluded even before the construction starts. By (3.9.1),
6 = 0, 1, 2, or 3.

Case 0. D2 , as well as X and D\ is nonsingular on C. In addition, D\ normally
crosses D2 . So, C is an exceptional (-2)-curve on D2, and, by [12], 2.1,

<% = -C£ 2 = 2 and (KDl • C) = - 4 ,

i.e., C is a 2-curve on D\. Since it is numerically positive on Όχ, and D\ is
normal, it follows that D\ is an irreducible quadric with a (very ample) conic section
C. By (3.4.2), D\ has one ordinary quadratic singularity q, i.e., it is a quadratic
cone with vertex q. But this is impossible by (3.4.2) and (1.3.6), because then
i(X,q,D) = i(X/p, D) = 0. This contradicts the relation i(X/p,D) = n + l>l
in (3.4.2) and, in fact, the property (3.4.3), by (1.3.6). (The small resolution of ρ e X
was constructed in the proof of Theorem 1.6 for the case i(X/V, D) — 0; see §1.)

In the next cases we encounter singular points χ of D2, as well as those of X
and Dx , belonging to C (Figure 17(a)). Then by (1.3.3) and (3.9.2), χ has type
V2{r+ 1, r) on X with r > 1 (see Example (1.2.3) and [6], 1.1.2) when χ on D2 is
a canonical singularity with graph A r. In particular, χ is a log terminal singularity
of £>i having type l/(r + 1)(1, 1), i.e., it has index r + 1 and graph Ai. So, it can
be resolved by one exceptional curve ε ι, which is a (—r— 1)-curve. This implies
the following fact for a blow-up g: X1 —> X of χ as in (1.3.7), with an exceptional
surface £Ί (Figures 17(a-b)):

(3.9.3) In a neighborhood of ει = D\ C\EX, X, D\, D\, and E{ are nonsingular, and
D1 has only normal crossings. Moreover, ε\ is a (—r — \)-curve on D\ with r > 1.

χ

D2

( a ) ( b )

F I G U R E 1 7
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(c)

(a)
FIGURE 18

We remark that y\ = D\ Π Ε\ is a proper bimeromoφhic transform of j \ from
(3.9.2). It has at most one singularity x' of D2, as well as those of X1 and E\,
which is similar to χ (Figure 17(b)). Namely, it exists when r > 2, and has type
V2(r, r — 1). So, one can also prove (3.9.3) by induction on r. It can also be proved
that ει is an r-curve on E\, and £Ί is a cone over a rational normal curve of degree
r with a hyperplane section ei (cf. cases 2.0 and 0 above). Now we continue our
considerations.

Case 1. One singular point χ of D2, as well as that of D\ and X, lies on C
( F i g u r e 1 8 ( a ) ) . B y 3 . 1 a n d ( 3 . 4 . 2 ) , w e c a n m a k e a b l o w - u p g : X 1 - > X a t Λ : a s i n

( 1 . 3 . 7 ) , w i t h a n e x c e p t i o n a l s u r f a c e E \ ( F i g u r e s 1 8 ( a - b ) ) . T h e n X 1 , D \ , D \ , E \ d o

not have singularities on C 1 = D\ Π D\, as well as on ει = D\ Π Ε\, and, by the
minimal property of g, C 1 is a (-2)-curve on D\ . In particular, (D\ · C1) - - 2 ,
and by [12], 2.1, C 1 is a 1-curve on D\. The blow-up corresponds to an extremal
ray R\ c 'NE(X1/Z; p). Since p(Xl/Z; /?) = 2, we have one more extremal ray
i?2 c ~NE(Xl/Z; p) (cf. the proof of Proposition 2.1 for cases 1-3.1). Moreover,
(D\ · R2) = 0, and |i?2| does not intersect C . Indeed, otherwise C 1 , like D\ , is
ample on D\ because {D\ · Rl) > 0. Then as in case 2.0, D{ = CP2 with a (very
ample) line C 1 , which is impossible, since e\ is exceptional by (3.9.3).

Thus, {D\ · R2) = 0, whence (Z){ + £Ί · Λ2) = 0- But (£Ί · Λ2) > 0 because
(Ei - Ri) < 0 and {E{ · C1) > 0. So, (£>j · R2) < 0 and |Λ2| c D\ . Since

Z ; P) is generated by R\ and i? 2 , and {D\ -Ri) > 0, it follows that |i?2 | =
U is a curve whose irreducible components Bj are exactly the irreducible curves
on D\ not intersecting C 1 . Note that the /?, 's intersect ει . So, a semiample 1-
curve C 1 determines a birational contraction c: D} —• CP2 with the exceptional
locus |Λ2 | . But the singularities qi of D\ belong to \R2\. By (3.9.3), they do not
belong to ει . I contend that on each Β ι there is at most one singularity qt, and it
is canonical. Indeed, as in the proof of Lemma 2.5, we see that

because the discrepancies of D\ and Ex for Kz + f(D) coincide with those of C
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and yi for Kf(D), respectively, and so all of them are 0 by (3.9.2). Hence

(KD, + C 1 + ei • Bt) = (Κχι +Dl+El- Bt) = (Kx> + D\ · Bt) = 0.

This implies that the 5, 's are disjoint curves that are exceptional of the first kind
on the minimal resolution D\ —> D\. Moreover, the singularities #, of D\ are
canonical, and there is at most one on each 5, . (Their graphs are A*, and the
exceptional curves of /),/?,· are (-2)-curves combining a chain with the proper
inverse images B\ and ε[; see Figures 18(b-c).) So, the composition D[ —• D\ —> CP2

can be decomposed into monoidal transformations with nonsingular points, one of
which, c(Bj), belongs to c(ei)\c(C1). Since

(C'-e,),,. = 1,

c(e\), like c(Cl), is a line on CP2 . The pencil of lines through c(5,) induces a
rule D[ —> C 1 on D[ such that its generic fiber Cr intersects C — C 1 normally
and does not intersect e[ (Figure 18(c)).

By (3.4.2) and (1.3.6) in 3.1, we can extend D[ to a small semistable
resolution (or a Q-factorialization) X' —> X\ (possibly nonprojective//?). Since
D[ + D'2 and Κχ· + D'2 are linearly trivial in a neighborhood of Cr, we can apply
Nakano's criterion. This implies that the generic fiber Cr of D\/Cx is cut by a
surface S defined over a neighborhood of ρ e Ζ . Let h: X' —> Ζ be the canonical
projection. Then if h(S) is Q-Cartier, we have h*h(S) — S+dD[+eE[ with positive
rational numbers d, e. In addition, h*h(S) is numerically trivial over Z , which
is impossible for positive d on Cr. So, h (S) is not Q-Cartier, which contradicts
(3.4.3).

Case 2. This time, two singular points χ and y of D2, as well as of D\ and A", lie
on C (Figure 19(a)). As above, we can make a simultaneous blow-up g: X1'1 —* X
at χ and y, with exceptional surfaces E\ and F\, respectively (Figures 19(a-b),
cf. Construction 2.4). The points χ and y are canonical on Z>2 with graphs Ar

and A.s, respectively. We can assume that r < s. Again C 1 · 1 = Z)}'1 nZ)] ' 1 is a

(d)

FIGURE 19
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(-2)-curve on D\-l. Hence (£>}·' - C 1 · 1 ) = - 2 , and by [12], 2.1, C 1 · 1 isaO-curve

on Z>J' l . This defines a ruling on £)} · l with two disjoint and exceptional sections

ei = θ } ' 1 Π £i and φι = D\'x Π F\ . So, the ruling is not minimal, i.e., it has a
nonirreducible fiber. Since D\'' is nonsingular on these sections, there exist curves
Bi c D\'' in such fibers that intersect ε ι and do not intersect φι. Now we consider
a blow-up g: X1 -> ΛΓ only at x , with exceptional surfaces £Ί (Figures 19(a-c),
cf. case 1). I contend that Bi's, the proper bimeromorphic transforms of the above
Bt 's, generate a second extremal ray R2 c NE(XX /Z ; />) · Moreover, (Dj · -K2) = 0,
and \R2\ = \JBi d o e s n ot intersect C 1 . Indeed, by construction, {D\ · Bt) -0. So,
{D\ · JR2) < 0. But C = D\ P\Ei is a 0-curve on the minimal resolution of D\ and
is movable on D\ with (C1 · Cl)D, •= {D\ · C1) > 0. Hence {D\ · R2) = 0 is the
only possibility, and R2 is of a flipping type with \R2\ = \JBi. Note that the 5, 's
intersect ει .

Then as in case 1 we check that

(KD] + C 1 + 6 l · B{) = (A*, +Di+Ei. Bi) = (Κχί + D\ • Bi) - 0,

and at most one singularity #, lies on each 5,, and it is canonical on D\. Now
we can make a flop X1 —•> Xl+ in R2 (Figures 19(c-d)). It will be symmetric
and can be constructed as follows. First, we consider a small semistable resolution
(or a Q-factorialization) X' -> X\ (possibly nonprojective//»). Then we make
Atiyah's flops in B\ 's, the proper bimeromorphic transforms of 5, 's, after which
the curves intersecting B\ in the last resolution become exceptional curves of the
first kind intersecting ei normally, etc. Each elementary flop with the boundary
in this procedure coincides with Kulikov's flop of type I ([12], 4.2, Figure 4) (cf.
Figure 6). Finally, we contract the curves 5, and the resolved ones on D\ . Then
we contract the flopped curves that do not intersect ει on D\ . This concludes the
construction. Note that Xl+/Z is again semistable for Dl+ with

i{Xx+lp, Dl+ + E+) = i(Xl/p ,Dl+Ei) = i(X/p, D) - 1 = η

and with two exceptional divisors D\+, E\jp. So, by (3.4.2), Ζ is obtained by
two successive divisorial contractions of D\+ and fij1" to points (in this order since
Kx\+ + Dl+ + E{ are numerically trivial on the flopped curves). So, we interchange
the roles of D\ and £Ί . Moreover, by the demonstration of (3.9.3), χ', the new
point χ, has the smaller index r—\. Hence we reduce case 2 to case 1 by induction.

Case 3. Finally, the three singular points χ, y, and ζ of D2, as well as those of
Di and X, lie on C (Figure 20(a)). Points x, y, and ζ are canonical on D2 with
graphs A r, As, and A,, respectively, and we can assume that r < s < t. First,
we consider the case when 5 = 1 . Then r = s = \ < t. As above, we can make
a blow-up g: X1 -> X at z, with exceptional surfaces Ει (Figures 20(a-b)). By
(3.9.3), X1, D\, D\ , Ει are nonsingular on ει = D\ Π £Ί , and D\ has ordinary
quadratic singularities at χ and y on C 1 = D\ Π D\, which are identified with
the corresponding points on X. Now (3.9.2) and [12], 2.1 imply that C 1 is an
exceptional curve of the first kind on the minimal resolution of D\. Hence C 1 is
a double irreducible fiber of a ruling D\ —* ε', i.e., its generic fiber intersects ει in
two points. So, it defines a double covering ει -* ε' of Riemann spheres with two
branch points q = C 1 Πει and q' e ε( . Since D\ is positive on Ε ι and numerically
trivial on C 1 , the second extremal ray R2 c NE(X ! /Z ; p) is generated by C 1 , and
the ruling ϋ\/ε' is defined by the corresponding contraction. In particular, KDi + ε (
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is numerically equivalent to

KD{ + C 1 + ε, ={ΚΧι +Dl+El) \D{

and numerically trivial with respect to the ruling. Moreover, its nonirreducible fibers
that do not intersect q' have the form Bt U B\, where Bt, B\ are irreducible curves
with at most one canonical singularity on D\ at the unique intersection point Β, Γ\Β[
(Figure 20(b)). If such a fiber contains q', then D\ is nonsingular on Bio, B'io,
and Bio, B'io intersect normally in one point q' (Figure 20(b)). Both curves in
both cases are exceptional of the first kind on the minimal resolution of D\ and
intersect ει normally in one point (cf. case 1). Make the flop X1 —-> Xi+ in the
curves B\ (including 2?)). This defines a meromorphic modification, and Xl+ is
nonprojective/Z (cf. case 2). The flop contracts B[ 's and converts the ruling into a
minimal one D\+ —> ε'. Moreover, D\+ has a singularity only in fibers corresponding
to q and q'. Of course, D\+ has the above two singularities χ and y on C 1 + .
The same holds for the fiber containing q' when it has singularities on D\+ .

If (βί")£ι+ > - 1 , then by [12], 2.1, (ε+)|+ < 0. However, by the same reasoning

and (3.9.3), (e\)\ > 0 . Hence replacing the flop by a partial one, we obtain (ε^)|.+ =

0, which gives a ruling on E+ not intersecting D\+ . The last assertion, by Nakano's
criterion, leads to a contradiction as in case 1. So, we can assume that {&χ)2

Βι+ =

-m<-2.
The fiber C 1 + can be modified into a nonsingular one in the following manner.

Make blow-ups of χ and y, then contract C 1 + and one of the blown up curves.
We can proceed similarly with the fiber containing q' when it has singularities on
D\+ . This leads to a nonsingular and minimal ruling D^in — F/ -> ε' with a nonsin-
gular double section 8fin such that (fif™)2 = - w + 2 or -m + 4 < 2 when D\+ has

(a)

(c)

FIGURE 20
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singularities only on C 1 + or also on the fiber passing through q', respectively. So,
the double section ef1"1 is linearly equivalent to 26/ + ast, where bt is a negative
section with self-intersection - / , and Si is a fiber. Therefore, (ε""11)2 = 0 (mod 4)
from which it is < 0. It is well known also that σ > 2/, which then implies that
(e^ i n) 2 = 0, / = 0, and efin is linearly equivalent to 2b0. This is impossible because
ε™10, like ει, is irreducible, which concludes the proof for s = I.

By the classification of canonical singularities, in the remaining cases r = 1,
s - 2 < t < 4. Again we can make a blow-up g : I ' - > l at ζ (cf. Figures 20 (a-
b)). However, this time the curve C 1 is exceptional on D\. Its contraction D\ —> D'
defines a del Pezzo surface D', nonsingular on the image ε' of ει . Indeed, C 1 is
an exceptional curve of the fist kind on the minimal resolution of D\, and χ, y
are resolved on it by (-2), (-3)-curves respectively. So, successive contractions
of C 1 , (-2) and (—3) curves after the resolution of χ and y give D' and its
nonsingularity on ε'. This shows also that C 1 is contracted to a cuspidal singularity
q on ε'. As we know,

and it is linearly equivalent, over a neighborhood of ρ e Ζ , to KXi + D\ + D1 + E\.
Hence, by adjunction, KD\ + 2C1 + ει is numerically trivial on D\, from which

KD· + e' is numerically trivial on D'. On the other hand, D', like D\, has only
log terminal singularities and, by [27], 8.10, ε' is ample on D\ like C on D\. I
claim that KD> + ε' is linearly trivial on D\ , i.e., D' is del Pezzo with a Cartier
anticanonical divisor ε' and with only canonical singularities. Otherwise, D' has
noncanonical singularities, and on the minimal resolution h: D" —• D' a log divisor

A* (AD. + e') = AD» + ε" + ^ C'C·

is numerically trivial, where ε" is a proper bimeromorphic transform of ε', the C, 's
are exceptional for h, 1 > c, > 0 are rational, and at least one c, > 0. Now ε" is
semiample and numerically trivial only on C, 's. So, if Ε c D" is an exceptional
curve of the first kind, then it intersects ε" normally in one point and does not
intersect C, 's with c, > 0. After contraction of Ε we get the same situation.
Finally, we can assume that D" is minimal, i.e., has no exceptional curves of the
first kind. Since KD>> is positive on C, 's with c, > 0 and negative on a generic curve
on D", by the classification of complex algebraic surfaces, D" is a rational scroll F/
with / > 3 and a numerically trivial log divisor

which is impossible for a fiber si.
Thus, D' is del Pezzo with a Cartier anticanonical divisor ε' and with only canon-

ical singularities. Its degree is

1 < (ε')θ' = («i)o; + 1 + 1 + 4 = (-t - 1) + 6 = 5 - t < 3.

Now we replace #: X1 —> X by its composition with a small semistable resolution
(or a Q-factorialization) of the singular points of D\ outside C 1 . According to
the above, such points are canonical on D\ as on D', and we have the resolution
by (3.4.2) and (1.3.6) in 3.1. Then D' will be a nonsingular generalized del Pezzo
surface with an anticanonical divisor ε'. "Generalized" means that ε' is semiample
and numerically trivial only on blown curves. Suppose we have an exceptional curve
of the first kind B\ c D'. Then it intersects e' normally and in one point; in
particular, outside the cusp q. So, its proper bimeromorphic transform 5, c D\
is again an exceptional curve of the first kind, intersecting ε' normally and in one
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point outside C 1 . As above, we can make a flop in 5, . Any such transformation
increases (ει)^, and (ε')2,! by 1. After t such flops we obtain (ei)2,, = - 1 and

( ε ι ) | = 0, which leads, as above, to a contradiction with (3.4.3). Hence, we have
at most t - 1 such flops. They correspond to contractions of B\ 's and preserve the
situation except the degree, which will be at most (K')2

D, = 5 — t + (t — 1) = 4 after
such modifications. Thus we can assume that the modified D' is minimal. By the
classification of complex algebraic surfaces, the last is possible only for D' = CP 2 ,
and CP1 χ CP1 = F o or F 2 . But in these cases we have the degrees 9 and 8,
respectively. This contradiction concludes case 3.

Hence Theorems 1.3, 1.6, and 1.7 are proved. As applications we consider first.

4. SEMI-STABILITY: EXPLICIT FORMS

Suppose ρ e D is a semistable point. Then by (1.3.5) we have its small semistable
Q-factorialization. This reduces the description to the case when ρ is Q-factorial.
Moreover, by (1.3.6) ρ is nonsingular or has index r > 2 and by (1.3.2) d < 2.
We know also that for d = 2, such a singularity has type Vi(r, a), i.e., locally is
isomorphic to such a singularity (see (1.2.3)). The following covers the remaining
cases.

4.1. Theorem on moderation. Let ρ e D be a Q-factorial semistable singularity with
d = 1 (see 1.3). Then it is isomorphic to a moderate singularity V\(r, a; n) (see
1.2.4), where r > 2 is the index of ρ. Moreover, the divisorial blow-up in (1.3.7)
coincides with the weighted blow-up (see [27], case 1 in Kawamata's Appendix) and
the discrepancy of G will be l/r.

It follows from [13, Theorem] and from

4.2. Proposition. Let ρ e D be a Q-factorial semistable singularity with d = 1 (see
1.3), and g: Υ —> X a blow-up from (1.3.7). Then the discrepancy of G will be
l/r, where r > 2 is the index of ρ, and the index at any point q of Υ on G is at
most r.

Proof. Thus, we must check that g belongs to the case (IN) in [13]. If d = 1 for
the point q € G, then G is Carrier in the neighborhood of q . So, its index divides
r, like the index of f*(K + D) = KY + D' + (k/r)G, where D' is the proper inverse
image of D, and 1 < k < r - 1.

Now suppose that d > 2 for q e G. Then d — 2 and q belongs also to
D' Π G. So, q has type V2(s, a), where s is the index of q. On the other hand,
for the next blow-up / : Ζ —• Υ, as in (1.3.7) with an exceptional surface F we
have f*g*(K + D) = Kz + D" + (k/r)G' + (l/r)F , where D" and G' are the proper
inverse images of D and G, respectively. By Lemmas 2.5-6, 1 < I <k. Since
/* (£>' + G) = D" + G + F , the multiplicity α of F in G is rational and belongs
to (0, 1). Hence f*(KY + D' + G) = KZ+ D" + G' + ((/ + a(r - k))/r), F, and we
know that

5 - 1 l + a(r-k) l + r-k
s ~ r r

So, s < r when I < k — I. Moreover, by [13], 2.1, the discrepancy of G will be
l/r.

In the remaining cases 1 < k = I < r-1, and we show that they are impossible. As
in 3.9 we will run case by case, depending on the number b of singularities of D'; as
well as those of G and Υ on C = D'nG. But first we change notation: now X1 := Ζ ,
Χ :=Υ, Ζ := X, g := f, f := g, A := G, D2 := D', D\ = G', D\ = D",
and E\ :— F. By our assumption, b > 1. Since C is contracted to a log terminal
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point on D, we have b = 1, 2, or 3 . Again we will derive a contradiction with the
Q-factorial property of ρ . By the minimal property of g, the curve C = D\ Π D2 is
exceptional but not of the first kind on the minimal resolution of D2 .

Case 1. We have an extremal ray R2 C NE(Xl/Z; p) with (D\ -R2) = 0, and \R2\
does not intersect C 1 . Indeed, otherwise C 1 , like D\ , is ample on D\ because
(Z>2 * -R1) > 0. Then D\ is a cone β over C 1 or F i t The first case is impossible,
since ει = D\ Π Ε\ is exceptional by construction. In the second case ει will be the
negative section of Ws, and the singularity χ = q e C has type V2{s, s - 1) (cf.
3.9.3)). But this is possible only when χ on D2 is a canonical singularity with the
tree A^_i and C 1 is a (-2)-curve on D\. Hence k = I — 0, which contradicts
our assumption. This shows also that «i has a unique singularity q of X1 and, as
above, with index dividing r.

Thus |i?2| = \JBj is a curve whose irreducible components Bt are exactly the
irreducible curves on D\ that do not intersect C 1 . Note that the Bt 's intersect ει.
A semiample curve C 1 determines a birational contraction c: D\ —> Q with the
exceptional locus |i?2|, and c(si) is a generator of a cone β , whereas the vertex of
Q corresponds to the singularity q € ε ι . In addition, at most one singularity qt lies
on each Bt, and with index dividing r. Indeed,

\ +(f°gy(Kz+f(D)) - Kx> +D\ + j(D\ +EX)

and

(KD] + C 1 + ei ·*,·) = (Κχι +Dl+El-B{) = (κχ1 +D\ + j(D\ +El)-Bl)=0,

because (D\ + Ei · Bf) = -{D\ · Bt) = - ( C 1 · B{)Dl = 0. This implies that the 5, 's
are disjoint curves that are exceptional of the first kind on the minimal resolution
D\ - D\ .

By (1.3.5), after a semistable Q-factorialization of X1 (possibly nonprojective
I p) we can assume that all singularities of X1 on D\ are Q-factorial. By induction
on the depth, we know that each singularity of D\ is log terminal of index t\r and
with the single log discrepancy \jt. (More exactly, such singularities have the type
l/t2(a, t — a) [6, Lemma 1.2].) Now not every curve 2?, intersects ει but each
B, belongs to a chain intersecting ει . If 5, intersects ει outside the singularity q ,
then, as in case 1 in 3.9, it will have no singularities on D\ and will be an exceptional
curve of the first kind on D\. So, we can make Atiyah's flop in Bj, which contracts
Bi on D\. After such transformation the self-intersection of ει on the minimal
resolution of D\ decreases by 1.

We can proceed similarly in the case when β, passes through q . The existence
of such flops can now be derived from [9], 2.4 (cf. Lemma 3.5) or by the arguments
of §2 (see Remark 3.6). Such a flop is symmetric and semistable, contracts Bi to q
on D\, and does not change the index t of KDi + ει in q . Due to the monotonic
property of log discrepancies (cf. 2.6), the self-intersection of ει on the minimal
resolution of D\ will remain the same or decrease by 1. The last case is possible if
Bi has a singularity of the same index t as that of q , and its exceptional divisor with
the log discrepancy \/t after the contraction of Bt replaces the exceptional divisor
with the same discrepancy for a minimal resolution of q ([27], 3.9). As we know,
after contracting all Bi's, ει will be a generator, i.e., its self-intersection number
on the minimal resolution of D\ = Q will be 0. Hence, after a partial flopping we
obtain the situation when ει is the exceptional curve of the first kind on the minimal
resolution of D\. Since ει has exactly one singularity q , by [12], 2.1, ει is also an
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exceptional curve of the first kind on the minimal resolution of E\. According to
the classification of the log terminal singularities, ει is exceptional on both surfaces
D\ and E\ and we must have the flip in ei . The point is that in the nonprojective
case we have no theorem about a contraction of ει on X1 to a point. Nevertheless,
we have

4.3. Lemma. There exists a semistable modification of ει that contains a ruling
surface with the generic fiber intersecting only the modification of D\ along its section.

Proof. We can proceed in the same way as in the case when ει contracts to a point
(cf. the proof of Proposition 2.1 in case 3.1). After making a blow-up at q we do
Atiyah's flop in the modification of ει . The restricted log canonical divisor on the
modified blown-up surface F will have the form A> + C\ + C2 + Cy, where C\ is
the modified intersection with D\, C2 is the modified ει, and C3 is the modified
intersection with E\. Hence Kp + C\ + Ci + C3 is numerically trivial on C2 and
is negative on C\ and C2. In particular, we have an extremal contraction on F,
negative with respect to KF + C\ + C2 + C3. If it gives a ruling on F, we get the
required modification with a surface F.

Otherwise, we have a divisorial contraction of a curve C on F. If this curve does
not intersect C2 , then, by construction, C intersects C\ and C3, which contradicts
the connectedness lemma ([27], 5.7). So, since F is nonsingular near C2 , C = C\
or Ci. In this case we have a singularity on C with smaller index and we can
assume now that the required modification in C exists by induction. •

The surface F can be contracted on the modified X along the generic fiber of the
ruling, which gives a contradiction with the Q-factorial property of ρ. Indeed, this
time the r-multiple of the scheme-theoretic image of Κχ + f(D) is linearly trivial
and has the form r(Kx, +D') in a neighborhood of the generic fiber of the ruling on
F, where X' and D' are the modifications of X and D\ , respectively. In addition,
D' is linearly equivalent to -F near this fiber. So, we can apply Nakano's criterion
after the covering trick ([27], 2.4.1 and 2.5). In particular, this implies that in fact
KXi + D' is linearly trivial near the generic fiber. (CP1 has no unramified covers!)

Case 2. Let χ = q, and let g: X1 —> X be its blow-up. Then we have an extremal
ray R2 C NE(X'/Z ; p) with (Ex · R2) > 0. Note that by [12], 2.1 and the minimal
property of / , C 1 = D\ ΠD\ has positive square on D\. So, if {D\ -R2) = 0, the
support |i?2| c D\ does not intersect C 1 and we can derive a contradiction as above,
because after the semistable flop in R2 we get a different order for contractions of
D\ and E\ (cf. case 2 in 3.9).

Suppose now that {D\ · R2) > 0. Then (D{ + Ex · R2) = -{D\ · R2) < 0 and

+Dl +EX -R2) = ( ( / ο g)*(Kz +f(D))+ r-=^{D\ + A ) -

The corresponding contraction is semistable and is not to a point. So, using Theorem
1.6 we can decrease i(Z , ρ, f{D)), which is impossible if we consider the blow-up
of ρ from (1.3.7).

Case 3. In this case the graph of ρ as a log terminal singularity of f{D) has type Bm

or E 6 , E 7 , Eg. Moreover, C will correspond to a vertex with tree edges. The above
arguments work when C 1 has positive square on D\. So, by the minimal property
and [12], 2.1, C is a (-2)-curve on the minimal resolution of D2 . The singularity
ρ is not canonical, and it has two equal smallest discrepancies -k/r. A direct check
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according to their classification [4] (Figure 9) gives only cases of type Dm , whereas
y and ζ are ordinary quadratic singularities on Di and D\. Moreover, since χ = q
is not canonical on £>2 , we have a singularity q' on ει of index t\r. C 1 is a fiber of
a ruling on D\, corresponding to Ri. This ruling is numerically trivial for KD\ + ει,
and the curve ει is a two-section. By [27], 3.9, ει has exactly one singularity q'.
This implies that q' is the second branch point of the double cover ει -> ε' induced
by the ruling (cf. case 3 in 3.9). Using a Q-factorialization and induction we may
assume that all singularities on D\ are of type l/t2(a, t - a), in particular, with a
discrepancy < — 1 /2. Then contracting the exceptional components of the fiber C
of the ruling passing through q', we obtain the same situation with the irreducible
fiber C. Since q' is again singular, C has one more singularity q" e C. Now
we consider a log divisor KDi + e\ + aC with maximal a > 0 such that it is still
log canonical. According to the connectedness theorem ([27], 6.9), q' will not be
log terminal for KDi + ει + aC . If a = 1, then q" will also not be log terminal
but log canonical for KDi + ε\ + C , because KD\ +e\+C is numerically trivial on
C . Then, according to restrictions on singularities, q" is cyclic having the graph
A3 with two (-2)-curves at the ends ([5], 9.6). But such a singularity on D\ is not
of type l/t2(a,t-a) ([6], 3.1).

Suppose now that a < 1. Then, using the log terminal blow-up q' and [27], 3.9,
we can check that a = 1 /2, and KD\ +ε\ + (1 /2)C is pure log terminal and has index
2 at q" , which contradicts the condition that one of its discrepancies is < - 1 /2. •

4.4. Remark. In the last proof and in the following one, an explicit form for
terminal singularities and their classification plays an important role. In particular,
we use [13], [13] uses [27], Kawamata's Appendix, and the last one uses [15].

Another approach is related to the notion of" n-complement" ([27], 5.1). First, we
must exclude case 3 even when I < k for all three singularities on C. This means
that Κ + D and Κχ + f(D) have a 1-complement in a neighborhood of C and ρ,
respectively (see Corollary 4.9 below). Again this was proved by Kawamata [5], 10.9,
using Mori's classification; for his proof it is enough that f{D) is Cartier. I give an
outline in the case when ρ has type Dm with m > 4. This time Kz + f(D) has
a 2-complement ([27], 5.2.3 and 5.12) because we have a resolution of Ζ minimal
on f(D). We may assume also that it is nonexceptional. Suppose, as above, that
the singularities χ, y of X on C correspond to the edge (-2)-curves of the graph
of ρ £ f{D). Then the complementary divisor cuts a curve γ on D\ intersecting
C only in ζ , the third singularity of X on C. The inverse image γ1 of γ on the
blow-up X1 -> X of ζ does not intersect C 1 . We need to eliminate only the case
when I < k. Hence C is a (—«)-curve with η > 3 (see Figure 9(a)) and C 1 is
semiample on D\. So, y1 generates R2 , and the last ray is of a flipping type. By
virtue of the minimal property of the blow-up, y1 , like γ , is an exceptional curve
of the first kind on the minimal resolution of A . Using induction on depth, we
can assume that we know the singularities on D\ (see case 3 in the above proof
and Corollary 4.6 below). Then we may check that γ1 has at most one canonical
singularity and (Kx, + D1 + E\ · R2) < 0. So, we can do a flip-flop and derive a
contradiction with the fact that the first blow-up of ρ extracts C on /(£>).

On the second step we must check that ρ is a singularity of type l/r2(a, r — a)
on f(D). Indeed, after the canonical covering D —> f(D), we get a cyclic canonical
singularity ρ given by an equation xy + z' = 0 with an invariant action of Z r .
Hence r\t, ρ and ρ have types l/ i( l , -1) and l/tr{a, t. — a) on D and f(D),
respectively. The last singularity has a unique exceptional divisor with minimal log
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discrepancy \jr only for t = r. Therefore, ρ has type l/r2(a, r - a) on f(D)
and Vx(r, a; n) on Ζ . In particular, this proves that ρ has type (1) [22] and is
moderate.

Proof of Theorem 4.1. By [13], Theorem, ρ must be a quotient or hyperquotient
singularity of type l/r{a, -a, 0, 1) with φ = xy + / ( ζ Γ , ιυ) and o r d / = 1 (see
also the last remark). Then we can reduce it to the case with f = zr + w" . Since in
this case we have only one exceptional divisor G with minimal log discrepancy, the
blow-up (1.3.7) is Kawamata's weighted blow-up (cf. [13], Theorem 2.3). Indeed,
Kawamata's blow-up is projective, semistable, and extremal (cf. Corollary 4.5). So,
both extractions can be constructed as the log canonical model for an appropriate
resolution and boundary g~lD + (r - 1 - e)/rG + ΣΕί on it, where the is, are
exceptional divisors Φ G. •

4.5. Corollary on a generalized flower pot. Let g: Υ —> X be the blow-up from (1.3.7)
of a semistable singularity ρ of type V\(r, a;n). Then its exceptional divisor G is
log terminal del Pezzo with p(G) = 1, and it has at most three singularities χ, y,
and ζ of types V2(a, -r), V2(r - a, -r), and V\{r, α; η - 1). More exactly, the
respective singularity exists when a, r — a, and η > 2. Furthermore,

i{X,p,D) = {r-\)n

independently of D. The difficulty of this point is equal to r(r - l)/2 for n>r, and
to n(2r — η - 2)/2 otherwise.

The semistable resolution is possibly minimal with respect to the number of its
exceptional divisors. Then it is economical in the sense of (1.2.3) if and only if η = 1
or r = 1, or equivalently, if and only if ρ is the quotient singularity or is Gorenstein
semistable.

Proof. See [13], 3.4 and Remark 2.5. •
The resolutions of V2{a, -r) and V2(r - a, r) play the role of leaves. They are

nontrivial for r > 3. A "flower pot" type of semistable degeneration of an Enriques
surface ([19], p. 85) corresponds to r = 2 and a — 1.

4.6. Corollary on a garland of points. Let g: Υ —> X be a Q-factorialization of a
semistable point ρ e D with d = 1 and with index r > 2. Then its exceptional
curves form a chain C\, ... ,Ca, where σ = σ(Χ, ρ). There are σ + 1 singular
points p\ € Ci, p2 = Cx Π C2, ... , ρσ = Ca-{ Π Ca, pa+\ 6 Ca on Υ of similar type
Vi (r, a; «,). Moreover, Ci intersects the edge curve of the minimal resolutions of Pi
and Pi+ι, and the types of these edges are opposite. Furthermore,

independently of D. The difficulty of this point is equal to the sum of those for the p,
(see Corollary 4.5).

We denote the type of such a singularity of X by V\(r, a; «i, . . . , na+i) =
Vx(r, a; Έ), where η = («ι, . . . , na+\). The numbers in parentheses are invari-
ants of the singularity and are independent of the choice of D. It is a quotient
singularity if and only if σ = 0 and n\ = 1. The singularity ρ on D has the same
analytic description as l/r2(a, r - a) in [6], 3.1, if we replace L by a wheel with
σ + 1 (-2)-curves. It is analytically equivalent to the quotient singularity of type
l/(a+l)r2(a,(a+l)r-a).

Proof. Since the singularities on Y/p are Q-factorial, we have σ = σ (Χ, ρ) ex-
ceptional curves Q/p. According to the classification of the surface log terminal
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singularities, these curves form a tree. There exists at least one singularity /?, e Y/p
on some C, with index 2 < t\r because otherwise Υ is nonsingular//; and ρ has
index 1 by the contraction theorem (cf. (1.3.6)). But Kg-iD = g*KD is numerically
trivial on C,. Hence C, is the exceptional curve of the first kind on the minimal
resolution of g~lD and it has one more singularity Pj. By the classification of
surface log terminal singularities, Υ has exactly two singularities on C,, and other
curves Q can intersect C, only in them. The required properties of the configura-
tion, for an appropriate renumbering of C, and ρ,, follow from the statement on
types of singularities and the location of edge curves on the minimal resolution//;,.
It is enough to check this for σ = 1. We know that in this case C = C\ has two sin-
gularities p\ and P2 of type V\(t\, a\; n{) and V\(t2, a2; «2), respectively, where
U\r and is the index of /;,. If t is odd and t\t\, then using a covering of order t
over a neighborhood of C and the same configuration properties of a covering curve
as above, we can check that tfo. So, t\ and t2 have the same odd divisors and one
of the ti 's equals r, say t\ — r, whereas ti\r. Therefore, again by a covering trick,
h — h = r • Note that after the canonical covering of order t2 , Pi converts into a
canonical singularity (!).

Each singularity />, has only one exceptional divisor with smallest discrepancy
- ( r - l)/r. By the monotonic property of the discrepancies for the minimal resolu-
tion, the curves between them on the minimal resolution of g~lD must be contracted
to obtain the minimal resolution of ρ. Then [6], 3.1 implies the equality a\=a2 — a
and the required properties of C passing through pt. (See also [6], 3.2.) •

4.7. Corollary on genericness. The semistable singularities of type V\ (r, a; « i , . . . , ησ)
are exactly the terminal hyperquotient singularities of type l/r(a, -a, 1, 0) or type
(1) in Mori's classification [22] with

σ+Ι

f\zr, w) = unit· Π f(zr,w),
i=\

where the f(z, w) are analytic functions having no common factor and with
ordyi(z,0) = 1 and oxafi{0,w) = n, > 1. So, semistable singularities form a
nonempty open subset of the singularities of given type, or even of given type and given
ord/.

We consider the topology on germs of analytic functions for which the natural
maps to fc-forms are continuous. The corollary works even for canonical singularities,
i.e., when r = 1, if we replace the last conditions by an equivalent one: all ord./; = 1.

Proof. For a semistable singularity V\(r, α; η), the canoniccal singularity on the
canonical cover of D has type 1/(σ + I)r2(a, (σ + \)r — a). This implies that it is
a hyperquotient singularity of type 1 /r(a, — a, 1,0) given by an analytic function
xy+f(zr, w) with ord/(2, 0) = σ+1. On the other hand, by Reid-Mori-Shepherd-
Barron-Ue ([10], 2.2.7), f(z, w) can be written as a product of σ + 1 irreducible
factors f(z, w). They are nonassociated because the singularity is isolated. More-
over, ordfi(z, 0) = 1, and this gives the required factorization.

Conversely, if we have a hyperquotient singularity of type l/r(a, -a, 1,0) with
/ under consideration, then it is semistable for a divisor D that is the quotient of
the hyperplane w = 0. Indeed, the factorization of / gives a Q-factorialization of
a semistable singularity such as in Corollary 4.6 (cf. the proof of [6], 1.3, and [10],
2.2.8). This reduces the proof to the case when f = f with ord/(z, 0) = 1 and
ord/(0, w) = «,. The last singularity is analytically equivalent to V\(r, a; «,).
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Now suppose that ord/(z, w) = σ + 1 and fa+\ is its homogeneous form of
order σ + 1. Then we can modify the coefficients of / slightly, and only in fa+\
that ord/(z, 0) = σ + 1 and

σ+Ι

fa+i(z, w) = c o n s t · J J ( z - UiW)

1=1

w i t h d i s t i n c t a, e C . T h u s , / p o s s e s s e s t h e r e q u i r e d f a c t o r i z a t i o n . •

4.8. Corollary. Let ρ be a 3-fold terminal point of index r. Then for any integer I,
1 < / < r - 1, there is an exceptional divisor/ρ with discrepancy l/r.

Proof. First, this holds for the quotient singularities, in particular, for V\(r, a; 1).
Second, Corollaries 4.5-6 imply this for V\{r, a;n) and any semistable singularity.
Since semistable singularities (or even the quotient singularities V\(r, a; n)) form a
nonempty open subset of the singularities of given type, the corollary holds for the
main types (1) in Mori's classification. Types (3), (5), and (6) ([22]) are included in
Kawamata's Appendix ([27], Appendix: cases 2, 3, and 5). In the remaining cases
(2) and (4), r = 4 and 3, respectively. Again according to Kawamata, we can assume
that 2 < / < r - 1. Moreover, in case (4) the generic singularity is the hyperquotient
singularity of type 1/3(1, 2, 2, 0) given by the function w2 + x3 + y3 + ζ 3 , and
we can find the required divisor using the weighted blow-up ([27], Appendix: Case
4). In case (2) the generic singularity has type 1/4(1, 3, 2, 1) with the function
x2 + y2 + ζ + w2 , which is the quotient singularity 1/4(1,3,1). The last possesses
the required exceptional divisor. •

In the semistable case we can find a good elephant even when the contraction is
not extremal and its fibers are not irreducible (cf. [11], 1.7).

4.9. Corollary. Let f: X —» Y/Z be a semistable contraction that is negative/V with
respect to Κ and does not contract divisors of D/V. We assume also that V is a
fiber of a projective morphism, for example, V = pt. Then Κ + D and Κ have a
l-complement over a neighborhood of V, canonical for Κ.

Of course, such contractions must be generic in the main type ([11], C3). A
complement here belongs to a linear system | - Κ + f*H\, where Η is a hyperplane
section of Υ over a neighborhood of V.

Proof. Thus, the statement is local and we can assume that V — pt. For simplicity,
we assume also that / is extremal. In general, we can glue a lower complement.

After an appropriate renumbering of Z>, 's, every connected exceptional locus C
of / on D/V belongs to a component D\. Moreover, if C c Z>2, then (D( · C)
and (Z>2 · C) < 0. So, C = D 1 n O 2 , and D 3 intersects C . In this case C has
a singular point of X, and the required complement passes through it. According
to the minimal property of its resolution (see (1.3.7)), it is enough to construct a
l-complement on Dx for (K + D)\D] .

If C <£ Di for ι\ Φ 1 but C intersects Z>2 in a point ρ, then ρ is singular on X,
and all irreducible curves C, of C have only ρ as a common point. A l-complement
can be constructed as above. Note that at most one curve C, possesses a singularity
of index > 2 different from ρ . Such a curve belongs to the complement.

In the remaining cases C does not intersect A for / Φ 1. If D\ has only
canonical singularities on C, then C is irreducible with at most one canonical
singularity, and we can find a l-complement as above. (We can even take a trivial
one in this case.) If A has only one noncanonical singularity ρ on C, then all
irreducible components of C have only ρ as a common point. This time we can
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choose the 1-complement that also intersects C only in ρ. In the remaining cases
C contains a chain C\, ... , Cn , η > 1, of curves such that p\ e Cx, p2 - C\ Π
Ci, ... ,pn = Q_i Π Cn, pn+\ e Cn are all noncanonical points of D\ on C.
Moreover, the C, 's are exceptional curves of the first kind on the minimal resolution
of D\ and they intersect the edge curve of resolutions//?, (cf. garlands in Corollary
4.6). The proof uses the classification of surface log terminal singularities, an explicit
form of Pi's, and the fact that the C, are contracted to the log terminal singularities.
Other components of C pass through only one of the Pi's. Then we can construct
a 1-complement passing only through C,. •

4.10. Remarks. We can characterize some types of 3-fold terminal singularities in
terms of their discrepancies. Suppose that ρ e X is such a singularity of index r
and of the main type (1) in Mori's classification. Then

(4.10.1) For r > 2, σ(Χ, ρ) <i {exceptional divisors//? with discrepancy l/r}-1,
and = holds if and only if ρ is semistable for an appropriate D. In particular, ρ is
analytic Q-factorial if there is a unique exceptional divisor with discrepancy 1/r.

For r = 1, the same holds if we drop - 1 in the first statement and replace "a
unique" by "no" (see (4.10.2)).

(4.10.2) ρ is the quotient singularity if and only if the number of exceptional divisors
over ρ with discrepancies < 1 (something like difficulty) is equal to r - 1 or,
equivalently, there is a unique exceptional divisor//? with each discrepancy l/r,
1 < / < r - 1, but there is none with discrepancy 1, or, equivalently, there is no
exceptional divisor//? with discrepancy 1. So, we have a gap for such discrepancy.
In a proof, for r = 1, we would have to use an unpublished result of Markushevich.
This shows also that 3-fold terminal quotient singularities are rigid.

(4.10.3) So, if ρ is not a quotient singularity, then there is an exceptional divisor//?
with discrepancy l/r for any integer / > 1 (cf. Corollary 4.8).

Do these assertions hold for any type of terminal singularities?
An explicit form of semistable singularities allows us to improve some of the above

statements. For example,

(4.10.4) In Theorem 1.7 equality holds only when X is Gorenstein (and even non-
singular) on E/V (if X is Q-factorial/V, respectively) (cf. Theorem 1.6). Indeed,
as in §2 it is enough to consider the cases 1.1-2 under restrictions (2.1.1-4). Then
the contraction of C on D again gives a singularity of type l/r2 (a, r - a), which
is impossible by a direct check using [6], 3.1 in case 1.2. In case 1.1 equality can
hold only when g~lC intersects G in a nonsingular point. Thus, C intersects a
non-2-curve on the minimal resolution of the singularity. Again this is impossible by
the classification [6], 3.1.

In the conclusion of this section we consider the algebraic case. If / : X —> Ζ and
D c X are algebraic (in particular, X and Ζ are algebraic), then, for projective / ,
the extremal contraction g: Χ ^ Υ defined by the ray R c NE(X/Z; /(/?)) is also
algebraic. The modification X+/Z in R will again be algebraic and projective/Z .
In the algebraic case the extremal rays R c NE(X/Z; /(£>)) correspond to R c
NE(X/Z) with support intersecting D, and their modifications correspond to those
of X/Z in a Zariski neighborhood of D. So, we can always take W = D and
V = f{D), and define

Y , p,D)

and i(X/Z, D) — i{X, D). (D is compact in Zariski's topology!)
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But if ρ is algebraic, we can construct its Q-factorialization in the algebraic sense.
So, we reduce the problem of classification of such points to the case when ρ is
Q-factorial in the algebraic sense. We can introduce the notion of a semistable sin-
gularity in the algebraic category and introduce the algebraic depth ^(X, ρ, D) at
ρ for D as the minimal number of the same prime divisors for algebraic semistable
resolutions. Obviously, any algebraic semistable singularity is analytic and

i(X, ρ, D) < i*l*(X, ρ, D).

The converse also holds.

4.11. Comparison Theorem. Let ρ € D c X be a point on a complex algebraic variety
with a prime divisor D. Then ρ is semistable with respect to D in the algebraic sense
if and only if it is semistable in the analytic sense. Moreover, if ρ has index r > 2,
then the first blow-up gives an exceptional curve with minimal discrepancy —(r — l)/r
on D. If ρ has index 1, we can construct such blow-ups with the first blow-up of any
exceptional curve/ρ for D with discrepancy 0 in case Ασ and the central component
in other cases.

Proof. It is enough to check that we can resolve ρ by subsequent divisorial blow-
ups of points that are semistable but not necessarily extremal. However, they are
projective in the following sense: each of them blows up a prime divisor G and is
negative with respect to -G. Note that by semistability this holds when the inverse
image of D cuts an ample curve on G. In addition, we will cancel our assumption
that ρ is semistable in the algebraic sense. By (1.3.1-4), we may assume that d = 1.
Then it is enough to construct a semistable blow-up g: Υ —> X, minimal in the sense
of (1.3.7), i.e., with an irreducible intersecting curve C = Gn g~lD that is not an
exceptional curve of the first kind on the minimal resolution of D. Indeed, then C
is semiample on G by [12], 2.1, and we can contract the curves numerically trivial
for C. This gives the required first blow-up and leads us from the analytic category
back to the algebraic one. The rest can be done by induction on the minimal number
of such blow-ups for a resolution of ρ. By σ, as above, we denote the analytic
σ(Χ,ρ).

We begin with the case when ρ is Gorenstein. The required resolution is related
to Reid's pagoda [21] when σ = 1. Moreover, on each step the new semistable
singularities have σ = 1. So, we can proceed by induction on σ. Then we consider
a small semistable partial resolution X1 -* X with irreducible exceptional curve
C/p and a single Gorenstein singularity q of X1 on C. Moreover, we assume
by induction that a first divisorial blow-up X2 —> X1 of q blows up similarly the
exceptional curve ε = D2 Π Ε, where Ε is the exceptional divisor of this blow-up,
and C2 intersects ε in a nonsingular point. We find it for canonical singularities ρ
of type Ασ , because we can interchange the order of such blow-ups. For other types
we must blow up the single curve intersecting the central one.

Now we can make a blow-up X 3 —> X2 of the curve C2 with an exceptional
divisor F. Then F = Fi with section C 3 = D3 Π F (a 1-curve) and fiber Ε3 η
F. So, the negative section s\ coincides with the support of an extremal ray in
WE(X3/Z ; p). Since (Κχ3 + D3 + E3 + F • Si) = 0, we can do Atiyah's flop in sx,
after which F is contractible to a point of type F2(2, 1). Then we must contract
the irreducible curves that are (—2)-curves on the minimal resolution of the modified
E3 numerically trivial for D3 and have t canonical singularities of types A m ; ,
1 < j < t, with m — Σ mj < σ - 1 · The last holds by the induction assumption.
The curves are contracted to canonical singularities of types A», D*» or E^, Ε7, Es
with * ,** or 6 , 7 , 8 < σ, respectively. Moreover, if one of them has the same
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type as ρ on D, then a unique curve is contracted, t = 1, m\ = σ - 1, and by
induction we can construct a required resolution. In exceptional cases a proof uses
the corresponding nontrivial complement of Κ + D in ρ. Otherwise we get the
following decrease of types:

Eg -> E7 -> E6 -> D», -> A».

(It means also the decrease of the subscripts.) Again we can construct a required
resolution by induction.

In particular, if ρ has type Ασ on D, then we obtain only the first type A». In
this case, using the modifications from case 2 in 3.9 we can find the first blow-up for
any exceptional curve of D/p with discrepancy 0.

If r > 2, by Corollary 4.7 we can use Kawamata's blow-ups ([27], Appendix: Case
1). We have exactly σ + 1 such blow-ups corresponding to each exceptional curve
of D/p with the minimal discrepancy — (r —\)/r. A direct check shows that — G is
positive for the blow-ups, and we have at most one singularity with d = 1 on G. It
has type V\(r, a; n\ - 1, . . . , «σ+ι - 1) (cf. Corollary 4.12). •

The last blow-up is extremal in the algebraic sense when ρ is Q-factorial in this
sense. This implies

4.12. Corollary. Theorem 1.3 and Corollary 4.6 hold in the algebraic case if we
understand them in the algebraic sense. For r = ί, (1.3.7) holds with a — 0, and G
does not contribute to the difficulty of X/p. For r>2, divisorial blow-ups in (1.3.7)
coincide with weighted blow-ups, and the discrepancy of G will be \jr. In addition,
if r > 2, Υ has at most three semistable singularities on G of types V2{a + ir, -r),
Vi{{a + 1 - i)r-a, -r), and Vi(r, a; n\ - 1, . . . , ησ+ι - 1), whereas 0 < i < σ, ρ
has type V\ [r, a; n\, ... , ησ+\), and we skip nj - 1 for nj = 1.

Note that we have σ + 1 Kawamata blow-ups depending on / ([27], Appendix:
Case 1).

4.13. Corollary. If ρ is an algebraic semistable and Q-factorial singularity with d = 1
and of type Vx (r, α; «ι, . . . , ησ+ι), then

,p,D) = i(X/p ,Ό)-Ν + Σπί = r(J2 m) - Ν,

where Ν = max{«,} .

4.14. Corollary on genericness. Algebraic semistable singularities of index r > 2 are
exactly algebraic terminal hyperquotient singularities oftype i/r(a, -a, 1,0) or type
(1) in Morfs classification [22] with

s+l
f (z',w) = unit-ΙΐΜζ',ιυ),

1=1
where s is the algebraic σ, and f(z, w) are nonassociated irreducible polynomial
functions, in a neighborhood of the origin, satisfying 4.7. Thus, semistable singulari-
ties and Q-factorial ones among them form open nonempty subsets in their type, and
both subsets are dense in the analytic type.

4.15. Corollary. Theorems 1.6 and 1.7 hold in the algebraic case except for the
statement that g{D\) e g(D)/V is of index > 1 in 1.6. Moreover, we can replace
/ ( - , - ) by i*(-,-).

The most difficult to prove is the last statement, especially when g is a small
contraction. For this, we can use
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4.16. Corollary. Algebraic version of Corollary 4.9.

Do the above (and below, in §5) statements hold in positive characteristic? The
analytic category can then be replaced by Moishezon's category of varieties and mor-
phisms. In particular, we can define in it such notions as a semistable divisor, sin-
gularity, resolution, etc. The point is that the resolution in (1.3.7) is projective and
algebraic for algebraic X, but the Q-factorialization required in (1.3.5) may be only
Moishezon.

5. SEMISTABLE MODELS

5.1. Theorem on a minimal semistable model. Let f be projective and (numerically)
semistable for D. Then over a neighborhood of V (of f(D) in the algebraic case)
there exists a modification (algebraic in the algebraic case) of f that is a nontrivial
fiber space of Fano/Z or a projective and minimal (numerically) semistable model
g: Υ —> Ζ for the modification of D. More exactly, we have the second model if and
only if κ(Χ/Ζ) > 0, and its singularities in both cases are semistable with respect to
the modification of D.

Does this hold if we replace the projective property by the proper one?

Proof. This follows directly from Mori's theory and Theorems 1.6-7. The last state-
ments are derived from the Abundance Conjecture, well known for dim(X/Z) < 2.
•

This theorem implies several important results. Using the semistable reduction
theorem ([8]) and (1.3.6) we get Brieskorn-Tyurina's simultaneous resolutions ([2],
[24], and [21]). By the same arguments, Lemma 3.5, and the covering trick ([27],
2.5), we obtain also [5], 4.1. Note that Kawamata [5] does things in the reverse order:
he uses the simultaneous resolution to prove [5], 4.1, and then [5], 10.1 and 10. Γ,
which are special cases of Theorem 5.1. Theorem 5.1 implies also the existence of
some flips ([27], 2.6). The same special case is Tsunoda's theorem ([23], Theorem 1)
with ^-degeneration having only algebraic Q-factorial singularities and S-resolutions
given by blow-ups as in (1.3.7).

A minimal semistable model in Theorem 5.1 possesses an essential property of
Mori's type models: it is projective/Z, but may have rather difficult analytic sin-
gularities. By this I mean that they may not be Q-factorial in the analytic sense.
Even if we start from X with Q-factorial singularities, we may obtain Q-factorial
Υ/Ζ , but not locally in the analytic sense. By (1.3.1) and (1.3.4), the latter may
occur only for singularities with d = 1. But using (1.3.5) we can replace Y/Z by its
analytic Q-factorialization, whereas we will lose the projectivity of Y/Z . The last
model has only analytic Q-factorial semistable singularities and will be referred to as
Kulikov's model. By (1.3.6), it has only non-Gorenstein singularities. In particular,
when such a model Υ is Gorenstein, i.e., with Gorenstein canonical divisor Κγ, it
will be nonsingular, as will be the irreducible components of the modification of D,
and D will have normal crossings.

5.2. Corollary on Kulikov's models. In Theorem 5.1 we can replace a projective
minimal model g: Υ -+ Ζ by a proper semistable model for D with singularities
only of types ^ ( r , a) and V\(r,a;n) of index r>2. We have only singularities
Vi(r, a; n) if the original D has no triple points.

The last can be checked for each modification in Theorems 1.6-7 and is essentially
related to the connectedness lemma ([27], 5.7).

This implies Kawamata's moderate degenerations ([6], 1.3), again by [8]. Another
application is related to the original Kulikov theorem ([12], Theorem I). We consider
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a little more general case including semistable degenerations of Enriques surfaces. Let
/ : X —> A be a projective degeneration of surfaces with numerically trivial canonical
divisors (e.g., K3 surfaces) whose degenerate scheme fiber Σ dDt is ίί-multiple of
a divisor with normal crossings and nonsingular Z),. Then by the classification of
surfaces, mK is linearly equivalent to ΛΌ = Σ ^ί A '•> more exactly, m = 1, except
for degenerations of Enriques surfaces where m = 2, and degenerations of hyperel-
liptic surfaces where m = 2, 3, 4, or 6 (a proper divisor of 12). We denote by /
the product md, which can be referred to as the index of this degeneration. Note
that the index is invariant under extremal modifications and Q-factorializations, as
are m and d. Note also that / is numerically semistable for D = Σ D,. Thus,
Corollary 5.2 implies

5.3. Corollary. There exists a bimeromorphic modification g: 7 - > Δ of the degener-
ation f such that Κγ is numerically trivial on Υ (ΙΚγ is linearly trivial) and (only
numerically for d>2) semistable for modified D, having only semi-stable singulari-
ties of types V2(r,a) and Vi(r,a;n) with indices r\m. We have only singularities
V\(r, a; n) if D has no triple points.

Proof. We take a Kulikov model of / as a required modification g. By our as-
sumption, Κγ is numerically equivalent to Σ <̂  A with integer di, where the Z),
are components of the modified degenerate fiber 7ο = Σ dDi. Moreover, since
D = Σ A is numerically trivial, we can assume that all rf, < 0 and at least one
d,• — 0. Then all dt — 0, and Κγ is numerically trivial because Κγ is nef with
respect to g. Hence mKy and ΙΚγ are linearly equivalent to a multiple of D,
and 0, respectively. So, by Lemma 1.4, mKY is Cartier, and the indices of the
singularities of Υ divide m .

For m = d = I = 1 (e.g., semistable degeneration of K3 surfaces), this includes
Kulikov's theorem ([12], Theorem I) when Gorenstein singularities are nonsingular
(cf. [20]). For m — I = 2 and d = 1, we have degenerations of Enriques or hy-
perelliptic surfaces, and then a Kulikov model has only singularities of type ^ ( 2 , 1)
and V\(2, 1; n) (see (1.2.4)). Moreover, if the initial degeneration has no triple
points, we get only singularities V\(2, 1; n) with a "flower pot" resolution, which
gives Persson's result ([19], 3.3.1). But the same singularities appear even for any
d> 1.
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