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LetX be a normal projective variety defined over an
algebraically closed field of any characteristic.
LetL be a line bundle onX. ToL we can associate
the maps

ϕmL : X 99K PH0(X,mL).

As we all know, knowledge of the behavior of these
maps often says a lot about the geometry ofX itself.
In particular, there are some closed subsets, associated
toL, that govern, asymptotically, this behavior.
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The stable base locus ofL is

B(L) =
⋂

m∈N

Bs(|mL|).

This closed subset is clearly important, but often
difficult to compute.

On the other hand, suppose that we want to know if,
outside of some closed subset,ϕmL is anembedding.

To this goal we better assume thatL is big ad we
define
(introduced in 2000 by Nakamaye, and in 2006 by
Ein, Lazarsfeld, Mustaţă, Nakamaye and Popa)
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B(mL− A)

whereA is ample (the definition does not depend on
A). If L is not big, defineB+(L) = X.
It is easy to see that, form ≫ 0, ϕmL is an embedding
outsideB+(L) (we will come back to this).

Augmented base loci have been recently important in
birational geometry.

Just to mention a few instances, we recall the
fundamental papers of Takayama, Hacon and
McKernan on the birationality of pluricanonical maps
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Birkar, Cascini, Hacon and McKernan.

Great, buthow do we compute them?
To this goal we use another notion, present in the
mentioned papers, the one of restricted volume.

For every subvarietyZ ⊆ X not contained inB+(L),
it is easily seen that the restriction ofL toZ is big.
But there is more: the space of sections of|mL|Z | that
extend toX has maximal growth. In fact
if we denote byH0(X|Z,mL) the image of the
restriction mapH0(X,mL) → H0(Z,mL|Z) and set
d = dimZ, then we claim that
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volX |Z(L) = lim sup
m→+∞

d!

md
dimH0(X|Z,mL) > 0 :

Let sL ∼ A+ E with A ample,E effective and such
thatZ 6⊆ Supp(E).
Form ≫ 0 we haveH1(IZ/X(mA)) = 0 and the
diagram

H0(mA)
� _

��

// //H0(mA|Z)
� _

��

H0(msL) //H0(msL|Z)
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Restricted volumes andB+

This theorem has a long and complicated proof with
difficult cohomological estimates.
Our goal is to give a very short and simple proof that
works forall normal varieties and in arbitrary
characteristic.
These two generalizations are important in birational
geometry because, as we know, we need to work with
normal varieties. Also recently the MMP in positive
characteristic is developing.
To be honest, we need to say that ELMNP prove more
(and we cannot), namely a sort of continuity statement

limm→+∞ volX |Z(L+ 1
mA) = 0

for every ampleA and for every irreducible
componentZ of B+(L).
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LetL be a line bundle onX.
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Results
In any case, here is our result:
Theorem (Boucksom, Cacciola, -)
LetX be a normal projective variety over an
algebraically closed field of arbitrary characteristic.
LetL be a line bundle onX.
Then

B+(L) =
⋃

Z⊆X :volX|Z(L)=0

Z.

Proof:
We can assume thatL is big. LetZ be an irreducible
component ofB+(L). Recall thatdimZ ≥ 1 by a
well known result of Zariski.
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Suppose now thatZ 6⊆ B(L).
Letm ≫ 0 be such thatBs(mL) = B(L) andϕmL is
birational onto its image.
Consider the commutative diagram

Xm

µm

��

fm
// Ym

νm
��

X ϕmL

//❴❴❴❴ ϕmL(X)

whereµm is the normalized blow-up ofX along the
base ideal of|mL|,
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��

X ϕmL

//❴❴❴❴ ϕmL(X)

νm is the normalization ofϕmL(X) and
fm : Xm → Ym is the induced birational morphism.
By construction we have that

µ∗
m(mL) = f ∗

mAm + Fm

with Am ample onYm, Fm effective and such that
Supp(Fm) = µ−1

m (B(L)) ⊆ µ−1
m (B+(L)) .
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// Ym

νm
��

X ϕmL

//❴❴❴❴ ϕmL(X)

Now, if x ∈ Exc(fm), thenfm is not an isomorphism
in a neighborhood ofx.
If x ∈ Exc(µm), thenµm(x) ∈ B(L) ⊆ B+(L),
whencex ∈ µ−1

m (B+(L)).
If x 6∈ Exc(µm) andµm(x) 6∈ B+(L), thenµm, ϕmL

andνm are isomorphisms in a neighborhood ofx,
contradicting the fact thatfm is not an isomorphism in
a neighborhood ofx.
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Wm ⊗Ws ⊆ Wm+s for everym, s ≥ 0.

LetΨm : Z 99K PWm be the associated rational map
and let

κ(W ) = max {dimΨm(Z) | m ∈ N such thatWm 6= 0} .

Lemma
There existsC > 0 such that

dimWm ≤ Cmκ(W ).
This lemma follows from a deep result of
Kaveh-Kovanskii (using Okounkov bodies), but we
will give a simple proof ispired by a paper of Di
Biagio-Pacienza. – p. 17/23
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SetWm = H0(X|Z,mL). SinceZ is contracted by
Ψm, it follows thatκ(W ) < dimZ =: d, whence

volX |Z(L) = lim sup
m→+∞

d!

md
dimH0(X|Z,mL) ≤

≤ lim sup
m→+∞

d!

md
Cmκ(W ) = 0.

Now the proof of the Lemma, that is
dimWm ≤ Cmκ(W ).
We can assume that the base filed is uncountable,
since the estimate is invariant under base field
extension.
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If κ(W ) = dim(Z) then

dimWm ≤ h0(mL) ≤ Cmκ(W ).

If κ(W ) < dim(Z), we choose a complete
intersectionT ⊆ Z of very ample divisors general in
their linear systems and such that

dimT = κ(W ) and Ψm(T ) = Ψm(Z).
(here we use that the base field is uncountable, as we
impose countably many conditions).
We now claim that the restriction map

Wm → H0(T,mL|T ) is injective for m ≫ 0

(and this will prove the Lemma).
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onT and with zero divisorD,
thenΨm(Supp(D)) = Ψm(Z). But this is a
contradiction sinceΨm(Supp(D)) is, by definition of
Ψm, a hyperplane section ofΨm(Z).
So this concludes the proof of the Lemma and of the
Theorem.

Now I would like to briefly come back to the fact,
mentioned in the beginning, that, given a big line
bundleL on a varietyX, then
the mapsϕmL are an isomorphism onX −B+(L) for
m ≫ 0.
Using the same method of proof of the previous
theorem, we can prove
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Another result (folklore)
Theorem (Boucksom, Cacciola, -)
LetX be a normal projective variety over an
algebraically closed filed of arbitrary characteristic.
LetL be a big line bundle onX.
ThenX −B+(L) is the largest Zariski open subset
U ⊆ X −B(L) such that
for m ≫ 0 and divisible, the restriction toU of the
morphism

ϕmL : X −B(L) → PH0(X,mL)

is an isomorphism onto its image.

So the two theorems work forQ-divisors. What about
real divisors? (I must say that ELMNP’s theorem, in
its "continuity version", also holds for real divisors)
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Real divisors
Here there are several problems to generalize our
approach in the case of real divisorsD:

(a) the mapsϕmD do not exist;
(b) the restricted volumevolX |Z(D) is not defined (it
is defined, by ELMNP, only whenZ 6⊆ B+(D)).
(note that it does not seem to work to use⌊mD⌋).
Nevertheless we are able to generalize toR-divisors
using a recent idea of Birkar (used to prove
Nakamaye’s theorem on any scheme).
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Given anR-divisorD we can write

(∗) D ∼R t1H1 + . . . + tsHs

where, for1 ≤ i ≤ s, Hi is a very ample Cartier
divisor onX andti ∈ R.
Form ∈ N we set

〈mD〉 = ⌊mt1⌋H1 + . . . + ⌊mts⌋Hs

Φ〈mD〉 : X 99K PH0(X, 〈mD〉)
and

volX |Z(D, (∗)) = lim sup
m→+∞

h0(X|Z, 〈mD〉)

md/d!
.

Now the two theorems above go through.
– p. 23/23
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