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Introduction

Stable base loci play a central role in algebraic
geometry.

Let X be a normal projective variety defined over an
algebraically closed field of any characteristic.

Let L be a line bundle orX'. To L we can associate
the maps

O, : X —-» PHY(X,mL).

As we all know, knowledge of the behavior of these
maps often says a lot about the geometryoiself.

In particular, there are some closed subsets, associate
to L, that govern, asymptotically, this behavior.
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Stable base loci
The stable base locus afis

B(L) = () Bs(jmL|).

meN

This closed subset is clearly important, but often
difficult to compute.

On the other hand, suppose that we want to know If,
outside of some closed subset,;, Is anembedding

To this goal we better assume thats big ad we
define

(introduced in 2000 by Nakamaye, and in 2006 by
Ein, Lazarsfeld, Mustai Nakamaye and Popa)
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Theaugmented base loco$ L is

B.(L)= () B(mL — A)

meN

whereA is ample (the definition does not depend on
A). If L is not big, defindB, (L) = X.

It IS easy to see that, fon > 0, ¢,,7, IS an embedding
outsideB (L) (we will come back to this).

Augmented base loci have been recently important in
birational geometry.

Just to mention a few instances, we recall the
fundamental papers of Takayama, Hacon and
McKernan on the birationality of pluricanonical maps
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or the finite generation of the canonical ring by
Birkar, Cascini, Hacon and McKernan.

Great, buthow do we compute them?
To this goal we use another notion, present in the
mentioned papers, the one of restricted volume.

For every subvarietyl C X not contained iB, (L),
it IS easily seen that the restriction bfto 7 is big.
But there is more: the space of section$raf. || that
extend toX has maximal growth. In fact

if we denote byH"(X|Z, mL) the image of the
restriction mapH"(X, mL) — H"(Z,mL,z) and set
d = dim 7, then we claim that
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Restricted volumes
therestricted volumef L to 7,

A
voly|z(L) = hmsup—dlmHO(X|Z mL) >0 :

m——+00 m¢

LetsL ~ A+ E with A ample,E effective and such
thatZ ¢ Supp(F).
Form > 0 we haveH'(Z;,/x(mA)) = 0 and the

diagram

H°(mA) — H°(mA,z)

| {

H(msL) — H’(msLyz)
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Restricted volumes andB

shows that'(X|Z, msL) > h’(mA ;) > Cm¢,
whencevolx 7 (L) > 0.
So we deduce that

B, (L) D g Z.
ZCX:volx|z(L)=0

The surprising (?) fact is that equality holds!
Theorem (Ein, Lazarsfeld, Mustata, Nakamaye
and Popa, 2009)

Let X be asmooth complegrojective variety.
Let L be a line bundle oX. Then

B, (L) = L Z.

ZQXVOI)QZ(L):O
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Restricted volumes andB

This theorem has a long and complicated proof with
difficult cohomological estimates.

Our goal Is to give a very short and simple proof that
works forall normal varieties and in arbitrary
characteristic

These two generalizations are important in birational
geometry because, as we know, we need to work with
normal varieties. Also recently the MMP In positive
characteristic Is developing.

To be honest, we need to say that ELMNP prove more
(and we cannot), namely a sort of continuity statement

limm%%o VOlez(L R %A) =0
for every ampled and for every irreducible
component of B (L).

—n. 9/23



Results



Results
In any case, here is our result:

—n. 10/23



Results

In any case, here is our result:
Theorem (Boucksom, Cacciola, -)

—n. 10/23



Results

In any case, here is our result:

Theorem (Boucksom, Cacciola, -)

Let X be a normal projective variety over an
algebraically closed field of arbitrary characteristic.

—pn. 10/23



Results

In any case, here is our result:
Theorem (Boucksom, Cacciola, -)
Let X be a normal projective variety over an

algebraically closed field of arbitrary characteristic.
Let L be a line bundle orX.

—pn. 10/23



Results

In any case, here is our result:
Theorem (Boucksom, Cacciola, -)

Let X be a normal projective variety over an

algebraically closed field of arbitrary characteristic.
Let L be a line bundle orX.

Then
B.(L) = 9 Z.
ZQXVOL)QZ(L):O

—pn. 10/23



Results

In any case, here is our result:
Theorem (Boucksom, Cacciola, -)
Let X be a normal projective variety over an

algebraically closed field of arbitrary characteristic.
Let L be a line bundle orX.

Then
B.(L) = 9 Z.
ZQXVOL)QZ(L):O

Proof:

—pn. 10/23



Results

In any case, here is our result:
Theorem (Boucksom, Cacciola, -)

Let X be a normal projective variety over an

algebraically closed field of arbitrary characteristic.
Let L be a line bundle orX'.

Then
B, (L) = L Z.
ZgXV01X|Z<L):O

Proof:

We can assume thatis big. LetZ be an irreducible

component oB_ (L). Recall thadim Z > 1 by a
well known result of Zariski.
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Proof

If Z C B(L), thenH"(X|Z, mL) = 0 for every

m > 1, whencevoly (L) = 0.

Suppose now that & B(L).

Letm > 0 be such thaBs(mL) = B(L) andy,,, iS

birational onto Iits iImage.
Consider the commutative diagram

X, " v

ﬂmi |

X -7 omr(X)

YPmL

wherey,, Is the normalized blow-up ok along the
base ideal ofm L
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£ E
S-
~
M
S-
_
_
— >
g oS
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X, " v

uml |

X -7 omr(X)

PmL

v, IS the normalization op,,;,(X) and
fm : X, — Y, Is the induced birational morphism.
By construction we have that

M:@(m[’) — ff:zAm == /%

with A,, ample ony,,, I, effective and such that
Supp(Fin) = i, (B(L)) € gy (B4(L))
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The key point is now to write, in two different ways,

B, (1, L) |
By a result of Boucksom-Broustet-Pacienza we have

B. (5, L) = i, (B (L)) U Exc(p,).

Moreover
B+(/L:;IL) — B+(f:;LAm‘|‘Fm) C B+(f;zAm)Usupp(Fm)
and another application of the result of BBP gives

H (B (L)) € B (py, L) € Exc(fin) U Supp(Fy).

But we also have
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Exc(fu) C pi! (B+(L)).
In fact let me recall the diagram

X, —Im .y

ﬂml |

X -5 pmr(X)

¥YmL
Now, if x € Exc(f,,), thenf,, is not an isomorphism
In a neighborhood at.
If x € Exc(un,), thenu,,(x) € B(L) C B, (L),
whencer € p' (B.(L)).
It & & Exc(jim) andp,(z) & By (L), thenji, gz
andy,, are isomorphisms in a neighborhoodhof

contradicting the fact thaf,, Is not an isomorphism in
a neighborhood of.
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Proof

X, " v

uml |

X 57 pmr(X)

YPmL

and then it is contracted bj,,, whence also by
vm © [, and we deduce thdf is contracted by, ;.
It follows that Z is contracted by the map
Z --» PH(X|Z, mL).
To show that this implies thably (L) = 0, we will

use the following lemma.
We recall a definition
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A graded linear seridd’ Is a sequence of subspaces
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A graded linear seridd’ Is a sequence of subspaces
W, € H%(Z,mL), m € N such that
W,, @ W, C W,,.s for everym, s > 0.
Letv,, : Z --» PW,, be the associated rational map
and let

k(W) = max {dim ¥,,,(Z) | m € N such that\W,,, #£ 0} .

Lemma
There exist€’ > 0 such that

dim W,,, < Cm" W),
This lemma follows from a deep result of
Kaveh-Kovanskii (using Okounkov bodies), but we
will give a simple proof ispired by a paper of Di
Biaaio-Pacienza.
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SetW,, = H*(X|Z, mL). SinceZ is contracted by
U, it follows thatx (W) < dim Z =: d, whence

!
volx|z(L) = lim sup — dim HY(X|Z, mL) <

m——+00 m?

oA
< lim sup —Om “W) = .

m—+00 m¢

Now the proof of the Lemma, that is

dim W,, < Cm W),
We can assume that the base filed is uncountable,
since the estimate Is invariant under base field

extension.
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dim W, < h®(mL) < Cm~W).

If k(W) < dim(Z), we choose a complete
Intersectionl’ C Z of very ample divisors general in
their linear systems and such that

dimT = x(W)and ¥, (T) = V,,(2).
(here we use that the base field is uncountable, as we

impose countably many conditions).
We now claim that the restriction map

W, — H°(T,mL7) is injective for m > 0

(and this will prove the Lemma).
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In fact, if there Is a nonzero sectigne W,,, vanishing
onl’ and with zero divisoD,

thenV,,(Supp(D)) = ¥,,(Z). Butthis is a
contradiction sinc&,,,(Supp(D)) is, by definition of
V.., a hyperplane section df,, (7).

So this concludes the proof of the Lemma and of the
Theorem.

Now | would like to briefly come back to the fact,
mentioned in the beginning, that, given a big line
bundleL on a varietyX, then

the mapsp,,,;, are an isomorphism oN — B (L) for
m > 0.

Using the same method of proof of the previous
theorem, we can prove
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Theorem (Boucksom, Cacciola, -)

Let X be a normal projective variety over an
algebraically closed filed of arbitrary characteristic.
Let L be a big line bundle orX.

ThenX — B, (L) is the largest Zariski open subset
U C X — B(L) such that

for m > 0 and divisible, the restriction t& of the
morphism

omr : X —B(L) — PH(X, mL)

IS an iIsomorphism onto Its Image.

So the two theorems work f@p-divisors. What about
real divisors? (I must say that ELMNP’s theorem, In
Its "continuity version", also holds for real divisors)
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Real divisors

Here there are several problems to generalize our
approach in the case of real divisdrs

(a) the maps,,,p do not exist;

(b) the restricted volumeol x|z (D) is not defined (it
is defined, by ELMNP, only whed & B, (D)).
(note that it does not seem to work to UseD |).
Nevertheless we are able to generaliz&tdivisors

using a recent idea of Birkar (used to prove
Nakamaye’s theorem on any scheme).
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Real divisors
Given anR-divisor D we can write

where, forl <1 < s, H; Is a very ample Cartier
divisor onX andt¢; € R.
Form € N we set
(mD) = |mty|Hy + ...+ |mts| H,
(I)<mD> X -->» PHO(X, <mD>)
and

. R’ (X|Z, (mD
olya(D. () = limaup S

Now the two theorems above go through.
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