Numerical characterization of torus quotients

Benoît Claudon (joint work with P. Graf and H. Guenancia)

Université de Rennes 1

May 17 2022

ZAG Seminar

Plan of the talk

The smooth case

Chern classes

Torus quotients

Strategy of proof

Elements of proof

Let T be a complex torus and $G \curvearrowright T$ be a finite group acting on T. We assume first that G acts *freely*.

Let T be a complex torus and $G \curvearrowright T$ be a finite group acting on T. We assume first that G acts *freely*.

Chern classes

Let X := T/G be the quotient manifold (compact and Kähler). We clearly have:

$$c_i(X) = 0 \in H^{2i}(X, \mathbb{R}), \quad \forall i \geq 1.$$

Let X be a compact Kähler manifold $(n := \dim X)$.

Let X be a compact Kähler manifold $(n := \dim X)$.

▶ if $c_1(X) = 0 \in H^2(X, \mathbb{R})$, then there exists ω Kähler metric such that $\text{Ric}(\omega) = 0$.

Let X be a compact Kähler manifold $(n := \dim X)$.

- ▶ if $c_1(X) = 0 \in H^2(X, \mathbb{R})$, then there exists ω Kähler metric such that $Ric(\omega) = 0$.
- ▶ Using the Kähler–Einstein condition for ω :

$$\int_X \left(2nc_2(X,\omega)-(n-1)c_1(X,\omega)^2\right)\wedge\omega^{n-2}symp \ \int_X \|\Theta^\circ(T_X,\omega)\|^2\geq 0.$$

Let X be a compact Kähler manifold $(n := \dim X)$.

- ▶ if $c_1(X) = 0 \in H^2(X, \mathbb{R})$, then there exists ω Kähler metric such that $\text{Ric}(\omega) = 0$.
- ▶ Using the Kähler–Einstein condition for ω :

$$\begin{split} \int_X \left(2nc_2(X,\omega) - (n-1)c_1(X,\omega)^2 \right) \wedge \omega^{n-2} &\asymp \\ \int_X \|\Theta^{\circ}(T_X,\omega)\|^2 &\geq 0. \end{split}$$

Conclusion

If $c_1(X) = 0$ and $c_2(X) \wedge [\omega]^2 = 0$ then X = T/G with T and G as above.

If we drop the assumption that G acts freely on T, we are led to consider singular spaces.

Difficulties?

1. Identify a "natural" class of singularities.

If we drop the assumption that G acts freely on T, we are led to consider singular spaces.

Difficulties?

1. Identify a "natural" class of singularities. klt!

If we drop the assumption that G acts freely on T, we are led to consider singular spaces.

- 1. Identify a "natural" class of singularities. klt!
- 2. Kähler metrics in the singular setting.

If we drop the assumption that G acts freely on T, we are led to consider singular spaces.

- 1. Identify a "natural" class of singularities. klt!
- 2. Kähler metrics in the singular setting. Done by Grauert (60's)!

If we drop the assumption that G acts freely on T, we are led to consider singular spaces.

- 1. Identify a "natural" class of singularities. klt!
- 2. Kähler metrics in the singular setting. Done by Grauert (60's)!
- 3. Define Chern classes/numbers for singular spaces. . .

If we drop the assumption that G acts freely on T, we are led to consider singular spaces.

- 1. Identify a "natural" class of singularities. klt!
- 2. Kähler metrics in the singular setting. Done by Grauert (60's)!
- 3. Define Chern classes/numbers for singular spaces...several definitions giving different theories (McPherson, Baum–Fulton–McPherson, Schwartz...)

For torsion-free sheaves I

Definition

Let X be a normal compact complex space, \mathcal{E} be a torsion-free sheaf and $f: \hat{X} \to X$ be a resolution such that $f^{\sharp}\mathcal{E} := f^*\mathcal{E}/\mathrm{Tor}(f^*\mathcal{E})$ is locally free. We define:

$$c_i(\mathcal{E}) \cdot a := c_i(f^{\sharp}\mathcal{E}) \cdot f^*(a), \quad \forall \ a \in H^{2n-2i}(X,\mathbb{R}).$$

For torsion-free sheaves I

Definition

Let X be a normal compact complex space, \mathcal{E} be a torsion-free sheaf and $f: \hat{X} \to X$ be a resolution such that $f^{\sharp}\mathcal{E} := f^*\mathcal{E}/\mathrm{Tor}(f^*\mathcal{E})$ is locally free. We define:

$$c_i(\mathcal{E}) \cdot a := c_i(f^{\sharp}\mathcal{E}) \cdot f^*(a), \quad \forall \ a \in H^{2n-2i}(X,\mathbb{R}).$$

Same for homogeneous polynomials in the Chern classes; for instance:

$$c_1^2(\mathcal{E}) \cdot a := c_1(f^{\sharp}\mathcal{E})^2 \cdot f^*(a), \quad \forall \ a \in H^{2n-4}(X,\mathbb{R}).$$

For torsion-free sheaves II

Properties

▶ Well-defined: does not depend on the choice of *f* .

For torsion-free sheaves II

Properties

- ▶ Well-defined: does not depend on the choice of *f* .
- ► Chern classes are defined as linear forms on the cohomology: $c_i(\mathcal{E}) \in H_{2n-2i}(X,\mathbb{R})$ are thus homology classes!

For torsion-free sheaves II

Properties

- Well-defined: does not depend on the choice of f.
- ▶ Chern classes are defined as linear forms on the cohomology: $c_i(\mathcal{E}) \in H_{2n-2i}(X,\mathbb{R})$ are thus homology classes!

Warning!

If $c_1(\mathcal{E})$ is defined as a cohomology class (e.g. if $\det \mathcal{E}$ is \mathbb{Q} -Cartier), we can define $c_1(\mathcal{E})^2 \in H^4(X,\mathbb{R})$ but we have to be very careful. In general:

$$c_1^2(\mathcal{E}) \neq c_1(\mathcal{E})^2$$
 in $H_{2n-4}(X,\mathbb{R})$...

Compatibility

Example

Let $\mathcal{E}:=\mathcal{I}_{x}$ be the ideal of a point x in a surface X and $f:\hat{X}\to X$ be the blow-up of x with exceptional curve E: $f^{*}(\mathcal{I}_{x})=\mathcal{O}_{\hat{X}}(-E)$ and

$$c_1(\mathcal{E}) = 0$$
 but $c_1^2(\mathcal{E}) = c_1(\mathcal{O}_{\hat{X}}(-E))^2 = -1$.

Compatibility

Example

Let $\mathcal{E} := \mathcal{I}_X$ be the ideal of a point x in a surface X and $f: \hat{X} \to X$ be the blow-up of x with exceptional curve E: $f^*(\mathcal{I}_X) = \mathcal{O}_{\hat{X}}(-E)$ and

$$c_1(\mathcal{E}) = 0$$
 but $c_1^2(\mathcal{E}) = c_1(\mathcal{O}_{\hat{X}}(-E))^2 = -1$.

Compatibility 1

If $\mathcal E$ is locally free in codimension 2 (e.g. $\mathcal E$ reflexive), det $\mathcal E$ is $\mathbb Q$ -Cartier and X is smooth in codimension 2, we then have:

$$c_1^k(\mathcal{E}) = c_1(\det \mathcal{E})^k$$
 for $k = 1, 2$.

Proposition/Definition

Let X be a normal complex space and assume that there exists a resolution $f:Y\to X$ that is minimal in codimension 2. Then the quantity

$$c_2(X) \cdot a := c_2(Y) \cdot f^*(a)$$
 for $a \in H^{2n-4}(X,\mathbb{R})$

is independent of the chosen resolution f.

Proposition/Definition

Let X be a normal complex space and assume that there exists a resolution $f:Y\to X$ that is *minimal in codimension 2*. Then the quantity

$$c_2(X) \cdot a := c_2(Y) \cdot f^*(a)$$
 for $a \in H^{2n-4}(X,\mathbb{R})$

is independent of the chosen resolution f.

Proven by Graf and Kirschner (2020).

Proposition/Definition

Let X be a normal complex space and assume that there exists a resolution $f:Y\to X$ that is minimal in codimension 2. Then the quantity

$$c_2(X) \cdot a := c_2(Y) \cdot f^*(a)$$
 for $a \in H^{2n-4}(X,\mathbb{R})$

is independent of the chosen resolution f.

- Proven by Graf and Kirschner (2020).
- ▶ It applies when X has klt singularities: in that case, there exists $Z \subset X$ with $\operatorname{codim}_X(Z) \geq 3$ such that

$$X \setminus Z \stackrel{\mathrm{loc}}{\simeq} \left(\mathbb{C}^2/G \right) \times \mathbb{C}^{n-2} \quad \left(G < \mathrm{GL}_2(\mathbb{C}) \text{ a finite group} \right).$$

Compatibility 2

If X is smooth in codimension 2, we have:

$$c_2(X) = c_2(T_X)$$
 in $H_{2n-4}(X,\mathbb{R})$.

Compatibility 2

If X is smooth in codimension 2, we have:

$$c_2(X) = c_2(T_X)$$
 in $H_{2n-4}(X, \mathbb{R})$.

Kummer surface (as always)

Compatibility 2

If X is smooth in codimension 2, we have:

$$c_2(X) = c_2(T_X)$$
 in $H_{2n-4}(X, \mathbb{R})$.

Kummer surface (as always)

$$ightharpoonup c_2(X) = c_2(\hat{X}) = 24.$$

Compatibility 2

If X is smooth in codimension 2, we have:

$$c_2(X) = c_2(T_X)$$
 in $H_{2n-4}(X, \mathbb{R})$.

Kummer surface (as always)

- $c_2(X) = c_2(\hat{X}) = 24.$
- $ightharpoonup c_2(T_X) = c_2(f^*T_X) = c_2(T_{\hat{X}}(-\log E)) = -8 \neq 24.$

Compatibility 2

If X is smooth in codimension 2, we have:

$$c_2(X) = c_2(T_X)$$
 in $H_{2n-4}(X, \mathbb{R})$.

Kummer surface (as always)

- $c_2(X) = c_2(\hat{X}) = 24.$
- $ightharpoonup c_2(T_X) = c_2(f^*T_X) = c_2(T_{\hat{X}}(-\log E)) = -8 \neq 24.$
- $ightharpoonup c_1(T_X) = 0 \text{ but } c_1^2(T_X) = -32.$

Statements (past and present)

Theorem (Greb-Kebekus-Peternell, 2016)

Let X be a projective klt variety and assume that $K_X \equiv 0$ and $c_2(X) \cdot [H]^{n-2} = 0$ for an ample class H. Then there exists an Abelian variety A and a finite group G acting freely in codimension 2 on A such that $X \simeq A/G$.

Statements (past and present)

Theorem (Greb-Kebekus-Peternell, 2016)

Let X be a projective klt variety and assume that $K_X \equiv 0$ and $c_2(X) \cdot [H]^{n-2} = 0$ for an ample class H. Then there exists an Abelian variety A and a finite group G acting freely in codimension 2 on A such that $X \simeq A/G$.

Theorem (C-Graf-Guenancia, 2021)

Let X be a normal compact Kähler klt space and assume that $c_1(X)=0$ and $c_2(X)\cdot \alpha^{n-2}=0$ for a Kähler class α . Then there exists a complex torus T and a finite group G acting freely in codimension 2 on T such that $X\simeq T/G$.

The algebraic setting I

▶ Consider $S := H_1 \cap \cdots \cap H_{n-2}$ (with $H_i \in |mH|$ for $m \gg 1$): this is a *smooth* surface $S \subset X_{\text{reg}}$.

The algebraic setting I

- ▶ Consider $S := H_1 \cap \cdots \cap H_{n-2}$ (with $H_i \in |mH|$ for $m \gg 1$): this is a *smooth* surface $S \subset X_{\text{reg}}$.
- ▶ $\mathcal{E} := (T_X)_{|S}$ is semi-stable wrt $H_{|S}$, $c_1(\mathcal{E}) = 0$ and $c_2(\mathcal{E}) = 0$. (Simpson, 1992) $\Rightarrow \mathcal{E}$ is flat, given by $\rho : \pi_1(S) \to \mathrm{GL}_n(\mathbb{C})$.

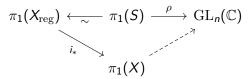
The algebraic setting I

- ▶ Consider $S := H_1 \cap \cdots \cap H_{n-2}$ (with $H_i \in |mH|$ for $m \gg 1$): this is a *smooth* surface $S \subset X_{\text{reg}}$.
- ▶ $\mathcal{E} := (T_X)_{|S}$ is semi-stable wrt $H_{|S}$, $c_1(\mathcal{E}) = 0$ and $c_2(\mathcal{E}) = 0$. (Simpson, 1992) $\Rightarrow \mathcal{E}$ is flat, given by $\rho : \pi_1(S) \to \mathrm{GL}_n(\mathbb{C})$.
- Lefschetz Theorem (Hamm-Lê, 1985):

$$\pi_1(S) \stackrel{\sim}{\longrightarrow} \pi_1(X_{\text{reg}}).$$

The algebraic setting II

▶ Up to replacing X with a quasi-étale cover¹:



The algebraic setting II

ightharpoonup Up to replacing X with a quasi-étale cover¹:

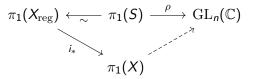
$$\pi_1(X_{\mathrm{reg}}) \stackrel{\sim}{\longleftarrow} \pi_1(S) \stackrel{
ho}{\longrightarrow} \mathrm{GL}_n(\mathbb{C})$$
 $i_* \longrightarrow \pi_1(X)$

▶ Bertini type arguments $\Rightarrow T_X$ is flat, in particular locally free.

¹A so-called maximally quasi-étale cover (GKP, 2016). ⟨♂ → ⟨ ≧ → ⟨ ≧ → ⟨ ≧ → ⟨ ≥

The algebraic setting II

▶ Up to replacing X with a quasi-étale cover¹:



- ▶ Bertini type arguments $\Rightarrow T_X$ is flat, in particular locally free.
- ▶ klt+ T_X locally free $\Rightarrow X$ is smooth (Zariski–Lipman conjecture for klt spaces, GKKP11).

¹A so-called maximally quasi-étale cover (GKP, 2016).

When X is merely a compact Kähler klt space...we are stuck.

²Locally trivial on the total space: \mathcal{X} is locally isomorphic to $X \times \mathbb{D}$.

When X is merely a compact Kähler klt space...we are stuck.

Naive idea

Find $\pi: \mathcal{X} \to \mathbb{D}$ a locally trivial² family over a smooth base $(\mathbb{D}, 0)$ such that $\mathcal{X}_0 := \pi^{-1}(0) \simeq X$ and \mathcal{X}_t is projective for $t \in \mathbb{D}$.

²Locally trivial on the total space: \mathcal{X} is locally isomorphic to $X \times \mathbb{D}$.

When X is merely a compact Kähler klt space... we are stuck.

Naive idea

Find $\pi: \mathcal{X} \to \mathbb{D}$ a locally trivial² family over a smooth base $(\mathbb{D}, 0)$ such that $\mathcal{X}_0 := \pi^{-1}(0) \simeq X$ and \mathcal{X}_t is projective for $t \in \mathbb{D}$.

Too naive?

It is not clear that $c_2(\mathcal{X}_t) \cdot \alpha_t = 0$ for some Kähler class α_t on \mathcal{X}_t .

When X is merely a compact Kähler klt space... we are stuck.

Naive idea

Find $\pi: \mathcal{X} \to \mathbb{D}$ a locally trivial² family over a smooth base $(\mathbb{D}, 0)$ such that $\mathcal{X}_0 := \pi^{-1}(0) \simeq X$ and \mathcal{X}_t is projective for $t \in \mathbb{D}$.

Too naive?

- It is not clear that $c_2(\mathcal{X}_t) \cdot \alpha_t = 0$ for some Kähler class α_t on \mathcal{X}_t .
- It would be the case if $c_2(X) \equiv 0$ as a linear form on $H^{2n-4}(X,\mathbb{R})$ (a family π as above is topologically trivial).

²Locally trivial on the total space: \mathcal{X} is locally isomorphic to $X \times \mathbb{D}$.

Semi-positivity of c_2 I

Bogomolov-Gieseker inequality, singular case

Let X be a normal compact Kähler space, α be a Kähler class and \mathcal{E} be a rank r reflexive sheaf on X that is stable wrt α . Then:

$$\Delta(\mathcal{E}) \cdot \alpha^{n-2} := \left(2rc_2(\mathcal{E}) - (r-1)c_1^2(\mathcal{E})\right) \cdot \alpha^{n-2} \ge 0.$$

Semi-positivity of c_2 I

Bogomolov-Gieseker inequality, singular case

Let X be a normal compact Kähler space, α be a Kähler class and \mathcal{E} be a rank r reflexive sheaf on X that is stable wrt α . Then:

$$\Delta(\mathcal{E}) \cdot \alpha^{n-2} := \left(2rc_2(\mathcal{E}) - (r-1)c_1^2(\mathcal{E})\right) \cdot \alpha^{n-2} \ge 0.$$

Equality case

If $\Delta(\mathcal{E}) \cdot \alpha^{n-2} = 0$ then $\Delta(\mathcal{E}) \cdot \beta^{n-2}$ for any Kähler class β . In case X has rational singularities, it amounts to saying that $\Delta(\mathcal{E}) \cdot \beta^{n-2}$ for any $\beta \in H^{1,1}(X,\mathbb{R})$.

Semi-positivity of c₂ II

Corollary

If X is a klt compact Kähler space that is smooth in codimension 2 and if $c_1(X)=0$ then $c_2(X)\cdot \alpha^{n-2}\geq 0$ for any Kähler class α . In the equality case, $c_2(X)\cdot \alpha^{n-2}=0$ for any Kähler class.

Semi-positivity of c₂ II

Corollary

If X is a klt compact Kähler space that is smooth in codimension 2 and if $c_1(X)=0$ then $c_2(X)\cdot \alpha^{n-2}\geq 0$ for any Kähler class α . In the equality case, $c_2(X)\cdot \alpha^{n-2}=0$ for any Kähler class.

Proof

Replace X with a quasi-étale cover³ such that

$$T_X = \bigoplus_{i \in I} \mathcal{E}_i$$

with \mathcal{E}_i stable with respect to α and $\det \mathcal{E}_i = \mathcal{O}_X$ and use $c_2(X) = c_2(T_X)$.

Decomposition theorem

Bakker-Guenancia-Lehn, 2022

Let X be a compact Kähler space with klt singularities and $c_1(X) = 0$. Up to replacing X with a quasi-étale cover, we have:

$$X \simeq T \times \prod_{i=1}^k Y_i \times \prod_{j=1}^\ell Z_\ell$$

where

Decomposition theorem

Bakker-Guenancia-Lehn, 2022

Let X be a compact Kähler space with klt singularities and $c_1(X) = 0$. Up to replacing X with a quasi-étale cover, we have:

$$X \simeq T \times \prod_{i=1}^k Y_i \times \prod_{j=1}^\ell Z_\ell$$

where

T is a complex torus,

Decomposition theorem

Bakker-Guenancia-Lehn, 2022

Let X be a compact Kähler space with klt singularities and $c_1(X) = 0$. Up to replacing X with a quasi-étale cover, we have:

$$X \simeq T \times \prod_{i=1}^k Y_i \times \prod_{j=1}^\ell Z_\ell$$

where

- T is a complex torus,
- \triangleright Y_i are Calabi–Yau spaces: K_{Y_i} is trivial and

$$H^0\left(Y_i,\Omega_{Y_i}^{[p]}
ight)
eq 0 \Leftrightarrow p=0 ext{ or dim } Y_i.$$

$$X \simeq T \times \prod_{i=1}^k Y_i \times \prod_{j=1}^\ell Z_\ell$$

$$X \simeq T \times \prod_{i=1}^k Y_i \times \prod_{j=1}^\ell Z_\ell$$

 $ightharpoonup Z_j$ are irreducible holomorphic symplectic varieties (IHS): $Z_{j,\mathrm{reg}}$ is endowed with a holomorphic symplectic form whose powers generate the whole algebra of global holomorphic forms.

$$X \simeq T \times \prod_{i=1}^k Y_i \times \prod_{j=1}^\ell Z_\ell$$

 \triangleright Z_j are irreducible holomorphic symplectic varieties (IHS): $Z_{j,\text{reg}}$ is endowed with a holomorphic symplectic form whose powers generate the whole algebra of global holomorphic forms.

 $H^1(Y_i,\mathbb{R})=H^1(Z_j,\mathbb{R})=0\Rightarrow$ any Kähler class lpha on X can be decomposed

$$\alpha = \alpha_T + \sum_{i=1}^k \alpha_i + \sum_{j=1}^\ell \beta_j$$

where α_T , α_i and β_j are Kähler classes on T, Y_i and Z_j .

We thus have (X smooth in codimension 2):

$$c_2(X) \cdot \alpha^{n-2} = c_2(T_X) \cdot \left(\alpha_T + \sum_{i=1}^k \alpha_i + \sum_{j=1}^\ell \beta_j\right)^{n-2}$$
$$= \sum_{i=1}^k \lambda_i \underbrace{c_2(T_{Y_i}) \cdot \alpha_i^{n_i-2}}_{\geq 0} + \sum_{j=1}^\ell \mu_j \underbrace{c_2(T_{Z_j}) \cdot \beta_j^{m_j-2}}_{\geq 0}$$

where λ_i , $\mu_j > 0$, $n_i = \dim Y_i$ and $m_j = \dim Z_j$.

We thus have (X smooth in codimension 2):

$$c_2(X) \cdot \alpha^{n-2} = c_2(T_X) \cdot \left(\alpha_T + \sum_{i=1}^k \alpha_i + \sum_{j=1}^\ell \beta_j\right)^{n-2}$$
$$= \sum_{i=1}^k \lambda_i \underbrace{c_2(T_{Y_i}) \cdot \alpha_i^{n_i-2}}_{\geq 0} + \sum_{j=1}^\ell \mu_j \underbrace{c_2(T_{Z_j}) \cdot \beta_j^{m_j-2}}_{\geq 0}$$

where λ_i , $\mu_j > 0$, $n_i = \dim Y_i$ and $m_j = \dim Z_j$.

Conclusion

In our setting:

$$c_2(X)\cdot\alpha^{n-2}=0\Rightarrow c_2(T_{Y_i})\cdot\alpha_i^{n_i-2}=c_2(T_{Z_i})\cdot\beta_i^{m_j-2}=0\ \forall\ i,\ \forall\ j.$$

CY case

Let Y be Calabi–Yau and smooth in codimension 2 with $c_2(Y) \cdot \alpha^{n-2} = 0$ for a Kähler class α .

CY case

Let Y be Calabi–Yau and smooth in codimension 2 with $c_2(Y) \cdot \alpha^{n-2} = 0$ for a Kähler class α .

Equality case of BG inequality: $c_2(Y) \cdot \beta^{n-2} = 0$ for any Kähler class β . In particular, $\beta = [H]$ since Y is projective (it has no 2-forms).

CY case

Let Y be Calabi–Yau and smooth in codimension 2 with $c_2(Y) \cdot \alpha^{n-2} = 0$ for a Kähler class α .

Equality case of BG inequality: $c_2(Y) \cdot \beta^{n-2} = 0$ for any Kähler class β . In particular, $\beta = [H]$ since Y is projective (it has no 2-forms).

$$\mathsf{GKP} \Rightarrow Y$$
 is a torus quotient. Contradiction!

IHS case

Fujiki relations

Let Z be IHS (dim Z=2n) and smooth in codimension 2. Then $H^2(Z,\mathbb{Q})$ is endowed with a quadratic form q_Z (Beauville–Bogomolov form). There exist constants μ_0 and μ_1 st:

$$a^{2n} = \mu_0 q_Z(a)^n$$
 and $c_2(Z) \cdot a^{2n-2} = \mu_1 q_Z(a)^{n-1}$

for any $a \in H^2(Z, \mathbb{Q})$.

IHS case

Fujiki relations

Let Z be IHS (dim Z=2n) and smooth in codimension 2. Then $H^2(Z,\mathbb{Q})$ is endowed with a quadratic form q_Z (Beauville–Bogomolov form). There exist constants μ_0 and μ_1 st:

$$a^{2n} = \mu_0 q_Z(a)^n$$
 and $c_2(Z) \cdot a^{2n-2} = \mu_1 q_Z(a)^{n-1}$

for any $a \in H^2(Z, \mathbb{Q})$.

If $c_2(Z) \cdot \alpha^{n-2} = 0$ for a Kähler class α , then c_2 vanishes against the whole $H^2(Z, \mathbb{Q})$.

IHS case

Fujiki relations

Let Z be IHS (dim Z=2n) and smooth in codimension 2. Then $H^2(Z,\mathbb{Q})$ is endowed with a quadratic form q_Z (Beauville–Bogomolov form). There exist constants μ_0 and μ_1 st:

$$a^{2n} = \mu_0 q_Z(a)^n$$
 and $c_2(Z) \cdot a^{2n-2} = \mu_1 q_Z(a)^{n-1}$

for any $a \in H^2(Z, \mathbb{Q})$.

If $c_2(Z) \cdot \alpha^{n-2} = 0$ for a Kähler class α , then c_2 vanishes against the whole $H^2(Z, \mathbb{Q})$.

Deformation argument

(Bakker–Lehn, 2021) Z admits algebraic approximations $\pi:\mathcal{Z}\to\mathbb{D}$ and we can apply GKP on a projective deformation \mathcal{Z}_t .

It would be great to be able to deal with the *orbifold* second Chern class $c_2^{\rm orb}(X)$ (Graf–Kirschner in the analytic setting).

It would be great to be able to deal with the *orbifold* second Chern class $c_2^{\rm orb}(X)$ (Graf–Kirschner in the analytic setting).

Tentative statement

Let X be a compact Kähler space with klt singularities. If $c_1(X)=0$ and $c_2^{\mathrm{orb}}(X)\cdot\alpha^{n-2}=0$ for some Kähler class α , then X is a torus quotient (the group acting freely in codimension 1).

It would be great to be able to deal with the *orbifold* second Chern class $c_2^{\rm orb}(X)$ (Graf–Kirschner in the analytic setting).

Tentative statement

Let X be a compact Kähler space with klt singularities. If $c_1(X)=0$ and $c_2^{\mathrm{orb}}(X)\cdot\alpha^{n-2}=0$ for some Kähler class α , then X is a torus quotient (the group acting freely in codimension 1).

The algebraic analogue holds true with $\alpha = [H]$ an ample class (Lu–Taji, 2016).

It would be great to be able to deal with the *orbifold* second Chern class $c_2^{\rm orb}(X)$ (Graf–Kirschner in the analytic setting).

Tentative statement

Let X be a compact Kähler space with klt singularities. If $c_1(X)=0$ and $c_2^{\mathrm{orb}}(X)\cdot\alpha^{n-2}=0$ for some Kähler class α , then X is a torus quotient (the group acting freely in codimension 1).

The algebraic analogue holds true with $\alpha = [H]$ an ample class (Lu–Taji, 2016).

To be able to deal with general torus quotients (no assumptions on the action): consider orbifold structure in codimension 1!