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Ziel (goal):

Algebraic and
Geometric

aspects of local-global principles



Zeil (goal):

Algebraic (fields, complexity, which cohomological local-global
principles over global and semi-global fields), and

Geometric (zero-cycles for varieties over finite fields and
cohomological invariants)

aspects of local-global principles



INTRODUCTION



Hasse-Minkowski: quadratic forms

Theorem

n>2, q(xi,...x,) a quadratic form with rational coefficients.
If the equation

q(x1,...x7) =0

has a (non-trivial) solution in Q, for all p, and in R, then it has a
(non-trivial) solution in Q.

(holds over number fields)



Albert-Brauer-Hasse-Noether: central simple algebras

Notations:

o For K a field, H'(K, 11) the Galois cohomology group (i is a
Gal(K/K)-module);

o i =2 then H*(K, uu,) = Br(K)[n] (classifies central simple
algebras of order n, up to equivalence).

For a global field:

@ K a number field,

o Qx = {K,} are completions at v places of K.

o Theorem: H?(K,u,) — [1, H*(Ky, 1n) is injective.



H*: torsors under linear algebraic groups

K a number field
G a linear algebraic group over K.

Is the map HY(K, G) — [], H*(K,, G) injective?

G = O(q): quadratic forms
G = PGL,: central simple algebras.

True for G a semisimple simply connected group (Kneser, Harder,
Chernousov...), but not in general for a connected linear algebraic

group.



For this talk

| higher degree H', finite coefficients j, semi-global fields;

[l local-global principles for zero-cycles over global fields of
positive characteristic.



K a field,
Q= {K C Ky}, a collection of overfields,
wis a Gal(K/K)-module;

I (K, i) = ker |H™(K, 1) = ] H"(Kv, 1)

veQ

When I (K, p) =07

Example: IH%K(K,,u,,) = 0 if K is a number field and Qx
corresponds to places of K (Albert-Brauer-Hasse-Noether)



Curves over global and semi-global fields

@ global: K a number field, Qx are completions wrt places.

@ semi-global: (Harbater, Hartmann, Krashen; Colliot-Théléne,
Parimala, Suresh)
E is a function field of a curve over a local field k, with a

regular proper model X — Oy, Qg are completions at discrete
valuations on E.

11t
O

@ (Kato) L = K(Y), where Y/K is a geometrically integral
curve, Q; = {K,(Yk,)}veay:

© (Harbater-Krashen-P.) F = E(C), where C/E is a
geometrically integral curve, QF = {E,(Cg,)}vea,;



III vs complexity

¥ = K global, L = K(Y); E semi-global, F = E(C).
1§ (*) = ker [Hn(*,,u) — [yeq H"(*v, ,U)} for p = Mz@(n—l)

K L E F
n=1 msllK(K):o LH}]L(L):o m}zE(E)7é0 LU}ZF(F);AO
n=2 mgK(K):o Luf,L(L);Ao mng(E):o mgF(F);éo
n=23 IﬂgL(L):o ng(E):o mgF(F)zo
n=4 mgF(F)zo

#0

13, (Loae) " 27 M1, (K. Jac(Y))[ # 0

If we look at 2 = all discrete valuations on F, then
115 (F) = HG(F) for n > 3 (uses g, (E))



o Illg (F) #0and I3 _(F)#0, F = E(C).
e Take C = IP’IE:

0 — Iy, (E) — Mg, (F) — [] Mg, (5(y), u(~1)) = 0.
yeAL



III vs complexity

* = K global, L = K(Y); E semi-global, F = E(C).
L1 (%) = ker [H" (%, 1) — [T,eq H"(xv, p)] for = H;@(nq)

K L E F

1 [ 1%, (K)=0 | I} (1) =0 | IO _(E) #0 | I (F) #0
=2 [ 15, (K) =0 [ I, (L) # 0 [ 1T, (E) = 0 [ T (F) #0
—3 13 (L) =0 [ 13 _(E)=0 | I} _(F)=0
: IIg, (F) =0




° LH}ZF(F) #0 and HIS%F(F) #0, F=E(C).
o Take C = IP’lE:

0 — I, (E) — Mg, (F) — [ Mg (k(y), u(~1)) = 0.
yeAL

o Use that MbE(E) could be nonzero.
(precisely: when the reduction graph of the special fiber of a
regular model X of E is not a tree.)

@ Remark: works if E is a function field of a curve over a
complete discretely valued field (no need to assume the residue
field is finite).



o (F)

o I3 (F)=0and 1§, (F) =0.
e F/E/k, k local:

o Take C — Oy a regular proper model of F, such that the
special fiber of C is a simple normal crossings divisor (exists up
to de Jong - Gabber alterations of degree prime to ¢)

o Use that

Hiy(F/C) = Ncerm ker | HI(F) 2 H=1(k(x), u(~1)) | = 0

is zero: Saito and Sato, i = 3; Kerz and Saito, i = 4.
o (lemma): Tl _(F) C Hy(F/C), n > 3.



Unramified cohomology

X/k is an integral variety

Definition

Hrl;r(X/ka M(,?j) = Ny ker [Hi(k(X),M‘,?j) 84 Hi_l(ﬁ(v),uf?(j_l))]

where v runs over all discrete valuations of k(X) of rank 1, trivial
on k.

Hi (X, Qu/Zo(j)) = lim Hi, (X, ).




Other questions/Remarks

@ other sets of overfields for F:

o Recall: QrF = {E,(Cg,)}veqs
o If we do not include v centered on the closed fiber of X a
model of E then IIT’ could be nonzero for i = 2,3, 4.

@ Next:
F (a function field of an arithmetical 3-fold)

!

a 3-fold V over a finite field F (or a surface over K)

1
Goal: study H3,(S x C).



Set-up, Il: existence of zero-cycles from a local data

K a global field, Q is the set of places of K, K, is a completion
X /K a smooth, projective, geometricaly integral variety, X, = Xk,

o IsX(K)#£07

o [s there a zero-cycle z € CHo(X) of degree 1: z =, njP;,
with > . ni[k(P;) : K] =17
l.e. if I(X) = g.c.d of degrees of closed points of X, what is

I, (X) = ker[Z/1(X) = [[ Z/1(X)].




Over number fields

K a number field, Q is the set of places,
X /K is a geometrically rational surface

113, (X, Q/Z(2)) % ker [H3,(X,Q/Z(2) — [T H3.(X,, Q/Z(2)]

Theorem (Colliot-Théléne - Kahn)

II,(X) =0 if
© K is totally imaginary;
Q@ HY(K,PicX)=0;
@ 1113, (X,Q/Z(2)) = 0.

Conjecture. If K is a global field, X/K is a smooth projective
geometrically rational surface, then II13,(X,Q/Z(2)) = 0.




Brauer-Manin obstruction

K a global field, Q is the set of places of K, K, is a completion
X /K a smooth, projective, geometricaly integral variety, X, = Xk,

Br(X) = H?(X,G,) the Brauer group of X.
invy : CHo(X,) x Br(X) — Br(K,)
Reciprocity: if z € CHy(X), A € Br(X) one has > inv,(z,A) = 0.



K a global field, Q is the set of places of K, K, is a completion
X /K a smooth, projective, geometricaly integral variety
inv, : CHo(X,) x Br(X) — Br(K,)

Conjecture (Colliot-Théléne - Sansuc (81), Kato-Saito (85))

Brauer-Manin obstruction for 0-cycles is the only one: if there is a
family z, ,cq of zero cycles of degree 1 such that

VA € Br(X), Z inv,(z,,A) =0,

then X has a zero-cycle of degreve 1.

Open in general. Progress by Salberger (conic bunldes over P! over
a number field), Colliot-Théléne, Swinnerton-Dyer, Skorobogatov,
Salberger, Frossard, van Hamel, Wittenberg, Yonggi Liang...



Connection with the integral Tate conjecture

K =T(C), Q is the set of places, where

F is finite, C/FF a smooth projective geometrically connected curve
V — C smooth projective

X /K generic fiber, smooth, d + 1 = dim V

¢ # char(F).

Theorem (Saito)

Assume CHY (V) ® Zy — H23(V, Zy(d)) is surjective.

If (zv)veq € CHo(X,) of degree 1 with

VA € Br(X), >, inv,(z,,A) =0, then X has a zero-cycle of
degree prime to £.

No known counterexamples for the integral Tate conjecture (above)
for 1-cycles.



Integral Tate conjecture and H3,

V /F smooth projective, (n, charF) = 1.

Theorem (Colliot-Théléne - Kahn)

Coker[CH?(V) ® Z¢ — HZ(V, Ze(2)],,,. =
~ H3,(V,Qu/Z(2))/ maximal divisible subgroup.




Case of varieties of dimension 3

K =TF(X), V — C smooth projective
X /K generic fiber, smooth, dim V = 3.

Theorem (Colliot-Théléne - Kahn)

Assume:
@ Tate conjecture holds for divisors on V/;
o H3.(V,Qu/Ze(2)) = 0.
If (zy)veq € CHo(X,) of degree 1 with
VA € Br(X), >, invy(z,,A) =0, then X has a zero-cycle of
degree prime to £.

This motivates:

V//F smooth projective of dimension 3. Is H3,(V,Qu/Zs(2)) =07




Cases

V /I smooth projective of dimension 3. Is H3.(V,Qy/Z(2)) = 0?

@ Yes, if V is fibered in conics over a surface (Parimala-Suresh).

@ Yesif V=35 x C + some assumptions (e.g. S a "close to
rational" surface), (P., Colliot-Théléne-Scavia, Scavia)

© (Conjecture, Colliot-Théléne - Kahn)
Yes if V is geometrically uniruled
(by analogy with a result of Colliot-Théléne - Voisin: H3, =0
for V/C uniruled of dimension 3).

@ Open for V = E; x E; x E3 where E; is an elliptic curve: e.g.
if i € HY(E;,Z/2) is A UK Uf € H3(F(V)) non zero?

@ Open if dim V = 4.

@ (P.) Counterexamples if dim V = 5.

@ H3,(V)=0if dimV = 1 (trivial) or 2 (Colliot-Théléne -
Sansuc - Soulé).



Results for S x C

(¢,char(F)) =1

C/F a smooth projective curve

S/F a smooth projective surface

Assume S is geometrically CHop-trivial:

deg : CHo(Sk)g — Q for any algebraically closed K O F.
Examples: S geometrically rational, supersingular K3, Enriques

Theorem
H3.(S x C,Qq¢/Z¢(2)) = 0 in the following cases:
Q@ (P) HY(S,0s) =0 and NS(S) has no torsion.
@ (Colliot-Théléne - Scavia)
Hom & /m) (NS(S){€}, Jc(F){¢}) = 0 and Tate conjecture
for divisors on surfaces holds.
@ (Scavia) if Hom,; gy (NS(S){€}, Jc(F){¢}) = 0 and
HomF_g,(Picg/Ered, Jc) =0.




Enriques surface x elliptic curve

o (Scavia) H3.(S x C,Qu/Z¢(2)) =0 if
Hom ;& /m) (NS(5){€}, Jc(F){¢}) = 0 and
HOm]F,g,.(Pl.Cg/F,red, JC) =0:

o example: S Enriques, C = E elliptic curve with E(F)[2] = Og
(i.e. E:y? = f(x) with f irreducible of degre 3).

The integral Tate conjecture for 1-cycles holds in this case:

CH?(S x E) ® Zy — H2,(S x E, Zy(2)) is surjective.

@ (Benoist-Ottem) Integral Hodge conjecture for 1-cycles does
not hold for S/C Enriques surface and E a very general elliptic
curve:

CH?(S x E) — Hdg*(S x E,Z) is not surjective.



On proofs: case HY(S, Os) = 0 and NS(S) has no torsion

© General facts:
o For X/k smooth projective, H. (X) = N, ker(d.) where it is
enough to take v corresponding to X(1). ‘
o Hence one has a map 7: H (X, i) — H, (X, ) C H'(k(X)).
o In general kert is mysterious if i > 3 (if i = 2 we use
Br(X) C Br(k(X)) and H2,(X, 1) = Br(X)[€]).
Reminder: E; x E; X Ej.
@ Strategy: for S x C, = M%Z
Hgt(s X C,,LL) A Hgt(SJF(C),N) A ng(s X C/F,/L)



Bloch-Ogus formalism and Gersten conjecture

X /k smooth projective, geometrically integral, u = u‘,?j,
(n, chark) =1

QC:

HI(K(X) 1), _ ) H (RO~ 1)) =08 iy HO k() (1)) 0

is a resolution of (Zariski) sheaf 7 : U+ HL (U, p).
@ HO(C) = Hi,, HI(C) = CHI(X)/nif j = .

© There is a spectral sequence:
EY9 = HP(X, H (1)) = He(X, w).
@ This gives:

HEe (X, 152) = Han (X, 1) = CHA(X)/n = HE(X, 1 ?).



Bloch's method and Gersten conjecture (Quillen)

O D: Kik(X) = Syexm Kim1h(x) = ... @yexiy Z — 0

is a resolution of a (Zariski) sheaf K; : U — K;(H°(U, Ox))
@ Merkurjev-Suslin theorem: KoK /n = H?(K, u®?)
© This gives
o Pic(X)® k* — HY(X, K2)
o 0— HY(X,K2)/n— NH3.(X, u%?) — CH*(X)[n] = 0

where NH3,(X) = Ker[H3,(X) — H3(K(X)]



Lifting to Sp(c)

Recall:

HE(X, 115 ) = Hi (X, ) = CH(X)/n — HE(X, 1)

In our setting:
C/F a smooth projective curve, K = F(C) B
S/F a smooth projective surface, T the torus dual to Pic(S).

H2,(Sk, 152) = H3,(Sk /K, 1n&?) — CH?(Sk)/n = HE(Sk, n%?).

Enough: Ag(Sk) C CH?(Sk) (zero-cycles of degree 0) is trivial.
o We have:
Ao(Sk) —— 11, Ao(Sk,)
J{Ok \ \LH“’;V
0 ——TITY(K, T) —= H(K, Tic) — 1, H'(Ks, Ti,):
1)

7} is injective and V is zero.



YK, Tk)

@ T has a flasque resolution (over F!)
0O—-F—-P—>T—=0

where F is a direct factor of quasi-trivial (since we over F, in
general F is flasque), and P is quasi-trivial.

o Hence IITY(K, Tx) C III?(K, Fk)

e Enough: II*(K, Rk//kGm) = 0 where K'/K is a finite
extension,

e i.e. that IT3(K',G,) = 0. This is
Albert-Brauer-Hasse-Noether for central simple algebras!



Where we are now

H2,(S x C, 1)~ H2,(Sp(cy. 1)  H3, (S x C/F, )



Liftingto S x C

We have

H3.(Sk. 15%) — H2.(Sk /K. 15?) D H3.(S x C/F, u3?)

HZ (S ) — 5= HM(K Pic §/0(1))

1,2

| T

H3.(S x C, u?) — H%,(C,Pic5/¢7(1))




Where we are now

H2,(S x C, 1)~ H2,(Sp(cy. 1)  H3, (S x C/F, )



Image of H3,(S x C,u)is 0 in H3(F(S x C))

Uses:

@ Enough to consider u = %82 (by Merkurjev-Suslin theorem
H3.(S x C,15?) is the (-torsion of H3.(S x C,Q¢/Z(2)))
and that py C IF (restriction-corestriction).

o Pic(3) ® HL,(C,Z/0) ~ H3.(5 x C,2/1);
o Pic(5) @ F(C)* — H (S5 (¢, K2)
H (X(c)s K2) € /0 & H (Xi(c), K2) /€ C NHZ (X, %)



Overview of Scavia's proof: global strategy

@ Goal: For V =S x C one has H3.(V,Qy/Z(2)) = 0 if

(%) HomGa,(F/F)(NS(g){Z}, Jc(F){£}) = 0 and Homy,g,(Picg/[FY,ed, Jc)=0
e enough: CH?(V)® Z; — H.(V,Z(2)) is surjective
(correspondences, uses that S is geometrically trivial);
o enough: CH?(V) ® Zy — H%.(V,Z(2))€ is surjective (subtle
analysis of Hochschild-Serre, Kunneth, and properties of S)
o (*) = MLV, Z4(2)¢ = HE(5,24(2))¢ & HZ,(S, Z4(1))°.
@ Finally:
CH?(S) @ Pic(S) CH?(V)

» i

HE(S, Z4(2))¢ @ HZ,(S, Ze(1))® —— HE(V, Z(2))°.
1} is surjective by Lang-Weil;
J is surjective since by = p.




THANK YOU!!l



