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Algebraic and

Geometric
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Goal

Zeil (goal):

Algebraic (fields, complexity, which cohomological local-global
principles over global and semi-global fields), and
Geometric (zero-cycles for varieties over finite fields and
cohomological invariants)
aspects of local-global principles



INTRODUCTION



Hasse-Minkowski: quadratic forms

Theorem
n ≥ 2, q(x1, . . . xn) a quadratic form with rational coefficients.
If the equation

q(x1, . . . xn) = 0

has a (non-trivial) solution in Qp for all p, and in R, then it has a
(non-trivial) solution in Q.

(holds over number fields)



Albert-Brauer-Hasse-Noether: central simple algebras

Notations:
For K a field, H i (K , µ) the Galois cohomology group (µ is a
Gal(K̄/K )-module);
i = 2 then H2(K , µn) = Br(K )[n] (classifies central simple
algebras of order n, up to equivalence).

For a global field:
K a number field,
ΩK = {Kv} are completions at v places of K .
Theorem: H2(K , µn)→

∏
v H

2(Kv , µn) is injective.



H1: torsors under linear algebraic groups

K a number field
G a linear algebraic group over K .

Question

Is the map H1(K ,G )→
∏

v H
1(Kv ,G ) injective?

G = O(q): quadratic forms
G = PGLn: central simple algebras.

True for G a semisimple simply connected group (Kneser, Harder,
Chernousov...), but not in general for a connected linear algebraic
group.



For this talk

I higher degree H i , finite coefficients µ, semi-global fields;
II local-global principles for zero-cycles over global fields of

positive characteristic.



Set-up, I

K a field,
Ω = {K ⊂ Kv}v a collection of overfields,
µ is a Gal(K̄/K )-module;

Xn
Ω(K , µ) = ker

[
Hn(K , µ)→

∏
v∈Ω

Hn(Kv , µ)

]

Question
When Xn

Ω(K , µ) = 0?

Example: X2
ΩK

(K , µn) = 0 if K is a number field and ΩK

corresponds to places of K (Albert-Brauer-Hasse-Noether)



Curves over global and semi-global fields

1 global: K a number field, ΩK are completions wrt places.
2 semi-global: (Harbater, Hartmann, Krashen; Colliot-Thélène,

Parimala, Suresh)
E is a function field of a curve over a local field k , with a
regular proper model X → Ok , ΩE are completions at discrete
valuations on E .

3 (Kato) L = K (Y ), where Y /K is a geometrically integral
curve, ΩL = {Kv (YKv )}v∈ΩK

;
4 (Harbater-Krashen-P.) F = E (C ), where C/E is a

geometrically integral curve, ΩF = {Ev (CEv )}v∈ΩE
;



X vs complexity

* = K global, L = K (Y ); E semi-global, F = E (C ).
Xn

Ω(∗) = ker
[
Hn(∗, µ)→

∏
v∈Ω Hn(∗v , µ)

]
for µ = µ

⊗(n−1)
`

K L E F
n = 1 X1

ΩK
(K ) = 0 X1

ΩL
(L) = 0 X1

ΩE
(E ) 6= 0 X1

ΩF
(F ) 6= 0

n = 2 X2
ΩK

(K ) = 0 X2
ΩL

(L) 6= 0 X2
ΩE

(E ) = 0 X2
ΩF

(F ) 6= 0
n = 3 X3

ΩL
(L) = 0 X3

ΩE
(E ) = 0 X3

ΩF
(F ) = 0

n = 4 X4
ΩF

(F ) = 0

X2
ΩL

(L, µ`)
Y (F )6=0

= X1
ΩK

(K , Jac(Y ))[`] 6= 0

If we look at Ω = all discrete valuations on F , then
Xn

ΩF
(F ) = Xn

Ω(F ) for n ≥ 3 (uses XΩE
(E ))



Xn
ΩF

(F )

X1
ΩF

(F ) 6= 0 and X2
ΩF

(F ) 6= 0, F = E (C ).

Take C = P1
E :

0→Xn
ΩE

(E )→Xn
ΩF

(F )→
∏
y∈A1

E

Xn−1
ΩE

(κ(y), µ(−1))→ 0.



X vs complexity

* = K global, L = K (Y ); E semi-global, F = E (C ).
Xn

Ω(∗) = ker
[
Hn(∗, µ)→

∏
v∈Ω Hn(∗v , µ)

]
for µ = µ

⊗(n−1)
`

K L E F
n = 1 X1

ΩK
(K ) = 0 X1

ΩL
(L) = 0 X1

ΩE
(E ) 6= 0 X1

ΩF
(F ) 6= 0

n = 2 X2
ΩK

(K ) = 0 X2
ΩL

(L) 6= 0 X2
ΩE

(E ) = 0 X2
ΩF

(F ) 6= 0
n = 3 X3

ΩL
(L) = 0 X3

ΩE
(E ) = 0 X3

ΩF
(F ) = 0

n = 4 X4
ΩF

(F ) = 0



Xn
ΩF

(F )

X1
ΩF

(F ) 6= 0 and X2
ΩF

(F ) 6= 0, F = E (C ).

Take C = P1
E :

0→Xn
ΩE

(E )→Xn
ΩF

(F )→
∏
y∈A1

E

Xn−1
ΩE

(κ(y), µ(−1))→ 0.

Use that X1
ΩE

(E ) could be nonzero.
(precisely: when the reduction graph of the special fiber of a
regular model X of E is not a tree.)
Remark: works if E is a function field of a curve over a
complete discretely valued field (no need to assume the residue
field is finite).



Xn
ΩF

(F )

X3
ΩF

(F ) = 0 and X4
ΩF

(F ) = 0.

F/E/k , k local:
Take C → Ok a regular proper model of F , such that the
special fiber of C is a simple normal crossings divisor (exists up
to de Jong - Gabber alterations of degree prime to `)
Use that

H i
nr (F/C) = ∩x∈C(1) ker

[
H i (F )

∂ i
x→ H i−1(κ(x), µ(−1))

]
= 0

is zero: Saito and Sato, i = 3; Kerz and Saito, i = 4.
(lemma): Xn

ΩF
(F ) ⊂ Hn

nr (F/C), n ≥ 3.



Unramified cohomology

X/k is an integral variety

Definition

H i
nr (X/k , µ⊗jn ) = ∩vker

[
H i (k(X ), µ⊗jn )

∂v→ H i−1(κ(v), µ
⊗(j−1)
n )

]
where v runs over all discrete valuations of k(X ) of rank 1, trivial
on k .
H i
nr (X ,Q`/Z`(j)) = lim−→H i

nr (X , µ⊗j`r ).



Other questions/Remarks

1 other sets of overfields for F :
Recall: ΩF = {Ev (CEv )}v∈ΩE

If we do not include v centered on the closed fiber of X a
model of E then Xi could be nonzero for i = 2, 3, 4.

2 Next:

F (a function field of an arithmetical 3-fold)
↓

a 3-fold V over a finite field F (or a surface over K )
↓

Goal: study H3
nr (S × C ).



Set-up, II: existence of zero-cycles from a local data

K a global field, Ω is the set of places of K , Kv is a completion
X/K a smooth, projective, geometricaly integral variety, Xv = XKv

Question
Is X (K ) 6= ∅?
Is there a zero-cycle z ∈ CH0(X ) of degree 1: z =

∑
i niPi ,

with
∑

i ni [κ(Pi ) : K ] = 1?
I.e. if I (X ) = g .c .d of degrees of closed points of X , what is

XI (X ) = ker [Z/I (X )→
∏
v

Z/I (Xv )].



Over number fields

K a number field, Ω is the set of places,
X/K is a geometrically rational surface
X3

nr (X ,Q/Z(2))
def
= ker

[
H3
nr (X ,Q/Z(2)→

∏
H3
nr (Xv ,Q/Z(2)

]
Theorem (Colliot-Thélène - Kahn)

XI (X ) = 0 if
1 K is totally imaginary;
2 H1(K ,Pic X̄ ) = 0;
3 X3

nr (X ,Q/Z(2)) = 0.

Conjecture. If K is a global field, X/K is a smooth projective
geometrically rational surface, then X3

nr (X ,Q/Z(2)) = 0.



Brauer-Manin obstruction

K a global field, Ω is the set of places of K , Kv is a completion
X/K a smooth, projective, geometricaly integral variety, Xv = XKv

Br(X ) = H2(X ,Gm) the Brauer group of X .
invv : CH0(Xv )× Br(X )→ Br(Kv )
Reciprocity: if z ∈ CH0(X ),A ∈ Br(X ) one has

∑
v invv (z ,A) = 0.



K a global field, Ω is the set of places of K , Kv is a completion
X/K a smooth, projective, geometricaly integral variety
invv : CH0(Xv )× Br(X )→ Br(Kv )

Conjecture (Colliot-Thélène - Sansuc (81), Kato-Saito (85))

Brauer-Manin obstruction for 0-cycles is the only one: if there is a
family zv ,v∈Ω of zero cycles of degree 1 such that

∀A ∈ Br(X ),
∑
v

invv (zv ,A) = 0,

then X has a zero-cycle of degree 1.

Open in general. Progress by Salberger (conic bunldes over P1 over
a number field), Colliot-Thélène, Swinnerton-Dyer, Skorobogatov,
Salberger, Frossard, van Hamel, Wittenberg, Yongqi Liang...



Connection with the integral Tate conjecture

K = F(C ), Ω is the set of places, where
F is finite, C/F a smooth projective geometrically connected curve
V → C smooth projective
X/K generic fiber, smooth, d + 1 = dimV
` 6= char(F).

Theorem (Saito)

Assume CHd(V )⊗ Z` → H2d
ét (V ,Z`(d)) is surjective.

If (zv )v∈Ω ∈ CH0(Xv ) of degree 1 with
∀A ∈ Br(X ),

∑
v invv (zv ,A) = 0, then X has a zero-cycle of

degree prime to `.

No known counterexamples for the integral Tate conjecture (above)
for 1-cycles.



Integral Tate conjecture and H3
nr

V /F smooth projective, (n, char F) = 1.

Theorem (Colliot-Thélène - Kahn)

Coker
[
CH2(V )⊗ Z` → H4

ét(V ,Z`(2)
]
tors
'

' H3
nr (V ,Q`/Z`(2))/maximal divisible subgroup.



Case of varieties of dimension 3

K = F(X ), V → C smooth projective
X/K generic fiber, smooth, dimV = 3.

Theorem (Colliot-Thélène - Kahn)

Assume:
Tate conjecture holds for divisors on V ;
H3
nr (V ,Q`/Z`(2)) = 0.

If (zv )v∈Ω ∈ CH0(Xv ) of degree 1 with
∀A ∈ Br(X ),

∑
v invv (zv ,A) = 0, then X has a zero-cycle of

degree prime to `.

This motivates:

Question

V /F smooth projective of dimension 3. Is H3
nr (V ,Q`/Z`(2)) = 0?



Cases

Question

V /F smooth projective of dimension 3. Is H3
nr (V ,Q`/Z`(2)) = 0?

1 Yes, if V is fibered in conics over a surface (Parimala-Suresh).
2 Yes if V = S × C + some assumptions (e.g. S a "close to

rational" surface), (P., Colliot-Thélène-Scavia, Scavia)
3 (Conjecture, Colliot-Thélène - Kahn)

Yes if V is geometrically uniruled
(by analogy with a result of Colliot-Thélène - Voisin: H3

nr = 0
for V /C uniruled of dimension 3).

4 Open for V = E1 × E2 × E3 where Ei is an elliptic curve: e.g.
if fi ∈ H1(Ei ,Z/2) is f1 ∪ f2 ∪ f3 ∈ H3(F(V )) non zero?

5 Open if dimV = 4.
6 (P.) Counterexamples if dimV = 5.
7 H3

nr (V ) = 0 if dimV = 1 (trivial) or 2 (Colliot-Thélène -
Sansuc - Soulé).



Results for S × C

(`, char(F)) = 1
C/F a smooth projective curve
S/F a smooth projective surface
Assume S is geometrically CH0-trivial:
deg : CH0(SK)Q

∼→ Q for any algebraically closed K ⊃ F.
Examples: S geometrically rational, supersingular K3, Enriques

Theorem

H3
nr (S × C ,Q`/Z`(2)) = 0 in the following cases:
1 (P.) H1(S ,OS) = 0 and NS(S̄) has no torsion.
2 (Colliot-Thélène - Scavia)

HomGal(F̄/F)(NS(S̄){`}, JC (F̄){`}) = 0 and Tate conjecture
for divisors on surfaces holds.

3 (Scavia) if HomGal(F̄/F)(NS(S̄){`}, JC (F̄){`}) = 0 and
HomF−gr (Pic0

S/F,red , JC ) = 0.



Enriques surface x elliptic curve

(Scavia) H3
nr (S × C ,Q`/Z`(2)) = 0 if

HomGal(F̄/F)(NS(S̄){`}, JC (F̄){`}) = 0 and
HomF−gr (Pic0

S/F,red , JC ) = 0:
example: S Enriques, C = E elliptic curve with E (F)[2] = OE

(i.e. E : y2 = f (x) with f irreducible of degre 3).

The integral Tate conjecture for 1-cycles holds in this case:

CH2(S × E )⊗ Z` → H4
ét(S × E ,Z`(2)) is surjective.

(Benoist-Ottem) Integral Hodge conjecture for 1-cycles does
not hold for S/C Enriques surface and E a very general elliptic
curve:

CH2(S × E )→ Hdg4(S × E ,Z) is not surjective.



On proofs: case H1(S ,OS) = 0 and NS(S̄) has no torsion

1 General facts:
For X/k smooth projective, H i

nr (X ) = ∩vker(∂ iv ) where it is
enough to take v corresponding to X (1).
Hence one has a map τ : H i

ét
(X , µ)→ H i

nr (X , µ) ⊂ H i (k(X )).
In general kerτ is mysterious if i ≥ 3 (if i = 2 we use
Br(X ) ⊂ Br(k(X )) and H2

nr (X , µ`) = Br(X )[`]).
Reminder: E1 × E2 × E3.

2 Strategy: for S × C , µ = µ⊗2
`r

H3
ét(S × C , µ) x H3

ét(SF(C), µ) x H3
nr (S × C/F, µ).



Bloch-Ogus formalism and Gersten conjecture

X/k smooth projective, geometrically integral, µ = µ⊗jn ,
(n, chark) = 1

1 C :
H i (k(X ),µ)→⊕

x∈X (1)H
i−1(κ(x),µ(−1))→...⊕

x∈X (i)H
0(κ(x),µ(−i))→0

is a resolution of (Zariski) sheaf H : U 7→ H i
ét(U, µ).

2 H0(C) = H i
nr , H

i (C) = CH i (X )/n if µ = µ⊗im .
3 There is a spectral sequence:

Epq
2 = Hp(X ,Hq(µ))⇒ Hn

ét(X , µ).

4 This gives:

H3
ét(X , µ

⊗2
n )→ H3

nr (X , µ⊗2
n )→ CH2(X )/n→ H4

ét(X , µ
⊗2
n ).



Bloch’s method and Gersten conjecture (Quillen)

1 D : Kik(X )→ ⊕x∈X (1)Ki−1κ(x)→ . . .⊕x∈X (i) Z→ 0

is a resolution of a (Zariski) sheaf Ki : U 7→ Ki (H
0(U,OX ))

2 Merkurjev-Suslin theorem: K2K/n
∼→ H2(K , µ⊗2

n )
3 This gives

Pic(X )⊗ k∗ → H1(X ,K2)
0→ H1(X ,K2)/n→ NH3

ét(X , µ
⊗2
n )→ CH2(X )[n]→ 0

where NH3
ét(X ) = Ker [H3

ét(X )→ H3(K (X )]



Lifting to SF(C )

Recall:

H3
ét(X , µ

⊗2
n )→ H3

nr (X , µ⊗2
n )→ CH2(X )/n→ H4

ét(X , µ
⊗2
n ).

In our setting:
C/F a smooth projective curve, K = F(C )
S/F a smooth projective surface, T the torus dual to Pic(S̄).

H3
ét(SK , µ

⊗2
n )→ H3

nr (SK/K , µ
⊗2
n )→ CH2(SK )/n→ H4

ét(SK , µ
⊗2
n ).

Enough: A0(SK ) ⊂ CH2(SK ) (zero-cycles of degree 0) is trivial.

We have:

A0(SK )

ΦτK
��

//

Ψ

((

∏
v A0(SKv )∏

ΦτKv
��

0 //X1(K ,TK ) // H1(K ,TK ) //
∏

v H
1(Kv ,TKv ).

(1)

Φτ
K is injective and Ψ is zero.



X1(K ,TK )

T has a flasque resolution (over F!)

0→ F → P → T → 0

where F is a direct factor of quasi-trivial (since we over F, in
general F is flasque), and P is quasi-trivial.
Hence X1(K ,TK ) ⊂X2(K ,FK )

Enough: X2(K ,RK ′/KGm) = 0 where K ′/K is a finite
extension,
i.e. that X2(K ′,Gm) = 0. This is
Albert-Brauer-Hasse-Noether for central simple algebras!



Where we are now

H3
ét(S × C , µ) x H3

ét(SF(C), µ) x H3
nr (S × C/F, µ)



Lifting to S × C

We have

H3
ét(SK , µ

⊗2
`r ) � H3

nr (SK/K , µ
⊗2
`r ) ⊃ H3

nr (S × C/F, µ⊗2
`r )

H3
ét(SK , µ

⊗2
`r )

d1,2

' // H1(K ,Pic S̄/`r (1))

H3
ét(S × C , µ⊗2

`r ) // //

OO

H1
ét(C ,Pic S̄/`r (1))

OO



Where we are now

H3
ét(S × C , µ) x H3

ét(SF(C), µ) x H3
nr (S × C/F, µ)



Image of H3
ét(S × C , µ) is 0 in H3(F(S × C ))

Uses:
Enough to consider µ = µ⊗2

` (by Merkurjev-Suslin theorem
H3
nr (S × C , µ⊗2

` ) is the `-torsion of H3
nr (S × C ,Q`/Z`(2)))

and that µ` ⊂ F (restriction-corestriction).
Pic(S̄)⊗ H1

ét(C̄ ,Z/`) ' H3
ét(S̄ × C̄ ,Z/`);

Pic(S̄)⊗ F̄(C )∗ → H1(SF̄(C),K2)

H1(XF̄(C),K2)G/`
∼← H1(XF(C),K2)/` ⊂ NH3

ét(X , µ
⊗2
` )



Overview of Scavia’s proof: global strategy

Goal: For V = S × C one has H3
nr (V ,Q`/Z`(2)) = 0 if

(∗) HomGal(F̄/F)(NS(S̄){`}, JC (F̄){`}) = 0 and HomF−gr (Pic0S/F,red , JC ) = 0

enough: CH2(V )⊗ Z` → H4
ét(V ,Z`(2)) is surjective

(correspondences, uses that S is geometrically trivial);
enough: CH2(V )⊗ Z` → H4

ét(V̄ ,Z`(2))G is surjective (subtle
analysis of Hochschild-Serre, Kunneth, and properties of S)
(*) ⇒ H4

ét(V̄ ,Z`(2))G ' H4
ét(S̄ ,Z`(2))G ⊕ H2

ét(S̄ ,Z`(1))G .
Finally:

CH2(S)⊕ Pic(S)

�� ��

// CH2(V )

��
H4
ét(S̄ ,Z`(2))G ⊕ H2

ét(S̄ ,Z`(1))G // H4
ét(V̄ ,Z`(2))G .

↓ is surjective by Lang-Weil;
↓ is surjective since b2 = ρ.



THANK YOU!!!


