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General type results for moduli of hyperkähler varieties
Joint work in progress with I. Barros, P. Beri & L. Flapan

Goal:
Give new general type results for moduli of hyperkähler varieties
and explain challenges for extending.

Main references:
Gritsenko–Hulek–Sankaran (GHS) 2007, 2010, 2011

Plan:

1. Kodaira dimension & hyperkähler varieties

2. Results

3. Sketch proof

4. Comments on proof

I Everything over C
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Kodaira dimension

Let X be a smooth connected complete variety, ωX =
∧dimX

ΩX .
Let Pm := dim H0(X , ω⊗mX ). The Kodaira dimension of X is

κ(X ) =


−∞ if Pm = 0 for all m > 0;

otherwise, the minimal k s.t. Pm

mk is bounded

(i.e. Pm grows like mk)

1. κ(X ) is a birational invariant
I for X singular (non-complete), define κ(X ) := κ(X ′) for X ′ a

desingularization (completion) of X

2. κ(X ) ∈ {−∞, 0, 1, . . . , dim(X )}

X is of general type if κ(X ) = dim(X ).
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Examples

I If C is a curve, then


κ(C ) = −∞ ⇐⇒ g(C ) = 0

κ(C ) = 0 ⇐⇒ g(C ) = 1

κ(C ) = 1 ⇐⇒ g(C ) > 1

I κ(Pn) = −∞. More generally, κ(X ) = −∞ if X is unirational,
i.e. there is a dominant rational map Pn 99K X .

I Severi (1915): the moduli space Mg of curves of genus g is
unirational when g ≤ 10

I Harris, Mumford, Eisenbud (1980s): Mg is of general type
when g ≥ 24

I Y.-S. Tai (1982): The moduli Ag of principally polarized
abelian varieties of dim. g is of general type when g ≥ 9
I Main ingredient: Siegel modular forms
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Hyperkähler varieties

A hyperkähler (HK) variety is a smooth projective variety X s.t.

1. X is simply connected

2. H0(X ,Ω2
X ) is generated by a non-degenerate 2-form.

I dimC X is even

I ωX
∼= OX

I H2(X ,Z) is torsion-free & has non-deg. symmetric bilinear form

qX = ( , ) : H2(X ,Z)× H2(X ,Z)→ Z

i.p. (H2(X ,Z), qX ) is a lattice.

A polarization on X is a primitive ample class h ∈ H2(X ,Z).
The degree of h is h2 = qX (h, h) ∈ 2Z.
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Dimension 2

A HK variety of dim. 2 is called a K3 surface (quartic in P3, double
cover of P2 branched in sextic, ...)

Theorem (Piatetskii-Shapiro, Shafarevich 1971)

For any d ∈ Z>0, there is a coarse moduli space F2d of polarized
K3 surfaces of degree 2d.

Remark: F2d is a 19-dimensional irreducible quasi-projective
variety with only finite quotient singularities.

Theorem (GHS 2007)

For d > 61 and d ∈ {46, 50, 54, 57, 58, 60}, F2d is of general type.

I Main ingredient: orthogonal modular forms
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Dimension > 2

Some HK varieties:

1. X = Hilbn(S) for a K3 surface S  dimX = 2n

2. X = Kumn(A) generalized Kummer: fibre of summation map
Hilbn+1(A)→ A for abelian surface A  dimX = 2n

3. 2 examples by O’Grady:
I OG10: 10-dim’l example obtained from moduli of sheaves on K3
I OG6: 6-dim’l ex. obtained from moduli of sheaves on abelian sfc

All known HK varieties are deformation equivalent to one of these.
We say X is of K3[n] type / OG10 type / ...
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Moduli of HK varieties

The divisibility div(h) of h is the number n ∈ Z>0 such that
{qX (h,w) | w ∈ H2(X ,Z)} = nZ.

I deg + div fixes O(H2(X ,Z))-orbit of h

Theorem (GHS 2010)

There is a coarse moduli space M
[n]
2d ,γ (MOG10

2d ,γ ) of pairs (X , h)

where X is HK of K3[n] type (OG10 type) and h is a polarization
on X with h2 = 2d & div(h) = γ.

Remark: If M
[n]
2d ,γ 6= ∅ (MOG10

2d ,γ 6= ∅), each connected component is
an irreducible quasi-projective variety of dim. 20 (21) with finite
quotient singularities.
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Apostolov, GHS:

I M
[2]
2d ,γ is connected, and non-empty iff

{
γ = 1, or

γ = 2 & d ≡ −1 (4)

I MOG10
2d ,γ is nonempty iff γ = 1, or γ = 3 & d ≡ −3 mod 9.

Theorem (GHS 2010/2011, “split” case)

i) M
[2]
2d ,1 is of general type when d ≥ 12

ii) Every component of MOG10
2d ,1 is of general type when d 6= 2n

Theorem (BBBF, “non-split” case)

i) M
[2]
2d ,2 is of general type when d = 4c − 1 with c ≥ 12 or c = 10

ii) All components of MOG10
2d ,3 are of general type when d = 9k − 3

with k ≥ 4
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Idea of proof, for M
[2]
2d ,γ

Let (X , h) ∈ M
[2]
2d ,γ

1. Let Λh := lattice isometric to h⊥ ⊂ H2(X ,Z).

Then M
[2]
2d ,γ is a dense open of FΛh

:= D(Λh)/Õ(Λh), where

D(Λh) = {x ∈ P(Λh ⊗ C) | x2 = 0, (x .x) > 0}

Õ(Λh) = {g ∈ O(Λh) | g induces id on Λ∨h /Λh}.

2. GHS: there is a “nice” compactification FΛh
of FΛh

, i.p. FΛh

has canonical singularities.
Let Y be a desingularization of FΛh

.

3. On D(Λh) canonical forms can be obtained from modular forms.
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A modular form of weight k ∈ Z and character χ : Õ(Λh)→ C× is
a holomorphic function F : D(Λh)• → C s.t.

i) F (λ · Z ) = λ−kF (Z ), λ ∈ C
ii) F (g(Z )) = χ(g)F (Z ), g ∈ Õ(Λh) (“modularity”)

4. Such F gives Õ(Λh)-invariant pluricanonical form on D(Λh);
get pluricanonical form sF on

FΛh
\ (branch locus of D(Λh)→ FΛh

) ⊂ FΛh,reg ⊂ Y

5. “Low weight cusp form trick”: F of weight a < 20, χ = det,
vanishing along boundary (cusp form) & ramification locus.

Then for all G of weight (20− a)m, χ = 1, the form sFmG

extends to an element of H0(Y , ω⊗mY ).

Fact: the dimension of the space of these G grows like m20.
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6. Trick to find cusp form: use embedding ϕ : Λh ↪→ Λ2,26.
There is a cusp form Φ12 for O(Λ2,26) of weight 12, χ = det.

GHS: the “quasi-pullback” of Φ12 along ϕ is a cusp form of
weight < 20 if

0 < #{v ∈ ϕ(Λh)⊥ | v2 = −2} < 16 (1)

7. Left to do: find embedding ϕ : Λh ↪→ Λ2,26 satisfying (1).
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What about other HK moduli?

For MOG10
2d ,γ : similar but for γ = 1, replace Õ(Λh) by bigger group G

 choose Λh ↪→ Λ2,26 s.t. Φ12|Λh
is modular w.r.t. G

For M
[n]
2d ,γ with n > 2:

I When γ = 1, 2, have to replace Õ(Λh) with bigger group G .

→ need modularity w.r.t G ;

→ there can be “irregular cusps”: makes comparing cusp forms
and canonical forms harder.

S. Ma (2018): 1.“refined” low weight cusp form trick;

2. irregular cusps are rare (M
[2]
2d ,γ , MOG10

2d ,γ )

[BBBF]: For M
[n]
2d ,γ with n > 2, they are still “rare enough”

I Extra variable n
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Uniformicity of lower bound

Theorem (BLMNPS 2021)

For any pair (a, b) of coprime integers, there is a unirational
20-dimensional locally complete family of polarized HK varieties of
K3[n+1] type where n = a2 − ab + b2 and

(degree, divisibility) =

{
(6n, 2n) if 3 - n
( 2n

3 ,
2n
3 ) if 3 | n

[BBBF]: several more such series of unirational families

Corollary: There is no d0 such that for all n and γ, M
[n]
2d ,γ is of

general type for all d > d0.
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