General type results for moduli of hyperkähler varieties

Emma Brakkee

Korteweg–de Vries Institute University of Amsterdam

Zoom Algebraic Geometry Seminar May 10, 2022

General type results for moduli of hyperkähler varieties Joint work in progress with I. Barros, P. Beri & L. Flapan

Goal:

Give new general type results for moduli of hyperkähler varieties and explain challenges for extending.

Main references:

Gritsenko-Hulek-Sankaran (GHS) 2007, 2010, 2011

Plan:

- 1. Kodaira dimension & hyperkähler varieties
- 2. Results
- 3. Sketch proof
- 4. Comments on proof
- Everything over $\mathbb C$

Kodaira dimension

Let X be a smooth connected complete variety, $\omega_X = \Lambda^{\dim X} \Omega_X$. Let $P_m := \dim H^0(X, \omega_X^{\otimes m})$. The Kodaira dimension of X is $\kappa(X) = \begin{cases} -\infty & \text{if } P_m = 0 \text{ for all } m > 0; \\ \text{otherwise, the minimal } k \text{ s.t. } \frac{P_m}{m^k} \text{ is bounded} \\ (\text{i.e. } P_m \text{ grows like } m^k) \end{cases}$

- 1. $\kappa(X)$ is a birational invariant
 - for X singular (non-complete), define κ(X) := κ(X') for X' a desingularization (completion) of X

2.
$$\kappa(X) \in \{-\infty, 0, 1, ..., \dim(X)\}$$

X is of general type if $\kappa(X) = \dim(X)$.

Examples

$$\blacktriangleright \text{ If } C \text{ is a curve, then } \begin{cases} \kappa(C) = -\infty & \iff g(C) = 0\\ \kappa(C) = 0 & \iff g(C) = 1\\ \kappa(C) = 1 & \iff g(C) > 1 \end{cases}$$

κ(ℙⁿ) = -∞. More generally, κ(X) = -∞ if X is unirational, i.e. there is a dominant rational map ℙⁿ --→ X.

- ▶ Severi (1915): the moduli space M_g of curves of genus g is unirational when $g \le 10$
- ► Harris, Mumford, Eisenbud (1980s): M_g is of general type when g ≥ 24
- Y.-S. Tai (1982): The moduli A_g of principally polarized abelian varieties of dim. g is of general type when g ≥ 9
 Main ingredient: Siegel modular forms

Hyperkähler varieties

A hyperkähler (HK) variety is a smooth projective variety X s.t.

- 1. X is simply connected
- 2. $H^0(X, \Omega^2_X)$ is generated by a non-degenerate 2-form.
- dim_{\mathbb{C}} X is even
- $\blacktriangleright \ \omega_X \cong \mathcal{O}_X$

H²(X, Z) is torsion-free & has non-deg. symmetric bilinear form
 q_X = (,): H²(X, Z) × H²(X, Z) → Z
 i.p. (H²(X, Z), q_X) is a *lattice*.

A polarization on X is a primitive ample class $h \in H^2(X, \mathbb{Z})$. The degree of h is $h^2 = q_X(h, h) \in 2\mathbb{Z}$.

Dimension 2

A HK variety of dim. 2 is called a K3 surface (quartic in \mathbb{P}^3 , double cover of \mathbb{P}^2 branched in sextic, ...)

Theorem (Piatetskii-Shapiro, Shafarevich 1971)

For any $d \in \mathbb{Z}_{>0}$, there is a coarse moduli space \mathcal{F}_{2d} of polarized K3 surfaces of degree 2d.

Remark: \mathcal{F}_{2d} is a 19-dimensional irreducible quasi-projective variety with only finite quotient singularities.

Theorem (GHS 2007)

For d > 61 and $d \in \{46, 50, 54, 57, 58, 60\}$, \mathcal{F}_{2d} is of general type.

Main ingredient: orthogonal modular forms

$\mathsf{Dimension} > 2$

Some HK varieties:

- 1. $X = \text{Hilb}^n(S)$ for a K3 surface $S \rightsquigarrow \dim X = 2n$
- 2. $X = \operatorname{Kum}^{n}(A)$ generalized Kummer: fibre of summation map Hilbⁿ⁺¹(A) $\rightarrow A$ for abelian surface A $\rightsquigarrow \dim X = 2n$
- 3. 2 examples by O'Grady:
 - OG10: 10-dim'l example obtained from moduli of sheaves on K3
 - OG6: 6-dim'l ex. obtained from moduli of sheaves on abelian sfc

All known HK varieties are deformation equivalent to one of these. We say X is of $K3^{[n]}$ type / OG10 type / ...

Moduli of HK varieties

The *divisibility* div(*h*) of *h* is the number $n \in \mathbb{Z}_{>0}$ such that $\{q_X(h, w) \mid w \in H^2(X, \mathbb{Z})\} = n\mathbb{Z}$.

• deg + div fixes O(H²(X, \mathbb{Z}))-orbit of h

Theorem (GHS 2010)

There is a coarse moduli space $M_{2d,\gamma}^{[n]}$ ($M_{2d,\gamma}^{OG10}$) of pairs (X, h) where X is HK of K3^[n] type (OG10 type) and h is a polarization on X with $h^2 = 2d \& \operatorname{div}(h) = \gamma$.

Remark: If $M_{2d,\gamma}^{[n]} \neq \emptyset$ ($M_{2d,\gamma}^{OG10} \neq \emptyset$), each connected component is an irreducible quasi-projective variety of dim. 20 (21) with finite quotient singularities.

Apostolov, GHS:

. . .

•
$$M_{2d,\gamma}^{[2]}$$
 is connected, and non-empty iff $\begin{cases} \gamma = 1, \text{ or} \\ \gamma = 2 \& d \equiv -1 \end{cases}$ (4)

• $M_{2d,\gamma}^{OG10}$ is nonempty iff $\gamma = 1$, or $\gamma = 3$ & $d \equiv -3 \mod 9$.

Theorem (GHS 2010/2011, "split" case)

i)
$$M_{2d,1}^{[2]}$$
 is of general type when $d \ge 12$

ii) Every component of $M_{2d,1}^{OG10}$ is of general type when $d \neq 2^n$

Theorem (BBBF, "non-split" case)

i) $M_{2d,2}^{[2]}$ is of general type when d = 4c - 1 with $c \ge 12$ or c = 10

ii) All components of $M_{2d,3}^{OG10}$ are of general type when d = 9k - 3 with $k \ge 4$

Idea of proof, for $M_{2d,\gamma}^{[2]}$

Let
$$(X, h) \in \mathsf{M}_{2d,\gamma}^{[2]}$$

1. Let $\Lambda_h :=$ lattice isometric to $h^{\perp} \subset \mathsf{H}^2(X, \mathbb{Z})$.
Then $\mathsf{M}_{2d,\gamma}^{[2]}$ is a dense open of $\mathcal{F}_{\Lambda_h} := \mathcal{D}(\Lambda_h)/\widetilde{\mathsf{O}}(\Lambda_h)$, where
 $\mathcal{D}(\Lambda_h) = \{x \in \mathbb{P}(\Lambda_h \otimes \mathbb{C}) \mid x^2 = 0, \ (x.\overline{x}) > 0\}$
 $\widetilde{\mathsf{O}}(\Lambda_h) = \{g \in \mathsf{O}(\Lambda_h) \mid g \text{ induces id on } \Lambda_h^{\vee}/\Lambda_h\}.$

2. GHS: there is a "nice" compactification $\overline{\mathcal{F}}_{\Lambda_h}$ of \mathcal{F}_{Λ_h} , i.p. $\overline{\mathcal{F}}_{\Lambda_h}$ has canonical singularities. Let Y be a desingularization of $\overline{\mathcal{F}}_{\Lambda_h}$.

3. On $\mathcal{D}(\Lambda_h)$ canonical forms can be obtained from modular forms.

A modular form of weight $k \in \mathbb{Z}$ and character $\chi : \widetilde{O}(\Lambda_h) \to \mathbb{C}^{\times}$ is a holomorphic function $F : \mathcal{D}(\Lambda_h)^{\bullet} \to \mathbb{C}$ s.t. i) $F(\lambda \cdot Z) = \lambda^{-k} F(Z), \ \lambda \in \mathbb{C}$ ii) $F(g(Z)) = \chi(g)F(Z), \ g \in \widetilde{O}(\Lambda_h)$ ("modularity")

4. Such F gives $\widetilde{O}(\Lambda_h)$ -invariant pluricanonical form on $\mathcal{D}(\Lambda_h)$; get pluricanonical form s_F on

 $\mathcal{F}_{\Lambda_h} \setminus (\text{branch locus of } \mathcal{D}(\Lambda_h) \to \mathcal{F}_{\Lambda_h}) \subset \overline{\mathcal{F}}_{\Lambda_h, \text{reg}} \subset Y$

"Low weight cusp form trick": F of weight a < 20, χ = det, vanishing along boundary (cusp form) & ramification locus.
 Then for all G of weight (20 - a)m, χ = 1, the form s_{F^mG} extends to an element of H⁰(Y, ω_Y^{⊗m}).

Fact: the dimension of the space of these G grows like m^{20} .

6. Trick to find cusp form: use embedding φ: Λ_h → Λ_{2,26}. There is a cusp form Φ₁₂ for O(Λ_{2,26}) of weight 12, χ = det.
GHS: the "quasi-pullback" of Φ₁₂ along φ is a cusp form of weight < 20 if

$$0 < \#\{v \in \varphi(\Lambda_h)^{\perp} \mid v^2 = -2\} < 16$$
 (1)

7. Left to do: find embedding $\varphi \colon \Lambda_h \hookrightarrow \Lambda_{2,26}$ satisfying (1).

What about other HK moduli?

For $M_{2d,\gamma}^{OG10}$: similar but for $\gamma = 1$, replace $\widetilde{O}(\Lambda_h)$ by bigger group G \rightsquigarrow choose $\Lambda_h \hookrightarrow \Lambda_{2,26}$ s.t. $\Phi_{12}|_{\Lambda_h}$ is modular w.r.t. G

For $M_{2d,\gamma}^{[n]}$ with n > 2:

When γ = 1, 2, have to replace Õ(Λ_h) with bigger group G. → need modularity w.r.t G;

 \rightarrow there can be "irregular cusps": makes comparing cusp forms and canonical forms harder.

S. Ma (2018): 1. "refined" low weight cusp form trick; 2. irregular cusps are rare $(M_{2d,\gamma}^{[2]}, M_{2d,\gamma}^{OG10})$ [BBBF]: For $M_{2d,\gamma}^{[n]}$ with n > 2, they are still "rare enough" Extra variable n

Uniformicity of lower bound

Theorem (BLMNPS 2021)

For any pair (a, b) of coprime integers, there is a unirational 20-dimensional locally complete family of polarized HK varieties of $K3^{[n+1]}$ type where $n = a^2 - ab + b^2$ and

$$(degree, divisibility) = \begin{cases} (6n, 2n) & \text{if } 3 \nmid n \\ (\frac{2n}{3}, \frac{2n}{3}) & \text{if } 3 \mid n \end{cases}$$

[BBBF]: several more such series of unirational families

Corollary: There is no d_0 such that for all n and γ , $\mathsf{M}_{2d,\gamma}^{[n]}$ is of general type for all $d > d_0$.