K-stability of Smooth Fano SL₂-Threefolds

Jack Rogers (joint work with Hendrik Süss)

University of Manchester

May 2021

Kähler-Einstein Metrics

X compact manifold, dim = 2n. Kähler metrics: compatible Riemannian, complex and symplectic structures

Question: If (X, ω) Kähler, \exists canonical $\omega' \in [\omega]$?

Definition (X, ω) Kähler-Einstein if $\exists \omega' \in [\omega]$, $\lambda \in \mathbb{R}$ with

$$\operatorname{Ric} \omega' = \lambda \omega'.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

New question: do Kähler-Einstein metrics always exist?

$$c_1(X) = rac{1}{2\pi}[\operatorname{\mathsf{Ric}}\omega] \in H^2_{dR}(X,\mathbb{R})$$
 independent of ω

If X is KE, $c_1(X)$ is **definite**. Split into cases: $c_1(X) < 0$: KE metrics exist by Aubin ('76), Yau ('78); $c_1(X) = 0$: KE metrics exist by Yau ('78); $c_1(X) > 0$: Obstructions exist by Matsushima ('57). Aut X not reductive $\implies X$ not KE. Ex: Bl_P \mathbb{P}^2 .

K-stability

- **Yau-Tian-Donaldson conjecture**: Translate $c_1(X) > 0$ case into algebraic geometry.
- Theorem (Chen, Donaldson, Sun '12)
- A smooth complex Fano variety X admits a Kähler-Einstein metric if and only if (X, K_X^{-1}) is K-stable.

K-stability is an entirely algebro-geometric condition!

K-stability

Definition

(X, L) complex polarised variety. A *test configuration* for (X, L) is:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

a flat family $\pi \colon \mathcal{X} \to \mathbb{C}$;

a relatively ample line bundle $\mathcal{L} \to \mathcal{X};$

a \mathbb{C}^{\times} -action on $(\mathcal{X}, \mathcal{L})$;

such that everything \mathbb{C}^{\times} -equivariant, and fibres over $t \neq 0$ isomorphic to X.

TC special if central fibre X_0 normal.

K-stability

 $(\mathcal{X}, \mathcal{L})$ special TC for (X, L). Donaldson-Futaki invariant associated to $\mathbb{C}^{\times} \curvearrowright H^0(X_0, L_0)$.

Definition

A polarised variety (X, L) is *K*-semistable if $DF(\mathcal{X}, \mathcal{L}) \ge 0$ for every **special** test configuration $(\mathcal{X}, \mathcal{L})$ and *K*-stable if equality holds only for the trivial configuration $\mathcal{X} = X \times \mathbb{A}^1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note: can ignore non-special TCs!

New question: How to check K-stability?

Equivariant K-stability

Infinitely many test configurations \implies K-stability hard to check.

Exploit symmetry: reductive group $G \curvearrowright X$.

Look for equivariant test configurations.

Theorem (Datar, Székelyhidi, '16)

Let a reductive algebraic group G act on a smooth complex Fano variety X. Then X is Kähler-Einstein if (X, K_X^{-1}) is K-stable with respect to equivariant special test configurations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Considerably easier to check!

Complexity

Definition

Connected reductive $G \curvearrowright X$. Borel subgroup $B \subseteq G$. Complexity

$$c_{\mathcal{G}}(X) = \min_{x \in X} \operatorname{codim} B \cdot x = \operatorname{trdeg} \mathbb{C}(X)^{B}.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

e.g. if G =torus, G-varieties of complexity 0 =toric varieties.

For $c_G(X) \leq 1$, combinatorial description is possible.

Goal: use combinatorics to show K-stability.

Conditions for Equivariant K-stability

Criteria found in following cases:

	$c_G(X)=0$	$c_G(X) = 1$
G = torus	Wang/Zhu '04	llten/Suess '15
$G \neq torus$	Delcroix '16	Unsolved: We are here

Ex: Smooth Fano toric X is K-stable iff barycentre of polytope P_X° is 0.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Combinatorial Description in Complexity One

K finitely generated extension of $\mathbb{C},~G \curvearrowright K$ connected reductive algebraic group

Luna-Vust theory classifies normal *G*-varieties *X* with $\mathbb{C}(X) = K$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Valuations of G- and B-stable divisors:

 $\mathcal{V} = \{\nu_D \mid D \subseteq X \text{ G-stable}\}, \text{ G-valuations.}$

 $\mathcal{D}^B = \{ D \subseteq X \mid B \text{ stable but not G-stable} \}, colours.$

Timashev ('97) applied LV-theory to give **combinatorial** description in complexity one.

Combinatorial Description in Complexity One

Semi-invariants: $f \in K$ s.t. $\forall b \in B$, $b \cdot f = \chi(b)f$, where $\chi: B \to \mathbb{C}^{\times}$.

 $\mathcal{K}^{(B)} = \{\text{semi-invariants}\}, \ \mathcal{K}^{(B)}_{\chi} = \{\text{semi-invariants of weight } \chi\}.$

Weight lattice: $\Lambda = \{ \chi \colon B \to \mathbb{C}^{\times} \mid K_{\chi}^{(B)} \neq 0 \}.$

Split exact sequence:

$$0 \to (K^B)^{\times} \to K^{(B)} \to \Lambda \to 0.$$

Splitting map $e: \Lambda \to K^{(B)}$ (map χ to some $f \in K_{\chi}^{(B)}$). Not canonical.

・ロト ・西ト ・ヨト ・ヨー うへぐ

Combinatorial Description in Complexity One

Valuations determined by restriction to $K^{(B)}$.

Functional $\ell \colon \Lambda \to \mathbb{Q}$ and restriction to $K^B = \mathbb{C}(\mathbb{P}^1)$

$$u|_{\mathcal{K}^B} = h
u_p, \ p \in \mathbb{P}^1, \ h \in \mathbb{Q}_{\geq 0}.$$

Valuations \leftrightarrow triples (p, ℓ, h) : $p \in \mathbb{P}^1$, $\ell \in \Lambda^*$, $h \in \mathbb{Q}_{\geq 0}$.

Central divisors: $\nu|_{K^B} = 0 \implies h = 0$, p arbitrary.

Regular colours h = 1.

Subregular colours h > 1.

B-Quotient

X quasihomogeneous if $K^G = \mathbb{C}$. Open G-orbit, one-parameter family of codim 1 B-orbits. All examples in this case.

 $\mathcal{K}^B = \mathbb{C}(\mathbb{P}^1)$: rational *B*-quotient $\pi \colon X \dashrightarrow \mathbb{P}^1$.

Regular colours $D_p = \pi^*(p)$ where $\nu_D|_{K^B} = \nu_p$.

Subregular colours multiplicity > 1 in $\pi^*(p)$, i.e. fibre over p non-reduced.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Central divisors intersect $\pi^*(p)$ for all p.

Hyperfans

Hyperspace

$$\mathcal{H} = igcup_{oldsymbol{
ho}} \{oldsymbol{p}\} imes \Lambda^* imes \mathbb{Q}_{\geq 0} / \sim$$

Half-spaces indexed by \mathbb{P}^1 , boundary hyperplanes glued together.

(日)((1))

 $\mathcal{V}, \ \mathcal{D}^B \to \mathcal{H}.$

$$f \in \mathcal{K}_{\chi}^{(\mathcal{B})}$$
 functionals: $\langle f, (p, \ell, h)
angle = h
u_{p}(f) + \ell(\chi).$

X determined by G-subvarieties.

G-subvarieties $Y \subseteq X$ determined by *coloured data* $\mathcal{V}_Y \cup \mathcal{D}_Y^B = \{\nu_D \in \mathcal{V} \cup \mathcal{D}^B \mid Y \subseteq D\}.$

 $\begin{array}{l} \mbox{Coloured data determine coloured (hyper)cones:} \\ \mathcal{C}_Y = \{q \in \mathcal{H} \mid f(\mathcal{V}_Y \cup \mathcal{D}_Y^B) \geq 0 \implies f(q) \geq 0\}. \end{array}$

G-varieties classified by coloured hyperfans.

Smooth Fano SL₂-Threefolds

Cheltsov, Przyjalkowski, Shramov ('19): Classified smooth Fano threefolds with infinite automorphism groups. Simplest examples.

 $\mathsf{dim}\,\mathsf{SL}_2=3\implies\mathsf{SL}_2\text{-threefolds}\;(\mathsf{generally})\;\mathsf{complexity}\;\mathsf{one}.$

Aim:

Find combinatorial description of smooth Fano ${\rm SL}_2\text{-threefolds}$ with ${\rm Aut}\,X$ reductive

Focus on those without 2- or 3-torus action.

Use to show K-stability.

Example: \mathbb{P}^3 blown up along three disjoint lines

 $G = SL_2 \curvearrowright \mathbb{P}^3 = \mathbb{P}(M_2(\mathbb{C}))$ by left matrix multiplication.

D = singular matrices. Central G-divisor.

B-quotient
$$\pi : \mathbb{P}^3 \dashrightarrow \mathbb{P}^1$$
, $\begin{pmatrix} x & y \\ z & w \end{pmatrix} \mapsto [z : w]$.
 $\Lambda = \mathbb{Z}$
 $p = [\alpha : \beta] \in \mathbb{P}^1$, $D_p = \mathcal{Z}(\beta z - \alpha w) = \pi^*(p)$. Regular colours.
 $D \cap D_p = Y_p$ = singular matrices with kernel p . G -stable lines.
Blow up Y_r, Y_s and Y_q .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Exceptional divisors E_r , E_s and E_q G-stable.

New *G*-stable curves $\tilde{D} \cap E_i$.

Example

Hyperfan: pictures represent hypercone in 'slice' of \mathcal{H} corresponding to each $p \in \mathbb{P}^1$.

Filled circles = G-divisors Unfilled circles = colours Dashed line = boundary of VHatched areas = cones of G-stable curves

Volume and β -invariant

 $\sigma: Y \to X$ projective birational morphism, Y normal. Prime divisor $F \subseteq Y =$ prime divisor over X.

 $A_X(F) = \operatorname{ord}_F(K_{Y/X}) + 1$ log discrepancy of F over X.

Volume of divisor δ on X is

$$\operatorname{vol}(\delta) = \lim_{k \to \infty} \frac{\dim H^0(X, \mathcal{O}(\delta)^{\otimes k})}{k^n/n!}.$$

 β -invariant of Fujita-Li:

$$\beta_X(F) = A_X(F)(-K_X)^n - \int_0^\infty \operatorname{vol}(\sigma^*(-K_X) - xF) \, \mathrm{d}x.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 β -invariant and K-stability

Theorem (Fujita-Li '16/'15)

A smooth complex Fano variety X is K-stable iff $\beta_X(F) > 0$ for all prime divisors F over X.

Idea: prime divisor F over X

R =section ring of $(X, -K_X)$

F induces filtration \mathcal{F} of R

Rees algebra $\mathcal{A} = \bigoplus_{r \in \mathbb{Z}} \mathcal{F}^r R \cdot z^{-r}$

Embedding $\mathbb{C}[z] \to \mathcal{A}$, so morphism $\pi : \operatorname{Proj} \mathcal{A} \to \mathbb{A}^1$

 $X = \operatorname{Proj} R \subseteq \operatorname{Proj} A$ preimage of $1 \in \mathbb{A}^1$, π is TC.

 $\beta_X(F)$ is a positive multiple of Donaldson-Futaki invariant.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Main Result

Theorem (R., Süss)

Let X be a smooth Fano SL_2 -threefold. Consider the conditions:

(i) A finite group A acts on \mathbb{P}^1 with no fixed points,

- (ii) A finite group A interchanges two points in \mathbb{P}^1 corresponding to subregular colours of X,
- (iii) X has subregular colours lying over three or more distinct points of \mathbb{P}^1 .

If (i) or (ii) holds and the action of A on \mathcal{H} induced by its action on \mathbb{P}^1 fixes the coloured hyperfan of X, or if (iii) holds, then X is K-stable if $\beta_X(F) > 0$ for all **central** SL₂-stable prime divisors F over X.

One of these 3 holds in almost every case!

Proof sketch (i)

A-action on \mathcal{H} : $a : (p, \ell, h) \mapsto (a \cdot p, \ell, h)$.

Preserves hyperfan of $X \implies (A \times G) \cap X$.

Non-central prime divisor F lies over point $P_F \in \mathbb{P}^1$.

(i): A-action no fixed points \implies P_F not fixed \implies F not stable under $A \times G$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Datar-Székelyhidi theorem for $(A \times G)$ -stable divisors - all are central.

Cases (ii) and (iii) more difficult.

Idea: two subregular colours at points $\neq P_F$ give non-normality of corresponding TC.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(ii): rule out P_F = interchanged points.

(iii): can always choose two needed points.

Central divisors mapped to 'central hyperplane' Λ^* of $\mathcal{H}.$

Strict convexity, $\mathsf{rk} \Lambda = 1 \implies$ at most one central divisor.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Always exists central divisor over X.

Calculating β

 δ divisor on complexity-one variety X.

Formula by Timashev ('00) calculates vol δ .

Only use root system of ${\it G}$ and combinatorial data of δ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Calculating β very easy!

Example: \mathbb{P}^3 blown up along 3 lines

X = blow up of \mathbb{P}^3 along three lines Y_q, Y_r, Y_s .

 $\mathbb{P}^1 = \mathsf{sphere}$

 $A = S_3$ = symmetries of triangle *qrs*.

No fixed points.

Poles are orbit of order 2, all other orbits of order 3 and 6.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example: \mathbb{P}^3 blown up along 3 lines

q, r, s = vertices of triangle

 $0,\infty=$ poles of sphere

A-action preserves hyperfan.

X K-stable if $\beta_D(X) > 0$. Formula gives $\beta_D(X) = 11$.

Example: Divisor on $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^2$

X =divisor of tridegree (1,1,1) on $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^2$:

Example: Divisor on $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^2$

$$A = \mathbb{Z}_2 \curvearrowright \mathbb{P}^1: \ [\alpha : \beta] \mapsto [\beta : \alpha]$$

1, -1 fixed.

 $0,\infty$ interchanged, subregular colours.

All other points in orbits of order 2.

Hyperfan of X preserved, (ii) implies X K-stable if $\beta > 0$ for central divisor.

Central divisor obtained by blow-ups, $\beta = 28$.

Example: Blow-up of Q along twisted quartic X = blow up of quadric $Q \subseteq \mathbb{P}^4$ along twisted quartic:

Sac

3

Blow-up of Q along twisted quartic

Three subregular colours over $0, -4, \infty$.

(iii) implies X K-stable if $\beta > 0$ for central divisor.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Central divisor obtained by blow-ups, $\beta = 46$.

Results

Method shows K-stability of (Mori-Mukai numbering):

(1.10)[†]:
$$V_{22}$$

(1.15): V_5
(1.16): Quadric hypersurface $Q \subseteq \mathbb{P}^4$
(1.17): \mathbb{P}^3
(2.21)[†]: Blow up of Q along twisted quartic
(2.27): Blow-up of \mathbb{P}^3 along twisted cubic
(2.32): Divisor W on $\mathbb{P}^2 \times \mathbb{P}^2$ of bidegree (1,1)
(3.13)[†]: Blow up of W along curve of bidegree (2,2)
(3.17): Divisor on $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^2$ of tridegree (1,1,1)
(3.25): Blow up of \mathbb{P}^3 along two lines
(4.6): Blow up of \mathbb{P}^3 along three lines

 \dagger = specific examples within a family, green = K-stability not previously known.

Next Steps

-Check applicability to wider classes of complexity one Fanos

-Formula for $-K_X$ would make this easier

-Look for criterion associated with barycentre of a polytope like in $c_G(X) = 0$ case

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

-Try GL_2 -fourfolds