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Kahler-Einstein Metrics

X compact manifold, dim = 2n. Kahler metrics: compatible
Riemannian, complex and symplectic structures

Question: If (X,w) Kahler, 3 canonical w' € [w]?

Definition
(X,w) Kihler-Einstein if 3 o' € [w], A € R with

Ricw = \'.



Existence of KE Metrics

New question: do Kahler-Einstein metrics always exist?
1
a(X) = 2—[Ric w] € H3p(X,R) independent of w
0

If X is KE, c1(X) is definite. Split into cases:
c1(X) < 0: KE metrics exist by Aubin ('76), Yau ('78);
c1(X) = 0: KE metrics exist by Yau ('78);

c1(X) > 0: Obstructions exist by Matsushima ('57). Aut X
not reductive = X not KE. Ex: Blp P2,



K-stability

Yau-Tian-Donaldson conjecture: Translate c;(X) > 0 case into
algebraic geometry.

Theorem (Chen, Donaldson, Sun '12)

A smooth complex Fano variety X admits a Kahler-Einstein metric
if and only if (X, Ky) is K-stable.

K-stability is an entirely algebro-geometric condition!



K-stability

Definition
(X, L) complex polarised variety. A test configuration for (X, L) is:
a flat family 7: X — C;
a relatively ample line bundle £ — X;
a C*-action on (X, L);
such that everything C*-equivariant, and fibres over t # 0
isomorphic to X.

TC special if central fibre Xy normal.



K-stability

(X, L) special TC for (X, L). Donaldson-Futaki invariant
associated to C* ~ H%(Xq, Lo).

Definition

A polarised variety (X, L) is K-semistable if DF(X, L) > 0 for
every special test configuration (X', £) and K-stable if equality
holds only for the trivial configuration X = X x Al

Note: can ignore non-special TCs!

New question: How to check K-stability?



Equivariant K-stability

Infinitely many test configurations = K-stability hard to check.
Exploit symmetry: reductive group G ~ X.
Look for equivariant test configurations.

Theorem (Datar, Székelyhidi, '16)

Let a reductive algebraic group G act on a smooth complex Fano
variety X. Then X is Kahler-Einstein if (X, Kx') is K-stable with
respect to equivariant special test configurations.

Considerably easier to check!



Complexity

Definition
Connected reductive G ~ X. Borel subgroup B C G. Complexity

cc(X) = mincodim B - x = trdeg C(X)5.

xeX
e.g. if G = torus, G-varieties of complexity 0 = toric varieties.

For cg(X) < 1, combinatorial description is possible.

Goal: use combinatorics to show K-stability.



Conditions for Equivariant K-stability

Criteria found in following cases:

cg(X)=0 ce(X) =1
G = torus | Wang/Zhu '04 llten/Suess '15
G # torus | Delcroix '16 | Unsolved: We are here

Ex: Smooth Fano toric X is K-stable iff barycentre of polytope P5
is 0.



Combinatorial Description in Complexity One

K finitely generated extension of C, G ~ K connected reductive
algebraic group

Luna-Vust theory classifies normal G-varieties X with C(X) = K
Valuations of G- and B-stable divisors:

V ={vp | D C X G-stable}, G-valuations.

DB = {D C X | B stable but not G-stable}, colours.

Timashev ('97) applied LV-theory to give combinatorial
description in complexity one.



Combinatorial Description in Complexity One

Semi-invariants: f € K s.t. Vb€ B, b-f = x(b)f, where
x: B— C*.

K(B) = {semi-invariants}, K>(<B) = {semi-invariants of weight x}.
Weight lattice: A = {x: B — C* | K{®) £ 0}.
Split exact sequence:

0— (KB = K(B) 5 A — 0.

Splitting map e: A — K(B) (map x to some f € K>(<B)). Not
canonical.



Combinatorial Description in Complexity One

Valuations determined by restriction to K(B).
Functional £: A — Q and restriction to K& = C(P?)
Ve = hvp, p € Pl he Q>o.

Valuations < triples (p, ¢, h): p € PL, £ € A*, h € Qxo.
Central divisors: v|e =0 = h =0, p arbitrary.
Regular colours h = 1.

Subregular colours h > 1.



B-Quotient

X quasihomogeneous if K¢ = C. Open G-orbit, one-parameter
family of codim 1 B-orbits. All examples in this case.

KB = C(P"): rational B-quotient 7: X --» PL.
Regular colours D, = 7*(p) where vp|xs = vp.

Subregular colours multiplicity > 1 in 7*(p), i.e. fibre over p
non-reduced.

Central divisors intersect 7*(p) for all p.



Hyperfans

Hyperspace
H={J {p} x A" x Qzo/ ~

pePl

Half-spaces indexed by P!, boundary hyperplanes glued together.
V, DB - H.

f e KB functionals: (f,(p, €, h)) = hup(F) + £(x).

X determined by G-subvarieties.

G-subvarieties Y C X determined by coloured data
VyUDE ={vp e VUDEB | Y C D}.

Coloured data determine coloured (hyper)cones:
CyZ{C]G’H‘f(VyU'D?,)ZO = f(q) > 0}.

G-varieties classified by coloured hyperfans.



Smooth Fano SL,-Threefolds

Cheltsov, Przyjalkowski, Shramov ('19): Classified smooth Fano
threefolds with infinite automorphism groups. Simplest examples.

dimSLy, =3 = SLy-threefolds (generally) complexity one.

Aim:
Find combinatorial description of smooth Fano SL,-threefolds
with Aut X reductive
Focus on those without 2- or 3-torus action.
Use to show K-stability.



Example: P2 blown up along three disjoint lines
G = SLy ~ P2 = P(M,(C)) by left matrix multiplication.
D = singular matrices. Central G-divisor.
B-quotient : P3 --» P, (X %) — [z: w].
N=7
p=[a:B]€P D,=Z(Bz— aw)=r*(p). Regular colours.
D N D, = Y, = singular matrices with kernel p. G-stable lines.
Blow up Y;, Ys and Yj.
Exceptional divisors E,, Es and E; G-stable.

New G-stable curves D N E;.



Example

Hyperfan: pictures represent hypercone in ‘slice” of H
corresponding to each p € P!

p general

Filled circles = G-divisors

Unfilled circles = colours

Dashed line = boundary of V

Hatched areas = cones of G-stable curves



Volume and (-invariant

o : Y — X projective birational morphism, Y normal. Prime
divisor F C Y = prime divisor over X.

Ax(F) = orde(Ky/x) + 1 log discrepancy of F over X.

Volume of divisor § on X is

L dim HY(X, O(5)%)
vol(9) = lim_ kn /!

B-invariant of Fujita-Li:

Bx(F) = Ax(F)(—Kx)" — /Ooo vol(o*(—Kx) — xF) dx.



[-invariant and K-stability

Theorem (Fujita-Li '16/'15)
A smooth complex Fano variety X is K-stable iff Bx(F) > 0 for all
prime divisors F over X.

Idea: prime divisor F over X

R = section ring of (X, —Kx)

F induces filtration F of R

Rees algebra A =@, ., F'R-z7"

Embedding C[z] — A, so morphism 7 : Proj A — Al
X = Proj R C Proj A preimage of 1 € A!, 7 is TC.

Bx(F) is a positive multiple of Donaldson-Futaki invariant.



Main Result

Theorem (R., Siiss)
Let X be a smooth Fano SL>-threefold. Consider the conditions:
(i) A finite group A acts on P! with no fixed points,

(i) A finite group A interchanges two points in P! corresponding
to subregular colours of X,

(i) X has subregular colours lying over three or more distinct points
of PL.

If (i) or (ii) holds and the action of A on ‘H induced by its action

on P! fixes the coloured hyperfan of X, or if (iii) holds, then X is

K-stable if x(F) > 0 for all central SLy-stable prime divisors F

over X.

One of these 3 holds in almost every case!



Proof sketch (i)

A-action on H: a: (p, ¢, h) — (a-p, ¢, h).
Preserves hyperfan of X = (Ax G) ~ X.
Non-central prime divisor F lies over point Pr € P!,

(i): A-action no fixed points = Pf not fixed = F not stable
under A x G.

Datar-Székelyhidi theorem for (A x G)-stable divisors - all are
central.



Proof sketch (ii), (iii)

Cases (ii) and (iii) more difficult.

Idea: two subregular colours at points # Pg give non-normality of
corresponding TC.

(ii): rule out Pg = interchanged points.

(iii): can always choose two needed points.



Central Divisors

Central divisors mapped to ‘central hyperplane’ A* of H.
Strict convexity, rk A =1 = at most one central divisor.

Always exists central divisor over X.



Calculating

0 divisor on complexity-one variety X.
Formula by Timashev ('00) calculates vol d.
Only use root system of G and combinatorial data of ¢

Calculating 8 very easy!



Example: P2 blown up along 3 lines

X = blow up of P3 along three lines Yg: Yr, Ys.
P! = sphere

A = 53 = symmetries of triangle grs.

No fixed points.

Poles are orbit of order 2, all other orbits of order 3 and 6.



Example: P2 blown up along 3 lines

p general

g, r,s = vertices of triangle
0,00 = poles of sphere
A-action preserves hyperfan.

X K-stable if Sp(X) > 0. Formula gives Sp(X) = 11.



Example: Divisor on P! x P! x P?
X = divisor of tridegree (1,1,1) on P* x P! x P2
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Example: Divisor on P! x P! x P?

A=Zy APl [a: B [B:q]

1, —1 fixed.

0, oo interchanged, subregular colours.
All other points in orbits of order 2.

Hyperfan of X preserved, (ii) implies X K-stable if 5 > 0 for
central divisor.

Central divisor obtained by blow-ups, 5 = 28.



Example: Blow-up of @ along twisted quartic
X = blow up of quadric @ C P* along twisted quartic:

h

A /
LSS SNy
A A
ST ///

;l#pf,p p ‘ ) pe:0
SO ose OO oo,
NN\ NN\
NN NN\
AN 43 NN\ PE



Blow-up of @ along twisted quartic

Three subregular colours over 0, —4, co.
(iii) implies X K-stable if 5 > 0 for central divisor.

Central divisor obtained by blow-ups, 5 = 46.



Results

Method shows K-stability of (Mori-Mukai numbering):
(1.10)7: Vo
(1.15): Vs
(1.16): Quadric hypersurface @ C P*
(1.17): P3
T: Blow up of Q along twisted quartic
. Blow-up of P? along twisted cubic
(2.32): Divisor W on P2 x P2 of bidegree (1,1)
f: Blow up of W along curve of bidegree (2,2)
: Divisor on P! x P! x P2 of tridegree (1,1,1)
(3.25): Blow up of P? along two lines
: Blow up of P3 along three lines
T = specific examples within a family, = K-stability not
previously known.



Next Steps

-Check applicability to wider classes of complexity one Fanos
-Formula for —Kx would make this easier

-Look for criterion associated with barycentre of a polytope like in
cg(X) =0 case

-Try GL,-fourfolds



