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Kähler-Einstein Metrics

X compact manifold, dim = 2n. Kähler metrics: compatible
Riemannian, complex and symplectic structures

Question: If (X , ω) Kähler, ∃ canonical ω′ ∈ [ω]?

Definition
(X , ω) Kähler-Einstein if ∃ ω′ ∈ [ω], λ ∈ R with

Ricω′ = λω′.



Existence of KE Metrics

New question: do Kähler-Einstein metrics always exist?

c1(X ) =
1

2π
[Ricω] ∈ H2

dR(X ,R) independent of ω

If X is KE, c1(X ) is definite. Split into cases:

c1(X ) < 0: KE metrics exist by Aubin (’76), Yau (’78);

c1(X ) = 0: KE metrics exist by Yau (’78);

c1(X ) > 0: Obstructions exist by Matsushima (’57). AutX
not reductive =⇒ X not KE. Ex: BlP P2.



K -stability

Yau-Tian-Donaldson conjecture: Translate c1(X ) > 0 case into
algebraic geometry.

Theorem (Chen, Donaldson, Sun ’12)

A smooth complex Fano variety X admits a Kähler-Einstein metric
if and only if (X ,K−1X ) is K-stable.

K -stability is an entirely algebro-geometric condition!



K -stability

Definition
(X , L) complex polarised variety. A test configuration for (X , L) is:

a flat family π : X → C;

a relatively ample line bundle L → X ;

a C×-action on (X ,L);

such that everything C×-equivariant, and fibres over t 6= 0
isomorphic to X .

TC special if central fibre X0 normal.



K -stability

(X ,L) special TC for (X , L). Donaldson-Futaki invariant
associated to C× y H0(X0, L0).

Definition
A polarised variety (X , L) is K-semistable if DF(X ,L) ≥ 0 for
every special test configuration (X ,L) and K-stable if equality
holds only for the trivial configuration X = X × A1.

Note: can ignore non-special TCs!

New question: How to check K -stability?



Equivariant K -stability

Infinitely many test configurations =⇒ K -stability hard to check.

Exploit symmetry: reductive group G y X .

Look for equivariant test configurations.

Theorem (Datar, Székelyhidi, ’16)

Let a reductive algebraic group G act on a smooth complex Fano
variety X . Then X is Kähler-Einstein if (X ,K−1X ) is K-stable with
respect to equivariant special test configurations.

Considerably easier to check!



Complexity

Definition
Connected reductive G y X . Borel subgroup B ⊆ G . Complexity

cG (X ) = min
x∈X

codimB · x = trdegC(X )B .

e.g. if G = torus, G -varieties of complexity 0 = toric varieties.

For cG (X ) ≤ 1, combinatorial description is possible.

Goal: use combinatorics to show K -stability.



Conditions for Equivariant K -stability

Criteria found in following cases:

cG (X ) = 0 cG (X ) = 1

G = torus Wang/Zhu ’04 Ilten/Suess ’15

G 6= torus Delcroix ’16 Unsolved: We are here

Ex: Smooth Fano toric X is K -stable iff barycentre of polytope P◦X
is 0.



Combinatorial Description in Complexity One

K finitely generated extension of C, G y K connected reductive
algebraic group

Luna-Vust theory classifies normal G -varieties X with C(X ) = K

Valuations of G - and B-stable divisors:

V = {νD | D ⊆ X G-stable}, G-valuations.

DB = {D ⊆ X | B stable but not G-stable}, colours.

Timashev (’97) applied LV-theory to give combinatorial
description in complexity one.



Combinatorial Description in Complexity One

Semi-invariants: f ∈ K s.t. ∀b ∈ B, b · f = χ(b)f , where
χ : B → C×.

K (B) = {semi-invariants}, K (B)
χ = {semi-invariants of weight χ}.

Weight lattice: Λ = {χ : B → C× | K (B)
χ 6= 0}.

Split exact sequence:

0→ (KB)× → K (B) → Λ→ 0.

Splitting map e : Λ→ K (B) (map χ to some f ∈ K
(B)
χ ). Not

canonical.



Combinatorial Description in Complexity One

Valuations determined by restriction to K (B).

Functional ` : Λ→ Q and restriction to KB = C(P1)

ν|KB = hνp, p ∈ P1, h ∈ Q≥0.

Valuations ↔ triples (p, `, h): p ∈ P1, ` ∈ Λ∗, h ∈ Q≥0.

Central divisors: ν|KB = 0 =⇒ h = 0, p arbitrary.

Regular colours h = 1.

Subregular colours h > 1.



B-Quotient

X quasihomogeneous if KG = C. Open G -orbit, one-parameter
family of codim 1 B-orbits. All examples in this case.

KB = C(P1): rational B-quotient π : X 99K P1.

Regular colours Dp = π∗(p) where νD |KB = νp.

Subregular colours multiplicity > 1 in π∗(p), i.e. fibre over p
non-reduced.

Central divisors intersect π∗(p) for all p.



Hyperfans
Hyperspace

H =
⋃
p∈P1

{p} × Λ∗ ×Q≥0/ ∼

Half-spaces indexed by P1, boundary hyperplanes glued together.

V, DB → H.

f ∈ K
(B)
χ functionals: 〈f , (p, `, h)〉 = hνp(f ) + `(χ).

X determined by G -subvarieties.

G -subvarieties Y ⊆ X determined by coloured data
VY ∪ DB

Y = {νD ∈ V ∪ DB | Y ⊆ D}.

Coloured data determine coloured (hyper)cones:
CY = {q ∈ H | f (VY ∪ DB

Y ) ≥ 0 =⇒ f (q) ≥ 0}.

G -varieties classified by coloured hyperfans.



Smooth Fano SL2-Threefolds

Cheltsov, Przyjalkowski, Shramov (’19): Classified smooth Fano
threefolds with infinite automorphism groups. Simplest examples.

dim SL2 = 3 =⇒ SL2-threefolds (generally) complexity one.

Aim:

Find combinatorial description of smooth Fano SL2-threefolds
with AutX reductive

Focus on those without 2- or 3-torus action.

Use to show K -stability.



Example: P3 blown up along three disjoint lines

G = SL2 y P3 = P(M2(C)) by left matrix multiplication.

D = singular matrices. Central G -divisor.

B-quotient π : P3 99K P1,
(
x y
z w

)
7→ [z : w ].

Λ = Z

p = [α : β] ∈ P1, Dp = Z(βz − αw) = π∗(p). Regular colours.

D ∩ Dp = Yp = singular matrices with kernel p. G -stable lines.

Blow up Yr ,Ys and Yq.

Exceptional divisors Er , Es and Eq G -stable.

New G -stable curves D̃ ∩ Ei .



Example

Hyperfan: pictures represent hypercone in ‘slice’ of H
corresponding to each p ∈ P1.

`

h

D̃

p general

D̃p

`

h

D̃

p = q, r , s

D̃p

Ep

`

h

D̃

D̃p

p = 0,∞

Filled circles = G -divisors
Unfilled circles = colours
Dashed line = boundary of V
Hatched areas = cones of G -stable curves



Volume and β-invariant

σ : Y → X projective birational morphism, Y normal. Prime
divisor F ⊆ Y = prime divisor over X .

AX (F ) = ordF (KY /X ) + 1 log discrepancy of F over X .

Volume of divisor δ on X is

vol(δ) = lim
k→∞

dimH0(X ,O(δ)⊗k)

kn/n!
.

β-invariant of Fujita-Li:

βX (F ) = AX (F )(−KX )n −
∫ ∞
0

vol(σ∗(−KX )− xF ) dx .



β-invariant and K -stability

Theorem (Fujita-Li ’16/’15)

A smooth complex Fano variety X is K-stable iff βX (F ) > 0 for all
prime divisors F over X .

Idea: prime divisor F over X

R = section ring of (X ,−KX )

F induces filtration F of R

Rees algebra A =
⊕

r∈ZF rR · z−r

Embedding C[z ]→ A, so morphism π : ProjA → A1

X = ProjR ⊆ ProjA preimage of 1 ∈ A1, π is TC.

βX (F ) is a positive multiple of Donaldson-Futaki invariant.



Main Result

Theorem (R., Süss)

Let X be a smooth Fano SL2-threefold. Consider the conditions:

(i) A finite group A acts on P1 with no fixed points,

(ii) A finite group A interchanges two points in P1 corresponding
to subregular colours of X ,

(iii) X has subregular colours lying over three or more distinct points
of P1.

If (i) or (ii) holds and the action of A on H induced by its action
on P1 fixes the coloured hyperfan of X , or if (iii) holds, then X is
K-stable if βX (F ) > 0 for all central SL2-stable prime divisors F
over X .

One of these 3 holds in almost every case!



Proof sketch (i)

A-action on H: a : (p, `, h) 7→ (a · p, `, h).

Preserves hyperfan of X =⇒ (A× G ) y X .

Non-central prime divisor F lies over point PF ∈ P1.

(i): A-action no fixed points =⇒ PF not fixed =⇒ F not stable
under A× G .

Datar-Székelyhidi theorem for (A× G )-stable divisors - all are
central.



Proof sketch (ii), (iii)

Cases (ii) and (iii) more difficult.

Idea: two subregular colours at points 6= PF give non-normality of
corresponding TC.

(ii): rule out PF = interchanged points.

(iii): can always choose two needed points.



Central Divisors

Central divisors mapped to ‘central hyperplane’ Λ∗ of H.

Strict convexity, rk Λ = 1 =⇒ at most one central divisor.

Always exists central divisor over X .



Calculating β

δ divisor on complexity-one variety X .

Formula by Timashev (’00) calculates vol δ.

Only use root system of G and combinatorial data of δ

Calculating β very easy!



Example: P3 blown up along 3 lines

X = blow up of P3 along three lines Yq,Yr ,Ys .

P1 = sphere

A = S3 = symmetries of triangle qrs.

No fixed points.

Poles are orbit of order 2, all other orbits of order 3 and 6.



Example: P3 blown up along 3 lines

`

h

D̃

p general

D̃p

`

h

D̃

p = q, r , s

D̃p

Ep

`

h

D̃

D̃p

p = 0,∞

q, r , s = vertices of triangle

0,∞ = poles of sphere

A-action preserves hyperfan.

X K -stable if βD(X ) > 0. Formula gives βD(X ) = 11.



Example: Divisor on P1 × P1 × P2

X = divisor of tridegree (1,1,1) on P1 × P1 × P2:

2

−1 `

h

p = 0

D̃0

E

2

−1 `

h

p =∞

D̃∞

F̃

`

h

1

2

p = −1

∆̃ D̃−1

`

h

−1

p 6= 0,−1,∞

D̃p



Example: Divisor on P1 × P1 × P2

A = Z2 y P1: [α : β] 7→ [β : α]

1,−1 fixed.

0,∞ interchanged, subregular colours.

All other points in orbits of order 2.

Hyperfan of X preserved, (ii) implies X K -stable if β > 0 for
central divisor.

Central divisor obtained by blow-ups, β = 28.



Example: Blow-up of Q along twisted quartic
X = blow up of quadric Q ⊆ P4 along twisted quartic:

`
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D̃p
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p 6= pf , pv , pe
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h
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3

E

pv =∞

D̃∞



Blow-up of Q along twisted quartic

Three subregular colours over 0,−4,∞.

(iii) implies X K -stable if β > 0 for central divisor.

Central divisor obtained by blow-ups, β = 46.



Results

Method shows K -stability of (Mori-Mukai numbering):

(1.10)†: V22

(1.15): V5

(1.16): Quadric hypersurface Q ⊆ P4

(1.17): P3

(2.21)†: Blow up of Q along twisted quartic

(2.27): Blow-up of P3 along twisted cubic

(2.32): Divisor W on P2 × P2 of bidegree (1,1)

(3.13)†: Blow up of W along curve of bidegree (2,2)

(3.17): Divisor on P1 × P1 × P2 of tridegree (1,1,1)

(3.25): Blow up of P3 along two lines

(4.6): Blow up of P3 along three lines

† = specific examples within a family, green = K -stability not
previously known.



Next Steps

-Check applicability to wider classes of complexity one Fanos

-Formula for −KX would make this easier

-Look for criterion associated with barycentre of a polytope like in
cG (X ) = 0 case

-Try GL2-fourfolds


