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MATRIX OF ZEROS AND ONES (JCMN 13)

The n X n matrix A (n 2 3) has all its elements zéro except that a. = 1 when
lr - s| =1. 1f Mj and. m, are the greatest and least elements of Aj show that
mj =0 and Mj »*>®ag j +»o, Since A is the incidence matrig of the graph:

1 2 3 “n=-1 n
and th‘e‘-(r, 8) element of Aj is the number of j-step pathé from node r to node s,
the result is clear, the number being zero ifr+s+ ijis odd. Simple inequalities
like Mj 2 2j/ can be found to imdicate the way in which this value tends to
infinity. * Solutions from #.0. Davies, J.B. Pavrker and R.B. Potts.

QUADRATICS AGAIN (JCMN 13)

For what complex b and c¢ does the quadratic 22 + bz + c¢c = 0 have root:;_s o':-f equal
modulus? If this is so and 1f p and q are the roots, in what circums“tances does
k." qk for some integer k? Solutions from H.0O. Davies and R.B. Potts' -are
geometrical using the fact that complex numbers u + v and u - v have ‘the same
modulus when u and v as vectors are perpendicular, that is one is a real multiple

1/2

of 1 times the other. The roots p and q may be expressed as -(b/2)(1l £ 4" ') where

d=1 - l;c/l::2 and so the condition is that d must be real and < 0, or that
4c/b~2 2 1 (of course b = 0 18 a trivial special case).

1f pk = qk and exp(2min/k) = p/q = (l+i/—d)/(1-i/—d) then. b2 = 4c cos? ‘nn/k.

AFTER DINNER MATHEMATICS
from C.F. Moppert

A circle with radius 1 rolls inside a circle with radius 2. Using school geometry,
show that every point of the circumference of the small circle describes a diameter

of the large one.

The inventor of 7 was not Thagoras, Vbut\an Engiishman called Cumference, a ‘
relative of Falstaff. He was subsequently‘ knighted. (But the floating 7 is
attributed to Archie Medes of the stall behind the Adelaide Railway Station — Editor.)

MEA CULPA

As there were eight mistakes in JCMN 13 the editor has resolved to do better in
1978.
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RANK ONE. MATRICES - (JCMN 13) .

,:The square matrix: A has rank one. Show that it is similar to a diagonal-matrix if

; .and only if its square is non-zero.

A must be of the form uv' where u and v are non-zero column vectors. The only

solution of the eigenvalue equation uv'x = Ax = Ax is X = v'u with eigenvector u.

Since A $ 0, 1f it is similar to a dlagonal matrix then v'u ¢ 0, and therefore

A2 = uv'uv' = v'uvA * 0. Conversely if- A + 0- then u 1is not orthogonal to v. Take
~a new basis with .u as first element and the others all orthogonal to v, then A

: becomes diagonal, with only the top left element non-zero. Alternatively the result

comes easily from the theory of the Jordah Canounical Form. '

Solutions from R.L. Agacy, E.S. Barmes and R.B. Potts.

A PARTY GAME

This is for any number of players. 1In fact you can even play it on your own if you
are stranded on a desert island with ‘a sandy -beach. The players take it in turn to
add either 0 or X to a sequence, ‘'and the object is not to make two identical
adjacent segments of length two or more. For example suppose that the play ‘has reached
0 X 000XO0. C _

The‘neXt oiayer'has’to lose a point because. putting 0 will make 0X00 repeated
and putting X will make O X repeated. .~ Of these two alternatives a clever player
may choose the first because' it gilves the position

' 0X000X00 _ .
xand thereby puts the next player in the same position of having to lose a point
‘because an extra 0 will make X 0 0 O repeated and an extra x:will make 0 0 X

repeated

For mathematicians here is .a;problem. Prore;or disprove thst sooner or later one of
the players must lose a point. 1In algebraic terms, if d naps the natural numbers
into a two,element set, prove thatafor some natural numbers }1 and r 2 2, for all

s £r, d(n-st+l) = d(n-r-s+l). '

THIRD TIME LUCKY (JCMN 13)

If T press the 1/x key on my calculator three times do I get the same result as
‘pressing it once? More precisely 1f f(x) 1s the nearest integer to

1
g(x) = 10 /x then is f(£(f(n))) = £(n) for all integers n between 109 and 10 0

Firstly when is f(f(n)) *vn? .It is when g(f(n)) is outside the interval (n-l, nt¥),
that is when f£(n) is outside (g(n+%) g(n-%)). For this it is necessary that

either g(n—ﬁ)-g(n) or g(n) - g{n#s) should be less than a half' but of these two
differences the first is the larger and the second is 10 /(Zn +n) . Therefore for

JCMN 14.
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£(£(n)) * n it is necessary that n(ms) izlolgf Put § = 1019/2 3162277660-16. ..

For £(f(n)) + n'it is necessary that either n > 6 or n < 1019/n < nis, The only
solution to this last inequality is n = 3162277660 = n, and f(n ) = no. Therefofe
f(f(n)) = n for all n'< 6. Further if n > 6 then f(n) < 8, and so f(£(f(n))) = f(n) =
for all n between 109 and 100, -

C.J. Smyth

- STILL LUCKY?

Mathematics is. the art of generalizing. Prove or disprove thé following generalization
of the result given above under the heading "Third time lucky”. Let g(x) be continuous
strictly decreasing and convex in the intervainin which it 1is defined so that the
inverse function h(x) has the same properties. Let f(x) and k(x) be the nearest
integers to g(x) and h(x) respectively. Then £(k(f(n))) = f(n) for all integers n in

the interval of definition of the function g.

THE FINITE ELEMENT METHOD
~ Consider the partial differential equation

3/3x(r2y ) = rzytt ory _+ Z(r_'/r)y

XX tt

vhere r'=‘t(x) > 0. If r(x) is constant the P.D. E. is the one-dimensional wave-equation
and there are rio difficulties. Thetefore we replace:the function r(x) by a step-function
arid assume that an adequate approximation to the continuously varying r(x) will be

found by. taking a step-function changing by a large numbet of small steps. Now to see
what ‘happens near a small Btep in r(x), say r(x) = b for x < a and r(x) = b(l+e) for

X > 0. The general solution for x < 0 is y = f(x~t) + g(x+t). Take the first term,

the other may be treated similarly. The boundary condition at x = 0 is that

r 3y/8x and 9y/3t must both be continuous at x = 0 for all t, and elementary reasoning
shows that (to first order in £) there is a transmitted wave (l-€) f(x-t) to the right
of the origin and the reflected. wave ef(x+t) to the left. For the original P.D. E

there is a conservation equation (8/3:)(% T (y + A )) = (GIBX)(r Ve ¥ ), the
expression % r (y 2 + Ve ) is positive definite and is conserved, so that it has the
two properties that make energy an important scientific concept, and so for simplicity
we call it energy. If the step-function r(x) has n steps then the total amount of
energy diverted by partial reflection from the left-to-right waves is of order nezf2
which tends to 0 as the step-function approximates to the true r(x). The left-to+right
wave y = f(x-t) is therefore propagated past the discontinuity with only a change. of
Ascale, and in fact r(x) f(x-t) is unaltered at the discontiﬁuity (at least to first
order in €). Any second order changes in r(x) f(x-t) will become negligible as the
number of steps tends to infinity. Similar . reasoning of course applies ‘to the’
right-to-left wave y-a-g(x+t).' Therefore the finite-element method (if applied
numericall§5 leads to'a .coficlusion that is approximately equivalent to the assertion

that y = (f(x-t) + g(x+t))/r(x) is the general solution of the P.D.E. However
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substitution shows that it 13 not a solution except when r(x) is linear. Would some
of our experts on diffetential equations write to explain what went wrong? Putting

the question more ‘precisely, letxx2

in (1, 2).be approximated by step-functions
rn(x) each of n steps, chooseé: some:boundary ' conditions, say y = f(t) when x = 1 and
Y t+ Ve = 0 when x = 2. Let yn(x, t) be the solution of the P.D.E. above, for

r= rn(x), does yn(x, t) tend to the solution y(x, t) for the P.D.E. with r(x) = x°?

TWO POINTS IN A TRIANGLE (JOMN 1, 2, 3 and 12)

These propositions of C.4. Davis may be pfoved with a sequence of lemmata as follows.

Lemma 1. L s

O0f the triangles circumscribed to a fixed circle any,onewof“sméllest area is .
equilateral and has area 3v/3/7 times the area of the cirecle. -Also,thisutriangle_
touches the circle at the mid-points of the sides.

Proof. The existence follows fxom topological arguments, and any triangle not
equilateral clearly does not give minimum area. The fact about mid-points is clear.

-

Lemma 2.

Of all the tfiaﬁgleszcircdmsefibe& about a fixed ellipse ‘the ‘smallest has area
3/3/n times thé area of“thékellipse, and touches at the mid-points of .the sides.

Proof. Use a little transformation éeomefiy. A mapping ‘of the form - (x,¥) + (utyy)

will transform the ellipse to a circle.

Lemma 3. ~ 1 o -
0f all the ellipses inscribed in a fixed triangle there'léfé largest, and it .
touches the sides at their mid-points. Call this the "maximal ellipse' of the
triangle.

Proof. For any ellipse'ineeeibed in ;ﬁibtriahgle'éheftatio of areas by Lemma 2 must
satisfy triangle/ellipse 2 3V/3/%. Use an affine mapping of the given triangle to an
equilateral triangle, inscribe a circle, and use the inverse mapping. This shows

that there is an 1nscr1bed ellipse with the exact ratio of dreas' 3/3/w. “There’cannot
be two distinct 1nscribed ellipses’ With’ this same makimal area because they would both
have to touch all three sides at their mid-points. ‘

Lemma 4>

The points of contact of a triangle with its maximal ellipse have eccentric angles
differing by 120

AN

Proof. Transform the ellipse to a circle as in Lemma 2. ‘The triangle becomes

equilateral

JCMN14.
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Lemha 5.

‘Given a complex cubic f(z), the maximal eilipse ‘of 'the triangle forded by the zeros
of f has its foci at the zeros of the derivative f' (z):

‘Proof. By using a linear transformation of the complex variable we may take the
axes to be the axes of the ellipse: The ellipse 1s then xz/a2 + yz/b2

Let the eccentric angles of the
points of contact, P, Q and R
be a, o + 120° and o - 120°
respectively. The line QR is
(x/a)cosa + (y/b)sina = -1/2
and its pole A has coordinates
(-2a cos a, -2b sin a). Now
change to complex numbers, let

the .points A; B and C be represented

by u, v and w respectively.

u = «~2gcost-21ibsino.
v = -2 acos (0 +120°) - 2 1 b sin (o + 120°)

w = =2 acos (o -120°) =2 1 b sin (@ - 1209

Clearly u+ v+ w = 0. Now to find the sum of products two at a time,
vw=a(2 cos Za-l)+41absin2a+b(2cosZa+1)

and uw and uv may be found by adding 120° to a.
uv + vw + wu = 3b2 - 3a2
The cubic is f(z) = z3 + 3(b2 - az)z_.- uvw, and the zeros of .the derivative aj:_e

the focli z = £ (a -b )1/2

A THEOREM OF WIELANDT {JCMN 13)

NON-NEGATIVE MATRICES . (JCMN 13)

‘H. Kestelman p’oints out that these problems are s;;‘:eeial ceses (s=n-1 and s=1) of a
theorem proved by Busacker and Saaty, as foliows. Let G be a directed graph of n
nodes, for any k the graph Gk has an edge (or arc) from r to s when G has a
k-step path from r to s. A complete graph is one in which from each node there is
an edge to every other node. Theorem if G has a circuit of length s and if Gk

is complete for some k then it is complete for k=n+ s(n—2)

Proof: Given N n + s(n - 2) we want a path from a starting point P to any other

node T in N steps. Firstly we may go from P to some Q on the cycle in

<

q = n - s steps. Now consider the graph c® » 1t has a sling at Q, that is an edge

.
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from Q to. :Ltself ».and so in ¢S we may find a path from Q to any othetr point R in
exactly n-1 steps, that is in G there is a path from P to R in exactly '
q + s(n-1) steps,. Choose R so that there is a paﬂ1 RT of length N-gq-~ s(n - 1),

then PQRT. .ia.of length N..
Q.E.D..

nrree T

devr

The relation between non-negative matrices and directed graphs should be clear, the
r, 8 component of the n X n matrix A being non-zero when there is an edge from
node r to node s 1in the directed graph G, then Ak corresponds similarly to Gk

The fact that if s is prime to n the n+s (n - 2) of the theorem is best possible
may be shown by the graph € with edges a, 2), (2, 3), ... (n=1, n), (n, 1) and’ =

(s, 1) (or the matrix with non-zero elements in these positions)

2 1
d—ct—<

/¥ (Case n = 11, s = 6)
>——0——>—0—>

It is impossible to find a path of n +.5:(n - 2) -~ 1 steps froms + 1 to n because
of a lemma in number theory that the: number ng - s - n cannot be expressed as a

sum of non-negative multiples of n and s.

ANYONE FOR A SPOT OF RIGOUR? (JCMN 13)

The note in our previous issue was about the partial differential equation

8/8x(r Yy ) = r2ytt which may also be written Yex + (2r'/n)y where

= Yepo
X tt

= r(x) > 0. Instead of going through the reasoning with a fine-tooth comb it
would be more,eqlighteqing to look at the facts of the case. Did you believe the
suggestion that;gquconstancy_of the fqnction r(x) leads to partial reflection of

signals?

L

Many of our readers no doubt remember lecturing on elementary acoustics and telling

2% = ¢, -
tt -

(in spherical polar coordinates) corresponding to a disturbance caused by a‘'point

the class that ¢ = (1/r)f(r-ct) is the solution of the wave equation ¢

source at the origin. Because of the spherical symmetry we may imagine a suitable-:
conical barrier put in to the space, so:that the formula gives a solution for sound
in a narrow coné, that is for a voice-pipe of radius proportional to length along
the pipe. Armed with this knowledge we may go back to the pure mathematics ofithe

original P. D.E. and check that 1f f is any function then y = (1/x)f(x~t) satisfies
Vax * (Z/X)y T Ve
for which a signal may be propagated in one direction only. In fact the signal.

" That is to say there is a non-constant function r = r(x) =

may be confined to a region a < t-x < b, which is an interval of the x-axis: moving -
at unit speed in the positive direction. The idea that non~constancy of r(x) causes.

partial reflections must be wrong.

JCMN14.
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There may seem to be a contradiction between the existence of a solution confined
‘to an iﬂtéfVal’mobing:affﬁnitAspeedvé;d the demonstration in the previous article
that energy is propagated at §peeds:1eés,than one (except when one of the two
pafémeters'\i and v ‘Is zero and therefore r(x) constant). However it is possible
to reconcile these two facts, for the energy of the signal may be initially more
‘éoﬁcentrated in the front half of the moving interval, and slip back as the interval

tgavels on its way.
AhBthér'Way”of\loéking at thé caéé r(x) = x is to observe that the differential
.'bpératér mé§ be féctofized, in fact the P.D.E. may be written in the form
- (3/3x = 3/3t) (3/3x + 3/3t) (xy) = 0
and it becomes clear that the general soldtion is of the form
y = (£(x-t) + g(x+t))/x

for any two functions f and g.

For each of the two cases r(x) = constant and r(x) = x we have found firstly that
. for any interval (a, b) there are solutions‘vanishing outside the région

a< t~x<b; - -
-

roughly spéaking these solutions may be described as signals that travel from left
to fight without partial ref;éétion. Similarly there are solutions vanishing outside
a region a<t + x < b. Secondly solutions of these types form a complete set, in the
sense that every solution is a linear combination of them. If the P.D.E. has these
two properties we might call it "echo-free". One fact about these solutions may be
noted; if a non-trivial solution vanishes outside the diagonal strip a < t - x < b
Athen it occupies the full length of the strip, this follows from the energy
conservation equation ‘

(3/30) (£ (y, > + 3,12 = (1) Py y )

which shows that frz(yx2 + ytz)dx is the same for all sections t = constant
of the diagonal strip. “

The case where our P.D.E. is echo-free may be visualised as follows. Suppose'that
some phenomenon on a one-dimensional continuum satisfies the P.D.E., and suppose
that the system initially at rest is perturbed by some influence acting in a bounded

region of the x~t plane, then the resulting disturbance will be confined to the




V-shaped region indicated.
t

> X

We have seen that r{x) = constant and r(x) = x make the P.D.E. echo-free, are there
any other functions r(x) with this property? If r(x) has the property and y(x, t)
vanishes outside a < t - x < b and satisfies the P.D.E. (B/Bt)(r Y, ) = (3/3x)(r Yy )
then by,the»theo:y of differential equations there is Y(x, t)fsatisfying

L . W2 _ .2
Yx‘— Ty, - and ,YF Ty,

and this Y will satisfy 3/dx(r™Y) = (3/3t)(r">Y,) which is the P.D.E. obtained by
putting 1/r for r in the original. Will Y(x, t), with a suitable choice of the
arbitrary constant that may be added, also vanish outside a<t - x<b? Y is constant

e_in each of the two half—planes outside the diagonal strip, but are these two constants

. “equa1° This is not clear, perhaps one oF our readers can answer this question which

,;qconsisely put is as follows If y is deflned and differentlable any number of times

in the x, t plane and if r=1x(x) >0 is such that Blax(r y ) =r 2y and if 'y

vanishes outside ‘a diagonal strip where a < t-x< b, prove or disprove that

f yxdt = 0.

-0

The “considerations above lead us to consider the. case r(x) = 1/x. The general
solution of'the'P.D.E;'may“be-found‘by observing that ..
(/% - 9 /at DOe/D = Ay, = 2y, fx - y,) =0

which leads to yxyx = F(x-t) + G(x+t) for any F and G. We may put. F = f" and
= g" and integration gives
y = xf!(x-t) - £(x-t) + xg'(x+t) - gx+t) + h(t).

 Substitution in the original P.D.E. gives h"=0 and so h may be absorbed into the

.. other two functions, and the general solution is

y = xf'(x~-t) - f(x-t) + x g'(x+t) - g(x+t)
showing that r(x) =.1/x makes the P.D.E. echo-free. :

A little digging aronnd will uncover the fact that for r(x) = tan X there is a
solution y = f(x-t) + cot x f£'(x-t) which of course is valid only for 0 < x < /2,
To find the general solution in this case note that

(9 /ax ~ 3 /ay Y (y +y, tan x) é’(l + tan x alan)(yxx + éyx cosec 2x - ytt) =0

and sor y + y, tan x = F(x-t) + G(x+t). To integrate this take the F term first, any

F(u) may be expressed as F(u) = f(u) + f"(u), so that we must solve:
JCMN14,
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y+y, tan x = f(x-t) + £"(x-t)

Changing the dependent variable from y to z = y - f(x-t) leads to
z cos x + z_sin x = f"(x-t) cos x - f'(x~t) sin x
and integration gives e e e

z sin x = ffi{x-{t)-00s x w ) {(3-v, % = xw ale = + x won s

3

or y = £(x~-t) + £'(x~t) cot x + h(t) cosec x
Now .adding: the solution of y + Vg tan x = G(x~-t) we obtain the general solution

oy = f(x-t) + £'(x-t) cot x + g(x+t) + g'(x+t) cot x + h(;) cosec x

Substitution in ‘the original shows that h" + h = 0, so that there are terms

y sin x = cos t or sin t, but these may be absorbed into the other terms by adding

sines and cosines to f and g. The general solution for r(x) = tan x 1s therefore
y = £(x~-t) + £'(x-t) cot x + g(x+t) + g'(x+t) cot x

which again gives the property of being echo-free. |

“Are’ there other functions r(x) that make the P.D.E. echo-free? Ther;“ére some that

do not, for example r(x) = step function or r(x) = exp mx. The latter is of ihterest,
it is discussed in eiementary'acoustics because it gives the theorylbf the."exponeﬁﬁial
horn" type of loud speaker.: However let us not get side-tracked into the study of
horns and trumpets, fascinating though it might be, The motivation for this
investigation is strictly practical. )

In studies of atmospheric pollution great importance is attached to temperature

inversion layers, and more génerally towghe,tédperéture,as a‘funcgiqn of height above
ground level. The Physics Department of the JCﬁNQ has a ldud“speaker at the focus of
a paraboloidal reflector to send a beép upwards every seven seconds. What could they

find out about the variation of temperature with height by analysing the echoes?

The first question is how to set up a good mathematical model, and for the sake of
simplicity we would like to replace the three-dimensional atmosphere by a one-dimensional
continuum. The beam is certainly not well enough focussed to be treated as parallel,

but we may suppose that a vertical cylinder can be chosen fat enough to ‘¢ontain

almost all the beam, then by averaging over horizontal sections of this cylinder we
reduce the 3-~dimensional equatiohs of motion and continuity to one dimensién. This

leads to the wave equation

, 2
2§_z+(d ) - §_§
ax ox at

where y 1s either vertical displacement or velocity, p is the density and c¢ is the

spzed of sound at height x. This equation may be transformed by using a new variable
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X = fdx/c instead of x, and then we have
2

3y d¢ 4 & 20y & Sy
o (5 v = 2E) 2 =
axf.” ax ;:p, va aX 8t2

RS R -

The coefficient jim. mound:brackets is a function of x or 6f X. If the air is
assumed a perfect gavaithmczp = Yp then the coefficient may be expressed as

-Xg _ 3¢
c ox

The mathematical preblem is to find out something about the r(x) (or about r'/r)
in the P.D.E. Yx + 2r'yx/r = Ve frcm a study of the echoes that come back to
the origin. If this can be done then there will be no essential difficulty in

measurifg Atmospheric temperature gradients from ground level.

Any.gpgggngs”gr_gpggggtipgﬁAwould be welcome, even if they are not for publication,

and so if ydu have any ideas do'pleggehw;;te straight away.

BOOK REVIEW

Logic by Wilfred Hodges, a Penguin paperback, published in 1977.
ISBN 0 14 02 1985 4.

Thié book is intended for people who want to learn some elementary logic. It
is written as a conéeféation between the reader and the aufhér, and is easily
read. There are many ekercises with answers and the book couid be used as a
class text. Starting from the first chapter "Consistent Sets of Beliefs",

the book progresses to "Propositional Calculus", and "Predicate Logic".
The author's sense of humour adds a pleasant touch to many of the examples.

For example: A case where 7f should not be translated by '+' is:

The choirwas sensitive, if a little strained.

The logic of likelihood, analysing sentences such as

"It'1l probably be a girl. It'll be a boy",
is elegant and convincing, and meshes well with the mathematical theory of
prcbability.

In any book containing a large amount of symbolism, special care needs to be
taken not to overwork the symbols. Usually this is well handled but occasionally

one has to reread a sentence, for example, page 99.

Note the third line, which distinguihes '+>' from '+','+>' is pronounced
'if and only if"'.

B.B. Newman

JCMN14,
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THE PANCAKE PROBLEM

This has been around for some time. John Mack writing in the Australian
Mathematisal Society Gazette (December 1977) mentions it as having been contributed
by Ivan Rose to the Sydney University Mathematical Society Competition, and as -
being in the American Mathematical Monthly (Vol. 84, page 296).

A stack of n 2 4 pancakes sits on a plate. They are to be rearranged so. that the
smallest is at the top, the next smallest second and so on down to the largest
at the bottom. The only permitted move is to insert a slice in the stack and to
invert the pile above the slice, so that the pancake just above the slice now sits
on top. What is the minimum number f(n) of moves that is needed to achieve the

final arrangement, irrespective of the initial configuration?

-As’ the explicit answer seems elusive we are asking readers for any improvement

of the elementary inequality n € f(n) £ 2n - 4,

A SPHERE IN A VISCOUS LIQUID

Suppose that a sphere moves at a. small Reynolds number in a viscous liquid

- which is otherwise undisturbeo. It was suggested (JCMN 12, the problem "Can syou

solve a quadratic equation?") that the external force on it must be B + A% + Mx
where x is the position vector. The term B was established by Archimedes and the
term AXx by Stokes, but has anyone ever found the right coefficient M for the

third term of the series?

HISTORICAL NOTE

‘The 18th of January, when with‘luck this nunber of JCMN will be in the mail, is

the 200th anniversay of Captainlcook's discovery of what he called the Sandwich Islands,
now known as the Hawaiian Group. The fact that these islanders were related to the
(Tongans confirmed Cook's high opinion of Polynesian boats and seamanship. In fact

we know now that Tongan double, canoes used to make the 2000 mile journey between

Tonga and Hawaii.

Your editor would like to hear from you anythmg connected with mathematws
or with James Cook.

Professor B.C. Rennie,
Mathematics Department,
James Cook University of Newth Queensland,
Post Office James Cook Univérsity, Q.4811,

Australia.




