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PROBLEMS For n=3 and n=4 this is trivial:
P. Erdos
a a
(a) Leta(l)X a(2)2 ... be an infinite sequence of
positive real numbers with 3 a(n) = oo. For integer k let
o be the integer for which b
a(1)+a(2)+...+a(nk-1)<kga(1)+...+a(nk-1)+a(nk) ! ‘
Find a necessary and sufficient condition for the I thought that it could not be done for n > 4 but Pomeranic

convergence of :E§21 (a(nk))z. gave a nice construction for n=5 and two Hungarian students

This came up in a paper (not yet published) of gave a construction for n=6 which I do not remember. Per-

mine with Sichely and Ivo (two young Hungarian mathematicians). « haps for n> 6 it is no longer possible. Here is the con-

The necessary and sufficient condition turns out to be the i struction of Pomeranic. B A
convergence of }:anz. The proof is not difficult. ‘ AB = BC = CA = AE D
# AD=BD=CD
J # DE = CE E
‘\ # BE

(b)  Let Xy, +.., X be n distinct points in the plane “
in general position, i.e., no three on a line and no four on g
a circle. If we further require that no three of the points

How many distinct distances must the points de- be equidistant from another (as B, C and E are equidistant

termine? 5 from A in the figure above) then I am not sure that 5 such

Let f(n) be the largest integer such that the ,t points are possible. For 4 points
points determine at least f(n) different distances. Esti- b it is possible. 1
mate f(n) as well as you can. I could not do much here;
could not even prove f(n)/n2—> 0 or f(n)> n/2. 1

/2
/2
(c) Consider n points in the plane, no three on a line /5

and no four on a circle.

Is it possible to choose the points so that they
determine n-1 distinct distances, the i - th distance

occurring n-1i times?
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THE QUESTING PAIRS OF CAMELOT
Marta Sved

It had become a habit that the knights of Camelot
went on their quests in pairs. This had many advantages;
company eased the boredom and the strain of the long treks,
and the help they could give to each other in coping with the
gigantic tasks was invaluable. It also guarded the virtuous
humility of the knights, for if an achievement were shared
by two of them they were less likely to succumb to the mortal
sin of pride.

However, it turned out one day at the round table
meeting that next day all the knights, 2n of them, were to
set out on their journeys. At the same time a message was
received heralding the arrival of a party of visiting knights.

~ Guests are as important as quests - announced
King Arthur - It is important that half of us stay here to
receive the visitors -

- The task is easy - said Merlin - Just choose n out
of 2n who should stay here, and there are (%?) ways of making
the choice -

Sir Gawain and Sir Bauduin addressed the king in
unison:

- With your approval, your Majesty, we want to stay
together, on a quest, or at home. We have achieved such
rapport that we find it hard to give up our partnership -

Queen Guinevere, always thoughtful and sensitive, said:

- The two knights raise an important point. The
question is not only who should stay and who should go, but
which pairs should stay together and which should be broken up -

Merlin was quick with his considerations:

~ Suppose that we allow 2i pairs to stay together and
break up the rest of the partnerships ~

~ Why an even number 2i? - interrupted Sir Mordred.
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- Clear - said Merlin - We want to have half of our
knights here. Some pairs we shall divide and of the undivided
pairs as many have to stay as be allowed to go -

- Go on, Merlin - said the king.

- Of thw« 2i pairs who stay together we have (ﬂ?)ways
of choosing those free to go, and of course, there are
2n-21 ways in which it can be decided which of the partners of
each separated pair is to stay or to go -

- This tells us that

n/2} .
(2m) =Z[ (M) (2L) pn-2i

n 1=0 21 i

- Perhaps I am simple minded - said King Arthur - I
would go about it differently. Why not choose i pairs (2i £ n)
to stay here? This can be done in (2) ways. We still need
n - 2i knights from the broken up partnerships to stay here,
so we select out of the remaining n - i pairs our n - 2i pairs
which will be broken up. And having decided that we make

2n—21 choices for the partners we want here. Hence we have

(Zn) _ [nIZ](n) (n—i ) 2n—Zi _
n’ i’ 'n-2i
i=0
- This is splendid! - exclaimed Merlin - Moreover

the version of your majesty is more peneral. It works even
if we want to keep here k knights instead of n. We then have

k2] .
2n n n-i k-21i
(k ) = E (i) (k—Zi) 2

i=0

- General! General Merlin, carve these formulae

in a stone for future generations - said the king.

- Yes -~ answered Merlin - I remember a question about
it. Binomial Identity 18, on page 4052 of JCMN 34 -
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Readers will recall that identity 18(b) was as above
and that 18(a) was

Y_[n/zl ' )
3 2h (fy 222 (3%);  from the
=0

21 -1
) = (D) ([131) it may be

multiplicative identity (;;) ) i

seen that 18(a) is the special case of 18(b) when k = n.

SERIES EXPANSION (JCMN 33, p.4029)
J. B. Parker

To expand (2-—2(1-—x2)§)!E in a power series, put
x = cos 9, where 0 < 6 < T/2. The expression becomes

(2—251n6)% = 2%(c056/2 ~ sin6/2)
(1+x)$2-(1-x)!5

1/2 2r+1 (47)! ~4r 2r+1
=275« ) X Sy tar): amar g
2r+l Z:(Zr)!(2r+1)!

x + L3 (x373) 4 123237 (I/5) 4 Ll
2.4 2.4.6.8

As a corollary it may be shown that

oo ) oo
1+ (4r)! «F and 1 -] 24r=2)! .r
1 (2r) ' (2r+1)! 1 (2r) ! (2x-1)!

are inverses of one another (for x of modulus less than
1/4).
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ADDING NUMBERS (JCMN 34, p.4(55)
Esther and George Szekeres

The problem from C.J. Smyth was to find whether
if qu,...,3n§ is partitioned into three equal sets it is
possible to choose one number out of each set so that one of
these numbers is the sum of the other two. The answeys is
YES, and it is a consequence of the following more powerful
result.

Theorem. Suppose that the set {1,2,...,N} is
partioned into three sets so that it is impossible to choose
one number out of each set with one of these three numbers
equal to the sum of the other two. Then one of the three
sets has no more than N/4 members.

Proof. Let the sets (each arranged in increasing
order) be

A = {xl, Koy +ees xa}
B {yl’ Vo2 sees yb}
{zl, Zgs eees zc}

c

where (as we may assume without loss of generality) X <
¥y < 29 Clearly x4 =1, vy 2 2, zy 2 4 and a + b + ¢ = N.

Let r be the minimum difference between successive
members of C, and let k be the smallest suffix for which

Zk+1 - Zk f Tr.

Lemma. We shall show that y, ¢ r.

Proof. Suppose that y,; > r, then we shall find
a contradiction as follows. Note that r and y - ¥ are both
in A.

Z 4T =Yy = 2 (yl—r)jéB and = (zk+r) - #A,
therefore €C,

zk—y1¢A and = (zp+r-y;) - r ¢B, therefore€C.
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We have two elements of C differing by r, so con-
tradicting our choice of k as minimal.

Having established the lemma, we can now reduce the
theorem to the following four cases. Case 1, r 2 4; case 2,
r=y; = 3; case 3, r = 3 and y1=2; and case 4, r = ¥y = 2.

Let S be the sequence of length N in which element number t is
the set (A,B or C) containing t.

Case 1 (r 24). Remembering that z, 24, it follows
that every C is preceded in S by three or more elements either
A or B. Therefore 3¢ €a+b, and so 4c fa+b+c = N, and
c € N/4.

Case 2 (r=y1=3). For any t consider z -1 and
ze - 2. Neither can be in B because 1 and 2 are in A, and
neither can be in C because r = 3. Therefore every C in §
is preceded by two A's, and so 2¢c £ a. It follows that
b+3c< a+b+c = N and so either b or c £ N/4.

Case 3 (r=3 and ¥y = 2). Consider
s=]a, ..., C, X, ¥, C,...] . Neither X nor Y can be C
(because r = 3) and neither can be B (because 1 is in A), and
neither can be A (because 2 is in B). Therefore there is a

contradiction.

Case 4 \'r=y1 =2). For convenience write m for z) -
Then m+ 2 is in C. The two numbers m-1 and m+ 1 cannot be
in B because 1 € A and cannot be in C because r =2. There-
for they are both in A. Also

3=1+2¢C and = (m+2) - (m-1) ¢ B, therefore €A.
Also m-2 ¢.C (choice of k) and ¥ A, therefore &B.
The sequence S therefore looks like

S=1{A, B, Ay vo., B, A, C, A, Cy ooo } .

We shall prove by induction that all. the odd
numbers are in A. Suppose not, then there is a smallest odd
number 2k + 3 not in A (where k> 1). Now consider first the
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case where 2k +1 < m.
m- (2k + 1) 4-]3 and = (m-2) - (2k-1) # €, therefore € A,

2k+3 =m+2- (m-2k-1) ¢ B and = (2k+1)+2 §C
therefore € A.

The other case, where 2k +1 > m, is dealt with
similarly as follows:

(Zk+1)-m ¢ B and = (2k-1) - (n-2) ¢C, therefore €A,

2k+3 = (m+2) + (2k+1-m) ¢B and = 2k +1+2 ¢c,
therefore €A.

This has established that all the odd numbers are in A.
It follows that a > N/2 and b+c¢ < N/2, so that either
b or ¢ < N/4.

SYMMEDIAN POINT (JCMN 33, p.4030)
A.P. Guinand

Suppose that, for some unknown triangle, we know
the Euler line, with its landmarks, the circumcentre 0, the
centroid G, the nine-point centre N and the orthocentre H.
Then what can be said about the position of the symmedian
point K?

I conjecture that the region in which K might be
found is the "critical circle' with GH as diameter.
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SYMMEDIAN POINT AGAIN

(JCMN 32, p. 4008, 33, p. 4030, 34, pp. 4062, 4063)

A.P. Guinand

The tangents to the circumcircle at the vertices
A, B and C form another triangle XYZ in perspective with
ABC; the centre of perspective is the symmedian point.

Proof. The circumcircle is
ayz + bzx + cxy = 0 in trilinear coordinates, and the
tangents az + cx = 0 at B and bx + ay = 0 at C meet at X
with coordinates (-a, b, c), collinear with A(1, 0, 0O)

and the symmedian point (a, b, c).

I find it hard to believe that this result
doesn't lurk somewhere in the ancient literature, but
that is one of the hazards of this topic.

QUOTATION CORNER 16
From the Diary of Samuel Pepys, 9th June, 1663.

", .. and then comes Creed and he and I talked about
Mathematiques and he tells me of a way found out by

Mr Jonas Moore, which he calls Duodecimall arithmetique,
which is properly applied to measuring, where all is
ordered by inches, which are 12 to a foot; which I

] "
have a mind to learn. _ c.J. Smyth

I ——————...—.
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CAPTAIN COOK AND THE MOON
C.F. Moppert

This article is concerned with the problem of de-
termining longitude, or rather with the history of the methods
used for this purpose. The story of Captain James Cook il-
lustrates this history particularly well, as he applied at one
time or other all the methods that were available in his time.
They were

(1) observing an eclipse of the sun,

(2) observing the passage of the moons of Jupiter,

(3) measuring the angle between the mocon and

either the sun or a star,

(4) using the chronometer.

The fact that Cook used not only (3) and (4), which
are possible at sea, but also (1) and (2), which require a
land-based observatory, shows that he was much more than a
competent navigator.

The ideal instrument for measuring angles is the
sextant. The immediate predecessor of the sextant was the
"quadrant", developed to a high degree of precision by John
Hadley, a vice-president of the Royal Society, in 1731 (three
years after Cook's birth). The quadrant measured angles up
to 90° and its use was for measuring altitudes above the
horizon. The change to a sextant, capable of measuring
angles up to 120°, is credited to Captain (later Admiral) John
Campbell, and was motivated by the requirements of the '"lunar
distance' method of finding longitude.

The only reason why I dare to contribute to the vast
literature on Cook and on navigation is that I own a sextant
and have done some work with it. It was given to me as a
present on my 60th birthday by my sister and my brother-in-law.
It cost about $600. Hadley's quadrant in Cook's time cost
some 6 guineas (his pay as a lieutenant for a month).

On my sextant the scale is on a circle of 6 inches
(15 cms.) radius, and I can make measurements to an accuracy
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Incoming *
light \\*

Index mirror
(rotating)

Pivot

Rotating
Arm

Incoming — //

1ig§t A
= o Telescope (fixed) b eye
Horizon 4
(%ii:Z) Scale (fixed)

This diagram is to illustrate the optical principle
of the sextant. The two images are superimposed and seen
together through the telescope; the angle . -~tween the two
things observed is read from the position ot the rotating
arm on the scale. The scale reads zero when the two mirrors
are parallel, The angular displacement of the arm and the
index mirror is half the reading shown on the scale.

of two minutes of arc. Instruments in astronomical ob-
servatories can measure to one hundredth of a second of arc,
but for a navigational instrument such as a sextant that can
be used at sea, it is hard to get better accuracy than one

minute of angle.

Let us look at the problem of determining longi-
tude. At any point (apart from the poles) there is local
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noon, the time when the Sun is highest. Greenwich mean time
is defined so that, on the average, noon at Greenwich is at

12 o'clock. I won't go into the question of why this is so
only "on the average". If you find that local noon is at

6 p.m.'Greenwich mean time, then your longitude is 90° West
of Greenwich, because the Earth rotates once in 24 hours, or
15 degrees per hour. In principle, then, you can find your
longitude if you carry a clock giving G.M.T.

Now we may say, as Mr. Johann Werner first said
in 1514, that we have a wonderful clock hanging in the sky,
its hand being the Moon and its facde the other heavenly bodies.
The Moon takes about 28 days to move right round the sky, so
that in one hour the angle between the Moon and the Sun (or
any other suitably placed star) changes by about half a degree.
If we can measure the angle to an accuracy of half a minute we
have time to an accuracy of one minute, that is to say, longi-
tude to an accuracy of 15 minutes of angle. On the equator
15 minutes of angle is 15 nautical miles (the nautical mile
being 6080 feet or 1852 metres).

If. This "if" includes several obstacles. The
main one - we must have tables predicting the position of the
Moon (predicting the positions of the Sun or stars is rela-
tively easy). The first adequate tables were calculated by
Tobias Mayer in Goettingen and published in 1753. Mayer used
the theory developed by Leonhard Euler in St. Petersburg.
Euler was born in 1707; it did not take long for mathematical
discoveries to bear fruit. It was Nevil Maskelyne the
Astronomer Royal, who started the Nautical Almanac containing
lunar distance tables for use by navigators.

Now let us look at some of the practical problems
of reading our celestial '"clock" by measuring the angular
distance between Sun and Moon. Of course both must be above
the horizon and they must not be too close together, for it
is hard to see the Moon when it is less than 40° from the Sun.
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M A RCH 176g. [35]

Titances of D sCenter fromStars, and from @ welt of her.

12 Hours. | 15Hours. | 18 Hours.| 21Hours.

>
%1 Stars
'#] Names.

° J n e s nf{ ° t+ ) ° 1 u
e 6s. o. 32| 66. 31. 19| 68. 2. 18] 69. 33. 33
o|5Pica ® | 0" 14390 78. 46. 13| Bo. 19. 18] 81. 52. 38
3 He 95T 4545 7 41. 20 38 gs- sg- 30
Hant §7. L. 58.39. 7| 60. 17. 31} 61.56. 17
o[ A3 | 70, 15. 43| 71. 56. 43} 73. 38. 4| 75.19. 48
K 3353 47
10 18, 47. 19| 40.28.14] 42. 9. 11
1 §0. 33. 46| 52. 14. 31| §3-§5. x1f §5.35. 45
12 63. 56. 54| 65. 36. 43| 67. 16. 22| 63. ¢5. 52
13{TheSun. | 77. 10. 48] 78. 49. 14] 80, 27. 29 82. 5. 32
14 90. 12. 44| 91. 49. 33| 93. 26. 19] 95. 2. 34
15 1035. 1. 24|104. 36. 30[106. 11. 23]107. 46. 3
16 115. 36. 23(117. 9. 48[118. 43. oj120. 1. ¢8
4 19. 15. 16{ 20. §2, 18] 22. 30. 14{ 24 B. 51

15| Aldeba- | 32.27. 81 34. 7. 13| 35.47. 20| 37.27.29
16] ran. 45. 47 36| 47. 27. 21f 49. 6. g7} 50. 46. 26

17 59. 1. 41| 60. 40. 17} 62. 18. 45! 63.57. 3
18 30. 41§31 32. 16, 3| 33.§9.23] 35.24. 50
19P°"ux‘ 43. 17. 24] 44 1. 50| 46. 26. 12} 48. o. 28
20| 18. §3. 31| 20. 25. 44] 21. §8. 13} 23. 30. 50
2 31 14. 12 32. 46. 43| 34. 19. 8| 35.51.29
22{Regulus. | 43. 31. 30| 45. 3. 8| 40. 34. 37 48. 5. 59
23 §5. 40 43| 57. 11. 14] §8. 41. 37( §9. 11, §3
241 67, 41. 25

I

24 13. 43. 18] 16. 11, 44| 16. 40, 17} 18. &. 54
¢ 2. 32.24] 27. 1. 1] 28.29. 39 29.¢8.12
26 Spica 37. 29. 49] 38. 49. 15] 40. 17. 44{ 41. 40. 11
297 49- 8 53] 50.37.3¢] 52. 6. 12| §3.34.57
28 60. 59. 52| 62. 29. 10] 63. 8. 37| 65.28.12
29 72, 58. 23| 74. 28. 57} 75- 59. 43| 17. 30. 41
30 Antares, | 39+ 37- 11} 41. 9. 28| 42. 42. 2| 44. 14. 5§
31 52 4 4] 53.38. 54| 55. 14 5| 55 49. 38

A page from the 1769 Nautical Almanac. For a
sequence of times at intervals of 3 hours the authors had
selected one star to the East and one to the West of the Moon,

so as to ensure that whenever the moon was up and the sky clear

it should be possible to make a lunar distance observation to
find longitude. The four pages for the month of March would
have been used by Cook while sailing across the South Eastern
Pacific from Cape Horn to Tahiti during his first Pacific
voyage. Note the astronomical convention that the day goes
from noon to noon, so that "21 hours" on 1st March means what
nowadays we call 9 o'clock in the morning of 2nd March.
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Therefore the clock is out of order for about ten days at
the time of the full moon and a week at the time of the new
moon. Also; of course, there is the requirement of not too
much cloud or fog, and so this '"clock" has limitations.

Some of these difficulties were-solved by the way the Nauti-
cal Almanac. (see the copy of one page from one of the
editions that Cook used) gave lunar distances from various
stars near the ecliptic.

The British parliament set up in 1714 the "Board
of Longitude", consisting of 22 commissioners and charged
with the duty to give a prize to anyone finding a practi-
cable method of obtaining longitude at sea. The prize was
£10,000 for an accuracy of one degree, £15,000 for an ac-
curacy of 40 minutes of angle, and £20,000 for an accuracy
of 30 minutes. The first man to win part of the award was
Tobias Mayer in 1765 for his lunar tables; that he got it
only after his death is perhaps a minor point. During this
period John Harrison built his first marine chronometer, and
in 1736 the Board of Longitude made arrangements for him to
sail with the chronometer to Lisbon to test it. In 1761 he
built an entirely different chronometer and also had it
tested. For comparison the moons of Jupiter were used.

The final test was Cook's second voyage using Kendal's copy
of Harrison's latest chronometer. The results were so good
that Harrison was given the maximum prize of £20,000.

In Cook's first Pacific voyage (1768-1771) when he
charted the East coast of Australia, he had only the method
of lunar distances for finding longitude. Lunar distances
were given in the Nautical Almanac until 1905, but now they
are almost forgotten because good chronometers are so easily
available.

One of Cook's calculations of longitude by lunars-
would take about four hours, using seven-figure logarithm
tables. Of course we could do it much more quickly now with
a pocket calculator, but it is still complicated. My sex~-
tant is easier to use than Cook's, for it has a better
telescope and has a micrometer instead of a vernier for

measuring fractions of a degree.
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I shall now describe to you my own experiences in
some detail. On the 12th March, 1984 at 18.10 by the clock
I measured in Warrandyte the angle between the Sun and the
Mon with my sextant and found the value 109°39' (or in deci-
mals of a degree, 109.65%). From the Nautical Almanac I
calculated the angle at hourly intervals :-

GMT 0700 0800 0900
Angle 109.01 109.54 110.08
Difference 0.53 0.54

The angle of 109.39° corresponds to GMT of 08.12.
How can we calculate from this the longitude of Warrandyte?
We need to find the local solar time at Warrandyte at the
moment of the observation

~ T«
re ~
Ve Sun- —
7 \
/ 3
! South 1Altitude
i Pole /E_ ] i
West  Horizon y East

The Sun moves every day in a circle round the South
Pole, and the local time (before or after noon) is the hour
angle ¢ 1n the figure above. It can be found if we know the
latitude b and measure the altitude of the Sun, by solving
the spherical triangle whose vertices are the Sumn, the South
Pole and the Zenith, on the celestial sphere.

The finding of longitude by lunare consists of the
following main steps:

1. Find the latitude.

2. Measure a lunar distance, noting the time on
a watch (for this purpose no great accuracy is needed; Cook
would have used a '"deck watch', accurate within a half a
minute per day).

3. Compare the watch with local time by measuring
the altitude of the Sun, or by observing sunrise or sunset.
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4. Find the GMT of your lunar distance measure-
ment, from the Nautical Almanac.

5. Find the local time of your lunar distance
measurement.

6. Subtracting the last two res.its gives
longitude.

Actually, it is not so simple. Corrections have
to be made for refraction, for the difference between mean
time and true time (something like 5 or 10 minutes), and
for lunar parallax. The parallax correction is due to the
Moon's position (in astronomical tables) being given as
direction from the centre of the Earth. The direction
from any point on the surface of the Earth will differ by
an amount of up to one degree of angle (which is the apparent
radius of the Earth as seen from the Moon).

EXPANSION FROM RAMANUJAN
G. Szekeres
In a partial solution of a problem proposed in the

Journal of the Indian Math. Soc., Ramanu jan considered y = f{n)
defined by

e"/2 = 1+n/1! 4+ n2/2! + e +nn-1/(n-1f)!‘+nny/n!

He noted that y had an expansion in powers qof 1/n of
the form

1/3 + (4/135)n" 1 - (8/2835)n2 - (16/8505)n=3 + ...
Ordinary mortals would expect half-integer powers to

appear in the expansion, but to Ramanujan it seemed obvious
that only the integer powers could survive. Is it obvious?
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NUMBER THEORY AND MECHANICS

G. Berszenyi and A. Zajta

When teaching the mechanics of vibration it seems
natural to set the example of three trolleys connected by
equal springs and running on a frictionless railway line,
asking students to calculate the normal modes of vibratiom.

Taking the masses of the trolleys as k, m and n,
the displacements as x, y and z, the rate of the springs as
r, and the (radian) frequency of the vibration as w, the

equations to be solved are

(1) &b(+rw—x) =0
(2) W%w+-ﬂx-2y+z) =0
(3) wnz + rly-2) -0

In order to simplify the typing of the question,
to ease the marking and to minimise the computation re-
quired, we try to ensure that all the given parameters
(k, m, n and r) and all the answers (W, x, y and z) are

(+ or -) integers. Now, in order to set a good question,
we have the Diophantine problem of solving (1), (2) and (3)
in integers. We ¢ .all find infinitely many solutions.

The system clearly has three normal modes, one
of them the trivial solution of zero frequency, so that
eliminating x, y and z gives a quadratic in w",
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(4) kumw4 - (km + mn+2kn)w2r + (k+m+n)r2 = 0

which has integer solutions ir\w2 and v if and only if the

discriminant is a perfect square, i.e. there is an integer a
such that

(5) (k- a)? + (2kn)? = a2,

In view of the usual parametrization of Pythag-
orean triples it follows that a solution is given by

(6) m=5k +n and a-k2+n2.

The solutions of the quadratic (4) are
(7) WVir = (k +n)/(kn) or 2/(k+n).

We have to choose k, n and r so that the values
of‘z given by (7) are perfect squares. To do this, take
any integers b and c, then choose k and n so that kn--Zb2
and put r = kn(k +n)c2.  The roots of (4) are then

W = + c(k+n) or + 2bc.

Finally, integer x, y and z may be chosen be-
cause the ratios x : y : z are known rational numbers.

CORRECTION

In JCMN 33, in the article "A Model for Company
Finance'" there are two numerical misprints. On p.4036,
line 13, the "has $550 in cash" should become "has $500
in cash". On p.4037, also on line 13, the "cash holding
of $1100" should be changed to "cash holding of $1000".
Is the line number 13 unlucky? The thanks of the Editor
are due to the readers who pointed out these errors.
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TRIANGLE GEOMETRY
J.B. Parker

Let A, B and C be the angles of a triangle, and
i -iB
e ).

consider the three complex numbers (u, v, w) = (-1, e,
In the complex plane they form an acute-angled triangle with
angles (B+C)/2, (C+ A)/2 and (A+B)/2.

[uv + vw + wul2 = (uv + vw + wu) (UV + vw + wu)
3+ (v +wv) + (uw + wa) + (uv + vu)
3-2(cosA + cosB + cos ()

1-8 sinA/2 sinB/2 sinC/2.

"

This is one way of showing that the last ex-
pression above is positive except for equilateral triangles.

Another use of the same algebra is to comsider the
triangle represented by the points uz, v and w2; it has
angles A, B and C. The point -uv-vw-wu is the centre I of
the inscribed circle, because the vector IA is represented
by the complex number w+ uvasvw+wu = (u+w)(u+v) of

2 2 2 2, U+W uU+V
which the square is (u® -w")(u®-v®) Tow U=V

an expression in which the last two factors are pure imaginary.

We can verify that this point is the centre of the
inscribed circle and not of one of the three escribed circles,
as follows. By the identity above we know that the point is
inside the circumcircle. . A typical excentre is vw + wu-uv
and the square of its distance from the origin, by a similar
calculation is

3+ 2cosA + 2cosB-2cosC =1+ 8sinC/2 cosA/2 cosB/2>1,

so that the three excentres are distinguished from the in-
centre by all being outside the circumcircle.

The algebra above therefore also establishes that
in any triangle : 012/R2 = 3-2(cosA + cosB + cosC).

The fact that the three complex numbers u,v and w
are the trilinear coordinates of one of the circular points
at-infinity is surely a coincidence, isn't it?
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MORE TRIANGLE GEOMETRY
A.P. Guinand

The three following comments arise from John Parker's

article above.

(a) The points OGNH
(circumcentre, centroid, ) N

nine-point centre and

orthocentre) are spaced

along the Euler line as shown, with the lengths OG, GN and NH
in the ratio 2:1: 3. It is known (JCMN 30, p.3127) that
the incentre I must be in the circle on GH as diameter.

John Parker's note above suggests a simple proof, as follows.

Ol = jvw+wu+uv|=|1/u+l/v+l/wi=|u+V+w| =ju+v+w|
and 2IN = Iu2+v2+w2+2vw+2wu+2uv| = |u+v+w|2.

Because 0I £ 1 it follows that 2IN £ OI, which means
that I is inside the circle shown.

C,e-iB) being trilinear

(b) What about (u, v, w) = (-1, ei
coordinates of a circular point at infinity? Coincidence,

yes - but not inexplicable.

The complex numbers
u, v and w are unit vectors u
in the plane like this:

W
If we draw a triangle with sides parallel to the

three vectors then the angles

au

are A, B and C, and so the
sides are proportional to a,
b and c. Consequently we
find that u, v and w must
satisfy the equation

au+bv+ cw=0. By taking
the complex conjugate and multiplying by uvw it follows
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that they also satisfy avw +bwu +cuv=0. These last two
equations shown that (u,v, w) is on the line at infinity and
the circumcircle respectively; therefore the point {u, v,w)
is one of the circular points.

Is is obvious that ayz +bzx+cxy=0 is the circum-
circle? Yes, for it is
a conic through the three
vertices and the point where
x=R(cosA-1) and
y = z = R{cos B + cos C) and the
two similar points, easily

verified.

(c) Suppose that instead of giving u, Vv and w the
specific values as above, we just take them to be any three
complex numbers of unit modulus. Then -vw-wu-iv is a
tritangent centre (centre either of the inscribed circle
or of one of the three escribed circles) of the triangle
with vertices uz, v2 and wz. If K is the point —uz- v2-w
then it can be shown (A.P.Guinand, Euler lines, tritangent
centers, and their triangles, American Math.Monthly, 91 (1984))
2

2

that 4 IN(IK + IN) £ 90I

Interpreting this inequality in terms of complex
numbers, we have the following:

Theorem If u, v and w are complex numbers of

unit modulus, then:
Iu+v+wl2 + 2|u2+v2+w2—vw-wu—uv|é_ 9.

It looks like a simple bit of algebra but probably
is not, for it is equivalent to some fairly subtle and com-

* plicated geometry.

GEOMETRIC INEQUALITY.

8 cos A cosB cos C < 1 for non-equilateral

triangles.
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CAMELOT AND THE GAMES

Marta Sved

When King Arthur announced the invitation to send
teams to compete in archery and javelin-throwing (with n in
each team) the m knights sitting at the Round Table received
the news in an argumentative mood.

- They want us to send 2n knights - said Sir
Bauduin - There are (;;) ways of choosing them out of the
m of us - said Sir Gawain.

- And not distinguish between javelin-throwing and
archery? - inter jected Sir Mordred in his usual sarcastic
manner.

King Arthur said soothingly - Having our 2n knights
we can select the n for archery in (%?)ways, and so we
have (5;)(%?) possibilities to think about -

Sir Archibald raised an objection, saying - Some
of us could well compete in both events -

Bedlam broke out. King Arthur rose from his seat
to silence the augument. - I expect impeccable conduct from
my knights. Clearly there must be some of us who will not
be able to compete in even one event. Besides, there are
other important things to be done. I am not sure that I can
spare 2n of you for that tournament -

- We must send at least n knights - said Merlin.
- Consider all the possibilities. Suppose that we send a
party of 2n-d where 0 £ d «n. Then from these we choose
d to compete in both events, and from the remaining 2n-2d we
have to select n-d for archery, the rest for javelin-
throwing -

- Alternatively - said Sir Lancelot - We could
select n archers out of the 2n-d first, and from these n
select d to compete in both events -
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The king agreed. - Since there are (zétd) ways of
making the first selection, we have

an n
m 2n-d, 2n-2d m 2n-d, n
Zd=0(2n'd)( y(2n-2d) id=0(2n_d)( =d) (1,

possibilities to consider. Agreed? -

All the knights nodded in agreement, but Merlin re-
mained unmoved. The king turned to him. - Do you not
agree Merlin? -

~ Oh, I agree, your Majesty. - The two formulae
are perfectly correct. But we could select n archers out of
the m knights, and then again select n out of the m for
javelin-throwing, thereby including all possibilities. It
gives us the identity

n
m2 n 2n-d, 2n-2d 2n-d
(M2 - Z (o ) (P4 (Bn-2d, _Zd (P @) -

BINOMIAL IDENTITY 17 (JCMN 34, p.4052)

Marta Sved

n
Z M2 (W) - (M2 form> n> 0.
r=0

In order to prove this, first note by the
Vandermonde convolution formula (which incidentally has a
very simple combinatorial proof),

T
“'“’) = {_ (fj)(z"‘d) .  The left-hand side of
d=0 n=

the formula being investigated is therefore

n r
()2 2: (5)(,™ ) which by interchangin
Zr=0 2R I LLP R y ging

the two summations may be written
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n n 2
Gaa) ) (D5
}: d=0 2n-d r=d T d
But by the multiplication formula ( )( qa) = ¢ )(n-d)

so that the sum may be written

n n
m n n, ,n-d
E d=0(2n—d)(d) E r=d(r)(n_r) s

but from the convolution formula

n
2: (™ (n-d, _ (2n-d,

r=dr n-r n

and the sum is

2n-d
420 (Zn—d)(d)( ),
which was shown to be (ﬁ) by Merlin in the Camelot story

printed above.

LITERARY COMPETITION

At the local university the Vice-Chancellor
has ordained that all rules and regulations are to be
re-written to eliminate sexist words and phrases.
Suggestions are wanted for appropriate non-sexist
substitutes for "bachelor" and '"master' in the titles
of degrees.
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EDITORIAL

Contributions will be welcomed. They should
be written so as to be clear to all mathematicianms.

Since Issue 32 (October 1983) the JCMN has been
published by me (the Editor). Issues 1 to 31 were pub-
lished by

Mathematics Department,

James Cook University of North Queensland,
Post Office James Cook,

Towmsville, N.Q., 4811,

Australia.

These issues have been reprinted as paperback
volumes

Volume 1 (Issues 1 - 17)

Volume 2 (Issues 18 - 24)

Volume 3 (Issues 25 - 31}
and they are on sale for $10 (Australian) per volume

(including postage by surface mail); cheques for these
volumes should be made payable to the James Cook University.

My address is either at the University (address

above) or at home (see page 4066).

Basil Rennie



