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THE EIGHTEEN MORLEY TRIANGLES

The azimuth of a straight line.

In the plane we take a fixed straight line (for
instance the x-axis of Cartesian coordinates) and we say that
rotating this line through any angle « (anticlockwise) gives
a line of azimuth o , Each azimuth is an angle measured
modulo 1800, so that lines are not directed. In Cartesian
coordinates the azimuth & of the line y = mx + ¢ is given
by tan & = m.

Geometry using azimuths is the essence of navigation
by radio beacons with a direction-finding loop (butnot a sense-
detecting device), for the position of a point X is determined
by two points A and B, and the azimuths of the lines AX and
BX (provided that the two azimuths are unequal).

Lemma 1 Suppose that we have four points, A, C, Q and Y with
90°
-Y

az CY = -az AY = o+ Y and az QY
az CQ o and az AQ

Then az AC = Xx-Y
Y

Proof

o) Q] [+

Set up Cartesian coordinates with Q as origin.
Let Y be (0, y), A be (r cosy, - r siny) and
C be (s cos«, s sina).
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The information about the azimuth of CY tells us that
s cosax sin(a+y) = (s sinX-y) cos(X+Yy)

i.e. s siny + y coslxX+y) =0,
From the azimuth of AY we have

r cosy sin(xX+7Y) = (r siny + y) cos(k+Y)
i.e. rsina =y cos(X+))
Therefore r sina = - s siny and

. ) 2 2
tan(az AC) = Ssinx +rsiny _  sinx - sin"y

scosxX ~rcosy sinAcosx+siny cosy

_Cos2Y - cos2® _ 2 sin(x-Y) sin(x+Y)
sin 2t + sin2y 2 sin(X+Y) coslk-Y)

= tan(x-Y)

Lemma 2 Four points, A, B, C and D, are concylic if and only

if azAB + azCD = az AC + az BD. Note that '"concylic" is
used here in the wide sense, to include the possibility
of the four points being collinear.

Proof "Only if". Let the points be concylic, The case

of collinear points is trivial, and so without loss of
generality we may assume the points to be on the unit
circle, and represented by complex numbers, a,b,c and d,
allt of modulus 1. By the '"phase" of a complex number
x+1y # 0 we mean the angle  (modulo 180°) such that

X sinX = y cosK . The phase is zero when the number
is real. The azimuth of AB is the phase of a-b, etc.
Therefore

azAB + azCD - azAC - azBD

(which we want to show to be zero) is the phase of

{a -bilc ~d)

(a - ¢)(b - 4d)
This fraction is one of the 24 cross-ratios that can be
formed from the set of four numbers a,b,c and d. We

know that if x is one of the cross-ratios, then any other
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must have one of the values x, 1/x, 1-x, 1/(1-x),
x/(%—1) and &x-1)/x, so that one is real if and only if
all the others are real.

Take a permutation A',B',C' and D' of A,B,C and D

so that A'B'C'D' are in that order round the unit circle.

Elementary geometry tells us that

azA'B' -azB'D' =angle A'B'D' =angle A'C'D' =azA'C' -azC'D'.

(a'-b")(c'-d")
(2" -c')(b* -d")

The cross ratio is therefore real

(a-b)(c-d)
(a-c)(b-d)
tween the azimuths holds.

and so

“If". Represent the points by complex numbers as
before. We know that one of the cross-ratios is real,
and therefore all are real. There is a bilinear trans-
formation taking (a, b, ¢, d) to (0, f, 1,00) (for some f).
Because bilinear transformations do not change cross-

(0-f)(1-00)
(0-1)(f -00)
points 0, £, 1 and e are collinear. Therefore the

ratios, f = is real and so the four

points a, b, ¢ and d are concylic.
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Bricard's Construction.

is real and the required relation be-

We are given three angles <, ﬁ and Y with

o« + 5 +Y =+ 60° (modulo 180°).

Take an equilateral triangle PQR with azPQ = - -
and azQR = X+ + Y and azRP = 0.

Q@

R P

Now construct points A, B and C as follows.

A is such that azAQ = - Yy and az AR
B is such that azBP =X+ B + 2Y) and az BR
C is such that azCP = o +Y and az CQ
We shall show that

azAC =X - Y

azBA = -2 Y

azCB = X+ 27,

These last three equations show that the triangle
angles 3¢, 33 and 3%.

p-Y

= -k -Y

=d+2ﬁ + 2y

[~

ABC has

Proof

Let Y be the intersection of AR with PC. Since
az RY = -az PY the line from Y to the mid-point of RP has
azimuth 90°, and since az PQ =-az RQ the line from Q to
the same mid-point has the same azimuth. Therefore
az QY = 90° and Lemma 1 applies, and azAC = -y .

The azimuths of BA and CB may be deduced by means of
the cyclic symmetry as follows. First we may rotate the
figure, decreasing all azimuths by < + 3 +) , so ob-
taining points A", B", etc. Now rename these points

cyclically:

P" = Ql Qll = Rl R" = Pl
All = Bl B'l = Cl cll = Al .
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Also we need to re-name the angles cyclically, =3,
etc. We may now write down the construction in the new

notation.

az A'Q' =azC"P"= azCP-x-B -)y=-3 = -y

azA'R' =az(C"Q" = azCQ - X -3 -Y = -/3-}{= - -y etc.

Tte first part of our theorem applies, and azA'C' =u' -Y°,
azB"C" = azA'C' =xX'-Y' = y-/3
azBC = az B"C" + L + (3 + Y =K+ 2y as required.

Finally we apply the second result to the rotated picture
azB'C' = &' + 2Y".

Therefore azA"B" = azB'C' = &' + 2Y' =2 +¥

and az AB azA"B"+o&+{3+X=cL+ 3/3+2X

-2 - X .

The Generalized Morley Theorem.

Consider the figure given by Bricard's construction
rotated by an angle 2( -ok. The azimuths of various lines are

as follows.

Line AB BC CA PQ QR RP
Azimuth -3& 3Y 0 -2 —/5 B+2y Y-
Line AQ AR BP BR Ccp cQ

Azimuth ~ol -2& (+3y 2(3+3Y 2% . SN ¢ § |

Suppose that we are given a triangle with angles
(in the usual notation, each between 0° and 180° with sum 180°)
A, B and C. There are 18 ways to choose angles ,ﬁ and Y
(each regarded as modulo 180°) so that 3« = A, 3ﬂ = B,
3¥ =Cand L+ (B+y+# 0. The family of 18 possible choices
of (£, /3 s Y ) has a transitive symmetry which may be des-
cribed as follows.

Take any family (k, m, n) of residues modulo 3 such
that k+m+n # 2. There are clearly 18 such families;
because of the 27 choices of three residue classes there are
nine with sum 2. Sometimes we shall denote this family by kmn
for short. Now take any possible choice of ( o(,/a,y) as
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described above. It may be seen that

(ot klx+ B +7Y), Brmlec+ B +y),
Y+l &+ B47)) eiinnnana(2)

is another possible choice, and all possible choices are of
this form.

We shall see that each possible choice of (o(,/i,Y)
gives a Morley triangle, as follows. Bricard's construction
gives us a figure containing a triangle similar to the given
fixed ABC. Mapping it on to the given fixed triangle ABC
gives a figure containing a Morley triangle PQR for ABC;
this PQR may be specified by the azimuths listed above in
Equation 1. If the chosen angles are replaced by (2) then
the azimuth of PQ is increased by (k-m)(oL+(3+ Y¥), of QR
by (m—n)(o(+(5+’¥) and of RP by (n—k)(o(+(3+’x). This shows
that all the 18 Morley triangles are parallel to one another
because °(+($+’Y = + 60°.

Notations. Given the triangle ABC we choose any one of the

Morley triangles, denoting it by the symbol 000. If this
triangle is constructed (as above) from the angles o« , @ and 7y,
then the triangle constructed from the angles given in (2)
above is denoted by the symbol kmn. The three vertices of, kmn
are denoted by Pmn, kQn and kmR. These points are specified
by their azimuths from two vertices of the triangle ABC.

For instance, Pmn has azimuth _ﬁ‘+ 3Y +mlx+ (3+3’) from B and
2y +2n(X+@3 +Y) from C (these values should be clear from (1)
and (2)). There are 27 Morley vertices, each a vertex of

two Morley triangles. For example P12 is the P vertex of tri-
angles 012 and 112. There is no triangle 212 because 2 +1 + 2
is congruent to 2.

The pattern of the 18 triangles. The two Morley triangles

012 and 112, which share the vertex P12, also share two sides.
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The side from P12 to 0Q2 of the first is the same line as the
side from P12 to 11R of the second. More generally any side
of a Morley triangle is a side of five others, as we shall see

below.

From (1) we see that the side QR of triangle 000 has
azimuth ﬁ +27 and therefore the corresponding side (from kQn
to kmR) of triangle kmn has azimuth

ﬁ+Mu+P+7)+NY+Md+ﬁ+TH)=ﬁ+27Hm—nHm+p+xh
Similarly the azimuths of the other two sides of kmn are:

PR : 7—&+h—kﬂd+p+f)
and PQ : 22X -f 4+ (k -m)(xX+B+7Y).

From these formulae we may calculate the azimuth of
any side of any of the 18 Morley triangles. For example, the
side from P12 to 0Q2 in triangle 012 has azimuth

2 =B+ (0-(xX+B+Y) = B+ 27,
Likewise the side from P12 to 11R in triangle 112 has azimuth
Yoo+ (2-D+B+Y) = B+ 2y .

These results may be conveniently set out in a table:

Point to Point in Triangle
P12 11R 112
11R 1Q1 111
1Q1 P21 121
P21 02R 021
02R 0Q2 022
0Q2 P12 012

The azimuths of all these lines are equal to ﬂ4—27 s
so that all six points are on a line. There are two other lines
parallel to this one, each line being a side of six Morley tri-
angles. One line contains the points P10, 0Q0, OOR, PO1, 2Q1
and 21R in the triangles 010, 000, 001, 201, 211 and 210. The
other contains points P20, 1Q0, 10R, P02, 2Q2 and 22R in the tri-
angles 120, 100, 102, 202, 222 and 220. The combinatorial re-
lations of the points, lines and triangles are best shown in the

picture.
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COMBINATORIAL PROBLEM GENERALIZED
(JCMN 38, p.4149)

R.N. Buttsworth

The conjecture in the previous issue is true. It is
the case k=1 of the following more general result.

Theorem. Let n be any positive integer and k any non~
negative integer. Suppose that we have a set of n elements X
and a class of "special" subsets such that the intersection of \

any two has no more than k elements. Let A(r) be the number d

of special subsets that have exactly r elements. Then "
nln-1) ... (n-K2 X X r(r-1) ... (r-k) Alr)

and the result is best possible in the sense that it cannot be

replaced by the strict inequality.

Proof. Consider all the (kgl) subsets of size k +1.
They fall into two classes.

Class 1 : Any such set that is contained in a
special subset.

Class 2 : All others.

No member of Class 1 can be contained in two distinct
special subsets, and each special subset (with r elements)
contains exactly (kil) subsets of Class 1. The total number

. o0 r
of subsets of Class 1 is therefore E:r=k+1 (k+1) A(r), or less.

o0
Therefore ‘k31’=‘— Xr=k+1 (kil) A(r) and multiplying both

sides by k! gives the result.

To show that the result is best possible take as !

special subsets all those with k +1 elements. Then N
n

(k+U.k....2.1(k&)

Zr(r—l) ess (r=-k) A(r)
nin-1) ... (n-k). l!

StoE press.

A similar solution has come in from Jamie Simpson.
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THE TOMBOLA PROBLEM

J.B. Parker

The game of Tombola (= Bingo = Housey-Housey) is
perhaps familiar. Each player has a card with 15 of the
numbers from 1 to 99, keen players often taking more than
one card. The caller takes at random (without replacement)
the numbers from 1 to 99, and announces them to the players.
This continues until one of the players wins by having all
the numbers on a card called. The number of calls made
before the game ends is a random variable between 15 and 99.
What is the median of its distribution?

The problem is related to that of finding a good

(n-a)!(n-b)!

n'(n-a-b)!

approximation to which has a simple

interpretation as the probability that two subsets (of
2 and b elements) chosen independently from a set of
n elements will be dis joint.

QUOTATION CORNER

Drivers must be over 21 or under 70 years of

age.
From a QANTAS brochure on care hire.



-4174-
k — FOLD REAL FUNCTIONS

H. Burkill and B.C. Rennie

Let k be a positive integer or ©°, We then call a
real valued function f on an interval k-fold if it takes all
the values exactly k times. In JCMN 31, p.3180 Marta Sved
gave an example of a 2-fold function on R. This function has
an infinite number of discontinuities and Marta Sved asked
whether, for k=2, 3, ..., every k-fold function on TR must be
of this kind. We here give half an answer to this question *
and explore related problems, leaving many unsolved.

k = 2.
In this case we have obtained just one general result.

Theorem 1. Let I be a non-degenerate interval in R (open,
half-open or compact). Then every 2-fold function on 1 has
at least one discontinuity. H
Proof.

Suppose that the function £ : I — R is both 2-fold

and continuous.

Take two distinct points a, b € I, with a < b, say,
such that

f(a) = £(b).
Since f cannot be constant on [a,b], at least one of

sup f(x), inf £(x)
agxgb asxghb

differs from f(a)(=£f(b)). Suppose that this is true for the
supremum, so that there exists pé&(a,b) such that

f(p) = sup £(x) > f(a) = £(b).
asxgb

There must now be another point q€ I such that f(q) = £(p).

(i) If qela,b), say p<q<b, then £(x) < £(p) = f(q) for
all xe[p,q] and, since f does not take any values more than
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twice, f(x) < f(p) = f(q) for all xe(p,q). Let u be any point
of (p,q), so that
f(u) < f(p) = f(q).

Put X = max(f(a),f(u)).

Then all values in (X,f(p)) are taken in each of the intervals
(a,p),(p,u),(u,q),{(q,b) and this contradicts the hypothesis
that f is 2-fold.

(ii) If q >b, then all values in (f(a),f(p)) are taken
in each of the intervals (a,p),(p,b),(b,q) and we again have
a contradiction.

(iii) 1If q < a, a contradiction is obtained as in (ii).

When I is half-open, the conclusion of theorem 1 is
best possible, as is shown by example A below which exhibits
a 2-fold function on [0,1) with just one discontinuity.
Examples B and C show 2-fold functions on R and [p,l]
respectively, each with infinitely many discontinuities.

// /‘/Z‘]Zt- I///,
oy 1 ® f o

-

e

The function in (B) is, of course, given by
f(x) = 2x - |x],
where |x] denotes the integral part of x.
For a given k, denote by A(k) the minimum number of
discontinuities which a k-fold function on an open interval

must have; and denote by/A(k),V(k) the corresponding numbers
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for half-open and compact intervals, respectively.
We have shown that
1< A(2)¢00, u(2) =1, 1$V(2)¢o,
3 £ k<oo,
Theorem 1 hold for all types of intervals; the next theorem

specifically excludes open intervals.

Theorem 2. Let k€ {3,4,...}and let I be a non-degenerate
compact or a half-open interval. Then every k-fold function
on I has at least one discontinuity.

Proof.
Suppose that the function f is k-fold and con-

tinuous on I.

(i) Let I be compact. Then f assumes its supremum Y

at k points, say 8y, dps eeey By, where
a4 < ay < eee <ak.

Since f is not constant in [ai, ai+1]. the infimum of f in

this interval differs from f(ai)(= f(ai+1) and is therefore
attained at some point b; in (a;, a; ). If
X = max f(bi) R
1¢igk-1

every value in (X,Y) is attained in each of the 2(k-1)

intervals
(al, bl),(bl, az), vees (ak-l’ bk-—l)’(bk—l’ ak).

As k> 2, 2(k-1) > k and we have a contradiction.

(ii) Let I be a half-open interval; ,we may clearly take
I to be a bounded interval of the form [a,b).

The function § : R— R given by

0(x) = —= (xeR)
x| +1

is continuous, strictly increasing and bounded. Hence the
function g : [a,b)— R given by
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gl(x) = £(x)

= —————Q (ag<x<hb)
1£(x)] +1

is bounded, it is such that g(x) = g(y) if and only if
f(x) = f(y), and it is continuous at a point if and only if f is
continuous at that point. We may therefore assume that our
original function f is bounded.
If f£(x) does not tend to a limit as x—>b- , let
X = lim inf f(x) , (5= lim sup f(x),
X— b - Xx— b -

so that & <[3. Then f takes every value (strictly) between
& and (5 infinitely many times in the interval [a,b), which
is impossible.

It follows that f(x) tends to a limit as x— b~ .
Call the limit P and extend the definition of f to [a,b] by
putting £(b) = (?- Then f is continuous on [a,b] and f takes
all its values, expect F , k times. At least one of
inf f£(x), sup f(x)
agxghb ag<xg<b
is not [—’ . Using the argument of (i) we therefore again arrive
at a contradiction.

Theorem 3. Let I be a half-open interval. Then, for each

ke{2,3,4,...] , there is a k-fold function on I with |3k
discontinuities.

Proof.

The two types of functions, for evem and for odd k,
are illustrated below. Example A is simpler than D, but its
generalizations have unnecessarily many discontinuities.
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D) R=2

(PR

io 23 1 !

0 =
) @ k=5
Theorem 4. Let I be an open interval. Then, for each
k€]3,5,7,...} , there is a continuous k-fold function I.

Proof.

We may assume that I = R. The case k =3 illustrates

the general construction.

For any k€ i2,3,...} , the function f on R given by
fix) = kx - (k-1)1x]J (x €R)
provides an example of a k-fold function on R with infinitely
many discontinuities. After theorem 4 this is significant
only for even k.
A variant of example H shows that there is a 3-fold
function on a compact interval with one discontinuity.

Curiously, the construction is not readily generalized to
the cases k=5,7,... However, for any ké {3,4,5,...} s
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0 (0

example C can be adapted to yield a k-fold function on [0,1]
with infinitely many discontinuities.

Theorems 2-~4 and example I provide us with all the
desired information about 3-fold functions:

A(3) =0, am3) =1, V(3)=1.

For larger values of k our knowledge is much less
complete:

When k = 5,7,9,...,

Alk) = 0, 1Smk)<AH(k-1), 1€V(k)goO;
and, when k = 4,6,8,...,

0< Mk) €09, 1€ u(k) < 3k, 1€ V(k){ oo,

Thus the major mystery is A(k) for even k greater than 2.

k =00, .

Constant functions show that A (00) =M(R) =V(o9) = 0.
However, it is also easy to find non-constant continuous
functions on open or half-open intervals which take all their
values infinitely often; the functions f : R— R and

g : (0,1]— R given by

f(x) = sinx (x€R), gl(x) = sin(1/x) (0<xg1)

provide obvious examples. It is much less evident that
there exists a non-constant continuous function on a compact
interval which takes all its values infinitely many times.
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In fact, a continuous function on [0,1] has been constructed
which is such that any non-vertical straight line meets its
graph either not at all or in an uncountable set. (J. Gillis,
Note on a conjecture of Erdds, Quart.J.Math.Oxford 10 (1939),
151-154.) If one is merely interested in horizontal lines, as
we are in the present context, then the function and its con-
struction can be considerably simplified.

Theorem 5. a k-fold function (k finite) with only a finite
number of discontinuities can have only simple discontinuities.

Proof.

Let £ be a k-fold function on the interval I with
only a finite number of discontinuities. Let ¢ €I (where €
is not the left end point of I) and suppose that

1lim £(x)
X~rcC-

does not exist; thus

o = lim inf f(x) < lim sup f£f(x) = P.
X—>» C - X—C —

Take any real number Y'such that
X <Y<
Then, given £f>0, there exist u, v €(c-§, ¢c) such that
flw) <Y and £(V) > Y .

Also, since f has only a finite number of discontinuities,
there exists J = (¢ -3&, ¢) such that £ is continuous in J.

Now take u, € J such that f(ul) <%Y. Then take
%emvﬂsmhﬂufhﬁ?Y,me%ﬂ%ﬁ)mtht
f(u3)<]’, etc.

Since f is continuous in each interval [ui,ui+1],
for i=1,2,..., there exists xie(ui,ui+1) such that f(xi) =Y.
The x; are distinct and so f takes the value Y infinitely
often, which is impossible. N.B. The hypothesis that f has
only a finite number of discontinuities can clearly be relaxed
to ¢ being an isolated discontinuity.
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PILLOW PROBLEMS

For those who have not read the book of C.L. Dodgson
(or Lewis Carrol) it should be explained that a pillow problem
should be thought out in bed with the eyes tightly shut.
Here are two.

Can Morley's theorem be extended to spherical
triangles?
Take a tetrahedron ABCD; we trisect (internally)

the angles between each pair of faces and (as in Morley's
theorem) define four points PQRS as follows. S is defined
by the plane SBC making with ABC half the angle that it makes
with DBC, SCA making with ABC half the angle that it makes
with ADC, and SAB making with ABC half the angle that it
makes with DAB. P, Q and R are defined similarly.

Is PQRS regular?

QUOTATION CORNER

""The unreasonable effectiveness of mathematics in

science...."
Eugene Wigner

"What is now proved was once only imagined."

William Blake

The quotations above are from C.J. Smyth who
comments that the second does not refer to the Riemann
Hypothesis.
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ADVERTISEMENT EDITORIAL
Your Editor is now also Editor of '"The The JCMN for its first eight years, 1975-1983,
Mathematical Scientist". This journal (TMS for short) was published by the Mathematics Department of the James
was founded by CSIRO in 1976, and from 1985 onwards is Cook University of North Queensland, address:

being taken over by the Australian Mathematical Society.

The theme of TMS is the relevance of mathematics to the

world in which we live, and the use of mathematical models

in all branches of science. It is primarily a research

journal, wanting to publish new work, but it will also .

Post Office James Cook, North Queensland 4811,
Australia.

The issues 1-31 from this period have been
reprinted as paperback volumes:

print historical notes or surveys Or unsolved problems. Volume 1 (Issues 1-17)

If you have written anything that seems appropriate to Volume 2 (Issues 18-24)

TMS please send it (preferably two copies) to me or any Volume 3 (Issues 25-31)

member of the Editorial Board (see below). These volumes are available for $10 (Australian) each, in-

cluding postage, from the Head of the Mathematics Depart-

Dr. S.A.R. Disney U. of N.S.W., Australia ‘ ment., I should explain that I am now Head of Department,

Prof. D. Elliott U. of Tasmania, Australia but will retire at the end of December and leave the

Prof. J. Gani U. of California at Santa University. Since Issue 32 (October 1983) I have edited
Barbara, U.S.A. and published JCMN. In 1986 my wife and I plan to leave

Prof. C.C. Hyde U. of Melbourne, Australia ’ Townsville and go to

Dr. H. Ockendon Mathgﬂ%gigflufgftitute’ 66 Hallett Road, Burmside,

South Australia, 5066, Australia.
Prof. Cheryl Praeger U. of Western Australia ’ ’

but this issue (39, dated February, 1986) is being prepared
in Townsville in December 1985 (address as on page 4162).

Basil ‘Rennie



