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TWO PROBLEMS
Paul Erdés
(Hungarian Academy of Sciences)

i in th lane; d(x. X.) 1s
Let X1 Xy, Xn be n points in e p i X

me that if two distances
the distance between X, and Xj' Assu

i ter
differ they differ by at least one. Prove that the diamete

X } is > cn.

Perhaps for n > it is at
of the set (Xl’ .. n P nO

least n-1.

X Dbe n points in the plane, no three on a line
17 " n

and no four on a circle.

Let x .
Prove that if n > W) these points
determine at least n distances.
i i . 9,
Readers with long memories will recall in JCMN 35, p.40e6

oints

(October 1984) the example due to Pomerance of 5 such p
i i one

determining only 4 distinct distances, one occurring 4 times,
I Palanti found 8 points with only 7 distances.

3 times, etc.

But see bhelow.

NINE POINTS WITH EIGHT DISTANCES

Let « be a
Take almost any two complex numbers u and v.
] ; @ represented by the
i The polints are roepreoesen
complex cube root of unity. The t

nine complex numbers:-

o4
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u + v u + uv u + wZV
wu + v wld + wv wl + wZV
wzu + v wzu + wv wzu + W‘ZV

The 8 distances between them are lul/3 Ivl/3, lutv] /3,
utwv| /3 ang ]uthv[/J. Each of the first two occurs 9 times,

and each of the other six occurs 3 tinmes.

SYMMETRIC (OR HERMITEAN) MATRICES

Terry Tao
(6, Jennifer Avenue, Bellevue Heights, 5050, Australia)
Suppose that u is a real,

Square, positive definite,
symmetric nxn matrix. Is

it possible to find n real n-
dimensional vectors (numbered r, 2, n) such that the
component of M in row i and column
vectors numbered j and 32

If so does the result extend to complex

variables ang
Hermitean matriceg? Does

it extend to linear Ooperators in
Hilbert space?

QUOTATION CORNER 36

"This book was carefully produced.
translator and publishers do not
contained therein to be free of error
to keep in ming that statements,
details or other items may inadv

Nevertheless, author,
warrant the information
s. Readers are advised
data, illustrations, procedural
ertently be inaccurate.n

— Printed at the beginning of

‘Deterministic chaos, an
introduction~ by H. gG. Schuster.
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PROBLEM IN ALGEBRA AND GEOMETRY
Terry Tao
(6, Jennifer Avenue, Bellevue Heights, 5050, Australia)

Let A, B, C, D and E be five points in the plane. Show

that the determinant:-

0 aB? ac? ap? AE?
aB? 0 BC? BD2 BE?
ac? Bc? 0 co? CE?
aD? BD? cp? 0 DEZ
AE2 BE° e’ DE” 0

is equal to zero.

POINTS AND DISTANCES IN THE PLANE
Consider a set of n points in the plane, and the distances
between them. Two problems:-
(a) Prove or disprove that the maximum distance (the diameter
of the set) is not attained more than n times.
(b) Prove or disprove that the minimum distance is attained
less than 3n times.

i i -477
For (difficult) gquestions on this topic, see pages 474-47

of "A tribute to Paul Erdés"™ (C.U.P., 1990).
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GEOMETRICAL PROBABILITY 3 (JCMN, 54, p.6017)
Jordan Tabov

Any two random points in a disc (from the wuniform
probability distribution) give a random line segment (ending at
the two points). Find the probability that two such random
line segments intersect.

We may construct the two line segments by firstly choosing
4 points (independently at random) and secondly choosing how to

pair them to give two line segments.

Figure 1 Figure 2

The four points must be either as in Figure 1, one in the
triangle formed by the other three, or as in Figure 2, the
vertices of a convex quadrangle. If the 4 points are as in
Figure 1, the two line segments (however the 4 points are paired)
will not cross. If they are as in Figure 2, then of the 3 ways
of pairing the 4 points, one will give segments crossing, the
other two not. These three ways are equally probable.

Referring to ARROWS IN THE TARGET (JCMN 54, p.6019 and 55,
p.6032) we know that the probability of the points being as in
Figure 2 is 1-35/(1272), The required probability, of having

two intersecting line segments, 1is one third of this, and

numerically it is 0.234827.
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COMTET's “BEAUTIFUL DETERMINANT”: A PROBLEM-SOLVING
EXPERIENCE

CEcCIL ROUSSEAU

On page 203 of Louis Comtet’s engaging book Advanced Combinatorics,

there is a problem which the author titles a beautiful determinant. One is

asked to prove that

(n,1) (n,2) -+ (n,n)
where (z, j) denotes the greatest common divisor (GCD) of 7 and j and ¢

denotes the Euler function
. 1
o(n) :nH (1—;)).

[Recall that ¢(n) is the number of integers k between 1 and n—1 such that
(k,n) = 1.] This is a classic result. Comtet refers to papers of Smith [1875]
and Catalan [1878]. This problem is also in Pélya and Szegd’s Aufgaben
und Lehrsdtze aus der Analysis [Part VIIL, Chapter 1, Problem 57].

Our purpose in this note is not to claim a new solution of this problem.
Instead, we simply intend to describe the process of finding one particular
solution, and in this way try to communicate to the reader a sense of
serindipity and pleasure as the solution unfolds. In the spirit of Polya’s
discussion of heuristics in How to Solve It, we shall focus on the guestions,
experiments and good guesses which lead ultimately to the solution. The
resulting solution is not the shortest or most elegant, but it does offer

examples of several problem-solving strategies.

Our first step is an example of working backwards. “What would
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make the result follow immediately by induction?” The formula is obvi-
ously true for n = 1. Take n > 1 and for i = 1,2,...,n, let r; denote the
ith row in the n x n determinant to be evaluated. If there were scalars

€y,€C2,...,Ch_1 Such that
Tn — (C]?'] + - +Cn—l7'n—l) = ( 0 0 0 --- ¢(n> )1

then the row operation

= {000 - on)) (2)

would preserve the value of the determinant and the truth of (1) would
follow immediately by induction when we expand the determinant by the
nth row. At the same time, there must be such a linear combination if the

formula is true. Let’s look for it.

The second step involves specialization. “Is there a special case in
which the desired linear combination clearly exists?” Yes, there is Sup-

pose that n = p (a prime). Then since the first row 18
=011 1 1)
and the last is
p=(1 11 p),
using ¢(p) = p — 1 we see that the row operation
Ty = Tp—T)

yields (2). “What happens when n is composite?” Welll n =4 and n =6
seem like reasonable test cases. A little experimentation shows that for

n = 4 the desired result (2) is obtained by subtracting row 2 from row 4:
Tq &= T4 — 9.
For n = 6, we get what we are looking for by the row operation

Te +— T6 — T3 —To+ 1],
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eceding But what about 1 < k < n?
Now it is time for a bright idea. Looking back at the preceding <

examples, the Mdbius function comes to mind. Recall that Perhaps we need another example of working backwards. Writing

! . ] the formula to be proved
if n = '
= -1 ifn= ...p« (product of distinct primes) .
u(n)={ (=¥ ifn=pipr...pe (P (_) dk)=0 (1<k<
0  if p*|n for some prime p, Z” d (d, k) (1< n)

d|n
and that ¢ and p are related by in the form

d ! ‘ n ,
¢(71):nzﬁ%—). (3) Z?n Z 'u(zi-)zo (1511<77)7
din min (d;iﬂn
For the special cases n = p (prime), n = 4 and n = 6 we have . we see that the desired result would follow right away if, for every m|n,

o(p) = p<1 _ %) —p-1 S ou (;l) =0 (mlk 1<k<n) (4)

dn

(d.k)=m
1
— —_— = = 4 — 2 a.Dd
o) = ¢(1-3)

The new identity (4) may be an example of wishful thinking, but let’s

roceed.
1 1 1_}. :6—3—2+17 p
¢(6) = 6{1-3 3 :

We are pleased to note that in order to prove (4} it suffices to consider

respectively. The pattern we observe in these examples is too good not to the special case in which m = 1. Just make the replacements

be true in general, and so we guess that the general row operation we are

de—d/m, ke—k/m = ne—n/m,
seeking is simply
Tn Z # <%> rd: and (4) reduces to
d| n
o ‘ Sou(h)=0 <k<n. (5)
We can now restate the problem as an identity in number theory. (dii)"_l d>
“Ts it true that the formula
n 0 ifl1<k<n, “ It seems appropriate to ask if we have seen it before. Well not quite,
Zi: H (E) (d. k) = é(n) ifk=n but we certainly have seen the fundamental Mébius function identity
din
TN iti ivi ti n 1 n=1
is true for all n?” Since (d,n) = d if d is any positive divisor of n, equation Z . <E> _ Z u(d) = { . )
. n ,
(3) shows that dln dn
(n> (d.n) = Z s <_71> d=é(n). and are reassured by the fact that our goal (5) reduces to this identity in
;# d/ dln d case (n,k) = 1, for then every d|n automatically satisfies (dk) =1.

| o
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What other data (facts) are available for us to use? In addition

to (6), two other basic properties of the Mobius function come to mind:

(r,s) =1 = pu(rs)=p(r)u(s) te pismultiplicative (7)

w(r) #0 & 1 is square-free. (8)

Now we would like to factor n appropriately and so make good use of (7).

Let a,(n) denote the exponent of p in the prime factorization of n. Write
n=rs,

where

ap(n) if pj(n, k)
ap(r) = )
0 otherwise.
- [As an example, for n = 168 = 23.3.7and k =90 = 2-3%-5, we would
set 7 =233 =24 and s = 7.] Then

djn and (d, k) =1 < djs,

and in view of (7),

S ow(5) = u Yo u(3) = w3 md)

din dis dls

Now everything falls into place. If s > 1, the result we are looking for
follows immediately from (6). If s = 1 then r = n and every prime which
divides n also divides k. Since n > k, this means that n has a square factor
and so p(r) = p{n) = 0. Thus (5) is true and our search for a solution of

Comtet’s problem has reached a happy conclusion.

But we shouldn’t stop here. It is natural to ask if the problem we
have just solved has an interesting generalization. Let F' be an arbitrary

arithmetical function and set a,, = F(m) where m = (r,s). Looking back

-6069-

at (5), we see that

ZN(g)adk:ZF(m) > #(3):0 (k < n).

dln min In

d|
(d.k)=m

Thus, letting

. we find

Z“(g)adk:{fo flsk<n

din (77,) if k= n,

so the same (induction) argument as before gives

ayy app - ayy
a1 Qg - A,

: = f()f(2)- f(n)
Any Qp2 - gy

In summary, Comtet’s beautiful determinant provides the problem solver

with a beautiful experience. It offers fertile ground for applying heuristics

and discovering interesting formulas.
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EDDINGTON’S CRICKET PROBLEM
R. A. Lyttleton
(Institute of Astronomy, Madingley Road, Cambridge, U.K)

This old problem might be suitable for JCMN.

The scoreboard for the first innings of Eastershire
against Westershire was as follows:-

EASTERSHIRE
Atkins 6 BOWLING ANALYSIS
Bodkins 8 o) M R W
Dawkins 6 Pitchwell 121 2 14 8
Hawkins 6 Speedwell 6 0 15 1
Jenkins 5 Tosswell 7 5 31 1
Larkins 4
Meakins 7 Speedwell and Tosswell each had only
Perkins 11 one spell of bowling. The game was
Simkins 6 of 6-ball overs. The score was
Tomkins 0 composed entirely of singles and fours.
Wilkins 1 There were no catches, no-balls or short
Extras 0 runs. Pitchwell bowled the first over,

. and Speedwell the second. Atkins

Total 60 took the first ball.

Whose wickets were taken by Speedwell and Tosswell? wWho
was not out? What was the score at the fall of each wicket?

I gave it to Bradman when he was over here in 1948 and he
solved it on the voyage going home. It took me a whole day to
solve it. Eddington himself told me that Hardy couldn’t do it.

For the benefit of those not familiar with cricket, the
essentials (for this problem) are that overs are bowled from
alternate ends of the pitch, no consecutive two by the same
bowler; a "spell" is bowling alternate overs. There 1s one
batsman at each end. When a ball is bowled the batsman at the
opposite end may (a) be out, and be replaced by the next on the
list, or (b) score 4, or (c) score 1 and change ends with the
other batsman, or (d) remain. In the bowling analysis, O means
overs, M means maiden overs, 1l.e. those in which no runs are
scored, R means runs scored off the bowler, and W means wickets
taken by the bowler. 12-1 overs means 12 and one ball. The
innings ends when 10 wickets have fallen.

e )
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THE BOY IN THE POOL
Terry Tao

(6, Jennifer Avenue, Bellevue Heights, 5050, Australia)

Question: A boy is in the centre of a circular swimming
pool of unit radius, while his schoolteacher is at the edge. The
teacher runs at unit speed, while the boy swims at speed k < 1.
The teacher cannot swim. What is the smallest value of k that

allows the boy to escape? (The boy can run faster than the

teacher.)
Answer: The minimum value for k is 0.21723 = cos B, where 8 =
1.35182 is the acute angle satisfying the transcendental equation
tan B = 7 + B.

Proof Because of the symmetry
of the circle, only two variables
matter: the distance r from the
boy to the centre, and the
angular displacement ¢ (where O =
¢ < m) between the boy and the

teacher as seen from the centre,

together they specify what we

call the state (r, ¢). The

boy wins by reaching a state (1, ¢) for any ¢ > 0. The
teacher wins by reaching the state (1, 0), or (but in a less
satisfying way) if r never reaches 1.

We may assume that both travel at maximum speed, for if one
thinks he may obtain an advantage by slowing down, the other may
slow down proporticnately and nullify the benefit.

The angular speed of the boy is (k/r)sin ¢ where ¢ is the
angle his track makes with the outward radius. Note that if
r < k this can be made greater than that of the master (whose
angular speed is 1). This means that the boy can control ¢
whenever he is inside the central circle of radius k. But for
the boy to escape he must leave this disk sooner or later.

Therefore I will consider the boy’s path only after he has left
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this disk for the last time. Therefore we have an initial
state of (k, @) where the boy has chosen the .

Now that the boy is outside the disk his angular velocity
is always less than that of the teacher. This means that o
will always decrease. Because the boy wants to avoid the state
¢ = 0, he will seek to maximize ¢, and so will choose the initial
position ¢ = 7.

By a similar argument we can assume that the boy always
moves outward. If he doubles back and reduces r, sooner or
later he must return to the first value of r, but this time will
have a worse value of g, as o always decreases. Hence there

is no benefit in going inwards.

Now we can solve the problem. Suppose that the state is

(r, ¢) and the boy is moving
at an angle ¢ to the radius. ~
We may assume from the rdy b
reasoning above that 5§ 1s .
an acute angle. Then 2::;,,/’//
_——”////

after an infinitesimal time

(dr/K) sec 4, the state will

have changed to
(r + d;, ¢ + (dr/r)tan 4 - (dr/k) sec 9). Now, because r + dr
is fixed, the boy will choose ¢ to maximize the new o. By
elementary calculus or geometry it can be seen that he chooses
§ so that k = r sin 4. Geometrically this means that the
optimum direction for the boy 1s tangential to the inner circle

of radius k. From here it is a routine matter to confirm the

answer given above.

It is of interest to look at a related question

’

suppose the boy does not have the required speed ratio, i.e. he
cannot swim at 0:21723... times the master’s running speed.

What initial configurations then allow him to escape?
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To answer this we need a little familiarity with involutes;

an involute is the locus of a point on a line rolling on a circle

(called the base circle of the involute), or of a knot on a piece

Two knots on the

of string being unwound from a fixed clrcle.
piece of string trace "parallel" 1nvolutes.

There are two involutes

through any point
outside the base
circle. Much of the

calculation above still
applies, and the
optimum path for the
boy 1is tangential to
the circle of radius K
(the speed ratio).
With this as base
circle, draw the two
involutes through the

point M where the

master is. These

two involutes bound the region from which the boy can escape to
the bank. To see this, imagine the boy to be the knot on a
piece of string being unwound from the inner circle (of radius
k) rotating with unit angular velocity (so that he moves at speed
k in a straight line). Now change to the rotating frame of
coordinates in which the master is at rest. The inner circle
and the point of attachment of the string to it are at rest, and
so the boy moves along an involute parallel to the involute

shown, and so reaches the bank ahead of the master.

This problem has several obvious generalizations, e.g. if
the pool were elliptic or rectangular, etc. or if the teacher
could swim, or 1if there were two teachers, etc., but these

problems are more difficult.
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GEOMETRICAL INEQUALITY (JCMN 55, p.6047)
J. F. Rigby and Terry Tao

The problem in the previous issue was the case i = 3 of the
more general problem:-

If » > 0, find the bounds of the function f{a, b, ¢, r») =

—b-c 4 __ca =, __ab
btct+(i-1)a c+a+(A1-1)b at+b+(x-1)c
where a, b and c are the sides of any triangle. The answer,

we shall see, is that the bounds are ¥B(A) where
B(X) = ((x+4)/3(274) - A(A+1)/A+1 )/ {a(2a=2)(a+2))
= (A=2)(1-2/2)/( (A +4) /N(A%4) + 4(r+1) /371y

It may be noted that zero and negative values of A are of

no interest, for the function f is then unbounded. The value
A = 2 makes the function f identically zero, and so from now on
we may take X\ = 2. The case of A = 1 was solved by D.S.

Mitrinovic and W. Janous in Crux Mathematicorum, vol 12, 1986,
p.11, and is quoted in the book "Recent Advances in Geometric
Inequalities" (Kluwer, 1989) by the former. Also the lower
bound must be minus the upper bound, because an odd permutation
of the three sides reverses the sign of f.

As a, b and c are the sides of a triangle they may be
represented by a = y+z, b = z+x and ¢ = x+y, with x, y and z non-
negative; conversely any such x, y and z give a, b and c¢
satisfying the triangle inequalities, and therefore the sides of
some triangle. The triangle is degenerate when one of x, y and
z is zero. Making this substitution we find

fly+z, z+x, x+y, A) = (A—2)2(y—x)(x—z)(z—y)/Polynomial
where the polynomial is in the four variables and has all
coefficients non-negative. We may assume that z < y < x; this
makes f non-negative. If z > 0 then consider replacing x, y and
z by x-z, y-z and 0, respectively, making the triangle
degenerate. The polynomial is made smaller, and therefore f (if
non-zero) 1is increased 1in magnitude. This shows that the

bounds of f are attained only in the case of degenerate

triangles. Now, therefore, we shall consider degenerate
triangles; without loss of generality we may put a = 1-s, b
= 1l+s and ¢ = 2, where 0 < s < 1.

£(l=s, 1+s, 2, ) = (1=2)(1~2/3)s(1-5)(1+s)/((1+2)%-s2 (1-2)2)
This expression (as a function of s) is zero at the ends of the
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! i ; as i ive zero when
unit interval and positive inside; 1t hgs derivati

2
Y -
s4a-2)? - 288 (1P egata) + (a+2)° = 0.
As a quadratic in s” this has one root in the unit interval and
the other > 1. The smaller root is gilven by

sz(A—Z)Z = A(A+4) + 4(Aa+1) - a/3(x+1)(r+4)

! i i iven
and the positive value of s (which is the one we want) 1is giv

b s(A-2) = /3 (x+ay - 2/3+1 (note how both sides change sign
y K - . .
Now (because this is the only maximum in the

?it;rval?);e may find the bound by substituting.thié value of s

in f(l1-s, l+s, 2, 1), using the obvious simplifications:-
(A+2)2 - SZ(A—Z)Z = 4 /T(AF1) (2 +4) - 4)

and (2-2)7(1-8%) = a/X(A+1) (A+4) = 12X.

} ds
Then B(x) is found to have the value quoted above. The boun

! i th
are attained in the case of the degenerate triangle given by e

value of s found above.

—_ 2
The function AB(x) = ((A+4) /3 (2+4) - 4(A+l)/x+l)/({——?)
= (x—Z)Z/((x+4)/x(x+4) + o 4(A+1)/a+1)

it i i e
has the interesting property that 1t 1s unchanged if we replac

it i ction of v = A + 4/X;
A by 4/Xx. As a conseguence, 1t 1s a fun

call it F(v). This F(v) may be found to be given by;-
(v+4)(v—4)F2 = v2+28v+88 - 8(v+5)/VF5.
(v-2)2 /(W +28v+88 + 8(Vv+5)/VF5)

]

or F
(Dlsappol“ti“gly these exp18551OX1S seem to have no Sllﬂple square

roots)

< 1 for triangles may be
1B(A) as X tends

The inequality -1 < Z(b-c)/a
obtained from our result by taking the limit of .
(or to zero, because of the property noted 1in the

Alternatively take the limit of F(v) as

i h).
previous paragrap ‘ |
v tends to infinity, clearly = 1. The bounds in this case are

not attained even by degenerate triangles,
before) a = l-s, b = l+s, C = 2, the sum, f,
they give very degenerate

to infinity

for putting (as
is found to be -s.
The values s = 1 cannot be allowed;
triangles, with one side zero, and they make the gilven sum

meaningless because of dividing zero by zero.
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POS
ITION LINES (JCMN, 41, p.4218 and 55, p.6033)

Terry Tao

6 i v
(6, Jdennifer Avenue, Bellevue Heights 5050
1 ’

Australia)
The case of 3 position lines (

e -
.ase of 4 (giving an arrowhead)
1ssues.

giving a cocked hat) and the

have been di i

iscussed in earlij
. N '3 l e
Now consider n position lines. .

1:ductlon that they divide the plane into 1
w . .
ere we are lgnoring cases of probability =z

the lines i
e 'belng parallel or three being concurrent
Se reglons are bounded and some unbounded . wome e

It may be proved by
+n(n+1)/2 regions,

€ro, such as two of

Lemma 1 There
are 2n unbounded i
S Ceioms regions and (n=1)(n-2)/2
roof A i
. E . }arge circle, containing all the i
ntersection, is divided into 2n arcs ooy

. one for each unbounded

Lemma 2 The probability of the true position

one of the unbounded regions is 27" T ey

Proof i
e re;zz:sssszlve of.the €rrors in the position lines, there
comtntne gy pnat ;énFalns the North point at infinity, i.e. it
trve oeteia o 1F1te length of the ray going North fronm the
in thin memim F illn fact fr?m any other point). P will be
e egton a the position lines go South of p. Thes
independent, each with probability 1,2, As oui

"North" was arbit
rar
Y, the same holds for any other direction

Theorem The probability of P pein
bounded regions is 1 - 2n/2n

Proof

g in the union of all the

Thi
1s follows at once from Lemma 1 and Lemma 2

-6077-

The formula in this theorem includes the results in JCMN 55
about cocked hats and arrowheads (n = 3 or 4). The meaning of
these results should perhaps be emphasised.

They are the probabilities that we have to assign when we
know the directions of the position lines, and know nothing else
(though in fact the directions are not relevant). One might
ask if the probabilities are altered by our having the additional
information of the position lines, without of course knowing the
true position P. To clarify this question, take n = 3.
Suppose position line A runs NE-SW, B runs NW-SE and C runs E-W.
Before we see the position lines, we ascribe probability 1/8 to
P being in the unbounded region that contains an infinite line
running North, i.e. being North of all three position lines.
Now suppose we have the position lines, they can be in either of

the two configurations shown below:-

N ‘

(a) (b)
1f we know which one of these is the actual configuration of the
position lines, what probability do we then ascribe to P being

in the shaded area? Is it still 1/8 in both cases? Remember
that we are assuming no knowledge of the error distributions,
except the symmetry condition. Use the notation "NNN" to
denote the true position being in the shaded area, and "a" to
denote the cocked hat being as in (a) above. Can we say that
P(NNN|a) = 1/8? No. Because P(NNN|a) = P(a[NNN)P(NNN|)/p(a\)
and P(NNN|) = 1/8 and P(al|) = 1/2, this is equivalent to saying
that P(a|NNN) = 1/2. Let x, y and z be the errors of the three
position lines. The assertion would be that P(x + y 2 J/2z|) =

1/2; and we cannot say this about three independent random
variables about which we know only that all are positive.

A further possible question is: suppose we Know both the
cocked hat and the error distributions; does that affect the
probability of P being in the cocked hat? Yes. For clearly
if the cocked hat is very small compared with the errors, then
p is very unlikely to be in the cocked hat.
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PSEUDO-RANDOM NUMBERS

My Hitachi ‘Peach’ computer offers a sequence of ‘random
numbers’, to be regarded as uniformly distributed on the unit
interval. I sometimes wonder what they are. The sequence has
period 8388608, which is 2 to the power of 23. The first few
and a few in the middle, in hexadecimal notation (that is in the
scale of 16, with A for 10, B for 11, C for 12, D for 13, E for
14 and F for 15) are:-

1 +97500F0 (-591065) 2 *353EE84  (-207991)

3 -8D0OC2D0 (- 550967) 4 "A2C7EF0 (-635863)

5 -1AA6FB4  (-104110) 6 -CE6BE50  (-806334)

7 -OAFBF95 (- 042907) 8 "F4304B0  (-953862)

9 -5AB2A80 (-354289) 10 -8E76A10 (-556498)

11 ©721E850 (-445778) 12 -035C66F  (-013129)

13 "8B1F140 (-543443) 14 881B1CO  (-531664)

15 -50FFD18 (-316403) 16 -7768428 (-4664135)

17 -1A583F4 (-102909) 18 -FAD5590 (-979818)

19 - 24EBDDS8 (-144224) 20 -482FDES8 (-281980)

21 -3C8A2B4 (-236483) 22 1DEl1546 (-116720)

23 - 73EEA98 (-452860) 24 8F4F3A0 (-559803)

4194301 - 28C1lE34 (-159208) 4194302 -39F3AC4 (-226374)

4194303 -5F83218 (-373095%5) 4194304 CFC7520 (- 811635)
(Now we start the second half of the list)

4194305 17500FA (-091065) 4194306 -B53EESO { 707991

4194307 -ODOC2DF (-050967) 4194308 +22C7EE4 (135863

4194309 -9AA6FCO (-604111) 4194310 4E6BE40 (-306334)

4194311 -8AFBFAQ (- 542907) 4194312 74304A0 (-453862)

4194313 -DAB2A70 (-854289) 4194314 OE76A07 (-056498)

4194315 -F21E860 (- 945778) 4194316 -835C660 (- 513129)

The decimal equivalents are given in brackets, but I suspect
that decimal notation is used by the computer only as a means of
communicating with us humanoids, so that the decimal form is no
more than the 6-decimal-place approximation to the value of the
hexadecimal expression (remember that 6 hexadecimal digits are
as good as 7 decimal digits). From the computer manual it
appears that a single-precision floating-point number is stored
in 4 bytes of memory, and (1f positive) its logarithm (to base
2) must be between -128 and +127.

Can anyone guess how these numbers are generated?
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ACUTENESS OF RANDOM TRIANGLES IN A DISC
(JCMN 54, p.6023)
i ', it was
Using 4 different definitions of a ‘random triangle’,

asked what was the Pr obabi Ly of the tIlaIlgle bel“g acute.
bili
Here we shall look at case (b)r where the txla“gle 1s formed by

. . . . L a
three random points from the uniform distribution inside
The probability is 1-3p where p is the probability of
in this case we shall find

= 0-2803.

circle.
one particular angle being obtuse;

2 _
that p = 3/8 - 4/(37%) = 0.2399, and 1-3p = 4/7 1/8

i CAL
The calculation starts by recalling Lemma 1 from GEOMETRI

PROBABILITY on page 6012 of JCMN 54. . e
Let B and C be random points from the uni

l . .
. The joint

distribution in the unit circle with centre O. ’ :
an
probability of B being at distance between r and r+dr from

i and
of the perpendicular distance from O to BC being between p

p+dp is
4(1 - 2p2 + rz) r dr dp

n r

Figure 1

i i a.
We shall use both the result and the notation of this lemm

i use
Let p and r be as defined above. Apologies are due for the

i wo
of the symbol p with two different meanings, taken from the t

contributions above.
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Draw a new diagram with BC horizontal and with B above and to
the left of o.

Figure 2

Note the geometrical identities:

- R

5 /(é pc) - j(r2 - pz) v o /(1 - p2) , /’(r‘7 - p)
u + vt o= 2 - 45 + 2r? vy oo ud a/rd - -p* (1-p7)
cos § = /(r -p7) sin 4 - J<l*pﬁ—rfj

Shaded area = ¢ - sin ¢ cos 4 p = sin B

The angle B of the triangle will be obtuse if elther A 1is

to the left of B and ¢ to the right, or vice versa. The

probability of A being to the left of B is (1/7) times the shaded

area, and the probability of ¢ being to the right of B isg
(recalllng that C must be in one of the thin triangles of Figure

1 2
) v /(u +ve). The probability of B being obtuse (given r
and p) is therefore
2
v 6 - sin 4 cos 4§ 2 - !
u2+V2 #_ ; m f + sin 4§ cos ¢
T w2 b

This may be expressed (using the geometrical identities
above) as

2.2

2/ (2 52 - 22 .

% - 2/(r‘-p )/(12p ;(W/Z 5) 2(r° -p ) J(1-p?) J(1+p2 -1 2)
T(1-2p~ +r<) n(l—2p2+r2)

Lemma 1 tells us that this expression must be multiplied by
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(a/m)(1-2p2+r?) r ar ap //(r’=p°)
and integrated over the region where 0 < p < Ir < 1 to give what
we want, the other p, the probability of angle B being obtuse.
This gives a long formula which we write for the moment as
1/2 - First integral - Second integral. Now we have to

evaluate these two integrals.

First integral (8/"2)ff/(l—p2)(ﬂ/2—ﬂ) r dr dp p

Consider integration with respect to r for each p.

Change the variable from r to 4. The interval of r

integration for ¢ is B = arcsin p < ¢ < w/2, and r dr = -sin ¢

cos ¢ dé. The first integral is therefore p
(8/#2)ff/(1—p2)(n/2—9) cos 4 sin 6 d6 dp

over the set where 0 < p < sin ¢4 and 0 < § < w/2. 6

Now integrate with respect to p, recalling that
jSlnaj(l -p°) dp = (64 + sin # cos §)/2.
Integral = 1/( 2n2)j472 (26 + sin 20)(m - 26) sin 24 d¢
which without dlfflculty may be evaluated as 1/16 + 1/(ﬂ ).

Second integral (8/m%) ] J(r%-p2y/(1-p?)/(1+p? -r2) r dr dp
over the set where 0 < p < r < 1.

First consider the integration with respect to r for each p, the

interval of integration being from p to 1. This inner integral
is (8/72) J(1-p2) 1 J(xP-p?) J(a+p?-r?) r dr

Change the variable from i to 4, with 2r dr = - sin 24 dé. The
inner integral becomes (l/ﬂz) /(l—pz) £g72 1 - cos 44 d4, which
equals (l/4ﬂ2) cos B (2m - 4B + sin 4Bi. Therefore

Second integral = (l/4ﬂ2) £}(2ﬂ - 4B + sin 48) cos B dp.
Change the variable from p to B. Second integral =

(1/87%) JT72 (1 + cos 28) (2 - 4B + sin 4B) dB = 1/16 + (1/37)

Collecting our results, the probability of the angle B being
obtuse is 1/2 - first integral - second integral

= 3/8 - 4/(3n2) = 0.2399051. QED
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AC 5
UTENESS OF RANDOM TRIANGLES 1IN A

. (JCMN 54 6
Consider the questjon (c) p.6023)

Eaﬁdom points from the uniform dj
rlang}e, what is the Probabilit
Firstly we must establish :-

SQUARE

Theorem 3
Suppose that
variables from th . X, Y and z are indepe
0, 1), " € uniform distribution on the ? ndf&nt random
en (xX-y)(x-z) is a rand unit intervaj]

om'variable in the interval
+ 1.€. the probabilj

g 1lity that
etween p and p+dp, divided byydl;rzj

(_1/4/ 1) with
a probability g i
the expression take a Valuey ensity

2 lo
. g((l:jl+4p)/(l~/l+4p)) ~ 4/1+4p if -1/4 <
The integrai d form e T, 1 8
P(-le forms of these are the probab'l? T . )
— (1/4 < (X=y)(x-2) < p < 0) = e
J p(l-8p)/3 + 2p lo / ) /
. g((1+/1+4 -
nd P(0 < (x-y)(x~z) < p) = P e .
(8/3)p/p - 2p - 2p log p
(27)
ro o) i
onsider (1‘), anq for Clarity put
Proof q = -p > 0.

Negative va
lues of (x=y)(x-2) Occur when ejither

2 <X <y, and e

probability denstz;ijs fffsasllity Ay
for each q in the interval (o(
q < -(x—y)(x—z) < 1l/4. I
0 <y <x <z < 1,

. Y < X < z or
oo and in either case the
> x)dx. We want to find
o neeg ), t§e probability that ,
the otnes §on31der only the case where
case 1s the same. Firstly take

X to be fixed i
while
under this lY and z are randonm variabl
constraint g - X~y and ¢t €S, and note that
¥ 2Z-x are

distributeg in the intervals (0
: ,
e negd the pProbability that st »

uniforml
y b4
; and (0, 1-x) respectively;

t
1-x —

.

]

—————e
———— g
It is (shad "
ef area)/(area of rectangle) easily f
- ' O
(g + g log(x(l—x)/q)>/<X(l—X)> Tt eaua

N?w wWe must take the mean o
with qensity 2(1—x)(1+x)dx.
and dlfferentiation gives (1)

A similar Calculation gives (27)

f thi i
his over x In the interval (0, 1)
iy . ’
his gives the result (1’) above

and (2). OED
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The probability of the random triangle being acute

Theorem 2
is 53/150 - w/40 = 0.274794
Proof Consider the triangle with vertices (x, u), (y, V)
y and z are

and (z, w) where the 6 random variables u, v, w, X,
independent and uniform in the interval (0, 1) The cosine of
u) has the same sign as the random function p+q,

where p = (x-y)(x-2) and q = (u-v)(u-w). But p+g is just the
sum of two independent random variables from the distribution
described in Theorem 1. To evaluate the probability of p+q

being negative we may separate the following cases.

the angle at (x,

case 1 with p and q both positive has probability 4/9, and the

contribution that it makes is O.
case 2 with p and g both negative has probability 1/9, ahd the

contribution from this case is 1/9.
Case 3 with p positive and g negative has probability 2/9, and

the contribution from this case is the integral of the product:-
(probability that (x-y)(x-2) < =p) X
(probability that p < (x-y)(x=-2) < ptdp).
Case 4 with p negative and g positive makes the same

contribution as case 3.

We therefore find, for the probability of the angle at the

point (x, u) being obtuse, the value:-
1/4 o o
1/9 + 2 (/1-2p(1+8p)/3 -2log((1+/1-4p)/(1-/1-4p))) x
0 {4/p-4-21og p} dp

Changing the variable to x = /1-4p, this becomes 1/9 +
12,4 3 Ji-xt -2- -
f {(6X“+4x +(3xX-3X ylog((1-x)/(1+x)) ) W1l-X 2-log(l/4-x"/4)1dx/3
integral is elementary. Anybody

class should be able to do 1it, but
The answer is

The evaluation of this
in your first year calculus
might complain that you set

1/9 + (71/40+47/150)/3 =

hard questions.
m/120 + 97/450 = 0.241735.

The probability of the triangle being acute-angled 1is

therefore 1 - 3(the value found above)

53/150 - m/40 = 0-274794. QED
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ACUTENESS OF RANDOM TRIANGLES 2

Let E be a measurable plane set of finite area. A randon

triangle is found by taking 3 points from the uniform probability

distribution on E. Let A(E) be the probability that such a
random triangle be acute-angled. It might be conjectured that
A(E) attains its maximum of 4/7r2 -1/8 = 0.2803 when E is the

inside of a circle.

Apologies are due for inaccuracies of some Monte CcCarlo
estimates given in a previous contribution (ACUTENESS OF RANDOM
TRIANGLES, JCMN 54, p. 6023) We now have exact values for A(E)
of 0-2803 when E is a disc and 0-2748 when E is a sguare, and a
Monte Carlo estimate gives 0.252 when E is an equilateral

triangle.

ANALYSIS PROBLEM

If a continuous function of the real variable has derivative

zero at the rationals, then must it be constant?



