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The James Cook Mathematical Notes is published in 3 issues
per year, dated January, May and September. The history of
JCMN is that the first issue (a single foolscap sheet) appeared
in September 1975, then others at irreqular intervals, all the
issues up to number 31 being produced and sent out by the
Mathematics Department of the James Cook University of North
Queensland, of which I was then the Professor. In October 1983
this arrangement was beginning to be unsatisfactory, and I
changed to publishing the JCMN myself, having three issues per
year printed in Singapore and posted from there. I then set
a subscription price of 30 Singapore dollars per year. When
in 1985 I changed to printing in Australia I kept the same price,

for the Singapore dollar is a stable currency.

In October 1992 it had become clear that the paying of
subscriptions by readers is an inefficient operation. Bank
charges for changing currency and for international transfers,
with postage, together absorb most of the initial input of money.
Therefore we have aban&dned subscriptions as from the beginning
of 1993, issue number 60. To those who want to give something
in return for the JCMN, I ask them to make a gift to an animal
welfare society in their own country. The animals of the world

will be grateful and so will I.

Contributors, ploase tell me it and how you would like your

address printed.
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QUESTIONS TO THINK ABOUT
Shailesh Shirali
(Rishi valley School, Andhra Pradesh, India)

(1) Let S be the set of all positive integers n such that
n divides 2" + 1. The first few members of S include

{1, 3, 9, 27, .. , 513, ... ).

1f n is in S then so are 3n and 2" + 1. To show this,
take any n is in s, 23 1 = (2" + 1)(22n - 2" 4 1), of

which n divides the first factor and (because n is odd) 3

divides the second factor. To illustrate the second fact,
take a simple case. 2%+1 = 513 = 9 x 57, and
2?1 1 = 512%7 41 = 513(512%6 - 51255 4+ ... - 512 + 1).

I8 avery member (except 1) of the met § axproesaiblae an
either 3n or 2" + 1, where n is some smaller member of S?

. Can one characterize the elements of S in any manner?

1/3 1/2

(2) Let x = 4 and y = 3 . Then the following

identity holds:

Yy x +1 _
3 arc tan 3% + 1 + 2 arc tan Y w.
This equation is not too difficult to establish. More

interesting are the questions:
From where might such an identity emerge?

Can one generate more such identities?
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COMBINATORIAL NUMBER QUESTION
P. J. O’Halloran

(University of Canberra, ACT 2616, Australia)

This questian arose from a problem in the Junior Mathematics

Challenge for 1993.

Given any positive integer n, the problem is to construct
from the numbers (1, 2, 3, 4, ......... 3n) (using each number
just once} a rectangular matrix of 3 rows and n columns with the
property that:

First row + Second row = 3 x Third row.

It is fairly easy to show that if a solution is possible

then n = either 0 or 5 (mod 8).

conjecture If n = either 0 or 5 (mod 8) then a solution is
possiblo.

Solutions have been found in the cases n = 8k and n = 8k+5

for all k < 7.

Examples
1 2 14 5 15
11 7 10 13 12
4 3 8 6 9
1 3 4 1y 6 19 N ”1-:,—
e | R T TR TH T e
“"‘;"“" N UK "/”"’ b ‘)— —1-2~~‘ —1-0‘ Vl; i ll




Thanks are due to Trevor and Nigel Tao for drawing the
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DIOPHANTINE EQUATION

The equation (or pair of equations) is

a? =

A little work on the Editor’s Peach computer brought to

2n + 1

and

light the following solutions

2

Editor‘s attention to difficulties with a Diophantine equation

arising in a recent Australian Mathematical Olympiad paper.

b™ = 3n + 1.

2 2
n a b a b
0 1 1 1 1
40 9 11 81 121
3960 89 109 7921 11881
388080 881 1079 776161 1164241
38027920 8721 10681 76055841 114083761

The purist might object that Diophantus would not approve
of the use of n = 0 in a solution, but the inclusion of the top
line in the table above makes the rule of construction for the
infinite sequence easier to guess (in fact we might have gone

further and put in n=0, a=1, b==1) The rule is that

a(k) = 10a(k-1) - a(ka) = S5a(k=~1l) + 4b(k-1)

b(k) = 10b(k-1) - b(k-2) = 6a(k-1) + Sb(k-1).

Two nice little questions now arise. Do the values of a,

b and n qgiven by the rule above all satiafty the originnl

egquations? And does tho smoquence include all possibla

solutions?

It is not hard to establish that
equations above,

squares of a certain form, this may

figures above as follows.
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n+l may be expressed

for any n satisfying the
as a sum of two or three

be illustrated from the

n+1 = = 0%+ 12 - 0% 4+ 0%+ ;2
41 = 42 52 = 3% 4+ 4?4 42
3961 = 442 + 452 = 362 + 362 + 372
388081 = 440° + 4412 = 3592 + 3602 + 3602
38027921 = 43602 + 43612 = 135602 + 35602 + 3561°

The expression of n+l as a sum of three squares shows an

alternation of the pattern,

the alternation can be shown to

depend on the residue class of b mod 3, which alternates between

1 and 2.

The sum always involves two adjacent squares, of

which the even one is doubled, but the even one is alternately

less than and greater than the odd oné.

The AMO quontion ankod for a proof that nil wan oxpronnible
as " ... a square plus twice the succeeding pertect square".
Perhaps " the square of a number plus twice the square ot

the succeeding number" would have been better. The word
‘number’ would have to be interpreted as possibly neqgative, so
that, tor example:

3961 = (~37)% + (-36)% + (~36)2.
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TRIANGLE PROBLEM (JCMN 63 P.6305)
Sahib Ram Mandan, Shailesh Shirali, Esther Szekeres

& Jordan Tabov

A circle I' touches the sides AB and AC of a triangle ABC,
at points P and Q respectively, and I' touches the circumcircle
internally at R. Denote the incentre by I. Prove (or

disprove) that PR must meet Cl on the circumcircle.

For this result (suggested in the previous issue by Nigel
Tao) there are several possible proofs, and what follows below

is compiled by the Editor from the contributions sent in.

Firstly observe that we may leave out parts of the original
drawing. It will be sufticient to prove that S (where PR meets
the circumcircle) is the mid-point of the arc AB in the drawing

on the next page.
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T

——
braw the tangents at § and kK, meeting at T, and lot AH
meet T'R at U. Since $1' = RI', it tollows by buclia 1, % (the
theorem known as the ‘Pons Asinorum’) thatlanqle a = angle B.
similarly, because PU = RU, angle B = angle y. Theretore
the tangent 851 iu parallel to the chord AB., Consequently 4

is the mid-point of the arc AB.
QLD
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Draw RT, tangent to both circles. Since the angle
between any chord of a circle and the tangent at one end
equals the angle in the 6pposite segment, and therefore equals
half the angle subtended at the centre,

(PER = 2(PRT = 2(SRT = (SOR.
Therefore SO is parallel to PE, which is perpendicular to AB.
This means that S is the mid-point of the arc AB. QED.

Third proof (By transformation geometry)

The homothoty with contre R, shrinking in the ratio PR/SR
maps the circumcircle into the circle I', so that AB isa
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parallel to its image A‘B‘, Now thorg are two ways ot

completing the proof.

Looking at angles, (PRB‘ = (PA’B‘ = (APA’ = [PRA‘.
This shows that the arcs AS and SB subtend the same angle at
R, and so are equhl. Alternatively, the tangent at S has
as its the image the tangent at P, so that it must be parallel
to AB, and therefore S is the mid-point of the arc AB.
QED.

Fourth proof (Using inversion, which was introduced by J.
Magnus in 1831)
. Invert the figure from the point R.

original tiguro Inverse tiguro

The two circles, because they touch at K, invert into

parallel straight lines. Denote the image of P by P’, ectc.
The image of the line APB is a circle through K. (ATRPY =
(P’RB’, and so in the tigure betore inversion /ARP =~ [ PRB, and

the two arcs arc cqual. : Qb




rifch Proot
s/

' Let the perpendicular to the side AB from the centre O of
the circumcircle meet the line RP at S’. Join EP. The
two triangles REP and ROS’ are similar (corresponding sides
are parallel). But EP = ER, therefore 0S‘ = OR, so that S’
is on the circumcircle. As 5’0 is perpendicular to the
chord AB, it follows that S’ bisects the arc AB of the

circumcircle. QED

.8ixth Proof (Differential calculus)

Firstly consider a nroving chord AB
of a fixed circle (the circumcircle of
the original problem), and the mid-
point M of the arc AB. Since
translation of AB without rotation does A
not move M, the angular velocity of M
round the circle is the 'rate of
rotation of the line AB. M

M
P
Next, suppose that the moving \
chord AB is tangent at P to another f
fixed circle I'. The angular rate of
movement of M round the circumcircle
equals the angular rate of movement of

P round T.
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Now forget AB, consider R where o
the two circles touch, and S where RP S
meets the circumcircle. The angular
rate of rotation of S round the
circumcircle is twice the angular T<
velocity of RP about R, and therefore
equal to the rate of rotation of P

round I.

Thus we have established that as P
moves round I', the velocities at which
the two points M and S move round the S P

circumcircle are equal. But there
is one position of P for which M and S
coincide, therefore they always

coincide. QED

SEQUENCES WITHOUT ARITHMETIC PROGRESSIONS
(JCMN 63, pp. 6318-6321)
Don Coppersmith

(T. J. Watson Research Center, Yorktown Heights, 10598, USA)

In Terry Tao’s article under this title printed in
the previous issue there was put torward "Conjecture 4", that

[4
) tor some

. . . . 1-
(in the notation ot that article) c{(n) = O(n
€ > 0. This conjecture was disproved by K. Salem and D. C.
Spencer in 1942. They found a sequence with

c(n) > n/exp(0(/log n)).
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SECOND TRIANGLE PROBLEM
Shailesh Shirali

(Rishi valley School, Andhra Pradesh, India)

A circle T touches the sides AB and AC of a triangle ABC,
at points P and Q respectively, and I' touches the circumcircle

internally at R. Denote the incentre by I.

The wording above and the drawing below are from Nigel Tao’s

“Triangle Problem" on page 6305 of JCMN 63.

A second problem is this —— prove that the incentre 1 is

the mid-point of PQ.
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_ GENERALIZED HADAMARD INEQUALITY
(JCMN 31, p.3165, 32, p.4016 & 33, p.4032)

In 1984 the following problem appeared in JCMN 33.

It is given that W is the complex positive definite nxn
Hermitean matrix given in block notation as
Ip Z

R Iq)
where p+q = n, 2 is rectangular pxq, and Z* is its
Hermitean conjugate. Relate the eigenvalues of W to
those of Ip - Z2*, and so prove that det W < 1 with
equality only when 2 = 0.

The answer is that det W = det (Ip- 2Z%),

Proof: In block notation:

. ( 1 o) _ (I-ZZ* z) _ (1 Z)(I—ZZ* o)

-2* I 0 I 0o I 0 I
where the I without subscript represents the unit matrix of
size implied by the context (this makes typing easier).
Note that ( I o) and (1 z) can both be reduced to

-2* I 0 I

the unit nxn matrix by the elementary row operations of
adding scalar multiples of one row to another, and so they
both have determinant = 1.

Therefore det W = det (1-zz* o) = det (I-2Z*).
0 I

The second part of the calculation uses the fact that W is

positive definite. Take any p-dimensional column vector x.
(x*, -x*Z)(I Z)( X ) > 0, (if x » 0)
Z* 17\ -Z*x

i.e. x*(I - 22%*)x > 0, showing that I - Z2Z% is positive
definite. Because x*(I - 2ZZ*)x < x*x, all the eigenvalues
of 1 - Z4*% are between 0 and 1. If det .Ww = 1 then all the
ocigenvalues ot 1 - 44* are 1, and s0 44% = (. From this it
tollows that |4*x| = 0 tor all x, and % = 0. QLD
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The roots of this contribution date from 1983, when
“Kestelman’s Last Problem™ appeared in JCMN 31, (H. Kestelman
posted it from London a week before he died). It asked for a

proof of:-

Theorem G Let A be the positive definite Hermitean matrix

A= (P N) where P is pxp, Q is gxq, N is pxq and N* is the
N* Q
Hermitean conjugate of N. Then det A < det P det Q, with

equality only when N = 0.
The proof given in JCMN 32 was in two parts, as follows.

(1) Because P and Q are positive definite Hermitean they have
positive definite Hermitean square roots, S$ and T. Then A =

MWM, where M = (s o), W = (1 z) and z = s inT7L.
o T Z* I L
Therefore det A = det P det Q det W, and W is positive

definite. It remains to be proved only that det W < 1.

(ii) The eigenvalues of W have sum equal to the sum of the
diagonal elements (the "spur" or "trace" of W), the
eigenvalues have arithmetic mean = 1 and therefore geometric
mean < 1, with equality only when they are all equal.

Therefore det W = product of eigenvalues < 1, with equality
only when W = I.

From part (i) of the JCMN 32 proof and the first part of
the proof given on the previous page, we find:-
If A = (P N) is any non-singular Hermitean matrix

*
(not necessari?y pgsitide‘definite) then
det A = det Q det(P - NQ IN%).
Proof: Using the notation above, det W = det(I-22*)
= det(l - S-lNT-lT_lN's—l)} where we must be a little caretul

over the detinitions of S and T:; every Hermitean matrix has a

square root, though it is not generally Hermitean. But the
above identity will hold, recall that P and Q must be non-
singular, therefore ‘also S and T. Cconsequently det A =

det MWM = det P det Q det W = det Q det (p - NQ-lN*).
A quaint identity, but is it useful? or beautiful?
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To the reader who is puzzlied by the heading "Gonaralizod
Hadamard Inequality"”, thoro Is a connoction botwoon Kentaolman’rs
Theorem G and the tamiliar Hadamard inequality (thc modulus ot
a determinant cannot exceed the product ot lengths ot the vectors
represented by the rows or columns). It is as follows.

Lemma 1: If C is Hermitean symmetric and positive
definite, then 0 < det C < (the 1, 1 element) x (the 1, 1 minor)
(Apply Theorem G with p = 1 and q = n-1)

s

Lemma 2: If C is Hermitean symmetric and non-negative
definite, then det C < (product of diagonal elements); there
is equality only when either C is diagonal or one diagonal
element is zero. (Use lemma 1 with induction on n)

\ .

Hadamard’s Inequality: For any complex square matrix B,
put C = B*B, it is Hermitean and non-negative definite. Each
diagonal element of C is the square of the length of the vector
representing a column of B, and det C is the square of |det B

Apply Lemma 2, this gives Hadamard’s inequality for the columns
of matrix B. For the result on rows, use BB* instead of B*B.
The case of equality is easily seen, either B is singular or C
is diagonal (in which case the columns or rows of B are

orthogonal).

QUOTATION CORNER 46

Protessor was in 1992 awarded an honorary DSc trom

the University ot — , but one of his less publicisod
achievements has beon to increaso the external grant income ot
his Department (Pathology) from £1-5 million p.a. when he took
over in 1987 to approximately £6 million p.a. 1t thus brings
in more outside funds than the Department of Engineering and
nearly as much as the Department of Physics.

—— From Peterhouse, A Record, 1990-93.
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BINOMIAL 1DENTITY 38

g (_l)n—r(n)(mr = n(m-1)n"/2
r=1 r/\in+1 )

HERMITEAN MATRICES

Terry Tao
(Mathematics Department, Princeton Univ. NJ 08544, USA)

Let A and B be invertible n x n Hermitean matrices. If
their arithmetic and harmonic means are both positive definite,

does it follow that A and B are both positive definite?

1

In other words, if A + B and A™! + B! are both

positive definite, are A and B necessarily both positive

definite?

OLD FASHIONED PROBLEM

Evaluate the infinite continued fraction

e T - T e e e e ( = 0:39221119... )

The first few of the successive convergents are

Numerator 1 I 3 15 87 597

Denominator 2 { 8 38 222 1522

-6343-
TWOS AND THREES

It had been the custom for the knights of the Rounq Table
to go out on their quests in pairs. Sir Gareth and Sir
Bedivere had been pursuing a band of robbers on a lonely stretch
of the Fosse Way-through the Mendip Hills when Sir Gareth had
been wounded by an arrow. The robbers had escaped because Sir

Bedivere had turned back to bandage Sir Gareth’s wound and take

him back to Camelot.

Queen Guinevere had looked after Sir Gareth until he was fit
;gain, then she went to tell the whole story to King Arthur.
"I see the difficulty," he said, "Sir Bedivere was put in the
position of either abandoning his duty or aban&oning his
companion. It might be better if the knights went on their
expeditions in groups of three instead of in pairs, then in a
case of injury there would be one to see to the wounded and one
to finish the task they were doing. So could we partition the

6n knights into 2n trios instead of the present 3n pairs?"

"Of course," answered the Queen, "we Kknow that there are
6_2n(6n)!/(2n)! ways of arranging the én knights in trios;
but suppose that a trio were to contain both members of an
existing pair, the third member of the trio might feel unhappy
at being an outsider. So I think we ought to exclude all such
arrangements. But I don‘t know how many possibilities there
are with this restriction" "Of course Merlin would be able
to tell us, but 1’m atraid he’s away in Babylonia at somo moaet ing

of magiciang.®
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POLYNOMIAL INEQUALITY (JCMN 60, p.6222)

This problem was about the three norms Hf"l, Hf"z and

jtli, for a real function on the unit interval.

If no restriction is placed on the functions then the
answer is simple: helhy < ||f||§/||fﬂ1 < jfll,, these are the
best possible inequalities. The first of these inequalities
comes trom the Cauchy-Schwarz inequality, and the second from
|f(x)|2 S PEx) el e The inequalities may be represented
graphically by using x = ff},, y = jff, and z = f£j, as
trilinear coordinates with an equilateral triangle of
reference, as shown below, the possible region for the point
(x, y, z) is bounded by the median x = y and by the circular

arc y2 = x2z between the points (1, 1, 1) and (0, 0, 1).

The problem in JCMN 60 asked what could be said when the
functions are constrained to be polynomials of degree n; much
more difticult! Of course the case n = 0 is trivial, the
tunction is a constant, the three norms are equal, and the

only point attained is (1, 1, 1).

-6345-

The case n = 1 is not difficult, the point must be on a

one-dimensional locus, consisting of the arc of the hyperbola
4x2 - 3y2 + 22 - 2Xz =0

from the point (1, 1, 1) to (1, 2//3, 2), and there joined to
a little loop wigh an equation of the fourth degree. The
double point corresponds to the functions f(x) = 2x - 1 and
f(x) = x, which both have ||f[|l = 1/2, ||f||2 =1//3 and

Itl, = 1. See the drawing below.

z
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QUANTUM MECHANICS

This little note might (following Coxeter and Greitzer) be
entitled "Quantum mechanics revisited", or (following Klein)
"Elementary quantum mechanics from an advanced standpoint", but
the Editor is a firm believer in short titles — they make the

Index simpler.

Once the pure mathematical scene has been set, classical
(i.e. non-relativistic) quantum mechanics, as expounded in most

text books, is based on three axioms:

Axiom 1 When an observable P is measured the expectation of the
result is (y|P|¥), where v is the "wave function"™ or "“wave

vector" or "“state vector".

Axiom 2 The equation of motion is iady/dt = Hy, where H is the
Hamiltonian. (This is the Schrédinger picture, the Heisenberg
picture, in which y is constant but the observables change with
time, is essentially equivalent). (2xa is Planck’s constant)

Axiom 3 The result of measuring any observable P is to project
the wave vector orthogonally on to the eigenspace of P that
corresponds  to the elgenvalue that was the result of the

observation.

Some physicists would add another, the exclusion principle,
but this seems a little less fundamental, perhaps it could be
regarded as an observed fact of particle physics rather than as

a law of quantum mechanics.

These axioms are all forced on us by experiment, but in
somewhat indirect ways. In particular, axiom 3 depends mainly
on observations of the spin of a particle or the polarization of
a photon, that is on an observable that has only two eigenvalues.

But what about observables with continuous spectra?

-6347-

Consider a system consisting of a barticle (or rigid body)
constrained to move on a straidht line, and suppose that we
measure the position. Let Q be this observable, the Cartesian
coordinate, it may be regarded as a physical quantity or as a
Hermitean linear operator or as a random variable. There is
a conjugate momentum P, and the classical Hamiltonian is H =
AP?/m, where m is the mass. There are theoretical reasons for
supposing that the coordinate and the momentum satisfy a
commutation relation QP-PQ = ia, and that also they =satisty
Heisenberg’s uncertainty principle, régarding P and Q as random
variables, the product of their standard deviations must be > An
(see JCMN 54, p. 6009).

There are difficulties in applying Axiom 3 (above) to such
a systen. If we regard the result of the observation as a
value for the coordinate, then projecting the state vector on to
the eigenspace would mean giving the particle infinite energy,
and we know that this does not happen in the ordinary science
laboratory. But if, on the other hand, we regard the result
as a probability distribution for the coordinate, then what can

the axiom mean by “the eigenspace"?

One way in which we might hope to resolve this difficulty
is to say that the observation does not determine the coordinate
(for of course no experiment is quite accurate), but just finds
the coordinate to be in some interval (a, b). Then Axiom 3
asserts that the wave function is projected orthogonally into the
corresponding eigenspace, which consists of all tunctions zero
outside (a, b). But this would mean that the wave function after
the experiment would (almost always) have simple discontinuities
at the points a and b. This would necessitate the Fourier
transform being O(1/x) at infinity, and theretore the expectation
of the square of the momentum, i.a. the axpoctation of the
kinetic enerqgy, being infinite. In fact wo know that | we uno
radar to find the position of a train on a stralght raliway |ine,

tho train does not at that momont vanish In a rod flash and a
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puff of smoke. So this trick fails us, and it looks as if Axiom

3 needs to be changed.

Pulse
Target
Consider the system sketched above. The experimenter
sends a wave pulse which is reflected from the target. The

reflected pulse is detected, and the experimenter can estimate
the position of the target from the elapsed time, but can also
estimate the velocity of the target by the Doppler effect
(comparing the frequencies of the transmitted and received
signals). The wave function describing the position of the
target will certainly be changed by the experiment, but in what
way? Our answer (our replacement for Axiom 3) should conform
to the old axiom in applications to polarization of a photon, but
should allow for experiments like the one above, where both Q and

P are estimated.

One worrying thought about the experiment described above
is that the radar pulses will exert a pressure on the target, so
that the perturbation of the wave function by the experiment will
depend on which side of the target the experimenter is.

It might be objected that in non-relativistic mechanics the
speed of light is infinite, so that there is no radar, and the
example above has to be modified: the experimenter must have an
apparatus that shoots out small perfectly elastic test particles
‘and measures their time of flight and their velocities going and
returning (a little unrealistic, but a thought-experiment ot
which Einstein might have approved). The problem of how the
observation changes the wave function of the target remains the

~6349-

FLYWHEELS IN QUANTUM MECHANICS

Books and lecture courses in quantum mechanics mostly assert
that to every observable there is a corresponding Hermitean
linear operatorl operating on the Hilbert space of wave
functions. However there is one simple mechanical system for

which this idea leads to difticulties (see JCMN 54, p.0Oll).

Consider the system consisting of a rigid body able to

rotate about a fixed axis (for brevity we shall call the system

‘a flywheel, but by adding a force of gravity to the system it may

become a pendulum)). The coordinate used by the experimenter

to describe the state of the system is' the angle ¢ of rotation

from some fixed position, but with 0° and 160" meaning the msama
thing, or more generally ¢ meaning the same as # + 360" or (it
we use radians) ¢ + 2. There is no Hermitean operator with
exactly this set of real numbers as spectrum. Some other

approach is needed.

To set up a suitable theory, take as the space of wave

functions the complex Hilbert space L2(0, 2%), which is

isomorphic to the space ¢? of ail complex sequences like
a0
. . 2
( ove C_yr Cgr €p¢ Cyy --. ) with rf_mlcrl converqent:

The isomorphism is given explicitly, if ¢ is a function in

the tirst space, by ¢(¢) = ¥ c eiry.

The coordinate that we use to describe the position ot

the tlywhecl is tho linear operator R dofinad (for any wavae

"-iu

function ¢ in tho L2 upaca) by (Re)(e) - wio). In thao
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space 82, when R operates on ( ... c_l, CO’ Cl’ «.. ) it qgives

the sequence with ¢ in position r, i.e. R just moves all

r+l
the components one place to the left. This operator R is
unitary, its Hermitean conjugate R* maps y(¢) to elaw(v), or

2 moves each component one place to the right, so that R#*

in ¢
is the inverse of R. R has a continuous spectrun,
consisting of all complex numbers of unit modulus; the set

of eigenvalues is empty.

Now, we must find a "momentum" conjugate to this
coordinate R. Define the operator P in L2 by (Py)(#) =

-inp’(¢), or in €2 by P( ... C_, vu. ) = ( eu. HTCL, ... ).

r r'
Clearly P is Hermitean and its eigenvalues are the integer
multiples of », It soams natural to call {t the anyular

momentum,

It is easy to verify the commutation relation

RP ~ PR = #R.

Can we find a form of Heisenberg’s uncertainty relation

for these two observables R and P?

A little thought shows that any uncertainty principile
must be rather different from the familiar
(Standard deviation of coordinate) x
(standard deviation of momentum) > k#,
because the system can be in (or nearly in) an eigenstato ot

angular momentum (so that the standard deviation is zero), but
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it is hard to see in what sense the standard deviation ot the
coordinate could be infinite, or even very large, or even

moderately large.

We saw in JCMN 54, pp. 6007-6011, that the usual torm ot
Heisenberg’s uncertainty principle is a physical illustration
of a certain analytic inequality for complex functions. So
here, it we cannot find the uncertainty principle, it would be
interesting to look for the analytic inequality that is surely

there, waiting to be found.

Consider elements of 22, i.e. complex sequences such as
c = ( ... C-z’ C—I' Cy c, cz, iee ) To ench much
@lement thera are three real positive parameters:-.-
2 2 2
l le.|

and z = |¥cc

‘ y=ztr r r—lI'

c

x =% |Jc
r r

What are the inequalities that hold between them?

Trivially 0 s 2z < x, and all the inequalities must
be homogeneous. The physics suggests that z can be nearly
equal to x, but only when y is large. The ratio y/x can be
regarded as the variance (the square of the standard deviation)
of the angular momentum P. The ratio z/x is probably related
to the accuracy of measurement of the coordinate R, being nearly
equal to 1 if the error is small, that is if the wave function .

v is large in a small arc of the unit circle and small elsewhere.




-6352-

"QUOTATION CORNER 47

Dr. Ian Bennett, chief executive of Life Be in it, says:
"More than 150,000 Australians will need treatment for skin
cancer this year and skin cancer rates are still rising round the
world. What we are launching is a special vending machine
which offers individuals resealable bottles of the Life Be in it

15 plus sunscreen."

—— Eastern Couriler Messenger (January 12, 1994) (An

advertising paper distributed in Adelaide suburbs)

Readers with long memories will recall how some 30 years ago
there came on the market, heavily advertised, the skin creams
that block ultra-violet light, a triumph of technology. The
chemical industry has done well out of that project, not only has
there been the predictable increase in the diseases (such as
rickets and osteoporosis) of ultra-violet deficiency, but also

now according to this claim there is an increase in skin cancer.
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