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The history of the James Cook Mathematical Notes (JCMN) is
that the first issue (a single foolscap sheet) appeared in
September 1975, then others at irregular intervals, to number 17
in November 1978. JCMN settled into the routine of three issues
per year from 1979 to 1994; but from Issue 66 (April 1995) at
the start of Volume 7, it has been irregular, appearing when

enough contributions are available.

The issues up to number 31 (May, 1983) were produced and
sent out free by the Mathematics Department of the James Cook
University of North Queensland, of which I was then the
Professor. In October 1983 this arréngement was beginning to
be unsatisfactory, and I started producing the JCMN myself and
asking readers to pay subscriptions. In October 1992 it had
become clear that the paying of subscriptions by readers is an
inefficient operation. Bank charges for changing currency and
for international transfers, with postage, together absorb most
of the initial input of money. Therefore we abandoned
subscriptions as from issue number 60 (January, 1993). I now
ask readers only to tell me every two years if they still want
to have JCMN. To those who want to give something in return
for the JCMN, I ask them to make a gift to an animal welfare
society in their own country. The animals of the world will

be grateful and so will I.

Contributors, please tell me if and how you would like your

address printed.
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IN THE FOOTSTEPS OF PAPPUS

A. Brown

A P B
In the diagram above the semicircles on AB, AP and PB have
radii 1, R and 1-R respectively. Of the sequence of smaller
circles, let number n have diameter dn' and have its centre Cn
at a height of Yn above the line AB. Pappus of Alexandria
proved that
Y, = ndn.

Prove that if R is rational then so are all Y, and d .

As a variation on the theme, remove the constraint that the
first of the small circles should touch the semicircle on PB.

We then have the figure below.
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With notation as before, now use also the Cartesian
coordinate x, measured from the origin A, as shown above.
Prove that the coordinates (xn, yn) of the centre cn of
circle number n are related to the diameter dn by:

*n T k dn’ yn/dn
1 + R

2 - 2R’

4Rx(x - 1 - R) + y2(1 + R)%2 = 0, which has

n-1=+ yl/dl'

where k = Also all the centres Cn are on

the ellipse

major axis 1+R and minor axis 2/R.

This leads us to the result that if R is rational and the
coordinates (xl, yl) of C1 are rational then all Xne Yp and dn

will be rational.

PROBLEM Suppose that we have the fixed circles of radii R and
1, as shown below. With one degree of freedom we can put one
circle touching both. Starting with this circle, an infinite
sequence of such circles, each touching its two neighbours, can
be constructed. Investigate the sum of the areas of these
circles, the shaded area below. Does the sum depend on the

first circle?
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THE LONELY RUNNER CONJECTURE

Jamie Simpson

There are n runners competing in a race. They all start
at the same time and at the same point of a circular track of
length n units, and they all run at different speeds. If they
run for ever, can you show that for each runner there will be a
time when he is at a distance at least one unit from every other
runner? That this is true was first conjectured by Jorg Wills
in 1968 and has since been proved for n up to and including 5.
When n = 1 or 2 or 3 the conjecture is easy to prove. The n
= 4 case was proved by Cusick in 1982, and the n = 5 case by
Cusick and Pomerance in 1984. Their proof is not attractive
and involves computer checking of a large number of cases. A
much simpler, but I think unpublished, proof of this case was
discovered recently by Luis Goddyn, Andras Sebo and Tarsi. The

conjecture is unproved for n greater than 5.

There are a few simplifications we can make to the problem.
One is that it can be shown that it is sufficient to consider the
case in which the speeds of the runners are all rational numbers.
Another is to note that if we have a counter-example to the
conjecture then it will remain a counter-example if we subtract
a constant from each runner’s speed. Suppose there is one
runner who is always less than one unit away from all the other
runners, and we subtract his speed from the speed of each runner,
so that he is now stationary. Then we get a counter-example
to the following conjecture, which is equivalent to the original
conjecture. There are k runners running round a circular track
of length k + 1 units, all starting at the same time and place.
Show that there will be a time at which all the runners are at

least one unit from the starting point. In this version the

b
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least one unit from the starting point. In this version the
n from the original problem has been replaced by k + 1, so this
version is known only to hold for k £ 4. The subtraction
process may give some of the runners negative speeds, but this
can be corrected by reversing them. A runner’s shortest
distance from the start does not depend on whether he is running

clockwise or anticlockwise round the track.

If the conjecture is true then it is best possible in the
sense that we cannot replace "one unit from the starting point®
with any greater distance. If the speeds of the runners are
in the ratio 1 : 2 : ... : k then at some stage every runner will
be at one unit away from the starting point, but there will never
be a time when they are all more than one unit away. This is
the only extremal example for the cases k = 1, 2 and 3, but for

higher k there are others.
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SPHERES AND AREAS

Chris Smyth
(University of Edinburgh)

Here is a nice little bit of geometry, it must be known of

course, but it was new to me.

A sphere of radius R has at the South pole a tangent plane.
How much surface area, of sphere and plane, is there within a

distance r from the North pole?

WRAPPING

Another little bit of geometry, also to do with areas.

Consider wrapping a rectangular lamina (of size a x b) with
a rectangular sheet of paper of minimal area. There are three
ways of doing it; the two obvious ways are with a sheet of size
(2a) x b or with a sheet a x (2b), as shown below.

.

_

«——a—>

(Imagine the shaded areas folded over)

The third way is with a sheet of size A x B where & =

(a2 + bz);2 and B = 2ab(a2 + bz)-%, folded as shown.

-7057-

One illustration of the theory above is to be seen in the
making of envelopes. For a rectangular a X b envelope, take
the third of the wrappings above, by a sheet of size A x B, and
enlarge it all round, to a size of (A+d) x (B+d), giving an
overlap of width d to be gummed. Four little triangular bits

are wasted, they have to be cut off.

A more complicated problem arises in the wrapping of a
rectangular block of a x b x c. Taking a > b > ¢, it is useful
to note that the block will go in an envelope made for a lamina
of (a+c) x (b +c). There is a certain inefficiency, shown

by the surplus of wrapping paper found at the corners.

The ‘KitKat' chocolate block that we buy in the local shops
is wrapped in aluminium foil in the diagonal wrapping, the third
of the methods described above. The block is not quite
rectangular, but roughly the dimensions in inches are a = 3.75,
b = 25, ¢ = «5, As noted above we can wrap it in a flat
envelope of 4.25 x 3, which from our formula above (putting a =
4-25 and b = 3) requires a rectangle A x B where A = 5.202 and
B = 4.902. To these dimensions there has to be added whatever
is required for the overlap at the joins. The aluminium foil
is not glued, it is held in place by a paper sleeve. The
makers actually use a square of aluminium foil of side 5.625 for
the wrapping, giving an overlap bigger in some places than in
others. The calculations above indicate that the makers could
save 5% of their aluminium foil by changing to a rectangular

wrapping of 5625 x 5325 inches.
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SUMS GIVEN BY ZETA FUNCTIONS
(JCMN 65, p.6360, 66, p.7010, 67, p.7030)

Recall that we defined

(e}
HD(K) = = n K (1+ % +
n=1

1
+ ... ).
+ 2n

W

In JCMN 67 there were given the formulae:-

Hp(2) = L06)

up(a) = ZL0) - 4e(2)c(3),

up(e) = 1L - y6r2)c(s) - ar(3)c(a),

m(s) = 2L - 6ac(2)0(7) - 4r(3)6(6) - 160(4)c(5),
HD(10) 2099 S(A1)  256c(2)6(9) - 4¢(3)5(8) - 645(4)¢(7)

- 165(5)¢(86).

Of these equations, the first and second were proved, and
the next three were verified numerically to 12 decimal places.

Readers were invited to guess the general formula and to find a

proof. A possible answer to the first challenge is as
follows:-
2k+1 k-1
HD(2k) = -2 : 2k + 1 cook+1) - 5 22Fc(2k-2r)c(2r+1).
r=1

This formula agrees with the numerical value of 1.500513412131

for HD(12).
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BINOMIAL IDENTITY 39

Chris Rennie

Suppose that n £ m £ m+tn < N.

m! n! (N-m)! (N-n)!
x! (m-x)! (n-x)! (N-m-n+x)! N!

Let f(x)

b T T I T T

Here are two identities:~

n n
s f(x) = 1, = X f(x) = nn/N.
x=0 xX=0

These two equations are almost obvious if you know where

f(x) comes from. There are two bags, each bag has N balls in
it. In one bag are m black balls and N-m white. In the
other are n black balls and N-n white. Draw at random one ball

from each bag, you may get a black pair, a white pair or a mixed
pair; keep on until the two bags are empty. Let x be the
number of black pairs, it is a random variable taking values from
0 ton (if n < m). Then f(x) is the probability of getting

x black pairs. If there are x black pairs there will have to

be N-m-n+x white pairs and m+n-2x mixed pairs.

Finally, find % x2 f(x). This will give the variance:
3 (x - 202 ¢ = DO - MO - n)
x=0 N N2(N - 1)

In the experiment from which this question arose the
interest was actually in the number of matching pairs, but as the
number is N-m-n+2x, there is no difficulty in finding its mean

and variance from those of x.




SYMMETRIC SIMULTANEOUS

FIRST SOLUTION

For these equations:-
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EQUATIONS 3 (JCMN 67 p.7040)

A. Brown
x(y + 2z) - y2 - 2% = a,
y(z + x) - 22 - x2 = b,

z(x + y) - x2 - y2 =c,

write X=Y+ Z, y =2 + X, z=X+Y,
a = -2a, b = -2B, c = -2C.
The set of equations becomes
X2 - vz = a, v? - zx = B, 22 - xy = ¢,

which brings it back to the original problem of Alexiev (JCMN

59, p.6173, JCMN 60, p.6192,

and JCMN 67, p.7038).

SECOND SOLUTION

2

Put S = x° + y2 + 22

JCMN 62, p.6276, JCMN 66, p.7006

—— J. B. Parker

and T =x+y + 2.

The first equation is xT - S = a, the others similarly.

Adding the three equations:

Also (a+S)? + (b+8)2 + (c+8)2

2

= TS which by equation (1)

Therefore a2 + b2 + c2 + (a+

Also, from (1) & (2), T2 =

N

ab+bc+ca-a2—b2—c

2 a+b+c

Finally, xT = S+a b(a-b

T2 = a+b+c + 3S. e (1)

= (x1)? + (y1)? + (z1)?

2

equals (a+b+c)s + 38°.

btc)S = 0. e (2)

(at+b+c)?-3(a®+b2+c?)

a+b+c

f

Put T = R/(at+b+c)

e (3)

)_+ c(a—c), so that the solution

is x = b(a—b%+cga—c!,

at+b+c

_ c(b-c)+a(b-a) z = a(c-a)+b(c-b)
Y R ’ R ’
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. b
where R = % (2(a+b+c)(ab+bc+ca—az—b2—cz))i.

= t (6abc - 2a3 - 2b3 - 203)%.

THIRD SOLUTION —— A, Brown
Write Q(x, y, 2) = 3xyz - 23 - y3 - 23, Then it is
easy to verify that ax + by + €2 = 0, veeeveeecees (1)
bx + ¢y + az = Q(%x, y, 2), .. (2)
cx +ay + bz = Q(x, ¥, Z). ... (3)
From (2) and (3), _
(b-c¢c)x+ (c-a)yy+(a-b)z = 0 ......... .(4)

It follow from (1) and (4) that (in general)

k, say,

X vy z
b(a-b)~-c(c-a) c(b-c)=-a(a-b) a(c-a)-b(b-c)

X+y+z

e = X - ¥ teeeeee. (B)
2{ab+bc+ca-a“-b"~c”}

(a - b)(a+ b+ c)

Also, Q(x, ¥, 2) = bx + cy + az

k(bz(a-b) - be(c-a) + c?(b-c) - ac(a-b) + a’(c-a) - ab(b-c))

k Q(a, b, c).

To evaluate k, note that

a-b = z(x-y)+ x2 - y2 =

(x-y) (x+ty+z).

Now use equation (5):

a-b = {k(a-b)(a+b+c)})(2k(ab+bctca-a’-b%-c?))
= 2k%(a - b)o(a, b, ),

and so for a = b, kz = W(a—;l—b,—é—)',

and k = + (6abc - 2a°> - 2b°> - 2c3)-%.
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SPHERICAL TRIANGLES

John Parker
(0ak Tree Cottage, Reading Road, Padworth Common, RG74QN, UK)

Readers will remember many references to position lines and
cocked hats in previous issues of JCMN. It started with A. P.
Guinand’s comment in JCMN 33 (February 1984) that, given a plane
triangle, the sum of squares of distances to the sides is
minimized at the symmedian point:; and consequently the symmedian
point is (in a sense) a navigator’s best estimate for position
when given three position 1lines. Is there a corresponding

result for a spherical triangle?

The idea of minimizing a sum of squares (hallowed by time,
beloved by statisticians, and often very useful) may have to be
abandoned for this problem; it is hard to see squares of angles

leading to elegant geometry.

What can be said about the point in a spherical triangle
maximizing the sum of cosines of the distances to the sides?
When the triangle is small, and so nearly plane, the point will
approximate to the symmedian point of the approximating plane

triangle.

Is the question pure or applied mathematics? It is hard
to say; although Admiralty charts are printed on flat paper,
navigators do take into account the curvature of the Earth; also
some navigators will tell you that for practical purposes one
point inside the cocked hat is as good as another. So treat

the problem as pure mathematics.
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INCENTRES OF SPHERICAL TRIANGLES

C B

In the spherical triangle ABC we put p

]

cos BC and
p’ = sin BC = /(1 - p2) , and similarly define q = cos AC,

q’, r and r’. Using the notation explained in JCMN 47,
pp.5136-5139, any point P has coordinates x = cos PA, y = cos PB,

z = cos PC, which may be treated as homogeneous coordinates.

Taking P to be the incentre, the angles CAP and PAB are

equal. Applying the cosine rule to the triangles PCA and PBA:
- = P 2.%
z = cos PC = xq + ‘(1 - x")* cos (A/2)
Yy = cos PB = xr + r’(1 - xz);2 cos (A/2)

Elimination of the terms with cos (A/2) gives us:
x(r‘q - q‘r) + yq’ - zr’ = 0,
Then cyclic permutation of (x, vy, 2), (p, q, r) and
(p’, 9', r’) leads to:
- xp’ + y(p'r -r'p) + z2r’ = 0.
Adding these last two equations:
x(p’ - r'q + q‘r) = y(q’ + p’r - r'p),
then from the reverse cyclic permutation:
z(r’ + p’q -~ q'p) = x(p’ + r'q - q'r).

The incentre is therefore

(1, Lyzra+ax (o +rg-gum)
1 ql + plr — rlp ’ r[ - qlp + plq
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This expression does not seem to have the symmetry that
one would expect. The cyclic permutation of (x, y, z) and
(p, 9, r) and (p’, q’, r’) tells us that the incentre must

have coordinates:

( gl + E’r - rlp l gl — Elr + rIE )
pl - rlq + qlrl 1 rl + qlp - plq .
Is it the same point? It is, because of the identity:

(p - r'q + 9'r)(q’ - p'r + r'p)(r’ - g'p + p'q)

= (p/ +r’'q - qr)(q‘ +p'r - r'p)(r’ +gq'p - p'q).

In fact this is essentially the TRIGONOMETRIC IDENTITY given

on p.7066 below.

Now what are the coordinates of the ex-centres?

B

C

Apply the cosine law to the triangles PCB and PAB.

py + p'/(1 - y2) cos (90°-B/2)

ry + r' /(1 - y2) cos (90°+B/2).

4

fl

X

Noting that cos(90°-B/2) = sin B/2 = -cos(90°+B/2), we obtain
p‘x - (p'r + r'p)y + r‘z = 0.

There is another symmetry that we may use, the interchanges

(y, 2), (4, r) and (q’, r’); this gives:
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p’x + 4q'y - (p'g+ q'plz = 0.
From these last two equations:
(g + p'r + r'p)y = (r’ + p’q + q’'p)z.
Therefore (as the coordinates are homogeneous) put
y = r’ + p’qg+ g’p and z = g’ + p‘r + r'p.
Then p’x = (p‘'r +r'p)y - r‘z
= (p’r + r'p)(r’ + p’q + 4’'p) - r'(q’ + p’r + r'p)

= (p’r + r'p)(p’q + q'p) -~ r’'aq’

p’(rp’g + ra’p + r'pq) - r'q’(l - p°).

Now recall that p and p’ are the cosine and sine of an angle.
p’x = p’(rp’q + rq’p + r'pg - p‘r'q’),
x = p’‘gr + pg‘r + pgr’ - p’q’r’.

Thus we have found the coordinates of the centre of the

escribed circle that touches BC on the outside:

I, = (p'ar+pg’r+pgr’-p’q’r’, r’+p’q+q‘p, q’+p‘r+r’p).
By cyclic symmetry we find

I, = (r'+g’p+p’q, p’qr+pq’r+pgr’-p’q’r’, p’+g'r+r’q).

These two points are both on the external bisector of the
angle at C of the spherical triangle, and so they must be on a
great circle with ¢ = (q, p, 1). Therefore the

determinant below must be zero; but is that obvious?

p’gr+pq’r+pqr’-p’q‘r’ r’+p’q+q’p q’+p’r+r’p
r’+q’ptp’q p’qr+pg’r+pqr’-p’q‘r’ ptqirir’qg
q P 1
This is another trigonometric identity. If we take any

three angles, denote their cosines by p, g and r, and denote
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their sines by p‘, gq’, and r‘, then the determinant above must

be zero.

The calculation is not as hard as it looks. Subtracting
g times the third column from the first, and p times the third
from the second, the determinant is reduced to a 2 x 2
determinant. By using the fact that p and p’ have the sum of
their squares equal to 1, and similarly q and q‘, the determinant
may be put in the form:
q’(pr-p’r’-q) p’(g-pr+p'r’)
a’(q'r’+p-qr) p’(qr-q‘r’-p)

which is clearly zero.

TRIGONOMETRIC IDENTITY

Prove that if A, B and C are any angles then:
cos A cos B sin(A-B) + cos B cos C sin(B-C) +

cos C cos A sin (C-A) + sin(a-B) sin(B-C) sin(C-A) = 0.
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ORTHOCENTRES AGAIN
(JCMN 47, p.5136, 50, p.5204, 51, p.5220 & 58, pp.6127-6129)

Take a plane triangle ABC, with centroid G and orthocentre
H. Taking G as origin, let p, g and r be the position vectors

of the vertices A, B and C, then p+ g+ r = 0.

Rotation of 180° about the mid-point of BC is the mapping
X - g+ r - x, which maps ABC to the congruent triangle A’CB,
where A’ has position vector q + r - p = -2p. Similarly

define B’ and C’, they have position vectors -2q and -2r.

B’ A c’

Figure 1
Note that B’C’ 1is parallel to CB, so that AH is the
perpendicular bisector of the side B’C’ of the triangle A’B’C’,
and therefore passes through the circumcentre of A’B‘C’; and
similarly for BH and CH. Therefore H is the circumcentre of
A‘B’C’. In trilinear coordinates with ABC as triangle of
reference, A’ is (-bc, ca, ab), B’ is (bc, -ca, ab) and C’ is

(bc, ca, —ab):; their circumcircle is

4.2 4 2

ax= + b4y2 + c'z" + (a2

+ b2 + c2)(bcyz + cazx + abxy) = 0.

where as usual we denote the sides of the triangle ABC by a, b
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and c.

Recall how the note from J.D.E. Konhauser and A. Brown in
JCMN 51 answered the questions from JCMN 50 — why is H called
the ‘orthocentre’ of ABC? and of what is it the centre? That
note gave two answers, H is a centre of similitude of the 9~point
circle and the circumcircle of ABC, and H is the centre of the
orthocircle, which is the unique circle with the property that
the triangle is self-polar with respect to it, see the drawing
in JCMN 58. Now we have found a third answer — H is the

centre of the circumcircle of A’B’C’.

In fact there is a fourth answer, quite simple, but nobody
thought to mention it. The orthocentre H of any acute-angled
triangle ABC is the incentre of the orthic (or pedal) triangle
DEF (i.e. the triangle whose vertices are the feet of the

perpendiculars from A to BC, from B to CA and from C to AB).

See fig. 2. If ABC is obtuse-angled then H is the centre of
one of the escribed circles of the orthic triangle DEF. See
fig. 3. The angles marked with a dot are all equal, 'and the

angles marked with two dots are all equal.

A | H

Al

o €

ry)

¢/ ) . » ¢ B
D B ¢

/ Figure 2 Figure 3
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If (in Fig. 1) v is the position vector of the circumcentre
0 of ABC then -2v is the position vectér of the circumcengre of
A’B’C’, which is H. Similarly the mid-points of BC, éA and
AB, with position vectors -p/2, -q/2 and -r/2 have circumcentre

with position vector ~v/2, which is the nine-point centre of ABC.

This vector algebra has located the four important points

on the Euler line of the triangle ABC:=-

H = Orthocentre, position vector = =-2v
N = Nine-point centre position vector = -v/2
G = Centroid position vector = 0
0 = Circumcentre position vector = v,

proving Euler‘s result that the lengths HN, NG, GO are in the

ratio 3:1:2.

In fact it is now clear that the orthocentre of A’B’C’ is

also on the Euler line, with position vector 4v.

dkhkhkhkhkkhkhkhhkhhhhkdhkhhkhkk

The question from JCMN 51 —— of what is the orthocentre the

centre? may also be asked about spherical triangles.
There are three answers, two of them different from those
in the plane case. Firstly the orthocentre H is the centre of
perspective of the original triangle ABC and its polar triangle
A’B’C’, because the great circle AA’ is the altitude, the

perpendicular from A on to the opposite side BC, and so on.

Secondly, can we find a circle, other than the orthocircle,
of which H is the centre? The geometry on the sphere is very

similar to plane projective geometry (see ANALYTIC GEOMETRY FOR
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SPHERICAL TRIANGLES, JCMN 47, October 1988, pp. 5136-5139).

The theorem of Desargues applies; the triangles ABC and A’B’C’
are in perspective, and so the intersections of corresponding
sides must be on a great circle. In fact the intersection of
BC with B’C’ is a point at 90° distance from A and from A’ and
therefore also from the orthocentre H. Similarly the two other
such intersections, of CA with C’A’ and of AB with A’B’; these
three points are all at 90° from H, so that H is the centre (or

pole) of the great circle through these three points.

A third answer is that, as in the plane case, there is an
orthocircle with reépect to which the triangle ABC is self-polar,
and the orthocentre is the centre of this circle. To explain
this we need the methods of the article from JCMN 47 mentioned
above. For readers who do not have it on their bookshelves,

here is a summary.

Let three unit vectors g, 8, x, be the position vectors of
the vertices A, B, C, of a spherical triangle. Any vector
represents a point on the unit sphere, in the sense that when the
vector is normalised to unit length it is the position vector of
the point. Then the vector products Bxy, yxg, ax8, represent

the vertices A’, B’, C’, of the polar triangle.

The vector ga + B + y represents the centroid, which is the
intersection of the medians, or the centre of gravity of unit
masses at the vertices. A point represented by any vector u
may also be represented by the three coordinates x = u.g, y =
u.B8, z = u.z, and we treat these coordinates as homogeneous, so
that u need not be of unit length. The circumcentre O of ABC is
the point (1, 1, 1). Let the cosines of the sides of the

triangle ABC be p, q, r.
/
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The altitude from A to BC is thg great circle AA‘, having
equation qy = rz, and the orthocentre is the intersection of the
three altitudes. The altitudes of the spherical triangle
project into the altitudes of the plane triangle. The(median
from A is the great circle:

(rx-gx-y+z)(p+l) + (qy-rz)(g+r) = 0
and the side BC is x(1—p2) + y(pg-r) + z(rp-q) = 0. The
coordinates of the following few points may be noted:

A: (1, r, q) B: (r, 1, p) c: (g, p, 1)

Af: (1, 0, 0) B’: (0, 1, 0) c’: (0, 0, 1)

Mid-point of BC: (g+r, 1+p, 1+p).

Centroid, G: (1+g+r, p+l+r, p+g+l).

Orthocentre, H: (qr, rp, pq).

Circumcentre, 0: (1, 1, 1).

Foot D of altitude from A: (q2+r2-2pqr, r-rpzl Q’qu)

Since (Theorem 1 of the JCMN 47 article) any linear
homogeneous equation in (x, y, 2z) represents a great circle on
the sphere, it follows that if we project the sphere radially on
to the tangent plane at H then such a linear equation will
represent a straight line in the plane, i.e. the coordinates (x,
Y, 2) may be regarded as homogeneous coordinates on the tangent
plane. The projection of A’B’C’ is the triangle of reference
in the plane. Any small circle on the sphere projects into a
conic in the plane, but a small circle with H as centre will
project into a circle in the plane, also with H as centre.

The great circle with H as pole, or the line at infinity

X vy b4

on the plane, has equation + +
p-gr q-rp r=pgq

= 0,

The geometry of poles and polars with respect to conics in
the plane carries over to the geometry on the sphere, and so we

can say that the triangle ABC is self-polar with respect to the
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orthocircle on the sphere, which is the projection of the

orthocircle of the plane triangle.

PROBLEMS Does a spherical triangle have an interesting
great circle like the Euler axis of a plane triangle? Recall
that the centroid, circumcentre and orthocentre are not on a
great circle except when the triangle is isosceles (proved in
Theorem 2 of the article in JCMN 47).

Are the the mid-points of the sides and the feet of the

altitudes of a spherical triangle on a conic?

ERRATUM

Recall the article ANALYTIC GEOMETRY FOR SPHERICAL TRIANGLES

in JCMN 47 (October 1988) pages 5136-5139.

The coordinates of the centroid G of the spherical triangle
ABC were given correctly as (1+g+r, p+i+r, p+g+l) on page 5137,
but wrongly as (g+r, p+r, p+q) on page 5138. The misprint did
not upset the proof of the Theorem 2, that if the circumcentre,
orthocentre and centroid are on a great circle then the triangle

is isosceles.
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WANTED INEQUALITY

(JCMN 64, p.6321 & JCMN 67, p.7046)

If £(4) has period 27 and if

2n 2 i
x o= [ieiPan, oy o= [Mecfas, 2 = ([2 et %,

then what inequalities connect x, y and z?

In JCMN 67 there was the statement "Numerical evidence
suggests an inequality (1)"

ay(x - z) 2 z° e (1)

But what is suggested by numerical evidence may not be true.
In this case it was untrue, as may be shown by the example of
f(8) = 4 + 4 cosé + cos24. It give x = 497, y = 207 and
z = 367, not satisfying the inequality (1). The same
example disproves the other suggested inequality:

X +y 2 22z. chsecessasaanans (2)

QUOTATION CORNER 54
Whatever you do, do it with conviction.

—— Sir Thomas Beecham.
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KIRKMAN’S SCHOOLGIRLS

In 1850 T. P. Kirkman, writing in the Lady’s and Gentleman’s
Diary, introduced his problem about schoolgirls. There are 15
girls and every day they go for a walk, three abreast, in a
column of five ranks. Thus each girl has two companions (i.e.
those in the same rank of three) each day; can the pattern of
their walks be arranged so that in a week each girl has each of
the other fourteen as a companion just once? The answer is
that it is possible. This problem was solved in 1862, and
since then the various solutions have been analysed and

classified.

An elaboration of the problem may be of interest. The
traditional old English school term was of 13 weeks, and so the
girls had 91 walks in a term, and altogether 455 triples of girls

walked together in a rank of three. But 455 is equal to the

15
3

triples that can be chosen from 15 girls.

binomial coefficient ( ), which is the number of different

Can the walks be arranged so that each of the 455 possible
triples comes together just once in a term? This is a question
about what in the lanqguage of the subject are called "balanced
incomplete block designs". The dquestion can be made more
difficult by asking that in each week the walks should satisfy
Kirkman‘’s condition of each girl walking once with each of the

others.
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HALF INTEGER GAUGES

Long ago and far away (note that the Editor is not claiming
this little bit of probability theory to be socially relevant)
aircraft were being built in accordance with what was called
"stressed skin construction”. The required strength and
stiffness were obtained largely from the aircraft skin, which was
of aluminium sheet. The sheets were produced in a rolling mill,
and their thicknesses were described by the Birmingham Wire Gauge

scale, for instance:

Gauge number 8 9 i0 11 12 13 14 15

Thickness, ins. |.168|-148|.134|.120|+109|.096].083].072

(The thicknesses are roughly in geometric progression)

In the aircraft industry it was only the integer-numbered
gauges that were used; to obtain sheet of any other thickness

a special order had to be placed with the rolling mill.

In the designing of aircraft, certain calculations were made
to find what thickness of metal was required for each part of the
skin; the designer then specified the (largest) gauge number
that would give the required thickness; for instance, if the
calculations indicated 0.090 inches then the designer would call

for 13-gauge sheet (0.096" thick).

The thickness actually used therefore was more than had been
calculated to be necessary, by a random amount of up to 12%.
It might reasonably be supposed that on fhe average the skin of
the aircraft was about 6% thicker than was needed according to

the stress calculations.
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The suggestion was made that the rolling mills and the
factory stores should make available sheets of half-integer as
well as integer gauge numbers, for instance 8% gauge (0-156"),
9% gauge (0.141"), etc. If this were done then (it was
claimed) the amount of unnecessary metal used would on the
average be 3% instead of 6%. Such a saving‘might be enough to
justify the extra work involved in having twice as many different

thicknesses of sheet metal available in the factory.

It would be interesting to have some comment on the belief
that the use of half-integer gauges would save 3% of the metal

without increasing the risk of structural failure.

For those not familiar with engineering, the calculation of
stresses in aircraft is far from accurate, for instance there is
practically no data on what turbulence might be found in a heavy
thundercloud. For such reasons engineers use a large "factor
of safety" in various stages of design; so that in a new
aircraft, flown in accordance with the rules, in reasonably good
weather, the actual local stress in any part of the skin probably
never reaches as much as one tenth of the ultimate strength of

the nmetal.
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