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The history of the James Cook Mathematical Notes (JCMN) is
that the first issue (a single foolscap sheet) appeared in
September 1975, then others at irregular intervals, to number 17
in November 1978. JCMN settled into the routine of three issues
per year from 1979 to 1994; but from Issue 66 (April 1995) at

the start of Volume 7, it has been irregular, appearing when

enough contributions are available.

The issues up to number 31 (May, 1983) were produced and
sent out free by the Mathematics Department of the James Cook
University of North Queensland, of which 1 was then the
Professor. The arrangement was beginning to be unsatisfactory,
and in October 1983 I started producing the JCMN nmyself and
asking readers to pay subscriptions. In October 1992 it had
become clear that the paying of subscriptions by readers is an
inefficient operation. Bank charges for changing currency and
for international transfers, with postage, together absorb most
of the initial input of mnoney. Therefore we abandoned
subscriptions as from issue number 60 (January, 1993). I now
ask readers only to tell me every two years if they still want
to have JCMN. To those who want to give something in return
for the JCMN, I ask them to make a gift to an animal welfare
society in their own country. The animals of the world will

be grateful and so will I.

Contributors, please tell me if and how you would like your

address printed.
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PAUL ERDOS

Regretfully we record the death of Paul (or Pal) Erdds at
wWarsaw on 21st September, 1996. We shall not attempt to match
the obituaries that will appear in other journals, but we
gratefully note that Paul was a JCMN reader and contributor for

many years.

FOURIER TRANSFORM (JCMN 69, p.7100)
T. C. S. Tao
(UCLA, 405 Hilgard Avenue, Los Angeles, CA 90095-1555, USA)

The question was to find the Fourier transform of the

function l%?i?l

Lemma If s is a complex number with real part between 0 and
1, then the Fourier transform of f(x) = |x|s-1 is
F(¢) = 2 cos(ws/2) T(s) (2m)~° le|™S.
Proof By scale invariance, we see that the Fourier transform
F must be an even distribution, homogeneous of degree -s.

Since s has real part between 0 and 1, this means that F(¢)

must be a constant multiple of |5|-s. The constant (above)
can be justified formally by contour integration. We may
assume that ¢ is positive. The integral

{--]
J £(x) e"zﬂle ax
-c0
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is conditionally convergent at infinity and can be broken up

into two parts. The contribution of the positive real axis,

o0
[ =
0

is equal to the integral of the same function on the negative

s-1 e-2ﬂ1x£ ax,

o
imaginary axis, i.e. j (—i.)s—l x
: 0

s-1 e—ZWXE (-i) ax,

where (-i)s"1 is defined as exp(—(s-l)wijz). By the
integral definition of the Gamma function, the above integral
is Jjust exp(-s7i/2) (2'€)—s r(s). similarly, the
contribution to the Fourier transform from the negative real
axis is exp(s¥i/2) (zrf)-s r(s). Adding the two

contributions together gives the result.

Differentiating with respect to s the above Fourier

transform, we see that the Fourier transform of

d s-1 s-1
4 x|S7t = x| oglx|
is %E (2 cos(lg) T(s) (2m) "% |£|_S). Evaluating this
explicitly at s = %, and using the facts that r(%) = /x and
’
E.__(_l—é-z-—)-=--'—210g2,

r(1/2)
: . -1/2 .
we obtain that the Fourler transform of |x| log|x| is

- x17H? 1oglx| - K 1x| 72,

where K = % + log(2r) + 2 log 2+ 4y = B5-372...
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DATES

Most people understand that we call this year 1996, or
perhaps A.D. 1996; but our present system of dates is relatively
modern. Up to about a thousand years ago most of Europe
reckoned dates by the number of years from the foundation of the
city of Rome, the number of a year was described as Ab Urbe
Ccondita, abbreviated to A.U.C.

In A,U.C. 707 (described nowadays as 47 B.C.) Julius Caesar,
who then held the position of Pontifex Maximus in Rome, engaged

the Egyptian astronomer Sosigenes of Alexandria to set the

calendar in order. Previously the number of days in a year had
been decided each year by the magistrates or priests, and the
months had got out of step with the seasons, the end of December
A.U.C. 707 was in late autumn instead of mid-winter (by our
modern reckoning it would have been October 12th). To put
things right, the year A.U.C. 708 (46 B.C.) was given two extra
months, making for the year a total of 445 days, it became known

as the "year of confusion". (A reference may be found in the

Letters of Cicero). From then on (from A.U.C. 709 or 45 B.C.).

the numbers of days in each month were fixed, and every fourth
year was to be a leap year, differing from other years by having
a repetition of February 23rd, the sixth day before the Kalends
of March. This gave an average of 365% days per year, the
modern estimate is that it should be 365.2422, the number of mean
solar days to the tropical year.

Also Julius Caesar ordered that the year should start at the
beginning of January. The previous confusion about when the
year should start can be explained by the old Roman calendar, it
was said to date from Romulus, and consisted at first of only 304
days, in 10 lunar months from March to December, with a blank
period in the winter; the two Etruscan months of January and
February were added in the reign of Numa, originally January at
the beginning of the year and February at the end, but these two

months were interchanged about A.U.C.452.
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The resulting "Julian Calendar" started operating at the

‘beginning of A.U.C.709 (45 B.C.) and was in use in most of Europe

until the adoption, gradually over the 8th, 9th and 10th
centuries, of our present A.D. system of dating. There were
changes in the names of the months, Quintilis and Sextilis
becoming July and August, and small adjustments in the lengths
of the months, the original plan of Julius Caesar was to make the
number of days in each month, January, February, etc. to be 31,
29, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, respectively. except
for February in Leap years. The other change in the Julian
calendar in that time was that the beginning of the year changed
from January lst to March 25th; I have not been able to find out
how, why or when that change came about.
N

A monk called Dionysius Exiguus, who was in Italy between
about A.U.C 1246 - 1290, or A.D. 493 - 537, had the idea that
instead of counting years from the foundation of Rome we should
count them from the birth of Jesus Christ. He thought that the
birth was on 25th December in the year A.U.C. 753. In this
proposed change there was to be no year zero (the Roman numeral
system did not have a notation for zero) and so A.U.C 753 became
1 B.C.; and A.U.C. 754 became 1 A.D. St Matthew’s Gospel is
clear on the date of Christ’s birth and the massacre of the Holy
Innocents being in the reign of Herod the Great, and modern
historians mostly agree on dating the death of Herod as in late
March or early April in A.U.C. 750 = 4 B.C., so that Dionysius
Exiguus was mistaken in his historical research. It is too
late now to correct his mistake, and no doubt we must continue
to describe this year (A.U.C. 2749) as A.D. 1996, but people keen
on celebrating the second millenium might consider doing so this

year or next year, and not in four or five years time.

Thanks are due to Donald Simpson for his help with Roman

history.
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DISTRIBUTION FREE METHODS IN NAVIGATION
John Parker
(Oak Tree Cottage, Reading Road, Padworth Common, RG74QN)

Navigation is the art, or science, of conducting a vessel
from one place to another. The navigator’s task is carried out
via intermediate position determinations (e.g. pinpoints or
multi-position-line fixes). A well known instance is the so-
called "“cocked hat", which is the triangle formed by three
position lines. For good reasons navigators are taught to try
to choose the three lines such that the resulting triangle is as
The adopted fix is taken

The (easily constructed)

near as possible equilateral.

somewhere inside the triangle.
incentre is a good enough choice, but now that we have quick,
expertly programmed methods of constructing the symmedian point
(JCMN 40, p.4008) this rough choice, though adequate, is
outmoded.

People became interested not only in the position itself but
also in its error. The classical approach was to obtain a
region (centred on the fix) such that one can say that there is
some assigned probability (usually 0.5 or 0-95) that the unknown
true position lies inside the region. This raises problems
about which we must say a wee bit.
two assumptions; firstly that the navigator’s position lines
conformed to the (2ero mean) Gaussian law, and secondly that the
parameters of the three distributions were known a priori.
Very often it was assumed that the several lines shared the same
parameter (i.e. they had the same standard deviation). In all
cases the error zones are ellipses. The possibility that all
lines are subject to a common, unknown, systematic error is ruled
In air navigation this is

This early approach made

out in distribution free theory.
acceptable since the random errors swamp the generally small
systematic ones. At sea this is often not the case, but the
effect of unknown systematic error can be catered for by choosing
position lines which give a "good geometry", i.e. the directions
of the lines are reasonably evenly distributed in azimuth.

%
goes much further.
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Both assumptions can easily be challenged but there are

‘areas in modern navigation, Kalman Filter work being a prime

example, where it is necessary to make them.

Distribution free methods do not need either assumption.
Their use was first noted by H. E. Daniels in his pioneering
article (The Theory of Position Finding, Journal of the Royal
Statistical Society, 13B, p.126, 1951) where error zones for the
general n-line fix were presented. A simpler approach to this
method is given by Terry Tao (JCMN 56, p.6076).

In the particular case n = 3 (Cocked Hat) this leads to the
famous Admiralty Manual of Navigation theorem, based on minimal
assumptions and described in JCMN 55, p.6033. It states that
the probability that the true position lies inside the cocked hat
is 1/4. Recent developments are due to our Editor who (in my
view) has wrapped up the entire n = 3 case. Though the phase
space can be regarded as broken down into 7 regions (three corner
regions, three side regions and the interior of the hat), the
navigator is seldom interested in any except the interior, though
as a rough guide it could be mentioned (JCMN 56, p.6076) that the
other six regions each carry a probability of 1/8. But Basil
Choosing the incentre as a point of
reference, he delineates the several probabilities of the true
position being within each of the six sectors of the interior of
the cocked hat; these are all equal to 1/24.
the incentre as point of reference has already been noted.

The choice of

However, navigators can, and should, query the validity of
these results.
"size" of a cocked hat, as measured by its area, or, preferably,

Because of random position line errors, the

by the inradius, varies appreciably from occasion to occasion,
even if the observations are all taken by the same observer and
the environmental conditions stay the same. The "luck of the
draw" will sometimes lead to a small hat, and an unfortunate
(random) collection of "pluses and minuses" will lead to a big
one. It is not correct to estimate a probability of 1/4 of
being inside the hat in both cases.
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The crux of the matter is this. With no information at
all, and making no assumptions beyond those listed in JCMN 55,
p.6033 (incidentally, blunders, though not systematic errors, are
accommodated within these assumptions) one can confidently assert
the 1/4 probability result plus the more refined breakdown
developed in JCMN 69, p.7085. But the situation is transformed
as soon as the navigator achieves his single hat, one of all the
possible hats that could have been attained but were not. The
navigator must make his inferences, if any, on the basis of his
actual cocked hat, possibly using his (often very rough)
knowledge of the likely observational errors in his three lines.

In the Admiralty Manual of Navigation theorem there is no
such thing as a "big" or "small" hat. A "big" hat simply means
that the (a priori unknown) intrinsic errors of the lines are
large, and conversely for a "small" hat.

It is right to ditch the theorem after, though not before,
the navigator has resolved and plotted his three position line

observations.

-

—r
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SPHERICAL TRIANGLES
(JCMN 68 p. 7072)

In JCMN 68 the question was asked whether the mid-points of
the sides and the feet of the altitudes of a spherical triangle
There is an analytic

are on a conic. The answer is YES.

proof as follows.

Let ABC be a spherical triangle and let A’B’C’ be its polar
triangle. Let K, L and M be the mid-points of BC, CA and AB
respectively, and similarly define K’, L’ and M’. Let H be the
common orthocentre, and let the altitude A’AH meet BC at D and
meet B’C’ at D’, and define E, E’, F and F’ similarly. Let a,
q and c be the sides, and A, B and C be the angles, of the first
triangle. Then a’ = ¥ - A, b/ =5 - B, ¢’ = ¥ - C, are the
sides of the polar triangle; also A’ =¥ - a, B’ = ¥ - b, and
C’ = 7 - c are the angles. It is often convenient to put p =
cos a, q =cos band r = cos c.

4

A
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It is for the triangle A’B’C’ that we are going to prove
our result.

The following coordinates are easily calculated.
Vertex A: (1, r, q) vertex B: (r, 1, p) vertex C: (q, p, 1)
A’: (1, 0, 0) B‘: (0, 1, 0) c’: (0, 0, 1)
The altitude AA’HDD’ has equation: qy = rz
Foot D’ of altitude to B’C’:
Mid-point K’ of B’C’:
E’: (cos ¢, 0, cos a) F’: (cos b, cos a, 0)
L’: (sin ¢, 0, sin a) M’: (sin b, sin a, 0)

(0, r, g) = (0, cos ¢, cos b)
(0, sin ¢, sin b)

These six points are alllon the conic:

x%sin 2a + yzsin 2b + z%sin 2c
= 2yz sin(b+c) + 22X sin(c+a) + 2xy sin(atb).

The matrix of this guadratic form may be written as the
symmetric part of the product

cos a 0 0 2 -1 -1 sin a o] (o]
0 cos b 0 -1 2 -1 0 sin b 0
0 0 cos € -1 -1 2 0 0 sin ¢
New questions arise. Is the conic a circle? What is
the centre of the conic? (A point P is called the centre of

a conic I on a sphere when the polar of P with respect to T is
the great circle orthogonal to P)

************************t***********

We need to look into the geometry of small circles on the
sphere. In plane geometry with Cartesian coordinates it is
easy to see if a quadratic equation represents a circle, but
with trilinear coordinates it is more difficult; knowing the
circular points is helpful.

What can we do in spherical geometry? Recall the matrix
M (JCMN 69 p.7094), relating the normalized coordinates x, Y,
2z, of any point with the coefficients of the unit vectors a,
B, v, that specify the vertices A, B, C, of the triangle of
reference.

S’ e
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Moo= 1 r q
r 1 p
q P 1
det M1 = 1 + 2pgr - p? - a® - r?
- a-gha-rd - (-an?
= sinzb sinzc ~ (sin b sin ¢ cos A)2 = Az,
where A = sin b sin c sin A. This A is not twice the area

of the triangle, but it is a related quantity, a4/6 is the

volume of the tetrahedron OABC. Also
a = 4 sin% sing sing cot R where R is the circumradius.
‘(There is the plane analogy, area = %%9 for plane triangles)
M = 1 - p? Pq - I pr - q | 872

pq - ¢ 1- q2 qr - p

pr - 4 qr - p 1 - r2

A circle of radius , about the vertex A of the triangle
of reference has the non-homogeneous equation x = cos p. To
set up the homogeneous equation, let

S = 1 0 0
0 0 0
0 0 0

The circles with centre A form the pencil of conics
KT(AH + us) x = 0.

The condition that such a conic be singular is (in
general) a cubic in the ratio Ar:u, but two of the roots are
the trivial » = 0 repeated (corresponding to the great circle
B’C’ with equation x = 0). The interesting root is given by
A+ p=20, corresponding to the circle of zero radius, for
which the guadratic equation has the matrix:

2 2 '
q° + r° - 2pqr Pg - T pr - g
pq - T 1-q gr - p
pr - q qr - p 1 -2

This matrix is singular (top row + r X second + g x third
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= 0) and so the quadratic factorises. This circle of zero
radius consists of the two great circles:
x(r-pg+iga) - y(l-qz) + z(p-qr-ia) = 0, and
x(r-pg-igs) - y(l-qz) + z(p-qr+ia) 0.

The point (1, -1, g—%—g—%—ié) is on the great circles
x(r-pg-iga) + Y(qz—l) + z{p-qr-ia) = 0 and
x(g-pr-ia) + y(p-qr+ira) + z(rz—l) = 0, but not on

x(p2-1) + y(r-pg-ia) + z(g-pr+ipa) = 0.
Wwe seem forced to the conclusion that there is nothing on

the sphere analogous to the circular points of the projective
plane.
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ELEMENTARY NUMBER THEORY

Take any numbers b and n, and look at the prime factors p

of p" + 1. In a lot of cases it may be observed that

p = 1 (mod 2n).

Can anyone offer an explanation?

Here is numerical evidence. In each table b is fixed,
n §s in the top row, and the prime factors p of b" + 1 are
given in the third and fourth rows, separated into those that

are = 1 and those = 1 (mod 2n).

b =2
n 1| 2 3 4 5 6 7 8 9
b +1 | 3|5 9 17 | 33 | 5 | 129 | 257 513
1. 3, 3 3 5 3 3, 3,13
e 3ls 17 | 11 | 13 43 | 257 19
n 10 11 12 13 14 15
an + 1 | 1025 | 2049 | 4097 | 8193 16385 32769
"1 5, 5 3 17 3 5 3, 3, 11
o I 41 683 241 | 2731 | 29, 113 331
n 16 17 18 19 20
2r + 1 | 65537 | 131073 262145 | 524289 | 1048577
1 3 5, 13 3 17
S 65537 43691 | 37, 109 | 174763 61681
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n 21 22 23 24
2" + 1 2097153 4194305 8388609 16777217
- 1 3, 3 5 3 257
P = 1 43, 5419 397, 2113 2796203 97, 673
n 25 26 27
2™ + 1 33554433 67108865 134217729
o - 1 3, 11 5 3, 3, 3, 3, 19
= ] 251, 4051 53, 157, 1613 87211
n 28 29 30
2" + 1 268435457 536870913 1073741825
o - ] 17 3 5, 5, 13, 41
- ] 15790321 59, 3033169 61, 1321
n 31 32 33
2" + 1 2147483649 4294967297 8589934593
o - 1 3 3, 3, 683
= ] 715827883 641, 6700417 67, 20857

The tables above illustrate the case of b = 2, now consider

the case of b = 3, the tables are drawn up in the same way.

b=23
n 1 2 3 4 5 6 7
3" + 1 4 10 28 82 244 730 2188
LI 2, 2 2 2, 2 2 2, 2 2, 5 2, 2
P
= ] 5 7 41 61 73 547
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n 8 9 10 11 12
3 + 1 6562 19684 59050 177148 531442
= 1 2 2, 2,7 2, 5, 5 2, 2 2, 41
P
=1 17, 193 19, 37 1181 67, 661 6481
n 13 14 15 16
" + 1 1594324 4782970 14348908 43046722
w1 2, 2 2, 5 2, 2,7 2
p
s 1 398581 29, 16493 31, 61, 271 21523361
t
n 17 18 19
3" + 1 129140164 387420490 11622261468
L 2, 2 2, 5 2, 2
P
=1 103, 307, 1021 73, 53713 2851, 101917

n 20 21 22

3n + 1 3486784402 1046035204 31381059610

w1 2 2, 2,7,7 2, 5

= 1 41, 42521761 43, 547, 2269 5501, 570461

There is not much point in showing a table for b = 4,

because it is essentially included in the data for b = 2.

Therefore we continue with a table for b = 5.

b=5
n 1 2 3 4 5 6
50 + 1| 6 | 26 126 626 | 3126 | 15626
-1 2 2|2, 3,3 2 2, 3 2
P 3| 13 7 313 | 521 13, 601
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n 7 8 9 10
5 + 1 78126 390626 1953126 9765626
= 1 2, 3 2 2, 3, 3, 3,7 2, 13
P = ] 29, 449 17, 11489 51467 41, 9161
n 11 12 13
5" + 1 48828126 244140626 1220703126
- 1 2, 3 2 2, 3
P -] 23, 67, 5281 313, 390001 5227, 39823
n 14 15 16
5" + 1 6103515626 30517578126 152587890626
- 1 2, 13 2, 3, 3, 7, 521 2
P = ] 234750601 61, 7621 2593, 29423041

Finally, a few figures for b = 6, to show that it makes no

difference if b should be a prime or a composite number.

n 7 8 9 10
6" + 1 279937 1679617 10077697 60466177
" 1 7, 7 7, 31 37
P -] 29, 197 1679617 46441 241, 6781
n 11 12 13
6™ + 1 362797057 2176782337 13060694017
= 1 7 7
i =1 51828151 1297, 1678321 53, 937, 37571
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PARADOX

This is about generalized functions. We start with a
set of "test functions" such that every test function f(x) is
very smooth and very small at infinity, and has a derivative
f’(x) and a Fourier transform F(x), which are also test
functions. An inner product (f|g) of test functions is the
integral of the product in the sense of elementary calculus,
there is no trouble about integrability or convergence.

There is "weak convergence", with tn ~ f when (rn - flg) -0

for all test functions gq.

The space of generalized functions is a completion under
weak convergence. If f(x) is a generalized function then
xf(x), £’(x), £(ax+b), and the Fourier transform F(x) may be
defined in the obvious way, and they are all generalized
functions (each is defined by the rule that gives its inner
product with any test function). An "ordinary function" is
any f(x), absolutely integrable in every finite interval, and
small enough at infinity that its product with any test
function is absolutely integrable. Every ordinary function
f (it may be proved) can be regarded as a generalized
function, its inner product with any test function being the
integral of the product. But there are generalized
functions not expressible as ordinary functions, for example
Dirac’s delta function é(x). Its inner product with any
test function f is easily described as £(0), but it is not the
integral of anything times f(x) in the sense of ordinary

integration.
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Now for the @ifficulties. consider f(x) = log Ix|, it
is an ordinary function, therefore a generalized function, so

that it has a Fourier transform F(x).

(-] -]
Because I log |yl e 2TIXY gy = 2 J log y cos 2mxy dy
-0 0
o
(taking x > 0) (putting 2mxy = 8) = %% I §i%—i de = %%
it is tempting to think that F(x) = -1/}2x|. But there are

objections, (a) we have used a non-absolute integral, (b) the
function that we have found is not integrable in any interval
containing the origin, and (c) the conclusion does not fit the

rule that f(x/k) (any X > 0) has transform kF(kx).

on the other hand, there is something to be said for the
suggested -1/]2x|, when it is multiplied by 2irx it gives the
function -ix sgn(x) which Qe know to be the transform of 1/x.
And 1/x is the derivative of log|x|. The rule is that if f
has transform F then f!'(x) has transforn 20ixF(x). if
this -1/|2x| means anything at all then it is partly right in
the sense that when multiplied by x it gives the right answer.
Could we put things right py adding a term that will give zero
when multiplied by x? But the only generalized functions
that give zero when multiplied by x are the multiples of &(x).
and F(x) = -1/]|2x]| - C&(x) cannot be right because it fails

the condition that f(x/2) should have transform 2F(2x).

The use of the integral expression for the transform, as
above, is not correct, though it often gives the right answer.

The proper way is to use the integral expression only to
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Qefine the transform of a test function, and then the
transform F of any generalized function f is defined by (F|g)

= (f|G) for any test function g with Fourier transform G.

There are general rules, if f is a generalized function
then its derivative f’, its transform F, and xf(x) are defined
by (£7]g) = -(£]g’), (Flg) = (£|6), and (xf(x)|g) = (f|xa(x)),
for any test function g. The Fourier transform of f’ is
27ixF(x), and of xf(x) is iF/(x)/(2n). Recall the theorem
mentioned above about "ordinary" functions, it applies to
log|x| but not to 1/x (which is not integrable in any interval

containing the origin).

Now the paradox may be expressed a little differently.
Let f be the generalized function given by the ordinary

function log|x|. It has a transform F.

The derivative f’(x) is 1/x, (as in M. J. Lighthill’s
1958 book An introduction to Fourier analysis and generalised

functions, this equation is taken as the definition of the

generalized function 1/x). Then xf’(x) = 1, which has
transform §(x). But £’ has transform 2wixF(x), and so
xf’(x) has transform = -(d/ax)(xF(x)). Therefore
(d/dx) (xF(x)) = - §(x). Because f and therefore F are even

functions, xF(x) is an odd function, and the only odd function
with derivative ~-6(x) is xF(x) = (-1/2)sgn(x). Solving
this for F, we get ‘

F(x) = (-1/2)/|x} + some multiple of §(x).

(Here the generalized function 1/|x| is defined as the
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derivative of the ordinary function sgn(x)logix}|)

Thus we find as before

F(x) = - 5+§T - cé(x)

and the unknown constant C can be found numerically by taking
the inner product with some convenient test function. Choose
S(x) = exp(-ﬂxz) which is its own transform.

(£]8) = (FIS) = - 3 (1/|x]Is(x)) - c(6]s)
= 1 (leglx|san()|s’(x)) - c.
The inner product of an ordinary function with a test function
is expressible as an integral, so that:
cC =~ Jmloglxls(x)dx + % Jmloglxlsgn(x)S'(x) ax
-

-
- ] -]

= - 2 I log x S(x) dx + J log x S’(x) 4x
0 [0}

These integrals obviously exist, but evaluation is a
little tricky (try them on your third year calculus class!).
It helps to establish first the lemma:

00
I log x e X ax = ~y, where vy is Euler’s constant, +5772157.
0
The integrals can be found to be:

o0
2 I log x exp(-7x2) dx = - v/2 - % log(4m) = - 1.55412,
0

00
J log x (-27x) exp(-uxz) dx = v/2 + % log # = 860973,
0
and so C = vy + log (27), and for our Fourier transform we get

F(x) = - E%YT - (log (27) + 7) 6(x).

There remains the paradox that if k > 0 and f has Fourier
transform F then f(x/k) should have transform KF(kx). In

our case kF(kx) = F(x) but f(x/k) = f(x) - log k.

-7123-

Now, the happy ending — Here is the explanation of the

difficulties, thanks to T. C. S. Tao.

The trouble is with the 1/|x|. Is there any such
thing? It is not an ordinary function, for it is not
integrable at the origin. We may of course define it to be

anything that we choose, but if we define it to be the

derivative of the ordinary function (log x)(sgn x), then it

means something rather strange. With this definition, we do
not find the expected result that if k > 0 then (1/k)(1l/|x]|) =
17| kx| . In fact 1/|kx| = (1/k)(1/|x]|) - 2 log k &(x).

The definition of 1/x as the derivative of log|x| does not run

into this kind of difficulty.

The best that we seem able to produce for the Fourier

transform of log|x| is

- g, dealxisah X _ (1og(2m) + 1) 6(x).

Clumsy, probably useless, but true!

Note that M. J. Lighthill in his book chooses (Definition
15, p.39) to make 1/|x| a many-valued function; this avoids the
paradox, but at the cost of introducing other difficulties.
He gives (Example 21, p.39) the Fourier transform of log|x| to
be equal to -1/(2|x]|), but notes that this is true for only one

of the possible values of 1/|x|.




