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1 Introduction

The main object of this report is to state and prove the Littlewood-Paley
theorem, which is a powerful tool for determining the “size” of a function
in Lp by breaking it into pieces in a particular way; consequently it is useful
for studying the boundedness of operators on Lp spaces. We then apply this
to prove the Hörmander multiplier theorem. In order to do this, we first
give some results about maximal functions, and singular integral operators.

This standard material can all be found in [3], although we often favour the
more modern presentation in [1].

2 Maximal functions

Given a locally integrable function f : Rn → R, its Hardy-Littlewood max-
imal function M f is defined by

M f (x) = sup
r>0

1
|B(x, r)|

∫
B(x,r)

| f (y)| dy.

Theorem 1. [3, Ch I, Thm 1]

(a) The operator M is weak-type (1, 1), i.e.

|{x : M f (x) > α}| ≤ An

α

∫
Rn
| f (x)|dx.

(b) For 1 < p ≤ ∞, the operator M is strong (p, p), i.e.

‖M f ‖p ≤ Ap,n ‖ f ‖p .

1



Proof. We begin with (a), letting Eα = {x : M f (x) > α}. For x ∈ Eα, we
can choose r > 0 so that Bx = B(x, r) satisfies

1
|Bx|

∫
Bx

| f (y)| dy > α, (2.1)

otherwise we cannot have M f (x) > α. It follows that |Bx| < 1
α ‖ f ‖1 for x ∈

Eα. Now Eα ⊆ ∪x∈Eα Bx, and using a covering lemma (Appendix, Theorem
11) we can extract a sequence of mutually disjoint balls, {Bk} satisfying

∞

∑
k=0
|Bk| ≥ C|Eα|, (e.g. C = 3−n). (2.2)

Applying (2.1) followed by (2.2), we have∫
∪Bk

| f (y)| dy > α ∑
k
|Bk| ≥ αC|Eα|.

Since ‖ f ‖1 ≥
∫
∪Bk
| f (y)| dy, we obtain (a).

To prove (b), note that this is obvious when p = ∞ since

M f (x) ≤ sup
r>0

1
|B(x, r)|

∫
B(x,r)

‖ f ‖∞ dy = ‖ f ‖∞ .

So M is weak-type (∞, ∞) by definition, since it is strong (∞, ∞). This
allows us to apply Marcinkiewicz interpolation (Appendix, Theorem 12),
establishing (b) for 1 < p < ∞.

The following bound involving the maximal function will later prove to be
useful.

Theorem 2. [1, Prop 2.7] Let φ be a function which is positive, radial, decreasing
and integrable. Then with φt(x) = t−nφ(x/t),

sup
t>0
|φt ∗ f (x)| ≤ ‖φ‖1 M f (x).

Proof. First we assume that φ is a simple function, i.e. φ(x) = ∑j ajχB(0,rj)(x)
with aj > 0 since φ is positive. Then

|φ ∗ f (x)| =
∣∣∣∣∣∑j

aj|B(0, rj)|
1

B(0, rj)
χB(0,rj) ∗ f (x)

∣∣∣∣∣ ≤ ‖φ‖1 M f (x)

since ‖φ‖1 = ∑ aj|B(0, rj)|. An arbitrary function φ satisfying the hypothe-
ses can be approximated by a sequence of simple functions which increase
to it monotonically, so the estimate |φ ∗ f (x)| ≤ ‖φ‖1 M f (x) will hold.
Since each φt is also positive, radial, decreasing and has the same L1 norm
as φ, we obtain the result.
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3 Singular integrals

3.1 The Calderón-Zygmund Theorem

Theorem 3. [1, Thm 5.1] Let K be a tempered distribution on Rn which coincides
with a locally integrable function on Rn \ {0}, satisfying

(i) |K̂(ξ)| ≤ B,

(ii)
∫
|x|>2|y| |K(x− y)− K(x)|dx ≤ B, y ∈ Rn.

Then the operator T : f 7→ K ∗ f is weak-type (1, 1) and strong (p, p), 1 < p <
∞, i.e. we have

‖T f ‖p ≤ A ‖ f ‖p

where the constant A depends only on p, B and the dimension n.

Remark. Property (ii) is known as the Hörmander condition, and may be
deduced from the stronger condition |∇K(x)| ≤ C|x|−n−1, via the mean
value theorem.

Proof. That T is bounded on L2 follows from property (i). We obtain the
weak-type (1, 1) result using (ii) as described below, then apply Marcinkiewicz
interpolation to get the strong (p, p) result for 1 < p < 2. For 2 < p < ∞,
we use duality; the adjoint operator T∗ has kernel K(−x) which satisfies
the conditions of the theorem.

To obtain the weak-type (1, 1) result, we form the Calderón-Zygmund de-
composition at height α, giving Rn = F ∪ ∪∞

j=1Qj and f = g + b (see Ap-
pendix, Theorem 13). The problem of showing |{x : |T f (x)| > α}| ≤
C
α ‖ f ‖1 then reduces to estimating each of Tg and Tb in this way.

For Tg, we use the properties of the Calderón-Zygmund decomposition to
get ‖g‖2

2 ≤ Cα ‖ f ‖1. Since T is bounded on L2, we have the weak (2, 2)
inequality hence

|{x : |Tg(x)| > α}| ≤ B2

α2 ‖g‖
2
2 ≤

C
α
‖ f ‖1 .

For Tb, we consider the cubes Q∗j having the same centre cj as Qj, but ex-
panded 2n1/2 times. Setting bj = bχQj we have Tb(x) = ∑j Tbj(x) where

Tbj(x) =
∫

Qj

K(x− y)bj(y) dy =
∫

Qj

(
K(x− y)− K(x− cj)

)
bj(y) dy
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since by construction,
∫

Qj
b = 0. Hence with F∗ = (∪Q∗j )

c,

∫
F∗
|Tb(x)| dx ≤∑

j

∫
F∗
|Tbj(x)| dx

≤∑
j

∫
x 6∈Q∗j

|Tbj(x)| dx

≤∑
j

∫
x 6∈Q∗j

∫
Qj

∣∣K(x− y)− K(x− cj)
∣∣ |bj(y)| dy dx.

Now if x 6∈ Q∗j , y ∈ Qj, simple geometry shows |x− cj| ≥ 2|y− cj|. Defin-
ing x′ = x− cj, y′ = y− cj, this gives∫

x 6∈Q∗j

∫
Qj

∣∣K(x− y)− K(x− cj)
∣∣ dx ≤

∫
|x′|>2|y′|

|K(x′ − y′)− K(x′)|dx′ ≤ B

due to (ii). Thus∫
F∗
|Tb(x)| dx ≤ B ∑

j

∫
Qj

|b(y)| dy ≤ C ‖ f ‖1 , (3.1)

where the last inequality comes from using the properties of the Calderón-
Zygmund decomposition. So

|{x : |Tb(x)| > α
2}| ≤ |{x ∈ F∗ : |Tb(x)| > α

2}|+ |(F∗)c| ≤ c
α
‖ f ‖1 ,

where the first term is bounded due to (3.1), and for the second term the
bound comes from the definition of (F∗)c and a property of the Calderón-
Zygmund decomposition.

Combining the bounds for Tg and Tb with the fact that f = g + b, we get
the weak-type (1, 1) result for T.

3.2 Truncated integrals

The Hilbert transform H is defined for f ∈ S(R) by

H f (x) =
1
π

lim
ε→0

∫
|y|>ε

f (x− y)
y

dy.

This is not directly treated by the previous theorem, but we can replace the
hypothesis |K̂(ξ)| ≤ A in order to address this.

Theorem 4. [3, Ch II, Thm 2] Suppose the kernel K satisfies the conditions
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(i) |K(x)| ≤ B|x|−n, |x| > 0,

(ii)
∫

R1<|x|<R2

K(x) dx = 0, 0 < R1 < R2 < ∞,

(iii)
∫
|x|>2|y|

|K(x− y)− K(x)| dx ≤ B, |y| > 0.

For f ∈ Lp(Rn), 1 < p < ∞, and ε > 0, let

Tε( f )(x) =
∫
|y|>ε

f (x− y)K(y) dy.

Then
‖Tε f ‖p ≤ A ‖ f ‖p

where the constant A is independent of f and ε.

Also, for each f ∈ Lp(Rn), limε→0 Tε( f ) = T( f ) exists in Lp norm; the operator
T so defined is also strong (p, p), 1 < p < ∞.

Proof. Defining Kε(x) = K(x)χ{|x|≥ε}, we have Kε ∈ L2(Rn) and it can be
checked that Kε also satisfies conditions (i)-(iii), with bounds not greater
than CnB. Using these properties, it can be shown [3, II §3.3] that for ε > 0,

sup
y
|K̂ε(y)| ≤ CnB.

Thus we can apply Theorem 3 to get the strong (p, p) result for Tε.

Now write f ∈ Lp as f = f1 + f2; with f1 ∈ C1 having compact support,
we can take ‖ f2‖p as small as we please. We have that {Tε f1}ε>0 is Cauchy
in Lp since (if ε < ε′ < 1)

Tε f1(x)− Tε′ f1(x) =
∫

ε≤|y|≤ε′
K(y)( f1(x− y)− f1(x)) dy

where the extra f1(x) is introduced thanks to (ii). Note that since f1 has
compact support, this is supported on a fixed compact set S. Now by the
fact that f1 is differentiable, and applying (i), we have that on S,∫

ε≤|y|≤ε′
|K(y)|

∣∣∣∣ f1(x− y)− f1(x)
y

∣∣∣∣ |y| dy ≤ AB
∫

ε≤|y|≤ε′
|y|−n+1 dy = Cε,ε′

where Cε,ε′ → 0 as ε, ε′ → 0. Hence

‖Tε f1 − Tε′ f1‖p ≤
(∫

S
Cp

ε,ε′

)1/p

→ 0 as ε, ε′ → 0.

Finally, because ‖Tε f2‖p ≤ A ‖ f2‖p is as small as we please, we get that
{Tε f }ε>0 is Cauchy in Lp; we call the limit of this sequence T f , and it is
clear that ‖T f ‖p ≤ A ‖ f ‖p.
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Remark. We see that this applies to the Hilbert transform, by considering
the kernel K(x) = 1

πx for x ∈ R1. We have:

(i) |K(x)| = 1
π|x| = B|x|−1,

(ii) |x| ≥ 2|y| =⇒ |x− y| ≥ 1
2 |x|, so∫

|x|≥2|y|

1
π

∣∣∣∣ 1
x− y

− 1
x

∣∣∣∣ dx ≤ 2
|y|
π

∫
|x|≥2|y|

|x|−2 dx ≤ B

(iii)
∫

R1<|x|<R2

1
πx dx = 0 since the integrand is odd.

3.3 Homogeneous kernels

By virtue of the convolution in their definition, the operators which we
have been considering commute with translations. We now look at oper-
ators which also commute with dilations; i.e. setting τε f (x) = f (εx), we
require τε−1 Tτε = T. In terms of the kernel K corresponding to T, this re-
quirement becomes K(εx) = ε−nK(x) for ε > 0. Such K are said to be
homogeneous of degree −n, and may be written as

K(x) =
Ω(x)
|x|n

with Ω homogeneous of degree 0, i.e. Ω(εx) = Ω(x), so that Ω is deter-
mined by its restriction to the unit sphere Sn−1.

Theorem 5. [3, Ch II, Thm 3] Let Ω be homogeneous of degree 0, and suppose

(i)
∫

Sn−1
Ω(x) dσ = 0,

(ii)
∫ 1

0

ω(δ)
δ

dδ < ∞, where ω(δ) = sup
|x−x′|≤δ
|x|=|x′|=1

|Ω(x)−Ω(x′)|.

For f ∈ Lp(Rn), 1 < p < ∞, and ε > 0, let

Tε( f )(x) =
∫
|y|>ε

Ω(y)
|y|n f (x− y) dy.

Then

(a) ‖Tε f ‖p ≤ Ap ‖ f ‖p, for some constant Ap independent of f or ε.
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(b) limε→0 Tε f = T f exists in Lp norm, and ‖T f ‖p ≤ Ap ‖ f ‖p.

(c) If f ∈ L2(Rn) then (̂T f )(x) = m(x) f̂ (x), with m homogeneous of degree 0,
and given for |x| = 1 by

m(x) =
∫

Sn−1

(
πi
2

sgn(x · y) + log
(

1
|x · y|

))
Ω(y) dσ(y). (3.2)

Proof. Conclusions (a) and (b) follow immediately from Theorem 4 once
we show that the conditions on Ω translate into the proper conditions on
K(x) = Ω(x)/|x|n; for details, see [3, Ch II, §4.2].

Part (c) comes from some detailed calculations; see [3, Ch II, §4.3].

Example. The Riesz transforms Rj are given by the kernels

Kj(x) =
Ωj(x)
|x|n , where Ωj(x) = cn

xj

|x| , j = 1, . . . , n.

The Ωj clearly satisfy the conditions of Theorem 5, so the Riesz transforms
are bounded on Lp(Rn), 1 < p < ∞.

3.4 Vector-valued analogues

We remark briefly that the preceding results can be generalised to deal with
functions which take values in a Hilbert space; it is this form of the the-
ory which will be put to use in the following section. For details, see [3,
Ch II §5].

4 Littlewood-Paley Theory

Theorem 6. [1, Thm 8.6] Given ψ ∈ S(Rn) with ψ(0) = 0, let Sj be the operator

defined by (̂Sj f )(ξ) = ψj(ξ) f̂ (ξ) where ψj(ξ) = ψ(2−jξ). Then for 1 < p < ∞,∥∥∥∥∥∥
(

∑
j
|Sj f |2

)1/2
∥∥∥∥∥∥

p

≤ Cp ‖ f ‖p .

Furthermore, if for all ξ 6= 0 we have ∑j |ψ(2−jξ)|2 = C, then also

‖ f ‖p ≤ C′p

∥∥∥∥∥∥
(

∑
j
|Sj f |2

)1/2
∥∥∥∥∥∥

p

.
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Proof. We apply a vector-valued analogue of the singular integral theory to
the operator f 7→ {Sj f }. It is bounded from L2 to L2(`2) since∥∥∥∥∥∥

(
∑

j
|Sj f |2

)1/2
∥∥∥∥∥∥

2

2

=
∫

Rn
∑

j
|ψj(ξ)|2| f̂ (ξ)|2 dξ ≤ C ‖ f ‖2

2 (4.1)

by Plancherel and the fact that ∑j |ψj(ξ)|2 ≤ C since ψ ∈ S and ψ(0) = 0 .

Boundedness on other Lp comes from checking that the Hörmander condi-
tion is satisfied, for which it suffices to show

∥∥∇ψ̌j(x)
∥∥

`2 ≤ C|x|−n−1. This
can be achieved using the fact that ψ ∈ S .

Hence, for 1 < p < ∞, we have the first part of the theorem,∥∥∥∥∥∥
(

∑
j
|Sj f |2

)1/2
∥∥∥∥∥∥

p

≤ Cp ‖ f ‖p .

For the second part of the theorem, note that if we have ∑j |ψ(2−jξ)|2 = C
then (4.1) in fact improves to the equality∥∥∥∥∥∥

(
∑

j
|Sj f |2

)1/2
∥∥∥∥∥∥

2

=
√

C ‖ f ‖2 .

It follows by polarization that∫
Rn

∑
j

Sj f Sjg =
√

C
∫

Rn
f g

and taking f ∈ Lp, g ∈ Lp′ we apply Cauchy-Schwarz to the summation,
followed by Hölder’s inequality, to get∣∣∣∣∫ f g

∣∣∣∣ ≤ C′
∫ (

∑
j
|Sj f |2

)1/2(
∑

j
|Sjg|2

)1/2

≤ C′

∥∥∥∥∥∥
(

∑
j
|Sj f |2

)1/2
∥∥∥∥∥∥

p

∥∥∥∥∥∥
(

∑
j
|Sjg|2

)1/2
∥∥∥∥∥∥

p′

≤ C′

∥∥∥∥∥∥
(

∑
j
|Sj f |2

)1/2
∥∥∥∥∥∥

p

‖g‖p′

by the first part of the theorem, applied to g. Now taking the supremum
over g ∈ Lp′ with ‖g‖p′ ≤ 1 gives the desired result.
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5 Multipliers

Given m ∈ L∞(Rn), we define the linear transformation Tm on L2(Rn) ∩
Lp(Rn) by

(̂Tm f )(x) = m(x) f̂ (x).

We say that m is a multiplier for Lp if, for all f ∈ L2 ∩ Lp, Tm f is in Lp

(Tm f ∈ L2 is automatic) and Tm is bounded, i.e.

‖Tm f ‖p ≤ A ‖ f ‖p . (5.1)

In this case, Tm has a unique bounded extension to Lp, which we also call
Tm. The class of all multipliers for Lp is denoted Mp, with the norm of
m ∈ Mp being the smallest possible A in (5.1).

Example. M2 = L∞. It is clear that every L∞ function is a multiplier for
L2. For the converse, if m ∈ M2 then ‖Tm f ‖2 ≤ A ‖ f ‖2 for all f ∈ L2.
Applying Plancherel, ∫

|m f̂ |2 ≤
∫
|A f̂ |2.

This implies ‖m‖∞ ≤ A, for if |m(x)| > A on a compact set E of positive
measure, then taking f̂ = χE gives a contradiction.

Theorem 7. [3, Ch IV, §3.1] If 1
p + 1

p′ = 1, 1 ≤ p ≤ ∞, thenMp =Mp′ with
equality of norms.

Proof. Let σ denote the involution σ( f )(x) = f (−x). We see that σ−1Tmσ =
Tm, and since σ is an isometry of Lp this means that ‖m‖Mp

= ‖m‖Mp
.

Now by Plancherel,∫
Tm f g =

∫
T̂m f ĝ =

∫
f̂ T̂mg =

∫
f Tmg,

so

‖m‖Mp
= sup
‖ f ‖p=‖g‖p′=1

∣∣∣∣∫ Tm f g
∣∣∣∣

= sup
‖ f ‖p=‖g‖p′=1

∣∣∣∣∫ f Tmg
∣∣∣∣ = ‖m‖Mp′

.

Combining this with ‖m‖Mp
= ‖m‖Mp

we have ‖m‖Mp
= ‖m‖Mp′

.

For 1 ≤ p < ∞ and k a non-negative integer, the Sobolev space Lp
k (Rn) is

defined as the space of functions f ∈ Lp such that for all |α| ≤ k, Dα f exists
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in the weak sense, and lies in Lp. This can be made a normed space, with
the norm

‖ f ‖Lp
k
= ∑
|α|≤k
‖Dα f ‖p .

An alternative definition of L2
a for general a > 0 is

L2
a = {g ∈ L2 : (1 + |ξ|2)a/2 ĝ(ξ) ∈ L2},

where the norm is ‖g‖L2
a

=
∥∥(1 + | · |2)a/2 ĝ

∥∥
2. For integer values of a, this

is equivalent to the previous definition with p = 2 since

‖ f ‖2
L2

k
≈ ∑
|α|≤k
‖Dα f ‖2

2

= C ∑
|α|≤k

∥∥∥ξα f̂
∥∥∥2

2

= C
∫

Rn

(
∑
|α|≤k
|ξ2α|

)
| f̂ (ξ)|2 dξ

≈
∫

Rn
(1 + |ξ|2)k| f̂ (ξ)|2 dξ =

∥∥∥(1 + | · |2)k/2 f̂
∥∥∥2

2
.

The relevance of Sobolev spaces to the theory of multipliers is demon-
strated by the following theorem.

Theorem 8. [1, Prop 8.8] If m ∈ L2
a with a > n

2 then m ∈ Mp for 1 ≤ p ≤ ∞.

Proof. From the definition of Tm, we deduce Tm f = K ∗ f where K = m̌. So
by Young’s inequality,

‖Tm f ‖p ≤ ‖K‖1 ‖ f ‖p = ‖m̌‖1 ‖ f ‖p .

Since m ∈ L2
a we have (1 + |ξ|2)a/2m̂(ξ) = h(ξ) ∈ L2, so

‖m̌‖1 = ‖m̂‖1 =
∥∥∥∥ h(ξ)
(1 + |ξ|2)a/2

∥∥∥∥
1
≤ ‖h‖2

(∫
Rn

(1 + |ξ|2)−a dξ

)
.

Since a > n
2 , the integral is finite. We also have ‖h‖2 = ‖m‖L2

a
< ∞, so

overall ‖m̌‖1 < ∞. Combining this with the previous inequality, we have
m ∈ Mp.

5.1 The Hörmander multiplier theorem

Theorem 9. [3, IV Thm 3] Suppose m ∈ Ck(Rn \ {0}) for some integer k > n
2 .

If
|Dαm(x)| ≤ C|x|−|α| for |α| ≤ k

then m ∈ Mp for all 1 < p < ∞.
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This is a consequence of the following result.

Theorem 10. [1, Thm 8.10] Let ψ ∈ C∞ be a radial function supported on 1
2 ≤

|x| ≤ 2 satisfying
∞

∑
j=−∞

|ψ(2−jx)|2 = 1, x 6= 0.

If m is such that, for some k > n
2 ,

sup
j

∥∥∥m(2j·)ψ
∥∥∥

L2
k

< ∞

then m ∈ Mp for all 1 < p < ∞.

Remark. Letting mj = m(2j·)ψ, we note that mj is a dilate of mψ(2−j·),
which is a “piece” of m supported where |x| ≈ 2j. In order to have m ∈ Mp,
it is not enough to have each mj ∈ Mp, but this result shows that the addi-
tional knowledge that each mj ∈ L2

k (with norms uniformly bounded in j)
is sufficient.

Proof. Defining the operators Sj by (̂Sj f )(ξ) = ψ(2−jξ) f̂ (ξ), we can use
Littlewood-Paley (Theorem 6) to get

‖T f ‖p ≤ Cp

∥∥∥∥∥∥
(

∑
j
|SjT f |2

)1/2
∥∥∥∥∥∥

p

. (5.2)

Given another C∞ function, ψ̃, supported on 1
4 ≤ |ξ| ≤ 4 and equal to 1 on

supp ψ, we define the operators S̃j by (̂S̃j f )(ξ) = ψ̃(2−jξ) f̂ (ξ) and again
apply Theorem 6 to get∥∥∥∥∥∥

(
∑

j
|S̃j f |2

)1/2
∥∥∥∥∥∥

p

≤ Cp ‖ f ‖p . (5.3)

Now since SjTS̃j = SjT, (5.2) becomes

‖T f ‖p ≤ Cp

∥∥∥∥∥∥
(

∑
j
|SjTS̃j f |2

)1/2
∥∥∥∥∥∥

p

. (5.4)

The multiplier associated with SjT is mj = ψ(2−j·)m(·), and by hypothesis
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there is a k > n
2 for which this multiplier is an L2

k function for each j. Thus

∫
Rn
|SjT f |2u =

∫
Rn

∣∣∣∣∫
Rn

m̌j(x− y)(1 + |x− y|2)k/2 f (y)
(1 + |x− y|2)k/2 dy

∣∣∣∣2 u(x) dx

≤
∥∥mj

∥∥2
L2

k

∫
Rn

∫
Rn

u(x)
| f (y)|2

(1 + |x− y|2)k dy dx

≤ Ck

∫
Rn
| f (y)|2Mu(y) dy (5.5)

where we have used the Cauchy-Schwarz inequality and the definition of
the L2

k norm, followed by an application of Theorem 2 with φ(x) = (1 +
|x|2)−k. Note that the bound obtained is independent of j. Now for p > 2,∥∥∥∥∥∥

(
∑

j
|SjT f j|2

)1/2
∥∥∥∥∥∥

2

p

=

∥∥∥∥∥∑j
|SjT f j|2

∥∥∥∥∥
p/2

=
∫

Rn
∑

j
|SjT f j|2u

for some u ∈ L(p/2)′ with norm 1, by Riesz Representation (e.g. [2, §6.4.8]).
Applying (5.5) to this, followed by Hölder’s inequality,∥∥∥∥∥∥

(
∑

j
|SjT f j|2

)1/2
∥∥∥∥∥∥

2

p

≤ C
∫

Rn
∑

j
| f j|2Mu

≤ C

∥∥∥∥∥∑j
| f j|2

∥∥∥∥∥
p/2

‖Mu‖(p/2)′

≤ C′
∥∥∥∥∥∑j
| f j|2

∥∥∥∥∥
p/2

(5.6)

since (by Theorem 1) M is strong (p, p) for 1 < p < ∞ and (p/2)′ lies in
this range; also, ‖u‖(p/2)′ = 1.

Finally, we return to (5.4) and apply (5.6) followed by (5.3), giving

‖T f ‖p ≤ C′

∥∥∥∥∥∥
(

∑
j
|S̃j f |2

)1/2
∥∥∥∥∥∥

p

≤ Cp ‖ f ‖p

for p > 2. For p < 2 the result follows by duality since the adjoint T∗ is
associated with the multiplier m(−·) and hence is bounded as above; the
result for p = 2 follows by interpolation.

It remains to see how Theorem 9 is deduced from this result.
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Proof of Theorem 9. By the definition of the Sobolev norm, we have∥∥∥m(2j·)ψ
∥∥∥

L2
k

= ∑
|β|≤k

∥∥∥Dβ(m(2j·)ψ)
∥∥∥

2
.

Using Leibniz’s rule to expand the Dβ terms,

Dβ(m(2j·)ψ) = ∑
|γ|≤|β|

Cγ,βDγm(2j·)Dβ−γψ

hence ∥∥∥Dβ(m(2j·)ψ)
∥∥∥

2
≤ ∑
|γ|≤|β|

C′γ,β

∥∥∥Dγm(2j·)χ{ 1
2 <|x|<2}

∥∥∥
2

since the definition of ψ gives |Dβ−γψ| ≤ C on 1
2 < |x| < 2 and = 0

otherwise. Now using the chain rule, and the hypothesis of Theorem 9,

|(Dγm(2j·))(x)| = 2j|γ||(Dγm)(2jx)| ≤ C|x|−|γ|

hence
∥∥∥Dγm(2j·)χ{ 1

2 <|x|<2}

∥∥∥
2
≤ C|γ|. Putting this together,∥∥∥m(2j·)ψ

∥∥∥
L2

k

≤ ∑
|β|≤k

∑
|γ|≤|β|

C′γ,βC|γ| = Ck

and since this is independent of j we have supj

∥∥m(2j·)ψ
∥∥

L2
k

< ∞ so that
Theorem 10 can be applied to give the result.

6 Appendix

Theorem 11 (Covering Lemma). [3, Ch I, §1.6] Suppose the measurable set
E ⊆ Rn is covered by the union of a family of balls {Bj} whose diameters are
bounded. Then we can select a disjoint subsequence B1, B2, . . . (finite or infinite)
so that

∑
k
|Bk| ≥ C|E|

with C a positive constant depending only on the dimension n; e.g. C = 3−n

suffices.

Proof. Choose B1 as large as possible, i.e. diam B1 ≥ 1
2 sup{diam Bj}, and

proceed like this; if B1, . . . , Bk are chosen, then choose Bk+1 from those Bj

disjoint from B1, . . . , Bk, and with diam Bk+1 ≥ 1
2 sup{diam Bj}.

If ∑ |Bk| = ∞ then we are done. Otherwise, we claim

E ⊂ ∪k3Bk, 3Bk = concentric with Bk, but 3× diameter.

13



We need to see that for each j, Bj ⊂ ∪k3Bk. This is certainly true of the Bk,
so suppose Bj is not one of them.

Since ∑ |Bk| < ∞, diam Bk → 0 so we can find the smallest k s.t. diam Bk+1 <
1
2 diam Bj. Then Bj must intersect one of B1, . . . , Bk, otherwise it would have
been picked as Bk+1. Say it intersects Bj0 where 1 ≤ j0 ≤ k; then by simple
geometry, Bj ⊂ 3Bj0 . This shows the claim, and the result follows.

Theorem 12 (Marcinkiewicz interpolation). [1, p29] Let (X, µ), (Y, ν) be mea-
sure spaces, and 1 ≤ p0 < p1 ≤ ∞.

Let T be a mapping from Lp0 + Lp1 to the measurable functions on Y which is
sublinear, i.e.

|T( f + g)(x)| ≤ |T f (x)|+ |Tg(x)|, |T(λ f )(x)| ≤ |λ||T f (x)|.

If T is weak (p0, p0) and (p1, p1), then T is strong (p, p) for all p0 < p < p1.

Proof. Given f ∈ Lp and λ > 0, put f0 = f χ| f |>cλ, f1 = f χ| f |≤cλ for
some constant c to be fixed below. We have f0 ∈ Lp0 , f1 ∈ Lp1 , and since
|T f (x)| ≤ |T fo(x)|+ |T f1(x)|,

|{x : |T f (x)| > λ}| ≤ |{x : |T f0(x)| > λ
2 }|+ |{x : |T f1(x)| > λ

2 }|. (6.1)

Now suppose p1 = ∞. We have ‖Tg‖∞ ≤ A1 ‖g‖∞. Choose c = 1
2A1

, so
‖ f1‖∞ ≤ cλ ≤ λ

2A1
. Since |T f1(x)| ≤ ‖T f1‖∞ ≤ A1 ‖ f ‖∞ ≤ λ

2 , we have
|{x : |T f1(x)| > λ

2 }| = 0. Putting this, and the weak (p0, p0) inequality,
into (6.1) gives

{x : |T f (x)| > λ}| ≤
(

2A0

λ
‖ f0‖p0

)p0

.

Hence

‖T f ‖p
p = p

∫ ∞

0
λp−1|{x : |T f (x)| > λ}| dλ

≤ p(2A0)p0

∫ ∞

0
λp−1−p0

∫
| f |>cλ

| f (x)|p0 dx dλ

= p(2A0)p0

∫
X
| f (x)|p0

∫ | f |/c

0
λp−1−p0 dλ dx

= p(2A0)p0

∫
X
| f (x)|p0

(
| f (x)|

c

)p−p0 1
p− p0

dx

=
p

p− p0
(2A0)p0(2A1)p−p0 ‖ f ‖p

p .
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For p1 < ∞, we use a similar argument but with (6.1) bounded using both
weak-type inequalities, i.e.

|{x : |T f (x)| > λ}| ≤
(

2A0

λ
‖ f0‖p0

)p0

+
(

2A1

λ
‖ f1‖p1

)p1

.

Theorem 13 (Calderón-Zygmund decomposition). [3, Ch I, §3.2-4] Let f be
a non-negative integrable function on Rn, and let α be a positive constant. Then
there exists a decomposition of Rn so that

(i) Rn = F ∪Ω, F ∩Ω = ∅,

(ii) f (x) ≤ α for almost all x ∈ F,

(iii) Ω = ∪kQk where the Qk are cubes with disjoint interiors,

(iv) |Ω| ≤ A
α ‖ f ‖1,

(v) for each cube Qk, 1
|Qk |
∫

Qk
f (x) dx ≤ Bα,

where A, B are constants depending only on n.

We can then decompose f as f (x) = g(x) + b(x) where g is defined almost every-
where by

g(x) =

{
f (x) x ∈ F,

1
|Qj|
∫

Qj
f (x) dx x ∈ Q0

j .

This gives b(x) = 0 for x ∈ F, and
∫

Qj
b(x) dx = 0 for each cube Qj.
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