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Definitions

How does an operator T behave with respect to function
spaces, e.g. Lp?

Definition

We say that T is bounded from Lp to Lp if

‖Tf‖p 6 C ‖f‖p .

We may also say T satisfies a strong (p,p) inequality.

A weaker condition is the weak (p,p) inequality,

|{x : |Tf(x)| > α}| 6 C

(‖f‖p
α

)p

.

Indeed, if T is strong (p,p), then it is weak (p,p).
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Interpolation

We can often deduce that T is bounded for intermediate
values of p just by considering end points.

e.g. Marcinkiewicz interpolation:

Theorem

weak (p0,p0) and (p1,p1) =⇒ strong (p,p), p0 < p < p1
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Maximal functions

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy

M is weak (1, 1).

M is weak (∞, ∞).

Theorem

M is strong (p,p), 1 < p < ∞
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Singular integrals

Tf(x) = K ∗ f(x) =

∫
Rn

K(x − y)f(y)dy

where K is locally integrable away from the origin, and

(i) |K̂(ξ)| 6 B ,
(ii)

∫
|x|>2|y| |K(x − y) − K(x)|dx 6 B , y ∈ Rn .

(or |∇K(x)| 6 C |x |−n−1)

T is strong (2, 2), from (i).
T is weak (1, 1) – use (ii) and the Calderón-Zygmund
decomposition.
Thus T is strong (p,p) for 1 < p < 2.
By duality, also for 2 < p < ∞.

Theorem

T is strong (p,p), 1 < p < ∞
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Littlewood-Paley Theorem

Take ψ ∈ S(Rn) with ψ(0) = 0 and define Sj by

(̂Sj f)(ξ) = ψj (ξ)f̂(ξ) where ψj (ξ) = ψ(2−jξ).

Theorem

For 1 < p < ∞,

(a)

∥∥∥∥(∑j |Sj f |
2
)1/2

∥∥∥∥
p

6 C ‖f‖p .

(b) If for ξ , 0 we have
∑

j |ψ(2−jξ)|2 = C, then also

‖f‖p 6 C

∥∥∥∥(∑j |Sj f |
2
)1/2

∥∥∥∥
p

.
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Littlewood-Paley Theorem – Proof

Consider the operator f 7→ {Sj f }.

It is bounded from L2 to L2(`2):∥∥∥∥(∑j |Sj f |
2
)1/2

∥∥∥∥2

2

=

∫
Rn

∑
j

|ψj (ξ)|
2|f̂(ξ)|2 dξ 6 C ‖f‖22 .

Other Lp follow from the Hörmander condition, which is
satisfied since ∥∥∥∇ψ̌j (x)

∥∥∥
`2

6 C |x |−n−1.

So we have part (a).
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Littlewood-Paley Theorem – Proof

Now if
∑

j |ψ(2−jξ)|2 = C we actually have∥∥∥∥(∑j |Sj f |
2
)1/2

∥∥∥∥
2

=
√
C ‖f‖2 .

So by polarization,
√
C

∫
Rn

fg =

∫
Rn

∑
j

Sj fSjg.

Hence∣∣∣∣∫ fg∣∣∣∣ 6 C ′
∫ (∑

j |Sj f |
2
)1/2 (∑

j |Sjg |2
)1/2

6 C ′
∥∥∥∥(∑j |Sj f |

2
)1/2

∥∥∥∥
p

∥∥∥∥(∑j |Sjg |2
)1/2

∥∥∥∥
p ′

6 C ′
∥∥∥∥(∑j |Sj f |

2
)1/2

∥∥∥∥
p

‖g‖p ′ .
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Multipliers

Given m ∈ L∞(Rn) we can define an operator Tm by

T̂m f(x) = m(x)f̂(x).

We say m is a multiplier for Lp if Tm is bounded on Lp .

The class of multiplers for Lp is Mp .

Example

M2 = L∞.

Theorem

If 1
p + 1

p ′ = 1, 1 6 p 6 ∞, then Mp = Mp ′ .
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Sobolev spaces

For positive integers k ,

Lp
k = {f ∈ Lp : Dαf ∈ Lp , |α| 6 k }

with norm ‖f‖Lp
k

=
∑

|α|6k ‖Dαf‖p .

There is an alternative definition of Lp
a for general a > 0.

When p = 2, this is

L2
a = {g ∈ L2 : (1 + |ξ|2)a/2ĝ(ξ) ∈ L2},

with norm ‖g‖L2
a

=
∥∥(1 + | · |2)a/2ĝ

∥∥
2.

Theorem

If m ∈ L2
a with a > n

2 then m ∈Mp for 1 6 p 6 ∞.
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Hörmander multiplier theorem

Let ψ ∈ C∞ be radial, supported on 1
2 6 |x | 6 2, and s.t.

∞∑
j=−∞ |ψ(2−jx)|2 = 1, x , 0.

Theorem

If m is such that, for some k > n
2 ,

sup
j

∥∥m(2j ·)ψ
∥∥
L2
k
< ∞

then m ∈Mp for all 1 < p < ∞.
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Hörmander multiplier theorem – Proof

Let ψ̃ ∈ C∞, be supported on 1
4 6 |ξ| 6 4 and equal to 1 on

suppψ. The operators S̃j with multipliers ψ̃(2−jξ) satisfy∥∥∥∥(∑j |S̃j f |
2
)1/2

∥∥∥∥
p

6 Cp ‖f‖p .

Now if Sj has multiplier ψ(2−jξ),

‖Tf‖p 6 C

∥∥∥∥(∑j |SjTf |
2
)1/2

∥∥∥∥
p

= C

∥∥∥∥(∑j |SjTS̃j f |
2
)1/2

∥∥∥∥
p

.
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Hörmander multiplier theorem – Proof

∫
Rn

|SjTf |
2u 6

∥∥mj

∥∥2
L2
k
C

∫
Rn

|f(y)|2Mu(y)dy

For p > 2, Riesz representation gives some u ∈ L (p/2) ′
s.t.∥∥∥∥(∑j |SjTfj |

2
)1/2

∥∥∥∥2

p

=
∥∥∥∑j |SjTfj |

2
∥∥∥
p/2

=

∫
Rn

∑
j |SjTfj |

2u.

Putting these together,∥∥∥∥(∑j |SjTfj |
2
)1/2

∥∥∥∥2

p

6 C

∫
Rn

∑
j |fj |

2Mu

6 C
∥∥∥∑j |fj |

2
∥∥∥
p/2
‖Mu‖(p/2) ′

6 C ′
∥∥∥∑j |fj |

2
∥∥∥
p/2
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Hörmander multiplier theorem – Proof

Combining this with the Littlewood-Paley estimates,

‖Tf‖p 6 C

∥∥∥∥(∑j |SjTS̃j f |
2
)1/2

∥∥∥∥
p

6 C

∥∥∥∥(∑j |S̃j f |
2
)1/2

∥∥∥∥
p

6 C ‖f‖p .

So m ∈Mp for p > 2.
The result for 1 < p < 2 follows by duality, and for p = 2 by
interpolation.
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