Littlewood-Paley Theory and Multipliers

George Kinnear

September 11, 2009

George Kinnear Littlewood-Paley Theory and Multipliers

Definitions

How does an operator T behave with respect to function spaces, e.g. L^p ?

Definition

• We say that *T* is **bounded** from *L^p* to *L^p* if

 $\|Tf\|_p \leqslant C \, \|f\|_p \, .$

We may also say T satisfies a **strong** (p, p) inequality.

• A weaker condition is the **weak** (p, p) inequality,

$$|\{\mathbf{x} \,:\, |Tf(\mathbf{x})| > lpha\}| \leqslant C \left(rac{\|f\|_p}{lpha}
ight)^p$$

Indeed, if T is strong (p, p), then it is weak (p, p).

Interpolation

We can often deduce that T is bounded for intermediate values of p just by considering end points.

e.g. Marcinkiewicz interpolation:

Theoremweak (p_0, p_0) and $(p_1, p_1) \implies strong (p, p), p_0$

Maximal functions

$$Mf(\mathbf{x}) = \sup_{r>0} \frac{1}{|B(\mathbf{x}, r)|} \int_{B(\mathbf{x}, r)} |f(y)| \, dy$$

- *M* is weak (1, 1).
- *M* is weak (∞, ∞) .

Theorem

M is strong (p, p), 1

Singular integrals

$$Tf(\mathbf{x}) = K * f(\mathbf{x}) = \int_{\mathbb{R}^n} K(\mathbf{x} - \mathbf{y}) f(\mathbf{y}) \, d\mathbf{y}$$

where K is locally integrable away from the origin, and

(i) $|\hat{K}(\xi)| \leq B$,

(ii)
$$\int_{|\mathbf{x}|>2|\mathbf{y}|} |K(\mathbf{x}-\mathbf{y})-K(\mathbf{x})| d\mathbf{x} \leq B, \mathbf{y} \in \mathbb{R}^n.$$

(or $|\nabla K(\mathbf{x})| \leq C|\mathbf{x}|^{-n-1}$)

- *T* is strong (2, 2), from (i).
- *T* is weak (1, 1) use (ii) and the Calderón-Zygmund decomposition.
- Thus *T* is strong (*p*, *p*) for 1 < *p* < 2.
- By duality, also for 2 .

T is strong
$$(p, p)$$
, 1

Littlewood-Paley Theorem

Take $\psi \in S(\mathbb{R}^n)$ with $\psi(0) = 0$ and define S_j by

 $\widehat{(S_j f)}(\xi) = \psi_j(\xi) \widehat{f}(\xi)$ where $\psi_j(\xi) = \psi(2^{-j}\xi)$.

For
$$1 ,
(a) $\left\| \left(\sum_{j} |S_{j}f|^{2} \right)^{1/2} \right\|_{p} \leq C \|f\|_{p}$.
(b) If for $\xi \neq 0$ we have $\sum_{j} |\psi(2^{-j}\xi)|^{2} = C$, then also $\|f\|_{p} \leq C \left\| \left(\sum_{j} |S_{j}f|^{2} \right)^{1/2} \right\|_{p}$.$$

Littlewood-Paley Theorem – Proof

Consider the operator $f \mapsto \{S_j f\}$.

• It is bounded from L^2 to $L^2(\ell^2)$:

$$\left\| \left(\sum_{j} |S_{j}f|^{2} \right)^{1/2} \right\|_{2}^{2} = \int_{\mathbb{R}^{n}} \sum_{j} |\psi_{j}(\xi)|^{2} |\hat{f}(\xi)|^{2} d\xi \leqslant C \|f\|_{2}^{2}.$$

• Other *L^p* follow from the Hörmander condition, which is satisfied since

$$\left\|
abla \check{\psi}_j(x) \right\|_{\ell^2} \leqslant C |x|^{-n-1}.$$

So we have part (a).

Littlewood-Paley Theorem – Proof

Now if $\sum_{j} |\psi(2^{-j}\xi)|^2 = C$ we actually have

$$\left\| \left(\sum_j |S_j f|^2
ight)^{1/2}
ight\|_2 = \sqrt{C} \left\| f
ight\|_2.$$

So by polarization,

$$\sqrt{C}\int_{\mathbb{R}^n} f\overline{g} = \int_{\mathbb{R}^n} \sum_j S_j f \overline{S_j g}.$$

Hence

$$egin{aligned} &\left| \int f\overline{g}
ight| \leqslant C^{\,\prime} \int \left(\sum_{j} |S_{j}f|^{2}
ight)^{1/2} \left(\sum_{j} |S_{j}g|^{2}
ight)^{1/2} \ &\leqslant C^{\,\prime} \left\| \left(\sum_{j} |S_{j}f|^{2}
ight)^{1/2}
ight\|_{p} \left\| \left(\sum_{j} |S_{j}g|^{2}
ight)^{1/2}
ight\|_{p^{\,\prime}} \ &\leqslant C^{\,\prime} \left\| \left(\sum_{j} |S_{j}f|^{2}
ight)^{1/2}
ight\|_{p} \|g\|_{p^{\,\prime}} \,. \end{aligned}$$

George Kinnear

Given $m \in L^{\infty}(\mathbb{R}^n)$ we can define an operator T_m by

$$\widehat{T_m f}(x) = m(x)\widehat{f}(x).$$

We say *m* is a **multiplier for** L^p if T_m is bounded on L^p .

The class of multiplers for L^p is \mathcal{M}_p .

Example	
$\mathcal{M}_2 = L^{\infty}.$	

If
$$\frac{1}{p} + \frac{1}{p'} = 1$$
, $1 \leqslant p \leqslant \infty$, then $\mathfrak{M}_p = \mathfrak{M}_{p'}$.

Sobolev spaces

For positive integers k,

$$L^{\,p}_k=\{f\in L^p\,:\,D^{\,lpha}f\in L^p$$
 , $|lpha|\leqslant k\}$

with norm $\|f\|_{L_k^p} = \sum_{|\alpha| \leq k} \|D^{\alpha}f\|_p$. There is an alternative definition of L_a^p for general a > 0. When p = 2, this is

$$L_a^2 = \{g \in L^2 : (1 + |\xi|^2)^{a/2} \hat{g}(\xi) \in L^2\},$$

with norm $\|g\|_{L^2_a} = \|(1+|\cdot|^2)^{a/2}\hat{g}\|_2.$

If
$$m \in L^2_a$$
 with $a > \frac{n}{2}$ then $m \in \mathcal{M}_p$ for $1 \leqslant p \leqslant \infty$.

Hörmander multiplier theorem

Let $\psi \in C^{\infty}$ be radial, supported on $\frac{1}{2} \leqslant |x| \leqslant 2$, and s.t.

$$\sum_{j=-\infty}^{\infty} |\psi(2^{-j}x)|^2 = 1, \quad x \neq 0.$$

Theorem

If m is such that, for some $k > \frac{n}{2}$,

$$\sup_{j} \left\| m(2^{j} \cdot) \psi \right\|_{L^{2}_{k}} < \infty$$

then $m \in \mathcal{M}_p$ for all 1 .

Hörmander multiplier theorem – Proof

Let $\tilde{\psi} \in C^{\infty}$, be supported on $\frac{1}{4} \leq |\xi| \leq 4$ and equal to 1 on supp ψ . The operators \tilde{S}_j with multipliers $\tilde{\psi}(2^{-j}\xi)$ satisfy

$$\left\| \left(\sum_j | ilde{S}_j f|^2
ight)^{1/2}
ight\|_p \leqslant C_p \left\| f
ight\|_p$$

Now if S_j has multiplier $\psi(2^{-j}\xi)$,

$$\left\|Tf\right\|_{p} \leqslant C \left\|\left(\sum_{j} |S_{j}Tf|^{2}\right)^{1/2}\right\|_{p} = C \left\|\left(\sum_{j} |S_{j}T\tilde{S}_{j}f|^{2}\right)^{1/2}\right\|_{p}$$

Hörmander multiplier theorem – Proof

$$\int_{\mathbb{R}^n} |S_j T f|^2 u \leqslant \left\|m_j
ight\|_{L^2_k}^2 C \int_{\mathbb{R}^n} |f(y)|^2 M u(y) \, dy$$

For p > 2, Riesz representation gives some $u \in L^{(p/2)'}$ s.t.

$$\left\| \left(\sum_{j} |S_j T f_j|^2 \right)^{1/2} \right\|_p^2 = \left\| \sum_{j} |S_j T f_j|^2 \right\|_{p/2} = \int_{\mathbb{R}^n} \sum_{j} |S_j T f_j|^2 u.$$

Putting these together,

$$\left\| \left(\sum_{j} |S_{j} Tf_{j}|^{2} \right)^{1/2} \right\|_{p}^{2} \leq C \int_{\mathbb{R}^{n}} \sum_{j} |f_{j}|^{2} Mu$$
$$\leq C \left\| \sum_{j} |f_{j}|^{2} \right\|_{p/2} \|Mu\|_{(p/2)}$$
$$\leq C' \left\| \sum_{j} |f_{j}|^{2} \right\|_{p/2}$$

Hörmander multiplier theorem – Proof

Combining this with the Littlewood-Paley estimates,

$$\begin{split} \|Tf\|_p &\leqslant C \left\| \left(\sum_j |S_j T \tilde{S}_j f|^2 \right)^{1/2} \right\|_p \\ &\leqslant C \left\| \left(\sum_j |\tilde{S}_j f|^2 \right)^{1/2} \right\|_p \\ &\leqslant C \left\| f \right\|_p. \end{split}$$

So $m \in \mathcal{M}_p$ for p > 2. The result for 1 follows by duality, and for <math>p = 2 by interpolation.